WO2016159343A1 - ハイブリッド車両の動力伝達装置 - Google Patents

ハイブリッド車両の動力伝達装置 Download PDF

Info

Publication number
WO2016159343A1
WO2016159343A1 PCT/JP2016/060912 JP2016060912W WO2016159343A1 WO 2016159343 A1 WO2016159343 A1 WO 2016159343A1 JP 2016060912 W JP2016060912 W JP 2016060912W WO 2016159343 A1 WO2016159343 A1 WO 2016159343A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
clutch means
motor
clutch
torque
Prior art date
Application number
PCT/JP2016/060912
Other languages
English (en)
French (fr)
Inventor
達之 大橋
Original Assignee
株式会社エフ・シー・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフ・シー・シー filed Critical 株式会社エフ・シー・シー
Priority to EP16773223.9A priority Critical patent/EP3279048B1/en
Priority to CN201680020410.XA priority patent/CN107428334B/zh
Publication of WO2016159343A1 publication Critical patent/WO2016159343A1/ja
Priority to US15/722,082 priority patent/US10532648B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/56Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the main clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/023Clutch engagement rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/427Control of clutch touch point, e.g. kiss point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/48Engine direct start by injecting fuel and fire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a power transmission device for a hybrid vehicle in which the first clutch means and the second clutch means can be arbitrarily operated in accordance with the traveling state of the vehicle.
  • hybrid vehicles equipped with both an engine and a motor as driving sources have attracted attention from the viewpoint of improving fuel efficiency and environmental measures.
  • Such a hybrid vehicle can drive either the engine or the motor optionally according to the driving situation, or drive it at the same time, thereby improving the fuel consumption and exhaust gas compared to the case where the engine runs exclusively with the engine. Reduction can be achieved.
  • An object of the present invention is to provide a power transmission device for a hybrid vehicle that is capable of suppressing an increase in differential rotation of a clutch for starting an engine.
  • the invention according to claim 1 is provided in the middle of the power transmission system from the engine mounted on the vehicle to the driving wheel, and is capable of transmitting or interrupting the driving force of the engine to the driving wheel;
  • a second clutch means disposed in the middle of the power transmission system from the motor mounted on the vehicle to the driving wheel and capable of transmitting or interrupting the driving force of the motor to the driving wheel;
  • a power transmission device for a hybrid vehicle in which the first clutch means and the second clutch means can be arbitrarily operated in response to the power, and the power is transmitted from the motor to the engine via the first clutch means and the second clutch means.
  • the first clutch means and the second clutch means are slip-controlled when the engine is started by transmitting
  • the power transmission device for a hybrid vehicle in the power transmission device for a hybrid vehicle according to the first aspect, power is transmitted from the motor to the engine via the first clutch means and the second clutch means to start the engine.
  • the first clutch means and the second clutch means are controlled to slip so that a torque obtained by subtracting the transmission torque from the first clutch means from the transmission torque from the second clutch means becomes a predetermined torque. .
  • the transmission in the power transmission device for a hybrid vehicle according to the second aspect, includes a transmission disposed in a power transmission system between the engine and the motor and the driving wheel, A target transmission input torque is set according to a vehicle speed and a gear ratio, and the first clutch means and the second clutch means are controlled to slip so that the predetermined torque becomes the target transmission input torque.
  • the power transmission device for a hybrid vehicle in the power transmission device for a hybrid vehicle according to any one of the first to third aspects, power is transmitted from the motor to the engine via the first clutch means and the second clutch means.
  • the second clutch means When starting the engine by transmitting, the second clutch means is slip-controlled to increase the rotation speed of the motor before increasing the rotation of the engine.
  • the first clutch means has a gap so that the friction material does not come into contact with the first clutch means in an off state.
  • the first clutch means has a gap so that the friction material does not come into contact with the first clutch means in an off state.
  • the engine reaches a self-starting rotational speed or more when the engine is started by transmitting power from the motor to the engine via the first clutch means and the second clutch means.
  • the friction material of the first clutch means is brought into contact, there is no gap, and an invalid stroke packed state with a small transmission torque is set.
  • a seventh aspect of the present invention in the power transmission device for a hybrid vehicle according to any one of the first to sixth aspects, power is transmitted from the motor to the engine via the first clutch means and the second clutch means.
  • the self-starting rotational speed is such that the engine can be started if the engine is rotated and the fuel supply is resumed.
  • the fuel is supplied to the engine in a lower state.
  • the first clutch when the engine is started and then switched to a traveling state using only the engine, the first clutch When the differential rotation of the means falls within a predetermined value, the second clutch means is turned off to regenerate rotational energy in the motor.
  • the first clutch means and the second clutch means are controlled to slip. Therefore, the differential rotation generated between the motor and the engine can be shared by the first clutch means and the second clutch means. Therefore, when the engine is started using the traveling motor, the engine can be started while suppressing the torque fluctuation of the motor from being transmitted to the drive wheels, and the differential rotation of the clutch for starting the engine can be increased. Can be suppressed.
  • the first clutch means uses the torque transmitted from the second clutch means. Since the first clutch means and the second clutch means are slip-controlled so that the torque excluding the transmission torque becomes a predetermined torque, even if the torque fluctuation of the motor or the engine torque fluctuation occurs, the first clutch means and the second clutch The torque fluctuation can be absorbed by the slip of the means, and the torque transmitted to the drive wheels can be stabilized at a predetermined torque, so that the engine can be started smoothly.
  • the engine includes a transmission disposed in the power transmission system between the engine and the motor and the drive wheels, and the target transmission input torque is set according to the accelerator opening, the vehicle speed, and the transmission ratio.
  • the first clutch means and the second clutch means are slip-controlled so that the predetermined torque becomes the target transmission input torque, even when there is an accelerator operation, a vehicle speed change or a gear ratio change during engine start-up
  • the engine can be controlled to be the target transmission input torque, and the engine can be started while controlling the torque transmitted to the drive wheels to a torque according to the driver's request.
  • the rotational speed of the motor is set before the engine speed is increased. Since the second clutch means is slip-controlled so as to increase, even when the engine is started using the rotational energy of the motor, the second clutch means is slip-controlled to suppress an increase in the differential rotation of the first clutch means. be able to.
  • the first clutch means is provided with a gap so that the friction material does not contact in the off state, and from the motor via the first clutch means and the second clutch means.
  • the friction material of the first clutch means comes into contact with the friction material of the first clutch means, and there is no gap, and the invalid stroke is packed so that the transmission torque is small.
  • the engine speed is increased, it is possible to suppress the delay of the change in the transmission torque of the first clutch means with respect to the change in the transmission torque of the second clutch means and improve the responsiveness.
  • the clutch (first clutch means) for starting the engine is provided with a gap so that the friction material does not come into contact with the clutch in the off state, and the first clutch means from the motor. And when starting the engine by transmitting power to the engine via the second clutch means, when the engine exceeds the self-starting rotational speed, the friction material of the first clutch means comes into contact and there is no gap, and Since the invalid torque is reduced and the transmission torque is small, the rotation can be reliably increased even by the engine alone, and when the differential rotation of the first clutch means falls within a predetermined value, the transmission torque of the first clutch means Can be increased and the response state can be improved by suppressing the delay in the change of the transmission torque of the first clutch means.
  • the engine when the engine is started by transmitting power from the motor to the engine via the first clutch means and the second clutch means, the engine is controlled when the first clutch means is slip-controlled. Since the engine is supplied with fuel in a state where the engine is rotated and when the fuel supply is resumed, the engine is supplied at a lower speed than the self-starting rotational speed at which the engine can be started. The engine speed can be quickly increased using the engine torque.
  • the second clutch means is turned off after the differential rotation of the first clutch means falls within a predetermined value. Therefore, the rotational energy of the motor can be regenerated while preventing the influence on the driving force.
  • the schematic diagram which shows the power transmission device of the hybrid vehicle which concerns on embodiment of this invention Schematic diagram showing the overall configuration of the power transmission device of the hybrid vehicle Timing chart showing control contents in power transmission device of hybrid vehicle Flowchart showing main control in the power transmission device of the hybrid vehicle
  • the graph which shows the ratio characteristic map in the power transmission device of the hybrid vehicle The graph which shows the transmission input torque corresponding to the vehicle speed and accelerator opening in the power transmission device of the hybrid vehicle Flowchart showing motor control in the power transmission device of the hybrid vehicle Flowchart showing clutch control (control of first clutch means) in the power transmission device of the hybrid vehicle
  • the graph which shows the clutch capacity characteristic of the 1st clutch means in the power transmission device of the hybrid vehicle Flowchart showing clutch control (control of second clutch means) in the power transmission device of the hybrid vehicle
  • the graph which shows the clutch capacity characteristic of the 2nd clutch means in the power transmission device of the hybrid vehicle Flowchart showing engine control in the power transmission device of the hybrid vehicle
  • the power transmission device for a hybrid vehicle is for transmitting or blocking the driving force from the engine E and the motor M as driving sources of the hybrid vehicle to the wheels (drive wheels D).
  • the first clutch unit 1a, the second clutch unit 1b, the transmission A, and the hybrid ECU 2 including the clutch control unit 3, the motor control unit 4, and the engine control unit 5 are mainly included. ing.
  • the power transmission system is arranged in a power transmission system from the engine E mounted on the hybrid vehicle to the drive wheels D, and the driving force of the engine E is applied to the drive wheels D.
  • the first clutch means 1a capable of transmitting or interrupting the motor and the power transmission system from the motor M mounted on the hybrid vehicle to the driving wheel D to transmit the driving force of the motor M to the driving wheel D
  • the second clutch means 1b that can be shut off is included, and the clutch means 1 is configured as a unit by the first clutch means 1a and the second clutch means 1b.
  • the engine E is one of the driving sources (internal combustion engine) of the hybrid vehicle. As shown in FIG. 2, the driving force of the engine E is input to the clutch unit 1 (first clutch unit 1a) via the output shaft L. It can be transmitted to.
  • symbol S, G in the figure has each shown the starter and damper for starting an engine.
  • the engine E is driven, when the first clutch means 1a is engaged or slipped, the driving force of the engine E is transmitted to the transmission A via the input portion La and the output portion Lc of the first clutch means 1a. It is to be transmitted.
  • the motor M includes a stator Ma and a rotor Mb, and is connected to an inverter I and a battery B mounted on the hybrid vehicle. When electric power is supplied from the battery B, the driving force is applied to the clutch unit 1. Transmission to the input part Lb of the (second clutch means 1b) is enabled. When the motor M is driven, when the second clutch means 1b is engaged or slipped, the driving force of the motor M is transmitted to the transmission A via the input portion Lb and the output portion Lc of the second clutch means 1b. It is to be transmitted.
  • the drive side clutch plate 1aa is formed in the input portion La rotating with the drive of the engine E, and the driven side clutch plate 1ab is formed in the output portion Lc. 1aa and the driven clutch plate 1ab are alternately stacked.
  • the adjacent drive-side clutch plate 1aa and the driven-side clutch plate 1ab are pressed against each other (a state in which the operating oil is supplied to the piston (not shown) in the clutch and the press-contact force is applied to the clutch plate).
  • the transmission of power is interrupted by transmitting the power and releasing the pressure contact force.
  • the adjacent drive side clutch plate 1aa and driven side clutch plate 1ab slip so that a predetermined amount of power can be transmitted.
  • a drive side clutch plate 1ba is formed at the input portion Lb rotating with the drive of the motor M, and a driven side clutch plate 1bb is formed at the output portion Lc. 1ba and the driven clutch plate 1bb are alternately stacked.
  • the driving clutch plate 1ba and the driven clutch plate 1bb adjacent to each other are brought into pressure contact with each other to transmit power, and the pressure contact force is released to interrupt power transmission.
  • the adjacent drive side clutch plate 1ba and driven side clutch plate 1bb slip so that a predetermined capacity of power can be transmitted.
  • the transmission A is disposed in a power transmission system between the engine E and the motor M and the drive wheels D, and changes the transmission ratio (ratio) of the transmission to drive the engine E and the motor M. It comprises a continuously variable transmission capable of adjusting the force and transmitting it to the drive wheel D, and has a drive pulley Aa and a driven pulley Ab.
  • the rotation of the motor M can be adjusted. That is, when traveling by the driving force of the motor M (during traveling by the single driving force of the motor M or traveling by the driving force of both the motor M and the engine E), the transmission A is operated, so The driving force transmitted is arbitrarily changed, and the rotation of the motor M can be adjusted.
  • the driving force (torque) corresponding to the accelerator opening required for the driving wheel D adjusts the motor torque by controlling the current or voltage applied to the motor M. Will be obtained.
  • either the engine E or the motor M is driven (engine running or motor running), or both the engine E and the motor M are driven (hybrid running), and the first clutch means 1a or the second clutch means 1b is When in the power transmission state (fastened state or slipped state), the driving force of the engine E or the motor M is transmitted to the drive wheels D via the transmission A and can travel.
  • the sensor s1 that can detect the temperature of the oil (oil temperature), the sensor s2 that can detect the input rotational speed to the transmission A, and the rotational speed of the motor M are detected.
  • a sensor s3 that can detect the vehicle speed, and an electric signal detected by these sensors s1 to s4 are transmitted to the hybrid ECU 2.
  • symbol F in the figure has shown the differential gear which a vehicle comprises.
  • the hybrid ECU 2 is composed of, for example, a microcomputer mounted on a vehicle and can control the hydraulic control circuit 6 in accordance with the traveling state of the vehicle.
  • the hybrid ECU 2 includes a clutch control unit 3, a motor control unit 4, and an engine control unit 5. Configured.
  • the clutch control means 3 controls the hydraulic pressure control circuit 6 to arbitrarily operate the first clutch means 1a and the second clutch means 1b to transmit power (engaged state or slipped state), power It is possible to switch between a state in which the transmission of the signal is cut off (a state in which it is turned off).
  • the motor control means 4 is formed in the hybrid ECU 2 and is for controlling the driving of the motor M based on the accelerator opening, the brake operation, the detected value from sensors, or the like.
  • the engine control means 5 is formed in the hybrid ECU 2 and controls the drive of the engine E based on the accelerator opening, the brake operation, the detected value from sensors, or the like.
  • the hybrid ECU 2 transmits power from the motor M to the engine E via the first clutch means 1a and the second clutch means 1b to start the engine E.
  • the first clutch means 1a and the second clutch means 1b are controlled to slip. That is, when the motor M is running and the power is transmitted from the motor M to the engine E via the first clutch means 1a and the second clutch means 1b to start the engine E, the first clutch means 1a and the second clutch means 1 Both the clutch means 1b are slip-controlled to transmit power for starting to the engine E.
  • the hybrid ECU 2 uses the second clutch means 1b.
  • the first clutch means 1a and the second clutch means 1b are slip-controlled so that the torque obtained by removing the transmission torque from the first clutch means 1a from the transmission torque becomes a predetermined torque.
  • the transmission E is provided in the power transmission system between the engine E and the motor M and the drive wheels D.
  • FIG. 3 the target transmission input torque is set according to the accelerator opening, the vehicle speed, and the gear ratio, and the engine start in the travel mode in FIG. 3 (particularly, the graph showing the target value of the transmission input torque (TI)).
  • the first clutch means 1a and the second clutch means 1b are slip-controlled so that the predetermined torque becomes the target transmission input torque, as shown in FIG.
  • FIG. 1 Before increasing the rotation of the engine E, as shown in the graph showing the motor rotation speed (NM) and the transmission input rotation speed (NI), refer to from the start of the hybrid in the travel mode to the start of the engine).
  • the second clutch means 1b is controlled to slip so as to increase the rotational speed.
  • the first clutch means 1a according to the present embodiment is provided with a gap so that the friction material does not contact in the off state, and the first clutch means 1a and the second clutch means 1b from the motor M are provided. 3, when starting the engine E by transmitting power to the engine E from FIG. 3 (particularly from the start of the hybrid in the travel mode in the graph showing the first clutch pressure (PC1) to the start of the engine). (Refer) Before the rotation of the engine E is increased, the friction material of the first clutch means 1a comes into contact so that there is no gap and the invalid stroke is packed with a small transmission torque.
  • the engine torque (TE ) when the engine M is started by transmitting power from the motor M to the engine E via the first clutch means 1a and the second clutch means 1b, the engine torque (TE )
  • the first clutch means 1a is controlled to slip when the first clutch means 1a is controlled to slip, as long as the supply of fuel is resumed as shown in FIG.
  • the engine E is configured to supply fuel in a state lower than the self-starting rotational speed at which starting is possible.
  • the traveling state by the engine E alone is changed.
  • the second clutch means 1b is turned off to regenerate rotational energy in the motor M after the differential rotation of the first clutch means 1a falls within a predetermined value.
  • S3 it is determined whether or not the remaining battery level is equal to or less than a predetermined amount. If it is determined that the remaining battery level is greater than the predetermined amount, the process proceeds to S6 and the travel mode is set to the motor. When it is determined that it is less than the predetermined amount, the process proceeds to S4, where it is determined whether or not the transmission input rotation (NI) is equal to or less than the predetermined rotation number. If it is determined in S4 that the transmission input rotation (NI) is greater than the predetermined rotation speed, the process proceeds to S5, where the differential rotation between the engine rotation (NE) and the transmission input rotation (NI) is within the predetermined differential rotation speed.
  • the flow proceeds to S8 and the travel mode is set to the engine.
  • the process proceeds to S7, and the travel mode is set to hybrid. Set to.
  • the traveling mode is set to any one of “motor” (S6), “hybrid” (S7), and “engine” (S8). Thereafter, the motor control S9, FIG. The engine control S10 shown in FIG. 12 and the engine control S11 shown in FIG.
  • the process proceeds to S6, where the motor torque (TM) is set to the target transmission input torque (TI), and then in S9.
  • the motor M is set in an operating state. If it is determined in S1 that the travel mode is not a motor, the process proceeds to S2, where it is determined whether or not the travel mode is an engine. If it is determined that the travel mode is an engine, the process proceeds to S8 and motor rotation (NM ) Is greater than zero. If it is determined in S8 that the motor rotation (NM) is greater than 0, the motor rotation energy is regenerated by the motor M in S11, and if the motor rotation (NM) is determined to be 0, In S12, the motor M is stopped.
  • the process proceeds to S3, in which it is determined whether or not the engine speed (NE) is equal to or higher than the self-starting speed, and the engine speed (NE). Is determined to be equal to or higher than the self-starting rotational speed, the process proceeds to S5, and it is determined whether or not the engine speed (NE) is equal to or higher than the transmission input speed (NI). If it is determined in S5 that the engine rotation (NE) is smaller than the transmission input rotation (NI), the process proceeds to S6, and the motor torque (TM) is set to the target transmission input torque (TI).
  • S3 it is determined whether or not the engine speed (NE) is equal to or higher than the self-starting speed, and the engine speed (NE). Is determined to be equal to or higher than the self-starting rotational speed, the process proceeds to S5, and it is determined whether or not the engine speed (NE) is equal to or higher than the transmission input speed (NI). If it is determined in S5 that the engine rotation (NE) is smaller than the transmission input rotation (NI), the process proceeds to
  • the process proceeds to S4, in which the motor torque (TM) is a value obtained by adding the target transmission input torque (TI) and the engine starting torque.
  • the engine E is started in S10.
  • the upper limit is checked with the maximum torque of the motor M.
  • the first clutch means 1a has a capacity characteristic as shown in FIG. 9, and TMIN has an ineffective stroke packed with a frictional material of the first clutch means 1a that is free from gaps and has a small transmission torque. Indicates the state.
  • S1 it is determined whether or not the travel mode is a motor. If it is determined that the travel mode is a motor, the process proceeds to S7, and the clutch capacity (TC1) of the first clutch means 1a is set to 0. When it is determined that the travel mode is not a motor, the process proceeds to S2, and it is determined whether or not the travel mode is an engine.
  • the process proceeds to S6, where it is determined whether or not the differential rotation between the engine rotation (NE) and the transmission input rotation (NI) is within a predetermined number of rotations. If it is determined that the number is within the range, the process proceeds to S11 to set the clutch capacity (TC1) to the maximum value (TMAX). If it is determined in S6 that the differential rotation between the engine rotation (NE) and the transmission input rotation (NI) is not within the predetermined number of rotations, the process proceeds to S10 and the clutch capacity (TC1) is added by ⁇ TC1 ( Set to the added value). In S10, the upper limit is checked by TMAX.
  • the process proceeds to S3, in which it is determined whether or not the engine speed (NE) is equal to or higher than the self-starting rotational speed.
  • the clutch capacity (TC1) is set to TMIN.
  • S3 if it is determined that the engine speed (NE) is smaller than the self-starting rotational speed, the process proceeds to S4, in which it is determined whether TC1 is in the T engine start output, and TC1 is in the T engine start output. If it is determined that it is not, it is determined in S5 whether or not the motor rotation (NM) is equal to or higher than a predetermined rotation speed. If it is determined in S4 that TC1 is outputting the T engine start, S5 is skipped and the process proceeds to S9.
  • the clutch capacity (TC1) is required for starting the engine. Set to value. If it is determined in S5 that the motor rotation (NM) is not equal to or higher than the predetermined rotation speed, the process proceeds to S8, and the clutch capacity (TC1) is set to the minimum value (TMIN). As described above, as the control of the first clutch means 1a, the clutch capacity (TC1) is 0 (S7), TMIN (S8), the value necessary for starting the engine (S9), the value obtained by adding ⁇ TC1 (S10), and TMAX (S11). ) Is selected, and the first clutch pressure (the clutch pressure of the first clutch means 1a) is calculated based on the graph shown in FIG. 9 (S12).
  • the second clutch means 1b has a capacity characteristic as shown in FIG. First, it is determined in S1 whether or not the travel mode is a motor, and if it is determined that the travel mode is a motor, the process proceeds to S4, and a differential rotation between the motor rotation (NM) and the transmission input rotation (NI). Is determined within a predetermined number of revolutions.
  • step S4 if it is determined that the differential rotation between the motor rotation (NM) and the transmission input rotation (NI) is within a predetermined number of rotations, the process proceeds to S6, and a value obtained by subtracting TC2H by ⁇ TC2 (subtracted value) In step S9, the clutch capacity (TC2) is set to TI + TC1 + TC2H.
  • the process proceeds to S3, in which it is determined whether or not the engine rotation (NE) is equal to or higher than the self-starting rotation, and when it is determined to be equal to or higher than the self-starting rotation. Proceeding to S4, steps similar to those described above are sequentially performed. If it is determined in S3 that the engine rotation (NE) is not equal to or greater than the self-starting rotation, the process proceeds to S5, and a value obtained by subtracting the target transmission input torque (TI) from the motor torque (TM) (a value obtained by subtracting) is a predetermined torque. It is determined whether or not:
  • the process proceeds to S3, where it is determined whether or not the engine speed (NE) is equal to or higher than the self-starting speed, and if it is determined to be equal to or higher than the self-starting speed. , S11, and the same process as described above is performed. If it is determined in S3 that the engine speed (NE) is not equal to or higher than the self-starting rotational speed, it is determined in S4 whether or not the motor is being started. If it is determined that the motor is not being started, S5 is determined. Then, it is determined whether or not the starter is starting. If it is determined in S4 that the motor is being started, S5 and S6 are skipped and the process proceeds to S7.
  • the starter is started in S10, and then fuel control (injection or fuel cut) is performed in S15.
  • fuel control injection or fuel cut
  • the process proceeds to S6, and it is determined whether the vehicle speed is equal to or lower than the predetermined vehicle speed. If it is determined that the vehicle speed is equal to or lower than the predetermined vehicle speed, the process proceeds to S10. The process is performed. Further, if it is determined in S6 that the vehicle speed is not less than or equal to the predetermined vehicle speed, the process proceeds to S7, and it is determined whether or not TC1 is outputting the T engine start.
  • the first clutch means 1a and the second clutch means 1b when power is transmitted from the motor M to the engine E via the first clutch means 1a and the second clutch means 1b to start the engine E, the first clutch means 1a and the second clutch means. Since slip control of 1b is performed, the differential rotation generated between the motor M and the engine E can be shared by the first clutch means 1a and the second clutch means 1b. Therefore, when starting the engine while the motor is running, it is possible to start the engine while suppressing the torque fluctuation of the motor M to be transmitted to the drive wheels D, and to suppress an increase in the differential rotation of the clutch for starting the engine. can do.
  • the first clutch means 1a uses the torque transmitted by the second clutch means 1b. Since the first clutch means 1a and the second clutch means 1b are slip-controlled so that the torque excluding the transmission torque becomes a predetermined torque, even if the torque fluctuation of the motor M or the engine torque fluctuation occurs, the first clutch means 1a Further, the torque fluctuation can be absorbed by the slip of the second clutch means 1b, and the torque transmitted to the drive wheels D can be stabilized at a predetermined torque, so that the engine can be started smoothly.
  • a transmission A provided in a power transmission system between the engine E and the motor M and the drive wheels D is provided, and a target transmission input torque is set according to the accelerator opening, the vehicle speed, and the transmission ratio. Since the first clutch means 1a and the second clutch means 1b are slip-controlled so that the predetermined torque becomes the target transmission input torque, even if there is an accelerator operation, a vehicle speed change, or a gear ratio change during engine startup, The transmission input torque can be controlled, and the engine can be started while controlling the torque transmitted to the drive wheels D to the torque according to the driver's request.
  • the rotational speed of the motor M is increased before the engine E is increased. Since the second clutch means 1b is slip-controlled so as to increase the difference, the difference between the first clutch means 1a and the second clutch means 1b is controlled by slip control even when the engine E is started using the rotational energy of the motor M. An increase in rotation can be suppressed.
  • the first clutch means 1a according to the present embodiment is provided with a gap so that the friction material does not contact in the off state, and the first clutch means 1a and the second clutch means 1b from the motor M are provided.
  • the friction material of the first clutch means 1a comes into contact there is no gap, and the transmission torque is small. Since the invalid stroke is reduced, when the engine speed is increased, it is possible to suppress the delay in the change in the transmission torque of the first clutch means 1a with respect to the change in the transmission torque of the second clutch means 1b and improve the responsiveness.
  • the invalid stroke is detected when the engine E exceeds the self-starting rotational speed. Since it is in the packed state, the rotation can be reliably increased even with the engine alone, and when the differential rotation of the first clutch means 1a exceeds a predetermined value, the transmission torque of the first clutch means 1a is increased and engaged.
  • the state it is possible to suppress the delay in the change of the transmission torque of the first clutch means 1a and improve the responsiveness.
  • the first clutch means 1a when power is transmitted from the motor M to the engine E via the first clutch means 1a and the second clutch means 1b to start the engine E, when the first clutch means 1a is controlled to slip, the engine E Since the engine E is supplied with fuel in a state where the engine E is rotated and is lower than the self-starting rotational speed at which the engine E can be started if the fuel supply is resumed, the transmission of the first clutch means 1a The engine rotation can be quickly increased using the torque of the engine E together with the torque.
  • the second clutch unit 1b when the engine E is started and then switched to a traveling state using only the engine E, the second clutch unit 1b is turned off after the differential rotation of the first clutch unit 1a falls within a predetermined value. Therefore, the rotational energy of the motor M can be regenerated while the influence on the driving force D is prevented.
  • the present invention is not limited to this.
  • the engine is started using a traveling motor while the vehicle is stopped (creep) on a slope, and the first clutch means 1a is packed with invalid strokes.
  • the motor M is not regenerated when the engine E is started, and the motor M is not regenerated, or from the motor M via the first clutch means 1a and the second clutch means 1b.
  • the present invention can be applied to a motor in which the rotation speed of the motor M is not increased before the rotation of the engine E is increased.
  • the engine E may be an internal combustion engine, and may be a diesel engine that uses light oil instead of gasoline.
  • Any power transmission device for a hybrid vehicle that slips the first clutch means and the second clutch means when the engine is started by transmitting power from the motor to the engine via the first clutch means and the second clutch means.
  • the present invention can be applied to ones having different external shapes or those having other functions added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

モータ走行中走行用モータを使ってエンジン始動する時、モータのトルク変動が駆動輪に伝達されてしまうのを抑制しつつエンジン始動を可能とし、且つ、エンジン始動するためのクラッチの差回転の増加を抑制することができるハイブリッド車両の動力伝達装置を提供する。エンジン(E)の駆動力を駆動輪(D)に対して伝達又は遮断可能な第1クラッチ手段(1a)と、モータ(M)の駆動力を駆動輪(D)に対して伝達又は遮断可能な第2クラッチ手段(1b)とを具備し、車両の走行状況に応じて第1クラッチ手段(1a)及び第2クラッチ手段(1b)を任意に作動可能とされたハイブリッド車両の動力伝達装置であって、モータ(M)から第1クラッチ手段(1a)及び第2クラッチ手段(1b)を介してエンジン(E)に動力を伝達させて当該エンジン(E)を始動する際、第1クラッチ手段(1a)及び第2クラッチ手段(1b)をスリップ制御させるものである。

Description

ハイブリッド車両の動力伝達装置
 本発明は、車両の走行状況に応じて第1クラッチ手段及び第2クラッチ手段を任意に作動可能とされたハイブリッド車両の動力伝達装置に関するものである。
 近時において、燃費向上及び環境対策の観点から、駆動源としてエンジンとモータの両方を具備したハイブリッド車両が注目されるに至っている。かかるハイブリッド車両は、その走行状況に応じてエンジン又はモータの何れかを任意選択的に駆動させ、或いは同時に駆動させることにより、専らエンジンのみで走行するものに比べ、燃費を向上させるとともに排出ガスの低減を図り得るようになっている。
 かかるハイブリッド車両の動力伝達装置として、例えば、モータ走行中、走行用モータのトルクを増加してエンジン始動する時、エンジン始動するためのクラッチ(第1クラッチ)を作動させてエンジン回転を上昇させるとともに、変速段を構成する自動変速機の締結クラッチの中で最大伝達トルク容量を持つクラッチを第2クラッチとして選択し、スリップ締結による第2クラッチの伝達トルク容量制御を実施するものが提案されている(特許文献1参照)。また、モータ走行中、走行用モータの回転エネルギを使ってエンジン始動する時、発進クラッチ(第2クラッチ)をスリップ制御しながらモータの回転を上昇させ、所定の回転速度に達したとき、エンジン始動するためのクラッチを接続させるものも提案されている(特許文献2参照)。
特開2007-131070号公報 特開2000-255285号公報
 しかしながら、上記従来技術のハイブリッド車両の動力伝達装置においては、モータ走行中のエンジン始動時、第2クラッチをスリップ制御することにより、モータのトルク変動が駆動輪に伝達されてしまうのを抑制しつつエンジン始動を可能とすることができるものの、エンジン始動するためのクラッチ(第1クラッチ)の差回転が増加してしまうという問題があった。すなわち、第2クラッチをスリップ制御すると、そのクラッチの入力回転数と出力回転数との間に差(差回転)が生じ、モータの回転数が高くなるため、第2クラッチをスリップ制御しない方式と比べて、第1クラッチの差回転が増加し、第1クラッチを作動させてエンジン回転を上昇させる時の第1クラッチの熱ダメージが増加してしまう虞がある。
 本発明は、このような事情に鑑みてなされたもので、モータ走行中走行用モータを使ってエンジン始動する時、モータのトルク変動が駆動輪に伝達されてしまうのを抑制しつつエンジン始動を可能とし、且つ、エンジン始動するためのクラッチの差回転の増加を抑制することができるハイブリッド車両の動力伝達装置を提供することにある。
 請求項1記載の発明は、車両が搭載するエンジンから駆動輪に至る動力伝達系の途中に配設されて当該エンジンの駆動力を駆動輪に対して伝達又は遮断可能な第1クラッチ手段と、車両が搭載するモータから駆動輪に至る動力伝達系の途中に配設されて当該モータの駆動力を駆動輪に対して伝達又は遮断可能な第2クラッチ手段とを具備し、車両の走行状況に応じて前記第1クラッチ手段及び第2クラッチ手段を任意に作動可能とされたハイブリッド車両の動力伝達装置であって、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記第1クラッチ手段及び第2クラッチ手段をスリップ制御させることを特徴とする。
 請求項2記載の発明は、請求項1記載のハイブリッド車両の動力伝達装置において、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記第2クラッチ手段による伝達トルクから前記第1クラッチ手段による伝達トルクを除いたトルクが、所定トルクになるように前記第1クラッチ手段及び第2クラッチ手段をスリップ制御させることを特徴とする。
 請求項3記載の発明は、請求項2記載のハイブリッド車両の動力伝達装置において、前記エンジン及びモータと前記駆動輪との間の動力伝達系に配設された変速機を備え、アクセル開度、車速及び変速レシオに応じて目標変速機入力トルクが設定されるとともに、前記所定トルクが当該目標変速機入力トルクとなるように前記第1クラッチ手段及び第2クラッチ手段をスリップ制御させることを特徴とする。
 請求項4記載の発明は、請求項1~3の何れか1つに記載のハイブリッド車両の動力伝達装置において、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記エンジンの回転を上げる前に、前記モータの回転数を高くするように、前記第2クラッチ手段をスリップ制御させることを特徴とする。
 請求項5記載の発明は、請求項1~4の何れか1つに記載のハイブリッド車両の動力伝達装置において、前記第1クラッチ手段は、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記エンジンの回転を上げる前に、前記第1クラッチ手段の摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とすることを特徴とする。
 請求項6記載の発明は、請求項1~5の何れか1つに記載のハイブリッド車両の動力伝達装置において、前記第1クラッチ手段は、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記エンジンがセルフ始動回転数以上になったとき、前記第1クラッチ手段の摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とすることを特徴とする。
 請求項7記載の発明は、請求項1~6の何れか1つに記載のハイブリッド車両の動力伝達装置において、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記第1クラッチ手段をスリップ制御させているとき、前記エンジンが回転した状態で、且つ、燃料の供給を再開すればエンジンの始動が可能なセルフ始動回転数より低い状態で、当該エンジンに燃料の供給を行わせることを特徴とする。
 請求項8記載の発明は、請求項1~7の何れか1つに記載のハイブリッド車両の動力伝達装置において、前記エンジンが始動した後、当該エンジンのみによる走行状態に切り替える際、前記第1クラッチ手段の差回転が所定値以内になってから、前記第2クラッチ手段をオフさせて前記モータにおける回転エネルギの回生を行わせることを特徴とする。
 請求項1の発明によれば、モータから第1クラッチ手段及び第2クラッチ手段を介してエンジンに動力を伝達させて当該エンジンを始動する際、第1クラッチ手段及び第2クラッチ手段をスリップ制御させるので、モータとエンジンとの間で生じる差回転を第1クラッチ手段と第2クラッチ手段とで分担させることができる。したがって、走行用モータを使ってエンジン始動する時、モータのトルク変動が駆動輪に伝達されてしまうのを抑制しつつエンジン始動を可能とし、且つ、エンジン始動するためのクラッチの差回転の増加を抑制することができる。
 請求項2の発明によれば、モータから第1クラッチ手段及び第2クラッチ手段を介してエンジンに動力を伝達させて当該エンジンを始動する際、第2クラッチ手段による伝達トルクから第1クラッチ手段による伝達トルクを除いたトルクが、所定トルクになるように第1クラッチ手段及び第2クラッチ手段をスリップ制御させるので、モータのトルク変動やエンジントルク変動が生じても、第1クラッチ手段及び第2クラッチ手段のスリップにより当該トルク変動を吸収でき、駆動輪に伝達されるトルクが所定トルクにて安定させることができるので、円滑なエンジン始動を行わせることができる。
 請求項3の発明によれば、エンジン及びモータと駆動輪との間の動力伝達系に配設された変速機を備え、アクセル開度、車速及び変速レシオに応じて目標変速機入力トルクが設定されるとともに、所定トルクが当該目標変速機入力トルクとなるように第1クラッチ手段及び第2クラッチ手段をスリップ制御させるので、エンジン始動中にアクセル操作、車速変化又は変速レシオ変化があった場合でも目標変速機入力トルクになるよう制御でき、駆動輪に伝達されるトルクを運転者の要求に応じたトルクに制御しつつエンジン始動を行わせることができる。
 請求項4の発明によれば、モータから第1クラッチ手段及び第2クラッチ手段を介してエンジンに動力を伝達させて当該エンジンを始動する際、エンジンの回転を上げる前に、モータの回転数を高くするように、第2クラッチ手段をスリップ制御させるので、モータの回転エネルギを使ってエンジンを始動させる場合でも第2クラッチ手段をスリップ制御させることで第1クラッチ手段の差回転の増加を抑制することができる。
 請求項5の発明によれば、第1クラッチ手段は、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、モータから第1クラッチ手段及び第2クラッチ手段を介してエンジンに動力を伝達させて当該エンジンを始動する際、エンジンの回転を上げる前に、第1クラッチ手段の摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とするので、エンジン回転を上げる際、第2クラッチ手段の伝達トルクの変化に対する第1クラッチ手段の伝達トルクの変化の遅れを抑制して応答性を向上させることができる。
 請求項6の発明によれば、エンジン始動するためのクラッチ(第1クラッチ手段)は、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、モータから第1クラッチ手段及び第2クラッチ手段を介してエンジンに動力を伝達させて当該エンジンを始動する際、エンジンがセルフ始動回転数以上になったとき、第1クラッチ手段の摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とするので、エンジン単独でも確実に回転を上昇させることができるとともに、第1クラッチ手段の差回転が所定値以内になった場合、第1クラッチ手段の伝達トルクを大きくし、締結状態とする際、第1クラッチ手段の伝達トルク変化の遅れを抑制して応答性を向上させることができる。
 請求項7の発明によれば、モータから第1クラッチ手段及び第2クラッチ手段を介してエンジンに動力を伝達させて当該エンジンを始動する際、第1クラッチ手段をスリップ制御させているとき、エンジンが回転した状態で、且つ、燃料の供給を再開すればエンジンの始動が可能なセルフ始動回転数より低い状態で、当該エンジンに燃料の供給を行わせるので、第1クラッチ手段の伝達トルクと併せてエンジンのトルクも使ってエンジン回転を素早く上昇させることができる。
 請求項8の発明によれば、エンジンが始動した後、当該エンジンのみによる走行状態に切り替える際、第1クラッチ手段の差回転が所定値以内になってから、第2クラッチ手段をオフさせてモータにおける回転エネルギの回生を行わせるので、駆動力に与える影響を防止しつつモータの回転エネルギの回生を行わせることができる。
本発明の実施形態に係るハイブリッド車両の動力伝達装置を示す模式図 同ハイブリッド車両の動力伝達装置の全体構成を示す模式図 同ハイブリッド車両の動力伝達装置における制御内容を示すタイミングチャート 同ハイブリッド車両の動力伝達装置におけるメイン制御を示すフローチャート 同ハイブリッド車両の動力伝達装置におけるレシオ特性マップを示すグラフ 同ハイブリッド車両の動力伝達装置における車速及びアクセル開度に対応した変速機入力トルクを示すグラフ 同ハイブリッド車両の動力伝達装置におけるモータ制御を示すフローチャート 同ハイブリッド車両の動力伝達装置におけるクラッチ制御(第1クラッチ手段の制御)を示すフローチャート 同ハイブリッド車両の動力伝達装置における第1クラッチ手段のクラッチ容量特性を示すグラフ 同ハイブリッド車両の動力伝達装置におけるクラッチ制御(第2クラッチ手段の制御)を示すフローチャート 同ハイブリッド車両の動力伝達装置における第2クラッチ手段のクラッチ容量特性を示すグラフ 同ハイブリッド車両の動力伝達装置におけるエンジン制御を示すフローチャート
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 本実施形態に係るハイブリッド車両の動力伝達装置は、ハイブリッド車両の駆動源としてのエンジンE及びモータMによる駆動力を車輪(駆動輪D)に伝達又は遮断するためのものであり、図1及び図2に示すように、第1クラッチ手段1aと、第2クラッチ手段1bと、変速機Aと、クラッチ制御手段3、モータ制御手段4及びエンジン制御手段5を有したハイブリッドECU2とを主に有している。
 本実施形態に係る動力伝達装置おいては、図1に示すように、ハイブリッド車両が搭載するエンジンEから駆動輪Dに至る動力伝達系に配設されて当該エンジンEの駆動力を駆動輪Dに対して伝達又は遮断可能な第1クラッチ手段1aと、ハイブリッド車両が搭載するモータMから駆動輪Dに至る動力伝達系に配設されて当該モータMの駆動力を駆動輪Dに対して伝達又は遮断可能な第2クラッチ手段1bとを有しており、第1クラッチ手段1a及び第2クラッチ手段1bによりユニット化されたクラッチ手段1を構成している。
 エンジンEは、ハイブリッド車両の駆動源の一つ(内燃機関)であり、図2に示すように、その駆動力が出力シャフトLを介してクラッチ手段1(第1クラッチ手段1a)の入力部Laに伝達可能とされている。なお、同図中符号S、Gは、エンジンを始動させるためのスタータ、ダンパをそれぞれ示している。そして、エンジンEを駆動させると、第1クラッチ手段1aが締結状態又はスリップ状態のとき、当該エンジンEの駆動力が第1クラッチ手段1aの入力部La及び出力部Lcを介して変速機Aに伝達されるようになっている。
 モータMは、ステータMa及びロータMbを有して構成されるとともに、ハイブリッド車に搭載されたインバータI及びバッテリBと接続され、バッテリBから電力供給がなされると、その駆動力がクラッチ手段1(第2クラッチ手段1b)の入力部Lbに伝達可能とされている。そして、モータMを駆動させると、第2クラッチ手段1bが締結状態又はスリップ状態のとき、当該モータMの駆動力が第2クラッチ手段1bの入力部Lb及び出力部Lcを介して変速機Aに伝達されるようになっている。
 なお、第1クラッチ手段1aにおいては、エンジンEの駆動と共に回転する入力部Laに駆動側クラッチ板1aaが形成されるとともに、出力部Lcに被動側クラッチ板1abが形成され、これら駆動側クラッチ板1aaと被動側クラッチ板1abとが交互に積層形成されている。これにより、隣り合う駆動側クラッチ板1aaと被動側クラッチ板1abとが圧接(クラッチ内のピストン(図示されていない)に作動オイルが供給されクラッチ板に圧接力が作用した状態)されることにより動力を伝達するとともに、その圧接力が解放されることにより動力の伝達が遮断されることとなる。なお、隣り合う駆動側クラッチ板1aaと被動側クラッチ板1abとがスリップすることにより、所定容量の動力の伝達が可能とされている。
 また、第2クラッチ手段1bにおいては、モータMの駆動と共に回転する入力部Lbに駆動側クラッチ板1baが形成されるとともに、出力部Lcに被動側クラッチ板1bbが形成され、これら駆動側クラッチ板1baと被動側クラッチ板1bbとが交互に積層形成されている。これにより、隣り合う駆動側クラッチ板1baと被動側クラッチ板1bbとが圧接されることにより動力を伝達するとともに、その圧接力が解放されることにより動力の伝達が遮断されることとなる。なお、隣り合う駆動側クラッチ板1baと被動側クラッチ板1bbとがスリップすることにより、所定容量の動力の伝達が可能とされている。
 変速機Aは、エンジンE及びモータMと駆動輪Dとの間の動力伝達系に配設されるとともに、当該変速機の変速比(レシオ)を変更することにより、エンジンE及びモータMの駆動力を調整して駆動輪Dに伝達可能な無段変速機から成るもので、ドライブプーリAa及びドリブンプーリAbを有して構成されている。そして、本実施形態においては、モータMの回転を調整可能なものとされている。すなわち、モータMの駆動力による走行時(モータMの単独の駆動力による走行時又はモータM及びエンジンEの両方の駆動力による走行時)、変速機Aを作動させることにより、駆動輪Dに伝達される駆動力を任意に変更し、モータMの回転を調整し得るよう構成されているのである。なお、モータMの回転を調整した際、駆動輪Dで必要とされるアクセル開度に応じた駆動力(トルク)は、モータMに付与される電流又は電圧を制御してモータトルクを調整することにより得られることとなる。
 しかして、エンジンE及びモータMの何れか一方が駆動(エンジン走行又はモータ走行)、或いはエンジンE及びモータMの両方が駆動(ハイブリッド走行)され、第1クラッチ手段1a又は第2クラッチ手段1bが動力伝達状態(締結した状態又はスリップした状態)とされていると、当該エンジンE又はモータMの駆動力が変速機Aを介して駆動輪Dに伝達されて走行可能とされている。
 また、本実施形態においては、図2に示すように、オイルの温度(油温)を検知し得るセンサs1、変速機Aに対する入力回転数を検知し得るセンサs2、モータMの回転数を検知し得るセンサs3、車速を検知し得るセンサs4を具備しており、これらセンサs1~s4で検知された電気信号がハイブリッドECU2に送信されるようになっている。なお、同図中符号Fは、車両が具備するディファレンシャルギアを示している。
 ハイブリッドECU2は、例えば車両に搭載されたマイコン等から成り、車両の走行状況に応じて油圧制御回路6を制御し得るもので、クラッチ制御手段3、モータ制御手段4及びエンジン制御手段5を有して構成されている。クラッチ制御手段3は、油圧制御回路6を制御することにより第1クラッチ手段1a及び第2クラッチ手段1bを任意に作動させ、動力を伝達可能な状態(締結した状態若しくはスリップした状態)と、動力の伝達を遮断させた状態(オフした状態)とを切換可能とされている。
 モータ制御手段4は、ハイブリッドECU2に形成され、アクセル開度やブレーキ操作、或いはセンサ類からの検出値等に基づいてモータMの駆動を制御するためのものである。エンジン制御手段5は、ハイブリッドECU2に形成され、アクセル開度やブレーキ操作、或いはセンサ類からの検出値等に基づいてエンジンEの駆動を制御するためのものである。
 ここで、本実施形態に係るハイブリッド車両の動力伝達装置は、ハイブリッドECU2により、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、図3に示すように、第1クラッチ手段1a及び第2クラッチ手段1bをスリップ制御させるよう構成されている。すなわち、モータMで走行中、当該モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、第1クラッチ手段1a及び第2クラッチ手段1bの両方をスリップ制御させて、エンジンEに対して始動のための動力を伝達させることが可能とされている。
 さらに、本実施形態に係るハイブリッドECU2は、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、第2クラッチ手段1bによる伝達トルクから第1クラッチ手段1aによる伝達トルクを除いたトルクが、所定トルクになるように第1クラッチ手段1a及び第2クラッチ手段1bをスリップ制御させている。より具体的には、本実施形態においては、上述のように、エンジンE及びモータMと駆動輪Dとの間の動力伝達系に配設された変速機Aを備えており、例えば図6に示すように、アクセル開度、車速及び変速レシオに応じて目標変速機入力トルクが設定されるとともに、図3(特に、変速機入力トルク(TI)の目標値を示すグラフにおける走行モードのエンジン開始まで参照)に示すように、所定トルクが当該目標変速機入力トルクとなるように第1クラッチ手段1a及び第2クラッチ手段1bをスリップ制御させるのである。
 またさらに、本実施形態に係るハイブリッドECU2は、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、図3(特に、モータ回転数(NM)変速機入力回転数(NI)を示すグラフにおける走行モードのハイブリッド開始時からエンジンが始動開始するまで参照)に示すように、エンジンEの回転を上げる前に、モータMの回転数を高くするように、第2クラッチ手段1bをスリップ制御させるよう構成されている。
 加えて、本実施形態に係る第1クラッチ手段1aは、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、図3(特に、第1クラッチ圧(PC1)を示すグラフにおける走行モードのハイブリッド開始時からエンジンが始動開始するまでの間参照)エンジンEの回転を上げる前に、第1クラッチ手段1aの摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とするよう構成されている。
 また、本実施形態においては、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、図3(特に、第1クラッチ圧(PC1)を示すグラフにおけるエンジンが運転開始してから走行モードのエンジン開始時までの間参照)に示すように、エンジンEがセルフ始動回転数以上になったとき、第1クラッチ手段1aの摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とする。
 さらに、本実施形態においては、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、図3(特に、エンジントルク(TE)を示すグラフにおけるエンジンの噴射開始時参照)に示すように、第1クラッチ手段1aをスリップ制御させているとき、エンジンEが回転した状態で、且つ、燃料の供給を再開すればエンジンEの始動が可能なセルフ始動回転数より低い状態で、当該エンジンEに燃料の供給を行わせるよう構成されている。
 またさらに、本実施形態においては、図3(特に、モータトルク(TM)を示すグラフにおけるモータが回生する間参照)に示すように、エンジンEが始動した後、当該エンジンEのみによる走行状態に切り替える際、第1クラッチ手段1aの差回転が所定値以内になってから、第2クラッチ手段1bをオフさせてモータMにおける回転エネルギの回生を行わせるよう構成されている。
 次に、本実施形態に係るメイン制御について、図4のフローチャートに基づいて説明する。なお、バッテリ残量があるときはモータMで走行するとともに、発進時は必ずモータMによる発進、及びバッテリ残量が少なくなったときは、モータM又はスタータSでエンジン始動することを想定している。
 先ず、図5に示すように、アクセル開度と車速に応じて、同図に示す変速マップにより変速レシオを設定し、その変速レシオになるように変速機Aを変速制御する(S1)とともに、図6に示すように、アクセル開度、車速及び変速レシオに応じて、目標変速機入力トルク(TI)を設定する(S2)。なお、図6は、レシオがLOWのときのマップを示している。
 その後、S3において、バッテリ残量が所定量以下か否かが判断され、バッテリ残量が所定量より多いと判断された場合、S6に進んで走行モードをモータに設定するとともに、バッテリ残量が所定量以下であると判断された場合、S4に進んで変速機入力回転(NI)が所定回転数以下か否かが判断される。S4において、変速機入力回転(NI)が所定回転数より大きいと判断された場合、S5に進み、エンジン回転(NE)と変速機入力回転(NI)との差回転が所定差回転数以内の状態で所定時間経過したか否かが判断されるとともに、変速機入力回転数(NI)が所定回転数以下であると判断された場合、S5をスキップしてS7に進む。すなわち、変速機入力回転(NI)が低回転且つバッテリ残量が少ない状態であるので、エンジン始動するためにS7に進んで、ハイブリッドに設定するのである。
 S5において、エンジン回転(NE)と変速機入力回転(NI)との差回転が所定差回転数以内の状態で所定時間経過していると判断された場合、S8に進んで走行モードをエンジンに設定するとともに、エンジン回転(NE)と変速機入力回転(NI)との差回転が所定差回転数以内の状態で所定時間経過していないと判断された場合、S7に進み、走行モードをハイブリッドに設定する。以上で、走行モードが「モータ」(S6)、「ハイブリッド」(S7)及び「エンジン」(S8)の何れかに設定されることとなり、その後、図7に示すモータ制御S9、図8、10に示すクラッチ制御S10、及び図12に示すエンジン制御S11が行われる。
 次に、本実施形態に係るモータ制御について、図7のフローチャートに基づいて説明する。
 先ず、S1にて走行モードがモータか否か判断され、当該走行モードがモータである場合、S6に進み、モータトルク(TM)を目標変速機入力トルク(TI)に設定した後、S9にてモータMを運転状態とする。S1において、走行モードがモータでないと判断された場合、S2に進み、走行モードがエンジンか否かが判断され、当該走行モードがエンジンであると判断された場合、S8に進み、モータ回転(NM)が0より大きいか否かが判断される。そして、S8において、モータ回転(NM)が0より大きいと判断された場合、S11にてモータMによるモータの回転エネルギの回生が行われるとともに、モータ回転(NM)が0と判断された場合、S12にてモータMを停止させる。
 一方、S2において、走行モードがエンジンでない(すなわち、ハイブリッドである)と判断されると、S3に進み、エンジン回転(NE)がセルフ始動回転数以上か否かが判断され、エンジン回転(NE)がセルフ始動回転数以上であると判断された場合、S5に進み、エンジン回転(NE)が変速機入力回転(NI)以上か否かが判断される。そして、S5において、エンジン回転(NE)が変速機入力回転(NI)より小さいと判断された場合、S6に進み、モータトルク(TM)を目標変速機入力トルク(TI)に設定した後、S9にてモータMを運転状態とするとともに、エンジン回転(NE)が変速機入力回転(NI)以上であると判断された場合、S7に進み、モータトルク(TM)を目標変速機入力トルク(TI)からエンジントルク(TE)を除いた値(減算した値)に設定した後、S9にてモータMを運転状態とする。
 さらに、S3において、エンジン回転(NE)がセルフ始動回転数より小さいと判断された場合、S4に進み、モータトルク(TM)を目標変速機入力トルク(TI)とエンジン始動トルクとを加えた値(加算した値)に設定した後、S10にてエンジンEを始動させる。なお、S4において、モータMの最大トルクで上限をチェックするものとする。以上の工程により、モータMの制御として、「運転」(S9)、「エンジン始動」(S10)、「回生」(S11)及び「停止」(S12)の何れかが選択されることとなる。
 次に、本実施形態に係るクラッチ制御(第1クラッチ手段1aの制御)について、図8のフローチャートに基づいて説明する。なお、第1クラッチ手段1aは、図9に示すような容量特性とされており、TMINは、第1クラッチ手段1aの摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態を示している。
 先ず、S1にて走行モードがモータであるか否か判断され、走行モードがモータであると判断された場合、S7に進み、第1クラッチ手段1aのクラッチ容量(TC1)を0に設定するとともに、走行モードがモータでないと判断された場合、S2に進み、走行モードがエンジンであるか否かが判断される。
 S2において、走行モードがエンジンであると判断された場合、S6に進み、エンジン回転(NE)と変速機入力回転(NI)との差回転が所定回転数以内か否かが判断され、所定回転数以内であると判断された場合、S11に進んでクラッチ容量(TC1)を最大値(TMAX)に設定する。また、S6において、エンジン回転(NE)と変速機入力回転(NI)との差回転が所定回転数以内でないと判断された場合、S10に進んでクラッチ容量(TC1)をΔTC1だけ加えた値(加算した値)に設定する。なお、S10においては、TMAXで上限をチェックするものとする。
 一方、S2において、走行モードがエンジンでないと判断されると、S3に進んでエンジン回転(NE)がセルフ始動回転数以上か否かが判断され、セルフ始動回転数以上であると判断された場合、S8に進んでクラッチ容量(TC1)をTMINに設定する。また、S3において、エンジン回転(NE)がセルフ始動回転数より小さいと判断されると、S4に進み、TC1がTエンジン始動出力中であるか否かが判断され、TC1がTエンジン始動出力中でないと判断された場合、S5にて、モータ回転(NM)が所定回転数以上か否かが判断される。なお、S4において、TC1がTエンジン始動出力中であると判断された場合、S5をスキップしてS9に進むこととなる。
 S5において、モータ回転(NM)が所定回転数以上であると判断されると、エンジン始動のための回転エネルギが蓄積完了と判断し、S9に進み、クラッチ容量(TC1)をエンジン始動に必要な値に設定する。また、S5において、モータ回転(NM)が所定回転数以上でないと判断されると、S8に進み、クラッチ容量(TC1)を最小値(TMIN)に設定する。以上で、第1クラッチ手段1aの制御として、クラッチ容量(TC1)が0(S7)、TMIN(S8)、エンジン始動に必要な値(S9)、ΔTC1を加算した値(S10)及びTMAX(S11)の何れかが選択され、図9に示すグラフに基づいて、第1クラッチ圧(第1クラッチ手段1aのクラッチ圧)が算出される(S12)こととなる。
 次に、本実施形態に係るクラッチ制御(第2クラッチ手段1bの制御)について、図10のフローチャートに基づいて説明する。なお、第2クラッチ手段1bは、図11示すような容量特性とされている。
 先ず、S1にて走行モードがモータであるか否か判断され、走行モードがモータであると判断された場合、S4に進み、モータ回転(NM)と変速機入力回転(NI)との差回転が所定回転数以内か否かが判断される。そして、S4において、モータ回転(NM)と変速機入力回転(NI)との差回転が所定回転数以内であると判断された場合、S6に進み、TC2HをΔTC2だけ除いた値(減算した値)に設定した後、S9にて、クラッチ容量(TC2)をTI+TC1+TC2Hに設定する。
 また、S4において、モータ回転(NM)と変速機入力回転(NI)との差回転が所定回転数以内でないと判断された場合、S7に進み、TC2HをΔTC2だけ加えた値(加算した値)に設定した後、S9にて、クラッチ容量(TC2)をTI+TC1+TC2Hに設定する。一方、S1において、走行モードがモータでないと判断された場合、S2に進み、走行モードがエンジンであるか否かが判断されるとともに、走行モードがエンジンであると判断されると、S10に進み、クラッチ容量(TC2)をTI-TC1に設定する。
 さらに、S2において、走行モードがエンジンでないと判断されると、S3に進み、エンジン回転(NE)がセルフ始動回転以上か否か判断されるとともに、セルフ始動回転以上であると判断されると、S4に進み、上述と同様の工程が順次行われる。S3において、エンジン回転(NE)がセルフ始動回転以上でないと判断されると、S5に進み、モータトルク(TM)から目標変速機入力トルク(TI)を除いた値(減算した値)が所定トルク以下か否かが判断される。
 S5において、モータトルク(TM)から目標変速機入力トルク(TI)を除いた値(減算した値)が所定トルク(モータによるエンジン始動に必要なトルク)以下であると判断される(モータによるエンジン始動に必要なトルクが足りない)と、S8に進み、TIに所定係数を乗算して補正を行った後、S9に進み、クラッチ容量(TC2)をTI+TC1+TC2Hに設定する。なお、S5において、モータトルク(TM)から目標変速機入力トルク(TI)を除いた値(減算した値)が所定トルク以下でないと判断されると、S8をスキップしてS9に進むこととなる。以上により、クラッチ容量(TC2)が求められ、図11に示すグラフに基づいて、第2クラッチ圧(第2クラッチ手段1bのクラッチ圧)が算出される(S11)こととなる。
 次に、本実施形態に係るエンジン制御について、図12のフローチャートに基づいて説明する。
 先ず、S1にて走行モードがモータであるか否か判断され、走行モードがモータであると判断されると、S8に進んでエンジンEを停止状態とした後、S13にて燃料カット状態(フューエルカット)とする。また、S1において、走行モードがモータでないと判断されると、S2に進んで、走行モードがエンジンであるか否かが判断され、走行モードがエンジンである場合、S11にてエンジンEを運転状態とした後、S15にて燃料制御(噴射或いは燃料カット)が行われる。
 一方、S2において、走行モードがエンジンでないと判断されると、S3に進み、エンジン回転(NE)がセルフ始動回転数以上か否かが判断され、セルフ始動回転数以上であると判断されると、S11に進み、上述と同様の工程が行われる。また、S3において、エンジン回転(NE)がセルフ始動回転数以上でないと判断されると、S4にてモータによる始動中であるか否か判断され、モータによる始動中でないと判断されると、S5に進み、スタータによる始動中であるか否かが判断される。なお、S4において、モータによる始動中であると判断されると、S5、S6をスキップしてS7に進むこととなる。
 S5において、スタータによる始動中であると判断されると、S10にてスタータによる始動が行われた後、S15にて燃料制御(噴射或いは燃料カット)が行われる。また、S5において、スタータによる始動中でないと判断されると、S6に進み、車速が所定車速以下か否かが判断され、所定車速以下であると判断されると、S10に進み、上述と同様の工程が行われる。さらに、S6において、車速が所定車速以下でないと判断されると、S7に進み、TC1がTエンジン始動出力中か否かが判断される。
 そして、S7において、TC1がTエンジン始動出力中であると判断されると、S9に進み、モータによる始動が行われた後、S12にて、エンジン回転(NE)が燃料噴射回転数以上か否かが判断されるとともに、S14に進み、燃料噴射が行われる。なお、S7において、TC1がTエンジン始動出力中でないと判断されると、S8に進み、上述と同様の工程が行われることとなる。以上の工程により、エンジンEの制御として、「燃料カット」(S13)、「燃料噴射」(S14)、「燃料制御」(S15)の何れかが選択されることとなる。
 本実施形態によれば、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、第1クラッチ手段1a及び第2クラッチ手段1bをスリップ制御させるので、モータMとエンジンEとの間で生じる差回転を第1クラッチ手段1aと第2クラッチ手段1bとで分担させることができる。したがって、モータ走行中のエンジン始動時、モータMのトルク変動が駆動輪Dに伝達されてしまうのを抑制しつつエンジン始動を可能とし、且つ、エンジン始動するためのクラッチの差回転の増加を抑制することができる。
 また、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、第2クラッチ手段1bによる伝達トルクから第1クラッチ手段1aによる伝達トルクを除いたトルクが、所定トルクになるように第1クラッチ手段1a及び第2クラッチ手段1bをスリップ制御させるので、モータMのトルク変動やエンジントルク変動が生じても、第1クラッチ手段1a及び第2クラッチ手段1bのスリップにより当該トルク変動を吸収でき、駆動輪Dに伝達されるトルクが所定トルクにて安定させることができるので、円滑なエンジン始動を行わせることができる。
 さらに、エンジンE及びモータMと駆動輪Dとの間の動力伝達系に配設された変速機Aを備え、アクセル開度、車速及び変速レシオに応じて目標変速機入力トルクが設定されるとともに、所定トルクが当該目標変速機入力トルクとなるように第1クラッチ手段1a及び第2クラッチ手段1bをスリップ制御させるので、エンジン始動中にアクセル操作、車速変化又は変速レシオ変化があった場合でも目標変速機入力トルクになるよう制御でき、駆動輪Dに伝達されるトルクを運転者の要求に応じたトルクに制御しつつエンジン始動を行わせることができる。
 またさらに、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、エンジンEの回転を上げる前に、モータMの回転数を高くするように、第2クラッチ手段1bをスリップ制御させるので、モータMの回転エネルギを使ってエンジンEを始動させる場合でも第2クラッチ手段1bをスリップ制御させることで第1クラッチ手段1aの差回転の増加を抑制することができる。
 加えて、本実施形態に係る第1クラッチ手段1aは、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、エンジンEの回転を上げる前に、第1クラッチ手段1aの摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とするので、エンジン回転を上げる際、第2クラッチ手段1bの伝達トルクの変化に対する第1クラッチ手段1aの伝達トルクの変化の遅れを抑制して応答性を向上させることができる。
 また、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、エンジンEがセルフ始動回転数以上になったとき、無効ストローク詰め状態とするので、エンジン単独でも確実に回転を上昇させることができるとともに、第1クラッチ手段1aの差回転が所定値以上になった場合、第1クラッチ手段1aの伝達トルクを大きくし、締結状態とする際、第1クラッチ手段1aの伝達トルク変化の遅れを抑制して応答性を向上させることができる。
 さらに、モータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、第1クラッチ手段1aをスリップ制御させているとき、エンジンEが回転した状態で、且つ、燃料の供給を再開すればエンジンEの始動が可能なセルフ始動回転数より低い状態で、当該エンジンEに燃料の供給を行わせるので、第1クラッチ手段1aの伝達トルクと併せてエンジンEのトルクも使ってエンジン回転を素早く上昇させることができる。
 特に、本実施形態においては、エンジンEが始動した後、当該エンジンEのみによる走行状態に切り替える際、第1クラッチ手段1aの差回転が所定値以内になってから、第2クラッチ手段1bをオフさせてモータMにおける回転エネルギの回生を行わせるので、駆動力Dに与える影響を防止しつつモータMの回転エネルギの回生を行わせることができる。
 以上、本実施形態について説明したが、本発明はこれに限定されず、例えば、坂道で車両停止(クリープ)中に走行用モータを使ってエンジン始動するもの、第1クラッチ手段1aが無効ストローク詰め状態とならないもの、エンジンEが始動した後、当該エンジンEのみによる走行状態に切り替える際、モータMの回生を行わせないもの、或いはモータMから第1クラッチ手段1a及び第2クラッチ手段1bを介してエンジンEに動力を伝達させて当該エンジンEを始動する際、エンジンEの回転を上げる前に、モータMの回転数を高くしないもの等に適用することができる。なお、エンジンEは、内燃機関であれば足り、ガソリンを燃料とするものに代えて軽油を燃料とするディーゼルエンジン等であってもよい。
 モータから第1クラッチ手段及び第2クラッチ手段を介してエンジンに動力を伝達させて当該エンジンを始動する際、第1クラッチ手段及び第2クラッチ手段をスリップ制御させるハイブリッド車両の動力伝達装置であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。
 1  クラッチ手段
 2  ハイブリッドECU
 3  クラッチ制御手段
 4  モータ制御手段
 5  エンジン制御手段
 6  油圧制御回路
 E  エンジン
 M  モータ
 A  変速機
 D  駆動輪

Claims (8)

  1.  車両が搭載するエンジンから駆動輪に至る動力伝達系の途中に配設されて当該エンジンの駆動力を駆動輪に対して伝達又は遮断可能な第1クラッチ手段と、
     車両が搭載するモータから駆動輪に至る動力伝達系の途中に配設されて当該モータの駆動力を駆動輪に対して伝達又は遮断可能な第2クラッチ手段と、
    を具備し、車両の走行状況に応じて前記第1クラッチ手段及び第2クラッチ手段を任意に作動可能とされたハイブリッド車両の動力伝達装置であって、
     前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記第1クラッチ手段及び第2クラッチ手段をスリップ制御させることを特徴とするハイブリッド車両の動力伝達装置。
  2.  前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記第2クラッチ手段による伝達トルクから前記第1クラッチ手段による伝達トルクを除いたトルクが、所定トルクになるように前記第1クラッチ手段及び第2クラッチ手段をスリップ制御させることを特徴とする請求項1記載のハイブリッド車両の動力伝達装置。
  3.  前記エンジン及びモータと前記駆動輪との間の動力伝達系に配設された変速機を備え、アクセル開度、車速及び変速レシオに応じて目標変速機入力トルクが設定されるとともに、前記所定トルクが当該目標変速機入力トルクとなるように前記第1クラッチ手段及び第2クラッチ手段をスリップ制御させることを特徴とする請求項2記載のハイブリッド車両の動力伝達装置。
  4.  前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記エンジンの回転を上げる前に、前記モータの回転数を高くするように、前記第2クラッチ手段をスリップ制御させることを特徴とする請求項1~3の何れか1つに記載のハイブリッド車両の動力伝達装置。
  5.  前記第1クラッチ手段は、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記エンジンの回転を上げる前に、前記第1クラッチ手段の摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とすることを特徴とする請求項1~4の何れか1つに記載のハイブリッド車両の動力伝達装置。
  6.  前記第1クラッチ手段は、オフしている状態で摩擦材が接触しないよう隙間を設けるものとされるとともに、前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記エンジンがセルフ始動回転数以上になったとき、前記第1クラッチ手段の摩擦材が接触して隙間がなく、且つ、伝達トルクが小さい無効ストローク詰め状態とすることを特徴とする請求項1~5の何れか1つに記載のハイブリッド車両の動力伝達装置。
  7.  前記モータから前記第1クラッチ手段及び第2クラッチ手段を介して前記エンジンに動力を伝達させて当該エンジンを始動する際、前記第1クラッチ手段をスリップ制御させているとき、前記エンジンが回転した状態で、且つ、燃料の供給を再開すればエンジンの始動が可能なセルフ始動回転数より低い状態で、当該エンジンに燃料の供給を行わせることを特徴とする請求項1~6の何れか1つに記載のハイブリッド車両の動力伝達装置。
  8.  前記エンジンが始動した後、当該エンジンのみによる走行状態に切り替える際、前記第1クラッチ手段の差回転が所定値以内になってから、前記第2クラッチ手段をオフさせて前記モータにおける回転エネルギの回生を行わせることを特徴とする請求項1~7の何れか1つに記載のハイブリッド車両の動力伝達装置。
PCT/JP2016/060912 2015-04-03 2016-04-01 ハイブリッド車両の動力伝達装置 WO2016159343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16773223.9A EP3279048B1 (en) 2015-04-03 2016-04-01 Power transmission device for hybrid vehicles
CN201680020410.XA CN107428334B (zh) 2015-04-03 2016-04-01 用于混合动力车辆的动力传递装置
US15/722,082 US10532648B2 (en) 2015-04-03 2017-10-02 Power transmission device for hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-076932 2015-04-03
JP2015076932A JP6470621B2 (ja) 2015-04-03 2015-04-03 ハイブリッド車両の動力伝達装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/722,082 Continuation US10532648B2 (en) 2015-04-03 2017-10-02 Power transmission device for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2016159343A1 true WO2016159343A1 (ja) 2016-10-06

Family

ID=57006097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060912 WO2016159343A1 (ja) 2015-04-03 2016-04-01 ハイブリッド車両の動力伝達装置

Country Status (5)

Country Link
US (1) US10532648B2 (ja)
EP (1) EP3279048B1 (ja)
JP (1) JP6470621B2 (ja)
CN (1) CN107428334B (ja)
WO (1) WO2016159343A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123225A1 (ja) * 2016-12-28 2018-07-05 ジヤトコ株式会社 車両のオイルポンプ制御装置及び制御方法
DE102018104451A1 (de) * 2018-02-27 2019-08-29 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines seriell-parallelen hybriden Antriebsstrangs eines Kraftfahrzeugs und Kraftfahrzeug
CN109322989A (zh) * 2018-12-13 2019-02-12 重庆市艾莫特汽车部件有限公司 低速车一体化控制系统及方法
USD1045226S1 (en) 2022-07-27 2024-10-01 E. Mishan & Sons, Inc. Vacuum shaver

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165348A (ja) * 2001-12-03 2003-06-10 Honda Motor Co Ltd ハイブリッド車両の駆動装置
WO2004111441A1 (de) * 2003-06-18 2004-12-23 Daimler Chrysler Ag Verfahren zum betreiben einer antriebseinheit eines kraftfahrzeugs
JP2006103471A (ja) * 2004-10-04 2006-04-20 Jatco Ltd ハイブリッド車両の駆動装置
WO2010047095A1 (ja) * 2008-10-22 2010-04-29 株式会社エフ・シー・シー 動力伝達装置
JP2010115943A (ja) * 2008-11-11 2010-05-27 F C C:Kk ハイブリッド車両の動力伝達装置
JP2010173419A (ja) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd 車両の動力制御装置
JP2010188785A (ja) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd ハイブリッド車両のクラッチ制御装置およびクラッチ制御方法
JP2010188905A (ja) * 2009-02-19 2010-09-02 Nissan Motor Co Ltd ハイブリッド車輌
JP2014080084A (ja) * 2012-10-16 2014-05-08 Hino Motors Ltd ハイブリッド自動車のローリング抑制方法
JP2014101048A (ja) * 2012-11-21 2014-06-05 Aisin Seiki Co Ltd ハイブリッド車両の回生制御装置
JP2015058870A (ja) * 2013-09-20 2015-03-30 日産自動車株式会社 ハイブリッド車両の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255285A (ja) 1999-03-09 2000-09-19 Mitsubishi Motors Corp ハイブリッド車両
JP3649058B2 (ja) * 1999-10-08 2005-05-18 トヨタ自動車株式会社 複数の原動機を備えた車両の制御装置
JP3804383B2 (ja) * 2000-01-19 2006-08-02 トヨタ自動車株式会社 燃料電池を有する車両の制御装置
JP2002144921A (ja) * 2000-11-15 2002-05-22 Mitsubishi Motors Corp ハイブリッド車両の制御装置
JP4569493B2 (ja) * 2005-06-06 2010-10-27 日産自動車株式会社 ハイブリッド車両のオイルポンプ駆動制御装置
JP4341610B2 (ja) 2005-11-09 2009-10-07 日産自動車株式会社 ハイブリッド車両のエンジン再始動制御装置
JP4462208B2 (ja) * 2006-02-28 2010-05-12 日産自動車株式会社 ハイブリッド車両の発進時エンジン始動制御装置
JP5847514B2 (ja) * 2011-09-27 2016-01-20 アイシン精機株式会社 ハイブリッド車両の制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165348A (ja) * 2001-12-03 2003-06-10 Honda Motor Co Ltd ハイブリッド車両の駆動装置
WO2004111441A1 (de) * 2003-06-18 2004-12-23 Daimler Chrysler Ag Verfahren zum betreiben einer antriebseinheit eines kraftfahrzeugs
JP2006103471A (ja) * 2004-10-04 2006-04-20 Jatco Ltd ハイブリッド車両の駆動装置
WO2010047095A1 (ja) * 2008-10-22 2010-04-29 株式会社エフ・シー・シー 動力伝達装置
JP2010115943A (ja) * 2008-11-11 2010-05-27 F C C:Kk ハイブリッド車両の動力伝達装置
JP2010173419A (ja) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd 車両の動力制御装置
JP2010188785A (ja) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd ハイブリッド車両のクラッチ制御装置およびクラッチ制御方法
JP2010188905A (ja) * 2009-02-19 2010-09-02 Nissan Motor Co Ltd ハイブリッド車輌
JP2014080084A (ja) * 2012-10-16 2014-05-08 Hino Motors Ltd ハイブリッド自動車のローリング抑制方法
JP2014101048A (ja) * 2012-11-21 2014-06-05 Aisin Seiki Co Ltd ハイブリッド車両の回生制御装置
JP2015058870A (ja) * 2013-09-20 2015-03-30 日産自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
EP3279048A1 (en) 2018-02-07
US10532648B2 (en) 2020-01-14
EP3279048B1 (en) 2020-07-29
JP6470621B2 (ja) 2019-02-13
US20180022206A1 (en) 2018-01-25
EP3279048A4 (en) 2018-10-31
CN107428334B (zh) 2020-05-05
CN107428334A (zh) 2017-12-01
JP2016196243A (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
KR101414357B1 (ko) 제어장치
JP5417873B2 (ja) ハイブリッド車両の制御装置
JP5262197B2 (ja) ハイブリッド車両の制御装置
KR101054756B1 (ko) 하이브리드 차량의 백래시 진동 저감 방법
WO2014103960A1 (ja) ハイブリッド車両の制御装置
WO2017056910A1 (ja) 制御装置
JP5831555B2 (ja) 車両の制御装置
JP4807697B2 (ja) 車両の制御装置
JP6350751B2 (ja) 車両の制御方法および車両の制御装置
WO2016159343A1 (ja) ハイブリッド車両の動力伝達装置
WO2014103551A1 (ja) ハイブリッド車両の制御装置
JP5212199B2 (ja) ハイブリッド車両のクラッチ制御装置
WO2013084269A1 (ja) 車両の制御装置
JP6601986B2 (ja) ハイブリッド車両の動力伝達装置
JP2010190266A (ja) 車両の変速制御装置および変速制御方法
JP6420653B2 (ja) ハイブリッド車両の動力伝達装置
JP2004251452A (ja) ハイブリッド車両の制御装置
JP5945628B2 (ja) ハイブリッド車両の故障判定装置及びその故障判定方法
JP5803626B2 (ja) 車両の制御装置
JP5578362B2 (ja) 制御装置
JP5338362B2 (ja) ハイブリッド車両のクラッチ制御装置およびクラッチ制御方法
KR101063218B1 (ko) 하이브리드 차량용 오일펌프 및 클러치간의 유압 제어 장치및 방법
JP2015116944A (ja) ハイブリッド車両の制御装置
JP2017140939A (ja) 車両の運転制御装置
WO2018096604A1 (ja) ハイブリッド車両の制御方法と制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016773223

Country of ref document: EP