WO2016158563A1 - 曲げ加工性に優れた熱処理鋼線 - Google Patents

曲げ加工性に優れた熱処理鋼線 Download PDF

Info

Publication number
WO2016158563A1
WO2016158563A1 PCT/JP2016/058960 JP2016058960W WO2016158563A1 WO 2016158563 A1 WO2016158563 A1 WO 2016158563A1 JP 2016058960 W JP2016058960 W JP 2016058960W WO 2016158563 A1 WO2016158563 A1 WO 2016158563A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
heat
steel wire
treated steel
filter
Prior art date
Application number
PCT/JP2016/058960
Other languages
English (en)
French (fr)
Inventor
宏之 大浦
智一 増田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP16772444.2A priority Critical patent/EP3279358A4/en
Priority to KR1020177026619A priority patent/KR20170118217A/ko
Priority to CN201680020050.3A priority patent/CN107406952A/zh
Priority to US15/562,084 priority patent/US20180087124A1/en
Priority to BR112017021071A priority patent/BR112017021071A2/pt
Publication of WO2016158563A1 publication Critical patent/WO2016158563A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a heat-treated steel wire, and more particularly to a heat-treated steel wire excellent in bending workability.
  • the heat-treated steel wire which is a spring material
  • the spring is generally obtained by coiling a heat-treated steel wire obtained by quenching and tempering a wire drawing material. Therefore, the heat-treated steel wire is required to have a bending workability that does not break during coiling.
  • the ductility of the heat-treated steel wire decreases as the strength increases, it is difficult to provide a heat-treated steel wire that easily breaks during coiling, has high strength, and has excellent bending workability.
  • Patent Document 1 has a predetermined chemical component composition, in particular, the amount of N is controlled to 0.007% or less, the balance is composed of iron and unavoidable impurities, and the extracted residue analysis value after heat treatment is [0 A high-strength heat-treated steel for springs is disclosed in which the V amount (mass%) in the filtrate filtered through a 2 ⁇ m filter ⁇ [the V content in steel (mass%)] ⁇ 0.4.
  • TS having a predetermined component composition, a solid solution C amount of 0.15% or less, and a Cr amount contained as a Cr-containing precipitate is 0.10% or less, and is represented by a predetermined formula.
  • a high strength spring steel having an excellent brittle fracture resistance and a value of 24.8% or more and a prior austenite grain size of 10 ⁇ m or less is disclosed.
  • Patent Document 1 unheated carbide is reduced as much as possible by setting the heating temperature before rolling to 1250 ° C. However, if the heating temperature before rolling is too high, decarburization of the rolled material is likely to occur, so that it is difficult to remove in a subsequent process, and as a result, bending workability may be reduced. Further, in Patent Document 2, there is no temperature condition setting at the time of split rolling and wire rolling, and a coarse Cr-containing precipitate is generated, so that sufficient bending workability may not be obtained.
  • the present invention has been made paying attention to the above-described circumstances, and an object of the present invention is to provide a heat-treated steel wire having high strength and excellent bending workability.
  • the heat-treated steel wire according to the present invention that has solved the above problems is: C: 0.5 to 0.8%, Si: 1.5 to 2.5%, Mn: 0.5 to 1.5%, P : More than 0%, 0.02% or less, S: more than 0%, 0.02% or less, Cr: 0.3 to less than 0.7%, V: 0.05 to 0.5%, Al: 0% More than 0.01%, N: more than 0%, 0.007% or less, O: more than 0%, 0.004% or less, the balance is made of iron and inevitable impurities, 1.0 ⁇ m filter and 0
  • the electrolytic extraction residue analysis was performed using a 4 ⁇ m filter, the [amount of Cr-based carbide substance / electrolytic mass in the 1.0 ⁇ m filter residue] was 1.0% or more and 2.80% or less;
  • the [amount of Cr-based carbide substance / electrolytic mass in the 0.4 ⁇ m filter residue] was 0.10% or more.
  • the present invention also includes a spring obtained using the above heat-treated steel wire.
  • a heat-treated steel wire having a tensile strength of 2100 MPa or more and excellent bending workability can be provided by defining the component composition of the heat-treated steel wire and the amount of Cr-based carbide based on the electrolytic extraction method. Moreover, if the heat-treated steel wire of the present invention is used, a spring having an excellent bending process can be provided.
  • the present inventors have studied from various angles in order to suppress breakage during coiling of a high-strength heat-treated steel wire, in particular to improve the toughness of the heat-treated steel wire and improve the bending workability. It was found that the frequency of coiling breakage occurring during coiling of the heat-treated steel wire tends to increase as the strength of the heat-treated steel wire increases. As a result of examining the cause in detail, it was found that the frequency of coiling breakage was related not only to the strength of the heat-treated steel wire but also to the precipitation amount of Cr-based carbide. And it discovered that coiling breakage could be suppressed even if it was high intensity
  • the amount of Cr-based carbides in the surface layer of the heat-treated steel wire was examined by measuring the amount of electrolytic extraction residue of the heat-treated steel wire that was broken during coiling and the heat-treated steel wire that was not broken.
  • electrolytic extraction residue it is possible to analyze the properties of carbide on the surface layer of the heat-treated steel wire, which is the starting point of coiling breakage, and it is possible to perform appropriate evaluation for a larger inspection volume compared to the observation of the structure with an electron microscope It becomes.
  • the amount of Cr-based carbide obtained from the heat-treated steel wire with breakage was smaller than that of the heat-treated steel wire without breakage. Therefore, as a result of repeated research on the relationship between the amount of Cr-based carbides and breakage of heat-treated steel wire, if the ratio of electrolytic mass and residual mass is within the following predetermined range, toughness is improved and excellent bending workability is obtained. I understood it.
  • Cr-based carbides include not only Cr carbides but also Cr carbonitrides, composite carbides with carbide-generating elements such as V, and composite carbonitrides.
  • the present inventors have found that a heat-treated steel wire having high strength and excellent bending workability can be provided by appropriately controlling the Cr-based carbide and the component composition.
  • the reason why the Cr-based carbide and the component composition are specified will be described in detail.
  • the residue amount / electrolytic mass of the 1.0 ⁇ m filter is 1.0% or more, preferably 1.20% or more, more preferably 1.40% or more.
  • the residue amount / electrolytic mass of the 0.4 ⁇ m filter is preferably 0.01% or more, more preferably 0.02% or more.
  • C is an element effective for improving the strength of the heat-treated steel wire.
  • the C content is 0.5% or more, preferably 0.55% or more, more preferably 0.6% or more.
  • the strength is improved with an increase in the C content, but if the added amount is excessive, a large amount of coarse cementite is precipitated, which adversely affects the bending workability of the heat-treated steel wire. Therefore, the C content is 0.8% or less, preferably 0.75% or less, and more preferably 0.7% or less.
  • Si is an element effective for deoxidizing steel and improving the strength of heat-treated steel wire.
  • the Si content is 1.5% or more, preferably 1.55% or more, more preferably 1.6% or more.
  • the Si content is 2.5% or less, preferably 2.4% or less, and more preferably 2.3% or less.
  • Mn 0.5 to 1.5%
  • Mn increases hardenability and contributes to improved spring strength.
  • the Mn content is 0.5% or more, preferably 0.6% or more, more preferably 0.7% or more.
  • the Mn content is 1.5% or less, preferably 1.4% or less, more preferably 1.3% or less.
  • P over 0%, 0.02% or less
  • P segregates at the prior austenite grain boundaries and embrittles the structure, so that the fatigue characteristics are reduced. Therefore, the P content is 0.02% or less, preferably 0.018% or less. The smaller the P content, the better. However, it is difficult to make it zero, and about 0.003% may be contained as an inevitable impurity.
  • S more than 0%, 0.02% or less
  • S segregates at the prior austenite grain boundaries and embrittles the structure, so that fatigue characteristics are reduced. Therefore, the S content is 0.02% or less, preferably 0.015% or less. The smaller the S content, the better. However, it is difficult to make it zero, and about 0.003% may be contained as an inevitable impurity.
  • Cr 0.3 to less than 0.7%
  • Cr has the effect of reducing the activity of C and preventing decarburization during rolling and heat treatment.
  • the Cr content is 0.3% or more, preferably 0.35% or more, and more preferably 0.4% or more.
  • the Cr content is less than 0.7%, preferably 0.68% or less, more preferably 0.65% or less.
  • V 0.05 to 0.5%
  • V has the effect
  • secondary precipitation hardening occurs during high-temperature treatment such as nitriding treatment, which contributes to improvement of spring strength.
  • the V content is 0.05% or more, preferably 0.10% or more, more preferably 0.15% or more.
  • the V content is 0.5% or less, preferably 0.45% or less, more preferably 0.40% or less.
  • Al more than 0%, 0.01% or less
  • Al forms inclusions of Al 2 O 3 and AlN in the steel. These inclusions significantly reduce the fatigue life of the spring. Therefore, the Al content is 0.01% or less, preferably 0.005% or less.
  • N more than 0%, 0.007% or less
  • N combines with Al to form AlN inclusions.
  • AlN inclusions significantly reduce the fatigue life of the spring. Therefore, the N content is 0.007% or less, preferably 0.006% or less, more preferably 0.005% or less.
  • O more than 0%, 0.004% or less
  • the O content is 0.004% or less, preferably 0.003% or less.
  • the basic components of the heat-treated steel wire of the present invention are as described above, and the balance is substantially iron.
  • inevitable impurities such as Ca and Na, which are inevitably mixed in depending on the situation of materials such as iron raw materials (including scrap), auxiliary materials, and manufacturing equipment, are contained in the steel.
  • the steel material of the present invention may further contain at least Ni or B as necessary, and the characteristics of the heat-treated steel wire can be further improved according to the kind and content of the element to be contained.
  • the reason for setting a preferable range when these elements are contained is as follows.
  • Ni more than 0%, 0.3% or less
  • the Ni content is preferably 0.05% or more, more preferably 0.07% or more, and further preferably 0.1% or more.
  • the Ni content is preferably 0.3% or less, more preferably 0.27% or less, and still more preferably 0.2% or less.
  • B more than 0%, 0.01% or less
  • B has an effect of improving hardenability and cleaning austenite grain boundaries, and improves toughness.
  • the B content is preferably 0.001% or more, more preferably 0.0015% or more, and further preferably 0.002% or more.
  • the B content is preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.006% or less.
  • the manufacturing method of the heat-treated steel wire of the present invention is not particularly limited, and known manufacturing conditions can be adopted.
  • a steel piece obtained by melting and rolling a steel having the above chemical composition is processed into a wire having a diameter of about 5.0 to 8.0 mm by hot rolling, wound into a coil shape, and cooled.
  • the steel wire rod (hereinafter, sometimes referred to as “rolled wire rod”) is subjected to a skin removing process to remove surface flaws and decarburized parts without heat treatment or the like.
  • the wire is drawn to a desired wire diameter, for example, about 3 to 4 mm in the case of a valve spring.
  • the drawn wire thus obtained is then subjected to quenching and tempering treatment called oil temper to obtain a heat-treated steel wire.
  • Various springs such as valve springs and clutch springs can be obtained by processing the heat-treated steel wire thus obtained into a spring shape.
  • the cooling start temperature after winding at the time of wire rod rolling In order to control the precipitation size and number of Cr-based carbides in the heat-treated steel wire, in addition to the heating temperature at the time of ingot rolling, the cooling start temperature after winding at the time of wire rod rolling, the rolling temperature control such as the cooling rate, etc. It is necessary to control the heat treatment conditions of the patenting treatment in the secondary processing and the quenching / tempering treatment after the wire drawing treatment.
  • the ingot is subjected to split rolling to produce a billet of a predetermined size.
  • the upper limit of the heating temperature is not particularly limited because the Cr-based carbide can be dissolved as the billet is heated to a higher temperature.
  • the upper limit of the heating temperature is 1250 ° C. or less, preferably in consideration of the heat resistance temperature and heating cost of the heating furnace. It is 1240 degrees C or less, More preferably, it is 1230 degrees C or less.
  • the temperature at which the rolled wire rod is placed on the cooling conveyor that is, the rolling coiling temperature is 750 ° C. or higher, preferably 780 ° C. or higher, more preferably 800 ° C. or higher. 950 ° C. or lower, preferably 920 ° C. or lower, more preferably 900 ° C. or lower.
  • the average cooling rate from the start of cooling after placing the conveyor to the end temperature range of pearlite transformation is 1.0 ° C./second or more, preferably 2 ° C. / Sec or more and 6 ° C./sec or less, preferably 5 ° C./sec or less, more preferably 4 ° C./sec or less.
  • the average cooling rate from less than 600 ° C. to 300 ° C. is 2.0 ° C./second or more, preferably 3 ° C./second or more, Or less, preferably 7 ° C./second or less.
  • the cooling rate control can be performed by appropriately combining, for example, rolling line speed, conveyor speed, blower cooling, cover cooling, and the like.
  • the said temperature can be measured with the radiation thermometer provided in the several places on a conveyor.
  • the heating temperature during patenting is 850 ° C. or higher, preferably 860 ° C. or higher, more preferably 870 ° C. or higher.
  • the heating temperature is set to 900 ° C. or lower, preferably 890 ° C.
  • the holding time at the heating temperature is 10 seconds or longer, preferably 15 seconds or longer, more preferably 20 seconds or longer, 60 seconds or shorter, preferably 55 seconds or shorter, more preferably 50 seconds or shorter.
  • the average cooling rate is 1.0 ° C./second or more, preferably 2.0 ° C./second or more, and is 6 ° C./second or less, preferably 5 ° C./second or less.
  • the heating temperature during quenching is 850 ° C. or higher, preferably 860 ° C. or higher, more preferably 870 ° C. or higher in order to suppress coarse undissolved Cr-based carbides due to insufficient heating.
  • the heating temperature is 950 ° C. or lower, preferably 940 ° C. or lower, and more preferably 930 ° C. or lower from the viewpoint of suppressing the remaining austenite crystal grains from coarsening and lowering toughness.
  • the holding time is 5 seconds or more, preferably 10 seconds or more, more preferably 15 seconds or more, and 50 seconds or less, preferably 45 seconds or less, more preferably 40 seconds or less.
  • Quenching may be performed with heated oil after holding for a predetermined time, for example, oil of about 50 to 60 ° C.
  • Tempering after quenching may be adjusted as appropriate so that the tensile strength is 2100 MPa or more. However, when the tempering temperature is too high or the heating and holding temperature is too long, the residual amount of coarse Cr-based carbide increases, and the bending workability decreases. For example, tempering has a heating temperature of 350 ° C. or more and 450 ° C. or less, and a holding time at the heating temperature of 50 seconds or more and 200 seconds or less.
  • the heat-treated steel wire of the present invention exhibits excellent fatigue characteristics as shown in the examples below.
  • the heat-treated steel wire of the present invention can be processed into a desired coil diameter, free height, and number of turns to produce various springs such as a valve spring, a clutch spring, an engine spring, and a transmission spring.
  • the heat-treated steel wire may be subjected to various known treatments such as nitriding treatment and vacuum carburizing treatment as necessary when processing.
  • a steel ingot having a chemical composition shown in Table 1 was melted in a small vacuum melting furnace, heated at 1200 ° C. simulating the lump temperature, and forged to produce a ⁇ 155 mm steel piece. After this steel slab was hot-rolled, the mounting temperature, the average cooling rate I up to 600 ° C. after the mounting, and the average cooling rate II up to 300 ° C. were controlled as shown in Table 2, and the wire diameter ⁇ 8 A rolled wire rod of 0.0 mm was produced. After removing the surface decarburized layer, wrinkles and the like by cutting this rolled wire, it is subjected to a patenting treatment under the conditions shown in Table 2 to form a pearlite structure, and then cold-drawn so that the wire diameter becomes 4.0 mm. Wire processed.
  • the tensile strength, drawing, the amount of Cr-based carbide based on the electrolytic extraction method, and the bending workability were measured as follows and listed in Table 3.
  • the metal Fe of the matrix phase is electrolyzed to obtain Cr-based carbides in the steel of the electrolytic solution, and other carbides other than Cr-based carbides, carbonitrides, nitrides, etc., having a mesh diameter of 1.0 ⁇ m, and Two-stage filtration using a 0.4 ⁇ m filter [Advantech Toyo Co., Ltd. membrane filter] was performed and collected as an extraction residue on each filter.
  • the mass difference before and after electrolysis of the heat-treated steel wire was defined as electrolytic mass.
  • Each filter residue mass was divided by the electrolytic mass to determine the Cr-based carbide content (%).
  • the bending workability was evaluated by self-winding. Each of the heat-treated steel wires obtained was subjected to 1000 turns of its own diameter, and the superiority or inferiority of the bending workability was judged by the number of breakage. When the number of breakage was less than 5 in the self-winding winding 1000, it was evaluated that the bending workability was excellent, and the case where the number of breakage was 5 or more was evaluated as poor bending workability.
  • Test No. Examples 1 to 10 are examples that satisfy the requirements defined in the present invention. In these, the component composition and Cr-based carbide were controlled, and they had high strength and excellent bending workability.
  • Test No. 11 and 12 are examples in which the heating temperature before the block rolling was low. Therefore, Cr-based carbides could not be sufficiently dissolved, and a large amount of Cr-based carbides remained in the 0.4 ⁇ m filter residue, resulting in poor bending workability.
  • Test No. 13 is an example in which the conveyor placement temperature at the end of wire rod rolling, that is, the cooling start temperature was high. Therefore, a supercooled structure was generated, and the evaluation was stopped because a disconnection occurred in the shaving process.
  • Test No. No. 14 is an example in which the average cooling rate I from the start of cooling during wire rod rolling to 600 ° C. was slow. Therefore, the growth of Cr-based carbides progressed, and a lot of coarse Cr-based carbides remained in the 0.4 ⁇ m filter residue after quenching and tempering, and the bending workability was poor.
  • Test No. No. 15 is an example in which the average cooling rate II up to 300 ° C. was slow.
  • the growth of Cr-based carbides progressed, and a large amount of coarse Cr-based carbides remained in the 1.0 ⁇ m filter residue after quenching and tempering, and bending workability was poor.
  • Test No. 16 is an example in which the heating temperature during the patenting process was low.
  • the Cr carbide remaining after the patenting treatment remained after the quenching and tempering treatment, so that a large amount of Cr carbide remained in the 1.0 ⁇ m filter residue, and the bending workability was poor.
  • Test No. 17 is an example in which the heating and holding time of the patenting process was short. In this example, the evaluation was stopped because an incomplete structure was formed and the wire was disconnected during wire drawing.
  • Test No. 18 is an example in which the average cooling rate during the patenting process was slow.
  • the growth of Cr carbide progressed, and after quenching and tempering, a large amount of Cr carbide remained in the 0.4 ⁇ m filter residue, and the bending workability was poor.
  • Test No. 19 is an example in which the heating temperature during quenching was low.
  • coarse undissolved Cr-based carbides were generated and the toughness decreased.
  • a large amount of Cr-based carbide remained in the 1.0 ⁇ m filter residue and the 0.4 mm filter residue, and the bending workability was poor.
  • Test No. No. 20 is an example in which the heating and holding time during quenching was short.
  • a large amount of Cr carbide remained in the 1.0 ⁇ m filter residue and the 0.4 mm filter residue, and the bending workability was inferior.
  • Test No. No. 21 is an example in which the tempering temperature is high and the holding time is short. In this example, a large amount of Cr-based carbide remained in the 1.0 mm filter residue, and the bending workability was poor.
  • Test No. No. 22 is an example in which the heating and holding time for tempering was long. In this example, a large amount of Cr-based carbide remained in the 1.0 mm filter residue, and the bending workability was poor.
  • Test No. No. 23 is an example having a high C content and a high tempering temperature.
  • coarse undissolved Cr-based carbides were generated and the toughness decreased. Further, a large amount of Cr-based carbide remained in the 1.0 ⁇ m filter residue and the 0.4 mm filter residue, and the bending workability was poor.
  • Test No. 24 is an example in which the Si content was high and the tempering temperature was high.
  • coarse undissolved Cr-based carbides were generated and the toughness decreased. Further, a large amount of Cr carbide remained in the 1.0 mm filter residue, and the bending workability was inferior.
  • Test No. 25 is an example in which the Cr content was high.
  • the growth of Cr carbide progressed, and after quenching and tempering, a large amount of Cr carbide remained in the 1.0 ⁇ m filter residue and 0.4 mm filter residue, and the bending workability was poor.
  • Test No. 26 is an example in which the V content was large.
  • the growth of Cr carbide progressed, and after quenching and tempering, a large amount of Cr carbide remained in the 0.4 ⁇ m filter residue, and the bending workability was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Springs (AREA)

Abstract

 曲げ加工性に優れた熱処理鋼線を提供する。本発明の熱処理鋼線は、質量%で、C:0.5~0.8%、Si:1.5~2.5%、Mn:0.5~1.5%、P:0%超、0.02%以下、S:0%超、0.02%以下、Cr:0.3~0.7%未満、V:0.05~0.5%、Al:0%超、0.01%以下、N:0%超、0.007%以下、O:0%超、0.004%以下を含有し、残部が鉄および不可避不純物からなり、1.0μmフィルターと0.4μmフィルターを用いて電解抽出残渣分析をしたとき、[1.0μmフィルター残渣中のCr系炭化物質量/電解質量]が1.0%以上、2.80%以下であり、且つ、1.0μmフィルターで得られたろ液を用いた残渣分析で[0.4μmフィルター残渣中のCr系炭化物質量/電解質量]が0.10%以下である。

Description

曲げ加工性に優れた熱処理鋼線
 本発明は、熱処理鋼線に関し、詳細には曲げ加工性に優れた熱処理鋼線に関する。
 自動車の軽量化や自動車エンジンの高出力化に伴い、エンジン、クラッチ、燃料噴射装置などに使用される各種ばねには、高応力化が求められている。高応力化に対しては耐へたり性、および耐久性の観点から、ばね素材である熱処理鋼線を高強度化する必要がある。一方、ばねは一般的に伸線材を焼入れ・焼戻し処理した熱処理鋼線をコイリングして得られる。そのため熱処理鋼線にはコイリング時に折損しない曲げ加工性が求められている。しかしながら高強度化に伴って熱処理鋼線の延靱性が低下するため、コイリング時に折損しやすく、高強度、且つ優れた曲げ加工性を有する熱処理鋼線を提供することが難しかった。
 そこで、このような問題に対してこれまでにも以下のような技術が提案されている。
 特許文献1には、所定の化学成分組成を有し、特にN量を0.007%以下に制御し、残部が鉄と不可避的不純物とからなり、熱処理後の抽出残渣分析値で、[0.2μmフィルターでろ過したろ液中のV量(質量%)]≧[鋼中V量(質量%)]×0.4である高強度ばね用熱処理鋼が開示されている。
 特許文献2には、所定の成分組成を有し、且つ固溶C量が0.15%以下、Cr含有析出物として含まれるCr量が0.10%以下、所定の式で表されるTS値が24.8%以上とされ、旧オーステナイト粒径が10μm以下とされた、耐脆性破壊特性に優れた高強度ばね鋼が開示されている。
国際公開第2007/114491号 特開2002-180198号公報
 例えば特許文献1では圧延前の加熱温度を1250℃として未溶解炭化物を極力低減している。しかしながら圧延前の加熱温度が高すぎると圧延材の脱炭が生じやすくなるため、後工程での除去が難しく、その結果、曲げ加工性が低下する可能性がある。また特許文献2では分塊圧延、線材圧延時の温度条件設定がなく、粗大なCr含有析出物が生成するため十分な曲げ加工性が得られない可能性がある。
 本発明は上記の様な事情に着目してなされたものであって、その目的は、高強度、且つ優れた曲げ加工性を有する熱処理鋼線を提供することである。
 上記課題を解決し得た本発明に係る熱処理鋼線は、C:0.5~0.8%、Si:1.5~2.5%、Mn:0.5~1.5%、P:0%超、0.02%以下、S:0%超、0.02%以下、Cr:0.3~0.7%未満、V:0.05~0.5%、Al:0%超、0.01%以下、N:0%超、0.007%以下、O:0%超、0.004%以下を含有し、残部が鉄および不可避不純物からなり、1.0μmフィルターと0.4μmフィルターを用いて電解抽出残渣分析をしたとき、[1.0μmフィルター残渣中のCr系炭化物質量/電解質量]が1.0%以上、2.80%以下であり、且つ、前記1.0μmフィルターで得られたろ液を残渣分析したとき、[0.4μmフィルター残渣中のCr系炭化物質量/電解質量]が0.10%以下であることに要旨を有する。
 更に、質量%で、以下の(a)、(b)の少なくとも1つを含有することも好ましい実施態様である。
(a)Ni:0%超、0.3%以下
(b)B:0%超、0.01%以下
 本発明には上記熱処理鋼線を用いて得られるばねも含まれる。
 本発明によれば、熱処理鋼線の成分組成、電解抽出法に基づくCr系炭化物量を規定することで引張強度2100MPa以上を有し、且つ優れた曲げ加工性を有する熱処理鋼線を提供できる。また本発明の熱処理鋼線を用いれば優れた曲げ加工を有するばねを提供できる。
 本発明者らは高強度熱処理鋼線のコイリング時の折損を抑制すべく、特に熱処理鋼線の靭延性を改善して曲げ加工性の向上を図るべく、様々な角度から検討した。熱処理鋼線のコイリング時に発生するコイリング折損の頻度は熱処理鋼線の強度が高くなるほど多くなる傾向にあることがわかった。その原因について詳細に検討した結果、コイリング折損の頻度は熱処理鋼線の強度のみではなく、Cr系炭化物の析出量も関係していることを突き止めた。そしてCr系炭化物の析出量をコントロールすることで、高強度であってもコイリング折損を抑制できることを見出した。
 コイリング時に折損が生じた熱処理鋼線、および折損しなかった熱処理鋼線について電解抽出残渣量を測定して熱処理鋼線表層のCr系炭化物量を調べた。電解抽出残渣を分析することで、コイリング折損の起点となる熱処理鋼線表層の炭化物の性状分析ができ、しかも電子顕微鏡での組織観察と比べると、より大きな検査体積を対象として適切な評価が可能となる。
 電解抽出残渣を分析した結果、折損が生じた熱処理鋼線から得られたCr系炭化物量は、折損しなかった熱処理鋼線に比べてフィルター上のCr系炭化物量が少なかった。そこで熱処理鋼線のCr系炭化物量と折損の関係について研究を重ねた結果、電解質量と残渣質量の割合が下記所定の範囲内であれば靭延性が改善され、優れた曲げ加工性が得られることがわかった。
 1.0μmフィルターと0.4μmフィルターを用いて電解抽出残渣分析をしたとき、[1.0μmフィルター残渣中のCr系炭化物質量/電解質量](以下、「1.0μmフィルターの残渣量/電解質量」ということがある):1.0%以上、2.80%以下
 且つ
 上記1.0μmフィルターで得られたろ液を残渣分析したとき、
[0.4μmフィルター残渣中のCr系炭化物質量/電解質量](以下、「0.4μmフィルターの残渣量/電解質量」ということがある):0.10%以下
 なお、本発明において、Cr系炭化物とは、Cr炭化物の他、Cr炭窒化物、およびV等の炭化物生成元素との複合炭化物、および複合炭窒化物も含む主旨である。
 上記知見に基づき、Cr系炭化物、および成分組成を適切に制御することで、高強度、且つ優れた曲げ加工性を有する熱処理鋼線を提供できることを見出し、本発明に至った。以下、Cr系炭化物、および成分組成を規定した理由について詳述する。
 [1.0μmフィルターの残渣量/電解質量]:1.0%以上、2.80%以下
 1.0μmを超えるCr系炭化物はコイリング折損を誘発する原因となり、高強度熱処理鋼線の曲げ加工性を大幅に低下させる。そのため1.0μmフィルターの残渣量/電解質量は2.80%以下、好ましくは2.70%以下、より好ましくは2.60%以下である。一方、Cr系炭化物は熱処理鋼線の強度を向上させる役割もあるため、Cr系炭化物が少なすぎると熱処理鋼線の強度が不足する。1.0μmフィルターの残渣量/電解質量は1.0%以上、好ましくは1.20%以上、より好ましくは1.40%以上である。
 [0.4μmフィルターの残渣量/電解質量]:0.10%以下
 0.4μmを超えるCr系炭化物の析出量が増加すると、熱処理鋼線の靭延性が低下して曲げ加工性が低下する。したがって0.4μmを超えるCr系炭化物は少ないほどよい。0.4μmフィルターの残渣量/電解質量は0.10%以下、好ましくは0.08%以下、より好ましくは0.06%以下である。一方、0.4μm以下のCr系炭化物は少ないほど靭延性に優れるが、Cr系炭化物を低減させるために熱処理時の加熱温度が高すぎる場合や加熱保持時間が長すぎる場合は、旧γ結晶粒度の粗大化が進み靭延性を更に低下させることがある。したがって0.4μmフィルターの残渣量/電解質量は好ましくは0.01%以上、より好ましくは0.02%以上である。
 次に、本発明に係る熱処理鋼線に用いられる鋼中の化学成分組成について説明する。
[C:0.5~0.8%]
 Cは、熱処理鋼線の強度向上に有効な元素である。このような効果を有効に発揮させるには、C含有量は0.5%以上、好ましくは0.55%以上、より好ましくは0.6%以上である。C含有量の増加に伴って強度は向上するが、添加量が過剰になると粗大セメンタイトを多量に析出し、熱処理鋼線の曲げ加工性に悪影響を及ぼす。そのためC含有量は0.8%以下、好ましくは0.75%以下、より好ましくは0.7%以下である。
[Si:1.5~2.5%]
 Siは、鋼の脱酸、および熱処理鋼線の強度向上に有効な元素である。このような効果を有効に発揮させるには、Si含有量は1.5%以上、好ましくは1.55%以上、より好ましくは1.6%以上である。一方、Si含有量が過剰になると、材料を硬化させるだけでなく、靭延性の低下や、表面の脱炭量が増加してばねの疲労特性を低下させることがある。そのためSi含有量は2.5%以下、好ましくは2.4%以下、より好ましくは2.3%以下である。
[Mn:0.5~1.5%]
 Mnは、鋼の脱酸、鋼中SをMnSとして固定することに加えて、焼入れ性を高めてばね強度の向上に貢献する。このような効果を有効に発揮させるには、Mn含有量は0.5%以上、好ましくは0.6%以上、より好ましくは0.7%以上である。一方、Mn含有量が過剰になると、焼入れ性が過度に向上するため、マルテンサイト、ベイナイト等の過冷組織が生成しやすくなる。そのため、Mn含有量は1.5%以下、好ましくは1.4%以下、より好ましくは1.3%以下である。
[P:0%超、0.02%以下]
 Pは旧オーステナイト粒界に偏析し、組織を脆化させるため疲労特性が低下する。そのためP含有量は、0.02%以下、好ましくは0.018%以下である。P含有量は少ないほど好ましいが、ゼロとするのは製造上困難であり、0.003%程度は不可避不純物として含有することがある。
[S:0%超、0.02%以下]
 Sは旧オーステナイト粒界に偏析し、組織を脆化させるため疲労特性が低下する。そのためS含有量は、0.02%以下、好ましくは0.015%以下である。S含有量は少ないほど好ましいが、ゼロとするのは製造上困難であり、0.003%程度は不可避不純物として含有することがある。
[Cr:0.3~0.7%未満]
 Crは、焼入れ性を向上させて、ばね強度を向上させることに加え、Cの活量を低下させて圧延時や熱処理時の脱炭を防止する効果がある。このような効果を有効に発揮させるにはCr含有量は、0.3%以上、好ましくは0.35%以上、より好ましくは0.4%以上である。一方、Crが増加すると鋼中のCr系炭化物が増加するだけでなく、粗大なCr系炭化物が生じて熱処理鋼線の曲げ加工性を悪化させる。そのためCr含有量は0.7%未満、好ましくは0.68%以下、より好ましくは0.65%以下である。
[V:0.05~0.5%]
 Vは、熱間圧延、および焼入れ焼戻し処理において結晶粒を微細化する作用があり、靭延性を向上させる。また、窒化処理などの高温処理時に2次析出硬化を起こしてばねの強度の向上に寄与する。これらの効果を発揮させるためには、V含有量は0.05%以上、好ましくは0.10%以上、より好ましくは0.15%以上である。一方、V含有量が多いと、CrとVの複合炭化物が増加して熱処理鋼線の曲げ加工性を低下させる。そのためV含有量は0.5%以下、好ましくは0.45%以下、より好ましくは0.40%以下である。
[Al:0%超、0.01%以下]
 Alは、鋼中でAlやAlNの介在物を形成する。これらの介在物はばねの疲労寿命を著しく低下させる。そのためAl含有量は0.01%以下、好ましくは0.005%以下である。
[N:0%超、0.007%以下]
 NはAlと結合してAlNの介在物を形成する。AlN介在物はばねの疲労寿命を著しく低下させる。そのためN含有量は0.007%以下、好ましくは0.006%以下、より好ましくは0.005%以下である。
[O:0%超、0.004%以下]
 Oを過剰に含有すると粗大な非金属介在物を生成して疲労強度を低下させる。そのためO含有量は0.004%以下、好ましくは0.003%以下である。
 本発明の熱処理鋼線の基本成分は上記の通りであり、残部は実質的に鉄である。但し、鉄原料(スクラップを含む)、副原料などの資材、製造設備などの状況によって不可避的に混入するCa、Naなどの不可避不純物が鋼中に含まれることは当然に許容される。
 本発明の鋼材には、必要に応じて更に少なくともNi、またはBを含有させてもよく、含有させる元素の種類、含有量に応じて熱処理鋼線の特性を更に改善できる。これらの元素を含有させるときの好ましい範囲設定理由は下記の通りである。
[Ni:0%超、0.3%以下]
 Niは、熱間圧延時の脱炭を抑制する他、熱処理鋼線の靭延性を向上させる効果がある。このような効果を有効に発揮させるにはNi含有量は、好ましくは0.05%以上、より好ましくは0.07%以上、更に好ましくは0.1%以上である。一方、Ni含有量が多いとコスト面で劣るだけでなく、焼入れ性が過度に向上するため、圧延時にマルテンサイト、ベイナイト等の過冷組織が生成しやすくなる。そのため、Ni含有量は好ましくは0.3%以下、より好ましくは0.27%以下、更に好ましくは0.2%以下である。
[B:0%超、0.01%以下]
 Bは、焼入れ性の向上とオーステナイト結晶粒界の清浄化作用があり、靭延性を向上させる。この様な効果を有効に発揮させるには、B含有量は好ましくは0.001%以上、より好ましくは0.0015%以上、更に好ましくは0.002%以上である。一方、Bを過剰に含有させるとFeとBの複合化合物が析出し、熱間圧延時の割れを引き起こす危険がある。また、焼入れ性が過度に向上するため、マルテンサイト、ベイナイト等の過冷組織が生成しやすくなる。そのため、B含有量は好ましくは0.01%以下、より好ましくは0.008%以下、更に好ましくは0.006%以下である。
 本発明の熱処理鋼線の製造方法は特に限定されず、公知の製造条件を採用できる。例えば上記化学成分組成を有する鋼を溶製、分塊圧延した鋼片を熱間圧延で直径5.0~8.0mm程度の線材に加工し、コイル状に巻き取って冷却する。その後、鋼線材(以下、「圧延線材」ということがある)に熱処理等を施すことなく表層の疵や脱炭部を除去する皮削り処理を実施する。更にその後、高周波等で軟化焼鈍処理、またはパテンティング処理を行った後、所望の線径、例えば弁ばね用の場合は直径3~4mm程度まで伸線加工する。得られた伸線加工線材はその後、オイルテンパーと呼ばれる焼入れ、焼戻し処理を実施して熱処理鋼線が得られる。弁ばねやクラッチばねなどの各種ばねは、このようにして得られた熱処理鋼線をばね形状に加工することで得られる。
 熱処理鋼線のCr系炭化物の析出サイズ、個数を制御するためには、分塊圧延時の加熱温度、および線材圧延時の巻取り後の冷却開始温度、冷却速度等の圧延温度制御に加えて、二次加工におけるパテンティング処理、および伸線処理後の焼入れ・焼戻し処理の熱処理条件を制御する必要がある。
 例えば上記所定の化学成分組成を満足する鋼塊を溶鉱炉で溶製した後、この鋳塊を分塊圧延して所定サイズのビレットを作製する。分塊圧延工程ではCr系炭化物を十分に固溶させるため、分塊圧延前にビレットを1200℃以上、好ましくは1210℃以上、より好ましくは1220℃以上に加熱する必要がある。ビレットを高温に加熱する程、Cr系炭化物を固溶できるため、加熱温度の上限は特に限定されないが、加熱炉の耐熱温度や加熱コストを考慮すると、加熱温度の上限は1250℃以下、好ましくは1240℃以下、より好ましくは1230℃以下である。
 熱間圧延後は制御冷却を行う必要がある。熱間圧延後の冷却過程でCr系炭化物の生成、成長を抑制すると共に、ベイナイトやマルテンサイト等の過冷却組織の発生や過度の脱炭を抑制するためには圧延線材を適切に冷却する必要がある。具体的には圧延線材を巻取った後の冷却コンベアに載置する際の載置温度、すなわち、圧延巻取り温度を750℃以上、好ましくは780℃以上、より好ましくは800℃以上であって、950℃以下、好ましくは920℃以下、より好ましくは900℃以下にすることが望ましい。
 またコンベア載置後の冷却開始からパーライト変態終了温度域、すなわち600℃までの平均冷却速度(以下、「平均冷却速度I」ということがある)を1.0℃/秒以上、好ましくは2℃/秒以上であって、6℃/秒以下、好ましくは5℃/秒以下、より好ましくは4℃/秒以下とする。その後、600℃未満から300℃までの平均冷却速度(以下、「平均冷却速度II」ということがある)を2.0℃/秒以上、好ましくは3℃/秒以上であって、8℃/秒以下、好ましくは7℃/秒以下とする。このように冷却速度を制御することでCr系炭化物の生成、成長を抑制できると共に、二次加工処理に適したパーライト組織にできる。
 上記冷却速度制御は、例えば圧延線速、コンベア速度、ブロアー冷却、カバー冷却等を適宜組み合わせることによって制御可能である。なお、上記温度は、コンベア上の複数個所に設けた放射温度計によって測定することができる。
 その後、圧延線材表層の脱炭層、疵等を取除く皮削り処理、パーライト組織とするためのパテンティング処理を行った後、所望の線径に伸線加工する。パテンティング時の加熱条件を制御することでパーライト組織にでき、また特に粗大な未溶解Cr系炭化物を抑制できる。したがってパテンティング時の加熱温度は850℃以上、好ましくは860℃以上、より好ましくは870℃以上である。一方、結晶粒粗大化による伸線性の低下を抑制するためには、加熱温度を900℃以下、好ましくは890℃以下、より好ましくは880℃以下とする。また該加熱温度での保持時間は10秒以上、好ましくは15秒以上、より好ましくは20秒以上であって、60秒以下、好ましくは55秒以下、より好ましくは50秒以下である。平均冷却速度は1.0℃/秒以上、好ましくは2.0℃/秒以上であって、6℃/秒以下、好ましくは5℃/秒以下である。このような制御冷却をおこなうことで、後工程に適したパーライト組織が得られると共に、粗大なCr系炭化物の析出を抑制できる。
 その後、伸線加工して得られた伸線加工線材には焼入れ焼戻し処理を施す。焼入れ時の加熱温度は加熱不足による粗大な未溶解Cr系炭化物を抑制するため850℃以上、好ましくは860℃以上、より好ましくは870℃以上である。一方、残留オーステナイト結晶粒が粗大化して靭延性が低下するのを抑制する観点から加熱温度は、950℃以下、好ましくは940℃以下、より好ましくは930℃以下である。また上記加熱温度における効果を発揮するためには上記加熱温度での保持時間を制御する必要がある。保持時間は5秒以上、好ましくは10秒以上、より好ましくは15秒以上であって、50秒以下、好ましくは45秒以下、より好ましくは40秒以下である。
 所定時間保持した後に加熱した油、例えば概ね50~60℃程度の油で焼入れを行えばよい。
 焼入れ後の焼戻しは2100MPa以上の引張強度となるように適宜調整すればよい。ただし、焼戻し温度が高すぎる場合や加熱保持温度が長すぎる場合は、粗大なCr系炭化物の残存量が多くなり、曲げ加工性が低下する。例えば焼戻しは加熱温度350℃以上、450℃以下、加熱温度での保持時間を50秒以上、200秒以下である。
 本発明の熱処理鋼線は、後記実施例に示すように疲労特性に優れた特性を示す。本発明の熱処理鋼線は所望のコイル径、自由高さ、巻き数に加工して弁ばねやクラッチばね、エンジンばね、トランスミッションばねなど各種ばねを製造できる。熱処理鋼線には加工する際に必要に応じて窒化処理や真空浸炭処理などの公知の各種処理を施してもよい。
 本願は、2015年3月31日に出願された日本国特許出願第2015-070532号に基づく優先権の利益を主張するものである。2015年3月31日に出願された日本国特許出願第2015-070532号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 表1に示す化学成分組成の鋼塊150kgを小型真空溶解炉で溶製した後、分塊温度を模擬した1200℃で加熱した後、鍛伸加工して□155mmの鋼片を作製した。この鋼片を熱間圧延した後、載置温度、および載置後600℃までの平均冷却速度I、およびその後300℃までの平均冷却速度IIを表2に示すように制御して線径φ8.0mmの圧延線材を製造した。この圧延線材を皮削り処理して表層の脱炭層、疵等を除去した後、表2に示す条件でパテンティング処理してパーライト組織とした後、線径φ4.0mmになるように冷間伸線加工した。
 続いて表2に示す条件で焼入れ焼戻し処理を行った。その際、焼戻し処理は引張強度が2100MPa以上となるように実施した。
 引張強度、絞り、電解抽出法に基づくCr系炭化物量、および曲げ加工性は次のように測定して表3に記載した。
 [引張強度、絞り]
 オートグラフ(島津製作所製)にて評価間距離を200mm、ひずみ速度20mm/minとして引張り試験を行い引張強度、およびオートグラフで測定を行い、破面形状から絞りを測定した。絞りが45.0%以上であれば靭延性に優れると判定した。
 [電解抽出法に基づくCr系炭化物量]
 Cr系炭化物の電解抽出残渣分析を行った。まず、熱処理鋼線表面のスケールをサンドペーパーで除去した後、アセトンで洗浄処理を行った。得られたサンプルを電解液である10質量%アセチルアセトン含有エタノール溶液中に浸漬させ、熱処理鋼線表層からの電解質量が0.4~0.5g程度となった後、試験片を取り出した。その後、母相の金属Feを電気分解して電解液の鋼中のCr系炭化物、およびその他微量に存在するCr系炭化物以外の炭化物、炭窒化物、窒化物などをメッシュ直径1.0μm、および0.4μmのフィルター[アドバンテック東洋(株)製メンブランフィルター]を使用した2段階のろ過を行って各フィルター上に抽出残渣として採取した。熱処理鋼線の電解前後の質量差を電解質量とした。各フィルター残渣質量を電解質量で除してCr系炭化物質量(%)を求めた。具体的には電解液を1.0μmフィルターでろ過した後、得られたろ液を0.4μmフィルターでろ過した。電解抽出残渣分析をしたとき、[1.0μmフィルターの残渣量/電解質量]が1.0%以上、2.80%以下であり、且つ、上記1.0μmフィルターで得られたろ液を残渣分析したとき、[0.4μmフィルターの残渣量/電解質量]が0.10%以下の場合を合格とした。
 [曲げ加工性]
 曲げ加工性は自径巻きで評価を行った。得られた各熱処理鋼線で1000巻の自径巻を行い折損回数で曲げ加工性の優劣を判断した。自径巻1000巻中、折損回数が5回未満の場合を曲げ加工性に優れると評価し、折損回数が5回以上の場合を曲げ加工性が悪いと評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 試験No.1~10は本発明で規定する要件を満足する例である。これらは成分組成、およびCr系炭化物が制御されており、高強度、且つ優れた曲げ加工性を有していた。
 試験No.11、12は、分塊圧延前の加熱温度が低かった例である。そのためCr系炭化物を十分に固溶できず、0.4μmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.13は、線材圧延終了時のコンベア載置温度、すなわち冷却開始温度が高かった例である。そのため過冷却組織が発生し、皮削り処理で断線が生じたため評価を中止した。
 試験No.14は、線材圧延時の冷却開始から600℃までの平均冷却速度Iが遅かった例である。そのためCr系炭化物の成長が進行して焼入れ焼戻し後に0.4μmフィルター残渣に粗大なCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.15は、300℃までの平均冷却速度IIが遅かった例である。この例ではCr系炭化物の成長が進行して焼入れ焼戻し後に1.0μmフィルター残渣に粗大なCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.16は、パテンティング処理時の加熱温度が低かった例である。この例ではパテンティング処理時に残存したCr系炭化物が焼入れ焼戻し処理後にも残存したため1.0μmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.17は、パテンティング処理の加熱保持時間が短かった例である。この例では不完全組織となり、伸線加工時に断線したため評価を中止した。
 試験No.18は、パテンティング処理時の平均冷却速度が遅かった例である。この例ではCr系炭化物の成長が進行して焼入れ焼戻し後に0.4μmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.19は、焼入れ時の加熱温度が低かった例である。この例では粗大な未溶解Cr系炭化物が生成して靭延性が低下した。また1.0μmフィルター残渣、および0.4mmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.20は、焼入れ時の加熱保持時間が短かった例である。この例では1.0μmフィルター残渣、および0.4mmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.21は、焼戻し温度が高く、また保持時間が短かった例である。この例では1.0mmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.22は、焼戻しの加熱保持時間が長かった例である。この例では1.0mmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.23は、C含有量が多く、焼戻し温度が高かった例である。この例では粗大な未溶解Cr系炭化物が生成して靭延性が低下した。また1.0μmフィルター残渣、および0.4mmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.24は、Si含有量が多く、焼戻し温度が高かった例である。この例では粗大な未溶解Cr系炭化物が生成して靭延性が低下した。また1.0mmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.25は、Cr含有量が多かった例である。Cr系炭化物の成長が進行して焼入れ焼戻し後に1.0μmフィルター残渣、および0.4mmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。
 試験No.26は、V含有量が多かった例である。この例ではCr系炭化物の成長が進行して焼入れ焼戻し後に0.4μmフィルター残渣にCr系炭化物が多く残存しており、曲げ加工性が劣っていた。

Claims (3)

  1.  質量%で、
     C :0.5~0.8%、
     Si:1.5~2.5%、
     Mn:0.5~1.5%、
     P :0%超、0.02%以下、
     S :0%超、0.02%以下、
     Cr:0.3~0.7%未満、
     V :0.05~0.5%、
     Al:0%超、0.01%以下、
     N :0%超、0.007%以下、
     O :0%超、0.004%以下を含有し、
     残部が鉄および不可避不純物からなり、
     1.0μmフィルターと0.4μmフィルターを用いて電解抽出残渣分析をしたとき、[1.0μmフィルター残渣中のCr系炭化物質量/電解質量]が1.0%以上、2.80%以下であり、且つ、
     前記1.0μmフィルターで得られたろ液を残渣分析したとき、
    [0.4μmフィルター残渣中のCr系炭化物質量/電解質量]が0.10%以下である曲げ加工性に優れた熱処理鋼線。
  2.  更に、質量%で、以下の(a)、(b)の少なくとも1つを含有する請求項1に記載の熱処理鋼線。
    (a)Ni:0%超、0.3%以下
    (b)B:0%超、0.01%以下
  3.  請求項1または2に記載の熱処理鋼線を用いて得られるばね。
PCT/JP2016/058960 2015-03-31 2016-03-22 曲げ加工性に優れた熱処理鋼線 WO2016158563A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16772444.2A EP3279358A4 (en) 2015-03-31 2016-03-22 Heat-treated steel wire having excellent bendability
KR1020177026619A KR20170118217A (ko) 2015-03-31 2016-03-22 굽힘 가공성이 우수한 열처리 강선
CN201680020050.3A CN107406952A (zh) 2015-03-31 2016-03-22 弯曲加工性优异的热处理钢线
US15/562,084 US20180087124A1 (en) 2015-03-31 2016-03-22 Heat-treated steel wire having excellent bendability
BR112017021071A BR112017021071A2 (pt) 2015-03-31 2016-03-22 fio de aço tratado a quente com ótima curvabilidade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-070532 2015-03-31
JP2015070532A JP6453138B2 (ja) 2015-03-31 2015-03-31 曲げ加工性に優れた熱処理鋼線

Publications (1)

Publication Number Publication Date
WO2016158563A1 true WO2016158563A1 (ja) 2016-10-06

Family

ID=57006720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058960 WO2016158563A1 (ja) 2015-03-31 2016-03-22 曲げ加工性に優れた熱処理鋼線

Country Status (7)

Country Link
US (1) US20180087124A1 (ja)
EP (1) EP3279358A4 (ja)
JP (1) JP6453138B2 (ja)
KR (1) KR20170118217A (ja)
CN (1) CN107406952A (ja)
BR (1) BR112017021071A2 (ja)
WO (1) WO2016158563A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046211A (ja) * 1990-04-25 1992-01-10 Kobe Steel Ltd 疲労強度の優れたばね用鋼線の製造法
JPH05320827A (ja) * 1992-05-26 1993-12-07 Kobe Steel Ltd 疲労特性の優れたばね用鋼及びばね用鋼線並びにばね
JPH116033A (ja) * 1997-06-16 1999-01-12 Sumitomo Electric Ind Ltd 高強度高靱性ばね用オイルテンパー線およびその製造方法
JP2002180198A (ja) * 2000-12-20 2002-06-26 Nippon Steel Corp 高強度ばね用鋼線
JP2006183137A (ja) * 2004-11-30 2006-07-13 Nippon Steel Corp 高強度ばね用鋼線
WO2007114491A1 (ja) * 2006-03-31 2007-10-11 Nippon Steel Corporation 高強度ばね用熱処理鋼
JP2013213238A (ja) * 2012-03-30 2013-10-17 Kobe Steel Ltd 皮削り性に優れた高強度ばね用鋼線材および高強度ばね

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514120B1 (ko) * 2000-12-20 2005-09-13 신닛뽄세이테쯔 카부시키카이샤 고강도 스프링강 및 스프링강선
JP4088220B2 (ja) * 2002-09-26 2008-05-21 株式会社神戸製鋼所 伸線前の熱処理が省略可能な伸線加工性に優れた熱間圧延線材
JP4559959B2 (ja) * 2004-11-30 2010-10-13 新日本製鐵株式会社 高強度ばね用鋼
KR100949373B1 (ko) * 2006-03-31 2010-03-25 신닛뽄세이테쯔 카부시키카이샤 고강도 스프링용 열처리 강
BRPI0607042B1 (pt) * 2006-11-09 2014-08-19 Nippon Steel & Sumitomo Metal Corp Aço para mola de alta resistência
SE537538C2 (sv) * 2010-07-06 2015-06-09 Nippon Steel Corp Dragen värmebehandlad ståltråd för höghållfasthetsfjäderanvändning, fördragen ståltråd för höghållfasthetsfjäderanvändning samt förfaranden för framställning av dessa trådar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046211A (ja) * 1990-04-25 1992-01-10 Kobe Steel Ltd 疲労強度の優れたばね用鋼線の製造法
JPH05320827A (ja) * 1992-05-26 1993-12-07 Kobe Steel Ltd 疲労特性の優れたばね用鋼及びばね用鋼線並びにばね
JPH116033A (ja) * 1997-06-16 1999-01-12 Sumitomo Electric Ind Ltd 高強度高靱性ばね用オイルテンパー線およびその製造方法
JP2002180198A (ja) * 2000-12-20 2002-06-26 Nippon Steel Corp 高強度ばね用鋼線
JP2006183137A (ja) * 2004-11-30 2006-07-13 Nippon Steel Corp 高強度ばね用鋼線
WO2007114491A1 (ja) * 2006-03-31 2007-10-11 Nippon Steel Corporation 高強度ばね用熱処理鋼
JP2013213238A (ja) * 2012-03-30 2013-10-17 Kobe Steel Ltd 皮削り性に優れた高強度ばね用鋼線材および高強度ばね

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279358A4 *

Also Published As

Publication number Publication date
BR112017021071A2 (pt) 2018-07-03
JP6453138B2 (ja) 2019-01-16
JP2016191100A (ja) 2016-11-10
KR20170118217A (ko) 2017-10-24
EP3279358A4 (en) 2018-08-15
CN107406952A (zh) 2017-11-28
EP3279358A1 (en) 2018-02-07
US20180087124A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP5200540B2 (ja) 高強度ばね用熱処理鋼
EP3640357A1 (en) Rolled wire for spring steel
JP6180351B2 (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
US20170058376A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP4324225B1 (ja) 伸びフランジ性に優れた高強度冷延鋼板
JPWO2007114491A1 (ja) 高強度ばね用熱処理鋼
JP2006241528A (ja) 冷間加工性と品質安定性に優れた高強度ばね用鋼
JP4486040B2 (ja) 冷間切断性と疲労特性に優れた冷間成形ばね用鋼線とその製造方法
TWI535860B (zh) High-strength spring roll material and high-strength spring steel wire using this rolled material
JP5671400B2 (ja) 伸線加工性および伸線後の疲労特性に優れたばね用鋼線材、ならびに疲労特性およびばね加工性に優れたばね用鋼線
TW201441382A (zh) 具有優良的耐氫脆性之高強度彈簧用鋼線材及其製造方法以及高強度彈簧
JP2018003051A (ja) 疲労特性に優れた熱処理鋼線
JP5796782B2 (ja) 皮削り性に優れた高強度ばね用鋼線材および高強度ばね
JP6249846B2 (ja) 伸線加工性、および伸線加工後の曲げ加工性に優れた高強度ばね用鋼線材、およびその製造方法、並びに高強度ばね、およびその製造方法
JP6460883B2 (ja) 加工性に優れた熱処理鋼線の製造方法
JP5796781B2 (ja) ばね加工性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね
JP5189959B2 (ja) 伸びおよび伸びフランジ性に優れた高強度冷延鋼板
WO2016158562A1 (ja) 疲労特性に優れた熱処理鋼線
JP5679455B2 (ja) ばね用鋼、ばね用鋼線及びばね
WO2017169667A1 (ja) 鋼線材ならびに鋼線材および鋼線の製造方法
JP6208611B2 (ja) 疲労特性に優れた高強度鋼材
JP5941439B2 (ja) コイルばね、およびその製造方法
JP6453138B2 (ja) 曲げ加工性に優れた熱処理鋼線
JP2016141821A (ja) 冷間鍛造性及び耐結晶粒粗大化特性に優れた鋼材の軟化熱処理方法
KR20130110629A (ko) 비조질강 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026619

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15562084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017021071

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/013920

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 112017021071

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170929