WO2016159289A1 - モールド成型に適した赤外線透過ガラス - Google Patents

モールド成型に適した赤外線透過ガラス Download PDF

Info

Publication number
WO2016159289A1
WO2016159289A1 PCT/JP2016/060776 JP2016060776W WO2016159289A1 WO 2016159289 A1 WO2016159289 A1 WO 2016159289A1 JP 2016060776 W JP2016060776 W JP 2016060776W WO 2016159289 A1 WO2016159289 A1 WO 2016159289A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
infrared
infrared transmitting
transmitting glass
content
Prior art date
Application number
PCT/JP2016/060776
Other languages
English (en)
French (fr)
Inventor
角野 広平
有史 岡田
隆 若杉
知世 芦田
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to US15/561,725 priority Critical patent/US10414687B2/en
Priority to JP2017510217A priority patent/JP6661611B2/ja
Priority to EP16773169.4A priority patent/EP3279156B1/en
Publication of WO2016159289A1 publication Critical patent/WO2016159289A1/ja
Priority to IL254704A priority patent/IL254704B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • C03C3/323Chalcogenide glasses, e.g. containing S, Se, Te containing halogen, e.g. chalcohalide glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses

Definitions

  • the present invention relates to an infrared transmitting glass suitable for molding.
  • infrared cameras and infrared sensors are used as crime prevention and authentication devices.
  • Infrared rays are used for these sensors, and optical elements used in the sensors are made of an infrared transmitting material that transmits infrared rays. More specifically, there is a need for an infrared transmitting material called “atmosphere window” that transmits infrared rays having wavelengths of 3 to 5 ⁇ m and 8 to 12 ⁇ m.
  • Examples of the infrared transmitting material include germanium (Ge) and zinc selenide (ZnSe).
  • germanium Ge
  • ZnSe zinc selenide
  • the processing means is limited to polishing molding. Therefore, it is difficult to mass-produce optical elements having complicated shapes such as aspheric lenses and lens arrays using these materials.
  • germanium is expensive, it is not easy to use it for a versatile sensor or the like.
  • Non-Patent Document 1 there is a chalcogenide glass mainly composed of S, Se, Te, As, etc. as an infrared transmissive material that is not a crystal, and has a glass forming ability suitable for mass production of optical elements and a high glass forming ability.
  • chalcogenide glass mainly composed of S, Se, Te, As, etc.
  • the chalcogenide glass disclosed in Non-Patent Document 1 contains many highly toxic elements such as Se and As, and there is a concern in terms of safety.
  • Patent Document 1 also discloses two or more types selected from Groups III, V, VI and VII of the periodic table in a preselected amount for forming a glass having low dispersibility with respect to the wavelength of infrared energy.
  • An infrared transmitting glass made of a material is disclosed.
  • only glass containing Se, which is concerned about safety, is specifically disclosed, and no specific composition is described for glass containing group VI S.
  • Patent Document 2 states that “at a molar concentration, Ge: 2 to 22%, at least one selected from the group consisting of Sb and Bi: 6 to 34%, Sn: 1 to 20 %, S, Se, and Te, at least one selected from the group consisting of: 58 to 70%. ” According to the Ge—Sb—Sn—S glass of Patent Document 2, an infrared transmitting glass suitable for molding can be obtained without containing highly toxic elements such as Se and As (claim 1, effect of the invention, etc.). ).
  • the infrared transmission glass of Patent Document 2 has an infrared transmission limit wavelength of about 11 ⁇ m on the long wavelength side, and there is room for improvement in that it does not sufficiently cover the atmospheric window.
  • Non-Patent Documents 2 to 4 as related documents related to the present application.
  • these documents only disclose Ga-Sb-S-based three-component glasses, and other components are added to the non-patent documents 2 to 4. There is no description about making the glass more than the component or its effect.
  • JP 59-69444 A Japanese Patent No. 5339720
  • the present invention is a chalcogenide glass, which has a reduced Ge content, can sufficiently cover an atmospheric window, does not contain highly toxic elements such as Se and As, and is suitable for molding.
  • the main purpose is to provide glass.
  • the present invention relates to an infrared transmitting glass suitable for the following molding.
  • Infrared transmitting glass suitable for molding characterized by comprising 2.
  • Item 2 The infrared transmitting glass according to Item 1, which contains at least one halogen element selected from the group consisting of Cl, Br and I and Cs, and the molar concentration of the halogen element is 3 to 20%. 3.
  • Item 4. The infrared transmitting glass according to any one of Items 1 to 3, which does not contain Se and As. 5.
  • ⁇ T a difference between a crystallization temperature (Tc) and a glass transition temperature (Tg) is 230 K or more.
  • Tc crystallization temperature
  • Tg glass transition temperature
  • Item 9 The infrared transmitting glass according to any one of Items 1 to 8, which is used for producing a spherical lens, an aspherical lens, a lens array, a microlens array, or a diffraction grating by molding.
  • the infrared transmitting glass of the present invention can sufficiently cover the atmospheric window at the point of transmitting infrared rays having a wavelength of 3 to 13 ⁇ m, and in addition, the cost is reduced in that the content of Ge is reduced.
  • the safety is also improved because it is advantageous and does not need to contain highly toxic elements such as Se and As.
  • it is suitable for molding because it is a non-crystal chalcogenide glass, and even if it is an optical element with a complicated shape such as an aspherical lens or a lens array, an optical element having infrared transparency can be easily produced by molding. be able to.
  • Example 5 It is an X-ray diffraction pattern of the contents obtained in Example 3, Example 5 and Comparative Example 7. It is a figure which shows the transmission spectrum in the visible region and infrared region of the glass sample obtained in Example 3, Example 5, and Comparative Example 8. FIG. It is a figure which shows the transmission spectrum in the infrared region of the glass sample obtained in Example 16, Example 17, and Example 18. FIG. In the figure, the shaded portion is the atmospheric transmittance (atmospheric window). It is a figure which shows the change of (DELTA) T of the glass obtained by the comparative example 3 and Examples 19-21. It is a figure which shows the short wavelength side transmission spectrum of the glass obtained by the comparative example 3, Example 20-1, and Example 21-1.
  • DELTA change of
  • the infrared transmitting glass of the present invention is a chalcogenide glass, which has a molar concentration, Ge: 0-2%, Ga: 3-30%, Sb: 10 to 40%, S: 45-70%, At least one selected from the group consisting of Sn, Ag, Cu, Te and Cs: 3 to 30%, At least one selected from the group consisting of Cl, Br and I: 0-30%, It is characterized by containing.
  • the infrared transmitting glass of the present invention having the above composition can sufficiently cover an atmospheric window in terms of transmitting infrared rays having a wavelength of 3 to 13 ⁇ m, and has a reduced Ge content. It is advantageous in terms of cost, and safety is also improved in that it does not need to contain highly toxic elements such as Se and As. In addition, it is suitable for molding because it is a non-crystal chalcogenide glass, and even if it is an optical element with a complicated shape such as an aspherical lens or a lens array, an optical element having infrared transparency can be easily produced by molding. be able to.
  • each component of the infrared transmitting glass of the present invention will be described.
  • each component influences each other to determine the specific properties of the glass material, so it is not always appropriate to discuss the quantitative range of each component according to the properties of each component, The grounds for defining the quantitative range of each component of the infrared transmitting glass of the present invention will be described below.
  • Ge is generally known as an element that forms a glass network structure, but is not an essential component in the present invention. When it is contained, it is preferably 2% or less, more preferably less than 2%. 0% (excluding) is most preferable. By setting the Ge content to 2% or less, the infrared transmission limit wavelength can be shifted to the longer wavelength side, and an infrared transmission glass that sufficiently covers an atmospheric window can be secured. If the Ge content exceeds 2%, it is not only impossible to secure an infrared transmitting glass that sufficiently covers the window of the atmosphere, but it is disadvantageous in terms of cost, so the upper limit is set to 2% in the present invention. It prescribes.
  • Ga has a role of forming a glass network structure.
  • the content may be 3 to 30%, but 4 to 20% is preferable. If the content is less than 3% or exceeds 30%, crystallization may occur.
  • Sb has a role of stabilizing the network structure formed by Ga as well as the glass network structure.
  • the content may be 10 to 40%, but 20 to 40% is preferable. If the content is less than 10% or exceeds 40%, crystallization may occur.
  • the content may be 45 to 70%, but is preferably 50 to 70%. If the content is less than 40% or exceeds 70%, moldability may be deteriorated.
  • At least one selected from the group consisting of Sn, Ag, Cu, Te and Cs has a role of improving the thermal stability of the glass.
  • the content (total amount) may be 3 to 30%, but is preferably 4 to 20%. When the content (total amount) is less than 3% or exceeds 30%, moldability may be deteriorated.
  • At least one selected from the group consisting of Cl, Br and I is generally known to have a role of improving the thermal stability of the glass, but is not an essential component in the present invention, and if contained, it is a three component.
  • the total amount is preferably 30% or less and 10% or less. This is because when the content (total amount) of these components increases, the water resistance of the glass may decrease. When contained, the lower limit of the total amount of the three components is about 2%.
  • the infrared transmitting glass of the present invention contains at least one halogen element selected from the group consisting of Cl, Br and I and Cs, and the halogen element content is 3 to 20%. Is preferred. Among these, the halogen element content is more preferably 4 to 8%.
  • the infrared transmitting glass has a part of visible region (0 (About 0.5 to 0.75 ⁇ m). By transmitting part of the visible range, alignment adjustment of the optical element using the infrared transmission glass of the present invention can be facilitated.
  • the content (total amount) of Cl and Br is preferably not more than the content (total amount) of Ag, Cu and Cs.
  • the infrared transmitting glass of the present invention may contain Ba, Ta, W, In, Bi, etc., as necessary, in addition to the above components.
  • the content (total amount) of these components is not limited, but is preferably 0 to 10%, more preferably 1 to 5%.
  • the reason for adding these elements is not limited, for example, they are added for the purpose of easily forming glass.
  • the infrared transmitting glass of the present invention does not need to contain highly toxic elements such as Se and As, and has improved safety compared to conventional infrared transmitting glasses containing these elements.
  • the infrared transmission performance of the infrared transmission glass of the present invention can sufficiently cover an atmospheric window in that it transmits infrared rays having a wavelength of 3 to 13 ⁇ m. More specifically, the infrared transmission limit wavelength on the long wavelength side is in the range of 12.9 to 13.5.
  • the infrared transmission limit wavelength in this specification means the infrared transmission limit wavelength on the long wavelength side determined by a wavelength that is half of the maximum transmittance among transmission spectra measured using a glass sample having a thickness of 1 mm. To do.
  • the infrared transmission glass of the present invention has an average transmittance of about 40 to 60% for infrared rays having a wavelength of 3 to 13 ⁇ m. Therefore, the optical element using the infrared transmission glass of the present invention can achieve further miniaturization as compared with the conventional infrared transmission glass having an infrared transmission limit wavelength of about 11 ⁇ m on the long wavelength side.
  • the optical element using the infrared transmission glass of the present invention can achieve further miniaturization as compared with the conventional infrared transmission glass having an infrared transmission limit wavelength of about 11 ⁇ m on the long wavelength side.
  • the halogen element content is 3 to 20%, it further transmits a part of the visible region. Can be granted.
  • the glass transition temperature Tg is preferably about 220 to 260 ° C.
  • the crystallization temperature Tc is preferably 300 ° C. or higher, more preferably 380 ° C. or higher.
  • the upper limit of the crystallization temperature Tc is not limited, but is about 600 ° C.
  • the larger ⁇ T means that the glass has higher thermal stability and better moldability, and when ⁇ T is 200K or more, it can be said that the moldability is extremely high.
  • the glass of the present invention has a ⁇ T of 230 K or more, and the moldability is improved as compared with a conventional typical Ge—Sb—S glass (Comparative Example 8 described later).
  • the upper limit of ⁇ T in the case where crystallization occurs is about 500K, but 240 to 350K or 246 to 350K can be positioned as a suitable range in consideration of the results of Examples described later.
  • the infrared transmitting glass of the present invention includes an embodiment in which crystallization is not observed when heated to 600 ° C.
  • the glass itself may be melted. Therefore, an embodiment in which crystallization is not observed when heated up to 600 ° C. is very moldable and has an advantage over conventional products. .
  • the method for producing the infrared transmitting glass of the present invention is not limited.
  • the infrared ray transmitting glass can be produced by enclosing a predetermined amount of each ingredient in a quartz ampoule and vitrifying the content by heat treatment.
  • raw materials Ge, Ga, Sb, S, Sn, Ag, Cu, Te, Br 2 , I 2, etc., Ga 2 S 3 , Ga 2 Te 3 , Sb 2 S 3 , Sb 2 Te 3 , SnS, Examples thereof include chalcogenides such as SnTe, Ag 2 S, Ag 2 Te, Cu 2 S, and Cu 2 Te, and halides such as AgCl, AgBr, AgI, CuCl, CuBr, CuI, CsCl, CsBr, and CsI. These raw materials can be used in any combination of two or more.
  • the quartz ampoule to be used is sufficiently dried inside by a vacuum dryer. Further, during vitrification, heating at 500 to 1000 ° C. is preferable, and heating at 700 to 950 ° C. is more preferable.
  • the heat treatment time may be a time during which the content is sufficiently vitrified, but is generally preferably 3 to 48 hours, more preferably 6 to 24 hours.
  • the infrared transmitting glass for molding of the present invention has high moldability.
  • the glass is heated to near the softening point, and is molded into a desired shape by, for example, sandwiching between the upper mold and the lower mold and hot pressing.
  • the heating temperature required for molding is not limited, but is preferably about 10 to 70 ° C. higher than the yield point, more preferably about 20 to 50 ° C. higher than the yield point.
  • the optical element produced by molding is not limited, and examples thereof include an aspheric lens, a lens array, a microlens array, a diffraction grating, and the like that are required to transmit infrared rays. These are useful as optical elements used in various sensors using infrared rays.
  • the sensitivity as a lens for an infrared sensor is improved by 30% or more in a preferred embodiment as compared with a typical example of conventional Ge—Sb—S glass (glass of Comparative Example 8 described later). It has been confirmed that
  • Examples 1 to 10 and Comparative Examples 1 to 8 (Production of infrared transmission glass and evaluation of the obtained glass) A quartz ampule was prepared, and the inside was washed with purified water. Next, the rotary vacuum pump was operated and the quartz ampule was heated with a burner under vacuum to evaporate water. Next, the raw materials of each component were mixed so as to have the composition shown in Table 1 below, and the mixture was placed in a quartz ampoule, and the ampoule inside was sufficiently evacuated with a rotary vacuum pump, and then a H 2 —O 2 burner was used. Sealed.
  • the sealed quartz ampule was heated to 950 ° C. at a rate of temperature increase of 20 ° C./hour and then held at that temperature for 8 hours. Next, the contents were naturally cooled to room temperature to vitrify the contents.
  • Example 3 (Ga 13 Sb 24 S 55 Cs 4 C l4), obtained in Example 5 (Ga 5 Sb 33 S 57 Sn 5) and Comparative Example 7 (Ga 2 Sb 33 S 53 Sn 12) The X-ray diffraction pattern of the contents is shown.
  • glass sample the glass transition temperature, the crystallization temperature and the transmission limit wavelength were measured for the vitrified contents (hereinafter referred to as “glass sample”), and the results are shown in Table 1.
  • Example 3 (Ga 13 Sb 24 S 55 Cs 4 C l4), in Example 5 (Ga 5 Sb 33 S 57 Sn 5) and Comparative Example 8 (Ge 12 Sb 23 S 58 Cs 4 Cl 4)
  • the transmission spectrum in the visible region and the infrared region of the obtained glass sample is shown.
  • the transmission limit wavelength on the long wavelength side is more shifted to the long wavelength side, and the atmosphere It can be seen that the window is fully covered.
  • region is ensured in a part of visible region because the glass sample of Example 3 contains halogen and Cs.
  • Examples 11-18 (Production of infrared transmission glass and evaluation of the obtained glass) A quartz ampule was prepared, and the inside was washed with purified water. Next, the rotary vacuum pump was operated and the quartz ampule was heated with a burner under vacuum to evaporate water. Next, the raw materials of each component were mixed so as to have the composition shown in Table 2 below, and the mixture was placed in a quartz ampoule. After the ampoule inside was sufficiently evacuated with a rotary vacuum pump, the H 2 —O 2 burner was used. Sealed.
  • the sealed quartz ampule was heated to 950 ° C. at a rate of temperature increase of 20 ° C./hour and then held at that temperature for 8 hours. Next, the contents were naturally cooled to room temperature to vitrify the contents.
  • the glass transition temperature, the crystallization temperature (including judgment of the presence or absence of crystallization) and the transmission limit wavelength were measured for the vitrified contents (glass sample), and the results are shown in Table 2.
  • the glasses obtained in Examples 11 to 18 had ⁇ T> 200 K when the crystallization temperature was measured, and cases where the crystallization temperature was not measured (Examples 13, 16, and 17) were also included.
  • the case where the crystallization temperature is not measured means the case where crystallization is not observed under the experimental conditions heated to 600 ° C. From the results, it can be said that all the glasses obtained in Examples 11 to 18 have extremely high moldability.
  • Examples 17 and 18 are examples in which part of Ga is replaced with Ge in Example 16.
  • FIG. 3 shows Example 16 (Ga 13 Sb 21 S 58 Sn 8 ), Example 17 (Ga 12 Ge 1 Sb 21 S 58 Sn 8 ), and Example 18 (Ga 10 Ge 2 Sb 21 S 59 Sn 8 ).
  • the transmission spectrum in the infrared region of the obtained glass sample is shown.
  • the shaded portion is the atmospheric transmittance (the atmospheric window)
  • Example 16 almost covers the atmospheric window on the long wavelength side, but gradually transmits by replacing Ga with Ge. It can be seen that the critical wavelength shifts to shorter wavelengths.
  • the glass obtained in Example 18 still shows excellent moldability, but considering the cover performance of the atmospheric window, when Ga is replaced with Ge, Ge is preferably 2% or less. .
  • Comparative Example 3 (same as above): Ga 12 Sb 28 S 60
  • Examples 19 to 21 correspond to compositions in which Sb and S in the composition of Comparative Example 3 were replaced with Cs and X, and halogen was cesium halide.
  • Example 20-2 corresponds to Example 14 described above
  • Example 21-1 corresponds to Example 12 described above.
  • Example 20-2 and Example 21-1 are referred to.
  • FIG. 4 shows changes in ⁇ T of the glass obtained in Comparative Example 3 and Examples 19 to 21.
  • the addition of cesium as a halogen and a cation paired therewith increases the thermal stability of the glass and improves the moldability.
  • the content exceeds approximately 8 to 10%, the effect becomes small. If the content of halogen exceeds this, the water resistance of the glass may be lowered. Accordingly, the halogen content is preferably 10% or less.
  • the transmission limit wavelength of the glass obtained in Comparative Example 3 (the meaning of the transmission limit wavelength is the same as the annotation in Table 1) is 700 nm, whereas in Example 20-1 The obtained glass had a transmission limit wavelength of 655 nm, and the glass obtained in Comparative Example 21-1 had a transmission limit wavelength of 598 nm.
  • the transmission limit wavelength shifted to the short wavelength side as the Cl content increased. Such a tendency is obtained not only in the case of X Cl but also in the case of Br and I.
  • the transmission limit wavelength of glass is 655 nm or 598 nm
  • these glasses can partially transmit the visible region. Therefore, by containing halogen in the glass, a glass that partially transmits not only infrared but also visible region can be obtained.
  • the visible light transmittance improves as the halogen content increases, but there is a concern that the water resistance of the glass decreases as the halogen content increases. Therefore, considering the balance, the halogen content is preferably 10% or less.
  • FIG. 6 shows a transmission spectrum ( ⁇ ) of an atmospheric window from a wavelength of 7.5 ⁇ m to 14 ⁇ m, a black body radiation spectrum ( ⁇ ) of the same temperature as a human body temperature (36 ° C., 309 K), and obtained in Comparative Example 8.
  • the transmission spectrum ( ⁇ ) of the glass and the transmission spectrum ( ⁇ ) of the glass obtained in Example 5 are shown.
  • relative transmission spectra obtained by multiplying the transmission spectrum of Comparative Example 8 and the transmission spectrum of Example 5 by the spectrum of the atmospheric window and the spectrum of black body radiation (Comparative Example 8: ⁇ , Example 5: ⁇ ), respectively. ) Is also shown.
  • the transmission spectrum of each glass shows a spectrum calculated on the assumption that a loss due to reflection can be ignored by depositing an antireflection film on the glass surface.
  • the relative spectrum of infrared rays having a wavelength of 7.5 ⁇ m to 14 ⁇ m that are emitted from humans and pass through the infrared sensor lens made of the above glass through the atmosphere is represented by ⁇ and ⁇ .
  • ⁇ and ⁇ As is clear from FIG. 6, there is a large difference in relative intensity between 11 ⁇ m and 14 ⁇ m. This difference is considered to correspond to the final sensitivity of the infrared sensor lens.
  • the integrated value of the relative intensity of the transmitted light of each glass is calculated to be 226 for the glass of Comparative Example 8 and 296 for the glass of Example 5. It can be seen that the sensitivity of the glass of Example 5 is improved by 30% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明は、カルコゲナイドガラスであって、Geの含有量が低減されており、大気の窓を十分にカバーでき、Se、As等の毒性の高い元素を含まず、しかもモールド成型に適した赤外線透過ガラスを提供する。 本発明は、具体的には、モル濃度で、 Ge:0~2%、 Ga:3~30%、 Sb:10~40%、 S:45~70%、 Sn、Ag、Cu、Te及びCsからなる群から選択される少なくとも1種:3~30%、 Cl、Br及びIからなる群から選択される少なくとも1種:0~30%、 を含有することを特徴とするモールド成形に適した赤外線透過ガラスを提供する。

Description

モールド成型に適した赤外線透過ガラス
 本発明は、モールド成型に適した赤外線透過ガラスに関する。
 セキュリティ、セイフティ等の分野では、防犯、認証機器等として赤外線カメラ、赤外線センサ等が利用されている。これらのセンサには赤外線が使用されており、センサに用いられている光学素子は赤外線を透過する赤外線透過材料から構成されている。より具体的には、「大気の窓」と呼ばれる波長が3~5μm及び8~12μmの赤外線を透過する赤外線透過材料が必要とされている。
 近年、セキュリティ、セイフティ等に対する意識の高まり、社会的要請等から、これらの機器も高性能・小型であり且つ高い汎用性が求められるようになってきている。従って、これらの機器に用いられるセンサについても小型化する必要があり、光学素子も高性能・小型で、その製造工程においては高い生産性が求められている。
 赤外線透過材料としては、例えば、ゲルマニウム(Ge)やセレン化亜鉛(ZnSe)がある。しかしながら、これらの赤外線透過材料は結晶であるため、加工手段は研磨成型に限定される。従って、これらの材料を用いて非球面レンズ、レンズアレイ等の複雑な形状の光学素子を量産することは工程的及びコスト的にも困難である。また、特にゲルマニウムは材料自体が高価であるため、汎用性の高いセンサ等に用いることは容易ではない。
 これに対して、結晶でない赤外線透過材料として、S、Se、Te、As等を主成分としたカルコゲナイドガラスがあり、光学素子の量産に有利となるモールド成型に適したガラスや高いガラス形成能を有するものが各種提案されている(非特許文献1など)。しかしながら、非特許文献1などに開示されているカルコゲナイドガラスにはSe、As等の毒性の高い元素が多く含まれており、安全性の点で懸念がある。
 また、特許文献1には、赤外線エネルギーの波長に対し低分散性のガラスを形成するための予め選択された量で周期表の第III、V、VI及びVII族から選択された2種類以上の材料からなる赤外線透過ガラスが開示されている。しかしながら、特許文献1の実施例では安全性に懸念があるSeを含むガラスのみが具体的に開示されており、更にVI族のSを含むガラスについて具体的な組成は全く記載されていない。
 上記懸念を改善するために、特許文献2には、「モル濃度で、Ge:2~22%、Sb及びBiからなる群から選択される少なくとも1種:6~34%、Sn:1~20%、S、Se及びTeからなる群から選択される少なくとも1種:58~70%を含有する、モールド成型用赤外線透過ガラス。」が開示されている。特許文献2のGe-Sb-Sn-S系ガラスによれば、Se、As等の毒性の高い元素を含むことなくモールド成型に適した赤外線透過ガラスが得られる(請求項1、発明の効果等)。
 しかしながら、特許文献2の赤外線透過ガラスは長波長側の赤外線透過限界波長が11μm程度であり、大気の窓を十分にカバーできていない点で改善の余地がある。
 また、本願に関連する先行文献として非特許文献2~4があるが、これらの文献はGa-Sb-S系の3成分ガラスについて開示しているに過ぎず、他の成分を添加して4成分以上のガラスとすることやその効果については何ら記載されていない。
特開昭59-69444号公報 特許第5339720号公報
"Non-Crystalline Chalcogenides", Kluwer Academic Publishers,  (Dordrecht) (2000) Mat. Res. Bull., 28 (1993) pp.399-405 J. Non-Cryst. Solids, 351 (2005) pp.130-135 Thin Solid Films, 457 (2004) pp.253-257
 本発明は、カルコゲナイドガラスであって、Geの含有量が低減されており、大気の窓を十分にカバーでき、Se、As等の毒性の高い元素を含まず、しかもモールド成型に適した赤外線透過ガラスを提供することを主な目的とする。
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定組成のカルコゲナイドガラスが上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記のモールド成型に適した赤外線透過ガラスに関する。
1.モル濃度で、
 Ge:0~2%、
 Ga:3~30%、
 Sb:10~40%、
 S:45~70%、
 Sn、Ag、Cu、Te及びCsからなる群から選択される少なくとも1種:3~30%、
 Cl、Br及びIからなる群から選択される少なくとも1種:0~30%、
を含有することを特徴とするモールド成形に適した赤外線透過ガラス。
2.Cl、Br及びIからなる群から選択される少なくとも1種のハロゲン元素とCsとを含有し、当該ハロゲン元素のモル濃度が3~20%である、上記項1に記載の赤外線透過ガラス。
3.ClとBrとの合計モル濃度は、AgとCuとCsとの合計モル濃度以下である、上記項1又は2に記載の赤外線透過ガラス。
4.Se及びAsを含有しない、上記項1~3のいずれかに記載の赤外線透過ガラス。
5.波長が3~13μmの赤外線を透過する、上記項1~4のいずれかに記載の赤外線透過ガラス。
6.更に可視域の一部を透過する、上記項2~5のいずれかに記載の赤外線透過ガラス。
7.結晶化温度(Tc)とガラス転移温度(Tg)との差(△T)が230K以上である、上記項1~6のいずれかに記載の赤外線透過ガラス。
8.600℃まで加熱した場合において結晶化が認められない、上記項1~6のいずれかに記載の赤外線透過ガラス。
9.モールド成型により球面レンズ、非球面レンズ、レンズアレイ、マイクロレンズアレイ又は回折格子を作製するための、上記項1~8のいずれかに記載の赤外線透過ガラス。
 本発明の赤外線透過ガラスは、波長が3~13μmの赤外線を透過する点で大気の窓を十分にカバーすることができることに加えて、Geの含有量が低減されている点でコストの点で有利であり、しかもSe、As等の毒性の高い元素を含む必要がない点で安全性も向上している。また、結晶でないカルコゲナイドガラスである点でモールド成型に適しており、非球面レンズ、レンズアレイ等の複雑な形状の光学素子であってもモールド成型により簡便に赤外線透過性を有する光学素子を作製することができる。
実施例3、実施例5及び比較例7で得た内容物のX線回折パターンである。 実施例3、実施例5及び比較例8で得たガラス試料の可視域及び赤外域における透過スペクトルを示す図である。 実施例16、実施例17及び実施例18で得たガラス試料の赤外域における透過スペクトルを示す図である。図中、網掛け部分は大気の透過率(大気の窓)である。 比較例3及び実施例19~21で得られたガラスの△Tの変化を示す図である。 比較例3、実施例20-1及び実施例21-1で得られたガラスの短波長側透過スペクトルを示す図である。 波長7.5μmから14μmまでの大気の窓の透過スペクトル(△)、人間の体温(36℃,309K)と同じ温度の黒体輻射のスペクトル(▲)比較例8で得られたガラスの透過スペクトル(□)及び実施例5で得られたガラスの透過スペクトル(○)、並びに、比較例8の透過スペクトル及び実施例5の透過スペクトルにそれぞれ大気の窓のスペクトルと黒体輻射のスペクトルを乗じて得た相対的な透過スペクトル(比較例8:■、実施例5:●)を示す図である。
 以下、本発明の赤外線透過ガラスについて説明する。
 本発明の赤外線透過ガラスは、カルコゲナイドガラスであって、モル濃度で、
 Ge:0~2%、
 Ga:3~30%、
 Sb:10~40%、
 S:45~70%、
 Sn、Ag、Cu、Te及びCsからなる群から選択される少なくとも1種:3~30%、
 Cl、Br及びIからなる群から選択される少なくとも1種:0~30%、
を含有することを特徴とする。
 上記組成を有する本発明の赤外線透過ガラスは、波長が3~13μmの赤外線を透過する点で大気の窓を十分にカバーすることができることに加えて、Geの含有量が低減されている点でコストの点で有利であり、しかもSe、As等の毒性の高い元素を含む必要がない点で安全性も向上している。また、結晶でないカルコゲナイドガラスである点でモールド成型に適しており、非球面レンズ、レンズアレイ等の複雑な形状の光学素子であってもモールド成型により簡便に赤外線透過性を有する光学素子を作製することができる。
 以下、本発明の赤外線透過ガラスの各成分について説明する。多成分系ガラス材料においては、各成分が相互に影響してガラス材料の固有の特性を決定するため、各成分の量的範囲を各成分の特性に応じて論じることは必ずしも妥当ではないが、以下に本発明の赤外線透過ガラスの各成分の量的範囲を規定した根拠を述べる。
 本発明のモールド成型用赤外線透過ガラスは、モル濃度(=含有量)で、
 Ge:0~2%、
 Ga:3~30%、
 Sb:10~40%、
 S:45~70%、
 Sn、Ag、Cu、Te及びCsからなる群から選択される少なくとも1種:3~30%、
 Cl、Br及びIからなる群から選択される少なくとも1種:0~30%、を含む。
 Geは、一般にガラスの網目構造を形成する元素として知られているが、本発明では必須成分ではなく、含有する場合には2%以下とすることが好ましく、2%未満とすることがより好ましく、0%(含まない)であることが最も好ましい。Geの含有量を2%以下とすることにより、赤外線透過限界波長を長波長側にシフトすることができ、大気の窓を十分にカバーした赤外線透過ガラスを確保することができる。Geの含有量が2%を超える場合には、大気の窓を十分にカバーした赤外線透過ガラスを確保することができないばかりでなくコストの点で不利になるため本発明では上限値を2%に規定している。
 Gaはガラスの網目構造を形成する役割がある。含有量は3~30%であればよいが、4~20%が好ましい。含有量が3%未満又は30%を超える場合には、結晶化するおそれがある。
 Sbはガラスの網目構造を形成すると同時にGaが形成する網目構造を安定化する役割がある。含有量は10~40%であればよいが、20~40%が好ましい。含有量が10%未満又は40%を超える場合には、結晶化するおそれがある。
 Sはガラスの骨格構造を形成する元素役割がある。含有量は45~70%であればよいが、50~70%が好ましい。含有量が40%未満又は70%を超える場合には、モールド成型性が低下するおそれがある。
 Sn、Ag、Cu、Te及びCsからなる群から選択される少なくとも1種はガラスの熱安定性を向上させる役割がある。含有量(合計量)は3~30%であればよいが、4~20%が好ましい。含有量(合計量)が3%未満又は30%を超える場合には、モールド成形性が低下するおそれがある。
 Cl、Br及びIからなる群から選択される少なくとも1種は一般にガラスの熱安定性を向上させる役割があると知られているが、本発明では必須成分ではなく、含有する場合には3成分の合計量を30%以下とし、10%以下とすることが好ましい。これらの含有量(合計量)が増加するとガラスの耐水性が低下するおそれがあるからである。含有する場合の3成分の合計量の下限値は2%程度である。
 本発明の赤外線透過ガラスは、好ましい実施態様ではCl、Br及びIからなる群から選択される少なくとも1種のハロゲン元素とCsとを含有し、ハロゲン元素の含有量が3~20%であることが好ましい。この中でも、ハロゲン元素の含有量は4~8%であることがより好ましい。
 Cl、Br及びIの少なくとも1種のハロゲン元素とCsとを必須成分とし、ハロゲン元素の含有量が3~20%であることにより、赤外線透過ガラスが短波長側において可視域の一部(0.5~0.75μm程度)に透過領域を確保することができる。可視域の一部を透過することにより、本発明の赤外線透過ガラスを用いた光学素子のアライメント調整を容易化できる。
 なお、本発明の赤外線透過ガラスは、好ましい実施態様ではClとBrとの含有量(合計量)は、AgとCuとCsとの含有量(合計量)以下であることが好ましい。このように含有量を調整することにより、耐水性の低下を防ぐことができる。
 本発明の赤外線透過ガラスは、上記成分以外に必要に応じて、Ba、Ta、W、In、Bi等を含んでもよい。これらの成分の含有量(合計量)は限定的ではないが、0~10%が好ましく、1~5%がより好ましい。これらの元素の添加理由は限定されないが、例えば、ガラスを形成し易くする目的で添加する。
 本発明の赤外線透過ガラスは、Se、As等の毒性の高い元素を含む必要がなく、これらの元素を含む従来の赤外線透過ガラスに比して安全性が向上している。
 本発明の赤外線透過ガラスの赤外線透過性能は、波長が3~13μmの赤外線を透過する点で大気の窓を十分にカバーすることができる。より具体的には、長波長側の赤外線透過限界波長が12.9~13.5の範囲である。なお、本明細書における赤外線透過限界波長は、厚さ1mmのガラス試料を用いて測定した透過スペクトルのうち、最高の透過率の半分になる波長で定めた長波長側の赤外線透過限界波長を意味する。
 本発明の赤外線透過ガラスは、波長が3~13μmの赤外線の平均透過率が40~60%程度である。そのため、長波長側の赤外線透過限界波長が11μm程度である従来品の赤外線透過ガラスと比較して本発明の赤外線透過ガラスを用いた光学素子はより小型化を達成することができる。また、上記の通り、Cl、Br及びIの少なくとも1種のハロゲン元素とCsとを含み、ハロゲン元素の含有量が3~20%である場合には、更に可視域の一部を透過する特性を付与することができる。
 本発明の赤外線透過ガラスは、ガラス転移温度Tgは220~260℃程度が好ましく、結晶化が起こる場合は、結晶化温度Tcは300℃以上が好ましく、380℃以上がより好ましい。結晶化温度Tcの上限値としては限定的ではないが600℃程度である。
 また、△T(K)=Tc-Tgで表される熱的安定性△Tは50K以上である。ここで、△Tが大きいほどガラスは熱的安定性が高くモールド成形性が良好であることを意味し、△Tが200K以上である場合にはモールド成形性は極めて高いといえる。本発明のガラスは好適な実施態様では△Tが230K以上であり、従来の典型的なGe-Sb-S系ガラス(後述の比較例8)と比べてモールド成形性が向上している。結晶化が起こる場合における△Tの上限としては500K程度であるが、後述の実施例の結果も考慮した上で、240~350K、又は246~350Kを好適な範囲と位置付けることができる。
 本発明の赤外線透過ガラスは、好適な実施態様では600℃まで加熱した場合において結晶化が認められない態様も含まれる。600℃まで加熱した場合にはガラス自体が溶融する可能性があるため、600℃まで加熱した場合に結晶化が認められない態様は非常にモールド成形性が高く従来品に比した優位性がある。
 本発明の赤外線透過ガラスの製造方法は限定されないが、例えば、石英アンプル内に各成分の原料を所定量封入し、熱処理により内容物をガラス化させることにより製造できる。
 原料としてはGe,Ga,Sb,S,Sn,Ag,Cu,Te,Br,I等の単体、Ga,GaTe,Sb,SbTe,SnS,SnTe,AgS,AgTe,CuS,CuTe等のカルコゲン化物、AgCl,AgBr,AgI,CuCl,CuBr,CuI,CsCl,CsBr,CsI等のハロゲン化物が挙げられる。これらの原料は、2種以上を任意に組み合わせて使用できる。
 上記製造方法により製造する際は、使用する石英アンプルは真空乾燥機により十分に内部を乾燥させることが好ましい。また、ガラス化の際は、500~1000℃で加熱することが好ましく、700~950℃で加熱することがより好ましい。熱処理時間は内容物が十分にガラス化される時間であれば良いが、一般に3~48時間が好ましく、6~24時間がより好ましい。
 本発明のモールド成型用赤外線透過ガラスはモールド成型性が高い。モールド成型する際には、前記ガラスを軟化点付近まで加熱し、例えば、上型と下型とで挟み込んで熱プレスすることにより所望の形状に成型する。成型に要する加熱温度は限定的ではないが、屈伏点より10~70℃程度高い温度が好ましく、屈伏点より20~50℃程度高い温度がより好ましい。
 モールド成型により作製する光学素子としては限定されないが、例えば、赤外線を透過する性質が求められる、非球面レンズ、レンズアレイ、マイクロレンズアレイ、回折格子等が挙げられる。これらは、赤外線を用いた各種センサに用いられる光学素子として有用である。本発明の赤外線透過ガラスは、従来のGe-Sb-S系ガラスの典型例(後述する比較例8のガラス)と比較して、好ましい実施態様では赤外線センサー用レンズとしての感度が30%以上向上することが確認されている。
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
 実施例1~10及び比較例1~8
(赤外線透過ガラスの作製及び得られたガラスの評価)
 石英アンプルを用意し、内部を精製水で洗浄した。次にロータリー真空ポンプを作動させて真空下で石英アンプルをバーナーで熱して水分を蒸発させた。次に下記表1に示される組成となるように各成分の原料を混合して石英アンプル内部に入れ、ロータリー真空ポンプでアンプル内部を十分に真空にした後、H-Oバーナーを用いて封管した。
 封管した石英アンプルを20℃/時間の昇温速度で950℃まで昇温後、同温度で8時間保持した。次に室温まで自然冷却して内容物をガラス化させた。
 内容物がガラス化されていることを確認するために、X線回折装置を用いて内容物のXRD測定を行った。その結果、実施例1~10、比較例1~3及び比較例8の内容物はガラス化していた。他方、比較例4~7の内容物はガラス化しておらず結晶が生成していた。ガラス化したものを○とし、ガラス化していないものを×とし、表1に示す。
 図1に、実施例3(Ga13Sb2455Csl4)、実施例5(GaSb3357Sn)及び比較例7(GaSb3353Sn12)で得た内容物のX線回折パターンを示す。
 次にガラス化された内容物(以下「ガラス試料」という)について、ガラス転移温度、結晶化温度及び透過限界波長を測定し、結果を表1に示した。
 図2に、実施例3(Ga13Sb2455Csl4)、実施例5(GaSb3357Sn)及び比較例8(Ge12Sb2358CsCl)で得たガラス試料の可視域及び赤外域における透過スペクトルを示す。図2の結果から明らかな通り、比較例8のガラス試料と比べて、実施例3及び実施例5のガラス試料は、長波長側の透過限界波長がより長波長側にシフトしており、大気の窓を十分にカバーできていることが分かる。また、実施例3のガラス試料は、ハロゲンとCsとを含有することにより可視域の一部に透過領域が確保されていることが分かる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
〔表1中、1)~3)の意味は次の通りである。
1)○:ガラス化、×:ガラス化せず
2)△T=結晶化温度(Tc)-ガラス転移温度(Tg)
3)厚さ1mmのガラス試料を用いて測定した透過スペクトルのうち、最高の透過率の半分になる波長で定めた長波長側の赤外線透過限界波長〕
(赤外透過レンズの作製)
 実施例4のガラス試料を窒素雰囲気中270℃においてモールド成型をし、非球面レンズを作製した。その結果、良好な非球面レンズが作製できた。他の実施例で得られたガラス試料を用いる場合にも、同様に良好な非球面レンズが作製できる。
 実施例11~18
(赤外線透過ガラスの作製及び得られたガラスの評価)
 石英アンプルを用意し、内部を精製水で洗浄した。次にロータリー真空ポンプを作動させて真空下で石英アンプルをバーナーで熱して水分を蒸発させた。次に下記表2に示される組成となるように各成分の原料を混合して石英アンプル内部に入れ、ロータリー真空ポンプでアンプル内部を十分に真空にした後、H-Oバーナーを用いて封管した。
 封管した石英アンプルを20℃/時間の昇温速度で950℃まで昇温後、同温度で8時間保持した。次に室温まで自然冷却して内容物をガラス化させた。
 内容物がガラス化されていることを確認するために、X線回折装置を用いて内容物のXRD測定を行った。その結果、実施例11~18全ての内容物はガラス化していた。
 次にガラス化された内容物(ガラス試料)について、ガラス転移温度、結晶化温度(結晶化の有無の判断も含む)及び透過限界波長を測定し、結果を表2に示した。
 結晶化温度Tcとガラス転移温度Tgの差△Tが大きいほど、ガラスは熱的な安定性が高くモールド成形性が良好であることを意味する。そして、△Tが200Kを超える場合には極めてモールド成形性が高いといえる。例えば、非特許文献(Adv. Mater. 19, 3796~3800 (2007))によれば、△T=124Kのガラスでもガラス転移温度以上の温度で加圧成形(モールド成形)して光学的な特性(透過率)は全く変化しなかったと報告されているため、△Tが200K以上であればモールド成形性は極めて高いといえる。
 実施例11~18で得られたガラスは、結晶化温度が測定される場合は△T>200Kであり、結晶化温度が測定されない場合(実施例13、16及び17)も含まれていた。結晶化温度が測定されない場合とは、600℃まで加熱した実験条件下において結晶化が認められなかった場合を意味する。当該結果から、実施例11~18で得られたガラスは何れも極めてモールド成形性が高いといえる。
 このように、実施例11~18で得られた本発明のガラスは、何れもモールド成形性が良好であり、表1の比較例8に示される従来のGe-Sb-S系ガラスの典型例(△T=224K)と比べても同等又はそれ以上の優れたモールド成形性を有することが分かる。
 実施例17及び18は、実施例16に対してGaの一部をGeに置き換えた例である。
 図3に、実施例16(Ga13Sb2158Sn)、実施例17(Ga12GeSb2158Sn)及び実施例18(Ga10GeSb2159Sn)で得たガラス試料の赤外域における透過スペクトルを示す。図3中、網掛け部分は大気の透過率(大気の窓)であり、実施例16は長波長側において大気の窓をほぼカバーしているが、GaをGeで置換することによって徐々に透過限界波長が短波長にシフトすることが認められる。
 表2から明らかなように、実施例17で得られたガラスは結晶化温度が測定されないが、実施例18で得られたガラスは結晶化温度が測定されて△T=253Kであった。実施例18で得られたガラスは依然として優れたモールド成形性を示しているが、大気の窓のカバー性能を考慮すると、GaをGeで置き換える場合には、Geは2%以下であることが好ましい。
Figure JPOXMLDOC01-appb-T000003
〔表2中、1)~3)の意味は表1と同じである。なお、実施例13、16及び17では結晶化温度は測定されなかった(結晶化が認められなかった)。〕
 比較例3及び実施例19~21
(赤外線透過ガラスの作製及び得られたガラスのハロゲン含有量に関する評価)
 下記組成の赤外線透過ガラスをそれぞれ作製した。ガラスの作製方法は、前述の実施例及び比較例と同じである。
 比較例3(前出と同じ):Ga12Sb2860
 実施例19:Ga12Sb25Cs55(X=Cl,Br,I)
 実施例20:Ga13Sb21Cs50(X=Cl,Br,I)
 実施例21:Ga12Sb17Cs131345(X=Cl,Br,I)
 実施例19~21については、比較例3の組成中のSbとSを、CsとXに置き換えた組成に相当し、ハロゲンはハロゲン化セシウムを原料とした。
 X(ハロゲン)の種類をCl,Br,Iに変えてそれぞれ3種類作製し、実施例19-1(X=Cl)、実施例19-2(X=Br)、実施例19-3(X=I)、実施例20-1(X=Cl)、実施例20-2(X=Br)、実施例20-3(X=I)、実施例21-1(X=Cl)、実施例21-2(X=Br)及び実施例21-3(X=I)とした。なお、実施例20-2は前述の実施例14に相当し、実施例21-1は前述の実施例12に相当するが、ここでは実施例20-2、実施例21-1と表記する。
 比較例3及び実施例19~21で得られたガラスの△Tの変化を図4に示す。
 図4の結果から明らかな通り、X=Clの場合には、Xの含有量が4%のときに比較例3と比べて△Tはやや減少するが、Xの含有量が8%、13%と増えるに従って増加した。X=Brの場合には、Xの含有量が4%、8%と増えるに従って△Tは増加したが、13%ではほぼ一定となった。X=Iの場合には、Xの含有量が4%、8%と増えるに従って△Tは徐々に増加したが、13%では減少した。
 上記の通り、ハロゲンとそれと対をなすカチオンとしてセシウムを加えることによってガラスの熱的安定性が高くなり、モールド成形性が向上する。しかしながら、概ね8~10%を超えるとその効果は小さくなり、これを超えてハロゲンを含有すると却ってガラスの耐水性が低下する懸念がある。従って、ハロゲン含有量は10%以下が好ましい。
 次に、比較例3、実施例20-1及び実施例21-1で得られたガラスの短波長側透過スペクトルを図5に示す。
 図5の結果から明らかな通り、比較例3で得られたガラスの透過限界波長(透過限界波長の意味は表1の注釈と同じ)が700nmであるのに対して、実施例20-1で得られたガラスの透過限界波長は655nm、比較例21-1で得られたガラスの透過限界波長は598nmであり、Cl含有量が増えるに従って透過限界波長は短波長側にシフトした。このような傾向はX=ClだけでなくBr、Iの場合でも同様に得られる。
 ガラスの透過限界波長が655nmや598nmであれば、これらのガラスは可視域を一部透過することが可能である。よって、ガラス中にハロゲンを含有させることによって赤外だけでなく可視域も一部透過するガラスが得られる。この点、ハロゲン含有量が増えるに従って可視光の透過性は向上するが、ハロゲン含有量が増加するとガラスの耐水性が低下する懸念がある。従って、バランスを考慮するとハロゲン含有量は10%以下であることが好ましい。
 試験例1
(実施例5及び比較例8で作製されたガラスの赤外線センサー用レンズとしての感度)
 図6には、波長7.5μmから14μmまでの大気の窓の透過スペクトル(△)、人間の体温(36℃,309K)と同じ温度の黒体輻射のスペクトル(▲)比較例8で得られたガラスの透過スペクトル(□)及び実施例5で得られたガラスの透過スペクトル(○)が示されている。また、比較例8の透過スペクトル及び実施例5の透過スペクトルにそれぞれ大気の窓のスペクトルと黒体輻射のスペクトルを乗じて得た相対的な透過スペクトル(比較例8:■、実施例5:●)が併せて示されている。但し、各ガラスの透過スペクトルは、ガラス表面に反射防止膜を蒸着し、反射による損失が無視できるとして算出されたスペクトルを示している。
 人間から放出され、大気中を透って上記各ガラスで作製された赤外線センサー用レンズを透過した波長7.5μmから14μmまでの赤外線の相対的なスペクトルは、■と●で表される。図6から明らかなように、11μmから14μmの間で相対強度に大きな差が認められる。この差は赤外線センサー用レンズとしての最終的な感度に対応すると考えられる。厳密には赤外線センサーの検出器の感度の波長依存性にも依るが、各ガラスの透過光の相対強度の積分値は、比較例8のガラスが226、実施例5のガラスが296と算出され、実施例5のガラスの方が30%以上感度が向上することが分かる。
1.波長7.5μmから14μmまでの大気の窓の透過スペクトル
2.人間の体温(36℃,309K)と同じ温度の黒体輻射のスペクトル
3.比較例8で得られたガラスの透過スペクトル
4.実施例5で得られたガラスの透過スペクトル
5.比較例8の透過スペクトルに大気の窓のスペクトルと黒体輻射のスペクトルをかけた相対的な透過スペクトル
6.実施例5の透過スペクトルにそれぞれ大気の窓のスペクトルと黒体輻射のスペクトルを乗じて得た相対的な透過スペクトル

Claims (9)

  1.  モル濃度で、
     Ge:0~2%、
     Ga:3~30%、
     Sb:10~40%、
     S:45~70%、
     Sn、Ag、Cu、Te及びCsからなる群から選択される少なくとも1種:3~30%、
     Cl、Br及びIからなる群から選択される少なくとも1種:0~30%、
    を含有することを特徴とするモールド成形に適した赤外線透過ガラス。
  2.  Cl、Br及びIからなる群から選択される少なくとも1種のハロゲン元素とCsとを含有し、当該ハロゲン元素のモル濃度が3~20%である、請求項1に記載の赤外線透過ガラス。
  3.  ClとBrとの合計モル濃度は、AgとCuとCsとの合計モル濃度以下である、請求項1又は2に記載の赤外線透過ガラス。
  4.  Se及びAsを含有しない、請求項1~3のいずれかに記載の赤外線透過ガラス。
  5.  波長が3~13μmの赤外線を透過する、請求項1~4のいずれかに記載の赤外線透過ガラス。
  6.  更に可視域の一部を透過する、請求項2~5のいずれかに記載の赤外線透過ガラス。
  7.  結晶化温度(Tc)とガラス転移温度(Tg)との差(△T)が230K以上である、請求項1~6のいずれかに記載の赤外線透過ガラス。
  8.  600℃まで加熱した場合において結晶化が認められない、請求項1~6のいずれかに記載の赤外線透過ガラス。
  9.  モールド成型により球面レンズ、非球面レンズ、レンズアレイ、マイクロレンズアレイ又は回折格子を作製するための、請求項1~8のいずれかに記載の赤外線透過ガラス。
PCT/JP2016/060776 2015-03-31 2016-03-31 モールド成型に適した赤外線透過ガラス WO2016159289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/561,725 US10414687B2 (en) 2015-03-31 2016-03-31 Infrared-transmitting glass suitable for mold forming
JP2017510217A JP6661611B2 (ja) 2015-03-31 2016-03-31 モールド成型に適した赤外線透過ガラス
EP16773169.4A EP3279156B1 (en) 2015-03-31 2016-03-31 Infrared-transmitting glass suitable for mold forming
IL254704A IL254704B (en) 2015-03-31 2017-09-26 Glass that transmits infrared light suitable for creating a pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-072911 2015-03-31
JP2015072911 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159289A1 true WO2016159289A1 (ja) 2016-10-06

Family

ID=57004786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060776 WO2016159289A1 (ja) 2015-03-31 2016-03-31 モールド成型に適した赤外線透過ガラス

Country Status (5)

Country Link
US (1) US10414687B2 (ja)
EP (1) EP3279156B1 (ja)
JP (1) JP6661611B2 (ja)
IL (1) IL254704B (ja)
WO (1) WO2016159289A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137204A (ja) * 2016-02-02 2017-08-10 日本電気硝子株式会社 赤外線透過ガラス
CN108205194A (zh) * 2017-12-13 2018-06-26 北京华航无线电测量研究所 一种基于球形同心主镜的可见光与红外复合系统
JP2020045265A (ja) * 2018-09-21 2020-03-26 国立大学法人京都工芸繊維大学 赤外線透過ガラス
WO2020153435A1 (ja) 2019-01-25 2020-07-30 株式会社五鈴精工硝子 可視光から遠赤外光の波長領域の光線を透過するガラス材料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6938864B2 (ja) * 2016-07-20 2021-09-22 日本電気硝子株式会社 赤外線透過性レンズの製造方法
CN109320093B (zh) * 2018-11-16 2021-08-27 宁波大学 一种透明微晶玻璃材料及其制备方法
CN112811816B (zh) * 2021-01-07 2022-08-05 宁波大学 一种高稳定的全谱段透明红外硫系玻璃材料及其制备方法
CN116282914B (zh) * 2023-03-14 2023-08-15 杭州长波红外科技有限公司 一种长波红外传输硫化物玻璃及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028256A1 (fr) * 1997-11-27 1999-06-10 Universite Rennes 1 Verres a base de chalcogenures, leur preparation et leur application
JP2002274882A (ja) * 2001-03-16 2002-09-25 National Institute Of Advanced Industrial & Technology 遷移金属含有カルコゲン化物ガラス発光体
JP2009161374A (ja) * 2007-12-28 2009-07-23 Isuzu Seiko Glass Kk モールド成型用赤外線透過ガラス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492763A (en) 1982-07-06 1985-01-08 Texas Instruments Incorporated Low dispersion infrared glass
US7767604B2 (en) * 2008-04-29 2010-08-03 Corning Incorporated Ga—P—S glass compositions
US9533912B2 (en) * 2011-07-01 2017-01-03 Corning Incorporated Chalcogenide glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028256A1 (fr) * 1997-11-27 1999-06-10 Universite Rennes 1 Verres a base de chalcogenures, leur preparation et leur application
JP2002274882A (ja) * 2001-03-16 2002-09-25 National Institute Of Advanced Industrial & Technology 遷移金属含有カルコゲン化物ガラス発光体
JP2009161374A (ja) * 2007-12-28 2009-07-23 Isuzu Seiko Glass Kk モールド成型用赤外線透過ガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279156A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137204A (ja) * 2016-02-02 2017-08-10 日本電気硝子株式会社 赤外線透過ガラス
CN108205194A (zh) * 2017-12-13 2018-06-26 北京华航无线电测量研究所 一种基于球形同心主镜的可见光与红外复合系统
CN108205194B (zh) * 2017-12-13 2020-07-17 北京华航无线电测量研究所 一种基于球形同心主镜的可见光与红外复合系统
JP2020045265A (ja) * 2018-09-21 2020-03-26 国立大学法人京都工芸繊維大学 赤外線透過ガラス
JP7083466B2 (ja) 2018-09-21 2022-06-13 国立大学法人京都工芸繊維大学 赤外線透過ガラス
WO2020153435A1 (ja) 2019-01-25 2020-07-30 株式会社五鈴精工硝子 可視光から遠赤外光の波長領域の光線を透過するガラス材料

Also Published As

Publication number Publication date
IL254704A0 (en) 2017-11-30
EP3279156A4 (en) 2018-10-31
US10414687B2 (en) 2019-09-17
IL254704B (en) 2020-08-31
EP3279156B1 (en) 2019-11-20
JP6661611B2 (ja) 2020-03-11
JPWO2016159289A1 (ja) 2018-02-01
EP3279156A1 (en) 2018-02-07
US20180099898A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2016159289A1 (ja) モールド成型に適した赤外線透過ガラス
JP5339720B2 (ja) モールド成型用赤外線透過ガラス
JP6806078B2 (ja) 光学ガラス
Masuno et al. High refractive index of 0.30 La2O3–0.70 Nb2O5 glass prepared by containerless processing
KR102267522B1 (ko) 근적외선, 중적외선, 및 원적외선 스펙트럼의 광을 투과하는 렌즈를 위한 색 수차 및 열 광학 수차의 보정용 유리
JP6804030B2 (ja) 赤外線透過ガラス
TWI391360B (zh) 鎵磷硫組成物
WO2017168939A1 (ja) ガラス及びガラスの製造方法並びに光学素子
CN103848570B (zh) 一种高折射率中红外光学玻璃及其制备方法
JP6709499B2 (ja) 赤外線透過ガラス
EP3932883B1 (en) Infrared-transmitting glass
JP6819920B2 (ja) カルコゲナイドガラス
JPWO2020066928A1 (ja) 赤外線透過ガラス
JP6788816B2 (ja) 赤外線透過ガラス
JP7083466B2 (ja) 赤外線透過ガラス
JP7058825B2 (ja) 赤外線透過ガラス
CN113302165B (zh) 红外线透射玻璃
JP7402184B2 (ja) 可視光から遠赤外光の波長領域の光線を透過するガラス材料
Huang et al. Crystallization behavior of 70GeS 2–20In 2 S 3–10CsI chalcohalide glass with silver addition
JP7026892B2 (ja) 赤外線透過ガラス
KR20220168578A (ko) 칼코지나이드 유리 조성물 및 이의 성형물을 포함하는 렌즈
CN106495495B (zh) 一种玻璃陶瓷及其制备方法
KR20220083926A (ko) 칼코지나이드 유리 조성물 및 이의 성형물을 포함하는 렌즈
JP2022169294A (ja) 赤外線透過ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510217

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 254704

Country of ref document: IL

Ref document number: 15561725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE