WO2016163171A1 - 液面検出装置 - Google Patents

液面検出装置 Download PDF

Info

Publication number
WO2016163171A1
WO2016163171A1 PCT/JP2016/055582 JP2016055582W WO2016163171A1 WO 2016163171 A1 WO2016163171 A1 WO 2016163171A1 JP 2016055582 W JP2016055582 W JP 2016055582W WO 2016163171 A1 WO2016163171 A1 WO 2016163171A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic field
float
magnet
magnetic sensor
Prior art date
Application number
PCT/JP2016/055582
Other languages
English (en)
French (fr)
Inventor
英楠 張
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680008078.5A priority Critical patent/CN107209042A/zh
Priority to EP16776340.8A priority patent/EP3282232B1/en
Priority to JP2017511491A priority patent/JP6508332B2/ja
Publication of WO2016163171A1 publication Critical patent/WO2016163171A1/ja
Priority to US15/724,307 priority patent/US10634546B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/56Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements
    • G01F23/62Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements using magnetically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/72Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/72Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
    • G01F23/74Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means for sensing changes in level only at discrete points

Definitions

  • the present invention relates to a liquid level detection device, and more specifically, a liquid level that is mounted on a tank that stores a liquid such as gasoline, engine oil, or urea water in an automobile and that detects the position of the liquid level using a magnet.
  • the present invention relates to a detection device.
  • liquid level detection device including a magnet and a magnetic sensor
  • liquid level detection that includes a float having a magnet that moves up and down in response to a change in the position of the liquid level and a magnetic sensor that detects the magnetic flux density of the magnet, and detects the position of the liquid level from the output signal of the magnetic sensor The device is known.
  • Patent Document 1 discloses a float 1, a cylindrical pipe 2 in which the float 1 is disposed, a magnetized body 3 fixed to one end of the float 1, and a magnetized body. 3 is disclosed, which includes a magnetoresistive element 4 disposed in the vicinity of 3 and detects the position of the liquid level based on the position of the magnetized body 3 corresponding to the float 1 (see FIG. 1 and FIG. 1). (See FIG. 2).
  • the magnetized body 3 is magnetized along the moving direction of the float 1 in accordance with a predetermined magnetization pattern (SN, NS, SN, etc . Further, the magnetized body 3 protrudes outside the cylindrical pipe 2 from a through hole provided on the top surface of the cylindrical pipe 2.
  • the magnetoresistive element 4 is disposed outside the cylindrical pipe 2 and in the vicinity of the magnetized body 3.
  • the magnetoresistive element 4 includes eight resistance elements that constitute two bridge circuits.
  • a liquid level detection device includes a detector body 25 that is attached and includes a plurality of Hall elements 5 and 5 (see FIGS. 1 to 4 and 12 to 13).
  • the detector main body 25 has a structure in which a plurality of Hall elements 5 are provided on the printed circuit board 6 on the same straight line at a required arrangement interval so as to be parallel to the moving direction of the displacement magnet 24. Each Hall element is provided such that the magnetosensitive surface 5 a is parallel to the magnetization direction of the displacement magnet 24.
  • the liquid level sensor 21 is suspended in the tank via a detection rod 23 by a tension spring 22 having an upper end attached to the lower surface of the detection unit housing 20, and the upper end of the detection rod 23 faces the detection unit housing 20. It is out.
  • the liquid level detection device detects the displacement of the upper end portion of the detection rod 23 in the detection unit housing 20 by the detector main body 25 as the displacement of the displacement magnet 24 and measures the liquid level.
  • the detector main body 25 calculates the position of the magnet from the output voltage of each Hall element via the control circuit 7 and further converts it into a liquid level value, and the liquid level value from the calculation circuit is displayed on the screen or the like. It is connected to an output device 9 for outputting.
  • the magnetized body 3 protrudes outside the cylindrical pipe 2 from a through hole provided in the top surface of the cylindrical pipe 2. For this reason, it is difficult to reduce the size, and depending on the device, it may be difficult to mount.
  • the detection rod 23 and the displacement magnet 24 protrude from the through hole provided on the top surface of the liquid tank 18 to the outside of the liquid tank 18. For this reason, similarly to the liquid level detection device described in Patent Document 1, it is difficult to reduce the size, and it may be difficult to mount depending on the device.
  • a liquid level detection device in which a magnet is arranged in a tank has been devised.
  • a float 23 a glass tube 21 in which the float 23 is disposed, magnets 22A and 22B fixed to two opposite ends of the float 23, and the glass tube 21 are adjacent to each other.
  • a liquid level detection device that includes sensor units 31A to 31E mounted on a sensor case 32 that is arranged in the manner described above and detects the position of the liquid level based on the positions of magnets 22A and 22B corresponding to the float 23. (See FIGS. 2 to 4).
  • Magnets 22 ⁇ / b> A and 22 ⁇ / b> B are arranged at both ends in the movement direction of the float 23 so as to be NS and SN along the movement direction of the float 23.
  • the sensor units 31A to 31E are arranged along the moving direction of the float 23.
  • the sensor units 31A to 31E detect angle sensors 34A to 34E that detect magnetism by the first magnet 22A and the second magnet 22B according to the displacement of the float 23, and that the float 23 has reached the vicinity by magnetism.
  • Magnetic intensity sensors 35A to 35E are arranged at both ends in the movement direction of the float 23 so as to be NS and SN along the movement direction of the float 23.
  • the sensor units 31A to 31E are arranged along the moving direction of the float 23.
  • the sensor units 31A to 31E detect angle sensors 34A to 34E that detect magnetism by the first magnet 22A and the second magnet 22B according to the displacement of the float 23, and that the float 23 has reached
  • Patent Document 4 includes a magnet 3, a tank 2 in which the magnet 3 is disposed, a rod 4, a plurality of magnetic intensity sensors S [1] to S [4], and a control unit 10.
  • a liquid level detecting device that detects the position of the liquid level based on the position of the magnet 3 is disclosed (see FIGS. 1, 4, and 5).
  • the rod 4 has a long cylindrical shape and is disposed in the tank 2 so that the axial direction is parallel to the vertical direction (vertical direction).
  • the magnet 3 has an annular shape and is configured to float on the liquid level of the liquid stored in the tank 2.
  • the rod 4 is inserted through the magnet 3, and the magnet 3 is guided by the rod 4 in the state where it floats on the liquid surface of the liquid stored in the tank 2 and moves in the vertical direction.
  • the plurality of magnetic intensity sensors S [1] to S [4] are each embedded in the rod 4, and are arranged so as to be sequentially arranged at intervals from above to below.
  • the control unit 10 includes a difference value calculation unit 11 having a changeover switch 12 and a subtractor 13, and a microcomputer 20.
  • the changeover switch 12 has input terminals I11, I12, I13, I21, I22, I23, and output terminals O1, O2. Any one of the input terminals I11, I12, and I13 is connected to the output terminal O1 by switching the switch according to a control signal from the microcomputer 20. Any one of the input terminals I21, I22, and I23 is connected to the output terminal O2 by switch switching.
  • the input terminal I11 is connected to the magnetic intensity sensor S [1].
  • the input terminal I12 is connected to the magnetic intensity sensor S [2].
  • the input terminal I13 is connected to the magnetic intensity sensor S [3].
  • the input terminal I21 is connected to the magnetic intensity sensor S [2].
  • the input terminal I22 is connected to the magnetic intensity sensor S [3].
  • the input terminal I23 is connected to the magnetic intensity sensor S [4].
  • the changeover switch 12 (1) when the voltage signal of the magnetic intensity sensor S [1] is output from the output terminal O1, the voltage signal of the magnetic intensity sensor S [2] is output from the output terminal O2.
  • (2) When the voltage signal of the magnetic intensity sensor S [2] is output from the output terminal O1, the voltage signal of the magnetic intensity sensor S [3] is output from the output terminal O2, and (3) the magnetism is output from the output terminal O1.
  • the voltage signal of the intensity sensor S [3] is output, the voltage signal of the magnetic intensity sensor S [4] is output from the output terminal O2.
  • the subtractor 13 includes one input terminal to which the output terminal O1 is connected, the other input terminal to which the output terminal O2 is connected, and an output terminal that outputs a differential voltage signal.
  • the microcomputer 20 is connected to the changeover switch 12 and the subtractor 13.
  • the microcomputer 20 is a high level indicating the relationship between the difference value of the voltage signal (output value) of the magnetic strength sensor arranged adjacent to the position of the magnet 3 (that is, the liquid level of the liquid stored in the tank 2).
  • Precision liquid level detection reference information G [1] to G [3] standard precision liquid level detection reference information H [1] to H [3]
  • a ROM in which high-precision detection conditions for determining which of G [1] to G [3] and standard precision liquid level detection reference information H [1] to H [3] is used is stored in advance. ing.
  • the microcomputer 20 further includes a CPU.
  • the CPU includes a differential voltage signal from the subtractor 13, high-precision liquid level detection reference information G [1] to G [3], and standard precision liquid level detection reference information H [ 1] to H [3] and signal processing using high-precision detection conditions are performed to detect the position of the magnet 3, that is, the liquid level of the liquid stored in the tank 2.
  • Patent Document 5 a float 3, a tank in which the float 3 is arranged, a substantially ring-shaped permanent magnet 5 fixed in a concave groove 3 h of the float 3, and a hole in the float 3 are loosely inserted.
  • the permanent magnet 5 is uniformly magnetized with an N pole on the inner peripheral surface 5n side and an S pole on the outer peripheral surface 5g side.
  • the first hall element 21 and the second hall element 23 are fixedly spaced apart from each other in the vertical direction.
  • the drive control circuit 31 includes a first amplifier circuit 33 that amplifies the output voltage from the first Hall element 21 and a second amplifier circuit 35 that amplifies the output voltage from the second Hall element 23.
  • the first amplifier circuit 33 and the second amplifier circuit 35 exhibit similar amplification factors.
  • the output voltage of the first hall element 21 is amplified by the first amplifier circuit 33 at a predetermined rate.
  • the amplified output voltage is input to the output adjustment circuit 37 and the inverting amplification circuit 41, and a voltage corresponding to the liquid level is output from the output adjustment circuit 37 to the outside.
  • the output voltage of the second hall element 23 is amplified at a predetermined rate by the second amplifier circuit 35.
  • the amplified output voltage is input to the inverting amplifier circuit 41.
  • the inverting amplifier circuit 41 receives an output voltage obtained by combining the output voltage obtained by amplifying the output of the first Hall element 21 and the output voltage obtained by amplifying the output of the second Hall element 23. This is used for feedback control of driving of the elements 21 and 23. Thereby, the magnetic flux density, that is, the liquid level can be accurately measured regardless of the influence of the fluctuation of the liquid temperature and the variation of the characteristics of the permanent magnet 5.
  • Japanese Patent Laid-Open No. 1-222120 Japanese Patent Laid-Open No. 2002-22403 JP 2009-236615 A JP 2014-145714 A JP 2002-277308 A
  • the sensor units 31A to 31E include angle sensors 34A to 34E and magnetic intensity sensors 35A to 35E, respectively, and an output monitor circuit to which the angle sensors 34A to 34E are connected. Since it further includes the switching circuit 12 to which the magnetic intensity sensors 35A to 35E are connected, it is difficult to reduce the circuit configuration. Further, when the angle sensors 34A to 34E and the magnetic intensity sensors 35A to 35E are GMR elements, they can cope with a magnetic field intensity of 30 to 200G, but when a magnetic field larger than 200G is applied, the magnetic saturation occurs. It cannot be detected. For this reason, the freedom degree with respect to the kind and position of magnet 22A, 22B is low. In particular, the distance between the angle sensors 34A to 34E and the magnetic intensity sensors 35A to 35E and the magnets 22A and 22B cannot be shortened depending on the magnets 22A and 22B, and it is difficult to reduce the circuit configuration.
  • the liquid level detection device described in Patent Document 4 requires the selector switch 12, the subtractor 13, and the ROM of the microcomputer 20, which complicates the circuit configuration and is difficult to reduce in size.
  • the liquid level detection device described in Patent Document 5 the liquid level is detected only by the first hall element 21, and the second hole is used to correct the influence of fluctuations in liquid temperature and variations in the characteristics of the permanent magnet 5. Since a feedback control circuit including the element 23 and the inverting amplifier circuit 41 is required, the circuit configuration is complicated and downsizing is difficult.
  • an object of the present invention is to provide a liquid level detection device capable of simplifying and downsizing the circuit configuration.
  • a liquid level detection device includes a float that moves up and down following the liquid level, a magnet attached to the float, a guide member that guides the raising and lowering of the float, and a lift and lowering of the magnet that are attached to the guide member.
  • a magnetic flux density that changes according to the position is detected, a plurality of magnetic sensors that output electrical signals corresponding to the magnetic flux density, and a float position is detected based on the electrical signals output from the plurality of magnetic sensors, respectively.
  • a detection circuit detects the position of the float based on electrical signals output from two adjacent magnetic sensors among the plurality of magnetic sensors.
  • each magnetic sensor has a bias magnet.
  • each magnetic sensor outputs an electrical signal based on the magnetic vector of the magnetic field lines generated by the magnet.
  • the detection circuit extracts an electrical signal output from two adjacent magnetic sensors based on a comparison with an intermediate voltage among electrical signals output from the plurality of magnetic sensors.
  • the detection circuit calculates angle information when one of the two extracted electric signals is a sine wave and the other is a cosine wave, and detects the position of the float based on the calculated angle information.
  • the magnet is composed of at least one or more sets of magnet units arranged so that the same polarity magnetic poles are opposed to each other via the guide member.
  • the magnet has a plurality of sets of magnet units.
  • Each magnet unit is arrange
  • the plurality of magnetic sensors include first to third magnetic sensors arranged in order along the ascending / descending direction.
  • the detection circuit has first and second electrical signals according to a combination of magnitude relations of the first to third electrical signals with respect to the first to third electrical signals output from the first to third magnetic sensors, respectively.
  • Angle information when one of the sine waves is a sine wave and the other is a cosine wave is calculated, and the position of the float is detected based on the calculated angle information.
  • the detection circuit extracts the first and second electric signals according to a relationship with a plurality of predetermined thresholds with respect to the first to third electric signals output from the first to third magnetic sensors, respectively. To do.
  • the detection circuit divides the first to third electric signals output from the first to third magnetic sensors into a plurality of regions according to a relationship with a plurality of predetermined threshold values. First and second electrical signals in the region are extracted.
  • the directions of the bias magnetic field vectors of the magnetic sensors adjacent to each other are set symmetrically with respect to the horizontal direction perpendicular to the lifting / lowering direction of the float.
  • each magnetic sensor includes first to fourth magnetoresistive elements to which a bias magnetic field vector generated by a bias magnet is applied, and resistance values of the first to fourth magnetoresistive elements based on a change in the bias magnetic field vector. And an output circuit that outputs an electrical signal corresponding to the change.
  • a first bias magnetic field vector generated by a bias magnet is applied to the first and second magnetoresistive elements.
  • a second bias magnetic field vector in a direction opposite to the first bias magnetic field vector generated by the bias magnet is applied to the third and fourth magnetoresistive elements.
  • the first and second magnetoresistive elements and the third and fourth magnetoresistive elements are arranged so as to be symmetrical with respect to the ascending / descending direction in which the first to fourth magnetoresistive elements are formed.
  • the bias magnet is arranged so that the direction of the bias magnetic field vector applied to the first to fourth magnetoresistive elements is in a horizontal direction perpendicular to the float moving direction.
  • the liquid level detection device of the present invention can be simply and miniaturized in circuit configuration.
  • FIG. 1 is a circuit configuration diagram of a liquid level detection device 1 based on Embodiment 1.
  • FIG. 1 is a figure explaining the pattern of the magnetoresistive element of the magnetic sensor 5 based on Embodiment 1.
  • FIG. It is a figure explaining the detection principle of the magnetic sensor 5 based on Embodiment 1.
  • FIG. It is a figure explaining arrangement
  • FIG. 6 is a diagram for explaining a layout of magnets 2A to 2D attached to a float 20 and magnetic sensors 5A to 5C based on the first embodiment. It is a figure explaining the relationship with the magnetic sensor when the float 20 based on Embodiment 1 changes the position by raising / lowering operation
  • FIG. FIG. 10 is an enlarged image view of a predetermined area in FIG. 9. It is a figure which illustrates typically the relationship between the magnetic sensor 5 and magnetic vector P based on Embodiment 1.
  • FIG. It is a flowchart explaining the detection system of the liquid level detection apparatus 1 based on Embodiment 1.
  • FIG. It is a figure explaining the layout of magnet 2E, 2F attached to the float 20 based on Embodiment 1, and magnetic sensor 5A, 5B, 5C.
  • FIG. It is the image figure which expanded the predetermined area
  • FIG. 6 is a diagram for explaining a layout of magnets 2I to 2T attached to a float 20 and magnetic sensors 5A, 5B, and 5C based on Embodiment 3. It is a figure explaining the output signal waveform from the magnetic sensor 5 according to the raising / lowering operation
  • FIG. It is the image figure which expanded the predetermined area
  • FIG. 10 is a diagram for explaining a method for extracting two output signal waveforms in respective regions T1 to T3 from output signal waveforms of a plurality of magnetic sensors 5A to 5C based on the third embodiment. It is a figure explaining the precision of angle information theta based on Embodiment 3.
  • FIG. It is a flowchart explaining the detection system of the liquid level detection apparatus 1 based on Embodiment 3.
  • FIG. It is a figure explaining the layout of magnet 2U, 2V attached to the float 20 based on the modification 1 of Embodiment 3, and magnetic sensor 5A, 5B, 5C.
  • FIG. 9 is a diagram for explaining a layout of magnets 2I to 2P attached to a float 20 and magnetic sensors 5A, 5B, and 5C based on Embodiment 3. It is a figure explaining the output signal waveform from the magnetic sensor 5 according to the raising / lowering operation
  • FIG. It is the image figure which expanded the predetermined area
  • FIG. 10 is a diagram for explaining a method for extracting two output signal waveforms in respective regions T1 to T3 from output signal waveforms of a plurality of magnetic sensors 5A to 5C based on Modification 2 of Embodiment 3. It is a figure explaining the precision of angle information theta based on modification 2 of Embodiment 3. It is a figure explaining the layout of magnet 2W, 2X attached to the float 20 based on the modification 3 of Embodiment 3, and magnetic sensor 5A, 5B, 5C. It is a figure explaining the pattern of the magnetoresistive element of magnetic sensor 5 # based on Embodiment 4.
  • FIG. 10 is a diagram for explaining a method for extracting two output signal waveforms in respective regions T1 to T3 from output signal waveforms of a plurality of magnetic sensors 5A to 5C based on Modification 2 of Embodiment 3. It is a figure explaining the precision of angle information theta based on modification 2 of Embodiment 3. It is a figure explaining the layout of
  • FIG. It is a figure explaining the case where the position of the float 20 has shifted
  • FIG. It is a figure explaining the layout of the magnets 2G and 2H attached to the float 20 based on Embodiment 5, and a magnetic sensor. It is a figure explaining the change of the bias magnetic field vector based on Embodiment 5.
  • FIG. It is a figure explaining the precision of angle information theta based on Embodiment 5.
  • FIG. It is a figure explaining the layout of the magnets 2G and 2H attached to the float 20 based on the modification of Embodiment 5, and the some magnetic sensor 5Q.
  • FIG. 1 is a diagram illustrating an external configuration of a liquid level detection device based on the first embodiment.
  • the liquid level detection device 1 includes a float 20 that moves up and down following the liquid level, a guide (guide member) 10, and a detection circuit 50.
  • the detection circuit 50 detects the position of the float 20 based on output signals detected from a plurality of magnetic sensors (AMR (Anisotropic Magneto Resistance) elements) attached to the guide member 10.
  • AMR Anagonal Magneto Resistance
  • FIG. 2 is a diagram illustrating a plurality of magnetic sensors 5 attached to the guide 10 based on the first embodiment.
  • the plurality of magnetic sensors 5 are arranged at predetermined intervals along the ascending / descending direction.
  • the magnet 20 is provided in the float 20. Specifically, magnets 2A, 2B, 2C, and 2D are attached as two sets of magnet units. A magnet unit is composed of the magnets 2A and 2B. A magnet unit is constituted by the magnets 2C and 2D.
  • the plurality of magnetic sensors 5 detect the magnetic flux density according to the lifting / lowering operation of the magnet 2 attached to the float 20 and output an electric signal corresponding to the magnetic flux density.
  • the configuration of the 4-pin magnetic sensor 5 will be described as an example.
  • the number of pins is not particularly limited to this, and those skilled in the art can appropriately change the design.
  • FIG. 3 is a circuit configuration diagram of the liquid level detection device 1 based on the first embodiment.
  • liquid level detection device 1 based on Embodiment 1 includes a plurality of magnetic sensors (AMR elements) 5 and a detection circuit 50. In this example, a case where n magnetic sensors are provided is shown.
  • the detection circuit 50 includes an A / D circuit 60 that is an analog / digital conversion circuit, a P / S conversion circuit 30 that is a parallel / serial conversion circuit, and an MPU (Micro-processing unit) 40 that executes arithmetic processing. .
  • a / D circuit 60 that is an analog / digital conversion circuit
  • P / S conversion circuit 30 that is a parallel / serial conversion circuit
  • MPU Micro-processing unit
  • the A / D circuit 60 is connected to a plurality (n) of magnetic sensors 5 and converts an input analog signal into a digital signal.
  • the P / S conversion circuit 30 converts the digital signal input from the A / D circuit 60 input in parallel in synchronization with the clock CLK input from the MPU 40 in series and outputs it to the MPU 40.
  • the MPU 40 detects the position of the float 20 by performing arithmetic processing on signals from a plurality (n) of magnetic sensors 5 input from the P / S conversion circuit 30.
  • the MPU 40 in this example will be described with respect to the signal from the A / D circuit 60 that receives the output of the P / S conversion circuit 30 synchronized with the clock CLK. It is also possible to change to a configuration that receives a digital signal input from the / D circuit 60.
  • FIG. 4 is a diagram for explaining the pattern of the magnetoresistive element of the magnetic sensor 5 based on the first embodiment.
  • magnetic sensor 5 has a bridge structure composed of four magnetoresistive elements MR1 to MR4 (also collectively referred to as magnetoresistive elements MR).
  • the magnetic sensor 5 When the magnetic field is applied, the magnetic sensor 5 outputs signals V + and V ⁇ according to the resistance value change by the resistance value changes of the magnetoresistive elements MR1 to MR4. The magnetic sensor 5 outputs a difference ⁇ V between the signals V + and V ⁇ .
  • the magnetoresistive element MR of the magnetic sensor 5 is an anisotropic magnetoresistive element and has a folded pattern structure.
  • the resistance value when the magnetic field of the magnetoresistive element MR is applied becomes minimum when a magnetic field (90 °) perpendicular to the length direction (current direction) of the element is applied, and a parallel magnetic field (0 °) is applied. It has the maximum characteristics when
  • the magnetic sensor 5 is provided with bias magnets 3A and 3B.
  • the bias magnets 3A and 3B are arranged so that a bias magnetic field is applied to the magnetoresistive elements MR1 to MR4 from the upper left to the lower right.
  • the magnetoresistive element MR of the magnetic sensor 5 of this example will be described as a folded pattern structure as an example.
  • the pattern structure is not limited to a folded shape, and those skilled in the art can improve the detection characteristics of the magnetic sensor 5. If so, the design can be changed as appropriate.
  • the arrangement (orientation) of the bias magnets 3A and 3B in this example, a configuration in which a bias magnetic field vector having an angle of 45 ° is applied from the upper left to the lower right is shown as an example. A person skilled in the art can appropriately change the design of the arrangement or angle so as to enhance the detection characteristics of the magnetic sensor 5.
  • bias magnetic field vector is applied based on the two bias magnets 3A and 3B.
  • one bias magnet 3A is inclined at 45 ° with respect to the magnetoresistive elements MR1 to MR1. It is possible to apply a similar bias magnetic field vector by arranging it at the center of MR4. With this configuration, the number of bias magnets can be reduced, and the cost of the magnetic sensor 5 can be reduced.
  • a bias magnet may be disposed on the substrate on which the magnetoresistive elements MR1 to MR4 are provided, or a bias magnet may be disposed on the back surface of the base.
  • FIG. 5 is a diagram for explaining the detection principle of the magnetic sensor 5 based on the first embodiment.
  • FIG. 5A is a diagram for explaining a bias magnetic field vector that changes in accordance with an external magnetic field.
  • the bias magnetic field vector of the magnetic sensor 5 changes its vector direction according to the external magnetic field with respect to the ascending / descending direction.
  • the bias magnetic field vector V0 in the absence of an external magnetic field is indicated by a solid line.
  • the bias magnet is set so that the magnetic sensor 5 has a magnetic field intensity that reaches the saturation sensitivity region.
  • the bias magnetic field vector V0 changes to a bias magnetic field vector V1 according to an external magnetic field (from right to left).
  • the bias magnetic field vector V0 changes to the bias magnetic field vector V2 according to the external magnetic field (from left to right).
  • the bias magnetic field vector changes according to the change in magnetic flux density of the external magnetic field.
  • the magnetic sensor 5 detects a change in the bias magnetic field vector and outputs an output signal (potential difference ⁇ V) corresponding to the detection result.
  • FIG. 5B shows the change characteristic of the output signal of the magnetic sensor 5 according to the change of the magnetic flux density of the external magnetic field.
  • a predetermined magnetic flux density ST is applied based on the bias magnetic field according to the bias magnets 3A and 3B.
  • the output in this case is set to an intermediate value, and the potential difference ⁇ V changes according to the change in the direction of the magnetic field applied to the magnetic sensor 5.
  • the potential difference ⁇ V shifts to the ⁇ V1 side in accordance with the change in the magnetic flux density of the external magnetic field from right to left.
  • the potential difference ⁇ V shifts to the ⁇ V2 side in accordance with the change in the magnetic flux density of the external magnetic field from the left to the right.
  • the saturation magnetic field strength can be increased by changing the magnetic strength of the bias magnets 3A and 3B.
  • FIG. 6 is a view for explaining the arrangement of the magnets 2 attached to the float 20 based on the first embodiment.
  • FIG. 6 here, a diagram when the float 20 is viewed from above is shown.
  • the magnet unit formed by the magnets 2A and 2B is provided so as to face each other through the guide member.
  • the N poles of the magnets 2A and 2B are provided so as to face each other. It is also possible to arrange the south poles of the magnets 2A and 2B so as to face each other.
  • the direction of the magnetic force becomes a direction along the guide member, and the magnetic force component in the direction perpendicular to the direction along the guide member is canceled. Further, even when the float 20 rotates, there is almost no change in the direction of magnetic force or the magnetic flux density, and the magnetic sensor 5 can accurately measure the amount of displacement of the magnetic flux density.
  • FIG. 7 is a diagram for explaining the layout of the magnets 2A to 2D and the magnetic sensors 5A to 5C attached to the float 20 according to the first embodiment.
  • the magnets 2A and 2B form a set of magnet units.
  • Magnets 2C and 2D form a set of magnet units.
  • the magnet units formed by the magnets 2A and 2B are arranged so that the N poles face each other. Further, the magnet units formed by the magnets 2C and 2D are arranged so that the south poles face each other. Adjacent magnet units are arranged so that the magnetic poles of the magnets are different.
  • the distance between the magnet 2A and the magnet 2B is set to an interval twice the distance a, and the magnetic sensor 5 is arranged to pass through the center thereof.
  • the interval (center distance) between adjacent magnet units is also set to twice the distance a.
  • the distance between the magnetic sensors 5 is also a distance a.
  • the magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the center in the ascending / descending direction of the magnet 2A and the magnet 2C (or the magnet 2B and the magnet 2D) is set as a reference position (center point).
  • the case where the magnetic sensor 5B is located at the reference position (center point) is shown.
  • FIG. 8 is a diagram for explaining the relationship with the magnetic sensor when the position of the float 20 based on the first embodiment is changed by the lifting / lowering operation.
  • FIG. 8 (A) shows a case where the float 20 rises and approaches the magnetic sensor 5A (state S0).
  • the magnetic sensor 5A is affected by a magnetic field (lines of magnetic force) generated by the magnets 2A and 2B of the float 20. Specifically, the magnetic sensor 5A is affected by a magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector changes.
  • the other magnetic sensors 5B and 5C are also affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • FIG. 8B shows the case where the float 20 has further increased by the distance a (state S1) from FIG. 8A.
  • the magnetic sensor 5A is in a state located on the center line between the magnets 2A and 2B. In this example, this state is the initial state.
  • the magnetic sensor 5B is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5B changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector changes.
  • the other magnetic sensor 5C is also affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • FIG. 8C shows a case where the float 20 has further increased by the distance a (state S2) from FIG. 8B.
  • the magnetic field generated by the magnets 2A, 2B, 2C, and 2D is shown to be maximally applied in the up-and-down direction.
  • the magnetic sensor 5A is affected by a magnetic field from left to right as a magnetic field line from the magnet 2A to the magnet 2C (or a magnetic field line from the magnet 2B to the magnet 2D). Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes toward the bias magnetic field vector V2.
  • the potential difference V increases (becomes maximum) in accordance with the change toward the bias magnetic field vector V2.
  • the magnetic sensor 5B is located on the center line between the magnets 2A and 2B. Therefore, it is an initial state.
  • the magnetic sensor 5C is affected by the magnetic field generated by the magnets 2A and 2B. Specifically, the magnetic sensor 5C is affected by a magnetic field from right to left as the magnetic lines of force of the magnets 2A and 2B.
  • the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • FIG. 8D shows the case where the float 20 has further increased the distance a from FIG. 8C (state S3).
  • the magnetic sensor 5A is located on the center line between the magnets 2C and 2D. Therefore, it is an initial state.
  • the magnetic field generated by the magnets 2A, 2B, 2C, and 2D is shown to be maximally applied in the up-and-down direction.
  • the magnetic sensor 5B is affected by a magnetic field from left to right as a magnetic force line from the magnet 2A to the magnet 2C (or a magnetic force line from the magnet 2B to the magnet 2D). Therefore, the bias magnetic field vector V0 of the magnetic sensor 5B changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases (becomes the maximum) according to the change toward the bias magnetic field vector V2.
  • the magnetic sensor 5C is in a state located on the center line between the magnets 2A and 2B. Therefore, it is an initial state.
  • FIG. 8 (E) shows a case where the float 20 has further increased by the distance a (state S4) from FIG. 8 (D).
  • the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side.
  • the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the magnetic sensor 5B is in a state of being located on the center line between the magnets 2C and 2D. Therefore, it is an initial state.
  • the magnetic field generated by the magnets 2A, 2B, 2C, and 2D is shown to be maximally applied in the up-and-down direction.
  • the magnetic sensor 5C is affected by a magnetic field from left to right as a magnetic force line from the magnet 2A to the magnet 2C (or a magnetic force line from the magnet 2B to the magnet 2D). Therefore, the bias magnetic field vector V0 of the magnetic sensor 5C changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases (becomes the maximum) according to the change toward the bias magnetic field vector V2.
  • FIG. 8 (F) shows a case where the float 20 has further increased by the distance a (state S5) from FIG. 8 (E).
  • the magnetic sensor 5A is affected by the magnetic field generated by the magnets 2C and 2D. Specifically, it is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2C and 2D. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A slightly changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the magnetic sensor 5B shows a case where a magnetic field is applied in the up and down direction by the magnetic field generated by the magnets 2C and 2D. Specifically, it is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2C and 2D. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5B changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the magnetic sensor 5C is in a state located on the center line between the magnets 2C and 2D. Therefore, it is an initial state.
  • FIG. 8 (G) shows the case where the float 20 has further increased the distance a (state S6) from FIG. 8 (F).
  • the magnetic sensors 5A and 5B are slightly affected by the magnetic field generated by the magnets 2C and 2D. Specifically, it is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2C and 2D. Therefore, the bias magnetic field vector V0 of the magnetic sensors 5A and 5B slightly changes toward the bias magnetic field vector V1. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the magnetic sensor 5C shows a case where a magnetic field is applied in the up and down direction by the magnetic field generated by the magnets 2C and 2D. Specifically, it is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2C and 2D. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5C changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • FIG. 9 is a diagram for explaining output signal waveforms of a plurality of magnetic sensors following the lifting / lowering operation of the float 20 based on the first embodiment.
  • the positional relationship between the states S0 to S6 and the output signal relationship are shown.
  • a signal corresponding to the magnetic flux density of the external magnetic field received by the magnetic sensor 5A is output.
  • the magnetic sensor 5A is in an initial state located on the center line between the magnets 2A and 2B.
  • the voltage of the output signal (potential difference ⁇ V) in the initial state is set to an intermediate value. (Intermediate voltage).
  • the magnetic sensor 5A In the state S3, the magnetic sensor 5A is in an initial state located on the center line between the magnets 2C and 2D, and the output voltage is shown as an intermediate voltage.
  • state S4 the case where the bias magnetic field vector is changed according to the external magnetic field received by the magnetic sensor 5A and the output signal (potential difference ⁇ V) is lowered is shown.
  • a waveform obtained by shifting the output signal of the magnetic sensor 5A by the distance a is shown.
  • a waveform obtained by shifting the output signal of the magnetic sensor 5B by a distance a is shown.
  • FIG. 10 is an image view in which the predetermined area of FIG. 9 is enlarged. Referring to FIG. 10, here, output signal waveforms of a plurality of magnetic sensors 5A to 5C in the hatching area of FIG. 9 are shown as the predetermined area.
  • the output signal waveforms of the magnetic sensors 5A and 5B can be modeled (approximated) in the horizontal component (in the up-and-down direction) of the magnetic vector P of the external magnetic field that changes along a circle, which will be described later, with the intermediate voltage as a reference. Is possible.
  • one output signal (electric signal) can be represented by a sine wave (sin ⁇ ) and the other output signal (electric signal) can be represented by a cosine wave (cos ⁇ ). Then, the angle ⁇ of the magnetic vector P of the external magnetic field is calculated based on the two output signals (electric signals).
  • an electrical signal output from two adjacent magnetic sensors among the output signals of a plurality of magnetic sensors is detected to calculate the angle of the magnetic vector of the external magnetic field, and the calculated angle of the magnetic vector
  • the position of the float is detected based on the above.
  • FIG. 11 is a diagram schematically illustrating the relationship between the magnetic sensor 5 and the magnetic vector P based on the first embodiment.
  • FIG. 11 shows magnetic vectors with respect to the lifting / lowering direction of the float 20 with respect to the magnetic sensors 5A and 5B when the state S2 is shifted to the state S3.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P indicates the direction of the magnetic field lines generated by the N pole of the magnet 2A and the S pole of the magnet 2C.
  • the magnetic field lines of the magnetic field generated by the N pole of the magnet 2B and the S pole of the magnet 2D are omitted, but the component perpendicular to the ascending / descending direction of the magnetic vector P is omitted. It is canceled out by the magnetic vector of the magnetic field lines generated by the N pole and the S pole of the magnet 2D. Therefore, the external magnetic field for the magnetic sensors 5A and 5B is only the up-down direction component. As described above, the bias magnetic field vector in each magnetic sensor 5 changes according to the external magnetic field.
  • the output signal detected by the magnetic sensor 5A in the ascending / descending direction is Pcos ⁇
  • the output signal detected by the magnetic sensor 5B Can be expressed by Psin ⁇ . And it calculates as angle (theta) of the magnetic vector P based on two output signals (electrical signal).
  • tan ⁇ (Psin ⁇ / P cos ⁇ ) is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 changes by a distance a corresponding to a change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the center in the ascending / descending direction of the magnets 2A to 2C is set as a reference position (center point) as an example.
  • the reference position (center point) of the float 20 shown in the state S2 in FIG. 8C is the same position as the position of the magnetic sensor 5A.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals of the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined. For example, when the angle information ⁇ is calculated as 45 °, it is detected that the reference position (center point) of the float is a position moved by a / 2 distance from the position of the magnetic sensor 5A toward the magnetic sensor 5B. Is possible.
  • the positional information from the magnetic sensor 5A is determined by calculating the angle information ⁇ of the magnetic vector using the electrical signals of the magnetic sensors 5A and 5B has been described. It is also possible to determine the positional relationship from It is also possible to determine the positional relationship from the magnetic sensor 5B by calculating the angle information ⁇ of the magnetic vector using the electrical signals of the magnetic sensors 5B and 5C according to the same method. The same applies to other systems.
  • FIG. 12 is a diagram illustrating the accuracy of the angle information ⁇ based on the first embodiment.
  • FIG. 12A shows arctan ⁇ when one output signal (electrical signal) is set to Pcos ⁇ and the other output signal (electrical signal) is set to Psin ⁇ when the angle ⁇ is changed from 0 ° to 90 °. And a comparison with the reference value is shown.
  • FIG. 13 is a flowchart for explaining the detection method of the liquid level detection apparatus 1 based on the first embodiment.
  • the intermediate voltage is set to the voltage of the output signal in the initial state as an example.
  • the magnetic sensor 5A is located on the center line between the magnets 2A and 2B, and the intermediate voltage can be set by measuring the voltage in advance. It is.
  • the intermediate voltage may be set to an intermediate value between the maximum value and the minimum value of the peak value.
  • step SP4 two electrical signals in the region surrounded by the dotted line described in FIG. 9 are extracted.
  • step SP4 the angle ⁇ of the magnetic vector is calculated based on the two extracted signals. Specifically, one output signal (electric signal) of the two electric signals is set to Pcos ⁇ , and the other output signal (electric signal) is set to Psin ⁇ , and magnetism is performed based on the two output signals (electric signals). The angle ⁇ of the vector is calculated. Then, tan ⁇ is calculated based on the two output signals (electrical signals), and the angle information ⁇ is calculated by calculating arctan ⁇ .
  • the position of the float 20 is calculated based on the angle ⁇ of the magnetic vector (step SP6).
  • the reference position (center point) of the float 20 is calculated from the position of the magnetic sensor. For example, when the angle information ⁇ is calculated as 45 ° as described above, the reference position (center point) of the float is a distance of a / 2 from the position of the magnetic sensor 5A, on the magnetic sensor 5B side. It is possible to detect that it is in the moved position.
  • the liquid level detection device 1 can detect the position of the float 20 with high accuracy based on two electrical signals. With this method, there is no need to provide a switching circuit for switching signals, the circuit configuration can be simplified, and the size can be reduced.
  • the output signal may change due to changes in the characteristics of the magnet or the magnetic sensor following the change in the environmental temperature.
  • tan ⁇ (Psin ⁇ / Pcos ⁇ ) of the two output signals is calculated. Therefore, the fluctuation amount according to the environmental temperature is canceled out, so that the error due to the influence of the environmental temperature is reduced, and the position detection with high accuracy is possible.
  • the distance between the magnet 2A and the magnet 2C is set to be twice the distance a has been described.
  • the thickness direction of the magnet 2A or the like (the width of the N pole and the S pole) is set. If it is a person skilled in the art to adjust and improve the detection characteristic of the magnetic sensor 5, it is possible to change the design as appropriate.
  • FIG. 14 is a diagram illustrating the layout of the magnets 2E and 2F attached to the float 20 and the magnetic sensors 5A, 5B, and 5C based on the first embodiment.
  • the magnets 2 ⁇ / b> E and 2 ⁇ / b> F form a set of magnet units.
  • the magnet unit formed by the magnets 2E and 2F is divided into two regions, and each region is disposed so that the south pole or the north pole faces each other.
  • region is arrange
  • the distance between the magnets 2E and 2F is set to an interval twice the distance a. Moreover, it arrange
  • the magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the magnetic field (line of magnetic force) generated by the magnets 2E and 2F is basically the same as the magnetic field (line of magnetic force) generated by the layout of FIG. 7, and the output signal waveform is the same as described in FIG. Therefore, it is possible to detect the position of the float 20 with high accuracy according to the same method as described above.
  • the number of magnets to be arranged can be reduced by the configuration, and the magnet layout can be easily performed.
  • the configuration in which the magnets are opposed to each other so that the magnetic sensor 5 can accurately measure the magnetic field even when the float 20 rotates is described as a configuration in which the float 20 can rotate.
  • the float 20 moves only along the guide member in the up-and-down direction without rotating, it is possible to adopt a configuration in which no opposing magnet is provided (only one-side magnet).
  • a configuration in which a bias magnet provided in the magnetic sensor is not provided is also possible.
  • Embodiment 2 In the first embodiment, the configuration of the liquid level detection device 1 that detects the position of the float 20 using a plurality of sets of magnet units has been described. However, the position of the float 20 is detected using a set of magnet units. The liquid level detection device will be described.
  • FIG. 15 is a diagram illustrating the layout of the magnets 2G and 2H attached to the float 20 and the magnetic sensors 5A, 5B, and 5C based on the second embodiment.
  • the magnets 2G and 2H form one set of magnet units.
  • the magnet units formed by the magnets 2G and 2H are arranged so that the N poles face each other.
  • positioned so that a north pole may face is demonstrated, it is also possible to set it as the structure which a south pole faces.
  • the distance between the magnet 2G and the magnet 2H is set to an interval twice as long as the distance a, and the magnetic sensor 5 is arranged to pass through the center thereof.
  • the distance between the magnetic sensors 5 is also a distance a.
  • the magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the center in the ascending / descending direction of the magnet 2G (or the magnet 2H) is set as a reference position (center point) as an example.
  • the case where the magnetic sensor 5B is located at the reference position (center point) is shown.
  • FIG. 16 is a diagram for explaining output signal waveforms of a plurality of magnetic sensors according to the lifting / lowering operation of the float 20 according to the second embodiment.
  • the magnetic sensor 5A similarly to the output signal waveform shown in FIG. 9, as the float 20 approaches the magnetic sensor 5A, the magnetic sensor 5A generates a magnetic field from right to left as the magnetic lines of force of the magnets 2G and 2H. to be influenced. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the other magnetic sensors 5B and 5C are also affected by the magnetic field from the right to the left as the magnetic field lines of the magnets 2A and 2B, so that the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • this state is the initial state. Then, the voltage of the output signal in this state is set to an intermediate voltage.
  • the magnetic sensor 5B is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2G and 2H. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5B changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the other magnetic sensor 5C is also slightly affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2G and 2H. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the float 20 further rises, and the magnetic sensor 5A is affected by the magnetic field from left to right as the magnetic lines of force of the magnets 2G and 2H (state S8). Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the magnetic sensor 5B is located on the center line between the magnets 2G and 2H. Therefore, it is an initial state.
  • the magnetic sensor 5C is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2G and 2H. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5C changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the output signal waveforms of the magnetic sensors 5B and 5C are shifted from the output signal waveform of the magnetic sensor 5A by a distance a (90 ° as a phase).
  • FIG. 17 is an enlarged image view of the predetermined area of FIG. Referring to FIG. 17, here, output signal waveforms of a plurality of magnetic sensors 5A to 5B in the hatching area of FIG. 16 are shown as the predetermined area.
  • the output signal waveforms of the magnetic sensors 5A and 5B can be modeled (approximated) in the horizontal component (in the up-and-down direction) of the magnetic vector P of the external magnetic field that changes along a circle, which will be described later, with the intermediate voltage as a reference. Is possible.
  • one output signal (electric signal) can be represented by a sine wave (sin ⁇ ) and the other output signal (electric signal) can be represented by a cosine wave (cos ⁇ ). Then, the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • FIG. 18 is a diagram schematically illustrating the relationship between the magnetic sensor 5 and the magnetic vector P based on the second embodiment.
  • FIG. 18 shows magnetic vectors with respect to the lifting / lowering direction of the float 20 with respect to the magnetic sensors 5A and 5B in the case of transition from the state S7 to the state S8.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P indicates the direction of the magnetic field lines of the magnetic field generated by the N pole and S pole of the magnet 2G.
  • the magnetic field lines of the magnetic field generated by the N pole and S pole of the magnet 2H are omitted, but the component perpendicular to the ascending / descending direction of the magnetic vector P is the N pole and the magnet 2H. It is canceled out by the magnetic vector of the magnetic field lines generated by the S pole. Therefore, the external magnetic field for the magnetic sensors 5A and 5B is only the up-down direction component. As described above, the bias magnetic field vector in each magnetic sensor 5 changes according to the external magnetic field.
  • the output signal detected by the magnetic sensor 5A in the ascending / descending direction is Psin ⁇
  • the output signal detected by the magnetic sensor 5B Can be represented by -Pcos ⁇ . And it calculates as angle (theta) of the magnetic vector P based on two output signals (electrical signal).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 changes by a distance a corresponding to a change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the reference position (center point) of the float 20 shown in FIG. 15 is the position of the magnetic sensor 5B.
  • the position where the output signal of the magnetic sensor 5A becomes an intermediate voltage (state S7 in FIG. 16) is when the reference position (center point) of the float 20 is at the position of the magnetic sensor 5A.
  • the position where the output signal of the magnetic sensor 5A is maximum is when the reference position (center point) of the float 20 is at the position of the magnetic sensor 5B.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals of the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined. For example, if the angle information ⁇ is calculated as 45 °, the reference position (center point) of the float is a position a / 2 distance away from the position of the magnetic sensor 5A and moved to the magnetic sensor 5B side. It is possible to detect.
  • the positional information from the magnetic sensor 5A is determined by calculating the angle information ⁇ of the magnetic vector using the electrical signals of the magnetic sensors 5A and 5B has been described. It is also possible to determine the positional relationship from It is also possible to determine the positional relationship from the magnetic sensor 5C by calculating the angle information ⁇ of the magnetic vector using the electric signals of the magnetic sensors 5B and 5C according to the same method. The same applies to other systems.
  • FIG. 19 is a diagram for explaining the accuracy of the angle information ⁇ based on the second embodiment.
  • FIG. 19A shows arctan ⁇ when one output signal (electrical signal) is set to Pcos ⁇ and the other output signal (electrical signal) is set to Psin ⁇ when the angle ⁇ is changed from 0 ° to 90 °. And a comparison with the reference value is shown.
  • the accuracy of the angle shows a case where there is only a deviation of about ⁇ 2 ° from the reference value, and the position of the float 20 can be detected with high accuracy.
  • the liquid level detection device 1 can detect the position of the float 20 by using one magnet unit, which can simplify the circuit configuration and reduce the size. It is possible.
  • FIG. 20 is a diagram for explaining the layout of the magnets 2I to 2T attached to the float 20 and the magnetic sensors 5A, 5B, and 5C based on the third embodiment.
  • the magnets 2I and 2J form a set of magnet units.
  • Magnets 2K and 2L form a set of magnet units.
  • the magnets 2M and 2N form a set of magnet units.
  • Magnets 2O and 2P form one set of magnet units.
  • Magnets 2Q and 2R form a set of magnet units.
  • the magnets 2S and 2T form a set of magnet units.
  • the magnet units formed by the magnets 2I and 2J are arranged so that the N poles face each other.
  • Magnet units formed by the magnets 2K and 2L are arranged so that the south poles face each other.
  • the magnet units formed by the magnets 2M and 2N are arranged so that the N poles face each other.
  • Magnet units formed of the magnets 2O and 2P are arranged so that the south poles face each other.
  • Magnet units formed of the magnets 2Q and 2R are arranged so that the N poles face each other.
  • Magnet units formed of the magnets 2S and 2T are arranged so that the south poles face each other. Adjacent magnet units are arranged so that the magnetic poles of the magnets are different.
  • the distance between the magnet 2I and the magnet 2J is set to be twice as long as the distance a, and the magnetic sensor 5 is arranged to pass through the center thereof. Further, the interval (center distance) between adjacent magnet units is also set to twice the distance a. The intervals between the magnetic sensors 5 are arranged at a distance 3a. The magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the center in the ascending / descending direction of the magnets 2I to 2S (or the magnets 2J to 2T) is used as a reference position (center point).
  • the case where the magnetic sensor 5B is located at the reference position (center point) is shown.
  • FIG. 21 is a diagram for explaining an output signal waveform from the magnetic sensor 5 following the lifting / lowering operation of the float 20 according to the third embodiment.
  • the magnetic sensor 5A similarly to the output signal waveform shown in FIG. 9, as the float 20 approaches the magnetic sensor 5, the magnetic sensor 5A generates a magnetic field from right to left as the magnetic lines of force of the magnets 2I and 2J. to be influenced. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • this state is the initial state.
  • the float 20 further rises, and the magnetic sensor 5A is affected by the magnetic field from the left to the right as the magnetic lines of force of the magnets 2I and 2K. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the float 20 further rises, and the magnetic sensor 5A is in a state of being located on the center line between the magnets 2K and 2L. Therefore, it will be in an initial state.
  • the float 20 further rises, and the magnetic sensor 5A is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2K and 2M. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side.
  • the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the float 20 further rises, and the magnetic sensor 5A is in a state of being located on the center line between the magnets 2M and 2N. Therefore, it will be in an initial state.
  • the voltage of the output signal in this state is set to an intermediate voltage.
  • the float 20 is further raised, and the magnetic sensor 5A is affected by the magnetic field from left to right as the magnetic lines of force of the magnets 2M and 2O. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the float 20 further rises and the magnetic sensor 5A is positioned on the center line between the magnets 2O and 2P. Therefore, it will be in an initial state.
  • the float 20 further rises, and the magnetic sensor 5A is affected by a magnetic field from right to left as the magnetic lines of force of the magnets 2O and 2Q. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the float 20 further rises, and the magnetic sensor 5A is positioned on the center line between the magnets 2Q and 2R. Therefore, it will be in an initial state.
  • the float 20 further rises, and the magnetic sensor 5A is affected by the magnetic field from left to right as the magnetic field lines of the magnets 2Q and 2S. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the float 20 further rises, and the magnetic sensor 5A is positioned on the center line between the magnets 2S and 2T. Therefore, it will be in an initial state.
  • the float 20 further rises, and the magnetic sensor 5A is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2S and 2T. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side.
  • the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the output signal waveforms of the magnetic sensors 5B and 5C are the same as the output signal waveform of the magnetic sensor 5A, and are shifted from the output signal waveform of the magnetic sensor 5A by a distance 3a (270 ° as a phase).
  • FIG. 22 is an enlarged image of the predetermined area in FIG. Referring to FIG. 22, here, output signal waveforms of a plurality of magnetic sensors 5 ⁇ / b> A and 5 ⁇ / b> B in the hatching area of FIG. 21 are shown as the predetermined area.
  • the output signal waveforms of the magnetic sensors 5A and 5B can be modeled (approximated) in the horizontal component (in the up-and-down direction) of the magnetic vector P of the external magnetic field that changes along a circle, which will be described later, with the intermediate voltage as a reference. Is possible.
  • 270 ° is divided by 90 ° into three, and one output signal (electric signal) of the two divided regions T1 to T3 is a sine wave (sin ⁇ ) and the other output signal (electric signal). ) Can be represented by a cosine wave (cos ⁇ ). Then, the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • FIG. 23 is a diagram schematically illustrating the relationship between the magnetic sensor 5 and the magnetic vector P based on the third embodiment.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P is, for example, a magnetic sensor 5A, a magnetic field generated by magnetic fields generated by the N pole of the magnet 2M and the S pole of the magnet 2K, the N pole of the magnet 2M and the S pole of the magnet 2O, the N pole of the magnet 2Q, and the S pole of the magnet 2O.
  • the direction of the magnetic force line which 5B receives refers.
  • the magnetic field lines of the magnetic field generated by the opposing magnets 2L, 2N, 2P, 2R are omitted, but the components perpendicular to the ascending / descending direction of the magnetic vector P are related to the magnets 2L, 2N. , 2P, 2R are canceled by the magnetic vector of the magnetic field lines generated by the N and S poles. Therefore, the external magnetic field for the magnetic sensors 5A and 5B is only the up-down direction component. As described above, the bias magnetic field vector in each magnetic sensor 5 changes according to the external magnetic field.
  • FIG. 23A shows magnetic vectors with respect to the ascending / descending direction of the float 20 input to the magnetic sensors 5A and 5B in the region T1 obtained by dividing the state S9 to the state S10 into three parts.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P that affects the magnetic sensor 5A indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2M and the S pole of the magnet 2O.
  • the magnetic vector P that affects the magnetic sensor 5B indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2M and the S pole of the magnet 2K.
  • the output signal detected by the magnetic sensor 5A in the ascending / descending direction is Pcos ⁇
  • the output signal detected by the magnetic sensor 5B Can be represented by -Psin ⁇ .
  • the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 changes by a distance a corresponding to a change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the position of the float 20 for example, the center in the ascending / descending direction of the magnets 2I to 2S is set as a reference position (center point).
  • the reference position (center point) of the float 20 shown in FIG. 20 is the position of the magnetic sensor 5B.
  • the position where the output signal of the magnetic sensor 5A is maximum is when the reference position (center point) of the float 20 is at the position of the magnetic sensor 5A.
  • the position where the output signal of the magnetic sensor 5A becomes an intermediate voltage is when the reference position (center point) of the float 20 is at the position of the magnetic sensor 5B.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals from the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined. For example, if the angle information ⁇ is calculated as 45 °, the reference position (center point) of the float is a position a / 2 distance away from the position of the magnetic sensor 5A and moved to the magnetic sensor 5B side. It is possible to detect.
  • FIG. 23B shows magnetic vectors with respect to the ascending / descending direction of the float 20 input to the magnetic sensors 5A and 5B in the region T2 obtained by dividing the state S9 to the state S10 into three parts.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P that affects the magnetic sensor 5A indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2Q and the S pole of the magnet 2O.
  • the magnetic vector P that affects the magnetic sensor 5B indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2M and the S pole of the magnet 2K.
  • the output signal detected by the magnetic sensor 5A in the ascending / descending direction can be represented by -Psin ⁇ .
  • the output signal detected by the magnetic sensor 5B can be expressed by -Pcos ⁇ . Then, the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 also changes the distance a corresponding to the change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the position of the float 20 for example, the center in the ascending / descending direction of the magnets 2I to 2S is set as a reference position (center point).
  • the reference position (center point) of the float 20 shown in FIG. 20 is the position of the magnetic sensor 5B.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals from the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined.
  • the reference position (center point) of the float is a position that is moved to the magnetic sensor 5B side by a distance a + a / 2 from the position of the magnetic sensor 5A. It is possible to detect.
  • FIG. 23C shows magnetic vectors with respect to the ascending / descending direction of the float 20 input to the magnetic sensors 5A and 5B in the region T3 obtained by dividing the state S9 to the state S10 into three parts.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P that affects the magnetic sensor 5A indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2Q and the S pole of the magnet 2O.
  • the magnetic vector P that affects the magnetic sensor 5B indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2M and the S pole of the magnet 2O.
  • the output signal detected by the magnetic sensor 5A in the ascending / descending direction can be represented by -Pcos ⁇ .
  • the output signal detected by the magnetic sensor 5B can be expressed by Psin ⁇ . Then, the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 also changes the distance a corresponding to the change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the position of the float 20 for example, the center in the ascending / descending direction of the magnets 2I to 2S is set as a reference position (center point).
  • the reference position (center point) of the float 20 shown in FIG. 20 is the position of the magnetic sensor 5B.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals of the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined. For example, when the angle information ⁇ is calculated as 45 °, the float reference position (center point) is at a position moved to the magnetic sensor 5B side by a distance of 2a + a / 2 from the position of the magnetic sensor 5A. It is possible to detect.
  • FIG. 24 is a diagram for explaining a method of extracting two output signal waveforms in the respective regions T1 to T3 from the output signal waveforms of the plurality of magnetic sensors 5A to 5C based on the third embodiment.
  • a plurality of threshold values TH0 to TH2 are set here.
  • the threshold value TH0 is set to an intermediate voltage as an example.
  • the threshold value TH2 is set to an intermediate peak value between the output signal waveform and the minimum value.
  • the threshold value TH1 is set to an intermediate value between the threshold value TH0 and the threshold value TH2.
  • the setting of the threshold values TH0 to TH2 is an example, and the threshold values may be set according to other methods.
  • the regions T1 to T3 are divided based on the relationship between the thresholds TH0 to TH2 and the output signal waveform, and two output signal waveforms are extracted.
  • the value of the output signal waveform of the magnetic sensor 5C (the output signal waveform output from the magnetic sensor adjacent to the magnetic sensor 5A) is below the threshold value TH1
  • the output signal waveform of the magnetic sensor 5B When the value of (the output signal waveform output from the magnetic sensor adjacent to the magnetic sensor 5A) is lower than the threshold value TH0, or the output signal waveform of the magnetic sensor 5B (the output signal waveform output from the magnetic sensor adjacent to the magnetic sensor 5A).
  • the output of the magnetic sensor 5A is set to Pcos ⁇ and the output of the magnetic sensor 5B is set to ⁇ Psin ⁇ .
  • the values of the output signal waveform of the magnetic sensor 5A and the output signal waveform of the magnetic sensor 5B are below the threshold value TH0, and are magnetic
  • the output of the magnetic sensor 5A is set to ⁇ Psin ⁇
  • the output of the magnetic sensor 5B Is set to -Pcos ⁇ .
  • the output signal waveform of the magnetic sensor 5B output signal waveform output from the magnetic sensor adjacent to the magnetic sensor 5A
  • the output signal waveform of the magnetic sensor 5C the two adjacent magnets of the magnetic sensor 5A
  • the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the method of dividing the regions T1 to T3 based on the threshold values TH0 to TH2 and the relationship between the output signal waveforms and extracting the two output signal waveforms has been described.
  • the present invention is not limited, and two output signal waveforms can be extracted according to other methods.
  • FIG. 25 is a diagram illustrating the accuracy of the angle information ⁇ based on the third embodiment. As shown in FIGS. 25A, 25C, and 25E, when the angle ⁇ is changed from 0 ° to 90 °, one output signal (electrical signal) is Pcos ⁇ and the other output signal ( A comparison between arctan ⁇ and a reference value when the electric signal is set to P sin ⁇ is shown.
  • FIG. 26 is a flowchart for explaining a detection method of the liquid level detection apparatus 1 based on the third embodiment.
  • two signals based on a predetermined combination of signal relationships are extracted (step SP2 #).
  • the region is divided into regions T1 to T3 based on the combination of the threshold values TH0 to TH2 and each output signal waveform, and two output signal waveforms in each region are extracted.
  • the threshold value TH0 which is an intermediate voltage, sets the voltage of the output signal in a state where the magnetic sensor 5A is located on the center line between the magnets 2M and 2N to the intermediate voltage.
  • the threshold value TH2 can be set to an intermediate peak value between the output signal waveform and the minimum value that has decreased.
  • the threshold value TH1 can be set to an intermediate value between the threshold value TH0 and the threshold value TH2.
  • the angle ⁇ of the magnetic vector is calculated based on the extracted two signals (step SP4). Specifically, one output signal (electric signal) of two electric signals is set to a sine wave (sin ⁇ ), and the other output signal (electric signal) is set to a cosine wave (cos ⁇ ).
  • the angle ⁇ of the magnetic vector is calculated based on (electrical signal). Specifically, tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the position of the float 20 is calculated based on the angle ⁇ of the magnetic vector (step SP6). Based on the calculated angle information ⁇ , the reference position (center point) of the float 20 is calculated from the position of the magnetic sensor.
  • the liquid level detection device 1 can detect the position of the float 20 with high accuracy based on two electrical signals.
  • information (distance 3a) for 270 ° can be detected using two magnetic sensors, the number of magnetic sensors can be further reduced and the size can be reduced.
  • the distance between the facing magnets can be shortened, and the size can be further reduced.
  • the output signal may change due to changes in the characteristics of the magnet or the magnetic sensor following the change in the environmental temperature.
  • tan ⁇ (Psin ⁇ / Pcos ⁇ ) of the two output signals is calculated. Therefore, the fluctuation amount is canceled out, the error due to the influence of the environmental temperature is reduced, and highly accurate detection is possible.
  • FIG. 27 is a diagram for explaining the layout of the magnets 2U and 2V attached to the float 20 and the magnetic sensors 5A, 5B, and 5C based on the first modification of the third embodiment.
  • magnets 2U and 2V form a set of magnet units.
  • the magnet unit formed by the magnets 2U and 2V is divided into six regions, and each region is arranged so that the south pole or the north pole faces each other.
  • region is arrange
  • the distance between the magnets 2U and 2V is set to an interval twice as long as the distance a. Moreover, it arrange
  • the magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the magnetic field (line of magnetic force) generated by the magnets 2U and 2V is basically the same as the magnetic field (line of magnetic force) generated by the layout of FIG. 20, and the output signal waveform is the same as described with reference to FIG. Therefore, it is possible to detect the position of the float 20 with high accuracy according to the same method as described above.
  • the number of magnets can be reduced by the configuration, and the magnet layout can be easily performed.
  • FIG. 28 is a diagram for explaining the layout of the magnets 2I to 2P attached to the float 20 and the magnetic sensors 5A, 5B, and 5C based on the third embodiment.
  • the magnets 2I and 2J form a set of magnet units.
  • the magnets 2K and 2L form a set of magnet units.
  • the magnets 2M and 2N form a set of magnet units.
  • Magnets 2O and 2P form one set of magnet units.
  • the magnet units formed by the magnets 2I and 2J are arranged so that the N poles face each other.
  • Magnet units formed by the magnets 2K and 2L are arranged so that the south poles face each other.
  • the magnet units formed by the magnets 2M and 2N are arranged so that the N poles face each other.
  • Magnet units formed of the magnets 2O and 2P are arranged so that the south poles face each other. Adjacent magnet units are arranged so that the magnetic poles of the magnets are different.
  • the distance between the magnet 2I and the magnet 2J is set to be twice as long as the distance a, and the magnetic sensor 5 is arranged to pass through the center thereof. Further, the interval (center distance) between adjacent magnet units is also set to twice the distance a. The intervals between the magnetic sensors 5 are arranged at a distance 3a. The magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the center in the ascending / descending direction of the magnets 2I to 2O (or the magnets 2J to 2P) is set as a reference position (center point).
  • the case where the magnetic sensor 5B is located at the reference position (center point) is shown.
  • FIG. 29 is a diagram for explaining an output signal waveform from the magnetic sensor 5 according to the lifting / lowering operation of the float 20 based on the second modification of the third embodiment.
  • the magnetic sensor 5A similarly to the output signal waveform shown in FIG. 9, as the float 20 approaches the magnetic sensor 5, the magnetic sensor 5A generates a magnetic field from right to left as the magnetic lines of force of the magnets 2I and 2J. to be influenced. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side. The potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • this state is the initial state.
  • the float 20 further rises, and the magnetic sensor 5A is affected by the magnetic field from the left to the right as the magnetic lines of force of the magnets 2I and 2K. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the float 20 further rises, and the magnetic sensor 5A is in a state of being located on the center line between the magnets 2K and 2L. Therefore, it will be in an initial state.
  • the float 20 further rises, and the magnetic sensor 5A is affected by the magnetic field from right to left as the magnetic lines of force of the magnets 2K and 2M. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side.
  • the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the float 20 further rises, and the magnetic sensor 5A is in a state of being located on the center line between the magnets 2M and 2N. Therefore, it will be in an initial state.
  • the voltage of the output signal in this state is set to an intermediate voltage.
  • the float 20 is further raised, and the magnetic sensor 5A is affected by the magnetic field from left to right as the magnetic lines of force of the magnets 2M and 2O. Therefore, the bias magnetic field vector V0 of the magnetic sensor 5A changes toward the bias magnetic field vector V2.
  • the potential difference ⁇ V increases as the bias magnetic field vector V2 changes.
  • the float 20 further rises and the magnetic sensor 5A is positioned on the center line between the magnets 2O and 2P. Therefore, it will be in an initial state.
  • the bias magnetic field vector V0 of the magnetic sensor 5A changes to the bias magnetic field vector V1 side.
  • the potential difference ⁇ V decreases as the bias magnetic field vector V1 changes.
  • the output signal waveforms of the magnetic sensors 5B and 5C are the same as the output signal waveform of the magnetic sensor 5A, and are shifted from the output signal waveform of the magnetic sensor 5A by a distance 3a (270 ° as a phase).
  • FIG. 30 is an image view in which the predetermined area of FIG. 29 is enlarged. Referring to FIG. 30, here, output signal waveforms of a plurality of magnetic sensors 5A and 5B in the hatching area of FIG. 29 are shown as the predetermined area.
  • the output signal waveforms of the magnetic sensors 5A and 5B can be modeled (approximated) in the horizontal component (in the up-and-down direction) of the magnetic vector P of the external magnetic field that changes along a circle, which will be described later, with the intermediate voltage as a reference. Is possible.
  • 270 ° is divided by 90 ° into three, and one output signal (electric signal) of the two divided regions T1 to T3 is a sine wave (sin ⁇ ) and the other output signal (electric signal).
  • Is set to a cosine wave (cos ⁇ ), and the angle ⁇ of the magnetic vector is calculated based on two output signals (electrical signals).
  • FIG. 31 is a diagram illustrating the angle of the magnetic vector received by the magnetic sensor 5 based on the second modification of the third embodiment.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P indicates the direction of the magnetic field lines generated by the N pole of the magnet 2I and the S pole of the magnet 2K, the N pole of the magnet 2M and the S pole of the magnet 2K, the N pole of the magnet 2M, and the S pole of the magnet 2O. Point to.
  • the magnetic field lines of the magnetic field generated by the opposing magnets 2J, 2L, 2N, and 2P are omitted, but the components perpendicular to the ascending / descending direction of the magnetic vector P are related to the magnets 2J, 2L. , 2N, 2P are canceled by the magnetic vector of the magnetic field lines generated by the N and S poles. Therefore, the external magnetic field for the magnetic sensors 5A and 5B is only the up-down direction component. As described above, the bias magnetic field vector in each magnetic sensor 5 changes according to the external magnetic field.
  • FIG. 31A shows magnetic vectors with respect to the ascending / descending direction of the float 20 input to the magnetic sensors 5A and 5B in the region T1 obtained by dividing the state S11 to the state S12 into three parts.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P that affects the magnetic sensor 5A indicates, for example, the direction of the magnetic field lines of the magnetic field generated by the N pole of the magnet 2M and the S pole of the magnet 2K.
  • the magnetic vector P that affects the magnetic sensor 5B indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2I and the S pole of the magnet 2K.
  • the output signal detected by the magnetic sensor 5A with respect to the ascending / descending direction according to the angle ⁇ can be represented by ⁇ P cos ⁇ .
  • the output signal detected by the magnetic sensor 5B can be expressed by Psin ⁇ . Then, the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 also changes the distance a corresponding to the change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the position of the float 20 for example, the center in the ascending / descending direction of the magnets 2I to 2O is set as a reference position (center point).
  • the reference position (center point) of the float 20 shown in FIG. 28 is the position of the magnetic sensor 5B.
  • the position where the output signal of the magnetic sensor 5A becomes the minimum value is a case where the reference position (center point) of the float 20 is at the position of the magnetic sensor 5A.
  • the position where the output signal of the magnetic sensor 5A becomes an intermediate voltage is a case where the reference position (center point) of the float 20 is at the position of the magnetic sensor 5B.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals from the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined. For example, if the angle information ⁇ is calculated as 45 °, the reference position (center point) of the float is a position a / 2 distance away from the position of the magnetic sensor 5A and moved to the magnetic sensor 5B side. It is possible to detect.
  • FIG. 31B shows magnetic vectors with respect to the ascending / descending direction of the float 20 input to the magnetic sensors 5A and 5B in the region T2 obtained by dividing the state S11 to the state S12 into three parts.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P that affects the magnetic sensor 5A indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2M and the S pole of the magnet 2O.
  • the magnetic vector P that affects the magnetic sensor 5B indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2I and the S pole of the magnet 2K.
  • the output signal detected by the magnetic sensor 5A with respect to the ascending / descending direction according to the angle ⁇ can be represented by Psin ⁇ .
  • the output signal detected by the magnetic sensor 5B can be expressed by Pcos ⁇ . Then, the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 also changes the distance a corresponding to the change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the position of the float 20 for example, the center in the ascending / descending direction of the magnets 2I to 2O is set as a reference position (center point).
  • the reference position (center point) of the float 20 shown in FIG. 28 is the position of the magnetic sensor 5B.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals from the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined.
  • the reference position (center point) of the float is a position that is moved to the magnetic sensor 5B side by a distance a + a / 2 from the position of the magnetic sensor 5A. It is possible to detect.
  • FIG. 31C shows magnetic vectors with respect to the ascending / descending direction of the float 20 input to the magnetic sensors 5A and 5B in the region T3 obtained by dividing the state S11 to the state S12 into three parts.
  • the raising / lowering direction is a direction along the X-axis.
  • the magnetic vector P that affects the magnetic sensor 5A indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2M and the S pole of the magnet 2O.
  • the magnetic vector P that affects the magnetic sensor 5B indicates, for example, the direction of the magnetic field lines generated by the N pole of the magnet 2M and the S pole of the magnet 2K.
  • the output signal detected by the magnetic sensor 5A with respect to the ascending / descending direction according to the angle ⁇ can be expressed as P cos ⁇ .
  • the output signal detected by the magnetic sensor 5B can be expressed by -Psin ⁇ . Then, the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the above process is a process executed by the detection circuit 50. Specifically, the calculation process is executed in the MPU 40.
  • the position of the float 20 also changes the distance a corresponding to the change of 0 ° to 90 ° as the angle information ⁇ of the magnetic vector.
  • the position of the float 20 for example, the center in the ascending / descending direction of the magnets 2I to 2O is set as a reference position (center point).
  • the reference position (center point) of the float 20 shown in FIG. 28 is the position of the magnetic sensor 5B.
  • the angle information ⁇ of the magnetic vector is calculated using the electrical signals of the magnetic sensor 5A and the magnetic sensor 5B, and the positional relationship is determined. For example, when the angle information ⁇ is calculated as 45 °, the float reference position (center point) is at a position moved to the magnetic sensor 5B side by a distance of 2a + a / 2 from the position of the magnetic sensor 5A. It is possible to detect.
  • FIG. 32 is a diagram for explaining a method of extracting two output signal waveforms in the respective regions T1 to T3 from the output signal waveforms of the plurality of magnetic sensors 5A to 5C based on the second modification of the third embodiment. .
  • a plurality of threshold values TH0 to TH2 are set here.
  • the threshold value TH0 is set to an intermediate voltage as an example.
  • the threshold value TH2 is set to an intermediate peak value between the output signal waveform and the minimum value.
  • the threshold value TH1 is set to an intermediate value between the threshold value TH0 and the threshold value TH2.
  • the setting of the threshold values TH0 to TH2 is an example, and the threshold values may be set according to other methods.
  • the regions T1 to T3 are divided based on the relationship between the thresholds TH0 to TH2 and the output signal waveform, and two output signal waveforms are extracted.
  • the value of the output signal waveform of the magnetic sensor 5B exceeds the threshold value TH0, and the output signal waveform of the magnetic sensor 5A and the magnetism
  • the output of the magnetic sensor 5A is set to -Pcos ⁇ , and the output of the magnetic sensor 5B Is set to Psin ⁇ .
  • the values of the output signal waveform of the magnetic sensor 5A and the output signal waveform of the magnetic sensor 5B exceed the threshold value TH0 and are magnetic.
  • the output of the magnetic sensor 5C is lower than the threshold value TH0
  • the output of the magnetic sensor 5A is Psin ⁇
  • the output of the magnetic sensor 5B is Set to P cos ⁇ .
  • the value of the output signal waveform of the magnetic sensor 5C (the output signal waveform output from the magnetic sensor adjacent to the magnetic sensor 5A) is below the threshold value TH1, and the output signal of the magnetic sensor 5B When the value of the waveform (output signal waveform output from the magnetic sensor adjacent to the magnetic sensor 5A) is below the threshold value TH0, or the output signal waveform of the magnetic sensor 5B (output output from the magnetic sensor adjacent to the magnetic sensor 5A) When the value of the signal waveform) is below the threshold value TH2 and the value of the output signal waveform of the magnetic sensor 5A is above the threshold value TH0, the output of the magnetic sensor 5A is set to Pcos ⁇ and the output of the magnetic sensor 5B is set to ⁇ Psin ⁇ . .
  • the angle ⁇ of the magnetic vector is calculated based on the two output signals (electric signals).
  • tan ⁇ is calculated based on two output signals (electrical signals), and angle information ⁇ is calculated by calculating arctan ⁇ .
  • the method of dividing the regions T1 to T3 based on the threshold values TH0 to TH2 and the relationship between the output signal waveforms and extracting the two output signal waveforms has been described.
  • the present invention is not limited, and two output signal waveforms can be extracted according to other methods.
  • FIG. 33 is a diagram illustrating the accuracy of the angle information ⁇ based on the second modification of the third embodiment. As shown in FIGS. 33A, 33C, and 33E, when the angle ⁇ is changed from 0 ° to 90 °, one output signal (electric signal) is cos ⁇ and the other output signal ( A comparison between arctan ⁇ and a reference value when the electrical signal is set to sin ⁇ is shown.
  • the output signal may change due to changes in the characteristics of the magnet or the magnetic sensor following the change in the environmental temperature.
  • tan ⁇ (Psin ⁇ / Pcos ⁇ ) of the two output signals is calculated. Therefore, the fluctuation amount is canceled out, the error due to the influence of the environmental temperature is reduced, and highly accurate detection is possible.
  • FIG. 34 is a diagram for explaining the layout of the magnets 2W and 2X attached to the float 20 and the magnetic sensors 5A, 5B, and 5C based on the third modification of the third embodiment.
  • the magnets 2W and 2X form a set of magnet units.
  • the magnet unit formed by the magnets 2W and 2X is divided into four regions, and each region is disposed so that the south pole or the north pole faces each other.
  • region is arrange
  • the distance between the magnets 2W and 2X is set to an interval twice the distance a. Moreover, it arrange
  • the magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the magnetic field (line of magnetic force) generated by the magnets 2W and 2X is basically the same as the magnetic field (line of magnetic force) generated by the layout of FIG. 28, and the output signal waveform is the same as that described in FIG. It is possible to detect the position of the float 20 according to the method.
  • the number of magnets can be reduced by the configuration, and the magnet layout can be easily performed.
  • FIG. 35 is a diagram illustrating the pattern of the magnetoresistive element of the magnetic sensor 5 # according to the fourth embodiment.
  • magnetic sensor 5 has a bridge structure including four magnetoresistive elements MR1 # to MR4 #.
  • the four magnetoresistive elements MR1 # to MR4 # are arranged symmetrically with respect to the center line.
  • Magnetoresistive elements 1 # and MR3 # have a magnetoresistive effect characteristic in which the resistance value increases together with an increase in the magnetic field in the opposite direction, and magnetoresistive elements 2 # and 4 # are in the opposite directions.
  • the barber pole electrode structure is formed so as to have a magnetoresistive effect characteristic in which both resistance values decrease as the magnetic field increases. With this configuration, the output characteristic according to the change in magnetic flux density described in FIG. 5 is provided. Therefore, the position of the float 20 can be detected by the same method as described above for the liquid level detection device using the magnetic sensor 5 # having the configuration instead of the magnetic sensor 5 described above.
  • FIG. 36 is a diagram illustrating a case where the position of the float 20 is displaced with respect to the guide 10.
  • FIG. 36A shows a view when the float 20 is viewed from above.
  • the magnet unit formed by the magnets 2G and 2H is provided to face each other through the guide member so as to face each other.
  • FIG. 36B shows a layout of the magnets 2G and 2H attached to the float 20 and the magnetic sensors 5A to 5C.
  • the magnetic sensors 5A to 5C approach the magnet 2H, they are affected not only by the horizontal external magnetic field (magnetic lines) but also by the vertical external magnetic field (magnetic lines). As a result, the rotation angle of the bias magnetic field vector changes, and the output signal corresponding to the rotation angle changes. The change in the output signal may reduce the accuracy of the liquid level detection.
  • FIG. 37 is a diagram illustrating the layout of the magnets 2G and 2H attached to the float 20 and the magnetic sensor based on the fifth embodiment.
  • magnets 2G and 2H form a set of magnet units.
  • the magnet units formed by the magnets 2G and 2H are arranged so that the N poles face each other.
  • the configuration of the float 20 is the same as described with reference to FIG. 37.
  • the distance between the magnet 2G and the magnet 2H is set to be twice as long as the distance a, and the magnetic sensor 5 is arranged to pass through the center thereof.
  • the distance between the magnetic sensors 5 is also a distance a.
  • the magnetic sensor 5 is attached to the guide member along the raising / lowering direction.
  • the direction of the bias magnetic field vector of the magnetic sensor 5 is provided symmetrically with respect to the horizontal direction when comparing adjacent magnetic sensors.
  • magnetic sensors 5PA to 5PC are provided as an example.
  • the directions of the bias magnetic field vectors of the magnetic sensors 5PA to 5PC are arranged so as to be in the horizontal direction perpendicular to the lifting / lowering direction of the float 20.
  • the bias magnetic field vectors applied to the magnetoresistive elements MR1 to MR4 are arranged so that the direction of the bias magnetic field vector is in a horizontal direction perpendicular to the lifting / lowering direction of the float 20.
  • the magnetoresistive elements MR of the magnetic sensors 5PA to 5PC can have the same configuration as that of FIG. 4, and the arrangement or the angle is set so as to enhance the detection characteristics of the magnetic sensors 5PA to 5PC. If it is a contractor, the design can be changed as appropriate.
  • FIG. 38 is a diagram illustrating changes in the bias magnetic field vector of the magnetic sensor.
  • FIG. 38A shows changes in the bias magnetic field vectors of the magnetic sensors 5A to 5C.
  • the bias magnetic field vector V0 changes to the bias magnetic field vector V1 according to the external magnetic field (from right to left).
  • the bias magnetic field vector V0 changes to the bias magnetic field vector V2 according to the external magnetic field (from left to right).
  • the magnet 2H of the float 20 approaches the magnetic sensors 5A to 5C, it is affected by the external magnetic field (magnetic line) of the vertical component (horizontal direction) as well as the external magnetic field of the horizontal component (lifting direction).
  • the external magnetic fields of the vertical components (horizontal direction) from the magnets 2G and 2H cancel each other and are not affected by the external magnetic field (lines of magnetic force).
  • the external magnetic fields of the vertical components (horizontal direction) from the magnets 2G and 2H are affected by each other without canceling each other.
  • the external magnetic field of the vertical component (horizontal direction) from the magnet 2H to the magnet 2G is applied to the magnetic sensors 5A to 5C in FIG.
  • the magnetic sensor 5A changes to the bias magnetic field vector V2 #.
  • Magnetic sensor 5B changes to bias magnetic field vector V0 #.
  • Magnetic sensor 5C changes to bias magnetic field vector V1 #.
  • the bias magnetic field vector V0 # of the magnetic sensor 5B of FIG. 36 when used as a reference, the bias magnetic field vector V1 # of the magnetic sensor 5C rotates clockwise by an angle ⁇ from the state of the bias magnetic field vector V0 #.
  • the bias magnetic field vector V2 # of the magnetic sensor 5C rotates counterclockwise by an angle ⁇ from the state of the bias magnetic field vector V0 #.
  • the amplitude value of the signal output from each of the magnetic sensors 5A to 5C is different, and therefore may cause an angle detection error. There is.
  • FIG. 38B shows changes in the bias magnetic field vectors of the magnetic sensors 5PA to 5PC.
  • the direction of the bias magnetic field vector of the magnetic sensors 5PA to 5PC is arranged in a horizontal direction perpendicular to the ascending / descending direction of the float 20.
  • the bias magnetic field vector V3 changes to a bias magnetic field vector V4 according to the external magnetic field (from right to left).
  • the bias magnetic field vector V3 changes to the bias magnetic field vector V5 according to the external magnetic field (from left to right).
  • the magnet 2H of the float 20 approaches the magnetic sensors 5PA to 5PC, it is affected by the external magnetic field (magnetic line) of the vertical component (horizontal direction) as well as the external magnetic field of the horizontal component (lifting direction).
  • the external magnetic fields of the vertical components (horizontal direction) from the magnets 2G and 2H cancel each other and are not affected by the external magnetic field (lines of magnetic force).
  • the external magnetic fields of the vertical components (horizontal direction) from the magnets 2G and 2H are affected by each other without canceling each other.
  • the external magnetic field of the vertical component (horizontal direction) from the magnet 2H to the magnet 2G is applied to the magnetic sensors 5PA to 5PC in FIG.
  • the magnetic sensor 5PA changes to the bias magnetic field vector V5 #.
  • the bias magnetic field vector V3 of the magnetic sensor 5PB is in a horizontal state perpendicular to the ascending / descending direction. To maintain. Magnetic sensor 5PC changes to bias magnetic field vector V4 #.
  • the bias magnetic field vector V4 # of the magnetic sensor 5PC rotates clockwise by an angle ⁇ from the state of the bias magnetic field vector V3.
  • the bias magnetic field vector V5 # of the magnetic sensor 5PA rotates counterclockwise by the angle ⁇ from the state of the bias magnetic field vector V3.
  • one output signal (electric signal) of two electric signals is Pcos ⁇
  • the other output signal (electric signal) is Psin ⁇
  • pseudo angle information ⁇ is calculated by calculating tan ⁇ (P sin ⁇ / P cos ⁇ ) based on two output signals (electrical signals) and calculating arctan ⁇ .
  • the amplitude value is an amplitude value based on the angle ⁇ that the bias magnetic field vector rotates from P. Although it changes to P3, the amplitude value of the two output signals (electrical signals) changes by the same amount, so that it is canceled when calculating the angle information ⁇ . Therefore, even when the magnet 2H of the float 20 approaches the magnetic sensors 5PA to 5PC, the position of the float 20 can be detected with high accuracy.
  • the amplitude values of the two output signals change from P to amplitude values P1 and P2 based on the rotation angles ⁇ and ⁇ of the bias magnetic field vector, respectively. Since the two cannot be canceled, the ratio may change, resulting in an angle detection error.
  • FIG. 39 is a diagram for explaining the accuracy of the angle information ⁇ based on the fifth embodiment.
  • FIG. 39A shows arctan ⁇ when one output signal (electrical signal) is set to Pcos ⁇ and the other output signal (electrical signal) is set to Psin ⁇ when the angle ⁇ is changed from 0 ° to 90 °. And a comparison with the reference value is shown.
  • the accuracy of the angle shows a case where there is only a deviation of ⁇ 5 ° from the reference value, and the position of the float 20 can be detected with high accuracy.
  • each of the adjacent magnetic sensors is affected by an external magnetic field (magnetic line) in the vertical component (horizontal direction) as well as an external magnetic field in the horizontal component (lifting direction).
  • the magnetic sensor 5C shown in FIG. 36B has an external magnetic field of horizontal component (lifting direction) and an external magnetic field of vertical component (horizontal direction) (lines of magnetic force). ) Is applied to the first external magnetic field.
  • a second external magnetic field obtained by synthesizing an external magnetic field having a horizontal component (in the vertical direction) and an external magnetic field (line of magnetic force) having a vertical component (in the horizontal direction) is applied to the magnetic sensor 5A.
  • the first external magnetic field and the second external magnetic field are symmetric when the horizontal direction is taken as an axis.
  • the first and second bias magnetic field vectors are included in the bias magnetic field vector.
  • the incident angles to which the external magnetic field is applied are different. Therefore, the rotation angles ⁇ and ⁇ described above from the reference bias magnetic field vector are also different.
  • the bias magnetic field vectors of the adjacent magnetic sensors are set so as to be in the horizontal direction perpendicular to the lifting / lowering direction of the float 20.
  • the incident angles when the first and second external magnetic fields are respectively applied to the bias magnetic field vectors are the same angle. Therefore, the rotation angle ⁇ described above from the reference bias magnetic field vector is the same. Since the rotation angle from the reference bias magnetic field vector is the same, the amplitude value of the signal output from each of the magnetic sensors 5PA to 5PC is the same. Therefore, the angle detection error is suppressed and the position detection is highly accurate. Is possible.
  • FIG. 40 is a diagram for explaining the layout of the magnets 2G and 2H attached to the float 20 and a plurality of magnetic sensors 5QA to 5QC based on the modification of the fifth embodiment.
  • the magnets 2G and 2H form a set of magnet units.
  • the magnet units formed by the magnets 2G and 2H are arranged so that the N poles face each other.
  • positioned so that a north pole may face is demonstrated, it is also possible to set it as the structure which a south pole faces.
  • the distance between the magnet 2G and the magnet 2H is set to an interval twice the distance a, and the magnetic sensors 5QA to 5QC pass through the center of the distance a.
  • the magnetic sensors 5QA to 5QC are also arranged at a distance a from each other.
  • the magnetic sensors 5QA to 5QC are attached to the guide member along the ascending / descending direction.
  • the magnetic sensor 5QB is provided in the center, and the directions of the bias magnetic field vectors of the magnetic sensor 5QA and the magnetic sensor 5QB are provided symmetrically with respect to the horizontal direction.
  • the directions of the bias magnetic field vectors of the magnetic sensor 5QC and the magnetic sensor 5QB are provided symmetrically with respect to the horizontal direction.
  • the rotation angle from the reference bias magnetic field vector can be set to be the same, the amplitude values of the signals output from the magnetic sensors 5QA to 5QC are the same, and a predetermined value with respect to the output signal By executing this correction calculation, errors in angle detection are suppressed, and highly accurate position detection is possible.
  • the predetermined value can be set to the maximum value of the amplitude fluctuation / 2, and a person skilled in the art can appropriately change the design.
  • FIG. 41 is a diagram illustrating a magnetic sensor 5R according to another embodiment.
  • the magnetic sensor 5R shows a base 6 on which a magnetoresistive element is formed and a bias magnet 4. It is assumed that the south pole of the bias magnet 4 faces the base 6 on which the magnetoresistive element is formed. In this example, the case where the S pole of the bias magnet 4 faces the base 6 on which the magnetoresistive element is formed will be described, but the N pole faces the base 6 on which the magnetoresistive element is formed. The same applies to the case.
  • FIG. 42 is a diagram for explaining a bias magnetic field vector in the magnetic sensor 5P.
  • the four magnetoresistive elements MR1 to MR4 provided on the base 6 are provided symmetrically with respect to the ascending / descending direction of the base 6.
  • a bias magnet 4 is provided on the four magnetoresistive elements MR1 to MR4.
  • a case where a cylindrical shape is arranged as the shape of the bias magnet 4 is shown.
  • the shape is not limited to this, and a square bias magnet may be arranged.
  • the configuration in which the bias magnet 4 is provided on the magnetoresistive elements MR1 to MR4 will be described, a configuration in which the bias magnet 4 is provided on the opposite side via the base 6 may be used.
  • a bias magnetic field vector VB0 is applied to the magnetoresistive elements MR1 and MR2 as a bias magnetic field in one direction from the center of the bias magnet 4 to the inside is shown.
  • bias magnetic field vector VA0 is applied to the magnetoresistive elements MR3 and MR4 as the bias magnetic field in the other direction from the center of the bias magnet 4 to the inside. Since the direction of the bias magnetic field applied with respect to the center line of the bias magnet 4 is different, the bias magnetic field vector VA0 and the bias magnetic field vector VB0 are in opposite directions.
  • the magnetoresistive element MR of the magnetic sensor 5R of this example will be described as a folded pattern structure as an example.
  • the pattern structure is not limited to a folded shape, and those skilled in the art can enhance the detection characteristics of the magnetic sensor 5P. If so, the design can be changed as appropriate.
  • a configuration is shown in which a bias magnetic field vector with an angle of 45 ° is applied as the direction of the bias magnetic field vector with respect to the magnetoresistive element MR.
  • the arrangement or angle also enhances the detection characteristics of the magnetic sensor 5P.
  • a person skilled in the art can change the design as appropriate. For example, it is possible to design such that a bias magnetic field vector having an angle of 30 ° is applied to the magnetoresistive element MR.
  • FIG. 43 is a diagram illustrating the circuit configuration of the magnetic sensor 5R. As shown in FIG. 43, the magnetic sensor 5R has a bridge structure including four magnetoresistive elements MR1 to MR4.
  • Magnetoresistive elements MR1 and MR2 are connected in series between the power supply voltage Vcc and the ground voltage GND. Further, in parallel with the magnetoresistive elements MR1 and MR2, magnetoresistive elements MR3 and MR4 are connected in series between the power supply voltage Vcc and the ground voltage GND.
  • the signal V ⁇ is output from the connection node of the magnetoresistive elements MR3 and MR4, the signal V + is output from the connection node of the magnetoresistive elements MR1 and MR2, and the difference ⁇ V between the signals V + and V ⁇ is output.
  • a bias magnetic field vector VA0 is applied to the magnetoresistive elements MR3 and MR4.
  • a bias magnetic field vector VB0 is applied to the magnetoresistive elements MR1 and MR2.
  • the vector direction changes according to the external magnetic field with respect to the up-and-down direction of the float 20.
  • the magnetic sensor 5R detects a change in the bias magnetic field vector and outputs an output signal (potential difference ⁇ V) corresponding to the detection result.
  • the signal V + decreases and the signal V ⁇ increases in accordance with the external magnetic field (from right to left). Therefore, the difference ⁇ V becomes small.
  • the position of the float 20 can be detected by the above method.
  • the rotation angle of the bias magnetic field vectors is the same as described above even when the float 20 is displaced. Therefore, it is possible to suppress the angle detection error and to detect the position with high accuracy.
  • the magnetoresistive element described in the above example can be a magnetoresistive element having an exchange coupling film in which an antiferromagnetic layer and a ferromagnetic layer are exchange coupled.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

 液面検出装置は、液面に追従して昇降するフロートと、フロートに取り付けられた磁石と、フロートの昇降を案内する案内部材と、案内部材に取り付けられ、磁石の昇降位置に応じて変化する磁束密度を検知して、その磁束密度に対応する電気信号を出力する複数の磁気センサと、複数の磁気センサからそれぞれ出力される電気信号に基づいてフロートの位置を検出する検出回路とを備える。検出回路は、複数の磁気センサのうち隣接する2つの磁気センサから出力される電気信号に基づいてフロートの位置を検出する。

Description

液面検出装置
 本発明は、液面検出装置に関し、具体的には、自動車等のガソリンやエンジンオイルや尿素水などの液体を貯蔵するタンクに搭載され、磁石を利用して液面の位置を検出する液面検出装置に関する。
 従来より、磁石と磁気センサとを備える液面検出装置が知られている。例えば、液面の位置の変化に対応して昇降し、磁石を有する浮きと、磁石の磁束密度を検知する磁気センサとを備え、磁気センサの出力信号から液面の位置を検出する液面検出装置が知られている。
 この点で、特許文献1には、浮き子1と、浮き子1が内部に配置されている円筒パイプ2と、浮き子1の一つの端部に固定されている着磁体3と、着磁体3の近傍に配置されている磁気抵抗素子4とを備え、浮き子1に対応する着磁体3の位置により液面の位置を検出する、液面検出装置が開示されている(第1図及び第2図参照)。
 また、着磁体3は、浮き子1の移動方向に沿って、所定の着磁パターンに従って(S-N、N-S、S-N、・・・)…となるように着磁されている。また、着磁体3は、円筒パイプ2の天面に設けられた貫通孔から円筒パイプ2の外部に突出している。磁気抵抗素子4は、円筒パイプ2の外側であって、着磁体3の近傍に配置されている。また、磁気抵抗素子4は、2つのブリッジ回路を構成する8つの抵抗要素を含む。
 特許文献2には、液面感得体21と、液面感得体21が内部に配置されている液タンク18と、検出ロッド23の上端に設けられた変位磁石24と、複検出部ハウジング20に取り付けられており、複数のホール素子5、5を含む検出器本体25とを備える、液面検出装置が開示されている(図1~図4,図12~図13参照)。
 検出器本体25は、変位磁石24の移動方向と平行となるように複数のホール素子5を同一直線上に所要の配設間隔でプリント基板6上に設けた構造を有する。各ホール素子は感磁面5aが変位磁石24の着磁方向と平行になるよう設けられている。液面感得体21は、検出部ハウジング20の下面に上端を取り付けた引張ばね22により検出ロッド23を介してタンク内に吊り下げられていて、検出ロッド23の上端は検出部ハウジング20内に臨んでいる。液面検出装置は、検出部ハウジング20内における検出ロッド23の上端部の変位を変位磁石24の変位として検出器本体25にて検出して液位を測定する。検出器本体25は制御回路7を介して、各ホール素子の出力電圧から磁石の位置を演算してさらに液位値に換算する演算回路8と、同演算回路からの液位値を画面等に出力する出力装置9に接続されている。
 特許文献1に記載の液面検出装置では、着磁体3は、円筒パイプ2の天面に設けられた貫通孔から円筒パイプ2の外部に突出している。このため、小型化が困難であるとともに、機器によっては搭載が困難となる可能性がある。
 特許文献2に記載の液面検出装置では、検出ロッド23及び変位磁石24は、液タンク18の天面に設けられた貫通孔から液タンク18の外部に突出している。このため、特許文献1に記載の液面検出装置と同様に、小型化が困難であるとともに、機器によっては搭載が困難となる可能性がある。
 一方で、タンク内に磁石を配置してなる液面検出装置も考案されている。
 特許文献3には、フロート23と、フロート23が内部に配置されているガラス管21と、フロート23の対向する2つの端部に固定されている磁石22A,22Bと、ガラス管21に隣接して配置されているセンサケース32に搭載されているセンサ部31A~31Eとを備え、フロート23に対応する磁石22A,22Bの位置により液面の位置を検出する、液面検出装置が開示されている(図2~図4参照)。
 磁石22A,22Bは、フロート23の移動方向の両端に、フロート23の移動方向に沿ってNS、SNとなるように配置されている。センサ部31A~31Eはフロート23の移動方向に沿って配置されている。センサ部31A~31Eは、フロート23の変位に応じた、第1の磁石22A及び第2の磁石22Bによる磁気を検知する角度センサ34A~34Eと、磁気により近傍にフロート23が到達したことを検知する磁気強度センサ35A~35Eとをそれぞれ備える。
 特許文献4には、マグネット3と、マグネット3が内部に配置されているタンク2と、ロッド4と、複数の磁気強度センサS[1]~S[4]と、制御部10とを備え、マグネット3の位置により液面の位置を検出する、液面検出装置が開示されている(図1、図4、図5参照)。
 ロッド4は、長尺の円柱状であり、軸方向が上下方向(鉛直方向)と平行になるようにタンク2内に配置されている。マグネット3は、円環状であり、タンク2内に貯蔵された液体の液面に浮かぶように構成されている。ロッド4はマグネット3に挿通されており、マグネット3はタンク2に貯蔵された液体の液面に浮かべられた状態において、ロッド4によって移動がガイドされて上下方向に移動する。複数の磁気強度センサS[1]~S[4]は、それぞれがロッド4に埋め込まれており、上方から下方に向けて互いに間隔をあけて順次並ぶように配置されている。
 制御部10は、切替スイッチ12及び減算器13を有する差分値算出部11と、マイクロコンピュータ20とを有する。切替スイッチ12は、入力端子I11、I12、I13、I21、I22、I23、出力端子O1、O2を有する。マイクロコンピュータ20からの制御信号によるスイッチ切替により入力端子I11、I12、I13のいずれかが出力端子O1に接続される。入力端子I21、I22、I23のいずれかがスイッチ切替により出力端子O2に接続される。入力端子I11は磁気強度センサS[1]と接続されている。入力端子I12は磁気強度センサS[2]と接続されている。入力端子I13は磁気強度センサS[3]と接続されている。入力端子I21は磁気強度センサS[2]と接続されている。入力端子I22は磁気強度センサS[3]と接続されている。入力端子I23は磁気強度センサS[4]と接続されている。これにより、切替スイッチ12は、(1)出力端子O1から磁気強度センサS[1]の電圧信号が出力されているとき、出力端子O2から磁気強度センサS[2]の電圧信号が出力され、(2)出力端子O1から磁気強度センサS[2]の電圧信号が出力されているとき、出力端子O2から磁気強度センサS[3]の電圧信号が出力され、(3)出力端子O1から磁気強度センサS[3]の電圧信号が出力されているとき、出力端子O2から磁気強度センサS[4]の電圧信号が出力される。減算器13は、出力端子O1が接続される一方の入力端子と、出力端子O2が接続される他方の入力端子と、差分電圧信号を出力する出力端子とを備える。
 マイクロコンピュータ20は、切替スイッチ12及び減算器13と接続されている。マイクロコンピュータ20は、隣接して配置された磁気強度センサの電圧信号(出力値)の差分値とマグネット3の位置(即ち、タンク2に貯蔵された液体の液面レベル)との関係を示す高精度液面レベル検出基準情報G[1]~G[3]と、標準精度液面レベル検出基準情報H[1]~H[3]、液面レベルの検出において高精度液面レベル検出基準情報G[1]~G[3]及び標準精度液面レベル検出基準情報H[1]~H[3]のいずれを用いるかを判定するための高精度検出条件が予め記憶されているROMを備えている。
 マイクロコンピュータ20はCPUをさらに備え、CPUは、減算器13の差分電圧信号と、高精度液面レベル検出基準情報G[1]~G[3]と、標準精度液面レベル検出基準情報H[1]~H[3]と、高精度検出条件を用いた信号処理を行い、マグネット3の位置、即ち、タンク2に貯蔵された液体の液面レベルを検出する。
 特許文献5には、フロート3と、フロート3が内部に配置されているタンクと、フロート3の凹溝3h内に固着されている略リング状の永久磁石5と、フロート3の孔に遊挿された略円筒状のステム部13を有し、フロート3の昇降を案内する案内部材11と、ステム部13内に配置されている磁気センサである2つのホール素子(第1ホール素子21及び第2ホール素子23)と、液面レベルの検知出力を外部へ導くための駆動制御回路31とを備え、フロート3(=永久磁石5)の位置により液面の位置を検出する、液面検出装置が開示されている(図1、図2参照)。
 永久磁石5は、内周面5n側がN極、外周面5g側がS極に一様に着磁されている。第1ホール素子21及び第2ホール素子23は鉛直方向にそれぞれ離間して固着されている。第1,第2ホール素子21,23に駆動電圧を印加すると、液面に追従するフロート3に配置された永久磁石5の昇降位置に応じて変化する磁束密度を検知して、その磁束密度に対応する電気信号、より具体的には、その磁束密度にほぼ直線的に対応する電圧を出力する。駆動制御回路31は、第1ホール素子21からの出力電圧を増幅する第1増幅回路33と、第2ホール素子23からの出力電圧を増幅する第2増幅回路35を有する。第1増幅回路33と第2増幅回路35は同様の増幅率を示す。
 第1ホール素子21の出力電圧は、第1増幅回路33により所定の割合で増幅される。増幅された出力電圧は出力調整回路37と反転増幅回路41に入力され、出力調整回路37から液面レベルに対応した電圧が外部へ出力される。また、第2ホール素子23の出力電圧は、第2増幅回路35により所定の割合で増幅される。増幅された出力電圧は、反転増幅回路41に入力される。反転増幅回路41には第1ホール素子21の出力を増幅させた出力電圧と、第2ホール素子23の出力を増幅させた出力電圧とを合わせた出力電圧が入力され、第1,第2ホール素子21,23の駆動のフィードバック制御に用いられる。これにより、液温の変動や永久磁石5の特性のバラツキの影響に拘わらず、正確に磁束密度、即ち液面レベルを計測することができる。
特開平1-221620号公報 特開2002-22403号公報 特開2009-236615号公報 特開2014-145714号公報 特開2002-277308号公報
 しかしながら、特許文献3に記載の液面検出装置では、センサ部31A~31Eは角度センサ34A~34Eと磁気強度センサ35A~35Eとをそれぞれ備え、角度センサ34A~34Eが接続される出力モニタ回路と磁気強度センサ35A~35Eが接続される切替回路12とをさらに備えるため、回路構成の小型化が困難である。また、角度センサ34A~34Eと磁気強度センサ35A~35EがGMR素子である場合、30~200Gまでの磁界強度に対応することが出来るが、200Gよりも大きな磁界が印加されると磁気飽和してしまい検出できない。このため、磁石22A,22Bの種類や位置に対する自由度が低い。特に、磁石22A,22Bによっては角度センサ34A~34E及び磁気強度センサ35A~35Eと磁石22A,22Bとの距離を短くすることが出来ず、回路構成の小型化が困難である。
 特許文献4に記載の液面検出装置では、切替スイッチ12、減算器13、マイクロコンピュータ20のROMが必要であるため、回路構成が複雑化するとともに小型化が困難である。
 特許文献5に記載の液面検出装置では、第1ホール素子21のみで液面を検知しており、液温の変動や永久磁石5の特性のバラツキの影響を補正するために、第2ホール素子23と反転増幅回路41を含むフィードバック制御回路が必要であるため、回路構成が複雑化するとともに小型化が困難である。
 したがって、本発明は、上記の課題を解決するためになされたものであって、回路構成を簡易かつ小型化が可能な液面検出装置を提供することを目的とする。
 本発明のある局面に従う液面検出装置は、液面に追従して昇降するフロートと、フロートに取り付けられた磁石と、フロートの昇降を案内する案内部材と、案内部材に取り付けられ、磁石の昇降位置に応じて変化する磁束密度を検知して、その磁束密度に対応する電気信号を出力する複数の磁気センサと、複数の磁気センサからそれぞれ出力される電気信号に基づいてフロートの位置を検出する検出回路とを備える。検出回路は、複数の磁気センサのうち隣接する2つの磁気センサから出力される電気信号に基づいてフロートの位置を検出する。
 好ましくは、各磁気センサは、バイアス磁石を有する。
 好ましくは、各磁気センサは、磁石により生じる磁力線の磁気ベクトルに基づく電気信号を出力する。
 好ましくは、検出回路は、複数の磁気センサからそれぞれ出力される電気信号のうち中間電圧との比較に基づいて隣接する2つの磁気センサから出力される電気信号を抽出する。
 好ましくは、検出回路は、抽出した2つの電気信号の一方を正弦波、他方を余弦波とした場合の角度情報を算出し、算出した角度情報に基づいてフロートの位置を検出する。
 好ましくは、磁石は、案内部材を介してそれぞれ同極性の磁極が対向するように配置される、少なくとも一組以上の磁石ユニットで構成される。
 好ましくは、磁石は、複数組の磁石ユニットを有する。各磁石ユニットは、昇降方向に沿ってそれぞれ配置され、隣接する磁石ユニットの対向する磁極の極性は異なる。
 好ましくは、複数の磁気センサは、昇降方向に沿って順番に配置された第1~第3の磁気センサを有する。検出回路は、第1~第3の磁気センサからそれぞれ出力される第1~第3の電気信号に関して、第1~第3の電気信号の大小関係の組み合わせに従って、第1および第2の電気信号の一方を正弦波、他方を余弦波とした場合の角度情報を算出し、算出した角度情報に基づいてフロートの位置を検出する。
 好ましくは、検出回路は、第1~第3の磁気センサからそれぞれ出力される第1~第3の電気信号に関して、複数の所定の閾値との関係に従って、第1および第2の電気信号を抽出する。
 好ましくは、検出回路は、第1~第3の磁気センサからそれぞれ出力される第1~第3の電気信号に関して、複数の所定の閾値との関係に従って、複数の領域に分割して、分割された領域における第1および第2の電気信号を抽出する。
 好ましくは、互いに隣接する各磁気センサのバイアス磁界ベクトルの向きは、フロートの昇降方向に対して垂直な水平方向に対して対称に設定される。
 好ましくは、各磁気センサは、バイアス磁石により生じるバイアス磁界ベクトルが印加される第1~第4の磁気抵抗素子と、バイアス磁界ベクトルの変化に基づく第1~第4の磁気抵抗素子の抵抗値の変化に応じた電気信号を出力する出力回路とを含む。
 好ましくは、第1および第2の磁気抵抗素子には、バイアス磁石により生じる第1のバイアス磁界ベクトルが印加される。第3および第4の磁気抵抗素子には、バイアス磁石により生じる第1のバイアス磁界ベクトルと反対方向の第2のバイアス磁界ベクトルが印加される。第1および第2の磁気抵抗素子と、第3および第4の磁気抵抗素子とは、第1~第4の磁気抵抗素子が形成される昇降方向を基準に線対称となるようにそれぞれ配置される。
 好ましくは、バイアス磁石は、第1~第4の磁気抵抗素子に印加されるバイアス磁界ベクトルの向きがフロートの昇降方向に対して垂直な水平方向となるように配置される。
 本発明の液面検出装置は、回路構成を簡易かつ小型化が可能である。
実施形態1に基づく液面検出装置の外観構成を説明する図である。 実施形態1に基づくガイド10に取り付けられた複数の磁気センサ5を説明する図である。 実施形態1に基づく液面検出装置1の回路構成図である。 実施形態1に基づく磁気センサ5の磁気抵抗素子のパターンを説明する図である。 実施形態1に基づく磁気センサ5の検出原理を説明する図である。 実施形態1に基づくフロート20に取り付けられた磁石2の配置を説明する図である。 実施形態1に基づくフロート20に取り付けられた磁石2A~2Dと、磁気センサ5A~5Cとのレイアウトを説明する図である。 実施形態1に基づくフロート20が昇降動作によりその位置が変化した場合の磁気センサとの関係を説明する図である。 実施形態1に基づくフロート20の昇降動作に従う複数の磁気センサの出力信号波形を説明する図である。 図9の所定領域を拡大したイメージ図である。 実施形態1に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。 実施形態1に基づく角度情報θの精度を説明する図である。 実施形態1に基づく液面検出装置1の検出方式を説明するフロー図である。 実施形態1に基づくフロート20に取り付けられた磁石2E,2Fと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。 実施形態2に基づくフロート20に取り付けられた磁石2G,2Hと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。 実施形態2に基づくフロート20の昇降動作に従う複数の磁気センサの出力信号波形を説明する図である。 図16の所定領域を拡大したイメージ図である。 実施形態2に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。 実施形態2に基づく角度情報θの精度を説明する図である。 実施形態3に基づくフロート20に取り付けられた磁石2I~2Tと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。 実施形態3に基づくフロート20の昇降動作に従う磁気センサ5からの出力信号波形を説明する図である。 図21の所定領域を拡大したイメージ図である。 実施形態3に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。 実施形態3に基づく複数の磁気センサ5A~5Cの出力信号波形の中からそれぞれの領域T1~T3における2本の出力信号波形を抽出する方式を説明する図である。 実施形態3に基づく角度情報θの精度を説明する図である。 実施形態3に基づく液面検出装置1の検出方式を説明するフロー図である。 実施形態3の変形例1に基づくフロート20に取り付けられた磁石2U,2Vと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。 実施形態3に基づくフロート20に取り付けられた磁石2I~2Pと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。 実施形態3の変形例2に基づくフロート20の昇降動作に従う磁気センサ5からの出力信号波形を説明する図である。 図29の所定領域を拡大したイメージ図である。 実施形態3の変形例2に基づく磁気センサ5が受ける磁気ベクトルの角度を説明する図である。 実施形態3の変形例2に基づく複数の磁気センサ5A~5Cの出力信号波形の中からそれぞれの領域T1~T3における2本の出力信号波形を抽出する方式を説明する図である。 実施形態3の変形例2に基づく角度情報θの精度を説明する図である。 実施形態3の変形例3に基づくフロート20に取り付けられた磁石2W,2Xと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。 実施形態4に基づく磁気センサ5#の磁気抵抗素子のパターンを説明する図である。 実施形態5に基づくガイド10に対してフロート20の位置がずれた場合を説明する図である。 実施形態5に基づくフロート20に取り付けられた磁石2G,2Hと、磁気センサとのレイアウトを説明する図である。 実施形態5に基づくバイアス磁界ベクトルの変化を説明する図である。 実施形態5に基づく角度情報θの精度を説明する図である。 実施形態5の変形例に基づくフロート20に取り付けられた磁石2G,2Hと、複数の磁気センサ5Qとのレイアウトを説明する図である。 別の実施形態に基づく磁気センサ5Rを説明する図である。 磁気センサ5Pにおけるバイアス磁界ベクトルについて説明する図である。 磁気センサ5Rの回路構成を説明する図である。
 この実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
 (実施形態1)
 図1は、実施形態1に基づく液面検出装置の外観構成を説明する図である。
 図1を参照して、液面検出装置1は、液面に追従して昇降するフロート20と、ガイド(案内部材)10と、検出回路50とを含む。
 検出回路50は、案内部材10に取り付けられた複数の磁気センサ(AMR(Anisotropic Magneto Resistance)素子)から検出される出力信号に基づいてフロート20の位置を検出する。
 図2は、実施形態1に基づくガイド10に取り付けられた複数の磁気センサ5を説明する図である。
 図2を参照して、複数の磁気センサ5は、昇降方向に沿って所定間隔に配置されている。
 フロート20には、磁石2が設けられている。具体的には、2組の磁石ユニットとして磁石2A,2B,2C,2Dが取り付けられている。磁石2A,2Bで磁石ユニットを構成する。磁石2C,2Dで磁石ユニットを構成する。
 複数の磁気センサ5は、フロート20に取り付けられた磁石2の昇降動作に従う磁束密度を検知して、その磁束密度に対応する電気信号を出力する。なお、本例においては、4ピンの磁気センサ5の構成について一例として説明するが、特にピン数はこれに限られず当業者であるならば適宜設計変更することが可能である。
 図3は、実施形態1に基づく液面検出装置1の回路構成図である。
 図3を参照して、実施形態1に基づく液面検出装置1は、複数の磁気センサ(AMR素子)5と、検出回路50とを含む。本例においては、n個の磁気センサが設けられている場合が示されている。
 検出回路50は、アナログ/デジタル変換回路であるA/D回路60と、パラレル/シリアル変換回路であるP/S変換回路30と、演算処理を実行するMPU(Micro-processing unit)40とを含む。
 A/D回路60は、複数(n個)の磁気センサ5と接続されて、入力されたアナログ信号をデジタル信号に変換する。
 P/S変換回路30は、MPU40から入力されるクロックCLKに同期して並列的に入力されるA/D回路60から入力されたデジタル信号を直列的に信号変換してMPU40に出力する。
 MPU40は、P/S変換回路30から入力される複数(n個)の磁気センサ5からの信号を演算処理してフロート20の位置を検出する。
 なお、本例におけるMPU40は、A/D回路60からの信号に関して、クロックCLKに同期したP/S変換回路30の出力を受ける構成について説明するが、特に当該構成に限られずマルチプレクサを介してA/D回路60からデジタル信号の入力を受ける構成に変更することも可能である。
 図4は、実施形態1に基づく磁気センサ5の磁気抵抗素子のパターンを説明する図である。
 図4を参照して、ここでは、磁気センサ5は、4つの磁気抵抗素子MR1~MR4(総称して磁気抵抗素子MRとも称する)からなるブリッジ構造からなる。
 磁気センサ5は、磁界が印加されると、磁気抵抗素子MR1~MR4の抵抗値変化により抵抗値変化に応じた信号V+,V-を出力する。磁気センサ5は、信号V+,V-の差分ΔVを出力する。
 磁気センサ5の磁気抵抗素子MRは異方性磁気抵抗素子であり、折り返し形状のパターン構造である。
 磁気抵抗素子MRの磁界印加時の抵抗値は、素子の長さ方向(電流方向)に対して垂直の磁界(90°)が印加された時に最小となり、平行な磁界(0°)が印加されたときに最大となる特性を有する。
 また、磁気センサ5には、バイアス磁石3A,3Bが設けられている。バイアス磁石3A,3Bは、磁気抵抗素子MR1~MR4に対して左上から右下の方向にバイアス磁界がかかるように配置されている。
 なお、本例の磁気センサ5の磁気抵抗素子MRは、一例として折り返し形状のパターン構造として説明するが、特に折り返し形状に限られずそのパターン構造は、磁気センサ5の検出特性を高めるように当業者であるならば適宜設計変更することが可能である。また、バイアス磁石3A,3Bの配置(向き)に関しても本例においては一例として左上から右下の方向に45°の角度のバイアス磁界ベクトルがかかるように配置した構成が示されているが、当該配置あるいは角度も磁気センサ5の検出特性を高めるように当業者であるならば適宜設計変更することが可能である。
 また、本例においては、2つのバイアス磁石3A,3Bに基づいてバイアス磁界ベクトルをかける構成について説明するが、2つのバイアス磁石ではなく1つのバイアス磁石3Aを45°の傾きで磁気抵抗素子MR1~MR4の中央部に配置することにより同様のバイアス磁界ベクトルをかけることが可能である。当該構成によりバイアス磁石の個数を減らし、磁気センサ5のコストを低減することが可能である。あるいは、磁気抵抗素子MR1~MR4が設けられている基板上にバイアス磁石を配置しても良いし、基盤の裏面にバイアス磁石を配置する構成とするようにしても良い。
 図5は、実施形態1に基づく磁気センサ5の検出原理を説明する図である。
 図5(A)は、外部磁界に従って変化するバイアス磁界ベクトルを説明する図である。
 図5(A)に示されるように、磁気センサ5のバイアス磁界ベクトルは、昇降方向に対する外部磁界に従ってそのベクトル方向を変化させる。本例においては、外部磁界が無い状態のバイアス磁界ベクトルV0が実線で示されている。なお、バイアス磁石は、磁気センサ5が飽和感度領域に達する磁界強度となるように設定する。
 バイアス磁界ベクトルV0は、外部磁界(右から左方向)に従ってバイアス磁界ベクトルV1に変化する。
 一方で、バイアス磁界ベクトルV0は、外部磁界(左から右方向)に従ってバイアス磁界ベクトルV2に変化する。
 外部磁界の磁束密度の変化に従いバイアス磁界ベクトルが変化する。磁気センサ5は、バイアス磁界ベクトルの変化を検出して、当該検出結果に応じた出力信号(電位差ΔV)を出力する。
 図5(B)には、外部磁界の磁束密度の変化に従う磁気センサ5の出力信号の変化特性が示されている。
 図5(B)に示されるように、バイアス磁石3A,3Bに従うバイアス磁界に基づいて所定の磁束密度STがかかっている。この場合の出力は中間値に設定されており、磁気センサ5に印加される磁界の方向の変化に従い電位差ΔVが変化する。
 外部磁界として、右から左方向の外部磁界の磁束密度の変化に従い電位差ΔVは、ΔV1側にシフトする。
 一方、外部磁界として、左から右方向の外部磁界の磁束密度の変化に従い電位差ΔVは、ΔV2側にシフトする。
 中間値からの電位差ΔVの増減に従って磁気センサ5に印加される磁界の極性(どの向きからの磁界か)を検知することが可能である。また、バイアス磁石3A,3Bの磁力強度を変更することにより飽和磁界強度も高めることが可能である。
 後述するが外部磁界の磁束密度の変化に応じた信号波形(電位差ΔV)に基づいてフロート20の位置を検出することが可能である。
 図6は、実施形態1に基づくフロート20に取り付けられた磁石2の配置を説明する図である。
 図6を参照して、ここでは、フロート20を上視した場合の図が示されている。また、磁石2A,2Bで形成される磁石ユニットは、ガイド部材を介して互いに向き合うように対向して設けられている。本例においては、磁石2A,2BのN極が互いに向き合うように対向して設けられている。なお、磁石2A,2BのS極を互いに向き合うように対向して配置することも可能である。
 当該配置により、磁力方向は、ガイド部材に沿う方向となり、ガイド部材に沿う方向と垂直な方向の磁力成分は打ち消される。また、フロート20が回転した場合であっても磁力方向や磁束密度にほとんど変化はなく、磁気センサ5は磁束密度の変位量を精度よく測定することが可能である。
 図7は、実施形態1に基づくフロート20に取り付けられた磁石2A~2Dと、磁気センサ5A~5Cとのレイアウトを説明する図である。
 図7に示されるように、磁石2A,2Bは、1組の磁石ユニットを形成する。また、磁石2C,2Dは、1組の磁石ユニットを形成する。
 磁石2A,2Bで形成される磁石ユニットは、互いにN極が向き合うように配置されている。また、磁石2C,2Dで形成される磁石ユニットは、互いにS極が向き合うように配置されている。隣接する磁石ユニットは、磁石の磁極が異なるように配置されている。
 本例においては、磁石2Aと磁石2Bとの距離は、距離aの2倍の間隔に設定され、また、その中心を磁気センサ5が通過するように配置されている。隣接する磁石ユニットの間隔(中心間距離)も距離aの2倍に設定されている。磁気センサ5の互いの間隔も距離aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 なお、本例においては、3つの磁気センサ5A~5Cが配置されて、フロート20の位置を検出する場合について説明するが、さらに複数の磁気センサが配置された場合についても同様である。
 なお、本例において、例えば、フロート20の位置として、一例として磁石2Aと磁石2C(あるいは磁石2Bと磁石2D)の昇降方向における中心を基準位置(中心点)とする。この場合、基準位置(中心点)の位置に磁気センサ5Bが位置している場合が示されている。
 図8は、実施形態1に基づくフロート20が昇降動作によりその位置が変化した場合の磁気センサとの関係を説明する図である。
 本例においては、フロート20が右から左方向(一例として昇方向)に変化した場合について説明する。
 図8(A)においては、フロート20が上昇して磁気センサ5Aに近づいてきた場合(状態S0)が示されている。
 磁気センサ5Aは、フロート20の磁石2A,2Bにより生じる磁界(磁力線)の影響を受ける。具体的には、磁気センサ5Aは、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルの変化に従い電位差ΔVは減少する。他の磁気センサ5B,5Cについても、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 図8(B)においては、図8(A)からフロート20がさらに距離a上昇した場合(状態S1)が示されている。
 磁気センサ5Aは、磁石2A,2Bとの間の中心線上に位置する状態である。本例においては、当該状態を初期状態とする。
 磁気センサ5Bは、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Bのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルの変化に従い電位差ΔVは減少する。他の磁気センサ5Cについても、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 図8(C)においては、図8(B)からフロート20がさらに距離a上昇した場合(状態S2)が示されている。
 磁気センサ5Aは、磁石2A,2B,2C,2Dにより生じる磁界により最大限昇降方向に磁界がかかる場合が示されている。具体的には、磁気センサ5Aは、磁石2Aから磁石2Cへの磁力線(あるいは磁石2Bから磁石2Dの磁力線)として左から右への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差Vは増加する(最大となる)。
 磁気センサ5Bは、磁石2A,2Bとの間の中心線上に位置する状態である。したがって、初期状態である。
 磁気センサ5Cは、磁石2A,2Bにより生じる磁界の影響を受ける。具体的には、磁気センサ5Cは、磁石2A,2Bの磁力線として右から左への磁界の影響を受ける。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 図8(D)においては、図8(C)からフロート20がさらに距離a上昇した場合(状態S3)が示されている。
 磁気センサ5Aは、磁石2C,2Dとの間の中心線上に位置する状態である。したがって、初期状態である。
 磁気センサ5Bは、磁石2A,2B,2C,2Dにより生じる磁界により最大限昇降方向に磁界がかかる場合が示されている。具体的には、磁気センサ5Bは、磁石2Aから磁石2Cへの磁力線(あるいは磁石2Bから磁石2Dの磁力線)として左から右への磁界の影響を受ける。したがって、磁気センサ5Bのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する(最大となる)。
 磁気センサ5Cは、磁石2A,2Bとの間の中心線上に位置する状態である。したがって、初期状態である。
 図8(E)においては、図8(D)からフロート20がさらに距離a上昇した場合(状態S4)が示されている。
 磁気センサ5Aは、磁石2C,2Dにより生じる磁界により昇降方向に磁界がかかる場合が示されている。具体的には、磁石2C,2Dの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 磁気センサ5Bは、磁石2C,2Dとの間の中心線上に位置する状態である。したがって、初期状態である。
 磁気センサ5Cは、磁石2A,2B,2C,2Dにより生じる磁界により最大限昇降方向に磁界がかかる場合が示されている。具体的には、磁気センサ5Cは、磁石2Aから磁石2Cへの磁力線(あるいは磁石2Bから磁石2Dの磁力線)として左から右への磁界の影響を受ける。したがって、磁気センサ5Cのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する(最大となる)。
 図8(F)においては、図8(E)からフロート20がさらに距離a上昇した場合(状態S5)が示されている。
 磁気センサ5Aは、磁石2C,2Dにより生じる磁界の影響を受ける。具体的には、磁石2C,2Dの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側にやや変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 磁気センサ5Bは、磁石2C,2Dにより生じる磁界により昇降方向に磁界がかかる場合が示されている。具体的には、磁石2C,2Dの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Bのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 磁気センサ5Cは、磁石2C,2Dとの間の中心線上に位置する状態である。したがって、初期状態である。
 図8(G)においては、図8(F)からフロート20がさらに距離a上昇した場合(状態S6)が示されている。
 磁気センサ5A,5Bは、磁石2C,2Dにより生じる磁界の影響をやや受ける。具体的には、磁石2C,2Dの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5A,5Bのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側にやや変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 磁気センサ5Cは、磁石2C,2Dにより生じる磁界により昇降方向に磁界がかかる場合が示されている。具体的には、磁石2C,2Dの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Cのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 図9は、実施形態1に基づくフロート20の昇降動作に従う複数の磁気センサの出力信号波形を説明する図である。
 図9に示されるように、状態S0~S6の位置関係と出力信号関係とが示されている。
 例えば、磁気センサ5Aに着目すると、磁気センサ5Aで受けた外部磁界の磁束密度に応じた信号が出力されている。
 状態S0においては、磁気センサ5Aで受けた外部磁界に従ってバイアス磁界ベクトルが変化して出力信号(電位差ΔV)として低下している場合が示されている。
 状態S1においては、磁気センサ5Aは、磁石2A,2Bとの間の中心線上に位置する初期状態であり、本例においては、初期状態である場合の出力信号(電位差ΔV)の電圧を中間値(中間電圧)とする。
 状態S2においては、磁気センサ5Aのバイアス磁界ベクトルがバイアス磁界ベクトルV2側に変化した場合に出力信号が最大となった場合が示されている。
 状態S3においては、磁気センサ5Aは、磁石2C,2Dとの間の中心線上に位置する初期状態であり、出力電圧は、中間電圧となった場合が示されている。
 状態S4においては、磁気センサ5Aで受けた外部磁界に従ってバイアス磁界ベクトルが変化して出力信号(電位差ΔV)が低下した場合が示されている。
 状態S4以降においては、距離に応じて変化する外部磁界に基づいて磁気センサ5Aの出力信号が変化する場合が示されている。
 また、磁気センサ5Bに着目すると、磁気センサ5Aの出力信号を距離a(位相として90°)ずらした波形が示されている。磁気センサ5Cに着目すると、磁気センサ5Bの出力信号を距離a(位相として90°)ずらした波形が示されている。
 図10は、図9の所定領域を拡大したイメージ図である。
 図10を参照して、ここでは、所定領域として図9のハッチング領域の複数の磁気センサ5A~5Cの出力信号波形が示されている。
 磁気センサ5A,5Bの出力信号波形は、中間電圧を基準とした場合、後述する円状に沿って変化する外部磁界の磁気ベクトルPの水平成分(昇降方向)に模式化(近似)することが可能である。
 具体的には、隣接する2つの磁気センサから出力される電気信号として位相が90°ずれた信号波形を検出することが可能である。
 本例においては、位相が90°ずれているため一方の出力信号(電気信号)を正弦波(sinθ)、他方の出力信号(電気信号)を余弦波(cosθ)で表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて外部磁界の磁気ベクトルPの角度θを算出する。
 本実施形態においては、複数の磁気センサの出力信号のうち隣接する2つの磁気センサから出力される電気信号を検出して外部磁界の磁気ベクトルの角度を算出し、当該算出された磁気ベクトルの角度に基づいてフロートの位置を検出する。
 図11は、実施形態1に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。
 図11には、状態S2から状態S3に移行する場合において磁気センサ5A,5Bに対するフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。磁気ベクトルPは、一例として磁石2AのN極および磁石2CのS極により生じる磁界の磁力線の方向を指す。
 なお、説明を簡易にするために磁石2BのN極および磁石2DのS極により生じる磁界の磁力線については省略しているが、磁気ベクトルPの昇降方向と垂直な成分については、当該磁石2BのN極および磁石2DのS極により生じる磁界の磁力線の磁気ベクトルにより打ち消される。したがって、磁気センサ5A,5Bに対する外部磁界としては、昇降方向成分のみとなる。上記したように当該外部磁界に従って各磁気センサ5におけるバイアス磁界ベクトルが変化する。
 一例として、外部磁界である磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため、昇降方向に対する磁気センサ5Aで検出される出力信号はPcosθ、磁気センサ5Bで検出される出力信号はPsinθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルPの角度θとして算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθ(Psinθ/Pcosθ)を算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置は距離a変化する。
 例えば、フロート20の位置として、一例として磁石2A~2Cの昇降方向における中心を基準位置(中心点)とする。この場合、図8(C)の状態S2に示されるフロート20の基準位置(中心点)は、磁気センサ5Aの位置と同じ位置である。
 本例においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置から磁気センサ5Bの側にa/2の距離移動した位置にあると検出することが可能である。
 なお、本例においては、磁気センサ5A,5Bの電気信号を利用して、磁気ベクトルの角度情報θを算出して、磁気センサ5Aからの位置関係を決定する場合について説明したが、磁気センサ5Bからの位置関係を決定することも可能である。また、同様の方式に従って、磁気センサ5B、5Cの電気信号を利用して、磁気ベクトルの角度情報θを算出して、磁気センサ5Bからの位置関係を決定することも当然に可能である。他の方式についても同様である。
 図12は、実施形態1に基づく角度情報θの精度を説明する図である。
 図12(A)には、角度θを0°~90°まで変化させた場合における、一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定した場合におけるarctanθと基準値との比較が示されている。
 シミューレーション結果として、基準値とはほとんど相違しない。
 また、角度の精度としても図12(B)に示されるように基準値に対して±2°のずれしかない場合が示されており、精度の高いフロート20の位置検出が可能である。
 図13は、実施形態1に基づく液面検出装置1の検出方式を説明するフロー図である。
 図13に示されるように、中間電圧をともに超える隣接する2本の信号を抽出する(ステップSP2)。なお、中間電圧は、本例においては、一例として初期状態である場合の出力信号の電圧に設定する。具体的には、図8で説明したように例えば、磁気センサ5Aが磁石2A,2Bとの間の中心線上に位置する状態であり、予め電圧を測定することにより中間電圧を設定することが可能である。なお、当該中間電圧の設定の方式としては種々の方式があり、当該方式に限られず、例えば、ピーク値の最大値と最小値との間の中間値に設定するようにしても良い。
 そして、図9で説明した点線で囲まれた領域における2本の電気信号を抽出する。
 次に、抽出した2本の信号に基づいて磁気ベクトルの角度θを計算する(ステップSP4)。具体的には、2本の電気信号のうちの一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定し、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。そして、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 次に、磁気ベクトルの角度θに基づいてフロート20の位置を算出する(ステップSP6)。算出された角度情報θに基づいてフロート20の基準位置(中心点)を磁気センサの位置から算出する。例えば、上記で説明したように角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりもa/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 そして、処理を終了する(エンド)。
 実施形態1に基づく液面検出装置1により、2つの電気信号に基づいてフロート20の精度の高い位置検出が可能である。当該方式により、信号を切り替える切替回路等を設ける必要がなく、回路構成を簡易にすることが可能であるとともに、小型化を図ることが可能である。
 また、環境温度の変化に追従して、磁石や磁気センサの特性が変化して出力信号が変化する可能性があるが、角度計算において2つの出力信号のtanθ(Psinθ/Pcosθ)を算出しているため環境温度に従う変動量が相殺されるため環境温度の影響による誤差を縮小し、精度の高い位置検出が可能である。
 なお、本例においては、磁石2Aと磁石2Cとの距離について、距離aの2倍の間隔に設定する場合について説明したが、磁石2A等の厚さ方向(N極およびS極の幅)を調整して、磁気センサ5の検出特性を高めるように当業者であるならば適宜設計変更することが可能である。
 (実施形態1の変形例)
 図14は、実施形態1に基づくフロート20に取り付けられた磁石2E,2Fと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。
 図14に示されるように、磁石2E,2Fは、1組の磁石ユニットを形成する。
 磁石2E,2Fで形成される磁石ユニットは2つの領域に分割され、それぞれの領域で互いにS極あるいはN極が向き合うように配置されている。分割された隣接する領域は、磁石の磁極が異なるように配置されている。
 また、本例においては、磁石2Eおよび2Fの距離は、距離aの2倍の間隔に設定される。また、その中心を磁気センサ5が通過するように配置されている。また、N極およびS極の2つの分割された領域の距離は、距離aの2倍の間隔に設定され、磁気センサ5の互いの間隔も距離aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 当該磁石2E,2Fにより生じる磁界(磁力線)は、図7のレイアウトにより生じる磁界(磁力線)と基本的に同様であり、その出力信号波形は、図9で説明したのと同様である。したがって、上記で説明したのと同様の方式に従ってフロート20の位置について精度の高い検出が可能である。
 なお、当該構成により配置する磁石の個数を削減することができるとともに、磁石のレイアウトも容易に行なうことが可能である。
 なお、本例においては、フロート20が回転可能な構成としてフロート20が回転した場合であっても磁気センサ5が磁界を精度よく測定可能なように磁石を対向配置する構成について説明したが、フロート20が回転せずフロート20がガイド部材に沿って昇降方向に沿ってのみ移動する場合には、対向する磁石を設けない構成(片側磁石のみ)とすることも可能である。以下の構成においても同様である。その場合、磁気センサ内に設けられるバイアス磁石を設けない構成とすることも可能である。
 (実施形態2)
 実施形態1においては、複数組の磁石ユニットを利用してフロート20の位置を検出する液面検出装置1の構成について説明したが、1組の磁石ユニットを利用してフロート20の位置を検出する液面検出装置について説明する。
 図15は、実施形態2に基づくフロート20に取り付けられた磁石2G,2Hと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。
 図15に示されるように、磁石2G,2Hは、1組の磁石ユニットを形成する。
 磁石2G,2Hで形成される磁石ユニットは互いにN極が向き合うように配置されている。なお、本例においては、N極が向き合うように配置した例について説明するがS極が向き合う構成とすることも可能である。
 また、本例においては、磁石2Gと磁石2Hとの距離は、距離aの2倍の間隔に設定され、また、その中心を磁気センサ5が通過するように配置されている。磁気センサ5の互いの間隔も距離aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 なお、本例においては、3つの磁気センサ5A~5Cが配置されて、フロート20の位置を検出する場合について説明するが、さらに複数の磁気センサが配置された場合についても同様である。
 なお、本例において、例えば、フロート20の位置として、一例として磁石2G(あるいは磁石2H)の昇降方向における中心を基準位置(中心点)とする。この場合、基準位置(中心点)の位置に磁気センサ5Bが位置している場合が示されている。
 図16は、実施形態2に基づくフロート20の昇降動作に従う複数の磁気センサの出力信号波形を説明する図である。
 図16に示されるように、図9に示されている出力信号波形と同様に、フロート20が磁気センサ5Aに近づくに従って磁気センサ5Aは、磁石2G,2Hの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。他の磁気センサ5B,5Cについても、磁石2A,2Bの磁力線として右から左への磁界の影響を受けるためバイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 そして、さらにフロート20が上昇して、磁気センサ5Aが磁石2G,2Hとの間の中心線上に位置する状態(状態S7)となる。本例においては、当該状態を初期状態とする。そして、当該状態における出力信号の電圧を中間電圧に設定する。
 磁気センサ5Bは、磁石2G,2Hの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Bのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。他の磁気センサ5Cについても、磁石2G,2Hの磁力線として右から左への磁界の影響をやや受ける。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2G,2Hの磁力線として左から右への磁界の影響を受ける(状態S8)。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。
 磁気センサ5Bは、磁石2G,2Hとの間の中心線上に位置する状態である。したがって、初期状態である。
 磁気センサ5Cは、磁石2G,2Hの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Cのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 上記により、磁気センサ5B,5Cの出力信号波形は、磁気センサ5Aの出力信号波形から距離a(位相として90°)ずつずらした波形となる。
 図17は、図16の所定領域を拡大したイメージ図である。
 図17を参照して、ここでは、所定領域として図16のハッチング領域の複数の磁気センサ5A~5Bの出力信号波形が示されている。
 磁気センサ5A,5Bの出力信号波形は、中間電圧を基準とした場合、後述する円状に沿って変化する外部磁界の磁気ベクトルPの水平成分(昇降方向)に模式化(近似)することが可能である。
 具体的には、隣接する2つの磁気センサから出力される電気信号として位相が90°ずれた信号波形を検出することが可能である。
 本例においては、位相が90°ずれているため一方の出力信号(電気信号)を正弦波(sinθ)、他方の出力信号(電気信号)を余弦波(cosθ)で表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 図18は、実施形態2に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。
 図18には、状態S7から状態S8に移行する場合において磁気センサ5A,5Bに対するフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。磁気ベクトルPは、一例として磁石2GのN極およびS極により生じる磁界の磁力線の方向を指す。
 なお、説明を簡易にするために磁石2HのN極およびS極により生じる磁界の磁力線については省略しているが、磁気ベクトルPの昇降方向と垂直な成分については、当該磁石2HのN極およびS極により生じる磁界の磁力線の磁気ベクトルにより打ち消される。したがって、磁気センサ5A,5Bに対する外部磁界としては、昇降方向成分のみとなる。上記したように当該外部磁界に従って各磁気センサ5におけるバイアス磁界ベクトルが変化する。
 一例として、外部磁界である磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため、昇降方向に対する磁気センサ5Aで検出される出力信号はPsinθ、磁気センサ5Bで検出される出力信号は-Pcosθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルPの角度θとして算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置は距離a変化する。
 例えば、フロート20の位置として、一例として磁石2Gあるいは2Hの昇降方向における中心を基準位置(中心点)とする。この場合、図15に示されるフロート20の基準位置(中心点)は、磁気センサ5Bの位置である。また、磁気センサ5Aの出力信号が中間電圧となる位置(図16の状態S7)は、フロート20の基準位置(中心点)が磁気センサ5Aの位置にある場合である。また、磁気センサ5Aの出力信号が最大となる位置(図16の状態S8)は、フロート20の基準位置(中心点)が磁気センサ5Bの位置にある場合である。
 本例においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりもa/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 なお、本例においては、磁気センサ5A,5Bの電気信号を利用して、磁気ベクトルの角度情報θを算出して、磁気センサ5Aからの位置関係を決定する場合について説明したが、磁気センサ5Bからの位置関係を決定することも可能である。また、同様の方式に従って、磁気センサ5B、5Cの電気信号を利用して、磁気ベクトルの角度情報θを算出して、磁気センサ5Cからの位置関係を決定することも当然に可能である。他の方式についても同様である。
 図19は、実施形態2に基づく角度情報θの精度を説明する図である。
 図19(A)には、角度θを0°~90°まで変化させた場合における、一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定した場合におけるarctanθと基準値との比較が示されている。
 シミューレーション結果として、基準値とはほとんど相違しない。
 また、角度の精度としても図19(B)に示されるように基準値に対して±2°程度のずれしかない場合が示されており、精度の高いフロート20の位置検出が可能である。
 実施形態2に基づく液面検出装置1により、1つの磁石ユニットを利用してフロート20の位置を検出することが可能であり、回路構成を簡易にすることが可能であるとともに、小型化を図ることが可能である。
 (実施形態3)
 実施形態1においては、磁気センサ5の間隔を磁石ユニットの間隔の半分の距離である距離aに設定した場合について説明したが、当該距離を変更することも可能である。
 具体的には、磁石ユニットの間隔を距離2aに設定するとともに、磁気センサ5の間隔を距離3aに設定する場合について説明する。
 図20は、実施形態3に基づくフロート20に取り付けられた磁石2I~2Tと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。
 図20に示されるように、磁石2I,2Jは、1組の磁石ユニットを形成する。また、磁石2K,2Lは、1組の磁石ユニットを形成する。磁石2M,2Nは、1組の磁石ユニットを形成する。磁石2O,2Pは、1組の磁石ユニットを形成する。磁石2Q,2Rは、1組の磁石ユニットを形成する。磁石2S,2Tは、1組の磁石ユニットを形成する。
 磁石2I,2Jで形成される磁石ユニットは互いにN極が向き合うように配置されている。磁石2K,2Lで形成される磁石ユニットは互いにS極が向き合うように配置されている。磁石2M,2Nで形成される磁石ユニットは互いにN極が向き合うように配置されている。磁石2O,2Pで形成される磁石ユニットは互いにS極が向き合うように配置されている。磁石2Q,2Rで形成される磁石ユニットは互いにN極が向き合うように配置されている。磁石2S,2Tで形成される磁石ユニットは互いにS極が向き合うように配置されている。隣接する磁石ユニットは、磁石の磁極が異なるように配置されている。
 また、本例においては、磁石2Iと磁石2Jとの距離は、距離aの2倍の間隔に設定され、また、その中心を磁気センサ5が通過するように配置されている。また、隣接する磁石ユニットの間隔(中心間距離)も距離aの2倍に設定されている。磁気センサ5の互いの間隔は距離3aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 なお、本例において、例えば、フロート20の位置として、一例として磁石2Iから2S(あるいは磁石2Jから2T)の昇降方向における中心を基準位置(中心点)とする。この場合、基準位置(中心点)の位置に磁気センサ5Bが位置している場合が示されている。
 図21は、実施形態3に基づくフロート20の昇降動作に従う磁気センサ5からの出力信号波形を説明する図である。
 図21に示されるように、図9に示されている出力信号波形と同様に、フロート20が磁気センサ5に近づくに従って磁気センサ5Aは、磁石2I,2Jの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 そして、さらにフロート20が上昇して、磁気センサ5Aが磁石2I,2Jとの間の中心線上に位置する状態となる。本例においては、当該状態を初期状態とする。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2I,2Kの磁力線として左から右への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2K,2Lとの間の中心線上に位置する状態となる。したがって、初期状態となる。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2K,2Mの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2M,2Nとの間の中心線上に位置する状態となる。したがって、初期状態となる。本例においては、一例として当該状態における出力信号の電圧を中間電圧に設定する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2M,2Oの磁力線として左から右への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2O,2Pとの間の中心線上に位置する状態となる。したがって、初期状態となる。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2O,2Qの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2Q,2Rとの間の中心線上に位置する状態となる。したがって、初期状態となる。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2Q,2Sの磁力線として左から右への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2S,2Tとの間の中心線上に位置する状態となる。したがって、初期状態となる。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2S,2Tの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 磁気センサ5B,5Cの出力信号波形についても磁気センサ5Aの出力信号波形と同様であり、磁気センサ5Aの出力信号波形から距離3a(位相として270°)ずつずらした波形となっている。
 図22は、図21の所定領域を拡大したイメージ図である。
 図22を参照して、ここでは、所定領域として図21のハッチング領域の複数の磁気センサ5A,5Bの出力信号波形が示されている。
 磁気センサ5A,5Bの出力信号波形は、中間電圧を基準とした場合、後述する円状に沿って変化する外部磁界の磁気ベクトルPの水平成分(昇降方向)に模式化(近似)することが可能である。
 具体的には、隣接する2つの磁気センサから出力される電気信号として位相が270°ずれた信号波形を検出することが可能である。
 本例においては、270°を90°ずつ3分割して、分割された領域T1~T3における2本のうち一方の出力信号(電気信号)を正弦波(sinθ)、他方の出力信号(電気信号)を余弦波(cosθ)で表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 図23は、実施形態3に基づく磁気センサ5と磁気ベクトルPとの関係を模式的に説明する図である。
 状態S9から状態S10に移行する場合において、磁気センサ5A,5Bに対するフロートの昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。磁気ベクトルPは、一例として磁石2MのN極および磁石2KのS極、磁石2MのN極および磁石2OのS極、磁石2QのN極および磁石2OのS極により生じる磁界により磁気センサ5A,5Bが受ける磁力線の方向を指す。
 なお、説明を簡易にするために対向する磁石2L,2N,2P,2Rにより生じる磁界の磁力線については省略しているが、磁気ベクトルPの昇降方向と垂直な成分については、当該磁石2L,2N,2P,2RのN極およびS極により生じる磁界の磁力線の磁気ベクトルにより打ち消される。したがって、磁気センサ5A,5Bに対する外部磁界としては、昇降方向成分のみとなる。上記したように当該外部磁界に従って各磁気センサ5におけるバイアス磁界ベクトルが変化する。
 図23(A)には、状態S9から状態S10を3分割した領域T1における磁気センサ5A,5Bにそれぞれ入力されるフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。
 磁気センサ5Aに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2OのS極により生じる磁界の磁力線の方向を指す。
 磁気センサ5Bに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2KのS極により生じる磁界の磁力線の方向を指す。
 一例として、外部磁界である磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため、昇降方向に対する磁気センサ5Aで検出される出力信号はPcosθ、磁気センサ5Bで検出される出力信号は-Psinθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置は距離a変化する。
 例えば、フロート20の位置として、一例として磁石2I~2Sの昇降方向における中心を基準位置(中心点)とする。この場合、図20に示されるフロート20の基準位置(中心点)は、磁気センサ5Bの位置である。また、磁気センサ5Aの出力信号が最大となる位置(図21の状態S9)は、フロート20の基準位置(中心点)が磁気センサ5Aの位置にある場合である。また、磁気センサ5Aの出力信号が中間電圧となる位置(図21の状態S10)は、フロート20の基準位置(中心点)が磁気センサ5Bの位置にある場合である。
 本例の領域T1の検出領域においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりもa/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 図23(B)には、状態S9から状態S10を3分割した領域T2における磁気センサ5A,5Bにそれぞれ入力されるフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。
 磁気センサ5Aに影響を与える磁気ベクトルPは、一例として磁石2QのN極および磁石2OのS極により生じる磁界の磁力線の方向を指す。
 磁気センサ5Bに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2KのS極により生じる磁界の磁力線の方向を指す。
 一例として、外部磁界である磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため、昇降方向に対する磁気センサ5Aで検出される出力信号は-Psinθで表わすことが可能である。また、磁気センサ5Bで検出される出力信号は-Pcosθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置も距離a変化する。
 例えば、フロート20の位置として、一例として磁石2I~2Sの昇降方向における中心を基準位置(中心点)とする。この場合、図20に示されるフロート20の基準位置(中心点)は、磁気センサ5Bの位置である。
 本例の領域T2の検出領域においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりもa+a/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 図23(C)には、状態S9から状態S10を3分割した領域T3における磁気センサ5A,5Bにそれぞれ入力されるフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。
 磁気センサ5Aに影響を与える磁気ベクトルPは、一例として磁石2QのN極および磁石2OのS極により生じる磁界の磁力線の方向を指す。
 磁気センサ5Bに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2OのS極により生じる磁界の磁力線の方向を指す。
 一例として、外部磁界である磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため、昇降方向に対する磁気センサ5Aで検出される出力信号は-Pcosθで表わすことが可能である。また、磁気センサ5Bで検出される出力信号はPsinθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置も距離a変化する。
 例えば、フロート20の位置として、一例として磁石2I~2Sの昇降方向における中心を基準位置(中心点)とする。この場合、図20に示されるフロート20の基準位置(中心点)は、磁気センサ5Bの位置である。
 本例の領域T3の検出領域においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりも2a+a/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 図24は、実施形態3に基づく複数の磁気センサ5A~5Cの出力信号波形の中からそれぞれの領域T1~T3における2本の出力信号波形を抽出する方式を説明する図である。
 図24を参照して、ここでは、複数の閾値TH0~TH2が設定されている。閾値TH0は、一例として中間電圧に設定する。閾値TH2は、一例として出力信号波形が下がった最小値との間の中間的なピーク値に設定する。閾値TH1は、一例として閾値TH0と閾値TH2との間の中間値に設定する。なお、当該閾値TH0~TH2の設定については、一例であり他の方式に従って閾値の設定をするようにしても良い。
 本実施形態3においては、閾値TH0~TH2と出力信号波形との関係とに基づいて領域T1~T3を分割して、2本の出力信号波形を抽出する。
 (1)領域T1については、磁気センサ5Cの出力信号波形(磁気センサ5Aの2つ隣の磁気センサから出力される出力信号波形)の値が閾値TH1を下回り、かつ磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)の値が閾値TH0を下回る場合、あるいは磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)の値が閾値TH2を下回り、かつ磁気センサ5Aの出力信号波形の値が閾値TH0を上回る場合に、磁気センサ5Aの出力をPcosθとし、磁気センサ5Bの出力を-Psinθに設定する。
 (2)領域T2については、磁気センサ5Aの出力信号波形および磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)の値が閾値TH0を下回り、かつ磁気センサ5Cの出力信号波形(磁気センサ5Aの2つ隣の磁気センサから出力される出力信号波形)の値が閾値TH0を上回る場合に、磁気センサ5Aの出力を-Psinθとし、磁気センサ5Bの出力を-Pcosθに設定する。
 (3)領域T3については、磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)および磁気センサ5Cの出力信号波形(磁気センサ5Aの2つ隣の磁気センサから出力される出力信号波形)の値が閾値TH0を上回り、かつ磁気センサ5Aの出力信号波形の値が閾値TH0を下回る場合に、磁気センサ5Aの出力を-Pcosθとし、磁気センサ5Bの出力をPsinθに設定する。
 そして、上記方式に従って、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、本例においては、閾値TH0~TH2と出力信号波形との関係とに基づいて領域T1~T3を分割して、2本の出力信号波形を抽出する方式について説明したが、特に当該方式に限られず、他の方式に従って2本の出力信号波形を抽出することも可能である。
 図25は、実施形態3に基づく角度情報θの精度を説明する図である。
 図25(A)、(C)、(E)に示されるように、角度θを0°~90°まで変化させた場合における、一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定した場合におけるarctanθと基準値との比較が示されている。
 シミューレーション結果として、基準値とはほとんど相違しない。
 また、角度の精度としても図25(B)、(D)、(F)に示されるように各領域において±2°程度のずれしかない場合が示されており、精度の高いフロート20の位置検出が可能である。
 図26は、実施形態3に基づく液面検出装置1の検出方式を説明するフロー図である。
 図26に示されるように、所定の信号関係の組み合わせに基づく2本の信号を抽出する(ステップSP2#)。具体的には、図23で説明した方式に従って、閾値TH0~TH2と各出力信号波形との組み合わせに基づいて領域T1~T3に分割し、それぞれの領域における2本の出力信号波形を抽出する。
 中間電圧である閾値TH0は、一例として磁気センサ5Aが磁石2M,2Nとの間の中心線上に位置する状態における出力信号の電圧を中間電圧に設定する。閾値TH2は、一例として出力信号波形が下がった最小値との間の中間的なピーク値に設定することが可能である。閾値TH1は、一例として閾値TH0と閾値TH2との間の中間値に設定することが可能である。
 次に、抽出した2本の信号に基づいて磁気ベクトルの角度θを計算する(ステップSP4)。具体的には、2本の電気信号のうちの一方の出力信号(電気信号)を正弦波(sinθ)、他方の出力信号(電気信号)を余弦波(cosθ)に設定し、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 次に、磁気ベクトルの角度θに基づいてフロート20の位置を算出する(ステップSP6)。算出された角度情報θに基づいてフロート20の基準位置(中心点)を磁気センサの位置から算出する。
 そして、処理を終了する(エンド)。
 実施形態3に基づく液面検出装置1により、2つの電気信号に基づいてフロート20の位置について精度の高い検出が可能である。また、2つの磁気センサを利用して270°分の情報(距離3a)を検出することが可能であるため、磁気センサの個数をさらに削減して小型化を図ることが可能である。また、対向している磁石間の距離も短くすることが可能であり、小型化をさらに図ることが可能である。
 また、環境温度の変化に追従して、磁石や磁気センサの特性が変化して出力信号が変化する可能性があるが、角度計算において2つの出力信号のtanθ(Psinθ/Pcosθ)を算出しているため変動量が打ち消されて環境温度の影響による誤差を縮小し、精度の高い検出が可能である。
 (実施形態3の変形例1)
 図27は、実施形態3の変形例1に基づくフロート20に取り付けられた磁石2U,2Vと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。
 図27に示されるように、磁石2U,2Vは、1組の磁石ユニットを形成する。
 磁石2U,2Vで形成される磁石ユニットは6つの領域に分割され、それぞれの領域で互いにS極あるいはN極が向き合うように配置されている。分割された隣接する領域は、磁石の磁極が異なるように配置されている。
 また、本例においては、磁石2Uおよび2Vの距離は、距離aの2倍の間隔に設定される。また、その中心を磁気センサ5が通過するように配置されている。また、N極およびS極の2つの分割された領域の距離は、距離aの2倍の間隔に設定され、磁気センサ5の互いの間隔は距離3aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 当該磁石2U,2Vにより生じる磁界(磁力線)は、図20のレイアウトにより生じる磁界(磁力線)と基本的に同様であり、その出力信号波形は、図21で説明したのと同様である。したがって、上記で説明したのと同様の方式に従ってフロート20の位置について精度の高い検出が可能である。
 なお、当該構成により磁石の個数を削減することができるとともに、磁石のレイアウトも容易に行なうことが可能である。
 (実施形態3の変形例2)
 実施形態3においては、6組の磁石ユニットで構成されるフロートについて説明したが、磁石ユニットの数を削減することも可能である。
 図28は、実施形態3に基づくフロート20に取り付けられた磁石2I~2Pと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。
 図28に示されるように、磁石2I,2Jは、1組の磁石ユニットを形成する。磁石2K,2Lは、1組の磁石ユニットを形成する。磁石2M,2Nは、1組の磁石ユニットを形成する。磁石2O,2Pは、1組の磁石ユニットを形成する。
 磁石2I,2Jで形成される磁石ユニットは互いにN極が向き合うように配置されている。磁石2K,2Lで形成される磁石ユニットは互いにS極が向き合うように配置されている。磁石2M,2Nで形成される磁石ユニットは互いにN極が向き合うように配置されている。磁石2O,2Pで形成される磁石ユニットは互いにS極が向き合うように配置されている。隣接する磁石ユニットは、磁石の磁極が異なるように配置されている。
 また、本例においては、磁石2Iと磁石2Jとの距離は、距離aの2倍の間隔に設定され、また、その中心を磁気センサ5が通過するように配置されている。また、隣接する磁石ユニットの間隔(中心間距離)も距離aの2倍に設定されている。磁気センサ5の互いの間隔は距離3aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 なお、本例において、例えば、フロート20の位置として、一例として磁石2Iから2O(あるいは磁石2Jから2P)の昇降方向における中心を基準位置(中心点)とする。この場合、基準位置(中心点)の位置に磁気センサ5Bが位置している場合が示されている。
 図29は、実施形態3の変形例2に基づくフロート20の昇降動作に従う磁気センサ5からの出力信号波形を説明する図である。
 図29に示されるように、図9に示されている出力信号波形と同様に、フロート20が磁気センサ5に近づくに従って磁気センサ5Aは、磁石2I,2Jの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 そして、さらにフロート20が上昇して、磁気センサ5Aが磁石2I,2Jとの間の中心線上に位置する状態となる。本例においては、当該状態を初期状態とする。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2I,2Kの磁力線として左から右への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2K,2Lとの間の中心線上に位置する状態となる。したがって、初期状態となる。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2K,2Mの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2M,2Nとの間の中心線上に位置する状態となる。したがって、初期状態となる。本例においては、当該状態における出力信号の電圧を中間電圧に設定する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2M,2Oの磁力線として左から右への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV2側に変化する。当該バイアス磁界ベクトルV2側への変化に従い電位差ΔVは増加する。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2O,2Pとの間の中心線上に位置する状態となる。したがって、初期状態となる。
 そして、フロート20がさらに上昇して、磁気センサ5Aは、磁石2O,2Pの磁力線として右から左への磁界の影響を受ける。したがって、磁気センサ5Aのバイアス磁界ベクトルV0は、バイアス磁界ベクトルV1側に変化する。当該バイアス磁界ベクトルV1側への変化に従い電位差ΔVは減少する。
 磁気センサ5B,5Cの出力信号波形についても磁気センサ5Aの出力信号波形と同様であり、磁気センサ5Aの出力信号波形から距離3a(位相として270°)ずつずらした波形となっている。
 図30は、図29の所定領域を拡大したイメージ図である。
 図30を参照して、ここでは、所定領域として図29のハッチング領域の複数の磁気センサ5A,5Bの出力信号波形が示されている。
 磁気センサ5A,5Bの出力信号波形は、中間電圧を基準とした場合、後述する円状に沿って変化する外部磁界の磁気ベクトルPの水平成分(昇降方向)に模式化(近似)することが可能である。
 具体的には、隣接する2つの磁気センサから出力される電気信号として位相が270°ずれた信号波形を検出することが可能である。
 本例においては、270°を90°ずつ3分割して、分割された領域T1~T3における2本のうち一方の出力信号(電気信号)を正弦波(sinθ)、他方の出力信号(電気信号)を余弦波(cosθ)に設定し、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 図31は、実施形態3の変形例2に基づく磁気センサ5が受ける磁気ベクトルの角度を説明する図である。
 状態S11から状態S12に移行する場合において、磁気センサ5A,5Bに対するフロートの昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。磁気ベクトルPは、一例として磁石2IのN極および磁石2KのS極、磁石2MのN極および磁石2KのS極、磁石2MのN極および磁石2OのS極により生じる磁界の磁力線の方向を指す。
 なお、説明を簡易にするために対向する磁石2J,2L,2N,2Pにより生じる磁界の磁力線については省略しているが、磁気ベクトルPの昇降方向と垂直な成分については、当該磁石2J,2L,2N,2PにのN極およびS極により生じる磁界の磁力線の磁気ベクトルにより打ち消される。したがって、磁気センサ5A,5Bに対する外部磁界としては、昇降方向成分のみとなる。上記したように当該外部磁界に従って各磁気センサ5におけるバイアス磁界ベクトルが変化する。
 図31(A)には、状態S11から状態S12を3分割した領域T1における磁気センサ5A,5Bにそれぞれ入力されるフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。
 磁気センサ5Aに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2KのS極により生じる磁界の磁力線の方向を指す。
 磁気センサ5Bに影響を与える磁気ベクトルPは、一例として磁石2IのN極および磁石2KのS極により生じる磁界の磁力線の方向を指す。
 一例として、磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため角度θに従って昇降方向に対する磁気センサ5Aで検出される出力信号は-Pcosθで表わすことが可能である。また、磁気センサ5Bで検出される出力信号はPsinθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置も距離a変化する。
 例えば、フロート20の位置として、一例として磁石2I~2Oの昇降方向における中心を基準位置(中心点)とする。この場合、図28に示されるフロート20の基準位置(中心点)は、磁気センサ5Bの位置である。また、磁気センサ5Aの出力信号が最小値となる位置(図29の状態S11)は、フロート20の基準位置(中心点)が磁気センサ5Aの位置にある場合である。また、磁気センサ5Aの出力信号が中間電圧となる位置(図29の状態S12)は、フロート20の基準位置(中心点)が磁気センサ5Bの位置にある場合である。
 本例の領域T1の検出領域においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりもa/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 図31(B)には、状態S11から状態S12を3分割した領域T2における磁気センサ5A,5Bにそれぞれ入力されるフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。
 磁気センサ5Aに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2OのS極により生じる磁界の磁力線の方向を指す。
 磁気センサ5Bに影響を与える磁気ベクトルPは、一例として磁石2IのN極および磁石2KのS極により生じる磁界の磁力線の方向を指す。
 一例として、磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため角度θに従って昇降方向に対する磁気センサ5Aで検出される出力信号はPsinθで表わすことが可能である。また、磁気センサ5Bで検出される出力信号はPcosθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置も距離a変化する。
 例えば、フロート20の位置として、一例として磁石2I~2Oの昇降方向における中心を基準位置(中心点)とする。この場合、図28に示されるフロート20の基準位置(中心点)は、磁気センサ5Bの位置である。
 本例の領域T2の検出領域においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりもa+a/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 図31(C)には、状態S11から状態S12を3分割した領域T3における磁気センサ5A,5Bにそれぞれ入力されるフロート20の昇降方向に対する磁気ベクトルが示されている。ここでは、昇降方向はX軸に沿う方向である。
 磁気センサ5Aに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2OのS極により生じる磁界の磁力線の方向を指す。
 磁気センサ5Bに影響を与える磁気ベクトルPは、一例として磁石2MのN極および磁石2KのS極により生じる磁界の磁力線の方向を指す。
 一例として、磁気ベクトルの大きさと磁束密度(AMR出力)とは相関関係にあるため角度θに従って昇降方向に対する磁気センサ5Aで検出される出力信号はPcosθで表わすことが可能である。また、磁気センサ5Bで検出される出力信号は-Psinθで表わすことが可能である。そして、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、正弦波Psinθ、余弦波Pcosθの振幅値Pはtanθを算出することにより打ち消される。
 上記処理は、検出回路50で実行される処理である。具体的には、MPU40において上記算出処理が実行される。
 磁気ベクトルの角度情報θとして0°~90°の変化に対応してフロート20の位置も距離a変化する。
 例えば、フロート20の位置として、一例として磁石2I~2Oの昇降方向における中心を基準位置(中心点)とする。この場合、図28に示されるフロート20の基準位置(中心点)は、磁気センサ5Bの位置である。
 本例の領域T3の検出領域においては、磁気センサ5Aと、磁気センサ5Bとの電気信号を利用して、磁気ベクトルの角度情報θを算出して、その位置関係を決定する。例えば、角度情報θが45°として算出された場合には、フロートの基準位置(中心点)は、磁気センサ5Aの位置よりも2a+a/2の距離、磁気センサ5B側に移動した位置にあると検出することが可能である。
 図32は、実施形態3の変形例2に基づく複数の磁気センサ5A~5Cの出力信号波形の中からそれぞれの領域T1~T3における2本の出力信号波形を抽出する方式を説明する図である。
 図32を参照して、ここでは、複数の閾値TH0~TH2が設定されている。閾値TH0は、一例として中間電圧に設定する。閾値TH2は、一例として出力信号波形が下がった最小値との間の中間的なピーク値に設定する。閾値TH1は、一例として閾値TH0と閾値TH2との間の中間値に設定される。なお、当該閾値TH0~TH2の設定については、一例であり他の方式に従って閾値の設定をするようにしても良い。
 本実施形態3の変形例2においては、閾値TH0~TH2と出力信号波形との関係とに基づいて領域T1~T3を分割して、2本の出力信号波形を抽出する。
 (1)領域T1については、磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)の値が閾値TH0を上回り、かつ磁気センサ5Aの出力信号波形および磁気センサ5Cの出力信号波形(磁気センサ5Aの2つ隣の磁気センサから出力される出力信号波形)の値が閾値TH0を下回る場合に、磁気センサ5Aの出力を-Pcosθとし、磁気センサ5Bの出力をPsinθに設定する。
 (2)領域T2については、磁気センサ5Aの出力信号波形および磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)の値が閾値TH0を上回り、かつ磁気センサ5Cの出力信号波形(磁気センサ5Aの2つ隣の磁気センサから出力される出力信号波形)の値が閾値TH0を下回る場合に、磁気センサ5Aの出力をPsinθとし、磁気センサ5Bの出力をPcosθに設定する。
 (3)領域T3については、磁気センサ5Cの出力信号波形(磁気センサ5Aの2つ隣の磁気センサから出力される出力信号波形)の値が閾値TH1を下回り、かつ、磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)の値が閾値TH0を下回る場合、あるいは、磁気センサ5Bの出力信号波形(磁気センサ5Aの隣の磁気センサから出力される出力信号波形)の値が閾値TH2を下回り、かつ、磁気センサ5Aの出力信号波形の値が閾値TH0を上回る場合に、磁気センサ5Aの出力をPcosθとし、磁気センサ5Bの出力を-Psinθに設定する。
 そして、上記方式に従って、2つの出力信号(電気信号)に基づいて磁気ベクトルの角度θを算出する。
 具体的には、2つの出力信号(電気信号)に基づいてtanθを算出し、arctanθを計算することにより角度情報θを算出する。
 なお、本例においては、閾値TH0~TH2と出力信号波形との関係とに基づいて領域T1~T3を分割して、2本の出力信号波形を抽出する方式について説明したが、特に当該方式に限られず、他の方式に従って2本の出力信号波形を抽出することも可能である。
 図33は、実施形態3の変形例2に基づく角度情報θの精度を説明する図である。
 図33(A)、(C)、(E)に示されるように、角度θを0°~90°まで変化させた場合における、一方の出力信号(電気信号)をcosθ、他方の出力信号(電気信号)をsinθに設定した場合におけるarctanθと基準値との比較が示されている。
 また、角度の精度としても図33(B)、(D)、(F)に示されるようにある程度のずれしかない場合が示されており、精度の高い検出が可能である。
 実施形態3の変形例2に基づく液面検出装置1により、2つの電気信号に基づいてフロート20の位置について精度の高い検出が可能である。また、2つの磁気センサを利用して270°分の情報(距離3a)を検出することが可能であるため、磁気センサの個数をさらに削減して小型化を図ることが可能である。
 また、環境温度の変化に追従して、磁石や磁気センサの特性が変化して出力信号が変化する可能性があるが、角度計算において2つの出力信号のtanθ(Psinθ/Pcosθ)を算出しているため変動量が打ち消されて環境温度の影響による誤差を縮小し、精度の高い検出が可能である。
 (実施形態3の変形例3)
 図34は、実施形態3の変形例3に基づくフロート20に取り付けられた磁石2W,2Xと、磁気センサ5A,5B,5Cとのレイアウトを説明する図である。
 図34に示されるように、磁石2W,2Xは、1組の磁石ユニットを形成する。
 磁石2W,2Xで形成される磁石ユニットは4つの領域に分割され、それぞれの領域で互いにS極あるいはN極が向き合うように配置されている。分割された隣接する領域は、磁石の磁極が異なるように配置されている。
 また、本例においては、磁石2Wおよび2Xの距離は、距離aの2倍の間隔に設定される。また、その中心を磁気センサ5が通過するように配置されている。また、N極およびS極の2つの分割された領域の距離は、距離aの2倍の間隔に設定され、磁気センサ5の互いの間隔は距離3aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 当該磁石2W,2Xにより生じる磁界(磁力線)は、図28のレイアウトにより生じる磁界(磁力線)と基本的に同様であり、その出力信号波形は、図28で説明したのと同様であり、同様の方式に従ってフロート20の位置を検出することが可能である。
 なお、当該構成により磁石の個数を削減することができるとともに、磁石のレイアウトも容易に行なうことが可能である。
 (実施形態4)
 図35は、実施形態4に基づく磁気センサ5#の磁気抵抗素子のパターンを説明する図である。
 図35を参照して、本例においては、磁気センサ5は、4つの磁気抵抗素子MR1#~MR4#からなるブリッジ構造からなる。
 4つの磁気抵抗素子MR1#~MR4#は、中心線に対して対称に配置される。磁気抵抗素子1#,MR3#は、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有するように、また、磁気抵抗素子2#,4#は、互いに逆方向の磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有するように、バーバーポール電極構造が形成されている。当該構成により、図5で説明した磁束密度の変化に伴う出力特性を有する。したがって、上記の磁気センサ5の代わりに当該構成の磁気センサ5#を利用した液面検出装置についても上記で説明したのと同様の方式により、フロート20の位置を検出することが可能である。
 (実施形態5)
 実施形態5においては、ガイド10に対してフロート20の位置がずれた場合であっても精度の高い液面検出が可能な構成について説明する。
 図36は、ガイド10に対してフロート20の位置がずれた場合を説明する図である。
 図36(A)には、フロート20を上視した場合の図が示されている。また、磁石2G,2Hで形成される磁石ユニットは、ガイド部材を介して互いに向き合うように対向して設けられている。
 本例においては、ガイド部材10の中心軸とフロート20の中心とが一致している場合が示されているが、フロート20の位置がずれて、磁気センサ5とフロート20との相対的な位置関係が変化する場合について説明する。フロート20の磁石2Hが磁石2Gよりも磁気センサ5に近づく場合について説明する。
 図36(B)には、フロート20に取り付けられた磁石2G,2Hと、磁気センサ5A~5Cとのレイアウトが示されている。
 図36(B)に示されるように、磁気センサ5A~5Cが磁石2Hに近づいた場合には、水平成分の外部磁界(磁力線)のみならず垂直成分の外部磁界(磁力線)の影響を受ける。これにより、バイアス磁界ベクトルの回転角が変化し、それに応じた出力信号が変化する。この出力信号の変化により液面検出の精度が低下する可能性がある。
 図37は、実施形態5に基づくフロート20に取り付けられた磁石2G,2Hと、磁気センサとのレイアウトを説明する図である。
 図37を参照して、磁石2G,2Hは、1組の磁石ユニットを形成する。
 磁石2G,2Hで形成される磁石ユニットは、互いにN極が向き合うように配置されている。フロート20の構成については、図15で説明したの同様である。
 図15で説明したように、磁石2Gと磁石2Hとの距離は、距離aの2倍の間隔に設定され、また、その中心を磁気センサ5が通過するように配置されている。磁気センサ5の互いの間隔も距離aで配置されている。磁気センサ5は、昇降方向に沿ってガイド部材に取り付けられる。
 ここで、磁気センサ5のバイアス磁界ベクトルの向きは、隣接する磁気センサを比較すると水平方向を基準として対称に設けられる。本例においては、一例として、磁気センサ5PA~5PCが設けられる。磁気センサ5PA~5PCのバイアス磁界ベクトルの向きは、フロート20の昇降方向に対して垂直な水平方向となるように配置される。
 磁気抵抗素子MR1~MR4に印加されるバイアス磁界ベクトルの向きがフロート20の昇降方向に対して垂直な水平方向となるように配置される。この点で、磁気センサ5PA~5PCの磁気抵抗素子MRは、図4の構成と同様の構成とすることが可能であり、当該配置あるいは角度は磁気センサ5PA~5PCの検出特性を高めるように当業者であるならば適宜設計変更することが可能である。
 昇降方向に沿ってガイド部材に取り付けられる他の磁気センサについても同様の方式で配置される。
 図38は、磁気センサのバイアス磁界ベクトルの変化を説明する図である。
 図38(A)には、磁気センサ5A~5Cのバイアス磁界ベクトルの変化が示されている。
 図5で説明したように磁気センサ5A~5Cに対して昇降方向の外部磁界が印加される場合にはバイアス磁界ベクトルV0は、外部磁界(右から左方向)に従ってバイアス磁界ベクトルV1に変化する。一方で、バイアス磁界ベクトルV0は、外部磁界(左から右方向)に従ってバイアス磁界ベクトルV2に変化する。
 一方、フロート20の磁石2Hが磁気センサ5A~5Cに近づいた場合には水平成分(昇降方向)の外部磁界とともに、垂直成分(水平方向)の外部磁界(磁力線)の影響を受ける。
 具体的には、磁気センサ5A~5Cがずれて無い場合には、磁石2G,2Hからの垂直成分(水平方向)の外部磁界は互いに打ち消されて外部磁界(磁力線)の影響を受けないが、ずれた場合には磁石2G,2Hからの垂直成分(水平方向)の外部磁界は互いに打ち消されずその影響を受けることになる。例えば、図36の磁気センサ5A~5Cには、磁石2Hから磁石2Gへの垂直成分(水平方向)の外部磁界がかかる。
 具体的には、図36の状態において、磁気センサ5Aは、バイアス磁界ベクトルV2#に変化する。また、磁気センサ5Bは、バイアス磁界ベクトルV0#に変化する。また、磁気センサ5Cは、バイアス磁界ベクトルV1#に変化する。
 ここで、図36の磁気センサ5Bのバイアス磁界ベクトルV0#を基準とした場合、磁気センサ5Cのバイアス磁界ベクトルV1#は、バイアス磁界ベクトルV0#の状態から角度α時計廻りに回転する。また、磁気センサ5Bのバイアス磁界ベクトルV0#を基準とした場合、磁気センサ5Cのバイアス磁界ベクトルV2#は、バイアス磁界ベクトルV0#の状態から角度β反時計廻りに回転する。
 基準となるバイアス磁界ベクトルV0#がバイアス磁界ベクトルV0からずれるとともに、回転角も異なるため磁気センサ5A~5Cのそれぞれから出力される信号の振幅値が異なり、それゆえに角度検出の誤差となる可能性がある。
 図38(B)には、磁気センサ5PA~5PCのバイアス磁界ベクトルの変化が示されている。
 磁気センサ5PA~5PCのバイアス磁界ベクトルの向きは、フロート20の昇降方向に対して垂直な水平方向となるように配置される。
 磁気センサ5PA~5PCに対して昇降方向の外部磁界が印加される場合にはバイアス磁界ベクトルV3は、外部磁界(右から左方向)に従ってバイアス磁界ベクトルV4に変化する。一方で、バイアス磁界ベクトルV3は、外部磁界(左から右方向)に従ってバイアス磁界ベクトルV5に変化する。
 一方、フロート20の磁石2Hが磁気センサ5PA~5PCに近づいた場合には水平成分(昇降方向)の外部磁界とともに、垂直成分(水平方向)の外部磁界(磁力線)の影響を受ける。
 具体的には、磁気センサ5PA~5PCがずれて無い場合には、磁石2G,2Hからの垂直成分(水平方向)の外部磁界は互いに打ち消されて外部磁界(磁力線)の影響を受けないが、ずれた場合には磁石2G,2Hからの垂直成分(水平方向)の外部磁界は互いに打ち消されずその影響を受けることになる。例えば、図37の磁気センサ5PA~5PCには、磁石2Hから磁石2Gへの垂直成分(水平方向)の外部磁界がかかる。
 具体的には、図37の状態において、磁気センサ5PAは、バイアス磁界ベクトルV5#に変化する。
 また、バイアス磁界ベクトルV3の向きと、垂直成分(水平方向)の外部磁界(磁力線)の方向は同じであるため磁気センサ5PBのバイアス磁界ベクトルV3は、昇降方向に対して垂直な水平方向の状態を維持する。また、磁気センサ5PCは、バイアス磁界ベクトルV4#に変化する。
 ここで、図37の磁気センサ5PBのバイアス磁界ベクトルV3を基準とした場合、磁気センサ5PCのバイアス磁界ベクトルV4#は、バイアス磁界ベクトルV3の状態から角度γ時計廻りに回転する。また、磁気センサ5PBのバイアス磁界ベクトルV3を基準とした場合、磁気センサ5PAのバイアス磁界ベクトルV5#は、バイアス磁界ベクトルV3の状態から角度γ反時計廻りに回転する。
 基準となるバイアス磁界ベクトルV3が固定されており、回転角も同じであるため磁気センサ5PA~5PCのそれぞれから出力される信号の振幅値が同じであり、それゆえに角度検出の誤差を抑制することが可能である。
 具体的には、上記で説明したように本例においても図15で説明したように2本の電気信号のうちの一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定し、2つの出力信号(電気信号)に基づいてtanθ(Psinθ/Pcosθ)を算出し、arctanθを計算することにより擬似的な角度情報θを算出する。
 当該角度情報θの算出において、フロート20の磁石2Hが磁気センサ5PA~5PCに近づいた場合には、図37の例においては、振幅値がPからバイアス磁界ベクトルの回転する角度γに基づく振幅値P3に変化することになるが2つの出力信号(電気信号)が同じだけ振幅値が変化するため角度情報θの算出の際に打ち消されることになる。したがって、フロート20の磁石2Hが磁気センサ5PA~5PCに近づいた場合であっても精度の高いフロート20の位置検出が可能である。
 一方で、図36(B)の例においては、2つの出力信号(電気信号)の振幅値がPからバイアス磁界ベクトルの回転する角度αおよびβに基づく振幅値P1およびP2にそれぞれ変化することになり打ち消し合うことができないため比率が変化して角度検出の誤差となる可能性が生じることになる。
 図39は、実施形態5に基づく角度情報θの精度を説明する図である。
 図39(A)には、角度θを0°~90°まで変化させた場合における、一方の出力信号(電気信号)をPcosθ、他方の出力信号(電気信号)をPsinθに設定した場合におけるarctanθと基準値との比較が示されている。
 実施形態1の構成において図36(B)で説明したようにフロート20のずれが生じた場合には精度が低下する場合が示されているが、本実施形態5に従う図37の構成によれば、精度は低下せずに、精度の高いフロート20の位置検出が可能である。
 また、角度の精度としても図39(B)に示されるように基準値に対して±5°のずれしかない場合が示されており、精度の高いフロート20の位置検出が可能である。
 フロート20の位置にずれが生じた場合には、隣接する磁気センサのそれぞれには、水平成分(昇降方向)の外部磁界とともに、垂直成分(水平方向)の外部磁界(磁力線)の影響を受ける。
 例えば、フロート20の位置にずれが生じた場合には、図36(B)で示される磁気センサ5Cには、水平成分(昇降方向)の外部磁界と垂直成分(水平方向)の外部磁界(磁力線)とを合成した第1の外部磁界が印加される。一方で、磁気センサ5Aには、水平成分(昇降方向)の外部磁界と垂直成分(水平方向)の外部磁界(磁力線)とを合成した第2の外部磁界が印加される。第1の外部磁界と第2の外部磁界とは、水平方向を軸とした場合に対称の状態である。
 フロート20の位置にずれが生じた場合には、磁気センサ5A~5Cの如く、バイアス磁界ベクトルが傾斜した状態で一定方向で配置されている場合には、バイアス磁界ベクトルに第1および第2の外部磁界がそれぞれ印加される入射角度が異なる。それゆえに基準となるバイアス磁界ベクトルからの上述した回転角α,βも異なる。
 本実施形態5に基づく構成は、隣接する磁気センサのバイアス磁界ベクトルをフロート20の昇降方向に対して垂直な水平方向となるように設定する。これによりフロート20の位置にずれが生じた場合であっても、バイアス磁界ベクトルに対して第1および第2の外部磁界がそれぞれ印加される場合の入射角度は同じ角度となる。それゆえに基準となるバイアス磁界ベクトルからの上述した回転角γは同じになる。基準となるバイアス磁界ベクトルからの回転角が同じになるため磁気センサ5PA~5PCのそれぞれから出力される信号の振幅値が同じであり、それゆえに角度検出の誤差を抑制し、精度の高い位置検出が可能である。
 図40は、実施形態5の変形例に基づくフロート20に取り付けられた磁石2G,2Hと、複数の磁気センサ5QA~5QCとのレイアウトを説明する図である。
 図40に示されるように、磁石2G,2Hは、1組の磁石ユニットを形成する。
 磁石2G,2Hで形成される磁石ユニットは互いにN極が向き合うように配置されている。なお、本例においては、N極が向き合うように配置した例について説明するがS極が向き合う構成とすることも可能である。
 また、本例においては、磁石2Gと磁石2Hとの距離は、距離aの2倍の間隔に設定され、また、その中心を磁気センサ5QA~5QCが通過するように配置されている。磁気センサ5QA~5QCの互いの間隔も距離aで配置されている。磁気センサ5QA~5QCは、昇降方向に沿ってガイド部材に取り付けられる。
 本例においては、中央に磁気センサ5QBが設けられており、磁気センサ5QAと磁気センサ5QBのバイアス磁界ベクトルの向きは水平方向を基準として対称に設けられる。また、磁気センサ5QCと磁気センサ5QBのバイアス磁界ベクトルの向きは、水平方向を基準として対称に設けられる。
 当該配置により、バイアス磁界ベクトルに対して第1および第2の外部磁界がそれぞれ印加される場合の入射角度を同じ角度に設定することが可能となる。それゆえに基準となるバイアス磁界ベクトルからの回転角は同じに設定することが可能であり、磁気センサ5QA~5QCのそれぞれから出力される信号の振幅値が同じであり、出力信号に対して所定値の補正演算を実行することにより角度検出の誤差を抑制し、精度の高い位置検出が可能である。所定値としては振幅変動の最大値/2に設定することも可能であり、当業者であるならば適宜設計変更することが可能である。
 (その他の形態)
 図41は、別の実施形態に基づく磁気センサ5Rを説明する図である。
 図41を参照して、磁気センサ5Rは、磁気抵抗素子が形成される基盤6と、バイアス磁石4とが示されている。バイアス磁石4のS極が磁気抵抗素子が形成される基盤6に対向しているものとする。なお、本例においては、バイアス磁石4のS極が磁気抵抗素子が形成される基盤6に対向している場合について説明するがN極が磁気抵抗素子が形成される基盤6に対向している場合についても同様である。
 図42は、磁気センサ5Pにおけるバイアス磁界ベクトルについて説明する図である。
 図42に示されるように、基盤6に設けられた4つの磁気抵抗素子MR1~MR4が基盤6の昇降方向を基準に線対称に設けられる。4つの磁気抵抗素子MR1~MR4の上には、バイアス磁石4が設けられる。一例として、当該バイアス磁石4の形状として円柱型の形状が配置される場合が示されている。なお、当該形状に限られず、正方形状のバイアス磁石を配置するようにしても良い。また、磁気抵抗素子MR1~MR4の上にバイアス磁石4を設ける構成について説明するが、基盤6を介して反対側にバイアス磁石4を設ける構成としても良い。
 本例においては、バイアス磁石4の端部近傍に磁気抵抗素子が配置される場合が示されている。当該配置にすることによりバイアス磁界の強度が高い位置で磁気抵抗素子に対してバイアス磁界を印加することが可能である。
 一例として、磁気抵抗素子MR1,MR2に対してバイアス磁界としてバイアス磁石4の中心から内側に向かう一方の方向にバイアス磁界ベクトルVB0が印加される場合が示されている。
 また、磁気抵抗素子MR3,MR4に対してバイアス磁界としてバイアス磁石4の中心から内側に向かう他方の方向にバイアス磁界ベクトルVA0が印加される場合が示されている。バイアス磁石4の中心線を基準に印加されるバイアス磁界の方向は異なるため、バイアス磁界ベクトルVA0と、バイアス磁界ベクトルVB0とは、それぞれ反対方向である。
 なお、本例の磁気センサ5Rの磁気抵抗素子MRは、一例として折り返し形状のパターン構造として説明するが、特に折り返し形状に限られずそのパターン構造は、磁気センサ5Pの検出特性を高めるように当業者であるならば適宜設計変更することが可能である。また、磁気抵抗素子MRに対するバイアス磁界ベクトルの向きとして45°の角度のバイアス磁界ベクトルがかかるように配置した構成が示されているが、当該配置あるいは角度も磁気センサ5Pの検出特性を高めるように当業者であるならば適宜設計変更することが可能である。たとえば、磁気抵抗素子MRに対して30°の角度のバイアス磁界ベクトルが印加されるように設計することも可能である。
 図43は、磁気センサ5Rの回路構成を説明する図である。
 図43に示されるように、磁気センサ5Rは、4つの磁気抵抗素子MR1~MR4からなるブリッジ構造からなる。
 電源電圧Vccと接地電圧GNDとの間に磁気抵抗素子MR1,MR2が直列に接続される。また、磁気抵抗素子MR1,MR2と並列に電源電圧Vccと接地電圧GNDとの間に磁気抵抗素子MR3,MR4が直列に接続される。
 磁気抵抗素子MR3,MR4の接続ノードから信号V-、磁気抵抗素子MR1,MR2の接続ノードから信号V+を出力し、信号V+、V-の差分ΔVを出力する。
 本例に示されるように、磁気抵抗素子MR3,MR4には、バイアス磁界ベクトルVA0が印加される。磁気抵抗素子MR1,MR2には、バイアス磁界ベクトルVB0が印加される。
 フロート20の昇降方向に対する外部磁界に従ってそのベクトル方向が変化する。
 磁気センサ5Rは、バイアス磁界ベクトルの変化を検出して、当該検出結果に応じた出力信号(電位差ΔV)を出力する。
 例えば、バイアス磁界ベクトルVA0,VB0は、外部磁界(右から左方向)に従って信号V+が小さくなり、信号V-が大きくなる。したがって、差分ΔVは小さくなる。
 一方、バイアス磁界ベクトルVA0,VB0は、外部磁界(左から右方向)に従って信号V+が大きくなり、信号V-が小さくなる。したがって、差分ΔVは大きくなる。
 当該磁気センサ5Rを用いた場合であっても上記の方式によりフロート20の位置を検出することが可能である。
 また、2つのバイアス磁界ベクトルの向きは、昇降方向に対して垂直な水平方向に沿って設定されているため、フロート20がずれた場合でも、上記したようにバイアス磁界ベクトルの回転角は同じとなるため、角度検出の誤差を抑制し、精度の高い位置検出が可能である。
 なお、上記の例において説明した磁気抵抗素子は、反強磁性体層と強磁性体層とが交換結合した交換結合膜を有する磁気抵抗素子を用いることも可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 液面検出装置、2 磁石、5 磁気センサ、10 ガイド、20 フロート、30 P/S変換回路、40 MPU、50 検出回路、60 A/D回路。

Claims (14)

  1.  液面に追従して昇降するフロートと、
     前記フロートに取り付けられた磁石と、
     前記フロートの昇降を案内する案内部材と、
     前記案内部材に取り付けられ、前記磁石の昇降位置に応じて変化する磁束密度を検知して、その磁束密度に対応する電気信号を出力する複数の磁気センサと、
     前記複数の磁気センサからそれぞれ出力される電気信号に基づいて前記フロートの位置を検出する検出回路とを備え、
     前記検出回路は、前記複数の磁気センサのうち隣接する2つの磁気センサから出力される電気信号に基づいて前記フロートの位置を検出する、液面検出装置。
  2.  各磁気センサは、バイアス磁石を有する、請求項1記載の液面検出装置。
  3.  各前記磁気センサは、前記磁石により生じる磁力線の磁気ベクトルに基づく電気信号を出力する、請求項1記載の液面検出装置。
  4.  前記検出回路は、前記複数の磁気センサからそれぞれ出力される電気信号のうち中間電圧との比較に基づいて隣接する2つの磁気センサから出力される電気信号を抽出する、請求項1記載の液面検出装置。
  5.  前記検出回路は、
     前記抽出した2つの電気信号の一方を正弦波、他方を余弦波とした場合の角度情報を算出し、
     算出した角度情報に基づいて前記フロートの位置を検出する、請求項4記載の液面検出装置。
  6.  前記磁石は、前記案内部材を介してそれぞれ同極性の磁極が対向するように配置される、少なくとも一組以上の磁石ユニットで構成される、請求項1記載の液面検出装置。
  7.  前記磁石は、複数組の磁石ユニットを有し、
     各前記磁石ユニットは、昇降方向に沿ってそれぞれ配置され、
     隣接する磁石ユニットの対向する磁極の極性は異なる、請求項1記載の液面検出装置。
  8.  前記複数の磁気センサは、昇降方向に沿って順番に配置された第1~第3の磁気センサを有し、
     前記検出回路は、前記第1~第3の磁気センサからそれぞれ出力される第1~第3の電気信号に関して、
     前記第1~第3の電気信号の大小関係の組み合わせに従って、前記第1および第2の電気信号の一方を正弦波、他方を余弦波とした場合の角度情報を算出し、
     算出した角度情報に基づいて前記フロートの位置を検出する、請求項1記載の液面検出装置。
  9.  前記検出回路は、前記第1~第3の磁気センサからそれぞれ出力される前記第1~第3の電気信号に関して、複数の所定の閾値との関係に従って、前記第1および第2の電気信号を抽出する、請求項8記載の液面検出装置。
  10.  前記検出回路は、前記第1~第3の磁気センサからそれぞれ出力される第1~第3の電気信号に関して、複数の所定の閾値との関係に従って、複数の領域に分割して、分割された領域における前記第1および第2の電気信号を抽出する、請求項9記載の液面検出装置。
  11.  互いに隣接する各磁気センサのバイアス磁界ベクトルの向きは、前記フロートの昇降方向に対して垂直な水平方向に対して対称に設定される、請求項2記載の液面検出装置。
  12.  各磁気センサは、
     前記バイアス磁石により生じるバイアス磁界ベクトルが印加される第1~第4の磁気抵抗素子と、
     前記バイアス磁界ベクトルの変化に基づく前記第1~第4の磁気抵抗素子の抵抗値の変化に応じた電気信号を出力する出力回路とを含む、請求項2記載の液面検出装置。
  13.  前記第1および第2の磁気抵抗素子には、前記バイアス磁石により生じる第1のバイアス磁界ベクトルが印加され、
     前記第3および第4の磁気抵抗素子には、前記バイアス磁石により生じる前記第1のバイアス磁界ベクトルと反対方向の第2のバイアス磁界ベクトルが印加され、
     前記第1および第2の磁気抵抗素子と、前記第3および第4の磁気抵抗素子とは、前記第1~第4の磁気抵抗素子が形成される昇降方向を基準に線対称となるようにそれぞれ配置される、請求項12記載の液面検出装置。
  14.  前記バイアス磁石は、前記第1~第4の磁気抵抗素子に印加される前記バイアス磁界ベクトルの向きが前記フロートの昇降方向に対して垂直な水平方向となるように配置される、請求項12記載の液面検出装置。
PCT/JP2016/055582 2015-04-06 2016-02-25 液面検出装置 WO2016163171A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680008078.5A CN107209042A (zh) 2015-04-06 2016-02-25 液面检测装置
EP16776340.8A EP3282232B1 (en) 2015-04-06 2016-02-25 Liquid surface detection device
JP2017511491A JP6508332B2 (ja) 2015-04-06 2016-02-25 液面検出装置
US15/724,307 US10634546B2 (en) 2015-04-06 2017-10-04 Liquid level detection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015077543 2015-04-06
JP2015-077543 2015-04-06
JP2015-225838 2015-11-18
JP2015225838 2015-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/724,307 Continuation US10634546B2 (en) 2015-04-06 2017-10-04 Liquid level detection device

Publications (1)

Publication Number Publication Date
WO2016163171A1 true WO2016163171A1 (ja) 2016-10-13

Family

ID=57073179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055582 WO2016163171A1 (ja) 2015-04-06 2016-02-25 液面検出装置

Country Status (6)

Country Link
US (1) US10634546B2 (ja)
EP (1) EP3282232B1 (ja)
JP (1) JP6508332B2 (ja)
CN (1) CN107209042A (ja)
TW (1) TWI676005B (ja)
WO (1) WO2016163171A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209170A1 (ja) * 2016-06-03 2017-12-07 株式会社村田製作所 液面検出装置
WO2019049652A1 (ja) * 2017-09-06 2019-03-14 株式会社村田製作所 変位検出装置
CN111964754A (zh) * 2020-08-25 2020-11-20 芜湖联诺电器有限公司 一种用于异形油箱的液位传感器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092273B (zh) * 2016-08-11 2022-08-02 东莞正扬电子机械有限公司 液位检测方法及液位传感器
JP6485491B2 (ja) 2017-06-08 2019-03-20 Tdk株式会社 磁気センサ及びカメラモジュール
CN109540266B (zh) * 2019-01-17 2023-11-07 北京锐达仪表有限公司 一种磁致伸缩液位计及液位测量方法
CN114508993B (zh) * 2020-11-16 2024-10-01 精量电子(深圳)有限公司 磁阻位移测量装置
CN113701615B (zh) * 2021-08-23 2024-08-16 上海米尔圣传感器有限公司 位置传感器及位置检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022403A (ja) * 2000-07-13 2002-01-23 Tokyo Keiso Co Ltd 変位検出器および変位検出方法
JP2002511571A (ja) * 1998-04-14 2002-04-16 ハネウエル・インコーポレーテッド センサの非線形領域に対する補正機能を具備した位置検出装置
JP2009236615A (ja) * 2008-03-26 2009-10-15 Kansai Electric Power Co Inc:The 磁気式液面計
JP2011220795A (ja) * 2010-04-08 2011-11-04 Denso Corp ストローク量検出装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH560381A5 (ja) * 1973-08-02 1975-03-27 Bbc Brown Boveri & Cie
GB2052855B (en) * 1979-03-30 1983-05-18 Sony Corp Magnetoresistive transducers
JPH01221620A (ja) 1988-03-01 1989-09-05 Nec Corp 液面計
CN2150534Y (zh) * 1992-12-22 1993-12-22 李竹万 浮标式锅炉低地水位计
US5636548A (en) * 1994-05-16 1997-06-10 Tesoro Alaska Petroleum Company Analog hall-effect liquid level detector and method
JPH11281465A (ja) * 1998-03-27 1999-10-15 Yazaki Corp 液面レベルセンサ
JP2002071431A (ja) * 2000-08-31 2002-03-08 Nippon Seiki Co Ltd 液面センサ
JP2002277308A (ja) 2001-03-16 2002-09-25 Ngk Spark Plug Co Ltd 液面レベル検出装置
TWM278927U (en) * 2005-05-25 2005-10-21 Ying-Ru Chen Controlling device for liquid surface detection
JP5427619B2 (ja) * 2010-01-14 2014-02-26 浜松光電株式会社 回転検出装置
JP5489281B2 (ja) * 2010-04-13 2014-05-14 東フロコーポレーション株式会社 フロート位置センサ
CN103968918B (zh) * 2013-01-25 2018-11-09 江苏多维科技有限公司 数字液位传感器
JP6032844B2 (ja) 2013-01-30 2016-11-30 矢崎総業株式会社 液面レベル検出装置
CN103207003B (zh) * 2013-03-25 2015-03-25 黑龙江省水文局 一种水库水位测定装置
DE102014006276A1 (de) * 2014-05-02 2015-11-05 Meas Deutschland Gmbh Messvorrichtung sowie Verfahren zum Messen des Pegels einer Flüssigkeit in einem Behälter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511571A (ja) * 1998-04-14 2002-04-16 ハネウエル・インコーポレーテッド センサの非線形領域に対する補正機能を具備した位置検出装置
JP2002022403A (ja) * 2000-07-13 2002-01-23 Tokyo Keiso Co Ltd 変位検出器および変位検出方法
JP2009236615A (ja) * 2008-03-26 2009-10-15 Kansai Electric Power Co Inc:The 磁気式液面計
JP2011220795A (ja) * 2010-04-08 2011-11-04 Denso Corp ストローク量検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282232A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209170A1 (ja) * 2016-06-03 2017-12-07 株式会社村田製作所 液面検出装置
WO2019049652A1 (ja) * 2017-09-06 2019-03-14 株式会社村田製作所 変位検出装置
US11047927B2 (en) 2017-09-06 2021-06-29 Murata Manufacturing Co., Ltd. Displacement detector device
CN111964754A (zh) * 2020-08-25 2020-11-20 芜湖联诺电器有限公司 一种用于异形油箱的液位传感器

Also Published As

Publication number Publication date
US20180058905A1 (en) 2018-03-01
EP3282232A4 (en) 2018-10-31
CN107209042A (zh) 2017-09-26
JPWO2016163171A1 (ja) 2018-01-11
EP3282232A1 (en) 2018-02-14
JP6508332B2 (ja) 2019-05-08
EP3282232B1 (en) 2020-09-16
US10634546B2 (en) 2020-04-28
TW201706575A (zh) 2017-02-16
TWI676005B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2016163171A1 (ja) 液面検出装置
KR102185620B1 (ko) 자기장 센서 및 운동 라인을 따른 자기장 센서와 타겟 물체의 상대적 위치를 감지하는 방법
US10690515B2 (en) Dual Z-axis magnetoresistive angle sensor
CN105785290B (zh) 磁场传感器
JP6116061B2 (ja) 電流センサ
US9588134B2 (en) Increased dynamic range sensor
EP2284555A1 (en) Magnetic sensor including a bridge circuit
US10508897B2 (en) Magnet device and position sensing system
US20130314079A1 (en) Rotation angle detection device
EP3171190B1 (en) Magnetic field sensor
JP2018151181A (ja) 磁気式位置検出装置
WO2018043118A1 (ja) 液面検出装置
WO2017209170A1 (ja) 液面検出装置
KR100658859B1 (ko) 자기 검출 장치
US20230105657A1 (en) A position sensor system, optical lens system and display
WO2019049652A1 (ja) 変位検出装置
JP7124856B2 (ja) 位置検出信号の補正方法及び位置検出装置
JP2018204973A (ja) 液面検出装置
JP5103158B2 (ja) 磁気式座標位置検出装置
JP5959686B1 (ja) 磁気検出装置
US20160131683A1 (en) Magnetic sensor and electrical current sensor using the same
JP2009139253A (ja) ポジションセンサ
JP6226091B2 (ja) 電流センサ
JP2017075827A (ja) 磁気検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511491

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016776340

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE