WO2016157964A1 - 検査治具及び基板検査装置 - Google Patents

検査治具及び基板検査装置 Download PDF

Info

Publication number
WO2016157964A1
WO2016157964A1 PCT/JP2016/052104 JP2016052104W WO2016157964A1 WO 2016157964 A1 WO2016157964 A1 WO 2016157964A1 JP 2016052104 W JP2016052104 W JP 2016052104W WO 2016157964 A1 WO2016157964 A1 WO 2016157964A1
Authority
WO
WIPO (PCT)
Prior art keywords
insertion hole
current
detection
hole
probe
Prior art date
Application number
PCT/JP2016/052104
Other languages
English (en)
French (fr)
Inventor
東田 隆亮
久 近藤
英二 服部
高徳 古河
Original Assignee
日本電産リード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産リード株式会社 filed Critical 日本電産リード株式会社
Publication of WO2016157964A1 publication Critical patent/WO2016157964A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes

Definitions

  • the present invention relates to an inspection jig for bringing a probe into contact with an inspection point provided on a substrate to be inspected, and a substrate inspection apparatus including the inspection jig.
  • the inspection jig supplies electric power (electric signal, etc.) from the inspection device to a predetermined inspection position to the inspection target part of the inspection object via the contact, and detects an electric signal from the inspection target part. Is used to detect the electrical characteristics of the inspection target part, perform an operation test, and the like.
  • substrates to be inspected include printed wiring boards, flexible boards, ceramic multilayer wiring boards, electrode plates for liquid crystal displays and plasma displays, package substrates for semiconductor packages, film carriers, semiconductor wafers, This applies to semiconductor substrates such as semiconductor chips and CSP (Chip size package).
  • inspection target portions set on these substrates are referred to as “inspection points”.
  • the target portion to be inspected is an electrode such as a wiring or a solder bump.
  • the electrical characteristics such as the resistance value between the predetermined inspection points above are measured to judge the quality of the wiring.
  • the quality of the wiring is determined by bringing the probe for current supply and the tip of the voltage measurement probe into contact with each inspection point, and measuring from the current supply probe to the inspection point. Measure the voltage generated in the wiring between the tips of the voltage measurement probe that supplies current and contacts the inspection point, and the resistance value of the wiring between the predetermined inspection points based on the supply current and the measured voltage Is done by calculating Such a measuring method is known as a four-terminal measuring method.
  • An inspection jig that holds a large number of 1000 or more such probes is known (for example, see Patent Document 1).
  • This inspection jig inserts the probe into the insertion hole formed in the distal end side support body that supports the distal end side of the probe and the insertion hole formed in the rear end side support body that supports the rear end side of the probe. By doing so, a large number of probes are held.
  • Such a probe has, for example, a thin wire-like shape with a diameter of 100 ⁇ m or less, and the insertion hole through which the probe is inserted is a fine hole that is slightly larger than the probe diameter.
  • the inspection point may protrude from the substrate surface in a hemispherical shape like a solder bump.
  • the inclination angle of the bump surface increases as the distance from the bump center increases, and the bump surface becomes nearly perpendicular to the substrate surface.
  • the current supply probe and the voltage measurement probe need to be in contact with one bump, so that the tips of both probes are separated from each other across the center of the bump. Touch the bump.
  • both probes are pressed against the bumps perpendicularly to the substrate surface, both probes are brought into contact with the bump surface with an inclination. Then, due to the inclination of the surfaces, both probes are separated from each other at the tip portions of both probes, and a force acts in the direction in which both probes slide on the surface of the bump. As a result, the contact stability of the probe with respect to the bumps is disadvantageous.
  • An object of the present invention is to provide an inspection jig and a substrate inspection apparatus capable of improving the contact stability of a probe with respect to an inspection point.
  • An inspection jig is for contacting a rod-shaped current probe for supplying current and a rod-shaped detection probe for detecting voltage with respect to one inspection point provided on a substrate to be inspected.
  • An inspection jig comprising: a counter plate having a counter surface to be disposed opposite to the substrate; and a support plate disposed opposite to the counter surface of the counter plate. Is a pair of a current insertion hole for inserting the current probe and a detection insertion hole for inserting the detection probe, and a plurality of such pairs are formed.
  • a current insertion hole and a detection support hole for insertion of the detection probe, which are provided corresponding to the current insertion hole and the detection insertion holes, are formed in pairs. Each insertion hole of the current insertion hole and the detection insertion hole is inclined in a direction away from the other insertion hole as the wall surface of the inner wall surface away from the other insertion hole is separated from the opposing surface. is doing.
  • a substrate inspection apparatus includes the inspection jig described above.
  • each insertion hole of the current insertion hole and the detection insertion hole that form a pair is inserted into the other insertion hole as the wall surface of the inner wall surface away from the other insertion hole is separated from the opposing surface. Therefore, both the current probe and the detection probe are easily bent in a direction in which the inside is concave. As a result, even when the inspection point has a protruding shape like a solder bump, the angle at which the tips of both probes come into contact with the surface of the inspection point approaches vertical. Thereby, the contact stability of the probe with respect to the inspection point can be improved.
  • each of the current insertion holes and each of the detection insertion holes has a tapered shape that increases in diameter as the distance from the opposing surface increases, and the distal end side current hole opening end that opens the current insertion hole in the opposing surface
  • the sum of the radius and the radius of the distal end detection hole opening end where the detection insertion hole paired with the current insertion hole opens on the opposing surface is the pair of the current insertion hole and the detection pair.
  • each current insertion hole and each detection insertion hole have a tapered shape that increases in diameter as the distance from the opposing surface increases, and the current insertion hole opens at the distal end side current hole opening end that opens on the opposing surface.
  • the sum of the radius and the radius of the open end of the detection hole where the detection insertion hole paired with the current insertion hole opens on the opposite surface is the center of the pair of current insertion hole and detection insertion hole. Since the distance between them is smaller than the distance between them, the open end of the front end current hole and the open end of the front end detection hole are separated from each other. As a result, the front end portion of the current probe and the detection probe are accurately guided to the inspection point of the substrate by the front end side current hole opening end and the front end side detection hole opening end.
  • the current insertion hole opens on the opposite surface opposite to the opposing surface of the opposing plate, and the detection current insertion hole that is paired with the radius of the rear end current hole opening end and the current insertion hole is on the opposite surface side.
  • the sum of the radius of the opening end of the rear end side detection hole to be opened is larger than the distance between the centers of the current insertion hole and the detection insertion hole to be the pair, and the rear end side current hole opening end to be the pair.
  • the end edge of the rear end side detection hole opening end are continuous.
  • the rear end side current hole opening end and the rear end side detection hole opening end that form a pair are connected to form a so-called gourd type. Therefore, the operator can visually confirm the shape of the gourd-shaped hole so that the current insertion hole and the detection insertion hole into which the pair of current probe and detection probe are to be inserted can be identified. Probe mounting workability can be improved.
  • the current insertion hole and the detection insertion hole that are the pair are cut in the radius of the current hole cross section that is a cross section of the current insertion hole cut in a direction parallel to the facing surface, and in that direction.
  • the sum of the radius of the cross section of the detection hole, which is the cross section of the detection insertion hole, is such that the distance of the cross section position from the facing surface is at least 3/4 of the depth of the current insertion hole and the detection insertion hole. In the following range, the distance is preferably smaller than the distance between the centers of the current insertion hole and the detection insertion hole.
  • the radius of the current hole cross section which is a cross section of the current insertion hole cut in the direction parallel to the facing surface, and the cross section of the detection insertion hole cut in that direction
  • the radius of the current hole cross section which is a cross section of the current insertion hole cut in the direction parallel to the facing surface, and the cross section of the detection insertion hole cut in that direction
  • the inclination angle of the inner wall surface of each of the current insertion holes and each of the detection insertion holes with respect to the thickness direction of the counter plate is in the range of 1 to 5 degrees.
  • the inclination angle is in the range of 1 to 5 degrees. Is preferred.
  • Each of the current insertion holes and each of the detection insertion holes has a tapered shape that increases in diameter as the distance from the opposing surface increases, and each of the current insertion holes and the detection insertion holes that form a pair is inserted. It is preferable that the hole has a wall surface closer to the other insertion hole on the inner wall surface extending along the thickness direction of the counter plate.
  • the counter plate is formed with a thin region that is thinner than the outer peripheral portion of the counter plate, and each of the current insertion holes and each of the detection insertion holes penetrates the thin region. Preferably it is.
  • guide holes are formed corresponding to the current insertion holes and the detection insertion holes, respectively, and capable of inserting the current probe and the detection probe, respectively.
  • the current probe in which the guide plate is laminated and the pair of the current insertion hole and the detection insertion hole corresponding to each of the guide holes are inserted into the current insertion hole and the detection insertion hole. It is preferable that a positional relationship between the current insertion hole and the detection insertion hole is set so that the distance between the detection probe and the detection probe is reduced so that the distance between the detection probe and the detection probe decreases.
  • the current probe and the detection probe are inclined by the guide hole so that the distance between them becomes shorter as the opposing surface is approached. Therefore, when the inspection point protrudes like a solder bump, the tips of the current probe and the detection probe are more perpendicular to the curved surface of the inspection point surface than when the current probe and the detection probe are along the normal direction of the opposing surface. Abut at an angle close to. As a result, the tips of the current probe and the detection probe are less likely to slip on the inspection point surface.
  • the inclination angle of the inner wall surface of the guide hole with respect to the plate thickness direction of the counter plate is smaller than the inclination angle of the inner wall surface of each of the current insertion holes and each detection insertion hole with respect to the plate thickness direction. Is preferred.
  • the range of play in which the current probe and the detection probe move in the guide hole is reduced as compared with the current insertion hole and the detection insertion hole, so that the stability of holding the current probe and the detection probe is improved. To do.
  • the inspection jig can be quickly used for inspection.
  • the inspection jig and the substrate inspection apparatus having such a configuration can improve the contact stability of the probe with respect to the inspection point.
  • FIG. 3 is a side view of the inspection jig shown in FIG. 2. It is the top view which looked at the inspection jig shown in Drawing 1 and Drawing 2 from the counter surface side.
  • FIG. 5 is a cross-sectional view of the inspection-side support body and the probe shown in FIG. 4 taken along line VV.
  • FIG. 5 is a cross-sectional view taken along line VV of the electrode side support, the electrode plate, and the probe shown in FIG. 4.
  • FIG. 1 is a front view schematically showing a configuration of a substrate inspection apparatus 1 including an inspection jig according to an embodiment of the present invention.
  • a substrate inspection apparatus 1 shown in FIG. 1 is an apparatus for inspecting a circuit pattern formed on a substrate to be inspected.
  • the substrate inspection apparatus 1 shown in FIG. In the internal space of the housing 112, a substrate fixing device 110, a first inspection unit 121, and a second inspection unit 122 are mainly provided.
  • the substrate fixing device 110 is configured to fix the substrate 100 to be inspected at a predetermined position.
  • the substrate 100 is, for example, a glass epoxy substrate, a flexible substrate, a ceramic multilayer wiring substrate, an electrode plate for a liquid crystal display or a plasma display, a transparent conductive plate for a touch panel, and a variety of substrates such as a package substrate for a semiconductor package or a film carrier. There may be. Inspection points such as wiring patterns and solder bumps are formed on the substrate 100.
  • the first inspection unit 121 is located above the substrate 100 fixed to the substrate fixing device 110.
  • the second inspection unit 122 is located below the substrate 100 fixed to the substrate fixing device 110.
  • the first inspection unit 121 and the second inspection unit 122 include inspection jigs 4U and 4L for inspecting a circuit pattern formed on the substrate 100.
  • a plurality of probes Pf and Ps are attached to the inspection jigs 4U and 4L.
  • the first inspection unit 121 and the second inspection unit 122 include an inspection unit moving mechanism 125 in order to appropriately move within the housing 112.
  • the substrate inspection apparatus 1 includes a control unit 20 that controls operations of the substrate fixing device 110, the first inspection unit 121, the second inspection unit 122, and the like.
  • the control unit 20 is configured using, for example, a microcomputer.
  • the control unit 20 appropriately moves the first inspection unit 121 and the second inspection unit 122, and the probe Pf (current probe) and the probe Ps (detection) of the inspection jigs 4U and 4L on the substrate 100 fixed to the substrate fixing device 110.
  • the circuit pattern formed on the substrate 100 is inspected by the inspection jigs 4U and 4L by contacting the probe). Since the inspection jigs 4U and 4L are configured in the same manner, the inspection jigs 4U and 4L are hereinafter collectively referred to as an inspection jig 4.
  • FIG. 2 is a perspective view showing an example of the inspection jig 4 shown in FIG.
  • FIG. 3 is a side view of the inspection jig 4 shown in FIG.
  • the inspection jig 4 includes an inspection-side support body 5 and an electrode-side support body 6, and a connecting member 7 that holds the inspection-side support body 5 and the electrode-side support body 6 in parallel at a predetermined distance.
  • the inspection side support 5 and the electrode side support 6 are formed with insertion holes at positions corresponding to each other.
  • the inspection jig 4 is an inspection jig for a so-called four-terminal measurement method, and includes an inspection current supply probe Pf and a voltage measurement probe Ps.
  • the distal ends of the probes Pf and Ps are inserted through the insertion holes of the inspection-side support 5, and the rear ends of the probes Pf and Ps are inserted through the insertion holes of the electrode-side support 6.
  • a plurality of pairs of probes Pr including a pair of probes Pf and Ps are held by the inspection-side support 5 and the electrode-side support 6.
  • the inspection-side support 5 is configured by laminating a counter plate 51 and guide plates 52 and 53 in order from the side (front side) on which the substrate 100 is arranged.
  • the facing plate 51 has a facing surface F that is disposed facing the substrate 100.
  • the opposing plate 51 is fixed to the guide plates 52 and 53 by fixing means such as bolts that can be attached and detached. Thereby, the opposing plate 51 can be attached to and detached from the guide plates 52 and 53.
  • the electrode side support 6 is configured by stacking support plates 61, 62, 63 in order from the side opposite to the facing surface F.
  • the surface of the support plate 61 is a back surface R that comes into contact with an electrode plate 9 on which an electrode 91 described later is formed (FIG. 6).
  • the electrode 91 is connected to a scanner circuit (not shown) including, for example, an ammeter, a voltmeter, and a current source.
  • the electrode plate 9 is attached to the support plate 61, whereby the rear ends of the probes Pf and Ps are connected to the scanner circuit via the electrode 91.
  • the distance from the facing surface F of the facing plate 51 to the back surface R of the support plate 61 is slightly shorter than the lengths of the probes Pf and Ps.
  • the scanner circuit supplies a predetermined current between predetermined probes Pf and Pf, for example, in response to a control signal from the control unit 20, and sets a voltage between the probes Ps and Ps paired with the probes Pf and Pf, respectively.
  • the measurement result is transmitted to the control unit 20.
  • the control unit 20 executes, for example, a substrate inspection by a four-terminal measurement method based on the measurement result obtained from the scanner circuit. Specifically, for example, as shown in FIG. 8 to be described later, the control unit 20 presses the inspection-side support 5 of the inspection jig 4 against the substrate 100 and sets a probe pair to each inspection point such as the bump B. Pr, that is, probes Pf and Ps are brought into contact with each other. Then, the control unit 20 performs an inspection preset by the scanner circuit between the two inspection points to be inspected and between the probe Pf in contact with one inspection point and the probe Pf in contact with the other inspection point.
  • a scanner circuit measures the voltage between the probe Ps in contact with one inspection point and the probe Ps in contact with the other inspection point as a detection voltage.
  • the control unit 20 performs the pass / fail determination of the substrate 100 by comparing the detected voltage, a resistance value between inspection points obtained from the detected voltage, and the like with a preset reference value.
  • FIG. 4 is a plan view of the inspection jig 4 shown in FIGS. 1 and 2 as viewed from the facing surface F side.
  • a pair of a current insertion hole Hf and a detection insertion hole Hs for inserting the probes Pf and Ps of the probe pair Pr respectively correspond to the probe pair Pr in the inspection-side support 5.
  • a plurality of pairs are formed.
  • the current insertion hole Hf and the detection insertion hole Hs are formed corresponding to the arrangement of the inspection points in order to guide the probes Pf and Ps to the inspection points of the substrate 100, respectively.
  • FIG. 5 is a cross-sectional view taken along line VV of the inspection-side support 5 and the probes Pf and Ps shown in FIG.
  • the opposing plate 51 has a thin region 511 that is thinner than the outer peripheral portion 512 of the opposing plate 51.
  • the current insertion hole Hf and the detection insertion hole Hs are formed through the thin region 511.
  • the central axes of the current insertion hole Hf and the detection insertion hole Hs are substantially perpendicular to the facing surface F. Note that the central axes of the current insertion hole Hf and the detection insertion hole Hs may be inclined with respect to the normal of the facing surface F.
  • the thin region 511 can be obtained, for example, by cutting a plate-like member having a uniform thickness with a tool such as a router.
  • the current insertion hole Hf and the detection insertion hole Hs are fine holes whose inner diameters are slightly larger than the diameters of the probes Pf and Ps. For this reason, when forming the current insertion hole Hf and the detection insertion hole Hs so as to penetrate through a thick plate, there is difficulty in drilling. Therefore, by forming the thin region 511 and forming the current insertion hole Hf and the detection insertion hole Hs in the thin region 511, the formation of the current insertion hole Hf and the detection insertion hole Hs is facilitated.
  • the current insertion hole Hf and the detection insertion hole Hs have a tapered shape that increases in diameter as the distance from the facing surface F increases.
  • the cross-sectional shapes of the current insertion hole Hf and the detection insertion hole Hs cut in parallel to the facing surface F are substantially circular.
  • Such a tapered shape can be formed, for example, by performing laser processing by irradiating laser light in the direction perpendicular to the facing surface F from the opposite surface C side opposite to the facing surface F of the facing plate 51.
  • the processing method of the current insertion hole Hf and the detection insertion hole Hs is not limited to laser processing, and various processing methods capable of forming a tapered hole can be used.
  • the guide plate 52 is formed with a guide hole H52 penetrating the guide plate 52 corresponding to the current insertion hole Hf and the detection insertion hole Hs of the adjacent counter plate 51, respectively.
  • guide holes H53 penetrating the guide plate 53 are formed corresponding to the guide holes H52 of the adjacent guide plates 52, respectively.
  • FIG. 6 is a cross-sectional view taken along line VV of the electrode side support 6, the electrode plate 9, and the probes Pf and Ps shown in FIG.
  • Probes Pf and Ps shown in FIGS. 5 and 6 include, for example, a rod-shaped conductor portion 81 having a diameter of about 100 ⁇ m and an insulating portion 82 that covers the outer peripheral surface of the conductor portion 81.
  • the insulating part 82 is formed of an insulator such as a synthetic resin.
  • the insulating part 82 can use an insulating film formed by applying an insulating coating to the surface of the conductor part 81. Insulating portions 82 are not formed at both ends of the probes Pf and Ps, and the conductor portions 81 are exposed.
  • the conductor portion 81 on the distal end side of the probe Pf is inserted from the guide plate 53 side into the communication hole formed by communicating the current insertion hole Hf and the guide holes H52 and H53, and the detection insertion hole.
  • a conductor portion 81 on the distal end side of the probe Ps is inserted from the guide plate 53 side into a communication hole formed by communicating Hs and the guide holes H52 and H53.
  • the inner diameter of the guide hole H53 is smaller than the diameter of the insulating portion 82 of the probes Pf and Ps. Thereby, the front end side end portion of the insulating portion 82 is engaged with the guide hole H53 so that the probes Pf and Ps do not fall off from the inspection side support body 5.
  • the guide holes H52 and H53 that form communication holes corresponding to the pair of current insertion holes Hf and the detection insertion holes Hs are spaced apart from each other as the probes Pf and Ps of the probe pair Pr approach the facing surface F.
  • the positional relationship between the current insertion hole Hf and the detection insertion hole Hs is set so as to be inclined so as to be shorter. Specifically, the distance between the centers of the pair of guide holes H52 and H52 is shorter than the distance between the centers of the pair of guide holes H53 and H53, and is shorter than the distance between the centers of the pair of guide holes H52 and H52. In addition, the distance between the centers of the pair of current insertion holes Hf and the detection insertion holes Hs is shortened.
  • FIG. 7 is an enlarged view showing details of the pair of current insertion holes Hf and detection insertion holes Hs.
  • FIG. 7A is a cross-sectional view of the pair of current insertion holes Hf and detection insertion holes Hs cut in a direction perpendicular to the facing surface F.
  • FIG. 7B is a plan view of the counter plate 51 as viewed from the opposite surface C.
  • the inclination angles Rf and Rs of the inner wall surfaces of the current insertion hole Hf and the detection insertion hole Hs with respect to the plate thickness direction are, for example, in the range of 1 to 5 degrees.
  • the inclination angles of the inner wall surfaces of the guide holes H52 and H53 of the guide plates 52 and 53 with respect to the thickness direction of the counter plate 51 are smaller than the inclination angles Rf and Rs.
  • the inner wall surfaces of the guide holes H52 and H53 may extend along the plate thickness direction, and the guide holes H52 and H53 may be cylindrical.
  • FIG. 5 shows an example in which the guide plate 53 is formed with a thin portion 531 having a reduced thickness, and the guide hole H53 is formed in the thin portion 531.
  • the guide plate 53 may be a plate-like member having a uniform thickness.
  • one guide plate may be sufficient and three or more may be sufficient as it.
  • the guide plate may not necessarily be provided, and the inspection-side support 5 may be configured with only the counter plate 51.
  • the guide holes H52 and H53 may have the same tapered shape as the current insertion hole Hf and the detection insertion hole Hs.
  • the inclination angle of the inner wall surface of the guide holes H52 and H53 is determined by the current insertion hole Hf and the detection hole Hf. It may be larger than the inclination angle of the inner wall surface of the insertion hole Hs.
  • FIG. 8 is a cross-sectional view showing a state where the substrate 100 is pressed against the inspection-side support 5 shown in FIG. Bumps B are formed on the substrate 100 as inspection points.
  • the bump B protrudes from the surface of the substrate 100 in a hemispherical shape, for example. Therefore, the inclination of the surface of the bump B increases with respect to the surface direction of the opposing surface F as the distance from the center of the bump B increases. Since the two probes Pf and Ps of the probe pair Pr need to be brought into contact with one bump B, the tips of the probes Pf and Ps are in contact with the bump B in a state of being spaced apart on both sides of the center of the bump B. .
  • the probes Pf and Ps are held by the inspection-side support 5 so as to extend along the normal direction (plate thickness direction) of the facing surface F, the probes Pf and Ps are placed on the surface of the bump B. It inclines and abuts against. Due to the inclination of the surface, the probes Pf and Ps are separated from each other at the tips of the probes Pf and Ps, and a force acts in the direction in which the probes Pf and Ps slide on the surface of the bump B. As a result, the contact stability of the probes Pf and Ps with respect to the bump B is lowered.
  • the probes Pf and Ps of the probe pair Pr are inclined by the guide holes H52 and H53 so that the distance between them becomes shorter as the opposing surface F is approached. Yes. Therefore, the tips of the probes Pf and Ps are in contact with the curved surface of the bump B surface at an angle closer to the vertical than when the probes Pf and Ps are along the normal direction of the opposing surface F. As a result, the tips of the probes Pf and Ps are less likely to slip on the bump B surface.
  • the inspection jig 4 may have a shape in which the inspection points protrude like bumps B as long as the probes Pf and Ps can be contacted, and the inspection points may be flat.
  • the probes Pf and Ps are inclined so that the distance between the probes Pf and Ps approaches the facing surface F, when the bump B is pressed against the tips of the probes Pf and Ps, as shown in FIG.
  • the probes Pf and Ps bend in a direction in which the inner sides facing each other are concave.
  • the directions of the tips of the probes Pf and Ps further approach perpendicular to the curved surface of the bump B surface.
  • the tips of the probes Pf and Ps are less likely to slip on the surface of the bump B, and the contact pressure of the probes Pf and Ps can be easily applied to the bump B without escaping. Stability is improved.
  • the current insertion hole Hf and the detection insertion hole Hs have a tapered shape that increases in diameter as the distance from the facing surface F increases, the current insertion hole Hf and the detection insertion hole Hs are mutually inside.
  • Wall surfaces F1 and S1 on the wall surface on the side away from the other insertion hole are inclined in a direction away from the other insertion hole as the distance from the facing surface F increases.
  • the bulging part of the probe to the outside caused by bending in the direction in which the inside of the probes Pf and Ps becomes concave is received in the space produced by the diameter expansion of the current insertion hole Hf and the detection insertion hole Hs. That is, since the current insertion hole Hf and the detection insertion hole Hs have a tapered shape that increases in diameter as they move away from the facing surface F, the probes Pf and Ps are easily bent in a direction in which the inside becomes concave, and consequently This contributes to improvement in contact stability of the probes Pf and Ps with respect to the bump B.
  • FIG. 11 is an explanatory view showing a comparative example for explaining another effect due to the taper shape in which the current insertion hole Hf and the detection insertion hole Hs have a diameter that increases as the distance from the facing surface F increases.
  • the comparative example shown in FIG. 11 includes a counter plate K instead of the counter plate 51.
  • the counter plate K is formed with a cylindrical current insertion hole M and a detection insertion hole N having a constant inner diameter instead of the current insertion hole Hf and the detection insertion hole Hs.
  • the probes Pf and Ps are connected to the current insertion hole M and the detection hole as shown in FIG. There is a possibility of causing damage to the probes Pf and Ps by hitting the corner portion X of the insertion hole N. Further, the counter plate K and the probes Pf and Ps are rubbed at the corner portion X to generate dust, and the dust may adhere to the probes Pf and Ps, resulting in poor contact.
  • the current insertion hole Hf and the detection insertion hole Hs have a tapered shape that increases in diameter with increasing distance from the facing surface F.
  • the probes Pf and Ps hit the corners of the insertion hole and the probes Pf and Ps are damaged or dust is generated, resulting in poor contact. Is less likely to occur.
  • the electrode side support 6 is provided corresponding to the current insertion hole Hf and the detection insertion hole Hs, and the other ends of the probes Pf and Ps are inserted through the probes Pf and Ps.
  • a support hole for guiding to 91 is formed.
  • support holes 61, 62, and 63 support holes H61, H62, and H63 (current support holes) for inserting the probe Pf, and support holes H61 and H62 for inserting the probe Ps, respectively.
  • H63 detection support hole
  • the support holes H61, H62, and H63 are communicated to form one through hole.
  • FIG. 6 shows an example in which the support holes H61, H62, and H63 each have a large-diameter portion with a large diameter and a small-diameter portion with a small diameter, but the diameters of the support holes H61, H62, and H63 are constant. Also good.
  • the electrode side support body 6 may be comprised by the single guide plate, and may be comprised by the guide plate of 2 sheets or 4 sheets or more.
  • the support holes H61, H62, and H63 have a positional relationship between the support holes so as to incline the probes Pf and Ps of the probe pair Pr so that the distance between them becomes shorter as they approach the back surface R.
  • the probes Pf and Ps inserted through the inspection-side support 5 and the electrode-side support 6 are curved in a curved state so that the interval is narrowed near both ends and the interval is expanded near the center.
  • the support 5 and the electrode-side support 6 are held.
  • the probes Pf and Ps are easily bent.
  • the sum of the opening end detection hole opening end Es2 and the radius rs2 is smaller than the distance L between the centers of the current insertion hole Hf and the detection insertion hole Hs.
  • the tip-side current hole opening end Ef2 and the tip-side detection hole opening end Es2 are separated into fine circles.
  • the tips of the probes Pf and Ps are accurately guided to the inspection point of the substrate 100 by the tip side current hole opening end Ef2 and the tip side detection hole opening end Es2.
  • the detection through-hole Hs that is paired with the radius rf1 of the rear-end-side current hole opening end Ef1 in which the current insertion hole Hf opens on the opposite surface C of the opposing plate 51 and the current insertion hole Hf is formed on the opposing plate 51.
  • the sum of the radius rs1 of the rear end side detection hole opening end Es1 opening in the opposite surface C is made larger than the distance L between the centers of the current insertion hole Hf and the detection insertion hole Hs to be the pair.
  • the end edge of the rear end side current hole opening end Ef1 and the end edge of the rear end side detection hole opening end Es1 are continuous.
  • the edge of the rear end side current hole opening end Ef1 and the end edge of the rear end detection hole opening end Es1 that are paired are continuous.
  • the open ends of the pair of current insertion holes Hf and the detection insertion hole Hs have a gourd shape in which the center is constricted on the opposite surface C side.
  • FIG. 9 is a plan view showing an example of the opposite surface C of the counter plate 51. As shown in FIG. 9, when the opposite surface C is visually observed, the current insertion hole Hf and the detection insertion hole Hs through which the probes Pf and Ps of the probe pair Pr are to be inserted in pairs form a gourd type. appear.
  • the inner diameter of the distal end side current hole opening end Ef2 and the inner diameter of the distal end side detection hole opening end Es2 need to bring the distal ends of the probes Pf and Ps into contact with inspection points such as the bumps B with high accuracy. It is made smaller than the internal diameter of hole H61, H62, H63. For this reason, it is difficult to insert the probes Pf and Ps into the inspection-side support 5 while the counter plate 51 and the guide plates 52 and 53 are stacked.
  • the counter plate 51 is removed from the inspection-side support 5.
  • the probes Pf and Ps are inserted into the guide plates 52 and 53 and then the probes Pf and Ps are inserted into the counter plate 51 and the counter plate 51 is attached, the probes Pf and Ps can be easily inserted.
  • the operator can remove the counter plate 51 from the guide plates 52 and 53 in this way, while looking at the counter surface C of the counter plate 51 with a magnifying glass or the like, while facing the counter surface C side.
  • the probes Pf and Ps are inserted through the current insertion hole Hf and the detection insertion hole Hs.
  • the inspection-side support 5 is not provided with a guide plate and is composed of only the counter plate 51, the operator can always see the opposite surface C without removing the guide plate.
  • the edge of the paired rear end side current hole opening end Ef1 and the end edge of the rear end side detection hole opening end Es1 are continuous, and a pair of current
  • the open ends of the insertion hole Hf and the detection insertion hole Hs are of a gourd type with the center constricted on the opposite surface C side (FIG. 9).
  • the operator can visually check the rear end side current hole opening end Ef1 of the current insertion hole Hf and the rear end side detection hole opening end Es1 of the detection insertion hole Hs connected to the gourd type, It can be easily recognized that the current insertion hole Hf and the detection insertion hole Hs are holes into which the probes Pf and Ps of the pair of probe pairs Pr are to be inserted, respectively. As a result, it becomes easy for the operator to insert the probes Pf and Ps into the correct current insertion hole Hf and the detection insertion hole Hs, and the work efficiency of the insertion work of the probes Pf and Ps into the inspection-side support 5 is improved. Will improve.
  • the inclination angles Rf and Rs are 1 to 5 degrees. It is preferable to be within the range. However, the inclination angles Rf and Rs are not limited to the range of 1 to 5 degrees, but may be less than 1 degree or may exceed 5 degrees.
  • the current insertion hole Hf and the detection insertion hole Hs have a tapered shape that increases in diameter as they move away from the facing surface F, and have a so-called funnel shape. Therefore, the probe Pf from the large inlet side of the funnel. , Ps is inserted into the distal ends of the probes Pf, Ps to the distal end current hole opening end Ef2 and the distal end detection hole opening end Es2, thereby facilitating insertion of the probes Pf, Ps.
  • radius rf3 of a current hole cross section that is a cross section of current insertion hole Hf cut in a direction parallel to opposing surface F;
  • the total of the detection hole cross-section radius rs3, which is a cross-section of the detection insertion hole Hs cut in that direction, is the distance from the opposing surface of the cross-sectional position is the depth of the current insertion hole Hf and the detection insertion hole Hs. In the range of 3/4 or less of D, the distance is smaller than the distance between the centers of the current insertion hole Hf and the detection insertion hole Hs.
  • the sum of the radius rf3 and the radius rs3 is the center of the current insertion hole Hf and the detection insertion hole Hs in a range where the distance from the opposing surface F of the cross-sectional position is 3/4 or less of the depth D.
  • the substrate inspection apparatus 1 ′ is shown in FIG. 1 like the substrate inspection apparatus 1.
  • the substrate inspection apparatus 1 ' differs from the substrate inspection apparatus 1 in the configuration of inspection jigs 4U' and 4L '.
  • the inspection jigs 4U 'and 4L' are collectively referred to as an inspection jig 4 '.
  • the inspection jig 4 'shown in FIGS. 2 and 3 is different from the inspection jig 4 in the configuration of the counter plate 51' constituting the inspection-side support 5 '. Since the other configuration is the same as that of the substrate inspection apparatus 1 shown in FIG.
  • FIG. 10 is an explanatory diagram for explaining an example of the configuration of the inspection jig 4 ′ according to the second embodiment of the present invention.
  • the inspection jig 4 ′ is configured, for example, by laminating a counter plate 51 ′ and guide plates 52 and 53. Since the guide plates 52 and 53 are configured in the same manner as the inspection jig 4, description thereof is omitted.
  • the counter plate 51 'shown in FIG. 10 differs from the counter plate 51 in the configuration of the current insertion hole Hf' and the detection insertion hole Hs'.
  • the current insertion hole Hf ′ and the detection insertion hole Hs ′ are tapered through holes.
  • the cross-sectional shapes of the current insertion hole Hf 'and the detection insertion hole Hs' cut perpendicular to the axial direction are substantially circular.
  • the central axes of the current insertion hole Hf ′ and the detection insertion hole Hs ′ are inclined in directions opposite to each other with respect to the thickness direction of the counter plate 51 ′.
  • the front end side detection hole opening end Es2 ′ in which the hole Hs ′ opens in the facing surface F and the rear end side detection hole opening end Es1 ′ in which the detection insertion hole Hs ′ opens in the opposite surface C are substantially elliptical.
  • the current insertion hole Hf ′ and the detection insertion hole Hs ′ are inclined in a direction away from the other insertion hole as the wall surfaces F1 and S1 on the inner wall surface away from the other insertion hole move away from the opposing surface F. is doing.
  • the bulging portion of the probe outward caused by bending in the direction in which the inside of the probes Pf and Ps becomes concave is received in the space generated by the inclination of the wall surfaces F1 and S1. It is done. That is, the wall surfaces F1 and S1 are inclined in a direction away from the other insertion hole as they are away from the opposing surface F, so that the probes Pf and Ps are easily bent in a direction in which the inside is concave, and as a result, the probes Pf and Ps. This contributes to improvement in contact stability with respect to the bump B.
  • the current insertion hole Hf ′ and the detection insertion hole Hs ′ are arranged such that the wall surfaces F2 and S2 on the inner wall surface close to the other insertion hole are in the thickness direction of the opposing plate 51 ′ (with respect to the opposing surface F). In the vertical direction).
  • the total of the major radius rs2 ′ of the leading end side detection hole opening end Es2 ′ is smaller than the distance L between the centers of the current insertion hole Hf ′ and the detection insertion hole Hs ′.
  • the distal end side current hole opening end Ef2 ′ and the distal end side detection hole opening end Es2 ′ are separated from each other, and the probes Pf, Ps.
  • the major axis direction is an elliptical shape along the bending direction.
  • a detection insertion hole paired with the major radius rf1 ′ of the rear end side current hole opening end Ef1 ′ in which the current insertion hole Hf ′ opens on the opposite surface C of the counter plate 51 ′ and the current insertion hole Hf ′.
  • the sum of the major radius rs1 ′ of the rear end side detection hole opening end Es1 ′ where Hs ′ opens on the opposite surface C of the counter plate 51 ′ is the current insertion hole Hf ′ and the detection insertion hole Hs ′. Is larger than the distance L between the centers.
  • Electrode plate 20 Control part 51, 51' Opposing plates 52, 53 Guide plates 61, 62, 63 Support plate 81 Conductor portion 82 Insulating portion 91 Electrode 100 Substrate 110 Substrate fixing device 112 Housing 121 First inspection portion 122 Second inspection portion 125 Inspection portion moving mechanism 511 Thin region 512 Outer part 531 Thin part B Bump (inspection point) C opposite surface Ef1, Ef1 ′ rear end side current hole opening end Ef2, Ef2 ′ front end side current hole opening end Es1, Es1 ′ rear end side detection hole opening end Es2, Es2 ′ front end side detection hole opening end F opposing surface H52, H53 Guide hole H61, H62, H63 Support hole Hf Current insertion hole Hs Detection insertion hole L Distance Pf Probe (current probe)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

【課題】検査点に対するプローブの接触安定性を向上することが可能な検査治具及び基板検査装置を提供する。 【解決手段】対向プレート51と、支持プレート61とを備え、対向プレート51には、プローブPfを挿通するための電流用挿通孔Hfと、プローブPsを挿通するための検出用挿通孔Hsとを対にして、当該対が複数対形成され、支持プレート61には、電流用挿通孔Hf、検出用挿通孔Hsに対応して設けられ、プローブPfを挿通するための支持孔H61及びプローブPsを挿通するための支持孔H61が形成され、対になる電流用挿通孔Hf及び検出用挿通孔Hsの各挿通孔は、互いの内壁面における他方の挿通孔から離れた側の壁面F1,S1が、対向面Fから離れるにつれて他方の挿通孔から離れる方向に傾斜している。

Description

検査治具及び基板検査装置
 本発明は、検査対象となる基板に設けられる検査点にプローブを接触させるための検査治具、及びこれを備えた基板検査装置に関する。
 検査治具は、接触子を経由して、被検査物が有する検査対象部に、検査装置から電力(電気信号など)を所定検査位置に供給するとともに、検査対象部から電気信号を検出することによって、検査対象部の電気的特性の検出、動作試験の実施等をするために用いられる。
 検査対象となる基板としては、例えば、プリント配線基板、フレキシブル基板、セラミック多層配線基板、液晶ディスプレイやプラズマディスプレイ用の電極板、及び半導体パッケージ用のパッケージ基板やフィルムキャリアなど種々の基板、半導体ウェハや半導体チップやCSP(Chip size package)などの半導体基板が該当する。本明細書では、これらの基板に設定される検査対象部を「検査点」と称する。
 例えば、検査対象となる基板にIC等の半導体回路や抵抗器などの電気、電子部品が搭載される場合には、検査対象となる対象部が、配線や半田バンプ等の電極となる。その場合には、対象部が、それら搭載部品に電気信号を正確に伝達できることを保証するため、電気、電子部品が実装される前のプリント配線基板、液晶パネルやプラズマディスプレイパネルに形成された配線上の所定の検査点間の抵抗値等の電気的特性を測定して、その配線の良否を判断している。
 具体的には、その配線の良否の判定は、各検査点に、電流供給用のプローブと、電圧測定用のプローブの先端を当接させて、その電流供給用のプローブから検査点に測定用電流を供給するとともに検査点に当接させた電圧測定用のプローブの先端間の配線に生じた電圧を測定し、それらの供給電流と測定した電圧とから所定の検査点間における配線の抵抗値を算出することによって行われている。このような測定方法は、四端子測定法として知られている。
 このようなプローブを、1000本以上の多数本保持するようにした検査治具が知られている(例えば、特許文献1参照)。この検査治具は、プローブの先端側を支持する先端側支持体に形成された挿通孔と、プローブの後端側を支持する後端側支持体に形成された挿通孔とに、プローブを挿通することによって、多数のプローブを保持するようになっている。
 このようなプローブは、例えば直径が100μm以下の細いワイヤ状の形状を有しており、このプローブが挿通される挿通孔も、そのプローブ径よりわずかに大きい程度の微細な孔である。
特開2009-047512号公報
 ところで、検査点が半田バンプのように、基板表面から半球状に突出している場合がある。このような場合、バンプの表面は、バンプの中心から遠ざかるにつれて傾斜角度が大きくなり、基板表面に対して垂直に近くなる。上述の四端子測定法では、電流供給用のプローブと、電圧測定用のプローブとを一つのバンプに接触させる必要があるので、両プローブの先端は、バンプの中心を挟んで両側に離間した状態でバンプに接触する。
 そのため、基板表面に対して垂直に両プローブをバンプに押圧させると、両プローブは、バンプの表面に対して傾斜して当接される。そして、その表面の傾斜によって、両プローブの先端部には、両プローブを互いに離間させ、バンプの表面で両プローブが滑る方向に力が作用する。その結果、プローブのバンプに対する接触安定性が低下するという、不都合があった。
 本発明の目的は、検査点に対するプローブの接触安定性を向上することが可能な検査治具及び基板検査装置を提供することである。
 本発明に係る検査治具は、検査対象の基板に設けられる検査点一つに対し、電流を供給するための棒状の電流プローブと電圧を検出するための棒状の検出プローブとを接触させるための検査治具であって、前記基板と対向配置されるための対向面を有する対向プレートと、前記対向プレートの前記対向面とは反対側に対向配置される支持プレートとを備え、前記対向プレートには、前記電流プローブを挿通するための電流用挿通孔と、前記検出プローブを挿通するための検出用挿通孔とを対にして、当該対が複数対形成され、前記支持プレートには、前記各電流用挿通孔及び前記各検出用挿通孔に対応して設けられ、前記電流プローブを挿通するための電流用支持孔及び前記検出プローブを挿通するための検出用支持孔が形成され、対になる前記電流用挿通孔及び前記検出用挿通孔の各挿通孔は、互いの内壁面における他方の挿通孔から離れた側の壁面が、前記対向面から離れるにつれて前記他方の挿通孔から離れる方向に傾斜している。
 また、本発明に係る基板検査装置は、上述の検査治具を備える。
 これらの構成によれば、対になる電流用挿通孔及び検出用挿通孔の各挿通孔が、互いの内壁面における他方の挿通孔から離れた側の壁面が対向面から離れるにつれて他方の挿通孔から離れる方向に傾斜しているので、電流プローブ及び検出プローブの両プローブは内側が凹となる方向に撓みやすくなる。その結果、検査点が半田パンプのように突起した形状を有している場合であっても検査点の表面に対して両プローブの先端が接触する角度が垂直に近づく。これにより、検査点に対するプローブの接触安定性を向上することが可能となる。
 また、前記各電流用挿通孔及び前記各検出用挿通孔は、前記対向面から離れるにつれて拡径するテーパ形状を有し、前記電流用挿通孔が前記対向面に開口する先端側電流孔開口端の半径とその電流用挿通孔と対になる前記検出用挿通孔が前記対向面に開口する先端側検出孔開口端の半径との合計が、当該対となる前記電流用挿通孔と前記検出用挿通孔との中心間の距離より小さくされ、かつ前記電流用挿通孔が前記対向プレートの前記対向面とは反対側の反対面に開口する後端側電流孔開口端の半径とその電流用挿通孔と対になる前記検出用挿通孔が前記反対面側に開口する後端側検出孔開口端の半径との合計が、当該対となる前記電流用挿通孔と前記検出用挿通孔との中心間の距離より大きくされ、当該対となる前記後端側電流孔開口端の端縁と前記後端側検出孔開口端の端縁とが連続していることが好ましい。
 この構成によれば、各電流用挿通孔及び各検出用挿通孔は、対向面から離れるにつれて拡径するテーパ形状を有し、電流用挿通孔が対向面に開口する先端側電流孔開口端の半径とその電流用挿通孔と対になる検出用挿通孔が対向面に開口する先端側検出孔開口端の半径との合計が、当該対となる電流用挿通孔と検出用挿通孔との中心間の距離より小さいので、先端側電流孔開口端と先端側検出孔開口端とは互いに分離される。その結果、先端側電流孔開口端と先端側検出孔開口端とによって、電流プローブと検出プローブの先端部が精度よく基板の検査点へ案内される。
 そして、電流用挿通孔が対向プレートの対向面とは反対側の反対面に開口する後端側電流孔開口端の半径とその電流用挿通孔と対になる検出用挿通孔が反対面側に開口する後端側検出孔開口端の半径との合計が、当該対となる電流用挿通孔と検出用挿通孔との中心間の距離より大きくされ、当該対となる後端側電流孔開口端の端縁と後端側検出孔開口端の端縁とが連続している。その結果、反対面では対となる後端側電流孔開口端と後端側検出孔開口端とが連なって、いわゆるヒョウタン型となる。従って、作業者は、ヒョウタン型の孔形状を目視で確認することで、対となる電流プローブと検出プローブとを挿入すべき電流用挿通孔と検出用挿通孔が判るので、検査治具へのプローブの取り付け作業性を向上することができる。
 また、前記対となる前記電流用挿通孔及び前記検出用挿通孔について、前記対向面と平行な方向に切断した前記電流用挿通孔の断面である電流孔断面の半径と、その方向に切断した前記検出用挿通孔の断面である検出孔断面の半径との合計は、その断面位置の前記対向面からの距離が、少なくとも前記電流用挿通孔及び前記検出用挿通孔の深さの3/4以下の範囲では前記電流用挿通孔と前記検出用挿通孔との中心間の距離より小さいことが好ましい。
 対となる電流用挿通孔及び検出用挿通孔について、対向面と平行な方向に切断した電流用挿通孔の断面である電流孔断面の半径と、その方向に切断した検出用挿通孔の断面である検出孔断面の半径との合計が電流用挿通孔と検出用挿通孔との中心間の距離より大きい場合、電流用挿通孔と検出用挿通孔との間を隔てる壁がなくなる。そのため電流プローブと検出プローブとが接触する可能性が高まる。一方、前記合計を、その断面位置の対向面からの距離が挿通孔の深さの3/4以下の範囲では、電流用挿通孔と検出用挿通孔との中心間の距離より小さくすれは、電流プローブと検出プローブとの間を隔てる壁が、挿通孔の深さの3/4以上設けられることになる。これにより、電流プローブと検出プローブとが接触するおそれが低減される。
 また、前記各電流用挿通孔及び前記各検出用挿通孔の内壁面の、前記対向プレートの板厚方向に対する傾斜角度は、1~5度の範囲内であることが好ましい。
 一対の電流用挿通孔及び検出用挿通孔の、反対面における開口端をヒョウタン型にしつつ、対向面での開口部を分離するには、上記傾斜角度が1~5度の範囲内であることが好適である。
 また、前記各電流用挿通孔及び前記各検出用挿通孔は、前記対向面から離れるにつれて拡径するテーパ形状を有し、対になる前記電流用挿通孔及び前記検出用挿通孔の前記各挿通孔は、互いの内壁面における他方の挿通孔に近い側の壁面が、前記対向プレートの板厚方向に沿って延びていることが好ましい。
 この構成によれば、電流プローブ、検出プローブが、内側が凸となる方向へ撓もうとすると、互いの内壁面における他方の挿通孔に近い側の壁面が電流プローブ、検出プローブと干渉する結果、電流プローブ、検出プローブが、内側が凸となる方向へ撓むことが妨げられる。その結果、電流プローブ、検出プローブを内側が凹となる方向に撓ませる確実性が向上し、ひいては電流プローブ、検出プローブの検査点に対する接触安定性向上の確実性が向上する。
 また、前記対向プレートには、その対向プレートの外周部よりも板厚が薄い薄肉領域が形成されており、前記各電流用挿通孔及び前記各検出用挿通孔は、前記薄肉領域を貫通していることが好ましい。
 この構成によれば、電流用挿通孔及び検出用挿通孔を形成するために貫通させなければならない板厚が薄くなるので、微細な電流用挿通孔及び検出用挿通孔の形成が容易になる。
 また、前記対向プレートの、前記反対面側には、前記各電流用挿通孔及び前記各検出用挿通孔とそれぞれ対応し、前記電流プローブ及び前記検出プローブをそれぞれ挿通可能な案内孔が形成された案内プレートが積層され、対となる前記電流用挿通孔及び前記検出用挿通孔とそれぞれ対応する前記各案内孔は、その電流用挿通孔及び検出用挿通孔に挿通されて対となる前記電流プローブと前記検出プローブとを、前記対向面に近づくにつれて互いの離間距離が短くなるように傾斜させるべくその電流用挿通孔及び検出用挿通孔との位置関係が設定されていることが好ましい。
 この構成によれば、案内孔によって、電流プローブ及び検出プローブが、対向面に近づくにつれて互いの離間距離が短くなるように傾斜される。従って、検査点がハンダバンプのように突起している場合、電流プローブ及び検出プローブの先端は、電流プローブ及び検出プローブが対向面の法線方向に沿う場合よりも検査点表面の曲面に対して垂直に近い角度で当接する。その結果、電流プローブ及び検出プローブの先端が検査点表面で滑りにくくなる。
 また、前記案内孔の内壁面の、前記対向プレートの板厚方向に対する傾斜角度は、前記各電流用挿通孔及び前記各検出用挿通孔の内壁面の、前記板厚方向に対する傾斜角度より小さいことが好ましい。
 この構成によれば、電流用挿通孔及び検出用挿通孔よりも、案内孔内での電流プローブ及び検出プローブが動く遊びの範囲が減少する結果、電流プローブ及び検出プローブの保持の安定性が向上する。
 また、前記電流用挿通孔に挿通された前記電流プローブと、前記検出用挿通孔に挿通された前記検出プローブとをさらに備えることが好ましい。
 この構成によれば、検査治具を、速やかに検査に用いることが可能となる。
 このような構成の検査治具及び基板検査装置は、検査点に対するプローブの接触安定性を向上することが可能である。
本発明の一実施形態に係る検査治具を備えた基板検査装置の構成を概略的に示す正面図である。 図1に示す検査治具の一例を示す斜視図である。 図2に示す検査治具の側面図である。 図1、図2に示す検査治具を、対向面側から見た平面図である。 図4に示す検査側支持体及びプローブのV-V線断面図である。 図4に示す電極側支持体、電極プレート、及びプローブのV-V線断面図である。 一対の電流用挿通孔及び検出用挿通孔の詳細を示す拡大図である。 図5に示す検査側支持体に基板が圧接された状態を示す断面図である。 対向プレートの反対面の一例を示す平面図である。 本発明の第2実施形態に係る検査治具の構成の一例を説明するための説明図である。 電流用挿通孔及び検出用挿通孔が、対向面から離れるにつれて拡径するテーパ形状を有することによる他の効果を説明するための比較例を示す説明図である。
 以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
(第1実施形態)
 図1は、本発明の一実施形態に係る検査治具を備えた基板検査装置1の構成を概略的に示す正面図である。図1に示す基板検査装置1は、検査対象の基板に形成された回路パターンを検査するための装置である。
 図1に示す基板検査装置1は、筐体112を有している。筐体112の内部空間には、基板固定装置110と、第1検査部121と、第2検査部122と、が主に設けられている。基板固定装置110は、検査対象の基板100を所定の位置に固定するように構成されている。
 基板100は、例えばガラスエポキシ基板、フレキシブル基板、セラミック多層配線基板、液晶ディスプレイやプラズマディスプレイ用の電極板、タッチパネル用等の透明導電板、及び半導体パッケージ用のパッケージ基板やフィルムキャリアなど種々の基板であってもよい。基板100には、配線パターンや半田バンプ等の検査点が形成されている。
 第1検査部121は、基板固定装置110に固定された基板100の上方に位置する。第2検査部122は、基板固定装置110に固定された基板100の下方に位置する。第1検査部121及び第2検査部122は、基板100に形成された回路パターンを検査するための検査治具4U,4Lを備えている。検査治具4U,4Lには、複数のプローブPf,Psが取り付けられている。また、第1検査部121及び第2検査部122は、筐体112内で適宜移動するために検査部移動機構125を備えている。
 基板検査装置1は、基板固定装置110、第1検査部121、及び第2検査部122等の動作を制御する制御部20を備えている。制御部20は、例えばマイクロコンピュータを用いて構成されている。制御部20は、第1検査部121及び第2検査部122を適宜移動させ、基板固定装置110に固定された基板100に検査治具4U,4LのプローブPf(電流プローブ)及びプローブPs(検出プローブ)を接触させることにより、基板100に形成された回路パターンを検査治具4U,4Lによって検査するように構成されている。検査治具4U,4Lは、同様に構成されているので、以下、検査治具4U,4Lを総称して検査治具4と称する。
 図2は、図1に示す検査治具4の一例を示す斜視図である。図3は、図2に示す検査治具4の側面図である。検査治具4は、検査側支持体5及び電極側支持体6、並びに検査側支持体5と電極側支持体6とを所定距離隔てて平行に保持する連結部材7とを備えている。検査側支持体5及び電極側支持体6には、互いに対応する位置に挿通孔が形成されている。
 検査治具4は、いわゆる四端子測定法用の検査治具であり、検査電流供給用のプローブPfと、電圧測定用のプローブPsとを備えている。検査側支持体5の挿通孔にプローブPf,Psの先端側が挿通され、電極側支持体6の挿通孔にプローブPf,Psの後端側が挿通されている。これにより、一対のプローブPf,Psからなるプローブ対Prが、複数対、検査側支持体5及び電極側支持体6によって保持されている。
 検査側支持体5は、基板100が配置される側(先方)から順に、対向プレート51、案内プレート52,53が積層されて構成されている。対向プレート51は、基板100と対向配置される対向面Fを有している。対向プレート51は、案内プレート52,53に対して、ボルト等の脱着可能な固定手段によって互いに固定されている。これにより、対向プレート51は、案内プレート52,53に対して脱着可能にされている。
 電極側支持体6は、対向面Fとは反対側から順に、支持プレート61,62,63が積層されて構成されている。支持プレート61の表面は、後述する電極91が形成された電極プレート9に当接される背面Rとされている(図6)。電極91は、例えば電流計、電圧計、電流源等を含む図略のスキャナ回路と接続されている。これにより、支持プレート61に電極プレート9が取り付けられることで、プローブPf,Psの後端部が電極91を介してスキャナ回路と接続される。
 対向プレート51の対向面Fから支持プレート61の背面Rまでの距離は、プローブPf,Psの長さよりわずかに短くされている。これにより、後述の図6に示すように支持プレート61に電極プレート9が取り付けられると、プローブPf,Psの後端部が電極91に当接して当て止めされ、プローブPf,Psの先端部は対向面Fからわずかに突出する。
 この状態で、対向プレート51に検査対象の基板100が圧接されると、プローブPf,Psの先端部が基板100によって押圧されてプローブPf,Psに撓みが生じる(図8)。その結果、プローブPf,Psの弾性復元力により生じた付勢力によって、プローブPf,Psの先端部が基板100の検査点に弾性的に接触するようにされている。
 スキャナ回路は、例えば制御部20からの制御信号に応じて、所定のプローブPf,Pf間に所定の電流を供給し、そのプローブPf,Pfとそれぞれ対になったプローブPs,Ps間の電圧を測定し、その測定結果を制御部20へ送信する。
 制御部20は、スキャナ回路から得られた測定結果に基づき、例えば四端子測定法による基板検査を実行する。具体的には、例えば、制御部20は、後述する図8に示すように、検査治具4の検査側支持体5を基板100に圧接させ、バンプB等の各検査点に対してプローブ対PrすなわちプローブPf,Psを接触させる。そして、制御部20は、検査対象の二つの検査点間で、一方の検査点に接触されたプローブPfと他方の検査点に接触されたプローブPfとの間にスキャナ回路により予め設定された検査用電流を流させ、その一方の検査点に接触されたプローブPsと他方の検査点に接触されたプローブPsとの間の電圧を検出電圧としてスキャナ回路により測定させる。制御部20は、例えばその検出電圧や、その検出電圧から求められた検査点間の抵抗値等を予め設定された基準値と比較することにより、基板100の良否判定を実行する。
 図4は、図1、図2に示す検査治具4を、対向面F側から見た平面図である。図3に示すように、検査側支持体5には、プローブ対PrのプローブPf,Psをそれぞれ挿通するための電流用挿通孔Hfと検出用挿通孔Hsとの対が、プローブ対Prと対応して複数対形成されている。電流用挿通孔Hfと、検出用挿通孔Hsとは、基板100の検査点にプローブPf,Psをそれぞれ案内するために、検査点の配置と対応して形成されている。
 図5は、図4に示す検査側支持体5及びプローブPf,PsのV-V線断面図である。図5に示すように、対向プレート51には、対向プレート51の外周部512よりも板厚が薄い薄肉領域511が形成されている。電流用挿通孔Hf及び検出用挿通孔Hsは、薄肉領域511を貫通して形成されている。電流用挿通孔Hf及び検出用挿通孔Hsの中心軸は、対向面Fに対して略垂直にされている。なお、電流用挿通孔Hf及び検出用挿通孔Hsの中心軸は、対向面Fの垂線に対して傾斜していてもよい。
 薄肉領域511は、例えば板厚が均一の板状部材をルータ等の工具で切削加工することで得られる。電流用挿通孔Hf及び検出用挿通孔Hsは、その内径がプローブPf,Psの直径よりもわずかに大きい程度の微細な孔である。そのため、板厚の厚い板を貫通するように電流用挿通孔Hf及び検出用挿通孔Hsを形成する場合、孔加工に困難性を伴う。そこで、薄肉領域511を形成し、薄肉領域511に電流用挿通孔Hf及び検出用挿通孔Hsを形成することにより、電流用挿通孔Hf及び検出用挿通孔Hsの形成が容易にされている。
 電流用挿通孔Hf及び検出用挿通孔Hsは、対向面Fから離れるにつれて拡径するテーパ形状を有している。電流用挿通孔Hf及び検出用挿通孔Hsの、対向面Fと平行に切断した断面形状は略円形にされている。このようなテーパ形状は、例えば対向プレート51の対向面Fとは反対側の反対面C側から対向面Fと垂直方向にレーザ光を照射してレーザ加工を行うことで、形成することができる。なお、電流用挿通孔Hf及び検出用挿通孔Hsの加工方法はレーザ加工に限らず、テーパ形状の孔を形成可能な種々の加工方法を用いることができる。
 案内プレート52には、隣接する対向プレート51の電流用挿通孔Hf及び検出用挿通孔Hsとそれぞれ対応して、案内プレート52を貫通する案内孔H52が形成されている。案内プレート53には、隣接する案内プレート52の各案内孔H52とそれぞれ対応して、案内プレート53を貫通する案内孔H53が形成されている。
 図6は、図4に示す電極側支持体6、電極プレート9、及びプローブPf,PsのV-V線断面図である。図5、図6に示すプローブPf,Psは、例えば直径100μm程度の棒状の導体部81と、この導体部81の外周面を覆う絶縁部82とを備えている。絶縁部82は、合成樹脂等の絶縁体で形成されている。絶縁部82は、導体部81の表面に絶縁塗装を施すことによって形成される絶縁被膜を用いることができる。プローブPf,Psの両端には、絶縁部82が形成されておらず、導体部81が露出している。
 図5を参照して、電流用挿通孔Hf及び案内孔H52,H53が連通されて構成された連通孔にプローブPfの先端側の導体部81が案内プレート53側から挿通され、検出用挿通孔Hs及び案内孔H52,H53が連通されて構成された連通孔にプローブPsの先端側の導体部81が案内プレート53側から挿通されている。案内孔H53の内径は、プローブPf,Psの絶縁部82の直径よりも小さくされている。これにより、絶縁部82の先端側端部が案内孔H53に係合し、プローブPf,Psが検査側支持体5から抜け落ちないようにされている。
 一対の電流用挿通孔Hf及び検出用挿通孔Hsとそれぞれ対応して連通孔を形成する案内孔H52,H53は、プローブ対PrのプローブPf,Psを、対向面Fに近づくにつれて互いの離間距離が短くなるように傾斜させるべくその電流用挿通孔Hf及び検出用挿通孔Hsとの位置関係が設定されている。具体的には、一対の案内孔H53,H53の中心間の距離よりも一対の案内孔H52,H52の中心間の距離の方が短くされ、一対の案内孔H52,H52の中心間の距離よりも一対の電流用挿通孔Hf及び検出用挿通孔Hsの中心間の距離の方が短くされている。
 図7は、一対の電流用挿通孔Hf及び検出用挿通孔Hsの詳細を示す拡大図である。図7(a)は、一対の電流用挿通孔Hf及び検出用挿通孔Hsを、対向面Fに対して垂直な方向に切断した断面図である。図7(b)は、対向プレート51を反対面Cから見た平面図である。
 電流用挿通孔Hf及び検出用挿通孔Hsの内壁面の、板厚方向に対する傾斜角度Rf,Rsは、例えば1~5度の範囲とされている。案内プレート52,53の案内孔H52,H53の内壁面の、対向プレート51の板厚方向に対する傾斜角度は、傾斜角度Rf,Rsより小さい。例えば、案内孔H52,H53の内壁面は、板厚方向に沿って延び、案内孔H52,H53は円筒状にされていてもよい。これにより、案内孔H52,H53内でプローブPf,Psが動く遊びの範囲が減少する結果、プローブPf,Psの保持の安定性が向上する。
 なお、図5では、案内プレート53に、板厚が薄くされた薄肉部531が形成され、薄肉部531に案内孔H53が形成される例を示している。しかしながら、案内プレート53は、板厚が均一の板状部材であってもよい。また、案内プレートが二枚、対向プレート51に積層される例を示したが、案内プレートは一枚であってもよく、三枚以上であってもよい。また、必ずしも案内プレートを備えていなくてもよく、対向プレート51のみで検査側支持体5が構成されていてもよい。また、案内孔H52,H53は、電流用挿通孔Hf及び検出用挿通孔Hsと同様のテーパ形状であってもよく、案内孔H52,H53の内壁面の傾斜角度は電流用挿通孔Hf及び検出用挿通孔Hsの内壁面の傾斜角度より大きくてもよい。
 図8は、図5に示す検査側支持体5に、基板100が圧接された状態を示す断面図である。基板100には、検査点としてバンプBが形成されている。バンプBは、例えば半球状に基板100の表面から突出している。従って、バンプBの表面は、バンプBの中心から遠ざかるにつれて、対向面Fの面方向に対して傾斜が大きくなる。プローブ対Prの二本のプローブPf,Psを一つのバンプBに接触させる必要があるので、プローブPf,Psの先端は、バンプBの中心を挟んで両側に離間した状態でバンプBに接触する。
 そのためもし仮に、プローブPf,Psが対向面Fの法線方向(板厚方向)に沿って延びるように検査側支持体5で保持されていた場合、プローブPf,Psは、バンプBの表面に対して傾斜して当接される。そして、その表面の傾斜によって、プローブPf,Psの先端部には、プローブPf,Psを互いに離間させ、バンプBの表面でプローブPf,Psが滑る方向に力が作用する。その結果、プローブPf,PsのバンプBに対する接触安定性が低下する。
 一方、図5に示す検査側支持体5によれば、案内孔H52,H53によって、プローブ対PrのプローブPf,Psが、対向面Fに近づくにつれて互いの離間距離が短くなるように傾斜されている。従って、プローブPf,Psの先端は、プローブPf,Psが対向面Fの法線方向に沿う場合よりもバンプB表面の曲面に対して垂直に近い角度で当接する。その結果、プローブPf,Psの先端がバンプB表面で滑りにくくなる。なお、検査治具4は、検査点がバンプBのように突起した形状であってもプローブPf,Psを接触可能であればよく、検査点が平坦であってもよい。
 さらに、プローブPf,Psが、対向面Fに近づくにつれて互いの離間距離が短くなるように傾斜しているので、プローブPf,Ps先端にバンプBが圧接されると、図8に示すように、プローブPf,Psは、互いに対向している内側が凹となる方向に撓みが生じる。互いに対向している内側が凹となる方向に撓むと、プローブPf,Psの先端の向きが、さらにバンプB表面の曲面に対して垂直に近づく。その結果、さらにプローブPf,Psの先端がバンプB表面で滑りにくくなると共に、プローブPf,Psの当接圧力が逃げることなくバンプBに加わりやすくなることによって、プローブPf,PsのバンプBに対する接触安定性が向上する。
 ここで、電流用挿通孔Hf及び検出用挿通孔Hsは、対向面Fから離れるにつれて拡径するテーパ形状を有しているので、電流用挿通孔Hf及び検出用挿通孔Hsは、互いの内壁面における他方の挿通孔から離れた側の壁面F1,S1が、対向面Fから離れるにつれて他方の挿通孔から離れる方向に傾斜している。
 その結果、プローブPf,Psの内側が凹となる方向の撓みで生じる外側へのプローブの膨らみ部分が電流用挿通孔Hf及び検出用挿通孔Hsの拡径により生じる空間で受け入れられる。すなわち、電流用挿通孔Hf及び検出用挿通孔Hsが対向面Fから離れるにつれて拡径するテーパ形状を有していることによって、プローブPf,Psは内側が凹となる方向に撓みやすくなり、ひいてはプローブPf,PsのバンプBに対する接触安定性の向上に寄与することとなる。
 図11は、電流用挿通孔Hf及び検出用挿通孔Hsが、対向面Fから離れるにつれて拡径するテーパ形状を有することによる他の効果を説明するための比較例を示す説明図である。図11に示す比較例は、対向プレート51の代わりに対向プレートKを備えている。対向プレートKには、電流用挿通孔Hf及び検出用挿通孔Hsの代わりに内径が一定の筒状の電流用挿通孔M及び検出用挿通孔Nが形成されている。
 もし仮に、電流用挿通孔M及び検出用挿通孔Nの形状が、内径が一定の筒状形状であった場合、図11に示すように、プローブPf,Psが電流用挿通孔M及び検出用挿通孔Nの角部Xに当たってプローブPf,Psの損傷を招くおそれがある。また、角部Xで対向プレートKとプローブPf,Psとが擦れて塵埃が発生し、その塵埃がプローブPf,Psに付着して接触不良を生じるおそれがある。
 一方、図5に示す検査側支持体5によれば、電流用挿通孔Hf及び検出用挿通孔Hsが、対向面Fから離れるにつれて拡径するテーパ形状を有しているので、電流用挿通孔Hf及び検出用挿通孔Hsの角部がプローブPf,Psから遠ざかる結果、挿通孔の角部にプローブPf,Psが当たってプローブPf,Psが損傷したり、塵埃が発生して接触不良を生じたりするおそれが低減される。
 図6を参照して、電極側支持体6には、電流用挿通孔Hf及び検出用挿通孔Hsに対応して設けられ、プローブPf,Psを挿通してプローブPf,Psの他端を電極91に案内する支持孔が形成されている。具体的には、支持プレート61,62,63には、それぞれプローブPfを挿通するための支持孔H61,H62,H63(電流用支持孔)と、プローブPsを挿通するための支持孔H61,H62,H63(検出用支持孔)とが形成されている。
 支持孔H61,H62,H63は、連通されて一つの貫通孔を構成するようになっている。図6では、支持孔H61,H62,H63は、それぞれ径の大きい大径部と径の小さい小径部とを有する例を示しているが、支持孔H61,H62,H63の径は一定であってもよい。また、電極側支持体6は、単一の案内プレートにより構成されていてもよく、二枚、あるいは四枚以上の案内プレートにより構成されていてもよい。
 支持孔H61,H62,H63は、プローブ対PrのプローブPf,Psを、背面Rに近づくにつれて互いの離間距離が短くなるように傾斜させるべく支持孔相互間の位置関係が設定されている。これにより、検査側支持体5と電極側支持体6とに挿通されたプローブPf,Psは、その両端付近で間隔が狭まり、その中央付近で間隔が拡がるように、湾曲した状態で、検査側支持体5と電極側支持体6とに保持されるようになっている。その結果、プローブPf,Ps先端にバンプBが圧接されたときに、プローブPf,Psが撓み易くなる。
 図7を参照して、電流用挿通孔Hfが対向面Fに開口する先端側電流孔開口端Ef2の半径rf2とその電流用挿通孔Hfと対になる検出用挿通孔Hsが対向面Fに開口する先端側検出孔開口端Es2の半径rs2との合計が、当該対となる電流用挿通孔Hfと検出用挿通孔Hsとの中心間の距離Lより小さくされている。これにより、先端側電流孔開口端Ef2と、先端側検出孔開口端Es2とは、互いに分離された略円形形状とされている。
 このように電流用挿通孔Hf及び検出用挿通孔Hsを形成することにより、先端側電流孔開口端Ef2と、先端側検出孔開口端Es2とが、それぞれ分離された微細な円形とされるので、先端側電流孔開口端Ef2と、先端側検出孔開口端Es2とによって、プローブPf,Psの先端部が精度よく基板100の検査点へ案内される。
 また、電流用挿通孔Hfが対向プレート51の反対面Cに開口する後端側電流孔開口端Ef1の半径rf1とその電流用挿通孔Hfと対になる検出用挿通孔Hsが対向プレート51の反対面Cに開口する後端側検出孔開口端Es1の半径rs1との合計が、当該対となる電流用挿通孔Hfと検出用挿通孔Hsとの中心間の距離Lより大きくされ、当該対となる後端側電流孔開口端Ef1の端縁と後端側検出孔開口端Es1の端縁とが連続している。
 このように電流用挿通孔Hf及び検出用挿通孔Hsを形成することにより、対となる後端側電流孔開口端Ef1の端縁と後端側検出孔開口端Es1の端縁とが連続し、図7に示すように、一対の電流用挿通孔Hf及び検出用挿通孔Hsの開口端が、反対面C側で中央がくびれたヒョウタン型となる。
 図9は、対向プレート51の反対面Cの一例を示す平面図である。図9に示すように、反対面Cを目視すると、プローブ対PrのプローブPf,Psが対となって挿通されるべき電流用挿通孔Hfと検出用挿通孔Hsとが、ヒョウタン型に連なって見える。
 先端側電流孔開口端Ef2の内径及び先端側検出孔開口端Es2の内径は、プローブPf,Psの先端部を精度よくバンプB等の検査点に接触させる必要から、案内孔H52,H53や支持孔H61,H62,H63の内径より小さくされている。そのため、対向プレート51と案内プレート52,53とを積層した状態のままでプローブPf,Psを、検査側支持体5に挿通するのは困難性を伴う。
 そのため、例えば劣化したプローブPf,Psを取り替える際や検査治具4の組み立て時など、検査側支持体5にプローブPf,Psを挿通する際は、検査側支持体5から対向プレート51を取り外し、案内プレート52,53にプローブPf,Psを挿通した後に対向プレート51にプローブPf,Psを挿通して対向プレート51を取り付けるようにすると、プローブPf,Psの挿通が容易である。
 従来より、検査治具を組み立てる際には、作業者がルーペを見ながら微細な孔に極細なプローブを手作業で挿通することが行われている。このような組み立て作業の際、先端側支持体の挿通孔と、後端側支持体の挿通孔とで、互いに対応する正しい挿通孔にプローブを挿通する必要がある。しかしながら、1000本を超える多数の極細プローブを微細な挿通孔に挿通する必要があるため、互いに対応する正しい挿通孔にプローブを挿通するのが容易でないという、不都合があった。
 一方、検査治具4によれば、作業者は、このように案内プレート52,53から対向プレート51を取り外した状態で、ルーペなどで対向プレート51の反対面Cを見ながら、反対面C側から電流用挿通孔Hf及び検出用挿通孔HsにプローブPf,Psを挿通することになる。特に、検査側支持体5が案内プレートを備えず、対向プレート51のみで構成されている場合、作業者は、案内プレートを取り外さなくても常時反対面Cを目視可能となる。
 このとき、図7に記載の対向プレート51によれば、対となる後端側電流孔開口端Ef1の端縁と後端側検出孔開口端Es1の端縁とが連続し、一対の電流用挿通孔Hf及び検出用挿通孔Hsの開口端が、反対面C側で中央がくびれたヒョウタン型となっている(図9)。
 そのため、作業者は、ヒョウタン型に連なった電流用挿通孔Hfの後端側電流孔開口端Ef1と検出用挿通孔Hsの後端側検出孔開口端Es1とを目視で確認することができ、その電流用挿通孔Hfと検出用挿通孔Hsとが、一対のプローブ対PrのプローブPf,Psをそれぞれ挿通すべき孔であることが容易に認識できる。その結果、作業者が、正しい電流用挿通孔Hf及び検出用挿通孔HsにプローブPf,Psを挿通することが容易になり、検査側支持体5へのプローブPf,Psの挿通作業の作業効率が向上する。
 一対の電流用挿通孔Hf及び検出用挿通孔Hsの、反対面Cにおける開口端をヒョウタン型にしつつ、対向面Fでの開口部を分離するには、傾斜角度Rf,Rsが1~5度の範囲内であることが好適である。しかしながら、傾斜角度Rf,Rsは、1~5度の範囲内に限られず、1度未満であってもよく、5度を超えていてもよい。
 また、電流用挿通孔Hf及び検出用挿通孔Hsは、対向面Fから離れるにつれて拡径するテーパ形状を有し、いわゆる漏斗状の形状を有しているので、漏斗の大きな入口側からプローブPf,Psを挿通することで、プローブPf,Psの先端部が先端側電流孔開口端Ef2及び先端側検出孔開口端Es2に案内されるので、プローブPf,Psの挿通作業が容易になる。
 図7を参照して、対となる電流用挿通孔Hf及び検出用挿通孔Hsについて、対向面Fと平行な方向に切断した電流用挿通孔Hfの断面である電流孔断面の半径rf3と、その方向に切断した検出用挿通孔Hsの断面である検出孔断面の半径rs3との合計は、その断面位置の対向面からの距離が、電流用挿通孔Hf及び検出用挿通孔Hsの深さDの3/4以下の範囲では、電流用挿通孔Hfと検出用挿通孔Hsとの中心間の距離より小さくされている。
 半径rf3と半径rs3の合計が電流用挿通孔Hfと検出用挿通孔Hsとの中心間の距離より大きい深さ位置では、電流用挿通孔Hfと検出用挿通孔Hsとの間を隔てる壁がない。そのためプローブPf,Psが接触する可能性が高まる。一方、半径rf3と半径rs3との合計を、その断面位置の対向面Fからの距離が、深さDの3/4以下である範囲で電流用挿通孔Hfと検出用挿通孔Hsとの中心間の距離より小さくすれは、プローブPf,Psの間を隔てる壁が、深さDの3/4以上設けられることになる。これにより、プローブPf,Psが接触するおそれが低減される。
(第2実施形態)
 次に、本発明の第2実施形態に係る基板検査装置1’について説明する。基板検査装置1’は、基板検査装置1と同様、図1で示される。基板検査装置1’は、基板検査装置1とは、検査治具4U’,4L’の構成が異なる。以下、検査治具4U’,4L’を総称して検査治具4’と称する。図2、図3に示す検査治具4’は、検査治具4とは、検査側支持体5’を構成する対向プレート51’の構成が異なる。その他の構成は図1に示す基板検査装置1と同様であるのでその説明を省略し、以下本実施形態の特徴的な点について説明する。
 図10は、本発明の第2実施形態に係る検査治具4’の構成の一例を説明するための説明図である。検査治具4’は、例えば対向プレート51’と案内プレート52,53とが積層されて構成されている。案内プレート52,53については検査治具4と同様に構成されているのでその説明を省略する。
 図10に示す対向プレート51’は、対向プレート51とは、電流用挿通孔Hf’及び検出用挿通孔Hs’の構成が異なる。電流用挿通孔Hf’及び検出用挿通孔Hs’は、テーパ状の貫通孔である。電流用挿通孔Hf’及び検出用挿通孔Hs’の軸方向に垂直に切断した断面形状は略円形にされている。電流用挿通孔Hf’及び検出用挿通孔Hs’の中心軸は、対向プレート51’の板厚方向に対して互いに逆方向に傾斜している。そのため、電流用挿通孔Hf’が対向面Fに開口する先端側電流孔開口端Ef2’、電流用挿通孔Hf’が反対面Cに開口する後端側電流孔開口端Ef1’、検出用挿通孔Hs’が対向面Fに開口する先端側検出孔開口端Es2’、及び検出用挿通孔Hs’が反対面Cに開口する後端側検出孔開口端Es1’は、略楕円形状となっている。
 電流用挿通孔Hf’及び検出用挿通孔Hs’は、互いの内壁面における他方の挿通孔から離れた側の壁面F1,S1が、対向面Fから離れるにつれて他方の挿通孔から離れる方向に傾斜している。
 これにより、図8に示す検査側支持体5と同様、プローブPf,Psの内側が凹となる方向の撓みで生じる外側へのプローブの膨らみ部分が、壁面F1,S1の傾斜により生じる空間で受け入れられる。すなわち、壁面F1,S1が、対向面Fから離れるにつれて他方の挿通孔から離れる方向に傾斜していることによって、プローブPf,Psは内側が凹となる方向に撓みやすくなり、ひいてはプローブPf,PsのバンプBに対する接触安定性の向上に寄与することとなる。
 さらに、電流用挿通孔Hf’及び検出用挿通孔Hs’は、互いの内壁面における他方の挿通孔に近い側の壁面F2,S2が、対向プレート51’の板厚方向(対向面Fに対して垂直方向)に沿って延びている。
 これにより、プローブPf,Psが、内側が凸となる方向へ撓もうとすると壁面F2,S2がプローブPf,Psと干渉する結果、プローブPf,Psが、内側が凸となる方向へ撓むことが妨げられる。その結果、プローブPf,Psを内側が凹となる方向に撓ませる確実性が向上し、ひいてはプローブPf,PsのバンプBに対する接触安定性向上の確実性が向上する。
 電流用挿通孔Hf’が対向面Fに開口する先端側電流孔開口端Ef2’の長半径rf2'とその電流用挿通孔Hf’と対になる検出用挿通孔Hs’が対向面Fに開口する先端側検出孔開口端Es2’の長半径rs2'との合計が、当該対となる電流用挿通孔Hf’と検出用挿通孔Hs’との中心間の距離Lより小さくされている。これにより、先端側電流孔開口端Ef2’と、先端側検出孔開口端Es2’とは、互いに分離されている。
 このように電流用挿通孔Hf’及び検出用挿通孔Hs’を形成することにより、先端側電流孔開口端Ef2’と、先端側検出孔開口端Es2’とが互いに分離され、プローブPf,Psの撓み方向に長径方向が沿う楕円形とされる。その結果、プローブPf,Psの先端が撓みによりバンプB方向に向きやすくなると共に、撓み方向に対して垂直方向に対しては精度よくプローブPf,Ps位置が規制される。
 また、電流用挿通孔Hf’が対向プレート51’の反対面Cに開口する後端側電流孔開口端Ef1’の長半径rf1’とその電流用挿通孔Hf’と対になる検出用挿通孔Hs’が対向プレート51’の反対面Cに開口する後端側検出孔開口端Es1’の長半径rs1’との合計が、当該対となる電流用挿通孔Hf’と検出用挿通孔Hs’との中心間の距離Lより大きくされている。
 これにより、電流用挿通孔Hf’と検出用挿通孔Hs’とを近接させつつ、プローブPf,Psを撓ませる空間を十分に確保することが可能となる。
1,1’    基板検査装置
4,4U,4L,4’,4U’,4L’      検査治具
5,5’    検査側支持体
6    電極側支持体
7    連結部材
9    電極プレート
20  制御部
51,51’      対向プレート
52,53  案内プレート
61,62,63  支持プレート
81  導体部
82  絶縁部
91  電極
100      基板
110      基板固定装置
112      筐体
121      第1検査部
122      第2検査部
125      検査部移動機構
511      薄肉領域
512      外周部
531      薄肉部
B    バンプ(検査点)
C    反対面
Ef1,Ef1’  後端側電流孔開口端
Ef2,Ef2’  先端側電流孔開口端
Es1,Es1’  後端側検出孔開口端
Es2,Es2’  先端側検出孔開口端
F    対向面
H52,H53    案内孔
H61,H62,H63  支持孔
Hf  電流用挿通孔
Hs  検出用挿通孔
L    距離
Pf  プローブ(電流プローブ)
Ps  プローブ(検出プローブ)
R    背面
Rf,Rs  傾斜角度
rf1,rf2,rf3,rs1,rs2,rs3  半径
rf1’,rf2’,rs1’,rs2’    長半径
X    角部

Claims (10)

  1.  検査対象の基板に設けられる検査点一つに対し、電流を供給するための棒状の電流プローブと電圧を検出するための棒状の検出プローブとを接触させるための検査治具であって、
     前記基板と対向配置されるための対向面を有する対向プレートと、
     前記対向プレートの前記対向面とは反対側に対向配置される支持プレートとを備え、
     前記対向プレートには、前記電流プローブを挿通するための電流用挿通孔と、前記検出プローブを挿通するための検出用挿通孔とを対にして、当該対が複数対形成され、
     前記支持プレートには、前記各電流用挿通孔及び前記各検出用挿通孔に対応して設けられ、前記電流プローブを挿通するための電流用支持孔及び前記検出プローブを挿通するための検出用支持孔が形成され、
     対になる前記電流用挿通孔及び前記検出用挿通孔の各挿通孔は、互いの内壁面における他方の挿通孔から離れた側の壁面が、前記対向面から離れるにつれて前記他方の挿通孔から離れる方向に傾斜している検査治具。
  2.  前記各電流用挿通孔及び前記各検出用挿通孔は、前記対向面から離れるにつれて拡径するテーパ形状を有し、
     前記電流用挿通孔が前記対向面に開口する先端側電流孔開口端の半径とその電流用挿通孔と対になる前記検出用挿通孔が前記対向面に開口する先端側検出孔開口端の半径との合計が、当該対となる前記電流用挿通孔と前記検出用挿通孔との中心間の距離より小さくされ、かつ前記電流用挿通孔が前記対向プレートの前記対向面とは反対側の反対面に開口する後端側電流孔開口端の半径とその電流用挿通孔と対になる前記検出用挿通孔が前記反対面側に開口する後端側検出孔開口端の半径との合計が、当該対となる前記電流用挿通孔と前記検出用挿通孔との中心間の距離より大きくされ、当該対となる前記後端側電流孔開口端の端縁と前記後端側検出孔開口端の端縁とが連続している請求項1記載の検査治具。
  3.  前記対となる前記電流用挿通孔及び前記検出用挿通孔について、前記対向面と平行な方向に切断した前記電流用挿通孔の断面である電流孔断面の半径と、その方向に切断した前記検出用挿通孔の断面である検出孔断面の半径との合計は、その断面位置の前記対向面からの距離が、少なくとも前記電流用挿通孔及び前記検出用挿通孔の深さの3/4以下の範囲では前記電流用挿通孔と前記検出用挿通孔との中心間の距離より小さい請求項2記載の検査治具。
  4.  前記各電流用挿通孔及び前記各検出用挿通孔の内壁面の、前記対向プレートの板厚方向に対する傾斜角度は、1~5度の範囲内である請求項1~3のいずれか1項に記載の検査治具。
  5.  前記各電流用挿通孔及び前記各検出用挿通孔は、前記対向面から離れるにつれて拡径するテーパ形状を有し、
     対になる前記電流用挿通孔及び前記検出用挿通孔の前記各挿通孔は、互いの内壁面における他方の挿通孔に近い側の壁面が、前記対向プレートの板厚方向に沿って延びている請求項1記載の検査治具。
  6.  前記対向プレートには、その対向プレートの外周部よりも板厚が薄い薄肉領域が形成されており、
     前記各電流用挿通孔及び前記各検出用挿通孔は、前記薄肉領域を貫通している請求項1~5のいずれか1項に記載の検査治具。
  7.  前記対向プレートの、前記反対面側には、前記各電流用挿通孔及び前記各検出用挿通孔とそれぞれ対応し、前記電流プローブ及び前記検出プローブをそれぞれ挿通可能な案内孔が形成された案内プレートが積層され、
     対となる前記電流用挿通孔及び前記検出用挿通孔とそれぞれ対応する前記各案内孔は、その電流用挿通孔及び検出用挿通孔に挿通されて対となる前記電流プローブと前記検出プローブとを、前記対向面に近づくにつれて互いの離間距離が短くなるように傾斜させるべくその電流用挿通孔及び検出用挿通孔との位置関係が設定されている請求項1~6のいずれか1項に記載の検査治具。
  8.  前記案内孔の内壁面の、前記対向プレートの板厚方向に対する傾斜角度は、前記各電流用挿通孔及び前記各検出用挿通孔の内壁面の、前記板厚方向に対する傾斜角度より小さい請求項7記載の検査治具。
  9.  前記電流用挿通孔に挿通された前記電流プローブと、
     前記検出用挿通孔に挿通された前記検出プローブとをさらに備える請求項1~8のいずれか1項に記載の検査治具。
  10.  請求項1~8のいずれか1項に記載の検査治具を備えた基板検査装置。
PCT/JP2016/052104 2015-03-27 2016-01-26 検査治具及び基板検査装置 WO2016157964A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-067100 2015-03-27
JP2015067100A JP5822042B1 (ja) 2015-03-27 2015-03-27 検査治具、基板検査装置、及び検査治具の製造方法

Publications (1)

Publication Number Publication Date
WO2016157964A1 true WO2016157964A1 (ja) 2016-10-06

Family

ID=54610979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052104 WO2016157964A1 (ja) 2015-03-27 2016-01-26 検査治具及び基板検査装置

Country Status (3)

Country Link
JP (1) JP5822042B1 (ja)
TW (1) TW201640124A (ja)
WO (1) WO2016157964A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230143340A1 (en) * 2020-04-22 2023-05-11 Point Engineering Co., Ltd. Probe head and probe card having same
US12085588B2 (en) 2018-11-06 2024-09-10 Technoprobe S.P.A. Vertical probe head with improved contact properties towards a device under test

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424615A (zh) * 2018-07-13 2021-02-26 日本电产理德股份有限公司 检查治具以及检查装置
JP2020012685A (ja) * 2018-07-13 2020-01-23 日本電産リード株式会社 プローブ、検査治具、及び検査装置
KR20210032472A (ko) * 2018-07-18 2021-03-24 니혼덴산리드가부시키가이샤 프로브, 검사 지그, 검사 장치, 및 프로브의 제조 방법
JP2020101427A (ja) * 2018-12-21 2020-07-02 日本電産リード株式会社 検査治具、この検査治具の製造方法、及び検査治具を備えた検査装置
TWI733239B (zh) * 2019-11-04 2021-07-11 韓商Sda有限公司 探針卡頭部塊體
TWI814491B (zh) * 2022-07-18 2023-09-01 財團法人國家實驗研究院 檢測裝置之可拆卸保護結構
KR102475883B1 (ko) * 2022-11-09 2022-12-08 윌테크놀러지(주) 니들 팁의 길이조절을 위한 가변형 스페이서를 갖는 니들블럭

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049325A1 (en) * 1998-03-24 1999-09-30 Nit Systems Ltd. Automatic fixture building for electrical testing
JP2002048833A (ja) * 2000-08-02 2002-02-15 Hioki Ee Corp 回路基板検査装置
JP2003207523A (ja) * 2002-01-09 2003-07-25 Fujitsu Ltd コンタクタ及びその製造方法並びにコンタクト方法
JP2008102070A (ja) * 2006-10-20 2008-05-01 Hioki Ee Corp 電子部品検査プローブ
JP2009047512A (ja) * 2007-08-17 2009-03-05 Koyo Technos:Kk 検査冶具および検査装置
JP2009276097A (ja) * 2008-05-12 2009-11-26 Nidec-Read Corp 基板検査治具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639360A1 (de) * 1986-11-18 1988-05-19 Luther Erich Pruefstift fuer einen adapter zum verbinden von im raster befindlichen pruefkontakten eines leiterplattenpruefgeraetes mit in und/oder ausser raster befindlichen pruefpunkten eines prueflings
JPH0738972U (ja) * 1993-12-22 1995-07-14 沖電気工業株式会社 測定端子構造
JPH11344509A (ja) * 1998-05-29 1999-12-14 Hiroshi Katagawa プローブカード及びプローブピン
US20090179657A1 (en) * 2008-01-11 2009-07-16 Eddie Lee Williamson Printed circuit board for coupling probes to a tester, and apparatus and test system using same
JP5468451B2 (ja) * 2010-04-15 2014-04-09 大西電子株式会社 プリント配線板用検査治具
JP2012049100A (ja) * 2010-07-30 2012-03-08 Nidec-Read Corp 接続端子及び接続端子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049325A1 (en) * 1998-03-24 1999-09-30 Nit Systems Ltd. Automatic fixture building for electrical testing
JP2002048833A (ja) * 2000-08-02 2002-02-15 Hioki Ee Corp 回路基板検査装置
JP2003207523A (ja) * 2002-01-09 2003-07-25 Fujitsu Ltd コンタクタ及びその製造方法並びにコンタクト方法
JP2008102070A (ja) * 2006-10-20 2008-05-01 Hioki Ee Corp 電子部品検査プローブ
JP2009047512A (ja) * 2007-08-17 2009-03-05 Koyo Technos:Kk 検査冶具および検査装置
JP2009276097A (ja) * 2008-05-12 2009-11-26 Nidec-Read Corp 基板検査治具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12085588B2 (en) 2018-11-06 2024-09-10 Technoprobe S.P.A. Vertical probe head with improved contact properties towards a device under test
US20230143340A1 (en) * 2020-04-22 2023-05-11 Point Engineering Co., Ltd. Probe head and probe card having same

Also Published As

Publication number Publication date
JP2016186471A (ja) 2016-10-27
TW201640124A (zh) 2016-11-16
JP5822042B1 (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5822042B1 (ja) 検査治具、基板検査装置、及び検査治具の製造方法
CN109564244B (zh) 检查辅助具、基板检查装置及检查辅助具的制造方法
TWI821332B (zh) 檢查工具及檢查裝置
JP7148212B2 (ja) 検査治具、及び基板検査装置
US7868635B2 (en) Probe
JP2012098141A (ja) フレキシブル配線板の曲げ性評価方法及び繰返し曲げ試験装置
JPWO2020145073A1 (ja) 接触端子、検査治具、及び検査装置
JP2008102070A (ja) 電子部品検査プローブ
TWI829696B (zh) 探針、檢查治具、檢查裝置以及探針的製造方法
JP2009047512A (ja) 検査冶具および検査装置
JP2013015422A (ja) 配線検査治具及び配線検査装置
JP2007232558A (ja) 電子部品検査プローブ
US9915682B2 (en) Non-permanent termination structure for microprobe measurements
JP2007212194A (ja) 基板検査装置及び方法
JP2010091314A (ja) 基板検査治具及び検査用プローブ
JP2011122909A (ja) 検査用治具
JP2008039639A (ja) 接触式計測用プローブ
KR100802385B1 (ko) 기판 검사장치
JP2013015421A (ja) 接触位置特定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771849

Country of ref document: EP

Kind code of ref document: A1