WO2016158230A1 - スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置 - Google Patents

スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置 Download PDF

Info

Publication number
WO2016158230A1
WO2016158230A1 PCT/JP2016/057073 JP2016057073W WO2016158230A1 WO 2016158230 A1 WO2016158230 A1 WO 2016158230A1 JP 2016057073 W JP2016057073 W JP 2016057073W WO 2016158230 A1 WO2016158230 A1 WO 2016158230A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
electric field
skyrmion
magnetic body
generation
Prior art date
Application number
PCT/JP2016/057073
Other languages
English (en)
French (fr)
Inventor
維人 望月
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to KR1020177015752A priority Critical patent/KR101894756B1/ko
Priority to JP2017509453A priority patent/JP6312925B2/ja
Priority to US15/558,630 priority patent/US10134460B2/en
Publication of WO2016158230A1 publication Critical patent/WO2016158230A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature

Definitions

  • the present invention relates to a skillmion generation device, a skillmion generation method, and a magnetic storage device.
  • Non-Patent Document 1 discloses a technique for driving skyrmions in a chiral metal magnetic body with a minute current.
  • Patent Document 1 and Non-Patent Document 1 by providing a corner (notch) in a strip-shaped thin film sample made of a chiral metal magnetic material, a current is passed through the sample while applying a magnetic field of a predetermined intensity.
  • a method for generating a skyrmion starting from a corner is disclosed.
  • Magnetic elements that use the magnetic structure (arrangement of electron spins) of magnetic materials as digital information are attracting attention as electronic devices with characteristics such as non-volatility and high radiation resistance, and electrically manipulate the magnetic information. There have been many attempts in recent years.
  • FIG. 13 is a perspective view schematically showing the arrangement of electron spins of one skyrmion, and each arrow in the figure indicates the direction of electron spin.
  • a skyrmion consists of a plurality of electron spins arranged in a spiral shape, and the magnetization direction at the center is antiparallel to the external magnetic field, and the magnetization direction at the periphery is relative to the applied external magnetic field. Are parallel.
  • Skyrmions are characterized by the number of skyrmions, which are quantized topological invariants. Skyrmion numbers are invariant to continuous changes. In other words, spin directions are aligned in one direction in ferromagnetic materials, but it is impossible to generate a skyrmion spin array by continuously changing the direction of some spins from such a state. is there. Therefore, in order to generate a skyrmion spin array, it is necessary to give a discontinuous change in the direction of the spin, which is accompanied by a discontinuous change in the number of skyrmions. Therefore, skyrmions have particle stability once generated. Skyrmions are extremely small with a diameter of about 3 to 100 nm. Therefore, by applying skyrmion to a magnetic storage device, the area required to store unit information can be significantly reduced compared to conventional devices such as a magnetic bubble memory.
  • Patent Document 1 when generating skyrmions, a current flows through a metal magnetic material having a resistivity higher than zero. Therefore, Joule heat is generated in the metal magnetic body. This energy loss due to Joule heating contributes to an increase in power consumption of a magnetic storage device using skyrmions.
  • the present invention has been made in view of such problems, and provides a skillmion generation device, a skillmion generation method, and a magnetic storage device that can reduce power consumption when generating a skillmion. Objective.
  • the skyrmion generator according to the present invention generates a skyrmion inside the magnetic body by applying an electric field to the magnetic body and an insulating magnetic body having a skirmion phase.
  • An electric field generator In addition, the skyrmion generation method according to the present invention generates skyrmions inside the magnetic body by applying an electric field from an electric field generating unit to an insulating magnetic body having a skyrmion phase.
  • a chiral magnetic substance that expresses skyrmion metal magnetic substances having a crystal structure called B20 type, such as MnSi, Fe 1-x Co x Si, and FeGe, are known.
  • a skyrmion phase was also found in the insulating magnetic material (for example, Cu 2 OSeO 3 ).
  • the present inventor has found a method of generating skyrmions in the magnetic material by applying an electric field to such an insulating magnetic material.
  • the electric field applied to the insulating magnetic material does not cause Joule heat generation in the magnetic material. Therefore, power consumption when generating skyrmions can be reduced, and for example, a power-saving magnetic storage device can be suitably realized.
  • the skyrmion generator described above may further include a magnetic field generator that applies a magnetic field to the magnetic material.
  • a magnetic field may be further applied to the magnetic material.
  • the above-described skyrmion generation device and the skyrmion generation method may apply a magnetic field substantially perpendicular to the surface of the magnetic material.
  • the electron spin that forms the outer periphery of the skyrmion and the electron spin that forms the center of the skyrmion are opposite to each other and face the thickness direction of the thin film.
  • the outer periphery of skyrmion is magnetized in a direction parallel to the magnetic field. Therefore, skirmions can be efficiently generated by applying a magnetic field in a direction substantially perpendicular to the surface of the magnetic material.
  • the electric field generating unit may have a needle-like electrode and apply an electric field locally to the magnetic body.
  • the electric field generation unit may have a needle-like electrode, and an electric field may be locally applied to the magnetic material from the needle-like electrode.
  • a magnetic field or an electromagnetic wave may be locally applied to or irradiated on the magnetic material.
  • an electric field unlike the above-described magnetic field and electromagnetic wave, by using a needle-like electrode, it is possible to narrow the application region to such an extent that a single skyrmion can be generated.
  • a region to which an electric field is applied in the magnetic material may be located in the vicinity of the edge of the magnetic material.
  • the magnetic material may be in the form of a thin film having a thickness at least partially in the range of 2 to 300 nm.
  • skirmions exist in a wide temperature range by forming a magnetic material in a quasi-two-dimensional shape (that is, in a thin film shape) that is smaller than the diameter of skirmions to be generated or about three times the thickness. Therefore, it is expected that the above-described skillion generation method and skillion generation device can be used even at a temperature close to room temperature.
  • the magnetic body may have a chiral crystal structure.
  • the magnetic storage device has a skyrmion phase, an insulating magnetic body including a plurality of storage areas, and a local electric field applied to the storage area to be written, thereby providing information. And a needle-like electrode for generating a skyrmion for holding the storage area in the storage area. According to such a magnetic storage device, it is possible to reduce the power consumption when generating the skyrmion by including the configuration of the skyrmion generation device described above, and it is possible to suitably realize a power saving magnetic storage device.
  • the magnetic storage device may further include a magnetic field generation unit that applies a magnetic field to a storage area to be written. Thereby, skyrmions can be efficiently generated in the magnetic material.
  • the skyrmion generation device According to the skyrmion generation device, the skyrmion generation method, and the magnetic storage device according to the present invention, it is possible to reduce power consumption when generating skyrmions.
  • FIG. 1 is a perspective view schematically showing a configuration of a skillion generation device according to the first embodiment.
  • FIG. 2 is a perspective view conceptually showing how the electron spin changes.
  • FIG. 3 shows a phase diagram of the Cu 2 OSeO 3 model.
  • 4 (a) to 4 (o) are diagrams showing simulation results of magnetization vectors and electric polarization vectors in the process of skyrmion formation.
  • FIG. 5 is a diagram schematically showing spatiotemporal dynamics of the magnetization vector and the electric polarization vector arranged in alignment along the radial direction of the electric field application region.
  • FIG. 6A to FIG. 6C are diagrams showing the position of the electric field application region with respect to the edge of the magnetic material.
  • FIG. 7 is a graph showing the relationship between the electric field strength and the number of generated skyrmions.
  • FIG. 8A to FIG. 8D are diagrams schematically showing a process for generating skyrmions.
  • FIG. 9 is a graph showing the relationship between the electric field strength and the number of generated skyrmions when the magnitude of the external magnetic field is changed.
  • FIG. 10A to FIG. 10P are diagrams showing the simulation results of the magnetization vector and the electric polarization vector in the skyrmion formation process.
  • FIG. 11 is a diagram illustrating a second modification.
  • FIG. 12 is a diagram schematically showing the configuration of the magnetic memory device according to the second embodiment.
  • FIG. 13 is a perspective view schematically showing the arrangement of electron spins of skyrmions.
  • FIG. 1 is a perspective view schematically showing a configuration of a skillmion generation device according to the first embodiment of the present invention.
  • the skyrmion generator 1 ⁇ / b> A includes a magnetic body 12, a magnetic field generator 14, and an electric field generator 16.
  • the magnetic body 12 is an insulating magnetic body having a skyrmion phase.
  • “having skyrmion phase” means that skyrmion can exist stably on the magnetic phase diagram.
  • a chiral magnetic substance that is, a magnetic substance having no inversion symmetry in the crystal structure is preferable.
  • An example of the insulating chiral magnetic material is Cu 2 OSeO 3 . In Cu 2 OSeO 3 , it has been confirmed that skyrmion crystals in which a plurality of skyrmions are arranged in a triangular lattice shape can be generated under conditions of a predetermined magnetic field and temperature.
  • ⁇ ⁇ ⁇ Strumion stability depends on the thickness of the magnetic body 12.
  • the magnetic body 12 is bulky, the skyrmion phase tends to appear in a very narrow region in the phase diagram indicated by the temperature (T) and the magnetic field (B).
  • the magnetic body 12 is a thin film, the skyrmion phase tends to appear in a wide region of the phase diagram. Therefore, the magnetic body 12 is preferably at least partially in the form of a thin film (pseudo two-dimensional shape).
  • skirmions can exist in a wide temperature range, and it is expected that the skirmion generator 1A of the present embodiment can be used at a temperature close to room temperature.
  • the thickness of the magnetic body 12 may be smaller than the diameter of the spiral spin array in the skyrmion shown in FIG. 13 or about three times the diameter or less. Thereby, the two-dimensional behavior of skyrmions can be made possible. Since the diameter of skyrmion is typically 3 nm to 100 nm, a suitable thickness of the magnetic body 12 is, for example, in the range of 2 nm to 300 nm.
  • the entire magnetic body 12 may be a thin film, or a part of the magnetic body 12 may be a thin film.
  • the magnetic body 12 may be disposed on the supporting substrate 18.
  • the magnetic body 12 may be formed by processing a part of a thick magnetic body as a whole into a thin film form.
  • the magnetic field generator 14 applies a magnetic field to the magnetic body 12.
  • the magnetic field generator 14 applies a magnetic field substantially perpendicular to the surface of the magnetic body 12, for example.
  • the electron spin constituting the outer periphery of the skyrmion and the electron spin constituting the center of the skyrmion are opposite to each other, and the thickness of the thin film-like magnetic body 12 Turn to the direction.
  • the outer periphery of skyrmion is magnetized in a direction parallel to the magnetic field. Therefore, skirmions can be efficiently generated by applying a magnetic field in a direction substantially perpendicular to the surface of the magnetic body 12 in this way.
  • the electric field generator 16 generates a skyrmion inside the magnetic body 12 by applying an electric field to the magnetic body 12.
  • the electric field generator 16 has a needle-like electrode and applies an electric field locally to the magnetic body 12.
  • the needle-like electrode is disposed so as to face the surface of the magnetic body 12, and its tip protrudes in a direction perpendicular to the surface of the magnetic body 12.
  • the electric field generator 16 is electrically connected to one terminal of the power source 17.
  • the other terminal of the power source 17 is electrically connected to a base material 18 provided on the back side of the magnetic body 12.
  • the base material 18 is made of a conductive material, and constitutes a lower electrode facing the electric field generator 16. Therefore, the above-mentioned local electric field penetrates the magnetic body 12 disposed between the electric field generator 16 and the base material 18.
  • This electric field is preferably applied to a region having a diameter in the range of 10 to 100 nanometers, for example.
  • the skillion generation method of the present embodiment using the skillion generation device 1A having the configuration described above is as follows. First, the magnetic field generator 14 applies a magnetic field having an appropriate strength that can generate skyrmions to the magnetic body 12. Next, an electric field is locally applied to the magnetic body 12 using the electric field generator 16 while applying a magnetic field. Then, the direction of the electron spin aligned in one direction inside the magnetic body 12 is changed by the electric field.
  • FIG. 2 is a perspective view conceptually showing the state of the change, and the arrow in the figure indicates the direction of electron spin. Then, inversion of a part of the electron spin occurs, and thereafter the application of the electric field is stopped to relax the magnetization structure, thereby generating a single skyrmion Sk in which the electron spin is spatially distributed in a vortex shape.
  • skyrmions are generated by applying an electric field.
  • a magnetic structure is said to be non-collinear if the magnetizations that make up the magnetic structure are not parallel or antiparallel but are adjacent to each other with a finite angle of less than 360 degrees and other than 180 degrees.
  • Skyrmions are one of the typical non-collinear magnetic structures.
  • a non-collinear magnetic structure in an insulating magnetic material develops electric polarization, which is a spatial deviation of electron distribution, through an interaction in a substance called spin-orbit interaction. Since this electric polarization is strongly coupled to the non-collinear magnetic structure that causes it, the magnetic structure itself is generated in conjunction with the electric polarization by changing the arrangement of the electric polarization by applying an electric field. .
  • the skillmion generation device 1 ⁇ / b> A and the generation method of the present embodiment use the combination of the skillmion and the electric polarization formed in the insulating magnetic body 12.
  • a generation principle will be described in detail.
  • the crystal structure and the magnetization structure of Cu 2 OSeO 3 have a tetrahedral shape including four Cu 2+ ions.
  • a collinear spin arrangement in which three spins are upward and one spin is downward is realized in each tetrahedron.
  • These four spins as a magnetic unit can be treated as a unit magnetization vector m i.
  • the magnetic action of thin film Cu 2 OSeO 3 can be described by the classical Heisenberg model on a square lattice.
  • the Hamiltonian is represented by the following formula (1).
  • J is the coupling constant of the ferromagnetic exchange interaction
  • D is the coupling constant of the Jarosinsky-Moriya interaction
  • ⁇ B is the permeability of Cu 2 OSeO 3
  • ⁇ 0 is the vacuum permeability. is there.
  • FIG. 3 shows the phase diagram of this model.
  • the crystal phase of skyrmion appears in the range of the following formula (2) and is surrounded by a helical ferromagnetic phase.
  • skyrmions crystallize in a triangular lattice.
  • the magnetization vector mi is parallel to the static magnetic field H around each skyrmion and antiparallel to the static magnetic field H at the center.
  • the phase transition between skirmion crystal and ferromagnetic phase is the most important condition.
  • Skyrmions appear not only as crystal shapes but also as phase defects in the ferromagnetic phase.
  • an isolated skyrmion can be created by applying an electric field from the electric field generator 16 to an insulative magnetic thin film with uniform magnetization in a ferromagnetic manner. .
  • the non-collinear skyrmion magnetization structure induces electrical polarization by a spin-dependent metal-ligand hybrid mechanism. Due to the symmetry of the cubic, the electric polarization vector p i in the i-th tetrahedron, three-dimensional magnetic component m ia, with m ib and m ics, is expressed by the following equation (3). However, from experimental data, the value of the constant ⁇ in Cu 2 OSeO 3 is 5.64 ⁇ 10 ⁇ 27 ( ⁇ Cm). Spatial distribution of the electric polarization p i induced by the magnetization vectors m i constituting the skyrmion is calculated from the above equation (3). Further, the spatial distribution of the electric polarization p i changes according to the selection of the thin film plane.
  • the net magnetization vector M and the ferroelectric polarization vector P are given as the sum of local contributions expressed by the following equations (4) and (5), respectively.
  • the subscript i indicates the number of a tetrahedron of copper ions having spin groups in which three are upward and one is downward, and N is the total number of the tetrahedrons.
  • Equation (7) The first term on the right side of Equation (7) is a model Hamiltonian function (see Equation (1) described above).
  • the second term on the right side of Equation (7) represents the coupling between the local electric polarization vector p i and the electric field E. That is, the second term on the right side of Equation (7) is expressed as Equation (9) below, assuming that the electric field E is applied within the region C for a certain period of time.
  • a single skyrmion is one in the magnetic field direction under a static magnetic field H in a perpendicular direction, for example, in a thin film sample of an insulating chiral magnetic material having a [111] plane as a surface. It is generated in a magnetized ferromagnet.
  • Figure 4 (a) ⁇ FIG 4 (o) is a diagram showing a simulation result of the magnetization vectors m i and the electric polarization vector p i in skyrmion formation process. 4 (a) to 4 (d) show the electric polarization vectors at 0.924 nanoseconds, 1.188 nanoseconds, 1.254 nanoseconds, and 3.96 nanoseconds after the start of electric field application, respectively.
  • FIG. 4 (e) ⁇ FIG 4 (h), respectively from electric field application start indicates the direction of the magnetization vector m i after said elapsed time by the arrow, the change of the orthogonal component m z of the magnetization vector m i The appearance is shown in shades of color.
  • FIG. 4 (i) ⁇ FIG 4 (l) is sterically shows a two-dimensional distribution of the magnetization vector m i, FIG.
  • FIG. 4 (m) ⁇ FIG 4 (o) are respectively views 4 (j) The three-dimensional distribution of the energy of Jaroshinsky-Moriya interaction in FIG.
  • an electric field is applied to the magnetization in a circle of 40 sites in the center of the sample, and the electric field is turned off after 1.98 nanoseconds from the start of electric field application.
  • the application of the electric field E in which the component E z is negative causes rearrangement of the electric polarization p i in the electric field application region, as shown in FIGS. 4 (a) to 4 (c). Then, as shown in FIGS. 4 (e) to (g) and (i) to (k), with the rearrangement of the electric polarization p i , most of the magnetization vectors m i in the region are It rotates from the perpendicular direction to the in-plane direction (that is, the direction along the magnetic surface).
  • the present inventor has between 4 and (f) and FIG. 4 (g), the and 4 between (j) and Fig.
  • Equation (1) (where D> 0) is the alignment direction (FIG Propagation (magnetization vector m i of clockwise rotation of the magnetization vector m i This is advantageous for propagation along the arrow A1) in FIG.
  • Figure 5 (a) ⁇ (e) is a diagram schematically showing the spatial dynamics when magnetization vectors are aligned along the radial direction of the electric field application region m i and the electric polarization vector p i.
  • FIG. 5A in the first ferromagnetic state in which all the magnetization vectors m i are oriented in the direction perpendicular to the plane, all the electric polarization vectors p i are in the direction perpendicular to the plane (where p z > 0).
  • E satisfying E z ⁇ 0 is applied, the electric polarization vector p i is inverted from the state of p z > 0 to the state of p z ⁇ 0, as shown in FIG.
  • the strength of the electric field E necessary for generating skyrmions varies depending on the electric field application position in the magnetic material. For example, when an electric field is applied in the vicinity of an edge of a magnetic material, the intensity of the electric field necessary for generating skyrmions can be suppressed as compared with other cases.
  • the intensity of the electric field necessary for generating skyrmions can be suppressed as compared with other cases.
  • the magnetization vector mi can be locally inverted by relatively small energy. The reason for this is that the number of spins to be rotated is small at a position close to the edge of the magnetic material, and the magnetization distribution is discontinuous at the edge of the magnetic material, thereby continuously changing the phase invariant. And topological constraints are relaxed.
  • FIG. 6 (a) to 6 (c) are views showing the position of the electric field application region 21 with respect to the edge 12a of the magnetic body 12, and between the electric field application region 21 having a radius r of 20 sites and the edge 12a.
  • the distance d is 81 sites (FIG. 6A), 35 sites (FIG. 6B), and 21 sites (that is, the electric field application region 21 is substantially in contact with the edge 12a.
  • FIG. 6 (c)) is shown.
  • FIG. 7 is a graph showing the relationship between the electric field strength in each case shown in FIGS. 6 (a) to 6 (c) and the number of skillmions generated, and the graph G11 is shown in FIG.
  • the graph G12 corresponds to FIG. 6B
  • the graph G13 corresponds to FIG. 6C.
  • the absolute value of the threshold value Es1 of the electric field for generating skyrmions is a large value (for example, 4 0.0 ⁇ 10 8 (eV / m)).
  • the absolute value of the threshold value Es2 of the electric field for generating skyrmions is a remarkably small value. (For example, 1.4 ⁇ 10 8 (eV / m)).
  • FIG. 8 is a diagram schematically illustrating a skillmion generation process when the position of the electric field application region 21 is set to FIG. 6B.
  • the magnetization vector m i starts to rotate (FIG. 8 (a)).
  • the broken line in a figure shows the electric field application area
  • FIG. 8B At 0.66 nanoseconds after the start of application of the electric field, the magnetization vector mi is inverted at the edge 12a of the magnetic body 12, and skyrmion seeds are generated (FIG. 8B). Subsequently, at 0.99 nanoseconds after the start of application of the electric field, the seeds of skyrmion move toward the electric field application region 21 (FIG.
  • the distance between the center (the tip of the needle electrode) of the electric field generator 16 of the present embodiment and the edge 12a of the magnetic body 12 as viewed from the direction perpendicular to the surface of the magnetic body 12 is 20 nm to 40 nm. It is preferable to be included in the range.
  • the threshold value of the electric field is 1.7 ⁇ 10 8 (eV / m) in the graph G21, 1.4 ⁇ 10 8 (eV / m) in the graph G22, and 1.1 ⁇ 10 8 (eV / m) in the graph G23.
  • skirmions are generated by applying an electric field to the insulating magnetic material 12.
  • the electric field applied to the insulating magnetic body 12 does not cause Joule heat generation in the magnetic body 12. Therefore, power consumption when generating skyrmions can be reduced, and for example, a power-saving magnetic storage device can be suitably realized.
  • the electric field generating unit 16 may have a needle-like electrode, and an electric field may be locally applied to the magnetic body 12 from the needle-like electrode.
  • a magnetic field or electromagnetic wave may be locally applied to or irradiated on the magnetic body 12.
  • an electric field unlike the above-described magnetic field and electromagnetic wave, by using a needle-like electrode, it is possible to narrow the application region to such an extent that a single skyrmion can be generated.
  • FIGS. 10 (a) to 10 (h) are just after the start of electric field application (after 0 nanoseconds), 0.132 nanoseconds, 0.33 nanoseconds, and 0.66 nanoseconds after the start of electric field application, respectively. , 0.792 nanoseconds, 0.99 nanoseconds, 1.32 nanoseconds, and 1.98 nanoseconds, the direction of the electric polarization p i is indicated by an arrow, and p x / ⁇ (p x Indicates the change in the vertical component of the electric polarization vector pi in shades of color. Further, FIG.
  • FIG. 10 (i) ⁇ FIG 10 (p), respectively from electric field application start indicates the direction of the magnetization vector m i after said elapsed time by the arrow, the change of the orthogonal component m z of m i of the magnetization vector Is shown in shades of color.
  • an electric field is applied to the magnetization in the circle of 40 sites in the vicinity of the center of the sample, and the electric field is turned off 0.66 nanoseconds after the start of electric field application.
  • the magnetization vector m Relaxation of the spatial distribution of i and electrical polarization p i spontaneously causes relaxation and reconstruction of the magnetization arrangement, and an isolated skyrmion Sk is generated.
  • the magnetic field generation unit 14 is arranged at a position facing the surface of the magnetic body 12 with an interval, but the arrangement of the magnetic field generation unit is not limited thereto.
  • the ferromagnetic material layer 19 as a magnetic field generating unit is attached to the back surface (or the front surface) of the magnetic material 12,
  • a magnetic field can be suitably applied.
  • the ferromagnetic layer 19 may be disposed, for example, between the back surface of the magnetic body 12 and the conductive base material 18. Even with such a configuration, skyrmions can be generated efficiently.
  • the magnetic field generation unit 14 applies a magnetic field to the magnetic body 12
  • the magnetic field generation unit may be omitted.
  • the magnetic body 12 is made of a material having a strong magnetic anisotropy, for example, a magnetic body having a strong magnetic anisotropy such as a chiral magnetic body
  • a magnetic field is not applied, and only an electric field from the electric field generator 16 is used. It is thought that a skillion can be generated.
  • FIG. 12 is a diagram schematically showing the configuration of the magnetic storage device 30 according to the present embodiment.
  • the magnetic storage device 30 includes a magnetic body 32, a magnetic field generator 34, and an electric field generator 36.
  • the magnetic body 32 is an insulating magnetic body having a skyrmion phase, like the magnetic body 12 of the first embodiment.
  • the magnetic body 32 of the present embodiment includes a plurality of storage areas 32a arranged in a predetermined direction. In each storage area 32a, a single skyrmion is formed, so that 1-bit information is written and held.
  • the magnetic field generator 34 applies a magnetic field (external magnetic field) to the storage area 32a that is a write target.
  • the magnetic field applied by the magnetic field generator 34 is the same as the magnetic field described in the first embodiment.
  • the electric field generating unit 36 generates a skyrmion Sk for holding information in the storage area 32a by applying an electric field to the storage area 32a to be written.
  • the electric field generation unit 36 has, for example, needle-like electrodes, and applies an electric field locally to the storage area 32a.
  • the generated skyrmion Sk can be moved to a predetermined position using, for example, an electric field gradient or a temperature gradient.
  • a method for reading out the skyrmion Sk there are a method in which the magnetic body 32 is formed in a hole bar type and read out using the Hall effect of the skyrmion Sk, and a method of reading out using the tunnel magnetoresistance effect.
  • the magnetic storage device 30 of the present embodiment by including the configuration of the skillmion generation device 1A according to the first embodiment, it is possible to reduce the power consumption when generating the skillmion, and to reduce the power-saving magnetic storage device. It can be suitably realized.
  • the skyrmion generation device, the skyrmion generation method, and the magnetic storage device according to the present invention are not limited to the above-described embodiments, and various other modifications are possible.
  • it is possible to delete the skillion that is, by applying an electric field opposite to the electric field at the time of generating the skyrmion to the skyrmion by the needle-like electrode, the reversal of the magnetization vector is caused by the action opposite to that at the time of the skyrmion generation, Skill Mion can be erased.
  • the application of a magnetic field to a magnetic material is started, and then an electric field is applied.
  • the application of an electric field first and then the application of a magnetic field can also be applied.
  • Lumion can be suitably formed.
  • the present invention can be used as a skillmion generation device, a skillmion generation method, and a magnetic storage device that can reduce power consumption when generating a skyrmion.
  • skyrmions can be generated simply by applying an electric field.
  • Skyrmions have high stability and can be easily moved using electric fields and temperature gradients. Therefore, the present invention can be applied to a storage device with high information storage density and low power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 スキルミオンを生成する際の消費電力を低減可能なスキルミオン生成方法を提供する。このスキルミオン生成方法では、キラルな結晶構造を有する絶縁性の磁性体12に磁場発生部14からの磁場を印加しながら、電場発生部16を用いて磁性体12に対し局所的に電場を印加する。これにより、磁性体12の内部にスキルミオンが生成される。磁性体12は少なくとも部分的に2~300nmの範囲内の厚さを有する薄膜状であることが好ましく、磁場発生部14は、磁性体12の表面に対して略垂直に磁場を印加することが好ましい。

Description

スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置
 本発明は、スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置に関する。
 非特許文献1には、キラルな金属磁性体中のスキルミオンを、微小な電流により駆動する技術が開示されている。また、特許文献1及び非特許文献1には、キラルな金属磁性体からなる帯状の薄膜試料に角部(切り欠き)を設け、所定強度の磁場を印加しながら該試料に電流を流すことにより、角部を起点としてスキルミオンを生成する方法が開示されている。
特開2014-175417号公報
X Z Yu, N Kanazawa, W Z Zhang, T Nagai, T Hara, K Kimoto, Y Matsui, Y Onose, Y Tokura, "Skyrmion flow near room temperature in an ultralow current density", Nature Communications, 3, 988, 7 August 2012 Junichi Iwasaki, Masahito Mochizuki, and Naoto Nagaosa, "Current-induced skyrmion dynamics in constricted geometries", Nature Nanotechnology, Volume 8, Pages 742-747, 8 September 2013
磁性体の磁化構造(電子スピンの配列)をデジタル情報として利用する磁気素子は、不揮発性、高い耐放射線性などの特徴を有するエレクトロニクスデバイスとして注目されており、その磁気情報を電気的に操作する試みが近年盛んに行われている。
 近年、空間反転対称性を有しないキラルな結晶構造を有する一部の磁性体(例えば、MnSi,Fe1-xCoxSi,FeGe等)に外部磁場を印加することにより、該磁性体中において複数のスキルミオンが三角格子状に配列されたスキルミオン結晶が生成されることが確認されている。図13は、一個のスキルミオンの電子スピンの配列を模式的に示す斜視図であり、図中の各矢印は電子スピンの方向を示している。スキルミオンは、複数の電子スピンが渦巻状に配列されて成り、その中心部の磁化方向は外部磁場に対して反平行となっており、その周辺部の磁化方向は印加された外部磁場に対して平行となっている。
 スキルミオンは、量子化されたトポロジカルな不変量であるスキルミオン数によって特徴付けられる。スキルミオン数は、連続的な変化に対して不変である。すなわち、強磁性体ではスピンの向きが一方向に揃っているが、そのような状態から一部のスピンの向きを連続的に変化させることによりスキルミオンのスピン配列を生成することは不可能である。従って、スキルミオンのスピン配列を生成する為には、スピンの向きに不連続的な変化を与える必要があり、そのときスキルミオン数の不連続な変化を伴う。それ故に、スキルミオンは、一度生成されると粒子的な安定性を有する。スキルミオンは、直径が3~100nm程度であり極めて小さい。従って、スキルミオンを磁気記憶装置に応用することにより、単位情報を記憶するために必要な面積を、磁気バブルメモリなどの従来装置に比べて格段に小さくすることができる。
 しかしながら、例えば特許文献1及び非特許文献2に記載された方法では、スキルミオンを生成する際に、抵抗率がゼロよりも大きい金属磁性体中を電流が流れる。従って、金属磁性体においてジュール熱が発生する。このジュール発熱によるエネルギー損失は、スキルミオンを用いた磁気記憶装置の消費電力を増大させる一因となる。
 本発明は、このような問題点に鑑みてなされたものであり、スキルミオンを生成する際の消費電力を低減可能なスキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置を提供することを目的とする。
 上述した課題を解決するために、本発明によるスキルミオン生成装置は、スキルミオン相を有する絶縁性の磁性体と、磁性体に対し電場を印加することにより、磁性体内部にスキルミオンを生成する電場発生部と、を備える。また、本発明によるスキルミオン生成方法は、スキルミオン相を有する絶縁性の磁性体に対し、電場発生部からの電場を印加することにより、磁性体内部にスキルミオンを生成する。
 従来より、スキルミオンを発現するキラルな磁性体としては、MnSi,Fe1-xCoxSi,FeGeといったB20型と呼ばれる結晶構造を有する金属磁性体が知られているが、キラルな結晶構造を有する絶縁性の磁性体(例えばCu2OSeO3)においても、スキルミオン相が見出された。本発明者は、前述した課題を解決するために、このような絶縁性の磁性体に電場を印加することにより、該磁性体中にスキルミオンを生成する方法を見出した。絶縁性の磁性体に印加された電場は、磁性体にジュール発熱を生じさせない。従って、スキルミオンを生成する際の消費電力を低減することができ、例えば省電力の磁気記憶装置を好適に実現できる。
 また、上記のスキルミオン生成装置は、磁性体に磁場を印加する磁場発生部を更に備えてもよい。また、本発明によるスキルミオン生成方法は、磁性体に対して磁場を更に印加してもよい。これにより、磁性体中にスキルミオンを効率良く生成することができる。
 また、上記のスキルミオン生成装置及びスキルミオン生成方法は、磁場を磁性体の表面に対して略垂直に印加してもよい。スキルミオンの外周部を構成する電子スピンと、スキルミオンの中心部を構成する電子スピンとは、互いに逆向きであり、且つ薄膜の厚さ方向を向く。また、スキルミオンの外周部は、磁場と平行な方向に磁化される。従って、このように磁性体の表面に対して略垂直な方向に磁場を印加することにより、スキルミオンを効率良く生成することができる。
 また、上記のスキルミオン生成装置では、電場発生部が、針状の電極を有しており磁性体に対し局所的に電場を印加してもよい。同様に、上記のスキルミオン生成方法では、電場発生部が針状の電極を有し、磁性体に対し針状の電極から局所的に電場を印加してもよい。
 磁性体にジュール発熱を生じさせることなくスキルミオンを生成する方法としては、例えば、該磁性体に対し局所的に磁場や電磁波を印加または照射することも考えられる。しかし、そのような方法では、磁場や電磁波を印加する領域を、単一のスキルミオンを生成可能な程度に小さく絞ることが困難である。電場であれば、前述した磁場や電磁波とは異なり、針状の電極を用いることによって、単一のスキルミオンを生成可能な程度に印加領域を小さく絞ることが可能となる。
 また、上記のスキルミオン生成装置及びスキルミオン生成方法では、磁性体において電場が印加される領域が磁性体の縁の近傍に位置してもよい。これにより、スキルミオンが磁性体の縁に助けられて容易に生成される。
 また、上記のスキルミオン生成装置及びスキルミオン生成方法では、磁性体が、少なくとも部分的に2~300nmの範囲内の厚さを有する薄膜状であってもよい。このように、生成されるスキルミオンの直径より小さいか又は3倍程度以下の厚さを有する擬二次元状(すなわち薄膜状)に磁性体を形成することにより、広い温度範囲でスキルミオンが存在することが可能になり、常温に近い温度でも上記のスキルミオン生成方法及びスキルミオン生成装置を利用できることが期待される。
 また、上記のスキルミオン生成装置及びスキルミオン生成方法では、磁性体がキラルな結晶構造を有してもよい。
 また、本発明による磁気記憶装置は、スキルミオン相を有し、複数の記憶領域を含む絶縁性の磁性体と、書き込み対象とされた記憶領域に対し局所的に電場を印加することにより、情報を保持するためのスキルミオンを当該記憶領域に生成する針状の電極と、を備えることを特徴とする。このような磁気記憶装置によれば、上述したスキルミオン生成装置の構成を含むことにより、スキルミオンを生成する際の消費電力を低減でき、省電力の磁気記憶装置を好適に実現できる。
 また、上記の磁気記憶装置は、書き込み対象とされた記憶領域に磁場を印加する磁場発生部を更に備えてもよい。これにより、磁性体中にスキルミオンを効率良く生成することができる。
 本発明によるスキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置によれば、スキルミオンを生成する際の消費電力を低減することができる。
図1は、第1実施形態に係るスキルミオン生成装置の構成を概略的に示す斜視図である。 図2は、電子スピンの変化の様子を概念的に示す斜視図である。 図3は、Cu2OSeO3のモデルの相図を示す。 図4(a)~図4(o)は、スキルミオン形成過程における磁化ベクトル及び電気分極ベクトルのシミュレーション結果を示す図である。 図5は、電場印加領域の径方向に沿って整列配置される磁化ベクトルおよび電気分極ベクトルの時空間的動態を模式的に示す図である。 図6(a)~図6(c)は、磁性体の縁に対する電場印加領域の位置を示す図である。 図7は、電場強度と、生成されたスキルミオン数との関係を示すグラフである。 図8(a)~図8(d)は、スキルミオン生成過程を模式的に示す図である。 図9は、外部磁場の大きさを変化させたときの電場強度と生成されたスキルミオン数との関係を示すグラフである。 図10(a)~図10(p)は、スキルミオン形成過程における磁化ベクトル及び電気分極ベクトルのシミュレーション結果を示す図である。 図11は、第2変形例を示す図である。 図12は、第2実施形態に係る磁気記憶装置の構成を概略的に示す図である。 図13は、スキルミオンの電子スピンの配列を模式的に示す斜視図である。
 以下、添付図面を参照しながら本発明によるスキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (第1実施形態)
 図1は、本発明の第1実施形態に係るスキルミオン生成装置の構成を概略的に示す斜視図である。図1に示されるように、このスキルミオン生成装置1Aは、磁性体12と、磁場発生部14と、電場発生部16とを備える。
 磁性体12は、スキルミオン相を有する絶縁性の磁性体である。ここで、「スキルミオン相を有する」とは、磁気相図上においてスキルミオンが安定して存在し得ることを意味する。このような磁性体としては、キラルな磁性体、すなわち結晶構造に反転対称性が無い磁性体が好適である。絶縁性のキラルな磁性体としては、例えばCu2OSeO3が挙げられる。Cu2OSeO3には、所定の磁場や温度の条件下において、複数のスキルミオンが三角格子状に配列されたスキルミオン結晶が生成され得ることが確認されている。
 スキルミオンの安定性は、磁性体12の厚さに依存する。磁性体12がバルク状である場合には、スキルミオン相は、温度(T)と磁場(B)とによって示される相図において、極めて狭い領域に現れる傾向がある。これに対し、磁性体12が薄膜状である場合には、スキルミオン相は相図の広い領域に現れる傾向がある。従って、磁性体12は、少なくとも部分的に薄膜状(擬二次元状)であることが好ましい。これにより、広い温度範囲でスキルミオンが存在することが可能になり、また、常温に近い温度において本実施形態のスキルミオン生成装置1Aを利用可能となることが期待される。
 一例では、磁性体12の厚さは、図13に示されたスキルミオンにおける渦巻状のスピン配列の直径よりも小さいか、あるいは直径の3倍程度以下であるとよい。これにより、スキルミオンの2次元的挙動を可能にできる。スキルミオンの直径は、典型的には3nm~100nmであるから、磁性体12の好適な厚さは、例えば2nm~300nmの範囲内である。
 また、磁性体12の全体が薄膜状であっても良いし、磁性体12の一部が薄膜状であっても良い。磁性体12の全体が薄膜状である場合には、支持用の基材18の上に磁性体12が配置されてもよい。また、磁性体12の一部が薄膜状である場合には、磁性体12は、全体として厚い磁性体の一部が薄膜状に加工されることにより形成されてもよい。
 磁場発生部14は、磁性体12に磁場を印加する。磁場発生部14は、例えば、磁場を磁性体12の表面に対して略垂直に印加する。図13に示されたように、スキルミオンの外周部を構成する電子スピンと、スキルミオンの中心部を構成する電子スピンとは、互いに逆向きであり、且つ薄膜状の磁性体12の厚さ方向を向く。また、スキルミオンの外周部は、磁場と平行な方向に磁化される。従って、このように磁性体12の表面に対して略垂直な方向に磁場を印加することにより、スキルミオンを効率良く生成することができる。
 電場発生部16は、磁性体12に対し電場を印加することにより、磁性体12の内部にスキルミオンを生成する。本実施形態では、電場発生部16は針状の電極を有しており、磁性体12に対し局所的に電場を印加する。針状の電極は磁性体12の表面に対向して配置されており、その先端は磁性体12の表面に垂直な方向に突出している。電場発生部16は、電源17の一方の端子に電気的に接続されている。また、電源17の他方の端子は、磁性体12の裏面側に設けられた基材18に電気的に接続されている。基材18は導電性材料からなり、電場発生部16と対向する下部電極を構成する。従って、上述した局所的な電場は、電場発生部16と基材18との間に配置された磁性体12を貫通する。この電場は、例えば直径が10ナノメートル~100ナノメートルの範囲内にある領域に印加されることが好適である。
 以上に説明した構成を備えるスキルミオン生成装置1Aを用いた、本実施形態のスキルミオン生成方法は次の通りである。まず、磁場発生部14によって、磁性体12に対してスキルミオンが生成可能な適切な強度の磁場を印加する。次に、磁場を印加しながら、電場発生部16を用いて磁性体12に対し局所的に電場を印加する。すると、磁性体12内部において一方向に揃っていた電子スピンの方向が、電場によって変化する。図2は、その変化の様子を概念的に示す斜視図であり、図中の矢印は電子スピンの方向を示す。そして、一部の電子スピンの反転が生じ、その後に電場の印加を止めて磁化構造を緩和させることで、電子スピンが渦状に空間分布した単一のスキルミオンSkが生成される。
 ここで、電場の印加によってスキルミオンが生成される原理は次の通りである。磁気構造を構成する磁化が、平行や反平行ではなく360度未満で180度以外の有限の角度でもって隣り合っている場合、その磁気構造は非共線的であるという。スキルミオンは典型的な非共線的な磁気構造の一つである。絶縁性の磁性体中における非共線的な磁気構造は、スピン軌道相互作用と呼ばれる物質中の相互作用を通じて、電子分布の空間的な偏りである電気分極を発現する。この電気分極は、それを引き起こす非共線的磁気構造と強く結合しているので、電場を印加して電気分極の配列を変化させることにより、磁気構造自体も電気分極と連動して生成される。このように、本実施形態のスキルミオン生成装置1A及び生成方法は、絶縁性の磁性体12中に形成されるスキルミオンと電気分極との結合を利用している。以下、このような生成原理について詳細に説明する。
 例えばCu2OSeO3の結晶構造及び磁化構造は、4つのCu2+イオンを含む四面体状を呈している。そして、3つのスピンが上向き、1つのスピンが下向きの共線状スピン配列が、それぞれの四面体において実現される。磁性単位としてのこれらの4つのスピンは、単位磁化ベクトルmiとして扱われることができる。薄膜状のCu2OSeO3の磁気作用は、正方格子上における古典ハイゼンベルグ模型によって記述され得る。そのハミルトニアンは、次の数式(1)によって表される。
Figure JPOXMLDOC01-appb-M000001
但し、数式(1)においてg=2であり、γは正方格子上の直交するボンドに対応する単位方向ベクトルである。また、Jは強磁性交換相互作用の結合定数であり、Dはジャロシンスキー・守谷相互作用の結合定数であり、μBはCu2OSeO3の透磁率であり、μ0は真空透磁率である。一例では、J=1(meV)であり、D/J=0.09である。このハミルトニアンは、磁性体表面に対して垂直に印加される静磁場H=(0,0,Hz)に対する強磁性交換相互作用、ジャロシンスキー・守谷相互作用、及び、ゼーマン相互作用を含んでいる。
 図3は、このモデルの相図を示す。スキルミオンの結晶相は、下記の数式(2)の範囲において現れ、螺旋形の強磁性相に囲まれている。
Figure JPOXMLDOC01-appb-M000002
 スキルミオン結晶相において、スキルミオンは三角格子状に並んで結晶化する。このとき、磁化ベクトルmiは、各スキルミオンの周辺において静磁場Hに対し平行となり、中心において静磁場Hに対し反平行となる。スキルミオンが生成される際、スキルミオン結晶と強磁性相との間の相転移は最も重要な条件である。スキルミオンは、結晶形状としてだけでなく強磁性相の相欠陥としても現れる。以下、強磁性的に磁化が一様に揃った絶縁性の磁性体薄膜に対し電場発生部16からの電場を印加することによって、単離されたスキルミオンが作成され得ることを詳細に説明する。
 非共線的なスキルミオンの磁化構造は、スピン依存性の金属-リガンド混成メカニズムによって、電気分極を誘発する。立方晶の対称性により、i番目の四面体における電気分極ベクトルpiは、三次元の磁化成分mia、mibおよびmicを用いて、次の数式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
但し、実験データから、Cu2OSeO3における定数λの値は5.64×10-27(μCm)である。スキルミオンを成す磁化ベクトルmiによって誘発される電気分極piの空間分布は、上記の数式(3)から算出される。また、電気分極piの空間分布は、薄膜平面の選択に応じて変化する。
 ここで、正味の磁化ベクトルMおよび強誘電性分極ベクトルPは、それぞれ、次の数式(4)及び(5)により表される局所的な寄与の和として与えられる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
ここで、添え字iは、3つが上向き、1つが下向きであるスピン群を有する銅イオンの四面体の番号を示し、Nはその四面体の総数である。そして、V(=1.76×10-283)は、四面体一つ当たりが占める空間の体積である。
 上述したような磁気と電気との結合は、電気分極の分布を調整することによって電気的にスキルミオンを作成し操作する機会を提供する。このことを確認するために、本発明者は、四次のルンゲ・クッタ法を使用してランダウ・リフシッツ・ギルバート方程式を数値解析することにより、局所的に電場が印加された下での数値的な磁化ベクトルmiおよび電気分極ベクトルpiの動態シミュレーションを行った。その方程式は、次の数式(6)によって表される。
Figure JPOXMLDOC01-appb-M000006
但し、α(=0.04)はギルバート減衰定数である。有効磁場Hi effは、次の数式(7)に表されるハミルトニアンから、数式(8)によって算出される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 数式(7)の右辺第1項は、モデル・ハミルトニアン関数(前述した数式(1)を参照)である。また、数式(7)の右辺第2項は、局所的な電気分極ベクトルpiと電場Eとの結合を表す。すなわち、数式(7)の右辺第2項は、電場Eが領域Cの範囲内に一定時間印加されるものとすると、次の数式(9)のように表される。
Figure JPOXMLDOC01-appb-M000009
 本発明者によるシミュレーションによれば、単一のスキルミオンは、例えば[111]面を表面とする絶縁性のキラル磁性体の薄膜試料において、面直方向の静磁場Hの下、磁場方向に一様磁化した強磁性体中で生成される。図4(a)~図4(o)は、スキルミオン形成過程における磁化ベクトルmi及び電気分極ベクトルpiのシミュレーション結果を示す図である。図4(a)~図4(d)は、電場印加開始からそれぞれ0.924ナノ秒後、1.188ナノ秒後、1.254ナノ秒後、及び3.96ナノ秒後における電気分極ベクトルpiの向きを矢印で示し、且つ、pz/λ(pzは電気分極ベクトルpiのうち面直成分すなわち磁性体表面に垂直な成分)の変化の様子を色の濃淡で示している。また、図4(e)~図4(h)は、電場印加開始からそれぞれ上記の経過時間後における磁化ベクトルmiの向きを矢印で示し、磁化ベクトルmiの面直成分mzの変化の様子を色の濃淡で示している。更に、図4(i)~図4(l)は、磁化ベクトルmiの二次元分布を立体的に示しており、図4(m)~図4(o)は、それぞれ図4(j)~図4(l)のジャロシンスキー・守谷相互作用のエネルギーの二次元分布を立体的に示している。なお、図4では、試料中央の直径40サイトの円内にある磁化に電場を印加し、電場印加開始から1.98ナノ秒後に電場をオフしている。また、図4では、磁性体に一様に印加する面直磁場をgμBμ0z/J=6.3×10-3とし、試料中央の直径40サイトの円内に印加する面直電場をEz=-3.98×10(V/m)としている(Ezは電場Eの面直成分)。
 成分Ezが負である電場Eの印加は、図4(a)~(c)に示されるように、電場印加領域において、電気分極piの再配列を引き起こす。そして、図4(e)~(g)、(i)~(k)に示されるように、この電気分極piの再配列に伴って、その領域内の大部分の磁化ベクトルmiが、面直方向から面内方向(すなわち磁性体表面に沿った方向)へ回転する。本発明者は、図4(f)と図4(g)との間、及び図4(j)と図4(k)との間に、電場印加領域の中心において局所的な磁化ベクトルmiの180度の反転が瞬時に生じることを見出した。図4(m)~図4(o)に示されるように、ジャロシンスキー・守谷相互作用のエネルギーは、磁化ベクトルmiが局所的に瞬時に反転する直前に著しく増大し、反転した直後に著しく減少する。これらのエネルギー変化は、図4(m)及び図4(n)において、鋭い正及び負のピークとしてそれぞれ現れている。
 局所的な磁化ベクトルmiの反転が一たび生じると、電場Eのオフの後、図4(d)、図4(h)、図4(l)、及び図4(o)に示されるように、磁化ベクトルmi、電気分極pi、及びジャロシンスキー・守谷相互作用のエネルギーの空間分布の緩和によって、磁化配置の緩和と再構成が自発的に生じ、単離されたスキルミオンSkが生成される。このようなスキルミオン構造の全発生過程は、2~3ナノ秒以内といった極めて短い時間に生じる。
 以上に説明したスキルミオンの電気的生成メカニズムにおいては、次の2つの事実が重要である。一つは、磁化ベクトルmiにおいて面直成分mzが支配的であるか若しくは磁化ベクトルmiが[111]軸に対して平行である場合、静磁場Hのもとで局所的な電気分極pi(pz<0)が生じ、磁化ベクトルmiにおいて面内方向成分が支配的であるか若しくは磁化ベクトルmiが[111]軸に対して垂直である場合、静磁場Hのもとで局所的な電気分極pi(pz>0)が生じる点である。他の一つは、数式(1)に示されたジャロシンスキー・守谷相互作用(但しD>0)が、磁化ベクトルmiの時計周りの回転の伝播(磁化ベクトルmiの並び方向(図5(a)の矢印A1)に沿った伝播)に有利に働く点である。
 図5(a)~(e)は、電場印加領域の径方向に沿って整列配置される磁化ベクトルmiおよび電気分極ベクトルpiの時空間的動態を模式的に示す図である。図5(a)に示されるように、全ての磁化ベクトルmiが面直方向を向いている最初の強磁性状態においては、全ての電気分極ベクトルpiは面直方向(但しpz>0)を向いている。そして、Ez<0である電場Eが印加されると、図5(b)に示されるように、pz>0の状態からpz<0の状態に電気分極ベクトルpiが反転することに伴い、磁化ベクトルmiは面内方向へ回転する。このとき、電場印加領域の周縁部近傍におけるこのような磁化ベクトルmiの回転は時計回りである傾向がある。それは、磁化ベクトルmiの空間的変化がジャロシンスキー・守谷相互作用の存在下において電場印加領域の外側の強磁性領域と滑らかに接続されるようにするためである。これに対し、電場印加領域の中心付近における磁化ベクトルmiの回転は、図5(c)に示されるように、必然的に反時計回りとなる。しかし、それはジャロシンスキー・守谷相互作用に関する限り不都合な変化である。そして、Ez<0及びpz<0である領域において磁化ベクトルmiが面内方向を向いている場合、磁化ベクトルmiは、極めて急激に反時計回りに回転する。このような磁化配置は、図4(m)に示されたような鋭い正のピークを伴う、大きなジャロシンスキー・守谷相互作用のエネルギーの損失を引き起こす。磁化ベクトルmiのこの不安定なエネルギー配列を解消するために、中心の磁化ベクトルmiは、図5(d)に示されるように、最終的にmz>0の状態からmz<0の状態に反転する。この局所的な磁化ベクトルmiの瞬間的な反転により、電場印加領域の中心に位置する磁化ベクトルmiは、図4(n)に示されたような鋭い負のピークを伴う大きなジャロシンスキー・守谷相互作用のエネルギーの利得を獲得する。こうして局所的に反転した磁化ベクトルmiは、スキルミオンの核となる。図4(l)及び図4(o)に示されるように、電場Eがオフとされた後においても、磁化ベクトルmiの配列はスキルミオンのスピン構造を維持する。
 ここで、スキルミオンの生成に必要な電場Eの強さは、磁性体中における電場印加位置によって異なる。例えば、磁性体の縁(edge)の近傍に電場を印加する場合、その他の場合と比較して、スキルミオンの生成に必要な電場の強さを抑えることができる。磁性体の縁から遠い位置に電場を印加する際には、磁化ベクトルmiを局所的に反転させるために大きなエネルギーを消費する。これに対し、磁性体の縁から近い位置に電場を印加する際には、比較的小さなエネルギーによって磁化ベクトルmiを局所的に反転させることができる。その理由としては、磁性体の縁から近い位置では回転させるべきスピンの個数が少ないこと、及び、磁性体の縁においては磁化の分布が不連続であり、それによって位相不変量の連続的な変化が可能になり、位相幾何学的な制約が緩和されることが挙げられる。
 図6(a)~図6(c)は、磁性体12の縁12aに対する電場印加領域21の位置を示す図であり、半径rが20サイトである電場印加領域21と縁12aとの間の距離dが、81サイトである場合(図6(a))、35サイトである場合(図6(b))、及び21サイトである場合(すなわち電場印加領域21が縁12aとほぼ接している場合。図6(c))をそれぞれ示す。また、図7は、図6(a)~図6(c)に示された各場合における電場強度と、生成されたスキルミオン数との関係を示すグラフであり、グラフG11は図6(a)に、グラフG12は図6(b)に、グラフG13は図6(c)にそれぞれ対応している。
 図7のグラフG11に示されるように、電場印加領域21が磁性体12の縁12aから遠く離れている場合には、スキルミオン生成のための電場の閾値Es1の絶対値は大きな値(例えば4.0×10(eV/m))となる。これに対し、図7のグラフG12に示されるように、電場印加領域21が磁性体12の縁12aから近い場合には、スキルミオン生成のための電場の閾値Es2の絶対値は格段に小さな値(例えば1.4×10(eV/m))となる。
 図8は、電場印加領域21の位置を図6(b)とした場合における、スキルミオン生成過程を模式的に示す図である。電場の印加開始後0.33ナノ秒の時点では、磁化ベクトルmiが回転を開始する(図8(a))。なお、図中の破線は電場印加領域21を示す。次に、電場の印加開始後0.66ナノ秒の時点では、磁性体12の縁12aにおいて磁化ベクトルmiが反転し、スキルミオンの種が発生する(図8(b))。続いて、電場の印加開始後0.99ナノ秒の時点では、スキルミオンの種が電場印加領域21に向けて移動する(図8(c))。その後、電場の印加開始後1.98ナノ秒の時点では、スキルミオンSkが電場印加領域21内において安定して維持される(図8(d))。このように、電場印加領域21が縁12aの近傍に位置する場合、スキルミオンは、縁12aに助けられることにより容易に生成される。
 なお、図7のグラフG13に示されるように、電場印加領域21が磁性体12の縁12aにほぼ接する場合には、スキルミオンは生成されない。この場合、極めて小さな電場によって磁化ベクトルmiが反転するが、電場がオフとされた直後に、スキルミオンの種は縁12aに吸収され、消滅する。
 上記の結果から、磁性体12の表面に垂直な方向から見た本実施形態の電場発生部16の中心(針状電極の先端)と磁性体12の縁12aとの距離は、20nm~40nmの範囲に含まれることが好ましい。
 スキルミオンの生成に必要な電場の強さは、電場印加領域21の位置だけでなく、例えば外部磁場の強さによっても異なる。図9は、スキルミオン結晶相と強磁性相との臨界磁場(gμBμ0z/J=6.25×10-3)近傍で外部磁場の大きさを変化させたときの電場強度と生成されたスキルミオン数との関係を示すグラフであり、グラフG21はgμBμ0z/J=6.5×10-3とした場合、グラフG22はgμBμ0z/J=6.3×10-3とした場合、グラフG23はgμBμ0z/J=5.7×10-3とした場合をそれぞれ示している。この場合、電場の閾値は、グラフG21では1.7×108(eV/m)、グラフG22では1.4×108(eV/m)、グラフG23では1.1×108(eV/m)となっており、スキルミオン結晶相と強磁性相との相境界近傍では、外部磁場Hzが小さいほど、スキルミオンの生成に必要な電場の強さが小さくなることがわかる。
 以上に説明した、本実施形態によるスキルミオン生成装置およびスキルミオン生成方法により得られる効果について説明する。磁性体に電流を流すことでスキルミオンを生成する方式と異なり、本実施形態では、絶縁性の磁性体12に電場を印加することによってスキルミオンを生成する。絶縁性の磁性体12に印加される電場は、磁性体12にジュール発熱を生じさせない。従って、スキルミオンを生成する際の消費電力を低減することができ、例えば省電力の磁気記憶装置を好適に実現できる。
 また、本実施形態のように、電場発生部16が針状の電極を有し、磁性体12に対し針状の電極から局所的に電場を印加してもよい。磁性体12にジュール発熱を生じさせることなくスキルミオンを生成する方法としては、例えば、磁性体12に対し局所的に磁場や電磁波を印加または照射することも考えられる。しかし、そのような方法では、磁場や電磁波を印加する領域を、単一のスキルミオンを生成可能な程度に小さく絞ることが困難である。電場であれば、前述した磁場や電磁波とは異なり、針状の電極を用いることによって、単一のスキルミオンを生成可能な程度に印加領域を小さく絞ることが可能となる。
 (第1変形例)
 上記実施形態では、強磁性相となる強さの面直磁場(gμBμ0z/J=6.3×10-3)を磁性体に印加してシミュレーションを行ったが(図4を参照)、ヘリカル磁性相となる強さの面直磁場を印加した状態においても、スキルミオンを好適に生成することができる。すなわち、本変形例のシミュレーションによれば、単一のスキルミオンは、例えば[001]面を表面とする絶縁性のキラル磁性体の薄膜試料において、面直方向に印加した静磁場Hが強い時に実現する強磁性状態中だけでなく、面直方向に印加した静磁場Hが弱い時に実現するヘリカル磁性状態中においても生成され得る。
 図10(a)~図10(h)は、電場印加開始直後(0ナノ秒後)と、電場印加開始からそれぞれ0.132ナノ秒後、0.33ナノ秒後、0.66ナノ秒後、0.792ナノ秒後、0.99ナノ秒後、1.32ナノ秒後、及び1.98ナノ秒後における電気分極piの向きを矢印で示し、且つ、px/λ(pxは電気分極ベクトルpiの面直成分)の変化の様子を色の濃淡で示している。また、図10(i)~図10(p)は、電場印加開始からそれぞれ上記の経過時間後における磁化ベクトルmiの向きを矢印で示し、磁化ベクトルのmiの面直成分mzの変化の様子を色の濃淡で示している。なお、図10では、試料中央近傍の直径40サイトの円内にある磁化に電場を印加し、電場印加開始から0.66ナノ秒後に電場をオフしている。また、図10では試料に一様に印加する面直磁場をgμμ/J=1.875×10-3とし、試料中央の直径40サイトの円内に印加する面直電場をEz=+3.98×10(V/m)としている。
 成分Ezが正である電場Eの印加は、図10(a)~(d)に示されるように、電場印加領域において電気分極piの再配列を引き起こす。そして、図10(i)~(l)に示されるように、この電気分極piの再配列に伴って、その領域内の大部分の磁化ベクトルmiが、面直方向から面内方向(すなわち磁性体表面に沿った方向)へ回転する。そして、電場印加領域の中心において局所的な磁化ベクトルmiの180度の反転が瞬時に生じる。局所的な磁化ベクトルmiの反転が一たび生じると、電場Eのオフの後、図10(e)~(h)、図10(m)~(p)に示されるように、磁化ベクトルmiと電気分極piの空間分布の緩和によって、磁化配置の緩和と再構成が自発的に生じ、単離されたスキルミオンSkが生成される。
 (第2変形例)
 上記実施形態では、磁場発生部14が磁性体12の表面と対向する位置に間隔をあけて配置される例を示したが、磁場発生部の配置はこれに限られない。例えば、図11に示されるスキルミオン生成装置1Bのように、磁場発生部としての強磁性体層19を磁性体12の裏面(若しくは表面)に貼り付けた形態であっても、磁性体12に対して磁場を好適に印加することができる。この場合、強磁性体層19は、例えば磁性体12の裏面と導電性の基材18との間に配置されてもよい。このような構成によっても、スキルミオンを効率良く生成することができる。
 (第3変形例)
 上記実施形態では、磁場発生部14が磁性体12に磁場を印加する例を示したが、磁場発生部を省くことも可能である。例えば、磁性体12を磁気異方性の強い材料、例えばキラル磁性体のような強い磁気異方性を有する磁性体とすることにより、磁場を印加せず、電場発生部16からの電界のみによってスキルミオンを生成することができると考えられる。
 (第2実施形態)
 続いて、上記実施形態のスキルミオン生成方法を利用した磁気記憶装置の構成について説明する。図12は、本実施形態に係る磁気記憶装置30の構成を概略的に示す図である。図12に示されるように、この磁気記憶装置30は、磁性体32と、磁場発生部34と、電場発生部36とを備える。
 磁性体32は、第1実施形態の磁性体12と同様に、スキルミオン相を有する絶縁性の磁性体である。但し、本実施形態の磁性体32は、所定方向に並ぶ複数の記憶領域32aを含む。各記憶領域32aには、単一のスキルミオンが形成されることにより、1ビットの情報が書き込まれ、保持される。磁場発生部34は、書き込み対象とされた記憶領域32aに磁場(外部磁場)を印加する。磁場発生部34により印加される磁場は、第1実施形態において説明された磁場と同様である。電場発生部36は、書き込み対象とされた記憶領域32aに対し電場を印加することにより、情報を保持するためのスキルミオンSkを当該記憶領域32aに生成する。電場発生部36は、例えば針状の電極を有しており、記憶領域32aに対し局所的に電場を印加する。生成されたスキルミオンSkは、例えば電場勾配や温度勾配を利用して、所定位置に移動することができる。
 また、スキルミオンSkを読み出す方式としては、磁性体32をホールバー型に形成し、スキルミオンSkのホール効果を利用して読み出す方式、トンネル磁気抵抗効果を利用して読み出す方式などがある。
 本実施形態の磁気記憶装置30によれば、第1実施形態に係るスキルミオン生成装置1Aの構成を含むことにより、スキルミオンを生成する際の消費電力を低減でき、省電力の磁気記憶装置を好適に実現できる。
 本発明によるスキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述したスキルミオン生成方法及びスキルミオン生成装置によれば、スキルミオンを消去することも可能である。すなわち、スキルミオンを生成したときの電場とは逆向きの電場を針状電極によってスキルミオンに対し印加することで、スキルミオン生成時とは真逆の作用により磁化ベクトルの再反転を生じさせ、スキルミオンを消去することができる。また、上述したスキルミオン生成方法では磁性体に対して磁場の印加を開始し、その後に電場を印加しているが、まず電場の印加を開始し、その後に磁場を印加することによっても、スキルミオンを好適に形成することができる。
 本発明は、スキルミオンを生成する際の消費電力を低減することができるスキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置として利用可能である。特に、本発明によれば、電場を印加するだけでスキルミオンを生成できる。スキルミオンは高い安定性を有し、電場や温度の勾配を利用して容易に移動させることができる。従って、本発明は、情報記憶密度が高く、低消費電力の記憶装置への応用が可能である。
 1A…スキルミオン生成装置、12…磁性体、14…磁場発生部、16…電場発生部、17…電源、18…基材、19…強磁性体層、21…電場印加領域、30…磁気記憶装置、32…磁性体、32a…記憶領域、34…磁場発生部、36…電場発生部。

Claims (16)

  1.  スキルミオン相を有する絶縁性の磁性体と、
     前記磁性体に対し電場を印加することにより、前記磁性体内部にスキルミオンを生成する電場発生部と、
    を備えることを特徴とする、スキルミオン生成装置。
  2.  前記磁性体に磁場を印加する磁場発生部を更に備えることを特徴とする、請求項1に記載のスキルミオン生成装置。
  3.  前記磁場発生部は、前記磁場を前記磁性体の表面に対して略垂直に印加することを特徴とする、請求項2に記載のスキルミオン生成装置。
  4.  前記電場発生部は、針状の電極を有しており前記磁性体に対し局所的に前記電場を印加することを特徴とする、請求項1~3のいずれか一項に記載のスキルミオン生成装置。
  5.  前記磁性体において前記電場が印加される領域が前記磁性体の縁の近傍に位置することを特徴とする、請求項1~4のいずれか一項に記載のスキルミオン生成装置。
  6.  前記磁性体は、少なくとも部分的に2~300nmの範囲内の厚さを有する薄膜状であることを特徴とする、請求項1~5のいずれか一項に記載のスキルミオン生成装置。
  7.  前記磁性体がキラルな結晶構造を有することを特徴とする、請求項1~6のいずれか一項に記載のスキルミオン生成装置。
  8.  スキルミオン相を有する絶縁性の磁性体に対し、電場発生部からの電場を印加することにより、前記磁性体内部にスキルミオンを生成することを特徴とする、スキルミオン生成方法。
  9.  前記磁性体に対して磁場を更に印加することを特徴とする、請求項8に記載のスキルミオン生成方法。
  10.  前記磁場を前記磁性体の表面に対して略垂直に印加することを特徴とする、請求項9に記載のスキルミオン生成方法。
  11.  前記電場発生部が針状の電極を有し、前記磁性体に対し前記針状の電極から局所的に前記電場を印加することを特徴とする、請求項8~10のいずれか一項に記載のスキルミオン生成方法。
  12.  前記磁性体において前記電場が印加される領域が前記磁性体の縁の近傍に位置することを特徴とする、請求項8~11のいずれか一項に記載のスキルミオン生成方法。
  13.  前記磁性体は、少なくとも部分的に2~300nmの範囲内の厚さを有する薄膜状であることを特徴とする、請求項8~12のいずれか一項に記載のスキルミオン生成方法。
  14.  前記磁性体がキラルな結晶構造を有することを特徴とする、請求項8~13のいずれか一項に記載のスキルミオン生成方法。
  15.  スキルミオン相を有し、複数の記憶領域を含む絶縁性の磁性体と、
     書き込み対象とされた前記記憶領域に対し電場を印加することにより、情報を保持するためのスキルミオンを当該記憶領域に生成する電場発生部と、
    を備えることを特徴とする、磁気記憶装置。
  16.  書き込み対象とされた前記記憶領域に磁場を印加する磁場発生部を更に備えることを特徴とする、請求項15に記載の磁気記憶装置。
PCT/JP2016/057073 2015-03-31 2016-03-08 スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置 WO2016158230A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177015752A KR101894756B1 (ko) 2015-03-31 2016-03-08 스커미온 생성 장치, 스커미온 생성 방법 및 자기 기억 장치
JP2017509453A JP6312925B2 (ja) 2015-03-31 2016-03-08 スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置
US15/558,630 US10134460B2 (en) 2015-03-31 2016-03-08 Skyrmion generation device, skyrmion generation method, and magnetic memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072079 2015-03-31
JP2015-072079 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158230A1 true WO2016158230A1 (ja) 2016-10-06

Family

ID=57007055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057073 WO2016158230A1 (ja) 2015-03-31 2016-03-08 スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置

Country Status (5)

Country Link
US (1) US10134460B2 (ja)
JP (1) JP6312925B2 (ja)
KR (1) KR101894756B1 (ja)
TW (1) TWI640000B (ja)
WO (1) WO2016158230A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087697A (ja) * 2017-11-09 2019-06-06 株式会社日立製作所 熱電変換装置および熱輸送システム
JPWO2020027268A1 (ja) * 2018-08-01 2021-09-09 国立研究開発法人理化学研究所 インダクター素子およびそれを含む機器
CN114496012A (zh) * 2022-01-25 2022-05-13 广东工业大学 磁性斯格明子的磁场驱动方法
JP7496124B2 (ja) 2020-09-02 2024-06-06 公立大学法人大阪 単結晶育成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702810C1 (ru) * 2019-04-09 2019-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ создания скирмионов и их массивов в магнитной среде с помощью зонда сканирующего микроскопа
CN110322936B (zh) * 2019-06-28 2023-04-14 同济大学 一种二维磁性材料中对dm作用的原子级计算方法
KR102258439B1 (ko) * 2019-08-13 2021-05-31 한국표준과학연구원 도넛 형상의 스커미온을 형성하는 방법
CN112002687B (zh) * 2020-08-03 2024-04-26 中国计量大学 一种连续可控斯格明子移动和钉扎的器件和方法
KR102361299B1 (ko) 2020-08-04 2022-02-11 한국표준과학연구원 스트라이프 스커미온에 기초한 논리 게이트
US20220181061A1 (en) * 2020-12-08 2022-06-09 Jannier Maximo Roiz-Wilson Warped Magnetic Tunnel Junctions and Bit-Patterned media

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078560A (ja) * 2012-10-09 2014-05-01 Institute Of Physical & Chemical Research 絶縁材料およびその製造方法
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564726B2 (ja) 1994-04-28 2004-09-15 ソニー株式会社 量子メモリおよびそれに用いられる針状電極
EP0996113A4 (en) 1998-03-30 2006-02-22 Japan Science & Tech Agency MAGNETIC RECORDING PROCESS AND DEVICE
JP3482469B2 (ja) 2001-05-21 2003-12-22 北海道大学長 磁気記憶素子、磁気メモリ、磁気記録方法、磁気記憶素子の製造方法、及び磁気メモリの製造方法
JP3967237B2 (ja) 2001-09-19 2007-08-29 株式会社東芝 磁気抵抗効果素子及びその製造方法、磁気再生素子並びに磁気メモリ
KR100819142B1 (ko) 2005-09-29 2008-04-07 재단법인서울대학교산학협력재단 강한 스핀파 발생 방법 및 스핀파를 이용한 초고속 정보처리 스핀파 소자
JP6179919B2 (ja) * 2013-03-07 2017-08-16 国立研究開発法人理化学研究所 スキルミオンの生成、消去方法および磁気素子
CN104347226B (zh) 2013-07-23 2017-05-10 中国科学院物理研究所 一种基于磁性斯格明子层的磁性多层膜
FR3009420B1 (fr) * 2013-08-01 2016-12-23 Thales Sa Dispositif a memoire, comprenant au moins un element spintronique et procede associe
CN104157297B (zh) * 2014-07-17 2017-01-25 北京航空航天大学 一种基于磁性斯格明子的片上信息传输器件
WO2016072162A1 (ja) * 2014-11-06 2016-05-12 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置及び通信装置
JP6436348B2 (ja) 2015-01-26 2018-12-12 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、データ処理装置、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置及びデータ通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078560A (ja) * 2012-10-09 2014-05-01 Institute Of Physical & Chemical Research 絶縁材料およびその製造方法
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAHIRO MOCHIZUKI: "How to Write, Delete, and Drive Skyrmions", MAGNETICS JAPAN, vol. 10, no. 4, 1 August 2015 (2015-08-01), pages 192 - 198, ISSN: 0882-4959 *
YOSHINORI TOKURA ET AL., KENKYU SAIZENSEN ATARASHII DENJIKIGAKU O KIRIHIRAKU SKYRMION RIKEN NEWS, vol. 404, 5 February 2015 (2015-02-05), pages 02 - 13 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087697A (ja) * 2017-11-09 2019-06-06 株式会社日立製作所 熱電変換装置および熱輸送システム
JPWO2020027268A1 (ja) * 2018-08-01 2021-09-09 国立研究開発法人理化学研究所 インダクター素子およびそれを含む機器
JP7385283B2 (ja) 2018-08-01 2023-11-22 国立研究開発法人理化学研究所 インダクター素子およびそれを含む機器
JP7496124B2 (ja) 2020-09-02 2024-06-06 公立大学法人大阪 単結晶育成方法
CN114496012A (zh) * 2022-01-25 2022-05-13 广东工业大学 磁性斯格明子的磁场驱动方法
CN114496012B (zh) * 2022-01-25 2024-03-19 广东工业大学 磁性斯格明子的磁场驱动方法

Also Published As

Publication number Publication date
KR101894756B1 (ko) 2018-09-04
US10134460B2 (en) 2018-11-20
TW201703030A (zh) 2017-01-16
TWI640000B (zh) 2018-11-01
JP6312925B2 (ja) 2018-04-18
JPWO2016158230A1 (ja) 2017-09-07
KR20170083104A (ko) 2017-07-17
US20180090195A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6312925B2 (ja) スキルミオン生成装置、スキルミオン生成方法、および磁気記憶装置
Seki et al. Skyrmions in magnetic materials
JP6179919B2 (ja) スキルミオンの生成、消去方法および磁気素子
Boulle et al. Current-induced domain wall motion in nanoscale ferromagnetic elements
JP6116043B2 (ja) スキルミオン駆動方法およびマイクロ素子
Li et al. Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Li et al. Magnetic skyrmions: Basic properties and potential applications
Liang et al. Ruderman–Kittel–Kasuya–Yosida-type interlayer Dzyaloshinskii–Moriya interaction in synthetic magnets
JP5152712B2 (ja) 磁化状態制御装置および磁気情報記録装置
Busch et al. Spin Hall effect in noncollinear kagome antiferromagnets
Bechler et al. Helitronics as a potential building block for classical and unconventional computing
Blachowicz et al. Spintronics: Theory, Modelling, Devices
Caso et al. Dynamics and reversible control of the bloch-point vortex domain wall in short cylindrical magnetic nanowires
Takeuchi et al. Electrically driven spin torque and dynamical Dzyaloshinskii-Moriya interaction in magnetic bilayer systems
Everschor Current-induced dynamics of chiral magnetic structures
Shi et al. Emergence of room temperature magnetotransport anomaly in epitaxial Pt/γ′-Fe4N/MgO heterostructures toward noncollinear spintronics
Li et al. Direct observation of magnetic vortex behavior in an ordered La 0.7 Sr 0.3 MnO 3 dot arrays
Leiviskä et al. Antiferromagnetic skyrmions in spintronics
Huang et al. Micromagnetic Simulation of Spin Transfer Torque Magnetization Precession Phase Diagram in a Spin‐Valve Nanopillar under External Magnetic Fields
Franchin Multiphysics simulations of magnetic nanostructures
Akosa Spin Transport in Ferromagnetic and Antiferromagnetic Textures
Zhou et al. Current-driven periodic domain walls injection in a ferromagnetic nanostrip with a modified perpendicular magnetic anisotropy region
Zhang et al. Spin-torque memristors based on perpendicular magnetic tunnel junctions with a hybrid chiral texture
Li et al. Recent Progress on Electrical Excitation and Manipulation of Spin-Waves in Spin Hall Nano-Oscillators
Mosiori Effect of Dzyaloshinskii-moriya Interactions of Skyrmions and Anti-skyrmions in Mimicking Electron-hole Pairs for Logic and Memory Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509453

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177015752

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558630

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772114

Country of ref document: EP

Kind code of ref document: A1