WO2016159274A1 - 生鮮食品の保存方法および生鮮食品用貯蔵システム - Google Patents

生鮮食品の保存方法および生鮮食品用貯蔵システム Download PDF

Info

Publication number
WO2016159274A1
WO2016159274A1 PCT/JP2016/060757 JP2016060757W WO2016159274A1 WO 2016159274 A1 WO2016159274 A1 WO 2016159274A1 JP 2016060757 W JP2016060757 W JP 2016060757W WO 2016159274 A1 WO2016159274 A1 WO 2016159274A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresh food
temperature
fresh
refrigerator
storage
Prior art date
Application number
PCT/JP2016/060757
Other languages
English (en)
French (fr)
Inventor
クアン テイン グエン
延広 杉村
Original Assignee
クアン テイン グエン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアン テイン グエン filed Critical クアン テイン グエン
Priority to JP2017510212A priority Critical patent/JP6151877B2/ja
Publication of WO2016159274A1 publication Critical patent/WO2016159274A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/04Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the present invention relates to a method for preserving plant fresh food and a storage system for fresh food.
  • Non-patent Document 1 ice temperature technology
  • ice temperature technology is defined as storing or processing food in the unfrozen temperature range (ice temperature range).
  • Non-Patent Document 1 the preservation of fresh foods in the ice temperature range can be preserved at 0 ° C. or lower without freezing the cells, so that the quality of thawed fresh foods that can be preserved for a longer period than refrigeration.
  • the effect of improving the taste such as umami and sweetness of fresh foods has been confirmed. This is thought to be because the cells self-defend the freezing point and prevent freezing death by degrading the starch and proteins inside and changing them into sugars and amino acids.
  • Non-Patent Document 1 the lower limit temperature in an unfrozen state where the internal temperature of fresh food (hereinafter referred to as “product temperature”) has reached the “break point”, the supercooling temperature from the freezing point to the break point The region is called “super ice temperature (registered trademark)”, and it has been confirmed that cells of fresh food can maintain an unfrozen state (supercooled state) to some extent even below the freezing point. Furthermore, according to Non-Patent Document 2, there has been reported an attempt to repeat the super ice temperature and the ice temperature to keep the vegetable (green onion) fresh for a longer time and to further improve the taste of the vegetable.
  • the present invention has been made in view of such problems, and a method for preserving fresh food that can be stored in large quantities for a long period of time and can be systematically shipped, and for fresh food. It aims to provide a storage system.
  • the fresh food is continuously cooled in a refrigerator so that the temperature of the fresh food becomes a predetermined supercooling temperature lower than the freezing point of the fresh food, and the cells of the fresh food are destroyed.
  • a method for preserving fresh food that raises the product temperature above the freezing point prior to the start of quality degradation predicted to occur.
  • a refrigerator provided with a temperature sensor for measuring the temperature of stored fresh food is provided.
  • the present invention it becomes possible to store a large amount for a long period of time without degrading the freshness of all plant-based fresh foods and to ship them systematically. As a result, it becomes possible to cope with social problems such as rising prices of fresh foods and food difficulties caused by a decrease in the production volume and yield due to climate change, mass consumption, pollution, etc.
  • the present invention is suitable for long-term storage of fresh food with stable quality because it is based on the freezing point and breakage point of the fresh food to be stored. For example, it is suitable for long-term preservation of vegetables of stable quality cultivated in the same plant factory.
  • the quality is different if different, for example, fresh food harvested in a relatively narrow production area such as production on the same farmland by the same producer, the quality is almost uniform, so the present invention is a vegetable property of outdoor cultivation It is also effective for preserving fresh food.
  • the preservation method of the fresh food of the present invention is effective even for plant fresh food with little variation in quality (particularly freezing point and breaking point) even if there are some differences in production conditions. Furthermore, if the freezing point and the breaking point are approximated, it is possible to store a plurality of fresh foods of different varieties in the same refrigerator and apply the storage method of the present invention.
  • FIG. 4 It is a block diagram which shows an example of the storage warehouse for fresh food of this invention (Embodiment 4).
  • (A) to (D) are graphs showing changes in product temperature of frill lettuce in supercooled storage with product temperatures maintained at ⁇ 2 ° C., ⁇ 3 ° C., ⁇ 4 ° C. and ⁇ 5 ° C. (Example 1) .
  • (A) to (C) are graphs showing the start of frill lettuce quality degradation and the change in color density of specific colors in supercooled storage where the product temperature is maintained at ⁇ 3 ° C. (Example 2).
  • (A) to (C) are graphs showing changes in the number of colors of frill lettuce in supercooled storage where product temperatures are maintained at ⁇ 2 ° C., ⁇ 3 ° C.
  • Example 10 is a graph showing a cooling line for lettuce in Example 7. It is a graph which shows the temperature change in the refrigerator in Example 7. It is a graph which shows the relationship between the storage method in Example 7, and the weight decreasing rate of a frill lettuce. It is a graph which shows the relationship between the storage method in Example 7, and the sugar content of a frill lettuce. It is a graph which shows the relationship between the storage method in Example 8, and the weight decreasing rate of a strawberry. It is a graph which shows the relationship between the storage method in Example 8, and the sugar content of a strawberry.
  • the fresh food is continuously cooled in a refrigerator so that the temperature of the fresh food becomes a predetermined supercooling temperature lower than the freezing point of the fresh food.
  • the temperature of the product is raised above the freezing point before the start point of quality degradation predicted to be destroyed.
  • the fresh food targeted by the preservation method of the present invention is a vegetable fresh food containing vegetables and fruits.
  • the vegetable fresh food includes the following vegetables and fruits.
  • Vegetables include root vegetables including turnips, quills, burdock, radish, bamboo shoots, carrots, beets, yacon and lotus roots, shallots, sweet potatoes, taros, potatoes, onions, garlic, yams, lilies and earthenware, Ashitaba , Asparagus, artichoke, okajiji, mustard, cauliflower, cabbage, cucumber rhinoceros, watercress, komatsuna, kohlrabi, shungiku, celery, quasai, chicory, chingensai, tsurumasaki, trevis, nabana, leek, leek, Chinese cabbage, parsley, burdock, chard
  • Leaf and stem vegetables including broccoli, spinach, mizuna, honey bee, sprouts, moroheiya, arugula, rhubarb and lettuce, cucumber, okra, pumpkin,
  • Fruits include akebi, acerola, avocado, apricot, strawberry, fig, ume, mandarin orange, oyster, karin, kiwifruit, kiwano, chestnut, guava, grapefruit, cherry, pomegranate, watermelon, star fruit, plum, pear , Cherimoya, chinese pear, dragon fruit, durian, japanese pear, nectarine, banana, pineapple, passion fruit, papaya, loquat, grape, blueberry, prune, blueberry, quince, mangosteen, mango, melon, peach, lychee, apple and lemon Is included.
  • the method for preserving fresh food of the present invention may be configured as follows, or may be combined as appropriate.
  • the fresh food is a vegetable fresh food
  • a harvesting process for harvesting a plurality of plant fresh foods of the same variety within a predetermined time from the same harvest start time, and for monitoring to be monitored among the plurality of plant fresh foods harvested in this harvesting process Including a separate storage process for storing fresh foods at room temperature and above the freezing point.
  • the temperature of the fresh food for monitoring as a sample stored in the supercooled region is destroyed and the product temperature rises, and the color density change of a specific color changes by a predetermined amount or more.
  • the fresh food is a vegetable fresh food
  • a harvesting process for harvesting a plurality of plant fresh foods of the same variety within a predetermined time from the same harvest start time, and a target to be monitored among the plurality of plant fresh foods before harvesting before this harvesting process Including a separate harvesting and preservation step of pre-harvesting fresh food for monitoring and preserving it from room temperature to a product temperature above the freezing point;
  • a plurality of plant fresh foods including the monitored fresh food are accommodated in the refrigerator and cooled so that the product temperature becomes the predetermined supercooling temperature, and the state change of the monitored fresh food You may make it estimate the start time of the said quality fall on the basis of the time which could be confirmed.
  • the method (3) also causes cell destruction of fresh food for monitoring to occur earlier than cell destruction of fresh food for distribution, and observes changes in product temperature and / or color density at the time of cell destruction. It is possible to predict the start point of quality decline of fresh food for distribution. Details will be described later in a third embodiment.
  • the state change of the fresh food may include at least one of a change in product temperature and a change in color density. In this way, it is easy to predict the start point of quality degradation and the accuracy of the prediction because the cell temperature is confirmed by observing changes in the temperature or / and color density of fresh food stored in the supercooled area. It becomes easy to improve.
  • the first cooling step and the second cooling step are repeated, and the first cooling step after the second time based on the information of the start point of the quality deterioration obtained during the first first cooling step.
  • the period may be determined. In this way, it is possible to maintain the freshness for a longer period of time, and it becomes easy to control the timing of the first cooling process and the second cooling process after the second time.
  • the fresh food may be a vegetable produced in a plant factory. Vegetables produced in plant factories are stable in quality, so that further taste enhancement, long-term mass storage and planned shipment can be performed stably throughout the year.
  • a fresh food storage system used in the method for preserving fresh food.
  • a refrigerator provided with a temperature measuring unit for stored fresh food is provided.
  • a first storage chamber having a first carry-in port that can be opened and closed and a first carry-out port, a second carry-in port that can be opened and closed connected to the first carry-out port, and a first
  • a second storage chamber having two outlets, a refrigeration cycle system capable of individually cooling the inside of the first storage chamber and the second storage chamber, and a control unit
  • the controller controls the refrigeration cycle system so that the temperature of the fresh food stored in the first storage chamber is 0 ° C. to a temperature equal to or higher than the freezing point of the fresh food, and is stored in the second storage chamber.
  • a fresh food storage is provided that controls the refrigeration cycle system so that the fresh food has a predetermined supercooling temperature lower than the freezing point of the fresh food.
  • a refrigerator having a plurality of storage chambers that can be individually set in temperature, and a temperature sensor that measures the temperature of a sample of fresh food stored in the plurality of storage chambers. And a recording unit that records product temperature data from the temperature sensor, and is configured to individually set the temperature in the plurality of storage chambers so that the product temperature of the sample in each storage chamber can be measured simultaneously.
  • a data collection device is provided.
  • FIG. 1 is a diagram for explaining the concept of the method for preserving fresh food of the present invention
  • FIG. 2 is a block diagram showing a storage system used in Embodiment 1 of the method for preserving fresh food of the present invention.
  • FIG. 1 has two upper and lower graphs, and the upper graph in FIG. 1 represents changes in product temperature when vegetable fresh food is stored in a supercooled region.
  • the start point of quality deterioration of fresh food stored in the supercooling region in the first cooling step is predicted, and the product before the start point of quality deterioration comes.
  • the temperature is raised from 0 ° C. to the freezing point, transferred to the second cooling step, stored for a predetermined time, returned to the first cooling step, and then returned to the second cooling step again before the start of quality degradation.
  • the first cooling step and the second cooling step are repeated. Thereby, long-term preservation of fresh food and improvement of taste can be realized.
  • the process proceeds to the second cooling step.
  • This prediction method can be realized by the storage system S1 for fresh food shown in FIG.
  • the fresh food storage system S1 includes a temperature-adjustable refrigerator 1 for cooling the vegetable fresh food F, a temperature sensor 2 for measuring the product temperature of the fresh food F in the refrigerator 1, and the temperature sensor 2 And a control unit 4 capable of controlling the temperature in the refrigerator 1 based on the temperature signal.
  • the refrigerator 1 has a refrigerator main body 1a, a refrigerator 1b, and a duct 1c that sends cold air 1c 1 having a predetermined temperature generated by the refrigerator 1b to the inside of the refrigerator main body 1a.
  • Cold air 1c 1 having a predetermined temperature is sent out uniformly into the cabinet body 1a.
  • refrigerator 1b is configured to adjust the temperature of the cool air 1c 1 for generating on the basis of a control signal from the control unit 4.
  • a shelf 1a 1 is provided inside the refrigerator main body 1a so that fresh food F can be stored in a plurality of stages. For example, a plurality of fresh foods are packed into the storage case C one by one and stored in the shelf 1a 1 . Stored.
  • a needle-shaped thermocouple capable of measuring the product temperature (internal temperature) of the fresh food F can be used.
  • a needle-like thermocouple temperature sensor S
  • the detected temperature signal is controlled by the control unit 4 to send.
  • the control unit 4 controls the control unit 4 to send.
  • the control unit 4 sets the temperature of the fresh food F to a temperature between 0 ° C. and the freezing point before the start of the predicted deterioration of the fresh food F during the first first cooling step (supercooled storage).
  • the second cooling process mode for controlling the temperature in the refrigerator 1 so as to increase the temperature of the fresh food to a predetermined supercooling temperature lower than the freezing point when a predetermined time has elapsed from the start of the second cooling process. 1 is configured to be switched to a first cooling process mode for controlling the temperature inside.
  • the prediction of the start of quality degradation of fresh food F during supercooled storage is based on the following data on fresh food F collected in the data collection process prior to the first first cooling process.
  • the amount of change in the color density change of the specific color of the frill lettuce at the start of the quality deterioration is the change in the color density change of the other colors. We found that it fluctuated more than the amount of change.
  • This color density change data is data for predicting the start point of the quality reduction of the frill lettuce.
  • PC personal computer
  • image analysis software capable of analyzing variations in color density data of a plurality of colors from the image signal. The change in color density of the frill lettuce will be described in detail in Example 2 described later.
  • the control unit 4 to which the data is input predicts the start point of the quality deterioration of the fresh food F after the first first cooling process is started after the plurality of fresh foods F are accommodated in the refrigerator 1. Automatic control is performed so that the product temperature is raised between the normal temperature and the freezing point or more before the predicted start point of quality deterioration, and the process proceeds to the second cooling step. Thereby, the malfunction that the cell of the fresh food F stored in a supercooling area
  • the product temperature control of the fresh food F in the first and second cooling steps will be described in more detail.
  • the temperature in the refrigerator 1 is the breaking point. Or it is set to a predetermined temperature slightly lower than that.
  • FIG. 1 illustrates the case where the product temperature in the first cooling process is lowered to the breaking point, the product temperature in the first cooling process may be in the supercooling region.
  • ⁇ 3 ° C. is considered suitable for setting the temperature in the refrigerator during supercooled storage. This will be described in detail in Examples 3 and 4.
  • the product temperature of the fresh food F before being stored in the refrigerator 1 set at the predetermined temperature is room temperature
  • the product temperature of the fresh food F after being stored in the refrigerator 1 is gradually increased from the normal temperature to the breaking point. descend.
  • the first first cooling process starts from the point when the product temperature becomes lower than the freezing point.
  • the product temperature of the fresh food F in the first cooling step is maintained for a predetermined time T from the point of time when it reaches the breaking point.
  • the predetermined time T is a reference for the first cooling process after the second time.
  • the temperature in the refrigerator 1 rises to a region between 0 ° C. and the freezing point in order to move to the second cooling step, and the product temperature of the fresh food F is also between 0 ° C. and the freezing point.
  • a 2nd cooling process starts from the time of product temperature becoming more than a freezing point.
  • the timing of raising the temperature in the refrigerator 1 may be before the time when it is predicted that the quality deterioration will start, and it is preferable that the product temperature has risen to the freezing area before the predicted time. It is more preferable that the product temperature rises to the freezing zone before the time point.
  • the time for performing the second cooling process in the region between 0 ° C. and the freezing point is not particularly limited, but depending on the type of fresh food F, the second cooling process can be performed in a short time from the start of the second cooling process. If it is transferred, the stress on the cells is increased, which may adversely affect the quality. Therefore, as an example, the time length of the second cooling step is set to be approximately the same as the predetermined time T.
  • the second first cooling step takes less time than the first first cooling step. Can be migrated.
  • the product temperature may be lowered to the breaking point and maintained for the predetermined time T. In this way, the first and second cooling steps after the third time are repeatedly performed, and the fresh food F is stored in a state in which the freshness is maintained for a long time.
  • FIG. 3 is a diagram for explaining the concept of Embodiment 2 of the method for preserving fresh food of the present invention
  • FIG. 4 is a block diagram showing a storage system used in Embodiment 2 of the method for preserving fresh food of the present invention. .
  • the same elements as those in FIG. 2 are denoted by the same reference numerals.
  • the method for preserving fresh food of Embodiment 2 is a harvesting process for harvesting a plurality of plant fresh foods of the same variety within a predetermined time from the same harvest start time prior to the first cooling process. And a separate storage step of storing the monitored fresh food to be monitored among the plurality of plant fresh foods harvested in this harvesting process and storing it at a product temperature above the freezing point from room temperature, After a predetermined time has elapsed since the start of the first first cooling step, the monitored fresh food is stored in the refrigerator and cooled so that the product temperature becomes the predetermined supercooling temperature, and the monitored fresh food The start time of the quality deterioration is predicted based on the time when the state change of the food can be confirmed.
  • the fresh food storage system S2 is provided with a CCD camera 3 for photographing the fresh food F to be monitored housed in the refrigerator main body 1a and transmitting the image signal to the control unit 4.
  • CCD camera 3 is, for example, is fixed to a post of the shelf 1a 1.
  • the storage case C that stores the fresh food F to be photographed is provided with a window so that the fresh food F is exposed to the outside, and when a cardboard box is used, a hole that is large enough to be photographed is formed. do it. Also, illumination is provided in the refrigerator main body 1a so that the fresh food F to be photographed can be photographed by the CCD camera 3.
  • Embodiment 2 The preservation method of Embodiment 2 is based on the following findings (I) and (II) obtained by the inventors studying the supercooled storage of frill lettuce.
  • FIGS. 5 (A) to 5 (C) are diagrams conceptually explaining the difference in the start point of quality deterioration due to the difference in the length of time from the harvest of fresh food of the same variety to the start of supercooled storage. Note that the length of time from the start of supercooled storage to the start of quality degradation in each figure of FIG. 5 is set for convenience.
  • the method for preserving fresh food of Embodiment 2 can use the fresh food storage system S2 described in FIG.
  • the control unit 4 controls the product temperature of the fresh food F in the refrigerator 1 based on the temperature signal from the temperature sensor 2, and the control unit 4 controls the refrigerator 4 based on the image signal from the CCD camera 3.
  • the product temperature of the fresh food F in 1 is controlled and a combination of both.
  • Embodiment 2 a specific method for preserving fresh food according to Embodiment 2 will be described with reference to FIGS.
  • the harvesting process and the separate storage process are performed as described above before the first cooling process.
  • a plurality of fresh foods F of the same variety are harvested within a predetermined time from the same harvest start time. For example, 1000 fresh foods F are harvested within 10 minutes.
  • the difference in harvest time between the first and last harvested fresh food F falls within a maximum of 10 minutes, and the harvest time of these 1000 fresh foods F is regarded as the same. The shorter the difference in harvest time, the better.
  • a plurality of distribution fresh foods F excluding the monitored fresh food F are stored in the storage case C at the harvesting place or the work place, and then to the fresh food storage system S2. It is transported, accommodated in the refrigerator 1 and supercooled and stored in the first first cooling step.
  • At least one monitored fresh food F to be monitored among a plurality of fresh food F harvested in the harvesting process is separated and stored at room temperature to a product temperature above the freezing point.
  • the perishable fresh food F to be monitored is stored for a predetermined time in a state of being stored in the storage case C in a normal temperature storage provided in the refrigerator 1.
  • the first cooling process for supercooling and storing a plurality of fresh foods F for distribution is started in the refrigerator 1, and then the fresh food F to be monitored is also stored in the refrigerator 1.
  • the first cooling process is started and stored under cooling.
  • the temperature of the monitored fresh food F is measured by the temperature sensor S, and the temperature signal is transmitted to the control unit 4.
  • the fresh food F to be monitored and the fresh food F to be distributed are harvested at the same time, but as described above, the fresh food F to be monitored with a later start time of supercooled storage is more fresh than the fresh food F to be distributed. Quality deteriorates quickly. This deterioration in quality can be confirmed by a sudden rise in the product temperature that has been maintained constant in the supercooled region of the fresh food F to be monitored. As a result, it is possible to recognize a point in time when the quality deterioration of the monitored fresh food F starts, and it can be predicted that the quality deterioration of the distribution fresh food F will soon occur.
  • the product temperature of the refrigerator 1 by controlling the product temperature of the refrigerator 1 by the control unit 4, the product temperature of the fresh food F for distribution is raised to a region between 0 ° C. and the freezing point at the start of quality deterioration of the monitored fresh food F.
  • the second embodiment also repeats the first cooling process and the second cooling process from the first first cooling process, as in the first embodiment.
  • the start time of quality deterioration of the fresh food F for distribution is the varieties and production conditions of the fresh food F, the storage temperature in the separate storage process, the time difference at the start of the first cooling process, and the first cooling process. It can be roughly estimated from conditions such as temperature, and it is preferable that the product temperature of the fresh food F for distribution reaches the region between 0 ° C. and the freezing point before this point.
  • the CCD camera 3 is not used, and therefore it can be omitted.
  • the state change of the fresh food F to be monitored is monitored using the CCD camera 3, it is the same as the state change monitoring using the temperature sensor 2 described above.
  • the “state change” is a change in color density of the specific color of the fresh food F to be monitored.
  • the fresh food F to be monitored is photographed by the CCD camera 3 and its image signal is transmitted to the control unit 4. To do.
  • the product temperature of the monitored fresh food F is measured by the temperature sensor 2, and the temperature signal is transmitted to the control unit 4.
  • the control unit 4 selectively monitors the color density data of the specific color from the color density data of a plurality of colors included in the image signal, and when the color density change of the specific color exceeds a predetermined change amount, the monitored fresh food F Therefore, the quality of the fresh food F for distribution is raised to the region between 0 ° C. and the freezing point, and the second cooling process is performed. Also in this case, the first cooling process and the second cooling process are repeated from the first first cooling process.
  • the control unit 4 You may control to raise the temperature in the refrigerator 1 to the area
  • FIG. 6 is a diagram for explaining the concept of Embodiment 3 of the method for preserving fresh food according to the present invention.
  • the method for preserving fresh food according to Embodiment 3 is a harvesting process for harvesting a plurality of plant fresh foods of the same variety within a predetermined time from the same harvest start time prior to the first cooling process.
  • the harvested fresh food to be monitored among the plurality of plant fresh foods before harvesting is harvested in advance and stored at room temperature from the normal temperature to the product temperature above the freezing point.
  • a plurality of plant fresh foods including the monitored fresh food are accommodated in the refrigerator to start the first first cooling step, and the time when the state change of the monitored fresh food can be confirmed. As a reference, the start point of the quality degradation is predicted.
  • the storage method according to the third embodiment predicts the start point of quality degradation using the temperature sensor 2 and / or the CCD camera 3, but the following points are different from the second embodiment.
  • the harvested time of the fresh food for monitoring and the fresh food for distribution is the same, but at the start of the first cooling step, the fresh food for monitoring is made slower than the fresh food for distribution. This causes cell destruction of monitored fresh food faster than fresh food for distribution.
  • the fresh food for monitoring is harvested earlier than the fresh food for distribution and stored at room temperature to a product temperature higher than the freezing point. Even at the same time as the start of the first cooling process for fresh food, cell destruction of the fresh food to be monitored can occur earlier than fresh food for distribution.
  • other configurations are the same as those in the second embodiment.
  • FIG. 7 is a block diagram showing an example of a fresh food storage warehouse according to the present invention.
  • the upper part is a block diagram viewed from the side
  • the middle part is a block diagram viewed from above
  • the lower part is an explanatory diagram viewed from above.
  • the method for preserving fresh food described in the first to third embodiments can also be performed in the fresh food storage warehouse shown in FIG.
  • the fresh food storage warehouse S3 has a first storage chamber 22 having a first carry-in port 22a and a first carry-out port 22b, and a second carry-in port 23a and a second carry-out port 23b connected to the first carry-out port 22b.
  • the refrigeration cycle system (not shown) capable of individually cooling the interiors of the first storage chamber 22 and the second storage chamber 23, and the first storage chamber 22 and the second storage chamber 23.
  • a temperature sensor (not shown) that detects the temperature of the fresh food and a control unit (not shown) to which a detection signal from the temperature sensor is input.
  • the fresh food storage warehouse S3 further includes a carry-in chamber 21 connected to the first carry-in port 22a and a carry-out chamber 24 connected to the second carry-out port 23b.
  • the refrigeration cycle system includes the carry-in chamber 21 and the carry-out chamber. The temperature in 24 can be individually cooled.
  • the carry-in chamber 21, the first storage chamber 22, the second storage chamber 23, and the carry-out chamber are arranged adjacent to each other in this order, and the first carry-in port 22a is also a carry-out port of the carry-in chamber.
  • the first carry-out port 22b is also the second carry-in port 23a, and the second carry-out port 23b is also the carry-in port of the carry-out chamber.
  • the carry-in chamber 21 has a carry-in port connected to the outside
  • the carry-out chamber 24 has a carry-out port connected to the outside. Further, doors that open and close in the horizontal direction are provided at these carry-in ports and carry-out ports.
  • the fresh food storage warehouse S3 moves a plurality of movable shelves 25 for storing fresh food, and the shelves 25 of fresh food stored in the first storage chamber 22 and the second storage chamber 23.
  • a moving mechanism (not shown). Examples of the moving mechanism include a conveyor and a self-propelled carriage.
  • the control unit controls the refrigeration cycle system so that the temperature of the fresh food stored in the first storage chamber 22 is 0 ° C. to a temperature higher than the freezing point of the fresh food, and is stored in the second storage chamber 23.
  • the refrigeration cycle system is controlled so that the temperature of the fresh food becomes a predetermined supercooling temperature lower than the freezing point of the fresh food. That is, the first storage chamber 22 is a place where the second cooling process described in the first to third embodiments is performed, and the second storage chamber 23 is a place where the first cooling process described in the first to third embodiments is performed.
  • control unit controls the refrigeration cycle system so that the room temperature of the carry-in chamber 21 and the carry-out chamber 24 matches the room temperature of the first storage chamber 22.
  • the carry-in chamber 21 and the carry-out chamber 24 serve as buffer spaces with temperatures that prevent the room temperature of the first storage chamber 22 and the second storage chamber 23 from changing rapidly.
  • the harvested vegetables are stored in the shelf 25 in a work place near the periphery of the fresh food storage warehouse S3.
  • the temperature of at least one fresh food (for example, lettuce) in each shelf 25 can be detected by a temperature sensor.
  • the carry-in port of the carry-in chamber 21 is opened, a plurality of shelves 25 are carried into the interior, and the carry-in port is closed.
  • the outside air flows into the carry-in chamber 21 and the room temperature rises above 0 ° C., it waits until the room temperature in the carry-in chamber 21 falls again from 0 ° C. to the first predetermined temperature above the freezing point of fresh food. To do.
  • the room temperature of the carry-in chamber 21 When the room temperature of the carry-in chamber 21 is lowered to the first predetermined temperature, the first carry-in port 22a is opened, the plurality of shelves 25 are carried into the first storage chamber 22, and the second cooling step (see FIG. 1) is started. The At this time, the room temperature of the first storage chamber 22 hardly changes.
  • the temperature of the fresh food in the first storage chamber 22 is detected by a temperature sensor, and the control unit controls the refrigeration cycle based on this detection signal so that the room temperature in the first storage chamber 22 is 0 ° C. to fresh food. Maintain the temperature above the freezing point.
  • the plurality of shelves 25 may be moved within the first storage chamber 22 as indicated by dotted arrows at regular intervals, as shown in FIG. In this way, even if the room temperature of the first storage chamber 22 tends to be slightly non-uniform in the room, the air in the room is agitated to make the temperature uniform, and the fresh food by the storage location The bias of overcooling or insufficient cooling can be suppressed. Note that the moving mechanism may be omitted and the shelf 25 may be moved manually.
  • the first carry-out port 22b After storing for a predetermined time in the first storage chamber 22, the first carry-out port 22b is opened, the predetermined shelf 25 is moved from the first storage chamber 22 into the second storage chamber 23, the first carry-out port 22b is closed and the first carry-out port 22b is closed.
  • One cooling step (supercooled storage) is started.
  • the product temperature of the fresh food in the second storage chamber 23 is detected by a temperature sensor, and the control unit controls the refrigeration cycle system based on this detection signal so that the room temperature in the second storage chamber 23 is lower than the freezing point. Maintain the undercooling temperature of.
  • the plurality of shelves 25 may be moved within the second storage chamber 23 as indicated by dotted arrows at certain time intervals by the moving mechanism. .
  • the first carry-out port 22b opens and the shelf 25 moves to the first storage chamber 22. And move to the second cooling step.
  • the shelf 25 loaded with fresh food is stored alternately in the first storage chamber 22 and the second storage chamber 23, and the freshness of the fresh food is maintained by repeating the second cooling step and the first cooling step. Can be stored for a long time.
  • the second carry-out port 23b is opened, the shelf 25 is moved to the carry-out chamber 24, the second carry-out port 23b is closed, and then the shelf 25 is carried out from the carry-out chamber 24 to the outside.
  • the temperature that detects the temperature of fresh foods is established by building a database by previously collecting basic data such as varieties, production locations, and harvest dates of fresh foods and product temperature data such as freezing points and breaking points. It is also possible to omit the sensor and automatically control the indoor temperature management, the duration of the first cooling process and the second cooling process, the switching timing, and the like based on the database.
  • the refrigerator provided with the product temperature measurement part of the fresh food stored is provided.
  • This refrigerator is a refrigerator capable of controlling the temperature to 0 ° C. or lower in the refrigerator, and a fresh food temperature measuring unit is installed at one or more locations in the refrigerator. Therefore, the product temperature measurement part may be installed in several places, such as the periphery of the lower part and the upper part in a warehouse, and the center of a lower part and an upper part.
  • the product temperature measuring unit for example, at one or more locations in the refrigerator, a table for installing fresh food to be monitored whose product temperature is detected is provided, and a bar-shaped temperature sensor is projected from the table. It can be.
  • the monitored fresh food may be installed on the table so that the operator can pierce the temperature sensor, or the temperature sensor may automatically pierce the monitored fresh food installed on the table.
  • the product temperature of fresh food can be measured simply.
  • this refrigerator may be provided with a room temperature sensor in the vicinity of the product temperature measuring unit. If it does in this way, the measurement of the temperature distribution in a wide refrigerator and the relationship between temperature distribution and product temperature can be made into a database. That is, detection signals from each temperature sensor and each room temperature sensor are transmitted to the control unit, and the temperature and position data, fresh food varieties, production place, harvest date, and the like are accumulated in the control unit and stored in a database. By analyzing this database, it becomes possible to derive a criterion for determining where in the refrigerator it is most suitable to store fresh food to be stored in the refrigerator. Appropriate product temperature management becomes easy.
  • a mobile shelf for placing fresh food may be provided in the refrigerator, a position most suitable for fresh food may be derived from the database, and the shelf may be moved to that position.
  • FIGS. 8A to 8D are graphs showing changes in the product temperature of frill lettuce in supercooled storage with product temperatures maintained at ⁇ 2 ° C., ⁇ 3 ° C., ⁇ 4 ° C. and ⁇ 5 ° C.
  • Example 1 the frill lettuce produced at the Plant Factory Research Center of Osaka Prefecture University was harvested, and the relationship between the time difference from the harvesting time to the start of supercooled storage, the product temperature, and the start point of quality degradation was examined. The results shown in FIGS. 8A to 8D were obtained.
  • the frill lettuce after 3 hours (graph (1)), 9 hours (graph (2)) and 16 hours (graph (3)) is supercooled at a product temperature of -2 ° C.
  • the frill lettuce after 4 hours (graph (1)), 10 hours (graph (2)), and 16 hours (graph (3)) is harvested at a temperature of ⁇ 3 ° C.
  • the frill lettuce after 3 hours of harvesting (graph (1)) is supercooled and stored at a product temperature of ⁇ 4 ° C.
  • the frill lettuce was stored under cooling at a product temperature of -5 ° C. State change was monitored. 8 (A) to 8 (D), the time when the product temperature (vegetable temperature) suddenly rises is the start of quality reduction when the frill lettuce cells are frozen and destroyed.
  • graph (1) does not show any deterioration in quality even after 300 minutes, graph (2) is about 210 minutes, graph (3) is about 70 minutes, and the start point of quality deterioration. showed that.
  • graph (1) does not show any deterioration in quality even after 300 minutes, the graph (2) is about 160 minutes, the graph (3) is about 40 minutes, and the start point of quality deterioration. showed that.
  • FIG. 8C the graph (1) shows the start point of quality degradation in about 240 minutes.
  • FIG. 8 (D) shows the start point of quality degradation in about 140 minutes, and the graphs (2) and (3) show about 20 minutes.
  • FIGS. 9A to 9C are graphs showing the start time of quality deterioration of frill lettuce and the change in color density of a specific color in supercooled storage where the product temperature is maintained at ⁇ 3 ° C.
  • FIG. 1 the frill lettuce produced at Osaka Prefecture University Plant Factory Research Center was harvested and stored 10.5 hours after harvesting in the supercooled storage device used in Example 1 at a temperature of -3 ° C. The color density change of multiple colors of frill lettuce was monitored while maintaining at the same time. Also, the temperature signal from the temperature sensor and the image signal from the CCD camera are transmitted to a PC in which image analysis software is incorporated, so that the frill lettuce product temperature change and the color density change of multiple colors are recorded on the PC. did.
  • FIG. 9 (A) shows the temperature change of the frill lettuce.
  • the point of time when the product temperature (vegetable temperature) suddenly rose was the start point of quality deterioration when the frill lettuce cells were frozen and destroyed, and the measurement result was about 160 minutes.
  • FIG. 9B shows r160g160b160 color (graph (1)), r160g160b096 color (graph (2)), r096g096b096 color (graph (3)) selected from 64 colors among the plurality of frill lettuce colors.
  • FIG. 9C shows the change in color density of r096g160b096 colors (graph (4)), and FIG. 9C shows r160g224b160 colors (graph (1)) and r224g224b160 colors (graph (1)) selected from among a plurality of frill lettuce colors. 2)) shows the change in color density.
  • the fresh food By measuring the time when the color density change of the specific color of the fresh food stored under cooling changes to a predetermined amount or more, the fresh food can be preserved for a long period of time by the preservation method of the first embodiment. -Using the time difference from the harvesting of fresh food to the start of supercooled storage, and monitoring the color density change of the specific color of the fresh food in the supercooled storage, the fresh food by the preservation method of Embodiments 2 and 3 above Can be preserved for a long time.
  • FIGS. 10A to 10C are graphs showing changes in the number of colors of frill lettuce in supercooled storage in which the temperature in the refrigerator is maintained at ⁇ 2 ° C., ⁇ 3 ° C. and ⁇ 5 ° C.
  • frill lettuce produced at the Plant Factory Research Center of Osaka Prefecture University was harvested and stored in the supercooled storage device used in Example 1 9 hours after harvesting, and the temperature in the refrigerator was set to -2. Changes in the number of colors of frill lettuce were monitored while maintaining at -3 ° C and -5 ° C.
  • the image signal from the CCD camera is transmitted to a PC in which image analysis software is incorporated, and the change in the number of colors of the frill lettuce is recorded by the PC.
  • FIGS. 10A to 10C show that when the temperature in the refrigerator is maintained at ⁇ 3 ° C., the change in the number of colors is the narrowest, that is, the change in quality is the smallest. From this, it can be inferred that supercooled storage at ⁇ 3 ° C. is suitable for stable preservation of frill lettuce. In addition, according to Example 3, the temperature setting of the supercooled storage suitable for a frill lettuce can be found easily and in a short time.
  • FIGS. 11A to 11C are graphs showing the color change rate of frill lettuce in supercooled storage in which the temperature in the refrigerator is maintained at ⁇ 2 ° C., ⁇ 3 ° C. and ⁇ 5 ° C.
  • the frill lettuce produced at the Plant Factory Research Center of Osaka Prefecture University was harvested and stored 3 hours after harvesting in the supercooled storage device used in Example 1, and the temperature in the refrigerator was -2.
  • the color change rate of the frill lettuce was measured until the product was maintained at -3 ° C, -5 ° C, and -5 ° C, and the start point of quality deterioration where the product temperature rapidly increased was exceeded.
  • the image signal from the CCD camera is transmitted to a PC in which image analysis software is incorporated, the color density data of each color of the frill lettuce is recorded by the PC, and the change rate of the color density of each color during the supercooled storage. was calculated.
  • FIGS. 11A to 11C show that the color change rate is the lowest when the temperature in the refrigerator is maintained at ⁇ 3 ° C., that is, the quality change is the smallest. Therefore, it can be inferred that supercooled storage at a product temperature of ⁇ 3 ° C. is suitable for stable preservation of frill lettuce. In addition, also in Example 4, the temperature setting of the supercooled storage suitable for the frill lettuce can be found easily and in a short time.
  • FIG. 12 is a graph showing the relationship between the storage method and the weight loss rate of the frill lettuce
  • FIG. 13 is a graph showing the relationship between the storage method and the sugar content change of the frill lettuce.
  • Refrigerate the frilled lettuce for 3 weeks at a product temperature of 5 ° C (graph (1)), and repeat a supercooled storage at a product temperature of -2.8 ° C and a freezing point cooled storage at a product temperature of -0.5 ° C (graph (2 )) was performed, and the weight and sugar content were measured every week during this period to examine how the weight loss rate and sugar content change of frill lettuce change depending on the storage method.
  • “freezing point cooling storage” means storing so that the product temperature becomes a predetermined temperature between 0 ° C. and the freezing point.
  • the graph (1) has a larger weight reduction rate than the graph (2), and in particular, it has been found that the weight reduction rate after the first week is larger. This is considered to be because when the product temperature is high, the respiration rate of frill lettuce increases and the evaporation amount of water also increases. Further, in FIG. 13, in the graph (2), the sugar content decreased until the second week, but after that, it started to increase. From this, when the product temperature falls to the supercooling region, it is considered that the amount of starch in frill lettuce converted to sugar increases after a certain period. On the other hand, graph (1) repeatedly decreased and increased in sugar content, and decreased more than graph (2) at 3 weeks.
  • the sweet food component can be increased while maintaining the freshness of the fresh food for a long period according to the method for preserving fresh food of the embodiment in which the supercooled storage and the freezing point cooled storage are repeated.
  • FIG. 14 is a graph showing the relationship between the storage method and the change in free amino acid content of furyl lettuce. Refrigerate the frilled lettuce for 3 weeks at a product temperature of 0 ° C (graph (1)), and repeat a supercooled storage at a product temperature of -2.8 ° C and a freezing point cooled storage at a product temperature of -0.5 ° C (graph (2 )) was performed, and the free amino acid content was measured every week during this period to examine how the free amino acid content in the frill lettuce changes depending on the storage method.
  • graph (2) shows that the free amino acid content gradually increased until the 15th day
  • graph (1) shows that the free amino acid content gradually decreased until the first week, but the first week. After that, it showed a moderate increase.
  • the GABA content and glutamic acid content increased after 3 weeks in the case of repeated cooling at a product temperature of ⁇ 2.8 ° C. and repeated freezing point storage at a product temperature of ⁇ 0.5 ° C.
  • FIG. 15 is a block diagram showing an experimental apparatus used in Example 7.
  • reference numeral 1 is a personal computer (PC)
  • 2 is a data-logger
  • 3 is an incubator refrigerator (manufactured by Daiwa Industry Co., Ltd .: CDB-14A)
  • 4 is a cardboard box (200X200X230mm, thickness) 3 mm)
  • 5 is a sample
  • 6, 7, 8 and 9 are temperature sensors.
  • Destruction point is defined as the point at which the state of moisture in fresh foods including vegetables changes to ice.
  • the “freezing point” is defined as a point that becomes constant after fresh food including vegetables begins to freeze.
  • the “calm freezing point” is defined as the point at which the freezing rate becomes the smallest after the fresh food containing vegetables begins to freeze.
  • Table 2 shows the cooling rate obtained by combining the set temperature of the refrigerator 3 and the packaging method and the possibility of supercooled storage.
  • the first column shows the set temperature of the refrigerator 3
  • the second through fourth columns show the cooling rate and lettuce in each packaging method are finally frozen.
  • the cooling rate when there was no packaging, the cooling rate was high and all were frozen.
  • the cooling rate was low, and when the set temperature was ⁇ 4 ° C. or higher, it did not freeze, and even when it was lower than ⁇ 4 ° C., some lettuce did not freeze.
  • intermediate results were obtained. From these results, it was found that the cooling rate was lowered depending on the packaging form, and it was possible to store the lettuce without freezing even at a temperature of 0 ° C. or lower.
  • Agricultural products such as lettuce continue to have life activity such as breathing after harvesting, causing moisture evaporation and changes in sugar content.
  • life activity such as breathing after harvesting, causing moisture evaporation and changes in sugar content.
  • a long-term storage experiment for 3 weeks was conducted, and the weight loss rate and sugar content change were measured every week.
  • the average weight, the minimum weight, the average sugar content, the minimum sugar content, the average water content and the minimum water content of the six lettuce used in the conditions (a) and (b) before the start of the experiment were measured. Indicated.
  • the sugar content was measured using a sugar meter (model: PAL-J) manufactured by Atago Co., and the water content was measured using a moisture meter manufactured by Atago (model: ML-50, A & D).
  • FIG. 17 shows the temperature change in the refrigerator used in the conditions (a) and (b). Further, FIGS. 18 and 19 show the lettuce under conditions (a) and (b), which are measured once a week and the changes in weight and sugar content up to the third week are summarized.
  • the value measured every week is an average value for three lettuce in one set taken out every week.
  • the lettuce of refrigeration and supercooled storage what was taken out from the refrigerator at the time of measurement was discarded.
  • the lettuce refrigerated at the set temperature of 5 ° C. had a weight loss rate of about 7% after 3 weeks and was frozen.
  • lettuce stored under cooling at a set temperature of ⁇ 3 ° C. had a weight loss rate of 1% or less after 3 weeks and was not frozen. From this result, it is considered that the supercooled storage can be stored while keeping the freshness by suppressing the life activity of lettuce.
  • Example 8 In the same manner as in Experiment 3 of Example 7, changes in the weight and sugar content of the strawberry were measured every week up to the fourth week, and the results are shown in FIGS.
  • strawberry chilled at a set temperature of 5 ° C. has a weight loss rate of about 11% after 4 weeks.
  • the strawberry stored under cooling at the set temperature of ⁇ 2 ° C. had a weight loss rate of about 2% after 4 weeks and was not frozen. From this result, it is considered that the supercooled storage can be stored while keeping the freshness by suppressing the life activity of strawberry.
  • Example 8 shows the effectiveness of supercooled storage in the case of strawberries.
  • the present invention starts from the first first cooling step and proceeds to the second cooling step, and continues the second cooling step for a long time until the shipment of fresh food without returning to the first cooling step. It includes cases.

Abstract

 鮮度が保持され味覚が向上した植物性生鮮食品の長期大量保存および計画的な出荷が可能となる生鮮食品の保存方法および生鮮食品用貯蔵システムを提供すること。 生鮮食品の品温がこの生鮮食品の凝固点よりも低い所定の過冷却温度となるよう冷却庫にて前記生鮮食品の冷却を継続し、前記生鮮食品の細胞が破壊されると予測した品質低下の開始時点よりも前に前記品温を前記凝固点以上に上昇させることを特徴とする生鮮食品の保存方法。

Description

生鮮食品の保存方法および生鮮食品用貯蔵システム
 本発明は、植物性生鮮食品の保存方法および生鮮食品用貯蔵システムに関する。
 一般に、野菜、果実、肉、魚等の生鮮食品は冷蔵によって常温よりも長期間の保存を可能とされている。氷結点以下で冷却する冷凍保存は、食品の細胞を凍結させ破壊してしまい、そのため解凍した食品から水分と共に各種成分が流出して品質が低下することから、生鮮食品の保存には不向きであるとされていたが、近年、0℃から氷結点までの未凍結温度域で生鮮食品を保存する氷温(登録商標)技術が提案されている(非特許文献1)。なお、非特許文献1では、「氷温技術」とは、前記未凍結温度域(氷温域)で食品の貯蔵や加工などを行うことであると定義されている。
 非特許文献1によれば、氷温域での生鮮食品の保存は、細胞を凍結させることなく0℃以下で保存できるため冷蔵よりも長期間の保存が可能となる、解凍した生鮮食品の品質を低下させることがない、生鮮食品のうま味、甘さ等の味覚が向上する、という効果が確認されている。これは、細胞が内部のデンプンやタンパク質を分解して糖やアミノ酸に変化させることによって氷結点を下げ凍結死しないよう自己防衛しているためであると考えられている。
 また、非特許文献1によれば、生鮮食品の内部温度(以下、「品温」という)が達した未凍結状態での下限温度を「破壊点」、氷結点から破壊点までの過冷却温度領域を「超氷温(登録商標)」とよび、生鮮食品の細胞は氷結点以下でも未凍結状態(過冷却状態)をある程度維持できることが確認されている。
 さらに、非特許文献2によれば、超氷温と氷温を繰り返して野菜(ネギ)をより長く鮮度保持し、かつ野菜の味覚をより向上させる試みが報告されている。
山根昭彦著「氷温食品入門」株式会社日本食糧新聞社 平成23年3月25日発行 福間康文、東健一郎、三島睦夫、山根昭彦(株式会社氷温研究所)「超氷温領域における農産物の高品質化について(第1報)」氷温化学4:8-13,2001
 本発明者等が野菜の超氷温貯蔵について鋭意研究したところ、次の課題を見出した。
 市場に流通する露地栽培の各種野菜は、土質、気温、湿度、雨量、日照時間等が異なる様々な生産地にて生産されており、栽培条件(農薬および肥料の種類および量等)、栽培開始から収穫までに要した時間、収穫から低温貯蔵までに要した時間等も異なっており、同一品種の野菜に関しても同様である。
 このように、野菜は、同一品種であっても、生産条件が異なると品質にバラツキが生じて氷結点および破壊点が微妙に異なってしまう。
 そのため、生産条件が異なる同一品種の野菜の超氷温貯蔵を一定の品温下で行うと、超氷温貯蔵開始から野菜の品質(色味、味覚等)が低下し始めるまでの時間にバラツキが生じてしまう。また、超氷温貯蔵における同一品種の野菜の品温を氷結点近くに設定すれば品質低下の開始時点を多少遅らせることはできるがバラツキをなくすことはできないことに加え、更なる味覚向上の効果が低減するため超氷温貯蔵の意義が薄れてしまう。この結果、鮮度が保持され味覚が向上した野菜の長期大量保存および計画的な出荷が困難となる。
 本発明はこのような課題に鑑みてなされたものであり、鮮度が保持され味覚が向上した植物性生鮮食品の長期大量保存および計画的な出荷が可能となる生鮮食品の保存方法および生鮮食品用貯蔵システムを提供することを目的とする。
 かくして、本発明によれば、生鮮食品の品温がこの生鮮食品の凝固点よりも低い所定の過冷却温度となるよう冷却庫にて前記生鮮食品の冷却を継続し、前記生鮮食品の細胞が破壊されると予測した品質低下の開始時点よりも前に前記品温を前記凝固点以上に上昇させる生鮮食品の保存方法が提供される。
 また、本発明の別の観点によれば、貯蔵される生鮮食品の品温を測定する温度センサを備えた冷蔵庫が提供される。
 本発明によれば、植物性のあらゆる生鮮食品の鮮度を落とすことなく長期大量保存し計画的に出荷することが可能となる。この結果、気候変動、大量消費、公害等による生産量、収穫量の減少によって生じる生鮮食品の価格高騰や食糧難といった社会問題に対処することが可能となる。
 また、本発明は、保存対象である生鮮食品の固有の凝固点および破壊点に基づくため、品質が安定した生鮮食品の長期保存に好適である。例えば、同一の植物工場で栽培した品質の安定した野菜の長期保存に好適である。
 また、露地栽培では同一品種の植物性生鮮食品であっても、生産地、栽培条件、栽培開始から収穫までに要した時間、収穫から過冷却貯蔵までに要した時間等の様々な生産条件が異なると品質も異なるが、例えば、同一生産者による同一農地での生産といった比較的狭い生産エリア内で収穫された生鮮食品であれば品質がほぼ均一となるため、本発明は露地栽培の植物性生鮮食品の保存にも有効である。
 また、生産条件の多少の違いがあっても品質(特に、凝固点と破壊点)のバラツキが少ない植物性の生鮮食品に対しても本発明の生鮮食品の保存方法は有効である。さらに、凝固点および破壊点が近似していれば品種が異なる複数の生鮮食品を同一の冷却庫内に保存して本発明の保存方法を適用することも可能である。
本発明の生鮮食品の保存方法の概念を説明する図である。 本発明の生鮮食品の保存方法の実施形態1に用いられる貯蔵システムを示す構成図である。 本発明の生鮮食品の保存方法の実施形態2の概念を説明する図である。 本発明の生鮮食品の保存方法の実施形態2に用いられる貯蔵システムを示す構成図である。 (A)~(C)は同一品種の生鮮食品の収穫から過冷却貯蔵開始時まで時間の長さの違いによる品質低下の開始時点の違いを概念的に説明する図である。 本発明の生鮮食品の保存方法の実施形態3の概念を説明する図である。 本発明の生鮮食品用貯蔵倉庫の一例を示すブロック図である(実施形態4)。 (A)~(D)は品温を-2℃、-3℃、-4℃および-5℃に維持した過冷却貯蔵でのフリルレタスの品温変化を示すグラフである(実施例1)。 (A)~(C)は品温を-3℃に維持した過冷却貯蔵でのフリルレタスの品質低下の開始時点および特定色の色濃度変化を示すグラフである(実施例2)。 (A)~(C)は品温を-2℃、-3℃および-5℃に維持した過冷却貯蔵でのフリルレタスの色数の変化を示すグラフである(実施例3)。 (A)~(C)は品温を-2℃、-3℃および-5℃に維持した過冷却貯蔵でのフリルレタスの色変化率を示すグラフである(実施例4)。 貯蔵方法とフリルレタスの重量減少率の関係を示すグラフである(実施例5)。 貯蔵方法とフリルレタスの糖度変化の関係を示すグラフである(実施例5)。 貯蔵方法とフリルレタスの遊離アミノ酸含量の変化の関係を示すグラフである(実施例6)。 実施例7で用いる実験装置を示す構成図である。 実施例7におけるレタスの冷却線を示すグラフである。 実施例7における冷蔵庫内の温度変化を示すグラフである。 実施例7における貯蔵方法とフリルレタスの重量減少率の関係を示すグラフである。 実施例7における貯蔵方法とフリルレタスの糖度の関係を示すグラフである。 実施例8における貯蔵方法とイチゴの重量減少率の関係を示すグラフである。 実施例8における貯蔵方法とイチゴの糖度の関係を示すグラフである。
 本発明の生鮮食品の保存方法は、生鮮食品の品温がこの生鮮食品の凝固点よりも低い所定の過冷却温度となるよう冷却庫にて前記生鮮食品の冷却を継続し、前記生鮮食品の細胞が破壊されると予測した品質低下の開始時点よりも前に前記品温を前記凝固点以上に上昇させる。
 ここで、本発明の保存方法が対象とする生鮮食品は、野菜、果実を含む植物性生鮮食品である。
 植物性生鮮食品としては、次の野菜および果実が含まれる。
 野菜としては、カブ、クワイ、ゴボウ、ダイコン、タケノコ、ニンジン、ビーツ、ヤーコンおよびレンコンを含む根菜類、エシャロット、サツマイモ、サトイモ、ジャガイモ、タマネギ、ニンニク、ヤマノイモ、ユリネおよびラッキョウを含む土物類、アシタバ、アスパラガス、アーティチョーク、オカヒジキ、カラシナ、カリフラワー、キャベツ、クウシンサイ、クレソン、コマツナ、コールラビ、シュンギク、セロリ、クアサイ、チコリー、チンゲンサイ、ツルムラサキ、トレビス、ナバナ、ニラ、ネギ、ハクサイ、パセリ、フキ、フダンソウ、ブロッコリー、ホウレンソウ、ミズナ、ミツバ、モヤシ、モロヘイヤ、ルッコラ、ルバーブおよびレタスを含む葉茎菜類、ウリ、オクラ、カボチャ、キュウリ、ゴーヤ、シシトウ、ズッキーニ、トウガン、トウモロコシ、トマト、ナスおよびピーマンを含む果菜類、エダマメ、グリーンピース、サヤインゲン、サヤエンドウおよびソラマメを含む豆科野菜類、エノキタケ、エリンギ、キクラゲ、シイタケ、シメジ、ナメコ、ヒラタケ、マイタケ、マッシュルームおよびマツタケを含む茸類、かいわれ大根、シソ、ショウガ、ショクヨウギク、トウガラシおよびミョウガを含む香辛つま物類、および、ワラビ、ゼンマイ、タラの芽およびウドを含む山菜類が挙げられる。
 果実としては、アケビ、アセロラ、アボガド、アンズ、イチゴ、イチジク、ウメ、ミカン、オレンジ、カキ、カリン、キウイフルーツ、キワノ、クリ、グアバ、グレープフルーツ、サクランボ、ザクロ、スイカ、スターフルーツ、スモモ、西洋ナシ、チェリモヤ、中国ナシ、ドラゴンフルーツ、ドリアン、日本ナシ、ネクタリン、バナナ、パイナップル、パッションフルーツ、パパイア、ビワ、ブドウ、ブルーベリー、プルーン、ブルーベリー、マルメロ、マンゴスチン、マンゴー、メロン、モモ、ライチ、リンゴおよびレモンが含まれる。
 本発明の生鮮食品の保存方法は、次のように構成されてもよく、これらが適宜組み合わされてもよい。
(1)予め前記所定の過冷却温度で維持されたときの前記生鮮食品の状態変化が確認できるまで観察してデータを収集し、
 前記データに基づいて前記生鮮食品の品質低下の開始時点を予測してもよい。
 このようにすれば、生鮮食品の細胞が凍結死しないよう自動制御によって適切なタイミングで品温を過冷却温度から凝固点以上に上昇させることが可能となる。なお、詳しくは後述の実施形態1において説明する。
(2)前記生鮮食品が植物性生鮮食品であり、
 同一の収穫開始時刻から所定時間内に同一品種の複数の植物性生鮮食品を収穫する収穫工程と、この収穫工程にて収穫された前記複数の植物性生鮮食品のうち監視対象となる被監視用の生鮮食品を取り分けて常温から前記凝固点以上の品温で保存する別保存工程を含み、
 前記所定の過冷却温度での冷却開始から所定時間経過した後に前記被監視用の生鮮食品を前記冷却庫内に収容して品温が前記所定の過冷却温度となるよう冷却し、前記被監視用の生鮮食品の状態変化が確認できた時点を基準として前記品質低下の開始時点を予測するようにしてもよい。
 前記(2)の方法は、過冷却領域で貯蔵されるサンプルとしての被監視用生鮮食品の細胞が破壊されると品温が上昇しかつ特定色の色濃度変化が所定量以上変化する現象を観測することができ、この観測によって被監視用ではない複数の生鮮食品(以下、「流通用生鮮食品」ということがある)の品質低下の開始時点を予測することが可能となる。この場合、流通用生鮮食品の収穫から第1冷却工程開始までの時間よりも、被監視用生鮮食品の収穫から第1冷却工程開始までの時間を長くすることによって、被監視用生鮮食品の細胞破壊が流通用生鮮食品の細胞破壊よりも早く生じるようにしている。なお、詳しくは後述の実施形態2において説明する。
(3)前記生鮮食品が植物性生鮮食品であり、
 同一の収穫開始時刻から所定時間内に同一品種の複数の植物性生鮮食品を収穫する収穫工程と、この収穫工程よりも前に収穫前の前記複数の植物性生鮮食品のうち監視対象となる被監視用の生鮮食品を予め収穫して常温から前記凝固点以上の品温で保存する別収穫保存工程を含み、
 前記被監視用の生鮮食品を含む複数の植物性生鮮食品を前記冷却庫内に収容して品温が前記所定の過冷却温度となるよう冷却し、前記被監視用の生鮮食品の状態変化が確認できた時点を基準として前記品質低下の開始時点を予測するようにしてもよい。
 前記(3)の方法も、被監視用生鮮食品の細胞破壊を流通用生鮮食品の細胞破壊よりも早く生じさせ、細胞破壊時の品温変化および/または色濃度変化を観測することによって、複数の流通用生鮮食品の品質低下の開始時点を予測することが可能となる。なお、詳しくは後述の実施形態3において説明する。
(4)前記生鮮食品の状態変化が品温変化および色濃度変化のうちの少なくとも一方を含んでいてもよい。
 このようにすれば、過冷却領域で貯蔵される生鮮食品の品温変化または/および色濃度変化を観察し細胞破壊を確認するため、品質低下の開始時点の予測が容易となり、かつ予測の精度を向上させ易くなる。
(5)前記品温が前記所定の過冷却温度となるよう生鮮食品を冷却する第1冷却工程と、前記品温が0℃~凝固点以上となるように生鮮食品を冷却する第2冷却工程とを含み、
 第1冷却工程から開始して第1冷却工程と第2冷却工程を繰り返し、最初の第1冷却工程中に得られた前記品質低下の開始時点の情報に基づいて2回目以降の第1冷却工程の期間を決定するようにしてもよい。
 このようにすれば、より長期間の鮮度保持が可能となると共に、2回目以降の第1冷却工程と第2冷却工程の繰り返しのタイミング制御が容易となる。
(6)前記生鮮食品が、植物工場で生産された野菜であってもよい。
 植物工場で生産された野菜は品質が安定しているため、更なる味覚向上、長期大量保存および計画的な出荷を、年間を通して安定的に行うことができる。
 また、本発明の別の観点によれば、前記生鮮食品の保存方法に用いられる生鮮食品用貯蔵システムが提供される。
 また、本発明の別の観点によれば、貯蔵される生鮮食品の品温測定部を備えた冷蔵庫が提供される。
 また、本発明のさらに別の観点によれば、開閉可能な第1搬入口および第1搬出口を有する第1貯蔵室と、前記第1搬出口と接続する開閉可能な第2搬入口および第2搬出口を有する第2貯蔵室と、前記第1貯蔵室および前記第2貯蔵室の内部を個別に冷却可能な冷凍サイクル系と、制御部とを備え、
 前記制御部は、前記第1貯蔵室内に貯蔵された生鮮食品の品温が0℃~生鮮食品の凝固点以上の温度となるよう前記冷凍サイクル系を制御し、かつ前記第2貯蔵室内に貯蔵された生鮮食品の品温が生鮮食品の凝固点よりも低い所定の過冷却温度となるよう前記冷凍サイクル系を制御する生鮮食品用貯蔵庫が提供される。
 また、本発明のさらに別の観点によれば、個別に温度設定可能な複数の収納室を有する冷却庫と、前記複数の収納室内に収納された生鮮食品のサンプルの品温を測定する温度センサと、前記温度センサからの品温データを記録する記録部とを備え、前記複数の収納室内の温度を個別に設定して各収納室内のサンプルの品温を同時に測定可能に構成された生鮮食品のデータ収集装置が提供される。
 以下、図面を参照しながら本発明の生鮮食品の保存方法および生鮮食品用貯蔵システムの各種実施形態について詳説する。
(実施形態1)
 図1は本発明の生鮮食品の保存方法の概念を説明する図であり、図2は本発明の生鮮食品の保存方法の実施形態1に用いられる貯蔵システムを示す構成図である。
 図1は上下2段のグラフを有しており、図1中の上のグラフは植物性生鮮食を過冷却領域で貯蔵した場合の品温の変化を表している。
 図1中の上のグラフで示すように、植物性生鮮食品は、この生鮮食品の品温が凝固点より低く破壊点以上の過冷却温度となるように過冷却領域で貯蔵されると、ある時点で細胞が凍結し破壊される。この時点が品質低下の開始時点である。品質低下の開始時点以降、細胞の凍結および破壊によって放出された潜熱によって品温は凝固点まで上昇するが、凝固点から再び徐々に低下していく。
 本実施形態では、図1中の下のグラフで示すように、第1冷却工程において過冷却領域で貯蔵する生鮮食品の品質低下の開始時点を予測し、品質低下の開始時点がくる前に品温を0℃~凝固点まで上昇させて第2冷却工程に移行して所定時間貯蔵し、再び第1冷却工程に戻り、品質低下の開始時点がくる前に再び第2冷却工程に戻るというように、第1冷却工程から始まって第1冷却工程と第2冷却工程を繰り返す。これにより、生鮮食品の長期保存と味覚の向上を実現できる。
 さらに詳しく説明すると、実施形態1の場合、第1冷却工程に先立って、前記品温が前記所定の過冷却温度で維持されたときの前記生鮮食品の状態変化が確認できるまで観察してデータを収集するデータ収集工程を含み、
 前記データに基づいて最初の第1冷却工程開始後の前記生鮮食品の品質低下の開始時点を予測し、予測した品質低下の開始時点よりも前に常温から前記凝固点以上の間に品温を上昇させて第2冷却工程に移行する。この予測方法は、図2に示す生鮮食品用貯蔵システムS1によって実現することができる。
 この生鮮食品用貯蔵システムS1は、植物性生鮮食品Fを冷却する温度調整可能な冷却庫1と、冷却庫1内の生鮮食品Fの品温を測定する温度センサ2と、温度センサ2からの温度信号に基づいて冷却庫1内の温度を制御可能な制御部4とを備える。
 冷却庫1は、冷却庫本体1aと、冷凍機1bと、冷凍機1bにて発生させた所定温度の冷気1c1を冷却庫本体1aの内部へ送るダクト1cとを有し、ダクト1cから冷却庫本体1a内に均等に所定温度の冷気1c1が送出される。なお、冷凍機1bは、制御部4からの制御信号に基づいて発生させる冷気1c1の温度を調整するよう構成されている。
 冷却庫本体1aの内部には、生鮮食品Fを複数段で収納できるよう棚1a1が設けられており、例えば、複数の生鮮食品は収納ケースC内に所定個ずつ詰められて棚1a1に収納される。
 温度センサ2としては、生鮮食品Fの品温(内部温度)を測定できる針状熱電対を用いることができる。例えば、複数の収納ケースCのうちから少なくとも1つ選択された収納ケースC内の生鮮食品Fに針状熱電対(温度センサS)を突き刺して品温を検知し、検知した温度信号を制御部4へ送信する。この際、例えば、生鮮食品Fがレタスの場合、レタスの芯部に針状熱電対を突き刺すことにより正確な品温を検知することができる。なお、冷却庫1内に貯蔵される複数の生鮮食品Fの品温が均一となるように複数の収納ケースCは同じものを使用することが好ましく、収納ケースCとしてはそのまま出荷できる段ボール箱を用いてもよい。
 制御部4は、最初の第1冷却工程(過冷却貯蔵)中の生鮮食品Fの予測された品質低下の開始時点よりも前に、生鮮食品Fの品温を0℃~凝固点の間の温度まで上昇させるよう冷却庫1内の温度を制御する第2冷却工程モードと、第2冷却工程開始から所定時間経過すると生鮮食品の品温が凝固点よりも低い所定の過冷却温度となるよう冷却庫1内の温度を制御する第1冷却工程モードに切り替わるよう構成されている。
 過冷却貯蔵中の生鮮食品Fの品質低下の開始時点の予測は、最初の第1冷却工程に先立つデータ収集工程で収集した生鮮食品Fについての次のデータに基づいている。
 本発明者らが生鮮食品Fとしてフリルレタスの過冷却領域での貯蔵を鋭意研究したところ、品質低下の開始時点でフリルレタスの特定色の色濃度変化の変化量が他色の色濃度変化の変化量よりも大きく変動することを見出した。この色濃度変化データが、フリルレタスの品質低下の開始時点を予測するためのデータとなっている。この際、画像信号から複数色の色濃度データの変動を解析可能な画像解析ソフトを組み込んだパーソナル・コンピューター(PC)を用いて観測を行うことができる。なお、フリルレタスの色濃度変化について詳しくは後述の実施例2において説明する。
 さらに、前述したように過冷却貯蔵中のフリルレタスの細胞破壊によって品温が上昇するという現象も、品質低下の開始時点を予測するためのデータとなっている。これについても詳しくは後述の実施例1において説明する。
 フリルレタスの品質低下の開始時点を予測するためのこれらのデータは制御部4に入力されて記憶される。このとき、データ中の生鮮食品の品種、過冷却貯蔵における品温等の条件は、実際に冷凍庫1内で収容される生鮮食品Fの品種、過冷却貯蔵における品温等の条件と一致するものである。
 前記データが入力された制御部4は、冷却庫1内に複数の生鮮食品Fが収容されて最初の第1冷却工程が開始された後、生鮮食品Fの品質低下の開始時点を予測し、その予測した品質低下の開始時点よりも前に常温から凝固点以上の間に品温を上昇させて第2冷却工程に移行するよう自動制御する。これにより、過冷却領域で貯蔵する生鮮食品Fの細胞を凍結死させて品質を低下させるという不具合を防止できる。
 第1および第2冷却工程における生鮮食品Fの品温制御についてさらに詳しく説明すると、第1冷却工程での生鮮食品Fの品温を破壊点に設定する場合、冷却庫1内の温度は破壊点もしくはそれよりも少し低い所定温度に設定される。なお、図1では第1冷却工程での品温を破壊点まで低下させた場合を例示しているが、第1冷却工程における品温は過冷却領域であればよい。例えば、フリルレタスの場合、過冷却貯蔵時の冷却庫内の温度設定は-3℃が適していると考えられる。これについて詳しくは実施例3および4で説明する。
 前記所定温度に設定された冷却庫1に収容する前の生鮮食品Fの品温は常温であるため、冷却庫1内に収容した後の生鮮食品Fの品温は常温から破壊点まで徐々に低下する。このとき、品温が凝固点より低くなった時点から最初の第1冷却工程が開始する。
 第1冷却工程における生鮮食品Fの品温は破壊点となった時点から所定時間Tの間維持される。この所定時間Tが2回目以降の第1冷却工程の基準となる。所定時間T経過後、第2冷却工程に移るために冷却庫1内の温度が0℃~凝固点の間の領域まで上昇し、それに伴って生鮮食品Fの品温も0℃~凝固点の間の領域まで上昇する。このとき、品温が凝固点以上となった時点から第2冷却工程が開始する。
 冷却庫1内の温度を上昇させるタイミングは、品質低下が開始すると予測した時点より前であればよく、前記予測した時点以前に品温が氷結域まで上昇していることが好ましく、前記予測した時点よりも前に品温が氷結域まで上昇していることがより好ましい。
 0℃~凝固点の間の領域で第2冷却工程を行う時間は特に限定されるものではないが、生鮮食品Fの品種によっては第2冷却工程開始から2回目の第1冷却工程へ短時間で移行すると細胞に与えるストレスが大きくなって品質に悪影響を与えるおそれがある。そのため、一例としては、第2冷却工程の時間的な長さは前記所定時間Tと同程度に設定される。
 1回目の第2冷却工程によって生鮮食品Fの品温は0℃~凝固点の間の領域まで低下しているため、2回目の第1冷却工程には最初の第1冷却工程よりも短時間で移行できる。2回目の第1冷却工程でも、品温を破壊点まで低下させて前記所定時間Tで維持すればよい。このようにして3回目以降の第1および第2冷却工程が繰り返し行われて生鮮食品Fが長期間鮮度を維持した状態で貯蔵される。
(実施形態2)
 図3は本発明の生鮮食品の保存方法の実施形態2の概念を説明する図であり、図4は本発明の生鮮食品の保存方法の実施形態2に用いられる貯蔵システムを示す構成図である。なお、図4において、図2中の要素と同様の要素には同一の符号を付している。
 図3に示すように、実施形態2の生鮮食品の保存方法は、第1冷却工程に先立って、同一の収穫開始時刻から所定時間内に同一品種の複数の植物性生鮮食品を収穫する収穫工程と、この収穫工程にて収穫された前記複数の植物性生鮮食品のうち監視対象となる被監視用の生鮮食品を取り分けて常温から前記凝固点以上の品温で保存する別保存工程を含み、
 最初の第1冷却工程開始から所定時間経過した後に前記被監視用の生鮮食品を前記冷却庫内に収容して品温が前記所定の過冷却温度となるよう冷却し、前記被監視用の生鮮食品の状態変化が確認できた時点を基準として前記品質低下の開始時点を予測する。
 実施形態2における生鮮食品用貯蔵システムS2は、冷却庫本体1a内に収容された被監視用生鮮食品Fを撮影してその画像信号を制御部4へ送信するCCDカメラ3が設けられたこと以外は、実施形態1における生鮮食品用貯蔵システムS1と同様である。この場合、CCDカメラ3は、例えば、棚1a1の支柱に固定される。また、撮影すべき生鮮食品Fを収納した収納ケースCには、生鮮食品Fが外部に露出するよう窓部が設けられ、段ボール箱を用いた場合は撮影可能な程度の大きさの孔を形成すればよい。また、冷却庫本体1a内には撮影すべき生鮮食品FをCCDカメラ3にて撮影できるよう照明が設けられる。
 実施形態2の保存方法は、発明者らがフリルレタスの過冷却貯蔵について研究することによって得られた次の(I)および(II)の知見に基づいている。
 (I) 過冷却領域で貯蔵されるフリルレタスの細胞が破壊されると品温が上昇しかつ特定色の色濃度変化が所定量以上に変化するため、フリルレタスの状態変化が確認できる。つまり、フリルレタスの品質低下の開始時点において、冷却庫内が過冷却領域で一定に維持されていてもフリルレタスの品温が上昇しかつ特定色の色濃度変化が所定量以上に上昇する。フリルレタスについて、品温上昇は温度センサ2にて検知可能であり、特定色の色濃度変化はCCDカメラ3にて検知可能であるため、品質低下の開始時点を認識することができる。
 (II)フリルレタスは、収穫された時点から過冷却貯蔵が開始された時点までの時間が長くなるほど、過冷却貯蔵が開始された時点から品質低下の開始時点までの時間、すなわち、過冷却領域での貯蔵可能時間が短くなる。
 前記(I)について詳しくは後述の実施例1および2において説明する。
 前記(II)については図5(A)~(C)を参照しながら説明し、さらに詳しくは後述の実施例1において説明する。
 図5(A)~(C)は同一品種の生鮮食品の収穫から過冷却貯蔵開始時まで時間の長さの違いによる品質低下の開始時点の違いを概念的に説明する図である。なお、図5の各図における過冷却貯蔵が開始された時点から品質低下の開始時点までの時間の長さは便宜的に設定されたものである。
 図5(A)に示すように、ある品種の野菜について、収穫時から1時間後に過冷却貯蔵を開始した場合、過冷却貯蔵の開始時点から品質低下の開始時点までの長さはX時間となる。また、図5(B)に示すように、図5(A)と同じ品種の野菜について、収穫時から8時間後に過冷却貯蔵を開始した場合、過冷却貯蔵の開始時点から品質低下の開始時点までの長さはX/2時間となる。また、図5(C)に示すように、図5(A)と同じ品種の野菜について、収穫時から16時間後に過冷却貯蔵を開始した場合、過冷却貯蔵の開始時点から品質低下の開始時点までの長さはX/4時間となる。
 実施形態2の生鮮食品の保存方法は、図4で説明した生鮮食品用貯蔵システムS2を用いることができる。
 この場合、温度センサ2からの温度信号に基づいて制御部4が冷却庫1内の生鮮食品Fの品温を制御する場合と、CCDカメラ3からの画像信号に基づいて制御部4が冷却庫1内の生鮮食品Fの品温を制御する場合と、これら両方を組み合わせた場合がある。
 以下、図3~図5を参照しながら実施形態2の具体的な生鮮食品の保存方法について説明する。
<温度センサを用いた品温低下の開始時点の予測>
 実施形態2の場合、図4に示すように、第1冷却工程の前に、前記のように収穫工程と、別保存工程が行われる。
 収穫工程では、同一品種の複数の生鮮食品Fを、同一の収穫開始時刻から所定時間内に収穫する。例えば、1000個の生鮮食品Fを10分間のうちに収穫する。これにより、最初と最後に収穫された生鮮食品Fの収穫時刻の差は最大10分に収まり、これら1000個の生鮮食品Fの収穫時点を同一と見なす。なお、収穫時刻の差は短いほど好ましい。
 収穫された複数の生鮮食品Fのうち、被監視用生鮮食品Fを除く複数の流通用生鮮食品Fは、収穫場所あるいは作業場にて収納ケースCに収納された後、生鮮食品用貯蔵システムS2まで搬送され、冷却庫1内に収容されて最初の第1冷却工程によって過冷却貯蔵される。
 別保存工程では、収穫工程にて収穫された複数の生鮮食品Fのうち監視対象となる少なくとも1個の被監視用生鮮食品Fを取り分けて常温から凝固点以上の品温で保存する。この場合、例えば、被監視用生鮮食品Fは冷却庫1に併設された常温の保管庫に収納ケースC内に収納された状態で所定時間保管される。
 一方、この別保存工程の間に、冷却庫1内では複数の流通用生鮮食品Fを過冷却貯蔵する第1冷却工程開始され、その後、被監視用生鮮食品Fも冷却庫1内に収容され第1冷却工程が開始されて過冷却貯蔵される。この過冷却貯蔵の間、被監視用生鮮食品Fは温度センサSにて品温が測定され、その温度信号が制御部4へ送信される。
 被監視用生鮮食品Fと流通用生鮮食品Fは同じときに収穫されているが、前述したように過冷却貯蔵の開始時点が遅い被監視用生鮮食品Fの方が流通用生鮮食品Fよりも早く品質が低下する。この品質低下は、被監視用生鮮食品Fの過冷却領域で一定に維持されていた品温が突然上昇することによって確認できる。この結果、被監視用生鮮食品Fの品質低下が開始した時点を認識することができ、流通用生鮮食品Fの品質低下も近々発生すると予測できる。
 そのため、制御部4による冷却庫1の品温制御によって、被監視用生鮮食品Fの品質低下の開始時点で流通用生鮮食品Fの品温を0℃~凝固点の間の領域まで上昇させて第2冷却工程を行うことにより、流通用生鮮食品Fの品質低下を回避することができる。その後、実施形態2も実施形態1と同様に、最初の第1冷却工程から第1冷却工程と第2冷却工程を繰り返す。
 実施形態2の場合、流通用生鮮食品Fの品質低下の開始時点は、生鮮食品Fの品種および生産条件、別保存工程での保存温度、第1冷却工程開始時点の時間差、第1冷却工程の温度等の条件からおおよそ予測することができ、この時点よりも前に流通用生鮮食品Fの品温が0℃~凝固点の間の領域に達していることが好ましい。
 このように、温度センサ2を用いて品質低下の開始時点を予測する場合、CCDカメラ3を使用しないため省略することができる。
<CCDカメラを用いた品温低下の開始時点の予測>
 この場合はCCDカメラ3を用いて被監視用生鮮食品Fの状態変化を監視すること以外は、前述した温度センサ2を用いた状態変化の監視と同様である。この場合、「状態変化」とは、被監視用生鮮食品Fの特定色の色濃度変化であり、被監視用生鮮食品FをCCDカメラ3にて撮影してその画像信号を制御部4へ送信する。なお、被監視用生鮮食品Fの品温は温度センサ2にて測定され、その温度信号が制御部4へ送信される。
 制御部4は、画像信号に含まれる複数色の色濃度データから特定色の色濃度データを選択的に監視し、特定色の色濃度変化が所定変化量以上となると、被監視用生鮮食品Fの品質低下が発生したと判断して流通用生鮮食品Fの品温を0℃~凝固点の間の領域まで上昇させて第2冷却工程を行う。この場合も、最初の第1冷却工程から第1冷却工程と第2冷却工程を繰り返す。
 なお、温度センサ2とCCDカメラ3が備えられた生鮮食品用貯蔵システムS2では、温度センサ2とCCDカメラ3のうちいずれか一方によって早く品質低下の開始時点が予測できたところで、制御部4によって冷却庫1内の温度を過冷却領域から0℃~凝固点の間の領域まで上昇させるよう制御してもよい。
(実施形態3)
 図6は本発明の生鮮食品の保存方法の実施形態3の概念を説明する図である。
 図6に示すように、実施形態3の生鮮食品の保存方法は、第1冷却工程に先立って、同一の収穫開始時刻から所定時間内に同一品種の複数の植物性生鮮食品を収穫する収穫工程と、この収穫工程よりも前に収穫前の前記複数の植物性生鮮食品のうち監視対象となる被監視用の生鮮食品を予め収穫して常温から前記凝固点以上の品温で保存する別収穫保存工程を含み、
 前記被監視用の生鮮食品を含む複数の植物性生鮮食品を前記冷却庫内に収容して最初の第1冷却工程を開始し、前記被監視用の生鮮食品の状態変化が確認できた時点を基準として前記品質低下の開始時点を予測する。
 実施形態3の保存方法も、実施形態2と同様に、温度センサ2または/およびCCDカメラ3を用いて品質低下の開始時点を予測するが、次の点が実施形態2とは異なる。
 実施形態2では、被監視用生鮮食品と流通用生鮮食品の収穫時点が同じであるが、第1冷却工程の開始時点は被監視用生鮮食品を流通用生鮮食品よりも遅くしており、これによって被監視用生鮮食品の細胞破壊を流通用生鮮食品よりも早く生じさせている。
 一方、実施形態3では、図6に示すように、被監視用生鮮食品を流通用生鮮食品よりも早く収穫し常温から凝固点以上の品温で保存することにより、被監視用生鮮食品および流通用生鮮食品の第1冷却工程の開始時点を同時としても、被監視用生鮮食品の細胞破壊を流通用生鮮食品よりも早く生じさせることができる。なお、実施形態3において、その他の構成は実施形態2と同様である。
 このようにしても、被監視用生鮮食品Fの品質低下が開始した時点を認識することができ、それによって流通用生鮮食品Fの品質低下の開始時点も予測できるため、流通用生鮮食品Fの品質低下を回避しながら長期鮮度保存することができる。
(実施形態4)
 図7は本発明の生鮮食品用貯蔵倉庫の一例を示すブロック図である。なお、図7において、上段は側方から視たブロック図、中段は上方から視たブロック図、下段は上方から視た説明図である。
 実施形態1~3で説明した生鮮食品の保存方法は、図7に示す生鮮食品用貯蔵倉庫でも行うことが可能である。
 この生鮮食品用貯蔵倉庫S3は、第1搬入口22aおよび第1搬出口22bを有する第1貯蔵室22と、第1搬出口22bと接続する第2搬入口23aおよび第2搬出口23bを有する第2貯蔵室23と、第1貯蔵室22および第2貯蔵室23の内部を個別に冷却可能な図示しない冷凍サイクル系と、第1貯蔵室22および第2貯蔵室23の内部に貯蔵された生鮮食品の品温を検知する図示しない温度センサと、温度センサからの検知信号が入力される図示しない制御部とを備える。
 さらに、この生鮮食品用貯蔵倉庫S3は、第1搬入口22aと接続する搬入室21と、第2搬出口23bと接続する搬出室24とを備え、冷凍サイクル系は、搬入室21および搬出室24内の温度を個別に冷却可能に構成されている。
 実施形態4の場合、搬入室21、第1貯蔵室22、第2貯蔵室23および搬出室はこの順に一列で隣接して配置されており、第1搬入口22aは搬入室の搬出口でもあり、第1搬出口22bは第2搬入口23aでもあり、第2搬出口23bは搬出室の搬入口でもある。なお、図示しないが、搬入室21には外部と接続する搬入口が設けられ、搬出室24には外部と接続する搬出口が設けられている。また、これらの搬入口および搬出口には水平方向に開閉する扉が設けられている。
 さらに、この生鮮食品用貯蔵倉庫S3は、生鮮食品を収納する移動可能な複数の棚25と、第1貯蔵室22および第2貯蔵室23の内部に貯蔵された生鮮食品の棚25を移動させる図示しない移動機構とをさらに備える。移動機構としては、例えば、コンベア、自走式台車等が挙げられる。
 制御部は、第1貯蔵室22内に貯蔵された生鮮食品の品温が0℃~生鮮食品の凝固点以上の温度となるよう冷凍サイクル系を制御し、かつ第2貯蔵室23内に貯蔵された生鮮食品の品温が生鮮食品の凝固点よりも低い所定の過冷却温度となるよう冷凍サイクル系を制御する。すなわち、第1貯蔵室22は実施形態1~3で説明した第2冷却工程を行う場所であり、第2貯蔵室23は実施形態1~3で説明した第1冷却工程を行う場所である。
 また、制御部は、搬入室21および搬出室24の室温を第1貯蔵室22の室温に合わせるよう冷凍サイクル系を制御する。すなわち、搬入室21および搬出室24は、第1貯蔵室22および第2貯蔵室23の室温が急激に変動しないようにする温度の緩衝スペースとなっている。
 次に、この生鮮食品用貯蔵倉庫S3への生鮮食品の搬入、貯蔵および搬出についての一例を説明する。
 まず、生鮮食品用貯蔵倉庫S3の周囲近傍の作業場において、収穫された野菜を棚25に収納する。この際、各棚25において少なくとも1つの生鮮食品(例えばレタス)の品温を温度センサにて検知できるようにする。
 その後、搬入室21の搬入口を開いて複数の棚25を内部に搬入し、搬入口を閉じる。このとき、搬入室21内に外気が流入して室温が0℃を越えて上昇するため、搬入室21の室温が再び0℃~生鮮食品の凝固点以上の第1の所定温度まで低下するまで待機する。
 搬入室21の室温が第1の所定温度まで低下すると、第1搬入口22aを開いて複数の棚25を第1貯蔵室22内に搬入し、第2冷却工程(図1参照)が開始される。このとき、第1貯蔵室22の室温はほとんど変化しない。
 第1貯蔵室22内の生鮮食品の品温は温度センサにて検知され、この検知信号に基づいて制御部が冷凍サイクル系を制御して第1貯蔵室22内の室温を0℃~生鮮食品の凝固点以上の温度に維持する。
 第2冷却工程中、図7(B)および(C)に示すように、移動機構によって複数の棚25を第1貯蔵室22内で一定時間毎に点線矢印のように移動させてもよい。このようにすれば、第1貯蔵室22の室温が室内において微妙に不均一になる傾向にあったとしても、室内の空気が撹拌されて温度の均一化が図られると共に、貯蔵場所による生鮮食品の過剰冷却または冷却不足の偏りを抑制することができる。なお、移動機構を省略し、手動で棚25を移動させるようにしてもよい。
 第1貯蔵室22内で所定時間貯蔵した後、第1搬出口22bを開いて所定の棚25を第1貯蔵室22から第2貯蔵室23内へ移動させ、第搬出口22bを閉じて第1冷却工程(過冷却貯蔵)が開始される。第2貯蔵室23内の生鮮食品の品温は温度センサにて検知され、この検知信号に基づいて制御部が冷凍サイクル系を制御して第2貯蔵室23内の室温を凝固点よりも低い所定の過冷却温度に維持する。第1冷却工程中も、図7(B)および(C)に示すように、移動機構によって複数の棚25を第2貯蔵室23内で一定時間毎に点線矢印のように移動させてもよい。
 そして、第2貯蔵室23内の生鮮食品の品温が破壊点に達してから所定時間T(図1参照)経過すると、第1搬出口22bが開いて棚25を第1貯蔵室22へ移動させ、第2冷却工程に移行する。このように、生鮮食品を積んだ棚25を第1貯蔵室22と第2貯蔵室23とで交互に貯蔵して第2冷却工程と第1冷却工程を繰り返すことにより、生鮮食品の鮮度を保ちながら長期保存することができる。そして、搬出の際は、第2搬出口23bを開いて棚25を搬出室24へ移動させ、第2搬出口23bを閉じた後、搬出室24から外部へ棚25を搬出する。
 なお、予め生鮮食品の品種、生産地、収穫日等の基本データと凝固点、破壊点等の品温データなどを集積してデータベースを構築しておくことにより、生鮮食品の品温を検知する温度センサを省略し、データベースに基づいて室内の温度管理、第1冷却工程と第2冷却工程の継続時間および切り替えタイミング等を自動制御することも可能である。
(他の実施形態)
 本発明によれば、貯蔵される生鮮食品の品温測定部を備えた冷蔵庫が提供される。
 この冷蔵庫は、庫内を0℃以下に温度制御が可能な冷蔵庫であって、庫内の1箇所以上に生鮮食品の品温測定部が設置されている。したがって、庫内の下部および上部の周縁、下部および上部の中央等の複数箇所に品温測定部が設置されていてもよい。品温測定部としては、例えば、冷蔵庫内の1箇所以上に、品温が検知される被監視用生鮮食品を設置する台を設け、その台から棒状の温度センサが突出するように設置した構成とすることができる。この場合、作業者が温度センサに突き刺さるように被監視用生鮮食品を台上に設置してもよく、台上に設置した被監視用生鮮食品に温度センサが自動的に突き刺さるようにしてもよい。この品温測定部を備えた冷蔵庫によれば、生鮮食品の品温を簡便に測定することができる。
 また、この冷蔵庫は、品温測定部の付近に室温センサが設けられていてもよい。このようにすれば、広い冷蔵庫内での温度分布の測定および温度分布と品温との関係をデータベース化することができる。つまり、各温度センサおよび各室温センサからの検知信号が制御部に送信され、制御部にこれらの温度および位置データ、生鮮食品の品種、生産地、収穫日等が蓄積されデータベース化される。そして、このデータベースを分析することにより、冷蔵庫内に貯蔵される予定の生鮮食品を冷蔵庫内のどの位置に収容するのが最も適しているのかという判断基準を導くことが可能となり、貯蔵する生鮮食品の適切な品温管理が容易となる。また、冷蔵庫内に、生鮮食品を載置する移動式の棚を設け、生鮮食品に最も適した位置をデータベースから導き出し、その位置に棚を移動させるように構成してもよい。
(実施例1)
 図8(A)~(D)は品温を-2℃、-3℃、-4℃および-5℃に維持した過冷却貯蔵でのフリルレタスの品温変化を示すグラフである。
 実施例1では、大阪府立大学植物工場研究センターにて生産されたフリルレタスを収穫し、収穫時点から過冷却貯蔵を開始するまでの時間差と品温と品質低下の開始時点との関係を調べたところ、図8(A)~(D)に示す結果が得られた。この場合、収穫したフリルレタスを過冷却貯蔵する装置として、図4で説明した生鮮食品用貯蔵倉庫S2を小型化した株式会社氷温研究所製のインキュベーター(冷凍付)CDB-14Aを使用した。また、温度センサからの温度信号がPCに送信され、PCにて各フリルレタスの品温変化が記録されるようにした。
 図8(A)の場合、収穫3時間後(グラフ(1))、9時間後(グラフ(2))および16時間後(グラフ(3))のフリルレタスを品温-2℃で過冷却貯蔵し、図8(B)の場合、収穫4時間後(グラフ(1))、10時間後(グラフ(2))および16時間後(グラフ(3))のフリルレタスを品温-3℃で過冷却貯蔵し、図8(C)の場合、収穫3時間後(グラフ(1))のフリルレタスを品温-4℃で過冷却貯蔵し、図8(D)の場合、収穫1.5時間後(グラフ(1))、7時間後(グラフ(2))および10.5時間後(グラフ(3))のフリルレタスを品温-5℃で過冷却貯蔵し、各フリルレタスの状態変化を監視した。図8(A)~(D)において、品温(野菜温度)が急激に上昇した時点が、フリルレタスの細胞が凍結し破壊された品質低下の開始時点である。
 図8(A)に示すように、グラフ(1)は300分を超えても品質低下を示さず、グラフ(2)は約210分、グラフ(3)は約70分で品質低下の開始時点を示した。
 図8(B)に示すように、グラフ(1)は300分を超えても品質低下を示さず、グラフ(2)は約160分、グラフ(3)は約40分で品質低下の開始時点を示した。
 図8(C)に示すように、グラフ(1)は約240分で品質低下の開始時点を示した。
 図8(D)に示すように、グラフ(1)は約140分、グラフ(2)および(3)は約20分で品質低下の開始時点を示した。
 図8(A)~(D)に示す結果から次のことがわかった。
・収穫時点から過冷却貯蔵を開始するまでの時間が短いほど品質低下の開始時点が遅延する傾向がある。
・過冷却貯蔵における品温は高いほど品質低下の開始時点が遅延する傾向がある。
・予め、過冷却貯蔵すべき植物性生鮮食品の品種に応じて過冷却領域での適切な品温を決定し、収穫から過冷却貯蔵開始までの適切な時間を決定し、適切な品温で過冷却貯蔵された生鮮食品の品質低下の開始時点を測定しておくことにより、前記実施形態1の保存方法で生鮮食品を長期鮮度保存することができる。
・生鮮食品の収穫から過冷却貯蔵開始までの時間差を利用し、かつ過冷却貯蔵での品温変化を監視することにより、前記実施形態2および3の保存方法で生鮮食品を長期鮮度保存することができる。
(実施例2)
 図9(A)~(C)は品温を-3℃に維持した過冷却貯蔵でのフリルレタスの品質低下の開始時点および特定色の色濃度変化を示すグラフである。
 実施例2では、大阪府立大学植物工場研究センターにて生産されたフリルレタスを収穫し、収穫から10.5時間後に実施例1で用いた過冷却貯蔵装置に収容して品温を-3℃で維持しながらフリルレタスの複数色の色濃度変化を監視した。また、温度センサからの温度信号およびCCDカメラからの画像信号は画像解析ソフトが組み込まれたPCに送信され、PCにてフリルレタスの品温変化および複数色の色濃度変化が記録されるようにした。
 図9(A)はフリルレタスの品温変化を示している。図9(A)において、品温(野菜温度)が急激に上昇した時点が、フリルレタスの細胞が凍結し破壊された品質低下の開始時点であり、測定の結果約160分であった。
 また、図9(B)はフリルレタスの複数色のうちから64色解析方法によって選択したr160g160b160色(グラフ(1))、r160g160b096色(グラフ(2))、r096g096b096色(グラフ(3))およびr096g160b096色(グラフ(4))の色濃度変化を示し、図9(C)はフリルレタスの複数色のうちから64色解析方法によって選択したr160g224b160色(グラフ(1))およびr224g224b160色(グラフ(2))の色濃度変化を示している。
 図9(A)~(C)に示す結果から次のことがわかった。
・フリルレタスの品温が急上昇した品質低下の開始時点において、フリルレタスの複数色のうち、図9(B)中のグラフ(1)は色濃度の急激な増加を示し、一方、図9(C)中のグラフ(1)は色濃度の急激な減少を示していることがわかった。
・予め、過冷却貯蔵すべき植物性生鮮食品の品種に応じて過冷却領域での適切な品温を決定し、収穫から過冷却貯蔵開始までの適切な時間を決定し、適切な品温で過冷却貯蔵された生鮮食品の特定色の色濃度変化が所定量以上に変化する時点を測定しておくことにより、前記実施形態1の保存方法で生鮮食品を長期鮮度保存することができる。
・生鮮食品の収穫から過冷却貯蔵開始までの時間差を利用し、かつ過冷却貯蔵での生鮮食品の特定色の色濃度変化を監視することにより、前記実施形態2および3の保存方法で生鮮食品を長期鮮度保存することができる。
(実施例3)
 図10(A)~(C)は冷却庫内の温度を-2℃、-3℃および-5℃に維持した過冷却貯蔵でのフリルレタスの色数の変化を示すグラフである。
 実施例3では、大阪府立大学植物工場研究センターにて生産されたフリルレタスを収穫し、収穫から9時間後に実施例1で用いた過冷却貯蔵装置に収容し、冷却庫内の温度を-2℃、-3℃、-5℃で維持しながらフリルレタスの色数の変化を監視した。この場合、CCDカメラからの画像信号は画像解析ソフトが組み込まれたPCに送信され、PCにてフリルレタスの色数の変化が記録されるようにした。
 図10(A)~(C)によれば、冷却庫内の温度を-3℃に維持した場合が最も色数の変化の幅が狭い、すなわち、最も品質変化が小さいことが示されており、このことから-3℃の過冷却貯蔵がフリルレタスを安定的な保存に適していると推察できる。
 なお、実施例3によれば、フリルレタスに適した過冷却貯蔵の温度設定を容易かつ短時間に見出すことができる。
(実施例4)
 図11(A)~(C)は冷却庫内の温度を-2℃、-3℃および-5℃に維持した過冷却貯蔵でのフリルレタスの色変化率を示すグラフである。
 実施例4では、大阪府立大学植物工場研究センターにて生産されたフリルレタスを収穫し、収穫から3時間後に実施例1で用いた過冷却貯蔵装置に収容し、冷却庫内の温度を-2℃、-3℃、-5℃で維持し、品温が急激に上昇する品質低下の開始時点を超えるまでフリルレタスの色変化率を測定した。この場合、CCDカメラからの画像信号は画像解析ソフトが組み込まれたPCに送信され、PCにてフリルレタスの各色の色濃度データが記録され、過冷却貯蔵の間の各色の色濃度の変化率を算出した。
 図11(A)~(C)によれば、冷却庫内の温度を-3℃に維持した場合が最も色変化率が低い、すなわち、最も品質変化が小さいことが示されており、このことから品温を-3℃の過冷却貯蔵がフリルレタスの安定的な保存に適していると推察できる。
 なお、実施例4によっても、フリルレタスに適した過冷却貯蔵の温度設定を容易かつ短時間に見出すことができる。
(実施例5)
 図12は貯蔵方法とフリルレタスの重量減少率の関係を示すグラフであり、図13は貯蔵方法とフリルレタスの糖度変化の関係を示すグラフである。
 フリルレタスを3週間、品温5℃で冷蔵(グラフ(1))、および、品温-2.8℃の過冷却貯蔵と品温-0.5℃の凝固点冷却貯蔵の繰り返し(グラフ(2))を行い、この間の1週間毎に重量および糖度を測定し、フリルレタスの重量減少率および糖度変化が貯蔵方法の違いによってどのように変化するのかを調べた。なお、「凝固点冷却貯蔵」とは、品温が0℃~凝固点の間の所定温度となるように貯蔵することを意味する。
 図12において、グラフ(1)はグラフ(2)よりも重量減少率が大きく、特に、1週間目以降の重量減少率が大きいことがわかった。これは、品温が高いとフリルレタスの呼吸量が多くなり水分の蒸発量も多くなるためであると考えられる。
 また、図13において、グラフ(2)は2週間目まで糖度は減少したが、それ以降は増加に転じていた。このことから、品温が過冷却領域まで低下すると、ある程度の期間を過ぎるとフリルレタス中のデンプンが糖に変化する量が多くなると考えられる。一方、グラフ(1)は糖度の減少と増加を繰り返し、3週間目ではグラフ(2)よりも減少した。
 図12および図13の結果から、過冷却貯蔵と凝固点冷却貯蔵を繰り返す実施形態の生鮮食品の保存方法によれば、生鮮食品の鮮度を長期間維持しつつ甘み成分を増やせることを確認できた。
(実施例6)
 図14は貯蔵方法とフリルレタスの遊離アミノ酸含量の変化の関係を示すグラフである。
 フリルレタスを3週間、品温0℃で冷蔵(グラフ(1))、および、品温-2.8℃の過冷却貯蔵と品温-0.5℃の凝固点冷却貯蔵の繰り返し(グラフ(2))を行い、この間の1週間毎に遊離アミノ酸含量を測定し、フリルレタス中の遊離アミノ酸含量が貯蔵方法の違いによってどのように変化するのかを調べた。
 図14において、グラフ(2)は15日目までは遊離アミノ酸含量が緩やかに増加したことを示し、一方、グラフ(1)は1週間目までは遊離アミノ酸含量が緩やかに減少するが1週間目を過ぎると緩やかに増加することを示した。
 なお、品温-2.8℃の過冷却貯蔵と品温-0.5℃の凝固点冷却貯蔵の繰り返しの場合はGABA含量とグルタミン酸含量が3週間以降では増加することも確認した。
 図14の結果から、過冷却貯蔵と凝固点冷却貯蔵を繰り返す実施形態の生鮮食品の保存方法によれば、生鮮食品の鮮度を長期間維持しつつ旨み成分を増やせることを確認できた。
(実施例7)
 図15は実施例7で用いる実験装置を示す構成図である。図15において、符号1はパーソナル・コンピュータ(PC)、2はデーターローグ(Data-logger)、3はインキュベーター冷蔵庫(大和工業株式会社製 型式:CDB-14A)、4は段ボール箱(200X200X230mm、厚さ3mm)、5はサンプル、6、7、8および9は温度センサを示している。
<実験1>
 図15の実験装置の段ボール箱4内にサンプル5として3個のフリルレタスを収納し、冷蔵庫3内の温度を-10℃に設定し、各レタスの中心温度(品温)の温度変化を温度センサ6~8にて測定し、品温が-7℃に達した時点でレタス全体が凍結したと判断して実験を終了し、これを3回繰り返した。なお、フリルレタスは大阪府立大学の植物工場で生産され収穫日に得たものである。
 この実験1から、図16に示すレタスの冷却線が得られた。図16において、試験1.1、1.2および1.3は1回目の試験、試験2.1、2.2および2.3は2回目の試験、試験3.1、3.2および3.3は3回目の試験で用いたレタスの冷却線である。
 図16中の各冷却線から破壊点(Nucleation point)および凝固点(Initial Freezing Point)を求めると表1のようになる。
Figure JPOXMLDOC01-appb-T000001
 表1において、「破壊点」は、野菜を含む生鮮食品内の水分の状態が氷に変化する点であると定義される。また、「凝固点」は、野菜を含む生鮮食品が凍り始めてから一定になる点であると定義される。また、「平静な凝固点」は、野菜を含む生鮮食品が凍り始めてから凍り速度が最も小さくなったときの点であると定義される。
<実験2>
 過冷却貯蔵における冷却速度がレタスの品質にどのよう影響するか調べるために図15の実験装置を用いて次の実験2を行った。
 実験2では、3種類の包装方法と冷蔵庫3の温度設定を組み合わせてレタスの冷却速度を測定した。冷蔵庫3の設定温度は-1℃から1℃ずつ下げて-6℃までの範囲とし、包装無しのレタスと、市販のポリプロピレン(PP)フィルムの一重包装のレタスと、市販のPEフィルムの二重包装のレタスの3種類を3個ずつ冷蔵庫3内に収容し、48時間の冷却を行った。この間、各レタスの品温変化を測定し、平均冷却速度を求めて表2に示した。なお、二重包装の場合、PPフィルムの一重包装の3個のレタスを大きなPE袋に収容し密封した。
Figure JPOXMLDOC01-appb-T000002
 表2は、冷蔵庫3の設定温度と包装方法との組み合わせで得られた冷却速度および過冷却貯蔵の可能性を示している。表2において、第1列は冷蔵庫3の設定温度を示し、第2列から第4列は各包装方法での冷却速度およびレタスが最終的に凍結したか否かを示す。表2に示すように、包装が無い場合は、冷却速度が高く、全て凍結した。二重包装の場合は、冷却速度が低く、設定温度が-4℃以上の場合には凍結せず、-4℃より低くても一部のレタスは凍結しなかった。一重包装の場合は、両者の中間的な結果が得られた。このような結果から、包装形態により、冷却速度が低下し、0℃以下の温度であってもレタスを凍結させずに保存することが可能であることがわかった。
<実験3>
 レタスなどの農産物は収穫後も呼吸などの生命活動が続くため、水分蒸発や糖度の変化が生じている。過冷却貯蔵と冷蔵貯蔵とを比較するため、3週間の長期保存実験を行い、1週間毎に重量減少率と糖度変化の測定を行った。
[実験条件]
(a)一般の冷蔵庫貯蔵(冷蔵):3個のレタスを3セット用意し、これらを設定温度5℃の冷蔵庫に貯蔵した。
(b)過冷却貯蔵:3個のレタスを3セット用意し、これらを設定温度-3℃の冷蔵庫に貯蔵した。
 条件(a)および(b)で用いた合計6個のレタスの実験開始前の平均重量、最小重量、平均糖度、最小糖度、平均水分量および最小水分量を測定し、その結果を表3に示した。なお、糖度はアタゴ社製の糖度計(型式:PAL-J)、水分量はアタゴ社製の水分計(型式:ML-50, A&D)を用いて測定した。
Figure JPOXMLDOC01-appb-T000003
 条件(a)および(b)で用いた冷蔵庫内の温度変化を図17に示した。
 また、条件(a)および(b)のレタスについて、週1回の計測を行い、3週間目までの重量および糖度の変化をまとめたものが図18および図19である。
 図18および図19において、1週間毎に計測した値は、1週間ごとに取り出した1セット中の3個のレタスについての平均値である。なお、冷蔵および過冷却貯蔵のレタスについて、計測時に冷蔵庫から取り出したものは廃棄した。
 図18に示すように、設定温度5℃で冷蔵されたレタスは、3週間経過時点での重量減少率が約7%であり、凍結していた。一方、設定温度-3℃で過冷却貯蔵されたレタスは、3週間経過時点での重量減少率が1%以下であり、凍結もしていなかった。この結果から、過冷却貯蔵ではレタスの生命活動を抑制することで鮮度を保持したまま貯蔵することができると考えられる。
 冷蔵および過冷却貯蔵を行ったレタスの糖度は、図19に示すように、ほとんど変化しないことを確認した。詳細を見ると、過冷却貯蔵されたレタスは、2週間目までは糖度変化はほとんどなく、3週間目で0.2%程度増加した。冷蔵されたレタスは、2週間目までは糖度変化はほとんどないが、3週間目で0.15%程度減少した。
 実施例7の結果を以下にまとめる。
(1)植物工場で生産されたレタスの凝固点温度は-0.2℃程度、過冷却領域の温度は-1.0℃から-6.1℃程度であることを、過冷却実験により求めた。
(2)レタスの過冷却貯蔵を行う際の包装形態により冷却速度に変化が求められ、過冷却状態で凍結させずに保存することができることが示された。
(3)冷蔵および過冷却貯蔵を3週間行い、重量および糖度を測定し、過冷却貯蔵の有効性が示された。
(実施例8)
 実施例7の実験3と同様にして、イチゴの重量変化と糖度変化を1週間毎に4週間目まで測定し、その結果を図20および図21に示した。
 図20に示すように、設定温度5℃で冷蔵されたイチゴは、4週間経過時点での重量減少率が約11%である。一方、設定温度-2℃で過冷却貯蔵されたイチゴは、4週間経過時点での重量減少率が約2%であり、凍結もしていなかった。この結果から、過冷却貯蔵ではイチゴの生命活動を抑制することで鮮度を保持したまま貯蔵することができると考えられる。
 冷蔵および過冷却貯蔵を行ったイチゴの糖度は、図21に示すように、ほとんど変化しないことを確認した。詳細を見ると、過冷却貯蔵されたイチゴは、2週間目までは糖度変化はほとんどなく、見た目が良く4週間目で0.2%程度増加した。冷蔵されたイチゴは、2週間目までは糖度変化はほとんどないが、4週間目で30%程度が廃棄物になり、そのほかは0.2%程度糖度が減少した。
 実施例8から、イチゴの場合も過冷却貯蔵の有効性が示された。
 なお、開示された実施の形態および実施例は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 このような観点から、本発明は、最初の第1冷却工程から開始して第2冷却工程に移行し、第1冷却工程に戻らずに第2冷却工程を生鮮食品の出荷まで長期間継続する場合を包含するものである。
 1 冷却庫
 1a 冷却庫本体
 1a1 棚
 1b 冷凍機
 1c ダクト
 1c1 冷気
 2 温度センサ
 3 CCDカメラ
 4 制御部
 C 収納ケース
 F 生鮮食品
 S1、S2 生鮮食品用貯蔵システム
 S3 生鮮食品用貯蔵庫

Claims (13)

  1.  生鮮食品の品温がこの生鮮食品の凝固点よりも低い所定の過冷却温度となるよう冷却庫にて前記生鮮食品の冷却を継続し、前記生鮮食品の細胞が破壊されると予測した品質低下の開始時点よりも前に前記品温を前記凝固点以上に上昇させることを特徴とする生鮮食品の保存方法。
  2.  予め前記所定の過冷却温度で維持されたときの前記生鮮食品の状態変化が確認できるまで観察してデータを収集し、
     前記データに基づいて前記生鮮食品の品質低下の開始時点を予測する請求項1に記載の生鮮食品の保存方法。
  3.  前記生鮮食品が植物性生鮮食品であり、
     同一の収穫開始時刻から所定時間内に同一品種の複数の植物性生鮮食品を収穫する収穫工程と、この収穫工程にて収穫された前記複数の植物性生鮮食品のうち監視対象となる被監視用の生鮮食品を取り分けて常温から前記凝固点以上の品温で保存する別保存工程を含み、
     前記所定の過冷却温度での冷却開始から所定時間経過した後に前記被監視用の生鮮食品を前記冷却庫内に収容して品温が前記所定の過冷却温度となるよう冷却し、前記被監視用の生鮮食品の状態変化が確認できた時点を基準として前記品質低下の開始時点を予測する請求項1に記載の生鮮食品の保存方法。
  4.  前記生鮮食品が植物性生鮮食品であり、
     同一の収穫開始時刻から所定時間内に同一品種の複数の植物性生鮮食品を収穫する収穫工程と、この収穫工程よりも前に収穫前の前記複数の植物性生鮮食品のうち監視対象となる被監視用の生鮮食品を予め収穫して常温から前記凝固点以上の品温で保存する別収穫保存工程を含み、
     前記被監視用の生鮮食品を含む複数の植物性生鮮食品を前記冷却庫内に収容して品温が前記所定の過冷却温度となるよう冷却し、前記被監視用の生鮮食品の状態変化が確認できた時点を基準として前記品質低下の開始時点を予測する請求項1に記載の生鮮食品の保存方法。
  5.  前記生鮮食品の状態変化が品温変化および色濃度変化のうちの少なくとも一方を含んでいる請求項2~4のいずれか1つに記載の生鮮食品の保存方法。
  6.  前記品温が前記所定の過冷却温度となるよう生鮮食品を冷却する第1冷却工程と、前記品温が0℃~凝固点以上となるように生鮮食品を冷却する第2冷却工程とを含み、
     第1冷却工程から開始して第1冷却工程と第2冷却工程を繰り返し、最初の第1冷却工程中に得られた前記品質低下の開始時点の情報に基づいて2回目以降の第1冷却工程の期間を決定する請求項1~5のいずれか1つに記載の生鮮食品の保存方法。
  7.  前記生鮮食品が、植物工場で生産された野菜である請求項1~6のいずれか1つに記載の生鮮食品の保存方法。
  8.  請求項3または4に記載の生鮮食品の保存方法に用いられる生鮮食品用貯蔵システムであって、
     生鮮食品を冷却する温度調整可能な冷却庫と、前記冷却庫内の前記被監視用の生鮮食品の品温を測定する温度センサと、前記温度センサからの信号に基づいて前記冷却庫内の温度を制御する制御部とを備え、
     前記制御部は、第1冷却工程における前記温度センサからの信号によって前記被監視用の生鮮食品の品温が所定の変化量以上で低下したと判定すると、前記複数の植物性生鮮食品の品温を0℃~前記凝固点の間の温度まで上昇させるよう前記冷却庫内の温度を制御する第2冷却工程モードと、第2冷却工程開始から所定時間経過すると前記複数の植物性生鮮食品の品温が凝固点よりも低い所定の過冷却温度となるよう前記冷却庫内の温度を制御する第1冷却工程モードに切り替わるよう構成されている生鮮食品用貯蔵システム。
  9.  請求項3または4に記載の生鮮食品の保存方法に用いられる生鮮食品用貯蔵システムであって、
     生鮮食品を冷却する温度調整可能な冷却庫と、前記冷却庫内の前記被監視用の生鮮食品の品温を測定する温度センサと、前記冷却庫内の前記被監視用の生鮮食品を撮影するCCDカメラと、前記温度センサからの温度信号および前記CCDカメラからの画像信号に基づいて前記冷却庫内の温度を制御可能な制御部とを備え、
     前記制御部は、第1冷却工程における前記画像信号によって前記被監視用の生鮮食品の特定色の色変化が所定の変化量以上となったと判定すると、前記複数の生鮮食品の品温を0℃~前記凝固点の間の温度まで上昇させるよう前記冷却庫内の温度を制御する第2冷却工程モードと、第2冷却工程開始から所定時間経過すると前記複数の生鮮食品の品温が凝固点よりも低い所定の過冷却温度となるよう前記冷却庫内の温度を制御する第1冷却工程モードに切り替わるよう構成されている生鮮食品用貯蔵システム。
  10.  貯蔵される生鮮食品の品温測定部を備えたことを特徴とする冷蔵庫。
  11.  開閉可能な第1搬入口および第1搬出口を有する第1貯蔵室と、前記第1搬出口と接続する開閉可能な第2搬入口および第2搬出口を有する第2貯蔵室と、前記第1貯蔵室および前記第2貯蔵室の内部を個別に冷却可能な冷凍サイクル系と、制御部とを備え、
     前記制御部は、前記第1貯蔵室内に貯蔵された生鮮食品の品温が0℃~生鮮食品の凝固点以上の温度となるよう前記冷凍サイクル系を制御し、かつ前記第2貯蔵室内に貯蔵された生鮮食品の品温が生鮮食品の凝固点よりも低い所定の過冷却温度となるよう前記冷凍サイクル系を制御することを特徴とする生鮮食品用貯蔵庫。
  12.  前記第1搬入口と接続する搬入室と、前記第2搬出口と接続する搬出室とをさらに備え、
     前記冷凍サイクル系は、前記搬入室および前記搬出室内の温度を個別に冷却可能に構成され、
     前記制御部は、前記搬入室および前記搬出室の室温を前記第1貯蔵室の室温に合わせるよう前記冷凍サイクル系を制御する請求項11に記載の生鮮食品用貯蔵庫。
  13.  生鮮食品を収納する移動可能な棚と、前記第1貯蔵室および前記第2貯蔵室の内部に貯蔵された生鮮食品の前記棚を移動させる移動機構とをさらに備えた請求項11または12に記載の生鮮食品用貯蔵庫。
PCT/JP2016/060757 2015-03-31 2016-03-31 生鮮食品の保存方法および生鮮食品用貯蔵システム WO2016159274A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017510212A JP6151877B2 (ja) 2015-03-31 2016-03-31 生鮮食品の保存方法および生鮮食品用貯蔵システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072486 2015-03-31
JP2015-072486 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159274A1 true WO2016159274A1 (ja) 2016-10-06

Family

ID=57006930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060757 WO2016159274A1 (ja) 2015-03-31 2016-03-31 生鮮食品の保存方法および生鮮食品用貯蔵システム

Country Status (2)

Country Link
JP (1) JP6151877B2 (ja)
WO (1) WO2016159274A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085727A1 (zh) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 冰箱内食品冻结判断方法、冰箱食品保鲜方法及保鲜冰箱
WO2019085726A1 (zh) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 冰箱内食品冻结判断方法、冰箱食品保鲜方法及保鲜冰箱
KR20200025635A (ko) * 2018-08-31 2020-03-10 (주)다담상사 농축수산물 보관용 저온 저장고 제어 방법
KR20200025599A (ko) * 2018-08-31 2020-03-10 (주)다담상사 농축수산물 보관용 저온 저장고 제어 시스템
JP2021009004A (ja) * 2019-07-02 2021-01-28 ダイキン工業株式会社 移動式保冷装置
CN112393502A (zh) * 2020-11-25 2021-02-23 珠海格力电器股份有限公司 食品防冻结储存方法及冰箱
US20230115574A1 (en) * 2020-03-31 2023-04-13 Daikin Industries, Ltd. Adjustment system and adjustment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316524B1 (ko) * 2021-06-29 2021-10-21 김인철 소포장 작업장 및 저온 창고 냉각 장치 및 그 구동 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622684A (ja) * 1992-05-15 1994-02-01 Mitsubishi Electric Corp 低温度保存装置
JPH07184539A (ja) * 1994-01-28 1995-07-25 Shunichiro Tanaka 生鮮食料品の貯蔵方法および装置
JPH08252082A (ja) * 1995-03-15 1996-10-01 Hiyouon:Kk 氷結点以下の温度帯における食品等の未凍結保存方法
JP2000346519A (ja) * 1999-05-28 2000-12-15 Sanyo Electric Co Ltd 冷却庫の運転制御方法
JP2004166610A (ja) * 2002-11-20 2004-06-17 Jinichi Fujiya 生鮮食品の低温貯蔵方法と冷蔵装置
JP2009300053A (ja) * 2008-06-17 2009-12-24 Panasonic Corp 冷蔵庫
JP2010261677A (ja) * 2009-05-11 2010-11-18 Mitsubishi Electric Corp 冷蔵庫

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622684A (ja) * 1992-05-15 1994-02-01 Mitsubishi Electric Corp 低温度保存装置
JPH07184539A (ja) * 1994-01-28 1995-07-25 Shunichiro Tanaka 生鮮食料品の貯蔵方法および装置
JPH08252082A (ja) * 1995-03-15 1996-10-01 Hiyouon:Kk 氷結点以下の温度帯における食品等の未凍結保存方法
JP2000346519A (ja) * 1999-05-28 2000-12-15 Sanyo Electric Co Ltd 冷却庫の運転制御方法
JP2004166610A (ja) * 2002-11-20 2004-06-17 Jinichi Fujiya 生鮮食品の低温貯蔵方法と冷蔵装置
JP2009300053A (ja) * 2008-06-17 2009-12-24 Panasonic Corp 冷蔵庫
JP2010261677A (ja) * 2009-05-11 2010-11-18 Mitsubishi Electric Corp 冷蔵庫

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Kongo Sangyo Kabushiki Kaisha, Haiso·Butsuryu Soko/Reito Reizoko COOL", 7 June 2016 (2016-06-07), Retrieved from the Internet <URL:http://www.kongo.net/sangyo/catalog/cool.pdf> [retrieved on 20160607] *
AKIHIKO YAMANE: "Hyoon' ni yoru Kajitsu no Chozoho", KAJITSU NIPPON, vol. 59, no. 5, 2004, pages 26 - 28 *
KUNIHIKO HATTORI: "Shokumi o Kojo Saseru Reikyaku Gijutsu···Hyoon, Reito Kucho Setsubi", vol. 32, no. 9, 2005, pages 30 - 33 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085727A1 (zh) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 冰箱内食品冻结判断方法、冰箱食品保鲜方法及保鲜冰箱
WO2019085726A1 (zh) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 冰箱内食品冻结判断方法、冰箱食品保鲜方法及保鲜冰箱
KR20200025635A (ko) * 2018-08-31 2020-03-10 (주)다담상사 농축수산물 보관용 저온 저장고 제어 방법
KR20200025599A (ko) * 2018-08-31 2020-03-10 (주)다담상사 농축수산물 보관용 저온 저장고 제어 시스템
KR102171869B1 (ko) * 2018-08-31 2020-10-29 (주)다담상사 농축수산물 보관용 저온 저장고 제어 시스템
KR102171870B1 (ko) 2018-08-31 2020-10-29 (주)다담상사 농축수산물 보관용 저온 저장고 제어 방법
JP2021009004A (ja) * 2019-07-02 2021-01-28 ダイキン工業株式会社 移動式保冷装置
JP7265160B2 (ja) 2019-07-02 2023-04-26 ダイキン工業株式会社 移動式保冷装置
US20230115574A1 (en) * 2020-03-31 2023-04-13 Daikin Industries, Ltd. Adjustment system and adjustment method
CN112393502A (zh) * 2020-11-25 2021-02-23 珠海格力电器股份有限公司 食品防冻结储存方法及冰箱

Also Published As

Publication number Publication date
JPWO2016159274A1 (ja) 2017-06-01
JP6151877B2 (ja) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6151877B2 (ja) 生鮮食品の保存方法および生鮮食品用貯蔵システム
James et al. The freezing and supercooling of garlic (Allium sativum L.)
Liu et al. Sub-zero temperature preservation of fruits and vegetables: A review
Stonehouse et al. The use of supercooling for fresh foods: A review
Elansari et al. Precooling
EP1286586B1 (en) Methods and apparatus for freezing tissue
CN104222262A (zh) 一种果蔬预冷驯化方法及制冷设备
Ergün et al. The effects of the novel home freezing system on microstructure, color, antioxidant activity, and microbiological properties of strawberries
AU2001262531A1 (en) Methods and apparatus for freezing tissue
QUANG et al. A study on supercooled storage of leaf lettuces produced in plant factory
Sari et al. Cooling load calculation of cold storage container for vegetables case study C Campus-UISI, Ngipik
Yanat et al. Effect of freezing rate and storage time on quality parameters of strawberry frozen in modified and home type freezer
AU2020209582A1 (en) Ingredient freezing system and method for producing frozen ingredient
CN104920588A (zh) 蔬菜贮藏方法
Saran et al. Evaluation of coolbot cool room as a low cost storage system for marginal farmers
Ambuko et al. Cold chain management in horticultural crops value chains: options for smallholder farmers in Africa
Tongbram et al. Fresh and Refrigerated Foods: Science, Shelf Life, and Quality
CN105300005A (zh) 一种静风冰鲜冷库
Kassebi et al. The effect of post-harvest storage on the weight of Golden Delicious apples
McLellan et al. Light microscopy of foodstuffs during freezing and thawing
JPH0347034A (ja) 生鮮食品の低温貯蔵法
Singh Cold-chain management for reducing post-harvest losses and increasing farmers income
Tolesa et al. A comparison of the influence of different low-cost cooling technologies on tomato cooling time and temperature
Akinola et al. DEVELOPMENT OF MICROCONTROLLER-BASED STORAGE CHAMBER FOR WATERMELON FRUITS (CITRULLUS LANATUS) GROWN IN NIGERIA
Umiarsih et al. Effects of Freezing Time on Degradation of Durian (Durio zibethinus Murr.) Fruit’s Attributes During the Frozen Storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773154

Country of ref document: EP

Kind code of ref document: A1