WO2016159157A1 - 微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法 - Google Patents

微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法 Download PDF

Info

Publication number
WO2016159157A1
WO2016159157A1 PCT/JP2016/060523 JP2016060523W WO2016159157A1 WO 2016159157 A1 WO2016159157 A1 WO 2016159157A1 JP 2016060523 W JP2016060523 W JP 2016060523W WO 2016159157 A1 WO2016159157 A1 WO 2016159157A1
Authority
WO
WIPO (PCT)
Prior art keywords
determination
similarity
data group
coordinates
data
Prior art date
Application number
PCT/JP2016/060523
Other languages
English (en)
French (fr)
Inventor
朝子 弘之
文美 岡▲崎▲
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201680019683.2A priority Critical patent/CN107533592B/zh
Priority to US15/562,624 priority patent/US11697605B2/en
Priority to KR1020177031875A priority patent/KR20170134624A/ko
Publication of WO2016159157A1 publication Critical patent/WO2016159157A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/36Biological material, e.g. enzymes or ATP
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a microflora analysis system and a microflora analysis method for analyzing a microflora contained in activated sludge for water treatment, and a determination system and a determination method related thereto.
  • Wastewater from heavy chemical industries such as chemical and steel is desired to be discharged into the natural environment with a sufficiently reduced impact on humans and environmental organisms.
  • biological treatment using activated sludge which is a complex microorganism system, is performed.
  • Patent Document 1 discloses that a microbiota gene is analyzed by a T-RFLP method and a microbiota state is plotted on a multidimensional space in order to manage the microbiota state.
  • the coordinates plotted by the method described in Patent Document 1 are based on analysis of fragmented genes by electrophoresis. Analysis by electrophoresis is not necessarily highly accurate both quantitatively and qualitatively. Therefore, there is a possibility that the coordinates indicating the state of the plotted microorganism are not necessarily accurate. That is, the method described in Patent Document 1 cannot be said to be able to analyze the microflora with sufficient accuracy.
  • the present invention has been made in view of the above, and a microbiota analysis system and a microbiota analysis method capable of accurately analyzing a microflora contained in activated sludge for water treatment, and a determination system related thereto And it aims at providing the determination method.
  • a microbiota analysis system includes a plurality of data groups including information indicating base sequences of genes of a plurality of microorganisms present in activated sludge for water treatment.
  • the similarity calculation means for calculating the similarity between the data groups based on the base sequence included in the data group input by the input means, and the similarity calculated by the similarity calculation means
  • a coordinate calculation means for calculating coordinates in the multidimensional space of each data group.
  • coordinates in a multidimensional space are calculated based on the base sequences of genes of a plurality of microorganisms constituting the microbiota.
  • the analysis based on the base sequence is more accurate both quantitatively and qualitatively than the analysis by electrophoresis. Therefore, the coordinates calculated by the microbiota analysis system according to the embodiment of the present invention represent the state of the microbiota with higher accuracy than in the case of using the analysis by electrophoresis. That is, according to the microbiota analysis system according to an embodiment of the present invention, the microbiota can be analyzed with high accuracy.
  • the microbiota analysis system is for determining the state of the plurality of microorganisms from the base sequences of the genes of the plurality of microorganisms present in the activated sludge for water treatment based on the coordinates calculated by the coordinate calculation means. It is good also as providing the judgment rule production
  • the input means inputs a data group including information indicating the existence ratio of each of the plurality of microorganisms, and the similarity calculation means is based on the information indicating the existence ratio included in the data group input by the input means. It is good also as calculating the similarity between groups. According to this configuration, it is possible to more accurately represent the state of the microflora with coordinates.
  • the microbiota analysis system includes a reading unit that reads a base sequence of a gene from a plurality of microorganisms present in activated sludge, and data that generates a data group based on the base sequence of the gene read by the reading unit and inputs the data group to the input unit. And a generating unit. According to this configuration, a data group including information indicating a base sequence can be reliably input, and one embodiment of the present invention can be reliably implemented.
  • the determination system is based on the determination rule generated by the microflora analysis system according to one embodiment of the present invention, and the gene of each of a plurality of microorganisms present in the activated sludge that performs water treatment.
  • a determination system for determining a state of a plurality of microorganisms from a base sequence an input means for inputting a data group including information indicating a base sequence of each of a plurality of microorganisms to be determined, and input by the input means
  • Similarity calculation means for calculating the similarity between the data group used for determination and the data group used for generating the determination rule based on the base sequence included in the determined data group for determination, and similarity calculation means Based on the similarity calculated by the coordinate calculation means for calculating the coordinates in the multidimensional space of the data group to be determined, and the microbiota analysis system Based on the made the decision rules, and a determination means for determining a state of a plurality of microorganisms from a data set of coordinates to be determined, which is calculated by the coordinate calculation means.
  • determination based on the determination rule generated by the microbiota analysis system can be performed.
  • the present invention can be described as an invention of a microbiota analysis system and a determination system as described above, and can also be described as an invention of a microbiota analysis method and a determination method as follows. This is substantially the same invention only in different categories, and has the same operations and effects.
  • the microbiota analysis method is a microbiota analysis method that is an operation method of the microbiota analysis system, and includes a gene of each of a plurality of microorganisms present in activated sludge that performs water treatment.
  • the determination method according to one embodiment of the present invention is based on the determination rule generated by the microflora analysis system according to one embodiment of the present invention, and each of the plurality of microorganisms present in the activated sludge that performs water treatment.
  • a determination method that is an operation method of a determination system that determines the state of a plurality of microorganisms from the base sequence of a gene, and inputs a data group including information indicating the base sequence of each of the plurality of microorganisms to be determined And calculating the similarity between the determination target data group and the data group used to generate the determination rule based on the base sequence included in the determination target data group input in the input step.
  • the coordinates for calculating coordinates in the multidimensional space of the data group to be determined based on the similarity calculated in the degree calculating step and the similarity calculating step Comprising a calculation step, based on the determination rules generated by the microflora analysis system, a determination step of determining status of a plurality of microorganisms from the calculated determination target data group of coordinates in the coordinate calculating step.
  • coordinates in a multidimensional space are calculated based on the base sequences of genes of each of a plurality of microorganisms constituting the microflora.
  • the analysis based on the base sequence is more accurate both quantitatively and qualitatively than the analysis by electrophoresis. Therefore, the coordinates calculated by the microbiota analysis system according to the embodiment of the present invention represent the state of the microbiota with higher accuracy than in the case of using the analysis by electrophoresis. That is, according to one embodiment of the present invention, the microflora can be analyzed with high accuracy.
  • FIG. 1 shows a microbiota analysis system 1 according to this embodiment.
  • the microbiota analysis system 1 quantifies and manages the state of a microbiota (bacteria flora), which is a collection of a plurality of microbes present in activated sludge for water treatment.
  • the water treatment targeted in the present embodiment is a treatment for reducing the influence on the natural environment of water that is harmful to the natural environment such as industrial wastewater, public sewage, and sewage.
  • the said water treatment is performed by the water treatment system using the activated sludge containing a microflora.
  • the number of types of microorganisms contained in activated sludge is usually several thousand to several tens of thousands or more.
  • the said activated sludge is normally put into the biological reaction tank (bio tank, activated sludge tank), and water treatment is performed by making the water of a process target flow in the said biological reaction tank.
  • the biological reaction tank usually includes an aerobic tank and an anaerobic tank.
  • the water treatment is continuously performed according to the operation of the factory, for example.
  • the said water treatment itself is performed conventionally.
  • the microbiota analysis system 1 calculates coordinates on the multidimensional space indicating the microbiota state as quantification of the microbiota state. This coordinate is relatively determined based on the degree of similarity (similarity, ⁇ -diversity) between a plurality of microbiota states. If the coordinates indicating the states of the two microbiota are close to each other, it means that the states are close. If the coordinates indicating the states of the two microbiota are far from each other, it means that the states are far away.
  • the state of the microbiota in the present embodiment reflects at least the configuration of the microbe in the microbiota (which microbe is included in the microbiota).
  • the microbiota can be managed by this coordinate.
  • the state of microflora in activated sludge in which water treatment is normally performed that is, the influence of water after water treatment on the natural environment is sufficiently small
  • the coordinates indicating the state are stored in advance.
  • the state of the microflora can be determined by calculating the coordinates indicating the state of the microbiota whose state is not known and comparing the coordinates with the coordinates indicating the state of the microbiota which is a healthy state.
  • the microflora analysis system 1 generates a determination rule for determining the state of the microorganism using coordinates indicating the state of the microflora.
  • the microbiota analysis system 1 also performs determination using the generated determination rule.
  • the microbiota analysis system 1 includes a computer 10 and a sequencer 20 as shown in FIG.
  • the computer 10 is a device that bears the main functions of the microbiota analysis system 1 and is a device that performs coordinate calculation, determination rule generation, and determination using the determination rule.
  • the computer 10 includes hardware such as a CPU (Central Processing Unit), a memory, and a communication module. The functions of the computer 10 to be described later are exhibited by operating these components by a program or the like.
  • the sequencer 20 is a reading means for reading (determining) the base sequence of a gene from a plurality of microorganisms present in activated sludge.
  • a so-called next-generation sequencer that can simultaneously read (analyze) genes of a plurality of microorganisms may be used.
  • a conventional sequencer for example, a Roche GS Junior System sequencer, a Roche GS FLX + System sequencer, or an Illumina MiSeq System sequencer may be used.
  • the sequencer 20 may read the base sequence of the 16S ribosomal RNA gene as the base sequence of the microorganism gene.
  • the base sequence of the 16S ribosomal RNA gene is a relatively characteristic sequence for each type of microorganism.
  • a sequence sample sludge sample collected from activated sludge and input to the sequencer 20 is prepared in advance.
  • the activated sludge is collected from each of an aerobic tank and an anaerobic tank, for example.
  • Preparation of sequencing samples and reading of base sequences (sequencing) can be performed, for example, as follows.
  • a solution containing about 1.5 ml of microorganisms is collected from the activated sludge and centrifuged at room temperature (13,000 rpm ⁇ 5 minutes). After removing the supernatant, 1 ml of sterilized physiological saline is added and mixed by inverting for about 5 seconds, and then centrifuged at room temperature (13,000 rpm ⁇ 5 minutes). After removing the supernatant, 300 ⁇ l of Lysis buffer (manufactured by AMR) was added and mixed well, and the resulting suspension was placed in a tube containing beads (Easy Extract for DNA (manufactured by AMR)). After addition, crush and stir for 2 minutes with a vortex mixer.
  • Lysis buffer manufactured by AMR
  • TE TE solution
  • TE TE solution
  • 450 ⁇ l of the supernatant is put into a new tube
  • 600 ⁇ l of a phenol mixture attached to Easy Extract for DNA (manufactured by AMR)
  • AMR Easy Extract for DNA
  • PCR amplification of V3-V4 region of 16S ribosomal RNA gene The concentration of double-stranded DNA in the solution of bacterial flora DNA was measured, and based on the measured value, a universal primer set (forward primer fw357F (SEQ ID NO: 1) and reverse primer RV926r (SEQ ID NO: 2) was prepared using 50 ng of DNA as a template. ), The V3-V4 region of the 16S ribosomal RNA gene (hereinafter referred to as 16S gene) is PCR amplified. For PCR, “Premix Ex Taq Hot Start Version” (registered trademark) manufactured by Takara Bio Inc.
  • the structure of the forward primer HA13621-fw357F sequence is shown below.
  • This forward primer contains the adapter A sequence (shown in capital letters) necessary for sequencing by the sequencer 20 at the 5 ′ end, and sandwiches all authentic bacteria with a 10-base barcode sequence unique to each specimen.
  • a universal primer sequence fw357F (expressed in lower case letters) for annealing to the 16S gene is included at the 3 ′ end side.
  • the barcode sequence is used for identification between samples, and is an arbitrarily designed base sequence corresponding to the number of samples provided to the sequencer 20 at the same time.
  • Adapter A sequence (SEQ ID NO: 3) 5'-CCATCTCATCCCTGCGTGTCTCCGAACTCAG-3 ' Universal primer sequence fw357F (SEQ ID NO: 1) 5'-cctacggggggggagg-3 '
  • HA13621-fw357F having 10 different barcode sequences may be prepared and PCR amplified for each sample.
  • these are mixed and used for the sequencer 20
  • 100 barcode sequences corresponding to 100 samples can be used once. 10,000 data / sample sequence data can be obtained during operation.
  • the structure of the reverse primer HA13619-RV926r sequence is shown below.
  • This reverse primer contains an adapter B sequence (indicated in capital letters) necessary for sequencing by the sequencer 20 at the 5 ′ end, and a universal primer sequence RV926r (indicated in small letters) that anneals to all eubacterial 16S genes. Included on the 3 ′ end side.
  • the sequence of HA13619-RV926r (SEQ ID NO: 4) 5'-CCTATCCCCTGTGTGCCTTGGCAGTCTCAGccgtcaattcctttttttttttttt-3 '
  • DNA (about 570 bases) containing the V3-V4 region of the 16S gene of various bacterial species constituting the bacterial flora is amplified, and a mixture thereof is obtained as the PCR product DNA. be able to.
  • PCR product DNA obtained from each bacterial flora DNA (mixture of DNA containing the V3-V4 region of 16S gene of various bacterial species constituting the bacterial flora) was mixed, and DNA cleaner (manufactured by Wako Pure Chemical Industries, Ltd.) To remove excess primers, substrate nucleotides, etc., and purify. Purified DNA is eluted and recovered with 200 ⁇ l TE.
  • the recovered purified DNA solution is subjected to agarose gel electrophoresis, a DNA fragment of about 570 bp is excised, extracted with MinElute Gel Extraction Kit (manufactured by Qiagen), and DNA to be used for the sequencer 20 is prepared. This is a sequence sample used for the following sequence.
  • sequence sample is subjected to a sequencer 20 GS FLX + System sequencer manufactured by Roche, which performs sequencing.
  • the sequence conditions and processes follow the manufacturer's protocol.
  • one molecule of the PCR product DNA prepared above is fixed to one bead, and then water (including PCR primers, substrate nucleotides, and DNA synthase for amplification of sequence template DNA).
  • Each bead is captured in each of the water droplets independently formed in the emulsion of oil and oil, and PCR is performed therein to amplify the template DNA for sequencing. ing.
  • the sequence reaction signal is read at the position of the partition to thereby obtain the PCR product DNA (the bacteria)
  • the base sequence of a mixture of DNAs containing the V3-V4 region of the 16S gene of various bacterial species constituting the flora can be determined at random.
  • the barcode sequence in the forward primer HA13621-fw357F is an arbitrary sequence characteristic for each specimen derived from each sample, about 100 types of bacterial flora samples can be simultaneously obtained using a GS FLX + System sequencer.
  • sequence data of 2,000 to 10,000 16S genes per sample derived from an activated sludge can be determined in approximately 10 to 23 hours. That is, it is possible to comprehensively analyze the bacterial flora contained in the activated sludge without limiting the bacterial species.
  • the above is an example of a method for preparing a sample for sequencing and reading a base sequence.
  • the preparation of the sequence sample and the reading of the base sequence may be performed by methods other than those described above.
  • the sequencer 20 and the computer 10 are connected so that information can be transmitted and received.
  • the sequencer 20 transmits information (sequence information) indicating the read base sequence for each microorganism to the computer 10.
  • sequence information transmitted to the computer is data of the sequence as it is sequenced by the sequencer 20, that is, so-called coarse sequence data.
  • the computer 10 includes a data generation unit 11, an input unit 12, a similarity calculation unit 13, a coordinate calculation unit 14, a determination rule generation unit 15, and a determination unit 16.
  • the data generation unit 11 is a data generation unit that receives a base sequence of a plurality of microorganisms present in the activated sludge read by the sequencer 20 from the sequencer 20 and generates data for calculating coordinates based on the base sequence. is there.
  • Data for calculating the coordinates is a data group including information indicating the base sequences of the genes of the microorganisms present in the activated sludge for each type of microorganism (microbe species, fungus species).
  • One data group corresponds to one microflora, and for the activated sludge put in the same biological reaction tank, the bases of the genes of all types of microorganisms present in the activated sludge at the same timing. Contains information indicating the sequence. However, in cases where it is difficult to accurately grasp the base sequences of all types, it is not necessary to include information indicating the base sequences of all types strictly, and to the extent necessary for calculating coordinates Should be included.
  • a plurality of the above data groups are required.
  • a data group related to each activated sludge at a plurality of different timings is set as a plurality of data groups for calculating coordinates.
  • the plurality of data groups are data on the base sequence of the microflora for each week. That is, a solution containing a microorganism group is collected from activated sludge every week to generate a data group. Or it is good also considering the data group which concerns on each activated sludge put into the mutually different biological reaction tank as a some data group for calculating a coordinate.
  • Each data group may include only a base sequence for each type of microorganism, but may also include data on the existence ratio (existence probability) of each microorganism.
  • This existence ratio is a ratio of the number of microorganisms of the type included in the activated sludge to the total number of microorganisms included in the activated sludge for each type of microorganism (microbe species, fungus species).
  • microorganism microbe species, fungus species
  • the data generation unit 11 generates the data as follows.
  • the data generation unit 11 receives the coarse array data from the sequencer 20.
  • the coarse array data received from the sequencer 20 is data related to a plurality of data groups, for example, data related to activated sludge at a plurality of timings. That is, sequencing is performed by the sequencer 20 so that such data can be obtained.
  • the data generation unit 11 converts each sequence into each unique sample (for example, about 570 bases / data in the above example) based on the barcode sequence unique to the sample included in the sequence data. Distributed to each of a plurality of data groups).
  • the data generation unit 11 has an average quality value of the base sequence determined by using the quality program attached to the sequencer, the sequence length of the sequence data is less than 200, 1000 or more, mismatch 1 with the universal primer sequence (fw357F), or more. High precision data is extracted by removing 25 or less sequence data.
  • the data generation unit 11 provides the acquired high-precision sequence data for Operational Taxonomic Unit analysis (hereinafter referred to as OTU analysis) by clustering (threshold of 95%, 97%, or 99% similarity).
  • OTU analysis an operation of grouping each sequence data on the basis of the similarity of the sequence data is performed.
  • a cluster group of sequence data (hereinafter referred to as OTU) having a sequence similarity of 95% or more is detected.
  • the clustering of the array data can be performed using a conventional technique, for example, freeware Uclust. It can be estimated that each OTU originates from bacteria (microorganisms) of almost the same species.
  • the total number of OTUs obtained by clustering (the number of OTUs) can be considered to be equivalent to the number of bacterial species (microorganism species) constituting the bacterial flora (microbiota) within a detectable range.
  • the data generation unit 11 determines representative sequence data that is a base sequence representing each cluster group.
  • the representative sequence data can be determined by a conventionally used method.
  • the ratio of each OTU in the total number of sequence data that is, the bacterial species composition ratio, that is, the above-mentioned existence ratio can be obtained.
  • the bacterial species composition ratio that is, the above-mentioned existence ratio
  • it is possible to grasp which bacterial species are specifically included in the activated sludge it is useful in analysis of determination results.
  • the OTU (cluster group) included in the data group having a very small number of array data (count of the number of arrays) (for example, 1, 2 or 3) is often not valid information, and is a computational noise. May be excluded from the data in the data group in advance.
  • the data generation unit 11 uses the representative sequence data of each cluster group as a base sequence constituting the data group. Further, the data generation unit 11 may calculate the existence ratio for each bacterial species (base sequence) for each data group and include the data as data on the existence ratio (existence probability) of each microorganism. The data generation unit 11 outputs the generated plurality of data groups to the input unit 12.
  • the input unit 12 is an input unit that inputs a plurality of the above data groups from the data generation unit 11.
  • the input unit 12 outputs the input data group to the similarity calculation unit 13.
  • the similarity calculation unit 13 is a similarity calculation unit that calculates the similarity between data groups based on the base sequences included in the data group input by the input unit 12. In addition, when the data group includes data on the existence ratio of each microorganism, the similarity calculation unit 13 calculates the similarity between the data groups based on the information indicating the existence ratio. Also good. The similarity is high when, for example, the base sequences of the microorganisms included in the data group and the configuration of the base sequences of the microorganisms (what kind of base sequences are included in what proportion) are similar to each other. The similarity calculation unit 13 calculates the similarity between two data groups. In addition, the similarity calculation unit 13 calculates the similarity for all combinations of data groups.
  • the calculation of similarity can be performed by a conventionally used method, for example, UniFrac analysis.
  • UniFrac analysis is based on the similarity between each group based on the similarity between the base sequences belonging to each group (representative base sequences belonging to each OTU) and the number of sequences. It is a numerical method (Lozupone C and Knight R: UniFrac: a new phylogenetic method for comparing microbial communities. ApplEnviron Microbiol 71: 8228-8235 (2005)).
  • the UniFrac analysis can be performed using, for example, freeware Unifrac provided by the University of Colorado.
  • the similarity obtained by UniFran analysis is calculated as a system distance (UniFrac Distance) (hereinafter referred to as an inter-group similarity distance) on the system tree.
  • the similarity distance between groups becomes smaller as the similarity between data groups is higher.
  • the similarity calculation unit 13 outputs the value of the similarity distance between groups, which is the calculated similarity between data groups, to the coordinate calculation unit 14.
  • the similarity calculation unit 13 stores information used for calculating the similarity in order to perform determination based on the determination rule.
  • the calculation of the similarity is not necessarily performed by UniFrac analysis, and any method may be used as long as the similarity between data groups including a plurality of base sequences can be calculated.
  • the coordinate calculation unit 14 is a coordinate calculation unit that calculates coordinates in the multidimensional space of each data group based on the similarity calculated by the similarity calculation unit 13.
  • the coordinate calculated here is a coordinate which shows the state of the microflora mentioned above corresponding to each data group. Coordinates of similar data groups are calculated to be close and coordinates of dissimilar data groups are calculated to be remote.
  • the number of dimensions of the coordinates to be calculated is set and stored in advance in the coordinate calculation unit 14. For example, two-dimensional or three-dimensional coordinates are calculated. By using two-dimensional or three-dimensional coordinates, it is possible to illustrate, and it is possible to visually confirm the state of the microflora.
  • the calculation of the coordinates can be performed by a conventionally used method, for example, a multidimensional scale construction method (MDS).
  • MDS multidimensional scale construction method
  • the multidimensional scale construction method is a method of placing an object as a coordinate in a multidimensional space based on an arbitrary standard similarity for the object.
  • the multidimensional scale construction method can be performed using, for example, freeware (R or the like) or a commercially available program. Note that the calculation of coordinates is not necessarily performed by the multidimensional scale construction method, and any method can be used as long as the coordinates can be calculated based on the similarity.
  • FIG. 2A is a plot of coordinates on a two-dimensional space.
  • FIG. 3 is a plot of coordinates on a three-dimensional space.
  • the individual coordinates indicated by squares and triangles in FIG. 2 and the individual coordinates indicated by circles in FIG. 3 correspond to individual data groups, ie individual microbiota states.
  • the coordinate calculation unit 14 outputs information indicating the calculated coordinates to the determination rule generation unit 15.
  • the similarity calculation unit 13 stores information used for calculating coordinates in order to perform determination based on the determination rule.
  • the determination rule generation unit 15 determines the states of the plurality of microorganisms from the base sequences of the genes of the plurality of microorganisms present in the activated sludge for water treatment. It is the determination rule production
  • the determination rule is, for example, for determining whether or not the plurality of microorganisms, that is, the microbial flora can normally perform water treatment.
  • the ability to perform water treatment normally means, for example, that the water after treatment satisfies a certain standard such that the influence of water after water treatment on the natural environment is sufficiently small. More specifically, a specific chemical substance to be processed can be processed (decomposed) at a certain ratio or higher.
  • the determination rule is to determine using coordinates based on the base sequence of each gene of microorganisms constituting the microflora to be determined. That is, the determination rule is determined using information based on a data group having the same format as that of the data group used for calculating the coordinates.
  • the determination rule generation unit 15 When the determination rule generation unit 15 generates the determination rule, for example, the microflora related to the coordinates calculated by the coordinate calculation unit 14 is set in advance as a microbiota that can be normally treated with water. That is, the set of coordinates calculated by the coordinate calculation unit 14 corresponds to a set of microbiota that can be normally treated with water.
  • the determination rule generation unit 15 determines, as a determination rule, a range including coordinates related to a microflora that can be normally treated with water, which is estimated from a set of coordinates related to a microflora that is normally subjected to water treatment. To do. The determination can be made by determining whether or not the coordinates related to the microflora to be determined are included in the range.
  • the determination target microflora is determined to be a microflora that can normally perform water treatment.
  • the coordinates related to the determination target microflora are not included in the range, it is determined that there is a possibility that the determination target microflora may not be a microflora that can normally perform water treatment.
  • the determination rule generation unit 15 estimates that the plurality of coordinates are included with a probability (for example, 95%) that is statistically greater than or equal to, for example, a plurality of coordinates related to the microflora that can be normally treated with water.
  • a range (for example, a 95% confidence interval) is calculated as a range as a determination rule.
  • the calculation of 95% confidence can be performed by a conventionally used statistical method.
  • the calculation of 95% reliability can be performed using, for example, freeware (R or the like) or a commercially available program.
  • the determination rule generation unit 15 when the determination rule generation unit 15 generates the determination rule, for example, the microbial flora related to the coordinates calculated by the coordinate calculation unit 14 in advance, the microbial flora in which water treatment is normally performed, and the normal water treatment is performed. It is assumed that both of the microbiota that have not been performed are included so that the computer 10 can distinguish them.
  • the determination rule generation unit 15 selects, as a determination rule, an area including coordinates related to a microflora that is normally treated with water and an area including coordinates related to a microflora that is not normally subjected to water treatment. It is good also as calculating the boundary which divides well. According to this determination rule, the determination can be made depending on which region contains the coordinates relating to the microflora to be determined. The calculation of the boundary can be performed by a conventionally used statistical or mathematical method.
  • the determination rule generation unit 15 may generate a determination rule by machine learning.
  • the determination rule generation unit 15 outputs information indicating the generated determination rule to the determination unit 16.
  • the determination unit 16 is a determination unit that determines the state of the determination target microbiota based on the determination rule generated by the determination rule generation unit 15.
  • the determination rule is for determining the state of the determination target microflora from the coordinates related to the determination target microflora. That is, the determination unit 16 performs determination by inputting information indicating coordinates relating to the determination target microflora.
  • the determination target is the microflora contained in the activated sludge of the water treatment system (at the timing when determination is desired).
  • the microflora to be determined can be a microflora contained in the activated sludge of the same water treatment system (and at a different timing) as the water treatment system that acquired the data group used to generate the determination rule.
  • the microbial flora to be determined may be a microbial flora included in activated sludge of a water treatment system other than the water treatment system that acquired the data group used to generate the determination rule.
  • the coordinates related to the microflora to be determined are obtained in the same manner as the coordinates of the individual data groups when the determination rule is generated. That is, the calculation of coordinates is performed as follows.
  • the sequencer 20 reads the base sequence of a gene from a plurality of microorganisms constituting the determination target microflora.
  • the sequencer 20 transmits the read information (sequence information) indicating the base sequence of each of the plurality of microorganisms to be determined.
  • the data generation unit 11 receives the sequence information from the sequencer 20, and generates a data group including information indicating the base sequences of the genes of the plurality of microorganisms to be determined from the sequence information.
  • the data generation unit 11 outputs a data group including information indicating the generated base sequence of the microorganism to be determined to the input unit 12.
  • the input unit 12 inputs the data group and outputs it to the similarity calculation unit 13.
  • the similarity calculation unit 13 inputs the data group, and calculates the similarity between the data group and each data group used when generating the determination rule.
  • the similarity calculation unit 13 outputs the calculated similarity to the coordinate calculation unit 14.
  • the coordinate calculation unit 14 calculates the coordinates in the multidimensional space of the determination target data group based on the similarity indicated by the information input from the similarity calculation unit 13. The calculation of the similarity and the calculation of the coordinates are performed in the same manner as the determination rule is generated.
  • the coordinate calculation unit 14 outputs information indicating the coordinates of the determination target data group to the determination unit 16.
  • the determination unit 16 performs determination using the coordinates indicated by the information input from the coordinate calculation unit 14 based on the determination rule. For example, the determination unit 16 determines whether or not the coordinates to be determined are included in the 95% confidence interval as described above. When it is determined that the coordinates to be determined are included in the 95% confidence interval, the determination unit 16 determines that the microflora to be determined is a microflora that can perform water treatment normally. When it is determined that the determination target coordinates are not included in the 95% confidence interval, the determination unit 16 determines that the determination target microbiota may not be a microbiota that can be normally treated with water. To do.
  • the determination unit 16 outputs a determination result.
  • the determination result is output by, for example, displaying it on a display device such as a display provided in the computer 10. Further, the determination result may be output by, for example, transmitting it to another device or another module in the computer 10.
  • the above is the function of the computer 10 according to the present embodiment.
  • a microbiota analysis method and a determination method which are processes executed by the microbiota analysis system 1 according to the present embodiment (operation method of the microbiota analysis system 1), will be described using the flowcharts of FIGS. 4 and 5.
  • operation method of the microbiota analysis system 1 operation method of the microbiota analysis system 1.
  • the sequencer 20 reads the base sequences of the genes of the microorganisms constituting the microflora used in the water treatment system (S01, reading step).
  • the base sequences of the genes of microorganisms constituting the microflora at a plurality of timings are read.
  • the read base sequence data is output from the sequencer 20 to the computer 10.
  • the data generation unit 11 receives the base sequence data transmitted from the sequencer 20. Subsequently, the data generation unit 11 generates a plurality of data groups including information indicating the base sequences of the genes of the plurality of microorganisms based on the base sequence data (S02, data generation step). Subsequently, a plurality of generated data groups and data generated so far (based on the base sequence data of the genes of microorganisms constituting the microbiota at a plurality of previously generated timings) A data group including information indicating the base sequence of each gene) is input from the data generation unit 11 to the input unit 12 (S03, input step).
  • the plurality of input data groups are output from the input unit 12 to the similarity calculation unit 13. Subsequently, the similarity calculation unit 13 calculates the similarity between the data groups (S04, similarity calculation step). Information indicating the similarity between the calculated data groups is output from the similarity calculation unit 13 to the coordinate calculation unit 14.
  • the coordinate calculation unit 14 calculates the coordinates in the multidimensional space of each data group based on the similarity calculated by the similarity calculation unit 13 (S05, coordinate calculation step). Information indicating the calculated coordinates is output from the coordinate calculation unit 14 to the determination rule generation unit 15. Subsequently, the determination rule generation unit 15 generates a determination rule based on the coordinates indicated by the information input from the similarity calculation unit 13 (S06, determination rule generation step) Information indicating the generated determination rule Is output from the determination rule generation unit 15 to the determination unit 16. The above is the process executed when the determination rule is generated.
  • the sequencer 20 reads the base sequences of the genes of the microorganisms constituting the microflora used in the water treatment system at the determination target timing (S11, reading step).
  • the read base sequence data is output from the sequencer 20 to the computer 10.
  • the data generation unit 11 receives the base sequence data transmitted from the sequencer 20. Subsequently, the data generation unit 11 generates a determination target data group including information indicating the base sequences of the genes of the plurality of microorganisms based on the base sequence data based on the base sequence data (S12, data Generation step). Subsequently, the generated data group is input from the data generation unit 11 to the input unit 12 (S13, input step).
  • the input determination target data group is output from the input unit 12 to the similarity calculation unit 13. Subsequently, the similarity calculation unit 13 calculates the similarity between the determination target data group and the individual data group used in generating the determination rule (S14, similarity calculation step). Information indicating the similarity between the calculated data groups is output from the similarity calculation unit 13 to the coordinate calculation unit 14.
  • the coordinate calculation unit 14 calculates the coordinates in the multidimensional space of the data group to be determined based on the similarity calculated by the similarity calculation unit 13 (S15, coordinate calculation step). Information indicating the calculated coordinates of the determination target is output from the coordinate calculation unit 14 to the determination unit 16.
  • the determination unit 16 determines the state of the determination target microbiota from the coordinates calculated by the coordinate calculation unit 14 (S16, determination step). ).
  • the information indicating the determination result is displayed so as to be recognized by the user, for example. The above is the process executed at the time of determination.
  • the coordinates in the multidimensional space are calculated based on the base sequences of the genes of the plurality of microorganisms constituting the microflora.
  • the analysis based on the base sequence is more accurate both quantitatively and qualitatively than the analysis by electrophoresis. Therefore, the coordinates calculated according to the present embodiment represent the state of the microflora with higher accuracy than in the case of using the analysis by electrophoresis. That is, according to the present embodiment, the microflora can be analyzed with high accuracy.
  • a determination rule for determining the state of the microbiota may be generated from the calculated coordinates. According to this configuration, for example, it is possible to generate a determination rule for determining whether or not the microflora as described above is in a normal state (a healthy state). Since the coordinates calculated by the present embodiment accurately represent the state of the microbiota, the determination can be performed with high accuracy according to this determination rule.
  • the configuration may be such that the determination is performed using the determination rule generated as in the present embodiment. That is, the microbiota analysis system 1 may also serve as a determination system as in the present embodiment. According to this configuration, determination based on the generated determination rule can be performed.
  • the generation or determination of the determination rule is not necessarily performed in the microbiota analysis system 1, and may be performed by an apparatus or system other than the microbiota analysis system 1. In that case, the coordinates calculated by the microbiota analysis system 1 or the determination rule generated by the microbiota analysis system 1 is output to a determination system other than the microbiota analysis system 1.
  • the determination system has a function related to the determination of the microflora analysis system 1 described above.
  • the similarity between data groups may be calculated based on the existence ratio of microorganisms. According to this configuration, it is possible to more accurately represent the state of the microflora with coordinates.
  • the existence ratio is not necessarily required for calculating the similarity, and the similarity may be calculated only from the base sequence.
  • the sequencer 20 that reads the base sequence of the gene of the microorganism as in this embodiment is included in the microbiota analysis system 1, and a data group may be generated based on the read base sequence. According to this configuration, it is possible to reliably input a data group of a base sequence of a microorganism, and it is possible to reliably carry out an embodiment of the present invention.
  • the microbiota analysis system 1 does not necessarily include the sequencer 20. That is, the microbiota analysis system 1 (the input unit 12 of the computer 10) may input a data group from the outside.
  • FIG. 2A shows a graph in which coordinates indicating the state of the microflora are plotted on a two-dimensional space.
  • coordinates indicated by squares are coordinates indicating the state of the microflora (normal bacteria group) in activated sludge in which water treatment is normally performed.
  • Coordinates indicated by triangles are coordinates indicating the state of the microbial flora (bacterial group at 8th week of methanol habituation) in activated sludge that has been subjected to methanol acclimatization for 8 weeks to reduce the water treatment function.
  • FIG. 2 (b) shows the treatment rate (%) on the 4.7th and 6th days after the start of the treatment of (S) -2- (4-chlorophenyl) -3-methylbutanoic acid in each microbiota. Indicates.
  • FIG. 2 (a) there is a distinctly different coordinate area between the coordinate area where the coordinates corresponding to the normal bacteria group are placed and the coordinate area where the methanol-adapted 8th week bacteria group is placed. It was. From this, it was clarified that the normal bacterial group and the methanol-fed 8-week bacterial group differed significantly in at least the types of bacteria constituting them and the abundance of their abundance. .
  • a region A1 having a 95% confidence interval which is the determination rule of this embodiment, is calculated.
  • the region A1 By determining whether or not the coordinates indicating the state of the microbiota are included in the region A1, it is possible to determine whether or not the microbiota is in a healthy state. In this way, a sample that is evaluated as a poorly treated bacterial group can be detected from any sample using the above-mentioned similarity distance between groups as an index.
  • FIG. 3 shows a graph in which coordinates indicating the state of the microbiota are plotted on a three-dimensional space.
  • coordinates indicated by white circles are coordinates indicating the state of the microflora (normal bacteria group) in activated sludge in which water treatment is normally performed.
  • the coordinates indicated by the black circles are the coordinates indicating the state of the microflora in the activated sludge that has been subjected to methanol acclimatization with respect to the microbiota to reduce the function of water treatment.
  • the numerical value included in the sign of the coordinate indicated by the black circle indicates how many weeks of methanol acclimatization. That is, MTA12w indicates that the methanol was conditioned for 12 weeks.
  • the coordinates corresponding to the microbiota after 12 weeks of methanol acclimatization are located away from the coordinates corresponding to the normal bacteria group. Also in this example, as shown in FIG. 3, a region A ⁇ b> 2 that is the determination rule of the present embodiment is calculated from a set of normal bacterial group coordinates.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Evolutionary Biology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Bioethics (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Biomedical Technology (AREA)

Abstract

 水処理を行う活性汚泥に含まれる微生物叢を精度よく解析する。 微生物叢解析システム1のコンピュータ10は、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を複数入力する入力部12と、入力されたデータ群に含まれる塩基配列に基づいて、データ群間の類似度を算出する類似度算出部13と、算出された類似度に基づいて、データ群それぞれの多次元空間上の座標を算出する座標算出部14とを備える。

Description

微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法
 本発明は、水処理を行う活性汚泥に含まれる微生物叢を解析する微生物叢解析システム及び微生物叢解析方法、並びにそれらに関連する判定システム及び判定方法に関する。
 化学や鉄鋼といった重化学工業等における排水は、ヒトや環境生物に対する影響を十分に低下させた状態で自然環境中に排出することが望まれている。そのための排水処理として、複合微生物系である活性汚泥が用いられた生物処理が行われている。適切に排水処理を行うため、活性汚泥に含まれる微生物の集合である微生物叢の状態(健康状態)を管理することが必要となる。例えば、特許文献1には、微生物叢の状態を管理するため、T-RFLP法により微生物叢の遺伝子を解析して、多次元空間上に微生物叢の状態をプロットすることが示されている。
特許第3928492号明細書
 特許文献1に記載された方法でプロットされた座標は、フラグメント化した遺伝子の電気泳動による解析に基づくものである。電気泳動による解析は、定量的にも定性的にも精度が必ずしも高くはない。従って、プロットされた微生物の状態を示す座標についても、必ずしも正確ではないというおそれがある。即ち、特許文献1に記載された方法は、十分に精度よく微生物叢を解析できているとはいえない。
 本発明は、上記に鑑みてなされたものであり、水処理を行う活性汚泥に含まれる微生物叢を精度よく解析することができる微生物叢解析システム及び微生物叢解析方法、並びにそれらに関連する判定システム及び判定方法を提供することを目的とする。
 上記目的を達成するために、本発明の一実施形態に係る微生物叢解析システムは、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を複数入力する入力手段と、入力手段によって入力されたデータ群に含まれる塩基配列に基づいて、データ群間の類似度を算出する類似度算出手段と、類似度算出手段によって算出された類似度に基づいて、データ群それぞれの多次元空間上の座標を算出する座標算出手段と、を備える。
 本発明の一実施形態に係る微生物叢解析システムでは、微生物叢を構成する複数の微生物それぞれの遺伝子の塩基配列に基づいて、多次元空間上の座標が算出される。塩基配列に基づく解析は、電気泳動による解析と比べて定量的にも定性的にも精度が高い。従って、本発明の一実施形態に係る微生物叢解析システムによって算出された座標は、電気泳動による解析を用いた場合と比べて、精度よく微生物叢の状態を表したものである。即ち、本発明の一実施形態に係る微生物叢解析システムによれば、微生物叢を精度よく解析することができる。
 微生物叢解析システムは、座標算出手段によって算出された座標に基づいて、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列から、当該複数の微生物の状態を判定するための判定ルールを生成する判定ルール生成手段を更に備えることとしてもよい。この構成によれば、例えば、微生物叢が正常な状態(健康な状態)であるか否かを判定するための判定ルールを生成することができる。上記のように本発明の一実施形態に係る微生物叢解析システムによって算出された座標は精度よく微生物叢の状態を表したものであるため、この判定ルールによれば、精度よく判定を行うことができる。
 入力手段は、複数の微生物それぞれの存在割合を示す情報も含むデータ群を入力し、類似度算出手段は、入力手段によって入力されたデータ群に含まれる存在割合を示す情報にも基づいて、データ群間の類似度を算出する、こととしてもよい。この構成によれば、更に座標を精度よく微生物叢の状態を表すことができる。
 微生物叢解析システムは、活性汚泥中に存在する複数の微生物から遺伝子の塩基配列を読み取る読取手段と、読取手段によって読み取られた遺伝子の塩基配列に基づきデータ群を生成して入力手段に入力させるデータ生成手段と、を更に備えることとしてもよい。この構成によれば、塩基配列を示す情報を含むデータ群を確実に入力することができ、確実に本発明の一実施形態を実施することができる。
 本発明の一実施形態に係る判定システムは、本発明の一実施形態に係る微生物叢解析システムによって生成された判定ルールに基づき、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列から、当該複数の微生物の状態を判定する判定システムであって、判定対象となる複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を入力する入力手段と、入力手段によって入力された判定対象のデータ群に含まれる塩基配列に基づいて、当該判定対象のデータ群と判定ルールの生成に用いられたデータ群との類似度を算出する類似度算出手段と、類似度算出手段によって算出された類似度に基づいて、判定対象のデータ群の多次元空間上の座標を算出する座標算出手段と、微生物叢解析システムによって生成された判定ルールに基づき、座標算出手段によって算出された判定対象のデータ群の座標から複数の微生物の状態を判定する判定手段と、を備える。本発明の一実施形態に係る判定システムによれば、微生物叢解析システムによって生成された判定ルールに基づいた判定を行うことができる。
 ところで、本発明は、上記のように微生物叢解析システム及び判定システムの発明として記述できる他に、以下のように微生物叢解析方法及び判定方法の発明としても記述することができる。これはカテゴリが異なるだけで、実質的に同一の発明であり、同様の作用及び効果を奏する。
 即ち、本発明の一実施形態に係る微生物叢解析方法は、微生物叢解析システムの動作方法である微生物叢解析方法であって、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を複数入力する入力ステップと、入力ステップにおいて入力されたデータ群に含まれる塩基配列に基づいて、データ群間の類似度を算出する類似度算出ステップと、類似度算出ステップにおいて算出された類似度に基づいて、データ群それぞれの多次元空間上の座標を算出する座標算出ステップと、を含む。
 また、本発明の一実施形態に係る判定方法は、本発明の一実施形態に係る微生物叢解析システムによって生成された判定ルールに基づき、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列から、当該複数の微生物の状態を判定する判定システムの動作方法である判定方法であって、判定対象となる複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を入力する入力ステップと、入力ステップにおいて入力された判定対象のデータ群に含まれる塩基配列に基づいて、当該判定対象のデータ群と判定ルールの生成に用いられたデータ群との類似度を算出する類似度算出ステップと、類似度算出ステップにおいて算出された類似度に基づいて、判定対象のデータ群の多次元空間上の座標を算出する座標算出ステップと、微生物叢解析システムによって生成された判定ルールに基づき、座標算出ステップにおいて算出された判定対象のデータ群の座標から複数の微生物の状態を判定する判定ステップと、を含む。
 本発明の一実施形態では、微生物叢を構成する複数の微生物それぞれの遺伝子の塩基配列に基づいて、多次元空間上の座標が算出される。塩基配列に基づく解析は、電気泳動による解析と比べて定量的にも定性的にも精度が高い。従って、本発明の一実施形態に係る微生物叢解析システムによって算出された座標は、電気泳動による解析を用いた場合と比べて、精度よく微生物叢の状態を表したものである。即ち、本発明の一実施形態によれば、微生物叢を精度よく解析することができる。
本発明の実施形態に係る微生物叢解析システムの構成を示す図である。 算出された2次元空間上の座標の例を示すグラフである。 算出された3次元空間上の座標の例を示すグラフである。 本発明の実施形態に係る微生物叢解析システムで判定ルールの生成時に実行される処理(微生物叢解析方法)を示すフローチャートである。 本発明の実施形態に係る微生物叢解析システムで判定時に実行される処理(判定方法)を示すフローチャートである。
 以下、図面と共に本発明に係る微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法の実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
 図1に、本実施形態に係る微生物叢解析システム1を示す。微生物叢解析システム1は、水処理を行う活性汚泥中に存在する複数の微生物の集合である微生物叢(細菌叢)の状態を定量化して、管理するものである。本実施形態で対象とする水処理は、例えば、産業排水や公共の下水、汚水等の自然環境に対して害となる水を自然環境に対する影響を小さくするための処理である。また、当該水処理は、微生物叢を含む活性汚泥が用いられた水処理システムで行われるものである。活性汚泥に含まれる微生物の種類の数は、通常、数千~数万以上である。また、当該活性汚泥は、通常、生物反応槽(バイオタンク、活性汚泥槽)に入れられており、処理対象の水を当該生物反応槽内に流入させることで水処理が行われる。生物反応槽には、通常、好気槽及び嫌気槽が含まれる。当該水処理は、例えば、工場の稼働に応じて継続的に行われるものである。なお、当該水処理自体は、従来から行われているものである。
 微生物叢解析システム1は、微生物叢の状態の定量化として、微生物叢の状態を示す多次元空間上の座標を算出する。この座標は、複数の微生物叢の状態間での類似度(類似性、β-ダイバーシティー)に基づいて、相対的に決まるものである。2つの微生物叢の状態を示す座標が、互いに近ければそれらの状態は近いことを意味している。2つの微生物叢の状態を示す座標が、互いに遠ければそれらの状態は遠いことを意味している。本実施形態における微生物叢の状態は、少なくとも微生物叢における微生物の構成(どの微生物が微生物叢に含まれているか)が反映されたものである。
 この座標によって微生物叢の状態を管理することができる。例えば、水処理が正常に行われている(即ち、水処理後の水の自然環境に対する影響が十分に小さくなっている)活性汚泥での微生物叢の状態、即ち、健康な状態である微生物叢の状態を示す座標を予め記憶しておく。状態が分からない微生物叢の状態を示す座標を算出して、健康な状態である微生物叢の状態を示す座標と比較することで、微生物叢の状態を判定することができる。
 微生物叢解析システム1は、微生物叢の状態を示す座標を用いて、微生物の状態を判定するための判定ルールを生成する。また、微生物叢解析システム1は、生成した判定ルールを用いて、判定も行う。
 微生物叢解析システム1は、図1に示すようにコンピュータ10と、シークエンサー20とを含んで構成される。コンピュータ10は、微生物叢解析システム1の主要な機能を担う装置であり、座標の算出、判定ルールの生成及び判定ルールを用いた判定を行う装置である。コンピュータ10は、具体的には、CPU(Central Processing Unit)やメモリ、通信モジュール等のハードウェアを備えている。これらの構成要素がプログラム等によって動作することによって、後述するコンピュータ10の機能が発揮される。
 シークエンサー20は、活性汚泥中に存在する複数の微生物から遺伝子の塩基配列を読み取る(決定する)読取手段である。シークエンサー20として、複数の微生物の遺伝子を同時に読み取る(解析)することができる、いわゆる次世代シークエンサーを用いることとしてもよい。シークエンサー20としては、従来のシークエンサー、例えば、ロシュ社製GS Junior Systemシークエンサー、ロシュ社製GS FLX+ Systemシークエンサー、あるいはイルミナ社製MiSeq Systemシークエンンサーを用いることとしてもよい。また、シークエンサー20は、微生物の遺伝子の塩基配列として、16SリボソームRNA遺伝子の塩基配列を読み取ることとしてもよい。16SリボソームRNA遺伝子の塩基配列は、微生物の種別毎に比較的、特徴的な配列であるからである。なお、16SリボソームRNA遺伝子の塩基配列を読み取るため、活性汚泥から採取されてシークエンサー20に入力されるシークエンス用サンプル(汚泥サンプル)は予め調製される。活性汚泥は、例えば、好気槽及び嫌気槽のそれぞれから採取される。シークエンス用サンプルの調製、及び塩基配列の読み取り(シークエンシング)は、例えば、以下のように行うことができる。
 [微生物叢のDNAの調製]
 活性汚泥から約1.5mlの微生物群を含む溶液を採取し、室温で遠心する(13,000rpm×5分間)。上清を取り除いた後、滅菌生理食塩水を1ml加えて、5秒間ほど転倒混合した後、室温で遠心する(13,000rpm×5分間)。上清を除いた後、Lysis buffer(エイエムアール社製)を300μl加え、よく混合した後、得られた懸濁液をビーズの入ったチューブ(イージーエクストラクト for DNA(エイエムアール社製))に添加後、ボルテックスミキサーで2分間撹拌破砕する。破砕液に300μlのTE溶液(10mM Tris、1mM EDTA、pH8.0)(以下、TE)を添加し、4℃で遠心する(13,000rpm×5分間)。その後、上清液450μlを新しいチューブに入れ、これに600μlのフェノール混合液(イージーエクストラクト for DNAに付属(エイエムアール社製))を加え、1分間ボルテックスし攪拌した後、4℃で遠心する(13,000rpm×5分間)。上清300μlを回収して新しいチューブ(1.5ml)に入れ、これに1200μlのエタノール(99.5%)を加えて、4℃で遠心する(13,000rpm×5分間)。上清を除いた後、1000μlの冷エタノール(70%)を加えて、4℃で遠心し(13,000rpm×5分間)、得られたDNAペレットを真空乾燥し、ついで150μlのTEを加えて、細菌叢DNAの溶液とする。
 [16SリボソームRNA遺伝子のV3-V4領域のPCR増幅]
 細菌叢DNAの溶液中の二本鎖DNA濃度を測定し、その測定値に基づいて50ngのDNAを鋳型として、ユニバーサルプライマーセット(フォワードプライマーfw357F(配列番号1)とリバースプライマーRV926r(配列番号2))を用いて、16SリボソームRNA遺伝子(以下、16S遺伝子)のV3-V4領域をPCR増幅する。PCRはタカラバイオ社製の「Premix Ex Taq Hot Start Version」(登録商標)を用いて、各プライマーを50pmol含む反応液50μlを作成し、94℃で2分間のプレヒーティングを行った後、変性、アニーリング、伸長をそれぞれ98℃×10秒間、50℃×30秒間、72℃×80秒間で行い25サイクル繰り返す。
 下記にフォワードプライマーHA13621-fw357Fの配列の構造を示す。このフォワードプライマーは、シークエンサー20での配列決定に必要なアダプターA配列(大文字で表記)を5’末端側に含み、各検体に固有の10塩基のバーコード配列をはさんで、全ての真正細菌の16S遺伝子にアニーリングするユニバーサルプライマー配列fw357F(小文字で表記)を3’末端側に含む。上記バーコード配列はサンプル間の識別に利用するもので、同時にシークエンサー20に供するサンプル数に対応した任意に設計した塩基配列である。
 アダプターA配列(配列番号3)
5’-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3’
 ユニバーサルプライマー配列fw357F(配列番号1)
5’-cctacgggaggcagcag-3’
 上記バーコード配列の役割を説明する。例えば、10検体を同時解析する場合は、10通りの異なったバーコード配列をもったHA13621-fw357Fを作り、それぞれを各検体に対してPCR増幅すればよい。これらを混合してシークエンサー20に供すると、1稼働で100万データを得ることができるGS FLX+ Systemシークエンサーを利用した場合、100検体に対応する100通りのバーコード配列を用いることで、1回の稼働で1万データ/検体の配列データを得ることができる。
 下記にリバースプライマーHA13619-RV926rの配列の構造を示す。このリバースプライマーは、シークエンサー20での配列決定に必要なアダプターB配列(大文字で表記)を5’末端側に含み、全ての真正細菌の16S遺伝子にアニーリングするユニバーサルプライマー配列RV926r(小文字で表記)を3’末端側に含む。
 HA13619-RV926rの配列(配列番号4)
5’-CCTATCCCCTGTGTGCCTTGGCAGTCTCAGccgtcaattccttttragttt-3’
 上記のユニバーサルプライマーセットを用いたPCRにより、細菌叢を構成する種々の細菌種の16S遺伝子のV3-V4領域を含むDNA(約570塩基)が増幅され、それらの混合物をそのPCR産物DNAとして得ることができる。
 [PCR産物の生成及びシークエンス用サンプルの調製]
 各々の細菌叢DNAから得られたPCR産物DNA(その細菌叢を構成する種々の細菌種の16S遺伝子のV3-V4領域を含むDNAの混合物)を混合し、DNAクリーナー(和光純薬社製)にて処理して、過剰のプライマーや基質のヌクレオチド等を除去し、精製する。精製DNAは200μlのTEで溶出し回収する。ついで、回収した精製DNA溶液をアガロースゲル電気泳動に供し、約570bpのDNA断片を切り出し、MinElute Gel ExtractionKit(キアゲン社製)にて抽出し、シークエンサー20に供するDNAを調製する。これを以下のシークエンスに用いるシークエンス用サンプルとする。
 [16S遺伝子のシークエンシングと配列データの精度評価]
 上記シークエンス用サンプルを、シークエンサー20であるロシュ社製GS FLX+ Systemシークエンサーに供しシークエンスを行う。シークエンスの条件・工程等はメーカー所定のプロトコールに従う。なお、このシークエンサーでは、上記で調製したPCR産物DNAの1分子を1つのビーズに固定して、ついで、水(シークエンス用鋳型DNAの増幅のためのPCRプライマー、基質ヌクレオチド、DNA合成酵素を含む)と油のエマルジョン中に独立して形成された微小水滴の1つ1つに1つ1つのビーズを捕獲して、その中でPCRを行ってシークエンス用鋳型DNAを増幅して調製するようになっている。よって、この増幅した鋳型DNAが固定された各ビーズをタイタープレート上に区画した後に、その区画位置上でシークエンス反応のシグナルを読み取ることによって、上記シークエンス用サンプル中に含まれるPCR産物DNA(その細菌叢を構成する種々の細菌種の16S遺伝子のV3-V4領域を含むDNAの混合物)の塩基配列を無作為に決定することができる。また、フォワードプライマーHA13621-fw357F中の上記バーコード配列を、各サンプルに由来する検体ごとに特徴的な任意の配列にしておけば、GS FLX+ Systemシークエンサーを用いて約100種類の細菌叢サンプルを同時解析でき、ある活性汚泥由来のサンプルにつき2,000~10,000の16S遺伝子の配列データを、およそ10~23時間で決定することができる。即ち、活性汚泥に含まれる細菌叢について菌種を限定せずに網羅的に解析することが可能となる。
 以上が、シークエンス用サンプルの調製、及び塩基配列の読み取りを行う方法の一例である。なお、シークエンス用サンプルの調製、及び塩基配列の読み取りは、上記の方法以外で行われてもよい。シークエンサー20と、コンピュータ10とは、情報の送受信が行えるように接続されている。シークエンサー20は、読み取った微生物毎の塩基配列を示す情報(配列情報)をコンピュータ10に送信する。ここで、コンピュータに送信される配列情報は、シークエンサー20にシークエンシングされたそのままの配列のデータ、いわゆる粗配列データである。
 引き続いて、本実施形態に係るコンピュータ10の機能について説明する。図1に示すようにコンピュータ10は、データ生成部11と、入力部12と、類似度算出部13と、座標算出部14と、判定ルール生成部15と、判定部16とを備えて構成される。
 データ生成部11は、シークエンサー20によって読み取られた活性汚泥中に存在する複数の微生物の塩基配列をシークエンサー20から受信し、当該塩基配列に基づき座標を算出するためのデータを生成するデータ生成手段である。座標を算出するためのデータは、微生物の種別(微生物種、菌種)毎の、活性汚泥中に存在する微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群である。1つのデータ群は、1つの微生物叢に対応するものであり、同一の生物反応槽に入れられた活性汚泥について、同一のタイミングでの活性汚泥中に存在する微生物の全種別それぞれの遺伝子の塩基配列を示す情報を含む。但し、厳密にその全種別の塩基配列を把握することは困難である場合等には、厳密にその全種別の塩基配列を示す情報を含む必要はなく、座標の算出に必要な程度の塩基配列を含んでいればよい。
 座標を算出するためのデータとしては、複数の上記のデータ群を必要とする。例えば、同一の生物反応槽に入れられた活性汚泥について、異なる複数のタイミングでの活性汚泥それぞれに係るデータ群を、座標を算出するための複数のデータ群とする。例えば、複数のデータ群は、1週間毎の複数週の微生物叢の塩基配列のデータである。即ち、1週間毎に活性汚泥から微生物群を含む溶液を採取し、データ群を生成する。あるいは、互いに異なる生物反応槽に入れられた活性汚泥それぞれに係るデータ群を、座標を算出するための複数のデータ群としてもよい。
 各データ群には、微生物の種別毎の塩基配列のみが含まれていてよいが、微生物それぞれの存在割合(存在確率)のデータが含まれていてもよい。この存在割合は、微生物の種別(微生物種、菌種)毎の、活性汚泥に含まれる全微生物の数に対する、当該活性汚泥に含まれる当該種別の微生物の数の割合である。但し、厳密にその割合を把握することは困難である場合等には、厳密に全微生物の数に対する数の割合である必要である必要はなく、座標の算出に必要な程度に近似した割合であればよい。
 例えば、データ生成部11は、以下のように当該データの生成を行う。データ生成部11は、シークエンサー20から粗配列データを受信する。なお、シークエンサー20から受信する粗配列データは、複数のデータ群に係るデータ、例えば、複数のタイミングの活性汚泥に係るデータであるものとする。即ち、そのようなデータが得られるようにシークエンサー20によるシークエンシングを行う。
 データ生成部11は、得られた粗配列データ(例えば、上記の例では約570塩基/データ)について、配列データに含まれるサンプル固有のバーコード配列に基づき、各配列をそれぞれの固有のサンプル(複数のデータ群のそれぞれのデータ群に相当)に分配する。データ生成部11は、当該配列データの配列長200未満、1000以上、ユニバーサルプライマー配列(fw357F)とのミスマッチ1以上、シークエンサーに付属のクオリティプログラムを用いて、配列決定した塩基配列の平均クオリティ値が25以下の配列データを除去して、高精度データを抽出する。
 データ生成部11は、取得した高精度配列データを、クラスタリング(類似度95%、97%、又は99%の閾値)によるOperational Taxonomic Unit解析(以下、OTU解析)に供する。OTU解析においては、配列データの類似度を基準にして各配列データをグループ化する操作を行う。ここでは95%以上の配列類似度を互いに有する配列データのクラスターグループ(以下、OTU)を検出する。なお、配列データのクラスタリングは、従来技術、例えば、フリーウェアUclustを用いて行うことができる。各OTUはほぼ同じ種の細菌(微生物)に由来すると推測できる。よって、クラスタリングによって得られるOTUの総数(OTU数)は、検出可能な範囲において、その細菌叢(微生物叢)を構成する細菌種(微生物種)の数と等価と考えることができる。データ生成部11は、各クラスターグループを代表する塩基配列である代表配列データを決定する。代表配列データの決定は、従来から用いられている方法により行うことができる。
 また、各OTU中に含まれる配列データ数からは、配列データ数全体中の各OTUの割合、つまり菌種組成比、即ち、上記の存在割合を求めることができる。更に、各OTUの代表配列データについて上記した16S遺伝子及び細菌ゲノムのデータベースへの相同性検索を行うことにより、最も高い配列類似度を有する既知菌種へ帰属、つまり、OTUの菌種を特定できる。なお、本実施形態では菌種の特定は必ずしも必要がないが、具体的にどの菌種の細菌が活性汚泥に含まれるか否かを把握できるため、判定結果の解析等において有益となる。なお、データ群に含まれる、配列データ数(配列数のカウント)が非常に少ない(例えば、1、2又は3)OTU(クラスターグループ)については、有効な情報でない場合が多く、計算上のノイズとなる場合があるので、予めデータ群のデータから外すこととしてもよい。
 データ生成部11は、上記の各クラスターグループの代表配列データを、データ群を構成する塩基配列とする。また、データ生成部11は、上記の細菌種(塩基配列)毎の存在割合を各データ群について算出し、データ群に微生物それぞれの存在割合(存在確率)のデータとして含めてもよい。データ生成部11は、生成した複数のデータ群を入力部12に出力する。
 入力部12は、上記のデータ群を複数、データ生成部11から入力する入力手段である。入力部12は、入力したデータ群を類似度算出部13に出力する。
 類似度算出部13は、入力部12によって入力されたデータ群に含まれる塩基配列に基づいて、データ群間の類似度を算出する類似度算出手段である。また、データ群に微生物それぞれの存在割合のデータが含まれている場合には、類似度算出部13は、当該存在割合を示す情報にも基づいて、データ群間の類似度を算出することとしてもよい。類似度は、例えば、データ群に含まれる微生物の塩基配列自体、及び微生物の塩基配列の構成(どのような塩基配列がどの存在割合で含まれているか)が互いに類似していると高くなる。類似度算出部13は、2つのデータ群間の間での類似度を算出する。また、類似度算出部13は、全てのデータ群の組み合わせについて類似度を算出する。
 類似度の算出は、従来から用いられている方法、例えば、UniFrac解析により行うことができる。UniFrac解析は、塩基配列のデータ群から構成される任意の複数群ついて、各群に属する塩基配列(各OTUに属する代表塩基配列)同士の類似度と配列数から、各群間の類似度を数値化する手法である(Lozupone C and Knight R: UniFrac:a new phylogenetic method for comparing microbial communities. ApplEnviron Microbiol 71:8228-8235(2005))。UniFrac解析は、例えば、コロラド大学から提供されているフリーウェアUnifracを用いて行うことができる。
 UniFran解析によって得られる類似度は、系統樹上での系統距離(UniFrac Distance)(以下、群間類似距離)として算出される。群間類似距離は、データ群間の類似度が高いほど、小さい値となる。類似度算出部13は、算出したデータ群間の類似度である群間類似距離の値を座標算出部14に出力する。また、類似度算出部13は、判定ルールによる判定を行うため、類似度の算出に用いた情報を記憶しておく。なお、類似度の算出は、必ずしもUniFrac解析によって行われる必要はなく、複数の塩基配列を含むデータ群間の類似度を算出できるものであれば、どのような手法によって行われてもよい。
 座標算出部14は、類似度算出部13によって算出された類似度に基づいて、データ群それぞれの多次元空間上の座標を算出する座標算出手段である。ここで算出される座標は、それぞれのデータ群に対応する上述した微生物叢の状態を示す座標である。類似するデータ群の座標は近くなり、類似していないデータ群の座標は遠くなるように算出される。算出する座標の次元の数は、予め座標算出部14に設定されて記憶されている。例えば、2次元、又は3次元の座標を算出する。2次元、又は3次元の座標とすることで、図示することが可能となり、微生物叢の状態を視覚的に確認することが可能となる。
 座標の算出は、従来から用いられている方法、例えば、多次元尺度構成法(MDS)により行うことができる。多次元尺度構成法は、対象についての任意の基準の類似度を元にして、その対象を多次元空間上に座標として布置する手法である。多次元尺度構成法は、例えば、フリーウェア(R等)や市販のプログラムを用いて行うことができる。なお、座標の算出は、必ずしも多次元尺度構成法によって行われる必要はなく、類似度に基づいて座標を算出できるものであれば、どのような手法によって行われてもよい。
 算出された座標を図示したグラフの例を図2(a)及び図3に示す。図2(a)は、2次元空間上に座標をプロットしたものである。図3は、3次元空間上に座標をプロットしたものである。図2における正方形及び三角形で示される個々の座標、及び図3における丸で示される個々の座標が、個々のデータ群、即ち、個々の微生物叢の状態に対応する。座標算出部14は、算出した座標を示す情報を判定ルール生成部15に出力する。また、類似度算出部13は、判定ルールによる判定を行うため、座標の算出に用いた情報を記憶しておく。
 判定ルール生成部15は、座標算出部14によって算出された座標に基づいて、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列から、当該複数の微生物の状態を判定するための判定ルールを生成する判定ルール生成手段である。判定ルールは、例えば、当該複数の微生物、即ち、微生物叢が正常に水処理を行えるか否かを判定するものである。正常に水処理が行えるとは、例えば、処理後の水が、水処理後の水の自然環境に対する影響が十分に小さくなっているような一定の基準を満たすものである。更に具体的には、処理対象となっている特定の化学物質を一定以上の割合で処理(分解)できるものである。
 判定ルールは、判定対象となる微生物叢を構成する微生物それぞれの遺伝子の塩基配列に基づく座標を用いて判定するものである。即ち、判定ルールは、上記の座標の算出に用いたデータ群と同様の形式のデータ群に基づく情報を用いて判定するものである。
 判定ルール生成部15が判定ルールを生成するにあたって、例えば、予め、座標算出部14によって算出される座標に係る微生物叢を、正常に水処理が行えている微生物叢としておく。即ち、座標算出部14によって算出される座標の集合は、正常に水処理が行えている微生物叢の集合に相当するものである。判定ルール生成部15は、判定ルールとして、正常に水処理が行えている微生物叢に係る座標の集合から推定される、正常に水処理が行えている微生物叢に係る座標が含まれる範囲を決定する。判定は、判定対象となる微生物叢に係る座標が当該範囲に含まれているか否かを判断することで行うことができる。判定対象となる微生物叢に係る座標が当該範囲に含まれていれば、判定対象となる微生物叢は、正常に水処理が行える微生物叢であると判定される。一方、判定対象となる微生物叢に係る座標が当該範囲に含まれていなければ、判定対象となる微生物叢は、正常に水処理が行える微生物叢ではない可能性があると判定される。
 判定ルール生成部15は、正常に水処理が行えている微生物叢に係る複数の座標から、例えば、統計的に一定以上の確率(例えば、95%)で当該複数が含まれると推定とされる範囲(例えば、信頼95%区間)を、判定ルールとしての範囲として算出する。信頼95%の算出は、従来から用いられている統計的な方法により行うことができる。信頼95%の算出は、例えば、フリーウェア(R等)や市販のプログラムを用いて行うことができる。
 あるいは、判定ルール生成部15が判定ルールを生成するにあたって、例えば、予め、座標算出部14によって算出される座標に係る微生物叢を、正常に水処理が行えている微生物叢及び正常に水処理が行えていない微生物叢の両方を含むものとし、コンピュータ10においてそれらを区別できるようにしておく。判定ルール生成部15は、判定ルールとして、正常に水処理が行えている微生物叢に係る座標が含まれる領域と、正常に水処理が行えていない微生物叢に係る座標が含まれる領域とを最もよく区分する境界を算出することとしてもよい。この判定ルールによれば、判定対象となる微生物叢に係る座標が何れの領域に含まれているかによって判定を行うことができる。当該境界の算出は、従来から用いられている統計的又は数理的な方法により行うことができる。
 また、判定ルール生成部15は、機械学習によって判定ルールを生成することとしてもよい。判定ルール生成部15は、生成した判定ルールを示す情報を判定部16に出力する。
 判定部16は、判定ルール生成部15によって生成された判定ルールに基づき、判定対象の微生物叢の状態を判定する判定手段である。上記のように、判定ルールは、判定対象の微生物叢に係る座標から、当該判定対象の微生物叢の状態を判定するためのものである。即ち、判定部16は、判定対象の微生物叢に係る座標を示す情報を入力し判定を行う。判定対象は、(判定を行いたいタイミングでの)水処理システムの活性汚泥に含まれる微生物叢である。判定対象の微生物叢は、判定ルールの生成に用いたデータ群を取得した水処理システムと同一の(かつ異なるタイミングでの)水処理システムの活性汚泥に含まれる微生物叢とすることができる。但し、判定対象の微生物叢は、判定ルールの生成に用いたデータ群を取得した水処理システム以外の水処理システムの活性汚泥に含まれる微生物叢であってもよい。
 判定対象の微生物叢に係る座標は、判定ルールの生成時の個々のデータ群の座標と同様に求められる。即ち、座標の算出は、以下のように行われる。シークエンサー20が、判定対象の微生物叢を構成する複数の微生物から遺伝子の塩基配列を読み取る。シークエンサー20は、読み取った、判定対象となる複数の微生物毎の塩基配列を示す情報(配列情報)をコンピュータ10に送信する。
 コンピュータ10では、データ生成部11が、シークエンサー20から配列情報を受信し、当該配列情報から、判定対象となる複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を生成する。
 データ生成部11は、生成した判定対象の微生物の塩基配列を示す情報を含むデータ群を入力部12に出力する。入力部12は、当該データ群を入力して、類似度算出部13に出力する。類似度算出部13は、当該データ群を入力して、当該データ群と、判定ルールの生成の際に用いられた個々のデータ群との間の類似度を算出する。類似度算出部13は、算出した類似度を座標算出部14に出力する。座標算出部14は、類似度算出部13から入力した情報によって示される類似度に基づいて、判定対象のデータ群の多次元空間上の座標を算出する。類似度の算出及び座標の算出は、判定ルールの生成時と同様に行われる。座標算出部14は、判定対象のデータ群の座標を示す情報を判定部16に出力する。
 判定部16は、判定ルールに基づいて、座標算出部14から入力した情報によって示される座標を用いて判定を行う。例えば、判定部16は、上記のように判定対象となる座標が信頼95%区間に含まれているか否かを判断する。判定対象となる座標が信頼95%区間に含まれていると判断された場合、判定部16は、判定対象となる微生物叢は、正常に水処理が行える微生物叢であると判定する。判定対象となる座標が信頼95%区間に含まれていないと判断された場合、判定部16は、判定対象となる微生物叢は、正常に水処理が行える微生物叢ではない可能性があると判定する。
 判定部16は、判定結果を出力する。判定結果の出力は、例えば、コンピュータ10が備えるディスプレイ等の表示装置で表示することで行われる。また、判定結果の出力は、例えば、他の装置やコンピュータ10内の他のモジュールに送信することで行われてもよい。以上が、本実施形態に係るコンピュータ10の機能である。
 引き続いて、図4及び図5のフローチャートを用いて、本実施形態に係る微生物叢解析システム1で実行される処理(微生物叢解析システム1の動作方法)である微生物叢解析方法及び判定方法を説明する。まず、図4のフローチャートを用いて、判定ルールの生成時に実行される処理を説明する。本処理では、まず、シークエンサー20によって、水処理システムで用いられる微生物叢を構成する微生物の遺伝子の塩基配列が読み取られる(S01、読取ステップ)。ここでは、複数のタイミングでの、微生物叢を構成する微生物の遺伝子の塩基配列が読み取られる。読み取られた塩基配列のデータは、シークエンサー20からコンピュータ10に出力される。
 コンピュータ10では、データ生成部11によって、シークエンサー20から送信された塩基配列のデータが受信される。続いて、データ生成部11によって、塩基配列のデータに基づき、複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群が複数生成される(S02、データ生成ステップ)。続いて、生成された複数のデータ群やこれまでに生成されたデータ(以前に生成した複数のタイミングでの、微生物叢を構成する微生物の遺伝子の塩基配列塩基配列のデータに基づき、複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群)がデータ生成部11から、入力部12に入力される(S03、入力ステップ)。
 入力された複数のデータ群は、入力部12から類似度算出部13に出力される。続いて、類似度算出部13によって、データ群間の類似度が算出される(S04、類似度算出ステップ)。算出されたデータ群間の類似度を示す情報は、類似度算出部13から座標算出部14に出力される。
 続いて、座標算出部14によって、類似度算出部13によって算出された類似度に基づいて、データ群それぞれの多次元空間上の座標が算出される(S05、座標算出ステップ)。算出された座標を示す情報は、座標算出部14から判定ルール生成部15に出力される。続いて、判定ルール生成部15によって、類似度算出部13から入力された情報によって示される座標に基づいて、判定ルールが生成される(S06、判定ルール生成ステップ)生成された判定ルールを示す情報は、判定ルール生成部15から判定部16に出力される。以上が、判定ルールの生成時に実行される処理である。
 引き続いて、図5のフローチャートを用いて、判定時に実行される処理を説明する。本処理では、まず、シークエンサー20によって、判定対象のタイミングでの、水処理システムで用いられる微生物叢を構成する微生物の遺伝子の塩基配列が読み取られる(S11、読取ステップ)。読み取られた塩基配列のデータは、シークエンサー20からコンピュータ10に出力される。
 コンピュータ10では、データ生成部11によって、シークエンサー20から送信された塩基配列のデータが受信される。続いて、データ生成部11によって、塩基配列のデータに基づき、塩基配列のデータに基づき、複数の微生物それぞれの遺伝子の塩基配列を示す情報を含む判定対象のデータ群が生成される(S12、データ生成ステップ)。続いて、生成されたデータ群がデータ生成部11から入力部12に入力される(S13、入力ステップ)。
 入力された判定対象のデータ群は、入力部12から類似度算出部13に出力される。続いて、類似度算出部13によって、判定対象のデータ群と、判定ルールの生成の際に用いられた個々のデータ群との間の類似度が算出される(S14、類似度算出ステップ)。算出されたデータ群間の類似度を示す情報は、類似度算出部13から座標算出部14に出力される。
 続いて、座標算出部14によって、類似度算出部13によって算出された類似度に基づいて、判定対象のデータ群の多次元空間上の座標が算出される(S15、座標算出ステップ)。算出された判定対象の座標を示す情報は、座標算出部14から判定部16に出力される。
 続いて、判定部16によって、判定ルール生成部15によって生成された判定ルールに基づき、座標算出部14によって算出された座標から当該判定対象の微生物叢の状態の判定が行われる(S16、判定ステップ)。判定結果を示す情報は、例えば、ユーザに認識できるように表示される。以上が、判定時に実行される処理である。
 上述したように、本実施形態によれば、微生物叢を構成する複数の微生物それぞれの遺伝子の塩基配列に基づいて、多次元空間上の座標が算出される。塩基配列に基づく解析は、電気泳動による解析と比べて定量的にも定性的にも精度が高い。従って、本実施形態によって算出された座標は、電気泳動による解析を用いた場合と比べて、精度よく微生物叢の状態を表したものである。即ち、本実施形態によれば、微生物叢を精度よく解析することができる。
 また、本実施形態のように、算出された座標から、微生物叢の状態を判定するための判定ルールを生成することとしてもよい。この構成によれば、例えば、上述したような微生物叢が正常な状態(健康な状態)であるか否かを判定するための判定ルールを生成することができる。本実施形態によって算出された座標は精度よく微生物叢の状態を表したものであるため、この判定ルールによれば、精度よく判定を行うことができる。
 また、本実施形態のように生成した判定ルールを用いて判定を行う構成を有していてもよい。即ち、微生物叢解析システム1は、本実施形態のように判定システムを兼ねていてもよい。この構成によれば、生成された判定ルールに基づいた判定を行うことができる。但し、必ずしも判定ルールの生成又は判定が、微生物叢解析システム1において行われる必要はなく、微生物叢解析システム1以外の装置又はシステムによって行われてもよい。その場合、微生物叢解析システム1によって算出された座標、又は微生物叢解析システム1によって生成された判定ルールは、当該微生物叢解析システム1以外の判定システムに出力される。当該判定システムは、上述した微生物叢解析システム1の判定に係る機能を有している。
 化学工場等の生物学的排水処理施設では、工場設備の定期修理期間中はメタノール等を生物学的排水処理施設に流入させ、活性汚泥を維持するが、定期修理期間後の排水処理には安定処理までに馴養期間が必要となり、処理に時間を要していた。これまで馴養期間の終点を計る管理方法がなく、安定的に処理可能な状態の見極めが困難であり、新しい管理手法が求められていた。上記のような本実施形態による微生物叢の状態の解析、判定を行うことで、安定的に処理可能な状態の見極めが容易になり、適切に水処理システムの微生物叢の管理を行うことができる。
 また、本実施形態のように微生物の存在割合にも基づいて、データ群間の類似度を算出することとしてもよい。この構成によれば、更に座標を精度よく微生物叢の状態を表すことができる。但し、類似度の算出に必ずしも存在割合は必要なく、塩基配列のみから類似度の算出が行われてもよい。
 また、本実施形態のように微生物の遺伝子の塩基配列を読み取るシークエンサー20が、微生物叢解析システム1に含まれており、読み取られた塩基配列に基づきデータ群が生成されてもよい。この構成によれば、微生物の塩基配列のデータ群を確実に入力することができ、確実に本発明の一実施形態を実施することができる。但し、微生物叢解析システム1には、必ずしも、シークエンサー20が含まれている必要はない。即ち、微生物叢解析システム1(のコンピュータ10の入力部12)は、外部からデータ群を入力することとしてもよい。
 続いて、本実施形態の微生物叢解析システム1によって算出された微生物叢の状態を示す座標及び判定ルールの例を説明する。図2(a)に、2次元空間上に微生物叢の状態を示す座標をプロットしたグラフを示す。図2(a)において、四角で示される座標は、水処理が正常に行われている活性汚泥での微生物叢(正常細菌群)の状態を示す座標である。三角で示される座標は、微生物叢に対してメタノール馴養を8週間行って水処理の機能を低下させた活性汚泥での微生物叢(メタノール馴養8週目細菌群)の状態を示す座標である。図2(b)に、それぞれの微生物叢の(S)-2-(4-クロロフェニル)-3-メチルブタン酸の処理を開始してから4.7日目及び6日目の処理率(%)を示す。
 図2(a)に示すように、正常細菌群に対応する座標が布置される座標領域と、メタノール馴養8週目細菌群が布置される座標領域とでは、それぞれ明確に異なる座標領域が形成された。このことから、正常細菌群とメタノール馴養8週目細菌群とでは、少なくともそれらを構成する細菌の種類とその存在量の多寡の菌叢構造において、有意に相違していることが明らかになった。
 また、正常細菌群の座標の集合から、図2(a)に示すように、本実施形態の判定ルールである信頼95%区間の領域A1が算出される。微生物叢の状態を示す座標が、当該領域A1に含まれるか否かを判断することで、微生物叢の状態が健康状態であるか否かを判定することができる。このように、正常細菌群に対する上記群間類似距離を指標にして、任意の検体から処理不良細菌群と評価される検体を検出できる。
 図3に、3次元空間上に微生物叢の状態を示す座標をプロットしたグラフを示す。図3において、白抜きの丸で示される座標は、水処理が正常に行われている活性汚泥での微生物叢(正常細菌群)の状態を示す座標である。黒の丸で示される座標は、微生物叢に対してメタノール馴養を行って水処理の機能を低下させた活性汚泥での微生物叢の状態を示す座標である。黒の丸で示される座標の符号に含まれる数値は、何週間メタノール馴養を行ったかを示している。即ち、MTA12wは、12週間メタノール馴養を行ったことを示している。
 図3に示すようにメタノール馴養が12週間行われた微生物叢に対応する座標は、正常細菌群に対応する座標から離れた位置となっている。この例においても、正常細菌群の座標の集合から、図3に示すように、本実施形態の判定ルールである領域A2が算出される。
 1…微生物叢解析システム、10…コンピュータ、11…データ生成部、12…入力部、13…類似度算出部、14…座標算出部、15…判定ルール生成部、16…判定部、20…シークエンサー。

Claims (7)

  1.  水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を複数入力する入力手段と、
     前記入力手段によって入力されたデータ群に含まれる塩基配列に基づいて、データ群間の類似度を算出する類似度算出手段と、
     前記類似度算出手段によって算出された類似度に基づいて、前記データ群それぞれの多次元空間上の座標を算出する座標算出手段と、
    を備える微生物叢解析システム。
  2.  前記座標算出手段によって算出された座標に基づいて、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列から、当該複数の微生物の状態を判定するための判定ルールを生成する判定ルール生成手段を更に備える請求項1に記載の微生物叢解析システム。
  3.  前記入力手段は、複数の微生物それぞれの存在割合を示す情報も含む前記データ群を入力し、
     前記類似度算出手段は、前記入力手段によって入力されたデータ群に含まれる存在割合を示す情報にも基づいて、データ群間の類似度を算出する、請求項1又は2に記載の微生物叢解析システム。
  4.  前記活性汚泥中に存在する複数の微生物から遺伝子の塩基配列を読み取る読取手段と、
     前記読取手段によって読み取られた遺伝子の塩基配列に基づき前記データ群を生成して入力手段に入力させるデータ生成手段と、
    を更に備える請求項1~3の何れか一項に記載の微生物叢解析システム。
  5.  請求項2に記載の微生物叢解析システムによって生成された判定ルールに基づき、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列から、当該複数の微生物の状態を判定する判定システムであって、
     判定対象となる複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を入力する入力手段と、
     前記入力手段によって入力された前記判定対象のデータ群に含まれる塩基配列に基づいて、当該判定対象のデータ群と前記判定ルールの生成に用いられたデータ群との類似度を算出する類似度算出手段と、
     前記類似度算出手段によって算出された類似度に基づいて、前記判定対象のデータ群の多次元空間上の座標を算出する座標算出手段と、
     前記微生物叢解析システムによって生成された判定ルールに基づき、前記座標算出手段によって算出された前記判定対象のデータ群の座標から前記複数の微生物の状態を判定する判定手段と、
    を備える判定システム。
  6.  微生物叢解析システムの動作方法である微生物叢解析方法であって、
     水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を複数入力する入力ステップと、
     前記入力ステップにおいて入力されたデータ群に含まれる塩基配列に基づいて、データ群間の類似度を算出する類似度算出ステップと、
     前記類似度算出ステップにおいて算出された類似度に基づいて、前記データ群それぞれの多次元空間上の座標を算出する座標算出ステップと、
    を含む微生物叢解析方法。
  7.  請求項2に記載の微生物叢解析システムによって生成された判定ルールに基づき、水処理を行う活性汚泥中に存在する複数の微生物それぞれの遺伝子の塩基配列から、当該複数の微生物の状態を判定する判定システムの動作方法である判定方法であって、
     判定対象となる複数の微生物それぞれの遺伝子の塩基配列を示す情報を含むデータ群を入力する入力ステップと、
     前記入力ステップにおいて入力された前記判定対象のデータ群に含まれる塩基配列に基づいて、当該判定対象のデータ群と前記判定ルールの生成に用いられたデータ群との類似度を算出する類似度算出ステップと、
     前記類似度算出ステップにおいて算出された類似度に基づいて、前記判定対象のデータ群の多次元空間上の座標を算出する座標算出ステップと、
     前記微生物叢解析システムによって生成された判定ルールに基づき、前記座標算出ステップにおいて算出された前記判定対象のデータ群の座標から前記複数の微生物の状態を判定する判定ステップと、
    を含む判定方法。
PCT/JP2016/060523 2015-04-03 2016-03-30 微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法 WO2016159157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680019683.2A CN107533592B (zh) 2015-04-03 2016-03-30 微生物群落分析系统、判定系统、微生物群落分析方法及判定方法
US15/562,624 US11697605B2 (en) 2015-04-03 2016-03-30 Microbial flora analysis system, determination system, microbial flora analysis method, and determination method
KR1020177031875A KR20170134624A (ko) 2015-04-03 2016-03-30 미생물총 해석 시스템, 판정 시스템, 미생물총 해석 방법 및 판정 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015076946A JP6514549B2 (ja) 2015-04-03 2015-04-03 微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法
JP2015-076946 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016159157A1 true WO2016159157A1 (ja) 2016-10-06

Family

ID=57006023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060523 WO2016159157A1 (ja) 2015-04-03 2016-03-30 微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法

Country Status (6)

Country Link
US (1) US11697605B2 (ja)
JP (1) JP6514549B2 (ja)
KR (1) KR20170134624A (ja)
CN (1) CN107533592B (ja)
TW (1) TWI706040B (ja)
WO (1) WO2016159157A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111315860A (zh) * 2017-11-10 2020-06-19 横河电机株式会社 微生物污染对策选定装置、微生物污染对策选定系统、微生物污染对策选定方法及微生物污染对策选定程序
CN114093411B (zh) * 2021-11-29 2022-08-09 中国人民解放军总医院 基于样本的微生物群体的进化关系和丰度信息的分析方法及设备
CN117953495B (zh) * 2024-03-27 2024-06-04 北京大学口腔医学院 一种口腔微生物菌群群落分割方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000271A (ja) * 2000-06-28 2002-01-08 Sanyo Electric Co Ltd 微生物分析システム及び方法並びにデータベース
JP2012531211A (ja) * 2009-06-26 2012-12-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 系統発生分析のための方法およびシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0206375B1 (pt) 2001-01-09 2015-08-04 Kurita Water Ind Ltd Método para seleção de agente antimicrobiano e utilização do mesmo
JP3928492B2 (ja) * 2002-06-11 2007-06-13 栗田工業株式会社 混合微生物系の監視方法および管理方法
JP5049748B2 (ja) 2006-11-15 2012-10-17 株式会社神鋼環境ソリューション 生物学的水処理のシミュレーション方法およびシミュレーション装置
JP5825790B2 (ja) 2011-01-11 2015-12-02 日本ソフトウェアマネジメント株式会社 核酸情報処理装置およびその処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000271A (ja) * 2000-06-28 2002-01-08 Sanyo Electric Co Ltd 微生物分析システム及び方法並びにデータベース
JP2012531211A (ja) * 2009-06-26 2012-12-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 系統発生分析のための方法およびシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Koseido na Jisedai Sequencer o Mochiita Biseibutsuso Kaiseki", 15 January 2014 (2014-01-15), Retrieved from the Internet <URL:http://www.funakoshi.co.jp/news/140100spdf/140100s_p23.pdf> [retrieved on 20160419] *

Also Published As

Publication number Publication date
JP6514549B2 (ja) 2019-05-15
TW201643255A (zh) 2016-12-16
CN107533592A (zh) 2018-01-02
JP2016197331A (ja) 2016-11-24
US20180105444A1 (en) 2018-04-19
CN107533592B (zh) 2020-12-29
KR20170134624A (ko) 2017-12-06
US11697605B2 (en) 2023-07-11
TWI706040B (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
US11225680B2 (en) Prediction-rule generating system, prediction system, prediction-rule generating method, and prediction method
Feinstein et al. Assessment of bias associated with incomplete extraction of microbial DNA from soil
Miller et al. Metabarcoding of fungal communities associated with bark beetles
Binladen et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing
EP4234717A3 (en) High throughput multiomics sample analysis
Ibarbalz et al. The bias associated with amplicon sequencing does not affect the quantitative assessment of bacterial community dynamics
JP6479336B2 (ja) 微生物の16SrRNA遺伝子定量用内部標準遺伝子
CN107075581A (zh) 由靶向测序进行数字测量
CN111315884B (zh) 测序文库的归一化
Ahsanuddin et al. Assessment of REPLI-g multiple displacement whole genome amplification (WGA) techniques for metagenomic applications
CN111201323A (zh) 利用唯一分子标识符的文库制备的方法和系统
WO2016159157A1 (ja) 微生物叢解析システム、判定システム、微生物叢解析方法及び判定方法
WO2015023616A2 (en) Method for comprehensive, quantitative, and highly sensitive discrimination of nucleic acid sequences in homogeneous and heterogeneous populations
Allwood et al. Use of standardized bioinformatics for the analysis of fungal DNA signatures applied to sample provenance
Li et al. Multiplex PCR coupled with direct amplicon sequencing for simultaneous detection of numerous waterborne pathogens
EP3378948B1 (en) Method for quantifying target nucleic acid and kit therefor
Wasimuddin et al. Evaluation of primer pairs for microbiome profiling across a food chain from soils to humans within the One Health framework
KR20220012683A (ko) 인공신경망 모델을 이용한 토양 오염원 예측 방법
WO2016203246A1 (en) Method
US10329609B2 (en) Universal DNA profiling
CN113403367B (zh) 一种宏基因组绝对定量的检测方法及其应用
Wang et al. A preliminary report on the exploration of salivary bacterial diversity by the multiplex SNaPshot assay
Deng et al. APPLICATION OF SECOND-GENERATION HIGH-THROUGHPUT SEQUENCING BASED ON MiSeq SEQUENCER TO THE STUDY OF DIATOM SPECIES DIVERSITY OF WATER SAMPLES.
Hellekås Next-generation sequencing of soil samples. Illumina MiSeq vs. Oxford Nanopore MinION
Narantuya et al. Soil bacterial diversity in the Zaamar mining area, Mongolia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562624

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031875

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16773038

Country of ref document: EP

Kind code of ref document: A1