WO2016157551A1 - チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス - Google Patents

チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス Download PDF

Info

Publication number
WO2016157551A1
WO2016157551A1 PCT/JP2015/065204 JP2015065204W WO2016157551A1 WO 2016157551 A1 WO2016157551 A1 WO 2016157551A1 JP 2015065204 W JP2015065204 W JP 2015065204W WO 2016157551 A1 WO2016157551 A1 WO 2016157551A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
particles according
carbon
crystallites
Prior art date
Application number
PCT/JP2015/065204
Other languages
English (en)
French (fr)
Inventor
勝彦 直井
和子 直井
覚 爪田
修一 石本
賢次 玉光
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to KR1020177023359A priority Critical patent/KR102394216B1/ko
Priority to US15/558,169 priority patent/US10490316B2/en
Priority to CN201580078101.3A priority patent/CN107428553B/zh
Priority to EP15887693.8A priority patent/EP3279143A4/en
Publication of WO2016157551A1 publication Critical patent/WO2016157551A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/043Titanium sub-oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to titanium oxide particles.
  • Titanium oxide sintered particles such as titanium oxide represented by the general formula Ti n O 2n and lithium titanate represented by the general formula Li ⁇ Ti ⁇ O ⁇ are used in various applications due to the characteristics of the titanium oxide. Is expected to be used.
  • titanium oxide (IV) is a dye-sensitized solar cell electrode, a storage battery that can be charged with light, a photoelectrode for hydrogen production by water decomposition, a pigment, a colorant, a photocatalyst, an antibacterial material, water treatment technology, cancer Expected to be used for treatment.
  • Lithium titanate is expected to be used as an electrode active material for power storage devices such as storage batteries and capacitors.
  • titanium oxides also have disadvantages such as low electrical conductivity and the ability to absorb only ultraviolet rays. Therefore, research on composites that combine the characteristics of titanium oxide with the characteristics of other substances to compensate for the disadvantages of titanium oxide is also progressing.
  • an object of the present invention is to provide novel titanium oxide particles that can improve rate characteristics, do not require a conductive aid, or can minimize the conductive aid, a method for producing the same, and uses thereof Is to provide.
  • the novel titanium oxide particles of the present invention have a three-dimensional network structure in which titanium oxide crystallites are connected, and a magnetic phase is formed on the surface of the crystallites. It is characterized by.
  • the titanium oxide particles have an electron path including a magnetic phase, an energy storage space inside the particle, and an ion path to the energy storage space.
  • the titanium oxide may be lithium titanate represented by a general formula Li ⁇ Ti ⁇ O ⁇ .
  • the titanium oxide may be a spinel type lithium titanate represented by Li 4 Ti 5 O 12 .
  • a titanium oxide particle can have the characteristics of both a lithium titanate and a Magneli phase.
  • the magnetic phase is a titanium oxide represented by the general formula Ti n O 2n-1 (3 ⁇ n ⁇ 10).
  • the magnetic phase may be Ti 4 O 7 .
  • Ti 4 O 7 has an electrical conductivity that is 2.75 times that of carbon in particular.
  • a plurality of pores connected to the inside of the three-dimensional network structure may be provided between the crystallites. As a result, an ion path that connects the pores to the space is formed.
  • the crystallites may be bonded to each other without grain boundaries. Since the grain boundary resistance is reduced, the conductivity is improved.
  • the carbon content is less than 5% by weight with respect to the whole particle, and it is not necessary to use a conductive aid, and the conductive aid can be minimized.
  • the crystallite may have a flat plate shape, and the three-dimensional network structure may be a card house structure. It is more desirable that a magnetic phase is formed on the edge surface of the crystallite.
  • This titanium oxide particle is most suitable for, for example, an electrode for an electricity storage device and an electricity storage device provided with this electrode.
  • a composite of titanium oxide crystallites and carbon is heat-treated in an oxygen atmosphere to burn out the carbon and connect the titanium oxide crystallites to form particles with a three-dimensional network structure.
  • a magnetic phase can be formed on the surface of the crystallite.
  • the temperature of the heat treatment is preferably 400 to 600 ° C.
  • the heat treatment time is preferably 0.5 to 10 hours. Thereby, it becomes easy to have the characteristics of the surface magnetic phase without impairing the characteristics of the titanium oxide constituting the entire crystallite.
  • the composite may be generated by a mixing step of the titanium oxide source and the carbon source, and a step of heat-treating the mixture that has passed through the mixing step in an inert atmosphere.
  • the temperature of the heat treatment under the inert atmosphere may be 600 to 950 ° C.
  • the mixing step may include a mechanochemical treatment for the titanium oxide source and the carbon source in the solution.
  • the titanium oxide particles of the present invention have an electron path including a magnetic phase, an energy storage space inside the particle, and an ion path to the energy storage space, and no conductive aid is required or the conductive aid is minimized. It is optimal for an electrode of an electricity storage device, an electrode of a dye-sensitized solar cell, a storage battery that can be charged with light, and a photoelectrode for hydrogen production by water splitting.
  • FIG. 4 shows differential pore volume distributions in which the horizontal axis represents the pore diameter and the vertical axis represents the increase in the pore volume between measurement points in relation to the titanium oxide particles of Examples and Comparative Examples. It is the figure which showed the relationship between a rate and a capacity
  • a novel titanium oxide particle 1 As shown in FIG. 1, a novel titanium oxide particle 1 according to the present invention has a three-dimensional network structure in which a plurality of crystallites 2 are continuously connected to each other. A granulated body having phase 2a. The crystallites 2 are randomly oriented and bonded to each other on a surface such as a table surface or an end surface. When the crystallite 2 has a flat plate shape, the three-dimensional network structure is a card house structure. A large number of nano-sized spaces 3 exist inside the titanium oxide particles 1. Grain boundaries are eliminated at the bonding interface of the crystallites 2, while many fine pores 4 exist between the crystallites 2.
  • Crystallite 2 is the largest group that can be regarded as a single crystal of titanium oxide.
  • the crystallite 2 has a shape formed by a triangular, square, or other polygonal flat plate shape, a polyhedron having a thickness, a sphere, an ellipsoid, or another curved surface.
  • the surface of the crystallite 2 is an edge surface when the crystallite 2 is a flat plate or a polyhedron, and is a side portion or an end portion of the facet plane.
  • One or more of the sides or ends of the crystallite 2 are transformed into the magnetic phase 2a.
  • a part or the entire length of the side portion or end portion of the crystallite 2 is a Magneli phase 2a.
  • the magnetic phase 2a may be included in a partial region of the facet surface.
  • the surface of the crystallite 2 is a singular or plural partial region of the surface when the crystallite 2 has a curved surface.
  • the titanium oxide constituting the crystallite 2 is a titanium oxide represented by the general formula Ti n O 2n and a titanic acid compound represented by the general formula M ⁇ Ti ⁇ O ⁇ .
  • M is a metal.
  • titanate compounds include lithium titanate, lead titanate, barium titanate, lead zirconate titanate, potassium titanate, vanadium titanate, strontium titanate, calcium titanate, magnesium titanate, and aluminum titanate. Can do.
  • the titanium oxide is, for example, anatase type or rutile type titanium oxide (IV) represented by TiO 2 .
  • the titanic acid compound is, for example, spinel type lithium titanate represented by Li 4 + w Ti 5 O 12 (0 ⁇ w ⁇ 3) or ramsdellite represented by Li 2 + y Ti 3 O 7 (0 ⁇ y ⁇ 3).
  • Type of lithium titanate is, for example, spinel type lithium titanate represented by Li 4 + w Ti 5 O 12 (0 ⁇ w ⁇ 3) or ramsdellite represented by Li 2 + y Ti 3 O 7 (0 ⁇ y ⁇ 3).
  • Type of lithium titanate is, for example, spinel type lithium titanate represented by Li 4 + w Ti 5 O 12 (0 ⁇ w ⁇ 3) or ramsdellite represented by Li 2 + y Ti 3 O 7 (0 ⁇ y ⁇ 3).
  • the magnetic phase 2a is a titanium oxide represented by the general formula Ti n O 2n-1 (3 ⁇ n ⁇ 10).
  • the magnetic phase 2a is selected from, for example, Ti 4 O 7 , a mixed phase of Ti 4 O 7 and Ti 5 O 9 , or a compound represented by the general formula Ti n O 2n-1 (3 ⁇ n ⁇ 10). Single or two or more mixed phases.
  • the titanium oxide particles 1 have both the characteristics of lithium titanate and the characteristics of the magnetic phase 2a.
  • Lithium titanate has an energy storage function by insertion / extraction of lithium ions. Since the volume change of the insertion / desorption is about 1%, there is little capacity deterioration. Since the charge / discharge potential is about 1.5 V (vs Li / Li +), side reactions such as decomposition of the electrolyte and precipitation of lithium metal due to rapid charge / discharge hardly occur, and the cycle characteristics are excellent.
  • the crystallite 2 is lithium titanate
  • the titanium oxide particles 1 have an advantage as an active material of such an electrode.
  • lithium titanate has lower electrical conductivity than carbon.
  • the magnetic phase 2a has high electrical conductivity
  • Ti 4 O 7 has 2.75 times the electrical conductivity of carbon. That is, the titanium oxide particles 1 have a characteristic that high electrical conductivity is imparted by the magnetic phase 2a while maintaining the performance of the active material as lithium titanate.
  • this titanium oxide particle 1 has a three-dimensional network structure in which a highly electrically conductive magnetic phase 2a is present on the surface of the crystallite 2 and the crystallite 2 is continuous on the surface such as a table surface or an end surface. Therefore, each crystallite 2 is partially connected via the magnetic phase 2a.
  • a connection mode there are a case where the magnetic phases 2a are connected to each other, a case where the magnetic phases 2a and the surface other than the magnetic phase 2a are connected, or a mixture thereof. Therefore, an electron path including the magnesium phase 2a is formed in the titanium oxide particles 1 even without a conductive auxiliary agent such as carbon, and the titanium oxide particles 1 as a whole have high electrical conductivity. Since carbon is unnecessary or less carbon is used, a decrease in energy density can be suppressed.
  • the titanium oxide particles 1 have nano-sized spaces 3 and serve as a reservoir for the electrolyte. Since a large number of pores 4 are formed between the crystallites 2 in the nano-sized space portion 3, an ion path for lithium ions is also secured. Furthermore, there is no grain boundary at the bonding interface between the crystallites 2, and the grain boundary resistance is low. Therefore, the titanium oxide particles 1 are optimal for, for example, an electrode of an electricity storage device, an electrode of a dye-sensitized solar cell, a storage battery that can be charged with light, and a photoelectrode for hydrogen production by water splitting.
  • the crystallite 2 preferably has an average size of 5 to 100 nm.
  • the crystallite 2 has a thickness of 1 nm or less at the 2 to 5 atomic layer level, and one side of the two-dimensional surface expands to 5 to 100 nm.
  • the titanium oxide particles 1 preferably have a size of about 500 nm to 5 ⁇ m by combining a plurality of crystallites 2. This size is easy to handle as an electrode material.
  • the sizes of the crystallites 2 and the titanium oxide particles 1 can be adjusted by the temperature and time in the heat treatment step.
  • Each pore is preferably about 5 to 100 nm.
  • the differential pore volume in the pore diameter in the range of 10 to 40 nm has a value of 0.01 cm 3 / g or more, In particular, by having a value of 0.02 cm 3 / g or more, it becomes an ion path of fine lithium ions, the area of the crystallite 2 in contact with the electrolytic solution is increased, and the rate characteristics when used for the electrode are improved.
  • the remaining amount of carbon is ideally zero, but is preferably less than 5% by weight with respect to the titanium oxide particles 1.
  • the titanium oxide particles 1 can be obtained by heat-treating a titanium oxide crystallite 2 and a carbon composite in an oxygen atmosphere. As shown in FIG. 2, by heat-treating the composite in an oxygen atmosphere, carbon is burned out from the composite and the crystallites 2 are sintered together. Furthermore, by heat-treating the composite in an oxygen atmosphere, the surface of the crystallite 2 is transformed into the magnetic phase 2a, whereby the titanium oxide particles 1 are generated.
  • carbon is combined with oxygen in the atmosphere and burned. Further, although not limited to this mechanism, carbon becomes carbon monoxide Co or carbon dioxide CO 2 by desorbing oxygen atoms of titanium oxide from the bonding interface, and titanium is reduced, It is thought that lithium takes the oxygen atom of titanium oxide and gasifies it into Li 2 O. Through these reactions, oxygen is desorbed until Ti: O is changed from n: 2n + 2 to n: 2n ⁇ 1, lithium is gasified, and lithium titanate constituting the surface of the crystallite 2 is transformed into the magnetic phase 2a. it is conceivable that.
  • the degree of bonding between carbon and crystallites, oxygen concentration, firing temperature and firing time are the same as the size of titanium oxide particles, the degree of carbon removal, the transformation into the magnetic phase 2a due to the above reaction, and the alteration.
  • the percentage can be determined.
  • the heat treatment temperature is preferably in the range of 400 to 600 ° C.
  • the heat treatment time is preferably maintained between 0.5 and 10 hours.
  • the temperature is less than 400 ° C. and the heat treatment time is less than 0.5 hours, the carbon is not sufficiently removed and the energy density is significantly reduced.
  • the temperature is less than 400 ° C. and the heat treatment time is less than 0.5 hours, the transformation into the magnetic phase 2a may not proceed easily, and satisfactory high electrical conductivity cannot be imparted to the titanium oxide particles 1.
  • the temperature exceeds 600 ° C. and the heat treatment exceeds 10 hours the aggregation of the titanium oxide proceeds and the voids of the titanium oxide particles 1 are reduced.
  • the transformation to the magnetic phase 2a proceeds excessively and high electrical properties are imparted, but the properties of the titanium oxide may be impaired.
  • the crystallite 2 obtained by setting the temperature range and time as described above is maintained at an average size of 5 to 100 nm, and particle growth from the average size of titanium oxide before the heat treatment is suppressed.
  • the oxygen atmosphere may be a mixed atmosphere with nitrogen or the like, and is preferably an atmosphere in which oxygen is present at 15% or more, such as in the air.
  • the amount of oxygen decreases due to carbon burnout, so that oxygen may be appropriately supplied into the heat treatment furnace to the extent that oxygen desorption is not inhibited.
  • the composite of titanium oxide crystallites 2 and carbon can be obtained, for example, through a mixing process of a titanium oxide material source and a carbon source and a heat treatment process in an inert atmosphere of the mixture.
  • the titanium oxide particles 1 generally comprise a mixing step of a titanium oxide material source and a carbon source, a first heat treatment step in an inert atmosphere of the mixture, and a first The heat-treated mixture is obtained by a second heat treatment step under an oxygen atmosphere.
  • carbon is burned out and accompanied by oxygen desorption or lithium desorption, it may be combined with titanium oxide instead of carbon.
  • a lithium titanate precursor and a lithium titanate precursor are formed by a composite method such as mechanochemical treatment, spray drying treatment, or stirring treatment.
  • the compounding of the body and the carbon source is advanced.
  • the precursor of lithium titanate is Ti ⁇ O ⁇ or a constituent compound thereof.
  • Ti ⁇ O ⁇ or a constituent compound thereof may be in accordance with the stoichiometric ratio of titanium oxide. For example, if Li 4 Ti 5 O 12 is lithium titanate, the atomic ratio of Ti and O can be 5:12. That's fine.
  • a titanium source such as titanium oxide or titanium alkoxide that can be a precursor of lithium titanate is added to the solvent.
  • the mixing step the composite of titanium oxide and the carbon source is advanced by a composite method such as mechanochemical treatment, spray drying treatment, or stirring treatment.
  • a composite method such as mechanochemical treatment, spray drying treatment, or stirring treatment.
  • titanium oxide itself is added to the solvent together with the carbon source.
  • Carbon source means carbon (powder) itself or a material that can be converted to carbon by heat treatment.
  • carbon (powder) any carbon material having electrical conductivity can be used without particular limitation.
  • carbon black such as ketjen black, acetylene black, channel black, fullerene, carbon nanotube, carbon nanofiber, amorphous carbon, carbon fiber, natural graphite, artificial graphite, graphitized ketjen black, mesoporous carbon, gas phase method Carbon fiber etc. can be mentioned.
  • a carbon material having a nano-sized particle size is preferable.
  • the material that can be converted to carbon by the heat treatment is an organic material that is deposited on the surface of the material source of the crystallite 2 and is converted into carbon in the subsequent heat treatment step.
  • organic substances include polyhydric alcohols (such as ethylene glycol), polymers (such as polyvinyl alcohol, polyethylene glycol, and polyvinylpyrrolidone), sugars (such as glucose), and amino acids (such as glutamic acid).
  • the mixing ratio of carbon is preferably in the range of 95: 5 to 30:70 by weight ratio of titanium oxide particles 1 and carbon. Within this range, the pores and spaces of the finally obtained titanium oxide particles 1 can be increased.
  • the solvent can be used without particular limitation as long as it does not adversely affect the reaction, and water, methanol, ethanol, isopropyl alcohol, and the like can be suitably used. Two or more solvents may be mixed and used.
  • the reactor is composed of a concentric cylinder of an outer cylinder and an inner cylinder, as shown in FIG. 1 of JP-A-2007-160151.
  • a reactor in which a dam plate is disposed in the part is preferably used.
  • the distance between the inner cylinder outer wall surface and the outer cylinder inner wall surface is preferably 5 mm or less, and more preferably 2.5 mm or less.
  • the centrifugal force required to produce on the thin film is 1500 N (kgms -2) or more, preferably 70000N (kgms -2) or more.
  • a reaction inhibitor may be added to the solution.
  • a predetermined compound that forms a complex with the titanium alkoxide as a reaction inhibitor, it is possible to suppress the chemical reaction from being accelerated too much.
  • the reaction is suppressed and controlled by adding 1 to 3 moles of a predetermined compound such as acetic acid which forms a complex with titanium alkoxide to 1 mole of the titanium alkoxide to form a complex.
  • Substances capable of forming a complex with titanium alkoxide include acetic acid, citric acid, succinic acid, formic acid, lactic acid, tartaric acid, fumaric acid, succinic acid, propionic acid, carboxylic acid such as propionic acid, and aminopolyester such as EDTA.
  • Examples include complexing agents represented by amino alcohols such as carboxylic acid and triethanolamine.
  • carbon powder may be dispersed in a solvent.
  • a dispersion method it is preferable to highly disperse carbon powder in a solvent by ultracentrifugation (treatment of applying shear stress and centrifugal force to powder in a solution), bead mill, homogenizer, or the like.
  • a solution obtained by dissolving a material source of titanium oxide in a solvent in which the carbon powder is dispersed is spray-dried on a substrate.
  • the spray drying process is performed at a temperature at which the carbon powder is not burned out at a pressure of about 0.1 MPa.
  • the material source of the titanium oxide is titanium alkoxide
  • the titanium alkoxide is oxidized to produce a lithium titanate precursor, and the lithium titanate precursor and the carbon powder are combined.
  • the solution is stirred.
  • the powder is preferably pulverized in advance to form nano-level fine particles.
  • a titanium oxide material source is added to a solvent to which a polymer has been added in advance, and the solution is stirred.
  • the polymer may be adjusted to be in the range of 0.05 to 5 when the weight of the powder that is a material source of titanium oxide is 1.
  • the lithium titanate precursor or titanium oxide is presumed to be adsorbed to the carbon source by intermolecular chemical bonds such as ionic bonds, metal bonds, hydrogen bonds, and van der Waals bonds. .
  • the first heat treatment step after the mixing treatment generation of lithium titanate and crystal growth of titanium oxide are caused on the carbon.
  • a titanium source is charged in the mixing step, a lithium source is added before this heat treatment step.
  • the lithium source include lithium acetate, lithium nitrate, lithium oxide, lithium carbonate, and lithium hydroxide.
  • the lithium source and the titanium source may be in accordance with the stoichiometric ratio of lithium titanate. For example, if Li 4 Ti 5 O 12 is lithium titanate, the atomic ratio of Li and Ti is 4: 5.
  • the source and the lithium source may be added to the solvent. In the mixing step, not only the titanium source but also a lithium source may be charged in advance.
  • the composite obtained in the mixing step is heat-treated in a vacuum and in an inert atmosphere such as a nitrogen or argon atmosphere.
  • an inert atmosphere such as a nitrogen or argon atmosphere.
  • the lithium titanate precursor is melted and lithium is taken in, so that titanium oxide is generated and crystal growth occurs, or titanium oxide is crystallized.
  • the carbon source is carbonized to become carbon.
  • Carbon and titanium oxide are lattice-bonded at the bonding interface by the growth of titanium oxide on the carbon.
  • the inert atmosphere is used to prevent carbon from being burned out by which oxygen atoms are desorbed from the titanium oxide in the second heat treatment step.
  • This heat treatment is held in an inert atmosphere at a temperature in the range of 600 to 950 ° C. for 1 to 20 minutes in order to prevent the carbon source from being burned out.
  • the heat treatment temperature is less than 600 ° C. because the generation of lithium titanate is not sufficient, and when the heat treatment temperature exceeds 950 ° C., the lithium titanate aggregates. And since lithium titanate itself decomposes
  • heat treatment in a nitrogen atmosphere is particularly preferable under an inert atmosphere, and the titanium oxide particles are doped with nitrogen to increase the conductivity of the metal compound particles.
  • the crystallites 2 of the titanium oxide When undergoing a heat treatment step under an inert atmosphere, the crystallites 2 of the titanium oxide preferably include a range of 5 to 100 nm. By using such nano-sized fine particles, the porosity of titanium oxide particles described later can be increased, and the number of fine pores present in the titanium oxide particles 1 can be increased. In order to obtain such a range, the mixing ratio of the titanium oxide material source and the carbon source may be adjusted in advance.
  • a preheat treatment in which the composite that has undergone the mixing step is held at a temperature range of 200 to 500 ° C. for 1 to 300 minutes.
  • impurities present in the composite can be removed, and a state in which the precursor of titanium oxide is uniformly attached to the carbon source can be obtained. It also has the effect of promoting the formation of a titanium oxide precursor.
  • Example 1 of this invention is shown, this invention is not limited to Example 1.
  • FIG. 1 the mixing process was first performed. 20 g of carbon nanofibers and 245 g of tetraisopropoxy titanium were added to 1300 g of isopropyl alcohol, and tetraisopropoxy titanium was dissolved in isopropyl alcohol. The weight ratio between the titanium alkoxide and the carbon nanofiber was selected so that the weight ratio between the lithium titanate and the carbon nanofiber after the first heat treatment step was about 8: 2.
  • the obtained liquid was introduced into the inner cylinder of the reactor, which was composed of a concentric cylinder of an outer cylinder and an inner cylinder, a through hole was provided on the side surface of the inner cylinder, and a shed plate was arranged at the opening of the outer cylinder.
  • the inner cylinder was swung for 300 seconds so that a centrifugal force of 35000 kgms-2 was applied to the liquid, and the carbon nanofibers were highly dispersed in the liquid.
  • the reactor contents were collected, the solvent was evaporated in air, and further dried at 100 ° C. for 17 hours.
  • the resulting product obtained by drying was subjected to preliminary heat treatment in nitrogen at 400 ° C. for 30 minutes, and then heat treated in nitrogen at 900 ° C. for 3 minutes.
  • a final product was obtained by subjecting 100 g of the resulting product obtained by heat treatment in a nitrogen atmosphere to 500 ° C. for 6 hours.
  • FIG. 3 is a TEM image obtained by photographing the cross section of the final product, and the magnification is 10,000 times.
  • FIG. 4 is an HRTEM image in which the crystallite portion of the final product is focused by a high-resolution transmission electron microscope, and the magnification is 50,000 times.
  • FIG. 5 is a STEM image in which the crystallite portion of the final product is focused by a transmission electron microscope.
  • FIG. 6 is an HRTEM image in which the crystallite portion of the final product is focused by a high-resolution transmission electron microscope, and the magnification is 100,000 times.
  • FIG. 7 is an HRTEM image in which the crystallite portion of the final product is focused by a high-resolution transmission electron microscope, and the magnification is 300,000 times.
  • FIG. 8 is an HRTEM image in which the crystallite portion of the final product is focused by a high-resolution transmission electron microscope, and the magnification is 400,000 times.
  • the final product has a size of about 1.7 ⁇ m, has a three-dimensional network structure as a whole, and has many space portions 3.
  • the final product is a sintered body of a large number of primary particles.
  • the primary particle size was most preferably about 40 nm. It can also be seen that a large number of pores 4 are formed between the primary particles.
  • FIG. 5 it can be seen that the grain boundaries are hardly visible between the primary particles.
  • the primary particles have a flake shape, and the primary particles are bonded to each other on the table surface or the end surface.
  • the lattice of the primary particles is clear, and it can be seen that the primary particles are crystallites.
  • the edges E1 and E2 on the two sides with respect to the table surface of the crystallite are generally darkened, and it is understood that the crystal is a crystal of a substance having a different edge from the table surface of the crystallite. .
  • this final product has a three-dimensional network structure with crystallites connected to each other, and is composed of a material different from the crystal surface and edge.
  • FIG. 9 shows a low-magnification restricted field ED diagram of the final product, with a low magnification of 5,000.
  • FIG. 10 shows a high-magnification restricted field ED diagram of the final product, with a high magnification of 400,000.
  • FIG. 11 is a graph showing the results of the transmission method using Ti K-edge EXAFS.
  • Ti K-edge EXAFS determines the local structure around Ti.
  • the transmission method there was little difference between the final product and the standard sample. That is, as for the entire crystallite, the Ti—O bond and the Ti—Ti bond are the same in the standard sample and the final product, and the entire crystallite of the final product is composed of Li 4 Ti 5 O 12. I understand that.
  • FIG. 12 is a graph showing the result of the conversion electron yield method using Ti K-edge EXAFS.
  • the standard sample and the final product were the same, but a change in the Ti—O bond was observed in the crystallites of the final product. That is, it can be seen that the Ti—O bond state changes on the surface of the crystallite of the final product.
  • FIG. 13 is an enlarged view of FIG. As shown in FIG. 13, it can be seen that there are five peaks in the distance ( ⁇ ) between Ti and O. Peak A has a Ti-to-O distance of 1.713, Peak B has a Ti-to-O distance of 1.873, Peak C has a Ti-to-O distance of 1.991, and Peak D has a Ti-to-O distance of 2.993. 053, peak E had a distance between Ti and O of 2.317.
  • FIG. 14 shows a comparison of the distance between Ti and O of each peak obtained by the conversion electron yield method using Ti K-edge EXAFS and Ti 4 O 7 .
  • the spinel type Li 4 Ti 5 O 12 has a structure in which regular octahedrons overlap, the distance between Ti and O is only 1.995.
  • Rutile or anatase TiO 2 approximates Li 4 Ti 5 O 12 .
  • Ti 4 O 7 has a complicated structure, and the distance between Ti and O has peaks at 1.854, 1.934, 1.993, 2.024, 2.063, and 2.156. It has been known. Comparing the Ti and O distance with results and Ti 4 O 7 peaks A ⁇ E are the final surface of the resultant structure of the crystallites, Ti 4 O 7 and values together very well approximate the number and peak of You can see that
  • the final crystallite is composed of Li 4 Ti 5 O 12 as a whole, but the surface of the crystallite is altered to Ti 4 O 7 .
  • the final product has a card house structure in which the crystallites 2 of Li 4 Ti 5 O 12 are laminated as a whole, and the crystallites 2 of Li 4 Ti 5 O 12 It was confirmed that the edge surface was the titanium oxide particles 1 that had been altered to Ti 4 O 7 .
  • this granule is carbon-free, there is no bond between carbon and lithium associated with heat treatment, and it is considered that there is no oxygen desorption associated with the gasification of carbon and lithium, and the magnetic phase 2a is formed. Not. In addition, since there is no carbon during the manufacturing process, there is no space from which the carbon has been removed.
  • FIG. 15 shows a differential pore volume distribution in which the horizontal axis represents the pore diameter and the vertical axis represents the increase in pore volume between measurement points.
  • Example 1 has a larger differential pore volume than Conventional Example 1. Since the differential pore volume is large in such a small pore diameter range (100 nm), it can be seen that the electrolyte enters the lithium titanate particles 1 and the area of the lithium titanate particles 1 in contact with the electrolyte is large. .
  • the differential pore volume at a pore diameter in the range of 10 to 40 nm has a value of 0.01 cm 3 / g or more, and further a value of 0.02 cm 3 / g or more is obtained.
  • the residual amount of carbon is preferably less than 5% by weight, and in particular, Example 1 in which the residual amount of carbon was 1% by weight or less gave good results.
  • a slurry is formed by adding 5% by weight of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone to the titanium oxide particles 1 of Example 1 and the lithium titanate granule of Conventional Example 1 and sufficiently kneading them. Then, it was coated on an aluminum foil and dried to obtain an electrode. Furthermore, using the obtained electrode, a 1M LiBF 4 propylene carbonate solution was used as an electrolyte, and a laminate-sealed capacitor using an activated carbon electrode as a counter electrode was prepared.
  • FIG. 16 is a diagram showing the relationship between the rate and the capacity retention rate for the capacitors of Example 1 and Conventional Example 1 obtained.
  • the capacitor of Example 1 can obtain good rate characteristics even at a high rate.
  • good rate characteristics are obtained even when the electrode does not contain conductive carbon serving as a conductive additive.
  • the capacitor of Conventional Example 1 had a capacity retention rate of less than 10%, whereas the capacitor of Example 1 reached a capacity retention rate of slightly less than 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 導電助剤を必要としない、または導電助剤を最小限に抑えることのできる新規のチタン酸化物粒子、その製造方法、及び用途を提供することである。新規のチタン酸化物粒子1は、複数の結晶子2が連続的に結合して三次元ネットワーク構造を成し、結晶子2の表面にマグネリ相2aを有する。結晶子2は、ランダムに配向して互いに卓面や端面で結合し、三次元ネットワーク構造状に積層される。チタン酸化物粒子1の内部にはナノサイズの空間部3を多数存在させることができ、結晶子2間は、接合界面の粒界を無くし、一方で微小の細孔を多数存在させることができる。

Description

チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス
 本発明は、チタン酸化物粒子に関する。
 一般式Ti2nで表される酸化チタン、及び一般式LiαTiβγで表されるチタン酸リチウムといったチタン酸化物の焼結体粒子は、チタン酸化物の特性故に様々な用途での利用が期待されている。
 例えば、酸化チタン(IV)は、色素増感太陽電池の電極、光で充電できる蓄電池、水分解による水素製造のための光電極、顔料、着色料、光触媒、抗菌素材、水処理技術、がん治療等への利用が期待されている。チタン酸リチウムは、蓄電池やキャパシタ等の蓄電デバイスの電極活物質への利用が期待されている。
 しかしながら、これらチタン酸化物は、例えば電気伝導性が低かったり、紫外線しか吸収できなかったり等のようにデメリットも存在している。そのため、チタン酸化物の特性と他物質の特性を兼ね備えて、チタン酸化物のデメリットを補償する複合体の研究も進んでいる。
 例えば、酸化チタンやチタン酸リチウムに対して、導電助剤として電気伝導性の高いカーボンを使用する研究は多くなされている(例えば、特許文献1参照)。この研究は、正極及び負極にそれぞれ金属化合物粒子を用いたリチウムイオン二次電池や、正極に活性炭、負極にリチウムイオンを可逆的に吸着/脱着可能な材料(グラフェンや金属化合物など)を用いたリチウムイオンキャパシタなどの蓄電デバイスにおいて特に活発である。これらの蓄電デバイスは、携帯電話やノート型パソコンなどの情報機器の電源として、また、車載等での回生エネルギー用途に利用されるためである。
特開2012-169217号公報
 しかしながら、カーボン等の導電助剤を用いることでレート特性が改善されるものの、高レートでの充放電特性が未だに満足できるものではない。また、カーボン等の導電助剤を用いると、エネルギー密度が低下するといった問題も生じる。
 そこで、本発明の目的は、レート特性を向上させることができ、導電助剤を必要としない、または導電助剤を最小限に抑えることのできる新規のチタン酸化物粒子、その製造方法、及び用途を提供することである。
 前記の目的を達成するため、本発明の新規なチタン酸化物粒子は、チタン酸化物の結晶子が連なった三次元ネットワーク構造を有し、前記結晶子の表面にマグネリ相が形成されていること、を特徴とする。これにより、チタン酸化物粒子は、マグネリ相を含む電子パスと、粒子内部にエネルギー貯蔵空間と、エネルギー貯蔵空間へのイオンパスを有する。
 前記チタン酸化物は、一般式LiαTiβγで表されるチタン酸リチウムであるようにしてもよい。前記チタン酸化物は、LiTi12で表されるスピネル型のチタン酸リチウムであるようにしてもよい。これにより、チタン酸化物粒子は、チタン酸リチウムとマグネリ相の双方の特徴を併せ持つことができる。
 前記マグネリ相は、一般式Ti2n-1(3≦n≦10)で表されるチタン酸化物である。前記マグネリ相は、Tiであるようにしてもよい。Tiは、特にカーボンの2.75倍の電気伝導性を有する。
 前記三次元ネットワーク構造内に複数の空間部を有するようにしてもよい。前記結晶子間に前記三次元ネットワーク構造内部に繋がる複数の細孔を有するようにしてもよい。これにより、前記細孔から前記空間部に繋がるイオンパスが形成される。
 前記結晶子は、互いに粒界なく結合しているようにしてもよい。粒界抵抗が少なくなるので導電性が向上する。
 粒子全体に対してカーボンがゼロを含む5重量%未満とし、導電助剤を用いなくともよく、また導電助剤を最小限に抑えることもできる。
 前記結晶子は、平板形状を有し、前記三次元ネットワーク構造はカードハウス構造としてもよい。前記結晶子の縁表面にマグネリ相が形成されているとより望ましい。
 このチタン酸化物粒子は、例えば蓄電デバイス用電極、この電極を備えた蓄電デバイスに最適である。
 チタン酸化物の結晶子とカーボンとの複合体を酸素雰囲気下で熱処理することで、前記カーボンを焼失させ、且つ前記チタン酸化物の結晶子同士を連ならせて三次元ネットワーク構造の粒子を形成するとともに、前記結晶子の表面にマグネリ相を形成することができる。
 前記熱処理の温度は400~600℃が好ましい。前記熱処理の時間は、0.5以上10時間以下が好ましい。これにより、前記結晶子の全体を構成するチタン酸化物の特性を損なうことなく、表面のマグネリ相の特性を併せ持つことが容易となる。
 前記複合体は、前記チタン酸化物源とカーボン源の混合工程と、前記混合工程を経た混合物を不活性雰囲気下で熱処理する工程と、により生成されるようにしてもよい。前記不活性雰囲気下での熱処理の温度は、600~950℃であるようにしてもよい。前記混合工程は、溶液中の前記チタン酸化物源とカーボン源に対するメカノケミカル処理を含むようにしてもよい。これにより、結合度合いがマグネリ相への変質に適当な複合体を容易に獲得できる。
 本発明のチタン酸化物粒子は、マグネリ相を含む電子パスと、粒子内部にエネルギー貯蔵空間と、エネルギー貯蔵空間へのイオンパスを有し、導電助剤が不要であり、または導電助剤を最小限に抑えることができ、蓄電デバイスの電極、色素増感太陽電池の電極、光で充電できる蓄電池、水分解による水素製造のための光電極に最適である。
新規なチタン酸化物粒子を示す概念図である。 チタン酸化物粒子の生成を示す概念図である。 実施例に係るチタン酸化物粒子の断面を撮影したTEM像であり、倍率は一万倍である。 実施例に係るチタン酸化物粒子の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は五万倍である。 実施例に係るチタン酸化物粒子の結晶子部分にフォーカスを当てたSTEM像である。 実施例に係るチタン酸化物粒子の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は10万倍である。 実施例に係るチタン酸化物粒子の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は30万倍である。 実施例に係るチタン酸化物粒子の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は40万倍である。 実施例に係るチタン酸化物粒子の低倍率の制限視野ED図を示し、低倍率5千倍である。 実施例に係るチタン酸化物粒子の低倍率の制限視野ED図を示し、低倍率40万倍である。 実施例に係るチタン酸化物粒子に対するTi K-edge EXAFSによる透過法の結果を示すグラフである。 実施例に係るチタン酸化物粒子に対するTi K-edge EXAFSによる転換電子収量法の結果を示すグラフである。 実施例に係るチタン酸化物粒子に対するTi K-edge EXAFSによる転換電子収量法の結果を示すグラフの拡大図である。 Ti K-edge EXAFSによる転換電子収量法により得られた各ピークとTiが有するTiとOの距離の比較を示す表である。 実施例と比較例のチタン酸化物粒子に係り、横軸に細孔径を取り、測定ポイント間の細孔容積の増加分を縦軸に取った差分細孔容積分布を示す。 実施例及び従来例1のキャパシタについて、レートと容量維持率との関係を示した図である。
 (チタン酸化物粒子構造)
 図1に示すように、本発明に係る新規のチタン酸化物粒子1は、複数の結晶子2が連続的に結合して三次元ネットワーク構造を成し、結晶子2の表面の一部にマグネリ相2aを有する造粒体である。結晶子2は、ランダムに配向して互いに卓面や端面などの表面で結合している。結晶子2が平板形状の場合、三次元ネットワーク構造はカードハウス構造である。チタン酸化物粒子1の内部にはナノサイズの空間部3を多数存在させている。結晶子2の接合界面に粒界を無くし、一方で結晶子2間には微小の細孔4を多数存在させている。
 結晶子2は、チタン酸化物の単結晶とみなせる最大の集まりである。結晶子2は、三角形、四角形又はその他の多角形形状の平板形状、厚みを持った多面体、若しくは球体、楕円体、その他の曲面で形成される形状を有する。結晶子2の表面とは、結晶子2が平板や多面体の場合、縁表面であり、ファセット面の辺部又は端部である。結晶子2の辺部又は端部の1つ又は複数がマグネリ相2aに変質している。結晶子2の辺部又は端部の全長の一部分又は全長がマグネリ相2aとなっている。ファセット面の一部領域にマグネリ相2aが含まれていてもよい。また、結晶子2の表面とは、結晶子2が曲面で形成される形状の場合、表面の単数又は複数の一部領域である。
 結晶子2を構成するチタン酸化物は、一般式Ti2nで表される酸化チタン、一般式MαTiβγで表されるチタン酸化合物である。Mは金属である。チタン酸化合物としては、チタン酸リチウム、チタン酸鉛、チタン酸バリウム、チタン酸ジルコン酸鉛、チタン酸カリウム、チタン酸バナジウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸アルミニウムを挙げることができる。酸化チタンは、例えばTiOで表されるアナターゼ型又はルチル型の酸化チタン(IV)である。チタン酸化合物は、例えばLi4+wTi12(0≦w≦3)で表されるスピネル型のチタン酸リチウム、又はLi2+yTi(0≦y≦3)で表されるラムスデライト型のチタン酸リチウムである。
 マグネリ相2aは、一般式Ti2n-1(3≦n≦10)で表されるチタン酸化物である。このマグネリ相2aは、例えばTi、TiとTiの混相、若しくは一般式Ti2n-1(3≦n≦10)で表される化合物から選ばれる何れか単体又は2以上の混相である。
 このチタン酸化物粒子1は、結晶子2の母材がチタン酸リチウムの場合、チタン酸リチウムの特性とマグネリ相2aの特性とを併せ持つ。チタン酸リチウムは、リチウムイオンの挿入・脱離によるエネルギー貯蔵機能を有する。その挿入・脱離の体積変化が約1%であるため、容量劣化が少ない。充放電電位が約1.5V(vs Li/Li+)であるため、電解液の分解や急速充放電によるリチウム金属の析出などの副反応が生じにくく、サイクル特性に優れる。結晶子2がチタン酸リチウムの場合、このチタン酸化物粒子1は、このような電極の活物質としての利点を備えている。しかしながら、チタン酸リチウムは、カーボンと比べて電気伝導性が低い。一方、マグネリ相2aは、電気伝導性が高く、Tiは、電気伝導性がカーボンの2.75倍を有する。すなわち、このチタン酸化物粒子1は、チタン酸リチウムとして活物質の性能を維持しながら、マグネリ相2aにより高電気伝導性が付与された特性を有する。
 また、このチタン酸化物粒子1は、高電気伝導性のマグネリ相2aが結晶子2の表面に存在し、結晶子2が卓面や端面などの表面で連なって三次元ネットワーク構造を有する。そのため、各結晶子2は部分的にはマグネリ相2aを介して接続されている。接続態様としては、マグネリ相2a同士が接続されるケース、マグネリ相2aとマグネリ相2a以外の表面とが接続されるケース、又はこれらの混在とがある。従って、カーボン等の導電補助剤無しでも、チタン酸化物粒子1にマグネリ相2aを含む電子パスが形成され、チタン酸化物粒子1全体としても高電気伝導性を有する。カーボンが不要又はカーボンが少なくて済むため、エネルギー密度の低下も抑制できる。
 しかも、チタン酸化物粒子1には、ナノサイズの空間部3を有し、電解液の貯蔵池となる。ナノサイズの空間部3へは、結晶子2間に多数の細孔4が形成されていることにより、リチウムイオンのイオンパスも確保されている。更に、結晶子2間の接合界面に粒界がなく、粒界抵抗が少ない。従って、このチタン酸化物粒子1は、例えば蓄電デバイスの電極、色素増感太陽電池の電極、光で充電できる蓄電池、水分解による水素製造のための光電極に最適である。
 結晶子2は、平均サイズが5~100nmであることが望ましく、平板形状を有する場合には2~5原子層レベルで1nm以下の厚みを有し、二次元面の一辺が5~100nmに展開されていることが望ましい。チタン酸化物粒子1は、複数の結晶子2が結合して好ましくは500nm~5μm程度の大きさとなる。この大きさであると、電極材料として取り扱い容易である。結晶子2及びチタン酸化物粒子1のサイズは、熱処理工程における温度及び時間により調節可能である。
 各細孔は5~100nm程度が好ましい。窒素ガス吸着測定法にて測定した細孔分布から換算される差分細孔容積においては、10~40nmの範囲の細孔径における差分細孔容積が0.01cm/g以上の値を有し、特には、0.02cm/g以上の値を有することで、微細なリチウムイオンのイオンパスとなり、電解液との接する結晶子2の面積が増え、電極に用いた際のレート特性が向上する。
 尚、後述のようにチタン酸化物粒子1をカーボンの焼失により生成する場合、カーボンの残存量はゼロが理想であるが、チタン酸化物粒子1に対する5重量%未満とすることが好ましい。このような範囲とすることで、カーボンの存在に起因するエネルギー密度の低下を抑制できる。
 (チタン酸化物粒子1製法)
 このチタン酸化物粒子1は、チタン酸化物の結晶子2とカーボンの複合体を酸素雰囲気下で熱処理することで得られる。図2に示すように、酸素雰囲気下で複合体を熱処理することによって、複合体からカーボンが焼失し、結晶子2同士が焼結する。更に、酸素雰囲気下で複合体を熱処理することによって、結晶子2の表面がマグネリ相2aへ変質し、以ってチタン酸化物粒子1が生成される。
 この熱処理工程では、カーボンが雰囲気中の酸素と結びついて燃焼する。更に、当メカニズムに限定されるものではないが、カーボンは、接合界面からチタン酸化物の酸素原子を脱離させることによって、一酸化炭素Coや二酸化炭素COとなるとともに、チタンが還元され、リチウムがチタン酸化物の酸素原子を奪ってLiOにガス化すると考えられる。これら反応によって、Ti:Oがn:2n+2からn:2nー1になるまで酸素脱離が生じ、リチウムがガス化し、結晶子2の表面を構成するチタン酸リチウムがマグネリ相2aに変質するものと考えられる。
 従って、この熱処理工程において、カーボンと結晶子の結合度合い、酸素濃度、焼成温度及び焼成時間は、チタン酸化物粒子の大きさ、カーボン除去の程度、上記反応によるマグネリ相2aへの変質、及び変質割合を決定し得る。
 すなわち、この熱処理工程では、熱処理温度を400以上600℃以下の範囲とするとよい。また、熱処理時間は0.5以上10時間以下保持するのがよい。400℃未満の温度、0.5時間未満の熱処理時間は、カーボンの除去が不十分となり、エネルギー密度の低下が顕著となる。また、400℃未満の温度、0.5時間未満の熱処理時間は、マグネリ相2aへの変質も進行し難いかもしれず、満足できる高電気伝導性をチタン酸化物粒子1に付与できない。600℃を超える温度、10時間を超える熱処理では、チタン酸化物の凝集が進み、チタン酸化物粒子1の空隙が減少してしまう。また、600℃を超える温度、10時間を超える熱処理では、マグネリ相2aへの変質が過度に進行し、高電気特性は付与されるものの、チタン酸化物の特性を損ないかねない。更に、このような温度範囲及び時間とすることで得られた結晶子2は、平均サイズが5~100nmに維持され、この熱処理前の酸化チタンの平均サイズからの粒子成長が抑制される。
 なお、酸素雰囲気下としては、窒素などとの混合雰囲気でもよく、大気中など酸素が15%以上存在する雰囲気下が好ましい。この酸素雰囲気下での熱処理においては、カーボンの焼失によって酸素量が減少するため、酸素脱離を阻害しない程度に熱処理炉内に適宜酸素を供給してもよい。
 チタン酸化物の結晶子2とカーボンとの複合体は、例えば、チタン酸化物の材料源とカーボン源との混合工程、及び混合物の不活性雰囲気下での熱処理工程を経て獲得できる。このような複合体の生成から出発すると、総じて、チタン酸化物粒子1は、チタン酸化物の材料源とカーボン源との混合工程、混合物の不活性雰囲気下での第1熱処理工程、及び第1熱処理を経た混合物の酸素雰囲気下での第2熱処理工程により得られる。尚、カーボンと同様に焼失し、伴って酸素脱離又はこれに加えてリチウム脱離を生じさせるものであれば、カーボンに代えてチタン酸化物と複合化させてもよい。
 チタン酸リチウムで結晶子2を構成する場合、混合工程では、メカノケミカル処理、スプレードライ処理、又は攪拌処理等の複合化の手法により、チタン酸リチウムの前駆体の生成と、チタン酸リチウムの前駆体とカーボン源との複合化を進行させる。チタン酸リチウムの前駆体は、Tiβγもしくはその構成化合物である。Tiβγもしくはその構成化合物は、チタン酸化物の化学量論比に従えばよく、例えばLiTi12のチタン酸リチウムであれば、TiとOの原子比が5:12となればよい。混合工程では、カーボン源とともに、チタン酸リチウムの前駆体となり得る酸化チタン、チタンアルコキシド等のチタン源を溶媒に投入する。
 酸化チタンで結晶子を構成する場合、混合工程では、メカノケミカル処理、スプレードライ処理、又は攪拌処理等の複合化の手法により、酸化チタンとカーボン源との複合化を進行させる。混合工程では、カーボン源とともに、酸化チタン自体を溶媒に投入する。
 カーボン源は、カーボン(粉体)自体又は熱処理によってカーボンとなりうる材料を意味する。カーボン(粉体)としては、導電性を有する炭素材料であれば特に限定なく使用することができる。例えば、ケッチェンブラック、アセチレンブラック、チャネルブラック等のカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノファイバ、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、気相法炭素繊維等を挙げることができる。なかでも粒子径がナノサイズの炭素材料が好ましい。
 熱処理によってカーボンとなり得る材料としては、有機物で、結晶子2の材料源の表面に堆積するものであり、後の熱処理工程においてカーボンに転化するものである。有機物としては、多価アルコール(エチレングリコールなど)、ポリマー(ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドンなど)、糖類(グルコースなど)、アミノ酸(グルタミン酸など)などである。
 カーボンの混合比率としては、チタン酸化物粒子1とカーボンとの重量比で95:5~30:70の範囲がよい。この範囲とすると、最終的に得られたチタン酸化物粒子1の細孔や空間を増加させることができる。
 溶媒は、反応に悪影響を及ぼさない液であれば特に限定なく使用することができ、水、メタノール、エタノール、イソプロピルアルコールなどを好適に使用することができる。2種以上の溶媒を混合して使用しても良い。
 メカノケミカル処理では、旋回する反応器内で溶液にずり応力と遠心力を加える。反応器としては、特開2007-160151号公報の図1に記載されている、外筒と内筒の同心円筒からなり、旋回可能な内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されている反応器が好適に使用される。上記反応器において、内筒外壁面と外筒内壁面との間隔は、5mm以下であるのが好ましく、2.5mm以下であるのがより好ましい。なお、この薄膜上を生成するために必要な遠心力は1500N(kgms-2)以上、好ましくは70000N(kgms-2)以上である。
 チタンアルコキシドTi(OR)xを出発材料として、チタン酸リチウムの前駆体を加水分解反応により生成する場合には、溶液に反応抑制剤を添加してもよい。反応抑制剤として該チタンアルコキシドと錯体を形成する所定の化合物を添加することにより、化学反応が促進しすぎるのを抑制することができる。チタンアルコキシドに、これと錯体を形成する酢酸等の所定の化合物を該チタンアルコキシド1モルに対して、1~3モル添加して錯体を形成することにより、反応を抑制、制御する。チタンアルコキシドと錯体を形成することができる物質としては、酢酸の他、クエン酸、蓚酸、ギ酸、乳酸、酒石酸、フマル酸、コハク酸、プロピオン酸、レプリン酸等のカルボン酸、EDTA等のアミノポリカルボン酸、トリエタノールアミン等のアミノアルコールに代表される錯化剤が挙げられる。
 スプレードライ処理では、まずは、溶媒にカーボン粉体を分散させるとよい。分散手法としては、超遠心処理(溶液中で粉体にずり応力と遠心力を加える処理)、ビーズミル、ホモジナイザーなどによってカーボン粉体を溶媒中に高分散させるとよい。このカーボン粉体が分散された溶媒に、チタン酸化物の材料源を溶解させて得た溶液を基板上にスプレードライ処理する。スプレードライ処理は、0.1Mpa程度の圧力でカーボン粉体が焼失しない温度で処理される。チタン酸化物の材料源がチタンアルコキシドの場合、チタンアルコキシドが酸化処理されてチタン酸リチウムの前駆体が生成され、このチタン酸リチウムの前駆体とカーボン粉体とが複合化される。
 攪拌処理としては、溶液を攪拌する。粉体は、予め粉砕等を行いナノレベルの微小粒子とすることが好ましい。熱処理によってカーボンになりうる材料として、ポリマーを用いる場合は、予めポリマーを添加した溶媒にチタン酸化物の材料源を添加し、この溶液を攪拌するとよい。ポリマーは、チタン酸化物の材料源となる粉体の重量を1とした場合に、0.05~5の範囲となるように調整するとよい。
 以上の混合工程により、チタン酸リチウムの前駆体又は酸化チタンがカーボン源に対して、イオン結合、金属結合、水素結合、ファンデルワールス結合等の分子間の化学結合により吸着するものと推測される。
 混合処理後の第1熱処理工程では、カーボン上でチタン酸リチウムの生成及びチタン酸化物の結晶成長を生じさせる。混合工程で、チタン源を投入した場合には、この熱処理工程前にリチウム源を添加しておく。リチウム源は、酢酸リチウム、硝酸リチウム、酸化リチウム、炭酸リチウム、水酸化リチウム等が挙げられる。リチウム源とチタン源は、チタン酸リチウムの化学量論比に従えばよく、例えばLiTi12のチタン酸リチウムであれば、LiとTiの原子比が4:5となるようにチタン源とリチウム源とを溶媒に添加すればよい。尚、混合工程でチタン源のみならず、予めリチウム源を投入しておいてもよい。
 この第1熱処理工程では、混合工程で得た複合体を真空中、窒素もしくはアルゴン雰囲気などの不活性雰囲気下で熱処理を施す。不活性雰囲気下での熱処理は、チタン酸リチウムの前駆体が溶融してリチウムが取り込まれることでチタン酸化物が生成されて結晶成長し、または酸化チタンが晶出する。カーボン源は、炭化されてカーボンとなる。カーボンとチタン酸化物は、カーボン上でのチタン酸化物の成長により接合界面が格子接合する。また、この熱処理では、不活性雰囲気下とすることにより、第二熱処理工程でチタン酸化物から酸素原子を脱離させるカーボンの焼失を防止する。
 この熱処理は、カーボン源の焼失を防止するために、不活性雰囲気下で、その温度は600~950℃の範囲で、1分~20分間保持される。特にチタン酸化物がチタン酸リチウムである場合は、熱処理温度が600℃未満であると、チタン酸リチウムの生成が十分でないため好ましくなく、熱処理温度が950℃を超えると、チタン酸リチウムが凝集し且つチタン酸リチウム自体が分解するため好ましくない。なお、不活性雰囲気下としては特には窒素雰囲気での熱処理が好ましく、チタン酸化物粒子に窒素がドープされて金属化合物粒子の導電性が高まる。
 不活性雰囲気下での熱処理工程を経た際、チタン酸化物の結晶子2は、5~100nmの範囲を含むことが好ましい。このようなナノサイズの微小粒子とすることで後述するチタン酸化物粒子の空隙率を増加させることができると共に、チタン酸化物粒子1に存在する微細な孔の数を増やすことができる。なお、このような範囲にするには、予めチタン酸化物の材料源とカーボン源の混合比を調整しておけばよい。
 なお、この不活性雰囲気下での熱処理工程の前に、混合工程を経た複合体を200~500℃の温度範囲で、1~300分間保持する予備熱処理を施すとよい。この予備加熱処理によって得られる複合体によっては、複合体に存在する不純物を除去することができ、またチタン酸化物の前駆体がカーボン源に均一に付着された状態を得ることができる。また、チタン酸化物の前駆体の生成を促進させる効果もある。
 (実施例)
 以下、本発明の実施例1を示すが、本発明は実施例1に限定されるものではない。まず、実施例1として、最初に混合工程を実行した。カーボンナノファイバ20gとテトライソプロポキシチタン245gとをイソプロピルアルコール1300gに添加して、テトライソプロポキシチタンをイソプロピルアルコールに溶解させた。チタンアルコキシドとカーボンナノファイバの重量比は、第1熱処理工程後のチタン酸リチウムとカーボンナノファイバの重量比が約8:2となるように選択した。得られた液を、外筒と内筒の同心円筒からなり、内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されている反応器の内筒内に導入し、35000kgms-2の遠心力が液に印加されるように内筒を300秒間旋回させて、カーボンナノファイバを液に高分散させた。
 酢酸165gと酢酸リチウム50gとを、イソプロピルアルコール145gと水150gとの混合溶媒に溶解した。得られた液を上記反応器の内筒内に導入し、溶液を調製した。この溶液に35000kgms-2の遠心力が印加されるように内筒を300秒間旋回させて、外筒の内壁に溶液の薄膜を形成させると共に、溶液にずり応力と遠心力を加えた。
 次いで、第1熱処理工程を実行した。上記反応器の内容物を回収し、大気中で溶媒を蒸発させ、さらに100℃で17時間乾燥した。乾燥により得られた結果物を、窒素中、400℃で30分の予備熱処理を行い、その後窒素中、900℃で3分間熱処理を行った。
 更に、第2熱処理工程を実行した。窒素雰囲気中の熱処理により得られた結果物100gを、500℃で6時間の熱処理を施し最終結果物を得た。
 そして、最終結果物の構造解析を行った。第1に、走査型電子顕微鏡により最終結果物の粒子全体像と結晶子を撮影し、粒子構造を解析した。図3は、最終結果物の断面を撮影したTEM像であり、倍率は一万倍である。図4は、高分解能透過電子顕微鏡により最終結果物の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は五万倍である。図5は、透過電子顕微鏡により最終結果物の結晶子部分にフォーカスを当てたSTEM像である。
 図6は、高分解能透過電子顕微鏡により最終結果物の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は10万倍である。図7は、高分解能透過電子顕微鏡により最終結果物の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は30万倍である。図8は、高分解能透過電子顕微鏡により最終結果物の結晶子部分にフォーカスを当てたHRTEM像であり、倍率は40万倍である。
 図3に示すように、最終結果物は、その大きさが約1.7μmであり、全体として三次元ネットワーク構造を有し、多くの空間部3が存在していることがわかる。図4に示すように、最終結果物は、多数の一次粒子の焼結体であることがわかる。一次粒子の粒径は約40nm程度が最多であった。また、この一次粒子間には、多数の細孔4が形成されていることがわかる。一方、図5に示すように、一次粒子間には、粒界がほとんど見えないことが分かる。
 図6に示すように、一次粒子は、薄片形状を有し、一次粒子同士が卓面や端面で結合していることが分かる。図7に示すように、この一次粒子の格子がはっきりとしており、一次粒子は、結晶子であることがわかる。そして、図8に示すように、結晶子の卓面に対して2辺の縁E1、E2は全体的に黒ずんでおり、結晶子の卓面と縁とが異なる物質の結晶であることがわかる。
 以上より、この最終結果物は、結晶子が連なって三次元ネットワーク構造を有しており、結晶子の卓面と縁とは異なる物質により成っていることがわかる。
 次に、結晶子の卓面と縁の物質を特定すべく、最終結果物を制限視野電子回折法により確認した。図9は、最終結果物の低倍率の制限視野ED図を示し、低倍率5千倍である。図10は、最終結果物の高倍率の制限視野ED図を示し、高倍率40万倍である。
 図9に示す低倍率5000倍の回折図形に基づく実測値と実測値を面間隔d値(Å)に換算した結果と、図10に示す高倍率40万倍の回折図形に基づく実測値と実測値を面間隔d値(Å)に換算した結果、結晶子の多くは、チタン酸リチウムで構成されているものの、高倍率で観察すると、Tiが多く含有している可能性が高いことがわかる。
 更に、第3に、SPring-8を利用してXAS(X線吸収分光法)測定により、更に結晶子のファセット面と結晶子の縁を構成する物質を各々特定した。XAS測定では、結晶子の内部のバルク情報と結晶子の表面の表面情報に分けて測定した。バルク情報は、Ti K-edge XAS透過法(SPring-8)を用い、表面情報は、Ti K-edge XAS転換電子収量法(SPing-8)を用いた。標準サンプルとして市販(東邦チタニア製)のLiTi12も同じ測定を行った。
 図11は、Ti K-edge EXAFSによる透過法の結果を示すグラフである。Ti K-edge EXAFSは、Ti周りの局所構造を判定する。透過法によっては最終結果物と標準サンプルとに違いはほとんど見られなかった。すなわち、結晶子全体としては、標準サンプルと最終結果物とでTi-O結合とTi-Ti結合が同一であり、最終結果物の結晶子全体としては、LiTi12で構成されていることがわかる。
 一方、図12は、Ti K-edge EXAFSによる転換電子収量法の結果を示すグラフである。図12に示すように、Ti-Ti結合については、標準サンプルと最終結果物とが同一であるが、最終結果物の結晶子においてTi-O結合に変化が見られた。すなわち、最終結果物の結晶子の表面でTi-O結合の状態が変化していることがわかる。
 図13は、図12の拡大図である。図13に示すように、TiとOの距離(Å)には、5つのピークがあることがわかる。ピークAはTiとOの距離が1.713、ピークBはTiとOの距離が1.873、ピークCはTiとOの距離が1.991、ピークDはTiとOの距離が2.053、ピークEはTiとOの距離が2.317であった。
 Ti K-edge EXAFSによる転換電子収量法により得られた各ピークとTiが有するTiとOの距離の比較を図14に示す。スピネル型のLiTi12は、正八面体が重なる構造であるので、TiとOの距離は1.995のみである。ルチルやアナターゼのTiOはLiTi12と近似する。そして、Tiは、複雑な構造を有し、TiとOとの距離が1.854と1.934と1.993と2.024と2.063と2.156にピークを有することが知られている。ピークA~Eの結果とTiが有するTiとOの距離とを比較すると、最終結果物の結晶子の表面は、Tiとピークの数及びピークの値共に非常によく近似していることがわかる。
 以上より、最終結果物の結晶子は、全体としてはLiTi12で構成されているが、結晶子の表面はTiに変質していることがわかる。図3から図14の結果を纏めると、最終結果物は、全体としてLiTi12の結晶子2が積層されてカードハウス構造を有し、LiTi12の結晶子2の縁表面がTiに変質したチタン酸化物粒子1であることが確認された。
 (実施例の評価)
 (従来例1)
 従来例1として、水酸化リチウム38g、水800gの水溶液に、ナノサイズ(200nm程度)となるように粉砕した酸化チタン(TiO)87gを添加して攪拌して溶液を得る。この溶液をスプレードライ装置に導入し噴霧乾燥して乾燥物を得た。得られた乾燥造粒物を大気中で700℃の温度で3時間熱処理を行いチタン酸リチウムの造粒体を得た。この造粒体は、カーボン未使用であるため、熱処理に伴うカーボンとリチウムの結びつきがなく、カーボンとリチウムのそれぞれのガス化に伴う酸素脱離はないものと思われ、マグネリ相2aは形成されていない。また、製造工程中にカーボンが存在しないために、カーボンが除去された空間そのものが存在しない。
 (細孔分布)
 実施例1のチタン酸化物粒子1及び従来例1のチタン酸リチウムの細孔分布を測定した。測定方法としては、窒素ガス吸着測定法を用いる。具体的には、粒子表面及び、粒子表面と連通した内部に形成された細孔に窒素ガスを導入し、窒素ガスの吸着量を求める。次いで、導入する窒素ガスの圧力を徐々に増加させ、各平衡圧に対する窒素ガスの吸着量をプロットし、吸着等温曲線を得る。高精度ガス/蒸気吸着量測定装置BELSORP-max-N(日本ベル株式会社製)を用いて測定した。図15は、横軸に細孔径を取り、測定ポイント間の細孔容積の増加分を縦軸に取った差分細孔容積分布を示す。
 図15から分かるように、実施例1は、従来例1に対して、差分細孔容積が大きいことが分かる。このような細孔径の小さい範囲(100nm)において差分細孔容積が大きいため、チタン酸リチウム粒子1の内部に電解液が侵入し、電解液と接するチタン酸リチウム粒子1の面積が大きいことが分かる。特に10~40nmの範囲の細孔径における差分細孔容積が0.01cm/g以上の値を有し、さらには、0.02cm/g以上の値が得られている。
 (カーボン残存量)
 第2熱処理工程において、実施例1では500℃で6時間の熱処理を施したのに対し、実施例2では収集物100gを350℃で3時間の熱処理を施し、実施例3では収集物100gを300℃で1時間の熱処理を施した。それ以外は、実施例1乃至3は全て同じである。
 そして、得られた実施例1、実施例2及び実施例3のチタン酸リチウム粒子についてカーボンの残存量を測定した。測定には、TG-DTA測定(示差熱―熱重量同時測定)を用いた。これら実施例の60℃放置試験を行った結果を表1に示す。放置試験は、各キャパシタを2.8Vで充電した状態で30分間保持し、その後60℃の雰囲気で1500時間放置した。このキャパシタを再度充放電した際の放電容量を、試験前の放電容量の割合として算出した値である。
 放置試験に際し、実施例1、実施例2及び実施例3のチタン酸化物粒子1に対して5重量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥して、電極を得た。さらに、得られた電極を用いて、1MのLiBFのプロピレンカーボネート溶液を電解液とし、対極に活性炭電極を用いたラミネート封止のキャパシタを作成した。
 (表1)
Figure JPOXMLDOC01-appb-I000001
 表1に示すように、カーボンの残存量は5重量%未満が好ましく、特にはカーボンの残存量が1重量%以下であった実施例1が良好な結果が得られている。
 (キャパシタ評価)
 実施例1のチタン酸化物粒子1及び従来例1のチタン酸リチウムの造粒体に対して5重量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥して、電極を得た。さらに、得られた電極を用いて、1MのLiBFのプロピレンカーボネート溶液を電解液とし、対極に活性炭電極を用いたラミネート封止のキャパシタを作成した。
 図16は、得られた実施例1及び従来例1のキャパシタについて、レートと容量維持率との関係を示した図である。図16から分かるように、実施例1のキャパシタは高レートにおいても良好なレート特性が得られることが分かる。特に実施例1のキャパシタでは、電極に導電助剤となる導電性カーボンが含有せずとも良好なレート特性が得られている。例えば、200Cにおいて、従来例1のキャパシタは、容量維持率が10%未満であったのに対し、実施例1のキャパシタは、容量維持率が70%弱に達した。
1 チタン酸化物粒子
2 結晶子
2a マグネリ相
3 空間部
4 細孔

Claims (21)

  1.  チタン酸化物の結晶子が連なった三次元ネットワーク構造を有し、
     前記結晶子の表面にマグネリ相が形成されていること、
     を特徴とするチタン酸化物粒子。
  2.  前記チタン酸化物は、一般式LiαTiβγで表されるチタン酸リチウムであること、
     を特徴とする請求項1記載のチタン酸化物粒子。
  3.  前記チタン酸化物は、LiTi12で表されるスピネル型のチタン酸リチウムであること、
     を特徴とする請求項2記載のチタン酸化物粒子。
  4.  前記マグネリ相は、一般式Ti2n-1(3≦n≦10)で表されるチタン酸化物であること、
     を特徴とする請求項1乃至3の何れかに記載のチタン酸化物粒子。
  5.  前記マグネリ相は、Tiであること、
     を特徴とする請求項4記載のチタン酸化物粒子。
  6.  前記結晶子の連なりにより前記マグネリ相を含む電子パスが形成されていること、
     を特徴とする請求項1乃至5の何れかに記載のチタン酸化物粒子。
  7.  前記三次元ネットワーク構造内に複数の空間部を有すること、
     を特徴とする請求項1乃至6の何れかに記載のチタン酸化物粒子。
  8.  前記結晶子間に前記三次元ネットワーク構造内部に繋がる複数の細孔を有すること、
     を特徴とする請求項7記載のチタン酸化物粒子。
  9.  前記細孔から前記空間部に繋がるイオンパスが形成されていること、
     を特徴とする請求項8記載のチタン酸化物粒子。
  10.  前記結晶子は、互いに粒界なく結合していること、
     を特徴とする請求項1乃至9の何れかに記載のチタン酸化物粒子。
  11.  粒子全体に対してカーボンがゼロを含む5重量%未満であること、
     を特徴とする請求項1乃至10の何れかに記載のチタン酸化物粒子。
  12.  前記結晶子は、平板形状を有し、
     前記三次元ネットワーク構造はカードハウス構造であること、
     を特徴とする請求項1乃至11の何れかに記載のチタン酸化物粒子。
  13.  前記結晶子の縁表面にマグネリ相が形成されていること、
     を特徴とする請求項1乃至12の何れかに記載のチタン酸化物粒子。
  14.  請求項1乃至13の何れかに記載のチタン酸化物粒子を含み構成されること、
     を特徴とする蓄電デバイス用電極。
  15.  請求項1乃至13の何れかに記載のチタン酸化物粒子を含み構成される電極を備えた蓄電デバイス。
  16.  チタン酸化物の結晶子とカーボンとの複合体を酸素雰囲気下で熱処理することで、前記カーボンを焼失させ、且つ前記チタン酸化物の結晶子同士を連ならせて三次元ネットワーク構造の粒子を形成するとともに、前記結晶子の表面にマグネリ相を形成すること、
     を特徴とするチタン酸化物粒子の製造方法。
  17.  前記熱処理の温度は400~600℃であること、
     を特徴とする請求項16記載のチタン酸化物粒子の製造方法。
  18.  前記熱処理の時間は、0.5以上10時間以下であること、
     を特徴とする請求項16又は17記載のチタン酸化物粒子の製造方法。
  19.  前記複合体は、
     前記チタン酸化物源とカーボン源の混合工程と、
     前記混合工程を経た混合物を不活性雰囲気下で熱処理する工程と、
     により生成されること、
     を特徴とする請求項16乃至18の何れかに記載のチタン酸化物粒子の製造方法。
  20.  前記不活性雰囲気下での熱処理の温度は、600~950℃であること、
     を特徴とする請求項19記載のチタン酸化物粒子の製造方法。
  21.  前記混合工程は、溶液中の前記チタン酸化物源とカーボン源に対するメカノケミカル処理を含むこと、
     を特徴とする請求項16乃至20の何れかに記載のチタン酸化物粒子の製造方法。
PCT/JP2015/065204 2015-03-31 2015-05-27 チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス WO2016157551A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177023359A KR102394216B1 (ko) 2015-03-31 2015-05-27 티타늄 산화물 입자, 티타늄 산화물 입자의 제조 방법, 티타늄 산화물 입자를 포함하는 축전 디바이스용 전극, 티타늄 산화물 입자를 포함하는 전극을 구비한 축전 디바이스
US15/558,169 US10490316B2 (en) 2015-03-31 2015-05-27 Titanium oxide particles, titanium oxide particle production method, power storage device electrode including titanium oxide particles, and power storage device provided with electrode including titanium oxide particles
CN201580078101.3A CN107428553B (zh) 2015-03-31 2015-05-27 钛氧化物粒子、钛氧化物粒子的制造方法、蓄电元件用电极、及蓄电元件
EP15887693.8A EP3279143A4 (en) 2015-03-31 2015-05-27 Titanium oxide particles, titanium oxide particle production method, power storage device electrode including titanium oxide particles, and power storage device provided with electrode including titanium oxide particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-074272 2015-03-31
JP2015074272 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157551A1 true WO2016157551A1 (ja) 2016-10-06

Family

ID=57005446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065204 WO2016157551A1 (ja) 2015-03-31 2015-05-27 チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス

Country Status (6)

Country Link
US (1) US10490316B2 (ja)
EP (1) EP3279143A4 (ja)
JP (2) JP6375331B2 (ja)
KR (1) KR102394216B1 (ja)
CN (1) CN107428553B (ja)
WO (1) WO2016157551A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428553B (zh) * 2015-03-31 2020-09-29 日本贵弥功株式会社 钛氧化物粒子、钛氧化物粒子的制造方法、蓄电元件用电极、及蓄电元件
JP6767180B2 (ja) * 2016-06-22 2020-10-14 日本ケミコン株式会社 リチウム二次電池及びその製造方法
FR3060554B1 (fr) * 2016-12-20 2022-04-01 Saint Gobain Ct Recherches Produits ceramiques de sous oxydes de titane
JP7181709B2 (ja) * 2018-06-06 2022-12-01 株式会社豊田中央研究所 蓄電デバイス
CN108862377B (zh) * 2018-08-27 2021-03-02 中科廊坊过程工程研究院 一种Ti4O7纳米材料及其制备方法和用途
CN108946798B (zh) * 2018-09-06 2021-04-30 中国石油天然气股份有限公司 一种线状分级结构钛酸锂材料及制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332684A (ja) * 2004-05-20 2005-12-02 Toshiba Corp 非水電解質二次電池
JP2009043679A (ja) * 2007-08-10 2009-02-26 Toshiba Corp 電池用活物質、電池用活物質の製造方法、非水電解質電池および電池パック
JP2011236061A (ja) * 2010-05-04 2011-11-24 Nippon Chemicon Corp チタン酸リチウム結晶構造体、チタン酸リチウム結晶構造体とカーボンの複合体、その製造方法、その複合体を用いた電極及び電気化学素子
CN102496704A (zh) * 2011-12-08 2012-06-13 中信国安盟固利电源技术有限公司 一种钛酸锂/亚氧化钛负极材料及其制备方法
WO2014034933A1 (ja) * 2012-09-03 2014-03-06 日本ケミコン株式会社 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173215A (en) * 1991-02-21 1992-12-22 Atraverda Limited Conductive titanium suboxide particulates
JP3894615B2 (ja) * 1996-03-18 2007-03-22 石原産業株式会社 チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
DK1516376T3 (da) 2002-06-25 2009-11-16 Applied Intellectual Capital L Zink-luft-batteri med syreelektrolyt
GB0518139D0 (en) 2005-09-06 2005-10-12 Univ Cambridge Tech Synthesis of rutile structure titanium oxide nanostructures
US8118035B2 (en) * 2005-12-13 2012-02-21 Philip Morris Usa Inc. Supports catalyst for the combustion of carbon monoxide formed during smoking
GB0716441D0 (en) * 2007-08-23 2007-10-03 Atraverda Ltd Powders
CN101465213B (zh) * 2007-12-17 2011-03-16 复旦大学 复合材料及其制备方法,包括该复合材料的电极材料及电容器
WO2009154274A1 (ja) * 2008-06-20 2009-12-23 大阪瓦斯株式会社 酸化チタン構造体及び多孔質酸化チタン組成物
CN101794876B (zh) * 2010-03-19 2012-10-03 苏州能斯特新能源有限公司 高倍率性能电池负极材料及其制备方法
JP5672859B2 (ja) * 2010-08-26 2015-02-18 宇部興産株式会社 微細な炭素繊維と複合化されたリチウムチタン複合酸化物電極材料
JP2012169217A (ja) 2011-02-16 2012-09-06 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
US20120251887A1 (en) * 2011-04-04 2012-10-04 Brookhaven Science Associates, Llc Carbon-Coated Magneli-Phase TinO2n-1 Nanomaterials and a Method of Synthesis Thereof
JP5916007B2 (ja) * 2011-09-28 2016-05-11 日本ケミコン株式会社 チタン酸リチウムとカーボンナノファイバーとの複合体の製造方法
WO2013062129A1 (ja) * 2011-10-29 2013-05-02 日本ケミコン株式会社 電極材料の製造方法
JP6363550B2 (ja) 2014-12-16 2018-07-25 日本ケミコン株式会社 金属化合物粒子群の製造方法、金属化合物粒子群及び金属化合物粒子群を含む蓄電デバイス用電極
CN107428553B (zh) * 2015-03-31 2020-09-29 日本贵弥功株式会社 钛氧化物粒子、钛氧化物粒子的制造方法、蓄电元件用电极、及蓄电元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332684A (ja) * 2004-05-20 2005-12-02 Toshiba Corp 非水電解質二次電池
JP2009043679A (ja) * 2007-08-10 2009-02-26 Toshiba Corp 電池用活物質、電池用活物質の製造方法、非水電解質電池および電池パック
JP2011236061A (ja) * 2010-05-04 2011-11-24 Nippon Chemicon Corp チタン酸リチウム結晶構造体、チタン酸リチウム結晶構造体とカーボンの複合体、その製造方法、その複合体を用いた電極及び電気化学素子
CN102496704A (zh) * 2011-12-08 2012-06-13 中信国安盟固利电源技术有限公司 一种钛酸锂/亚氧化钛负极材料及其制备方法
WO2014034933A1 (ja) * 2012-09-03 2014-03-06 日本ケミコン株式会社 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUHIKO NAOI ET AL.: "New hybrid supercapacitors and their prospect", CARBONS, vol. 256, 15 January 2013 (2013-01-15), pages 22 - 32, XP009504532 *

Also Published As

Publication number Publication date
KR102394216B1 (ko) 2022-05-09
EP3279143A1 (en) 2018-02-07
US20180072584A1 (en) 2018-03-15
US10490316B2 (en) 2019-11-26
CN107428553A (zh) 2017-12-01
JP2016193816A (ja) 2016-11-17
CN107428553B (zh) 2020-09-29
JP6375331B2 (ja) 2018-08-15
JP6830928B2 (ja) 2021-02-17
KR20170133323A (ko) 2017-12-05
JP2018203615A (ja) 2018-12-27
EP3279143A4 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6375331B2 (ja) チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス
US10109431B2 (en) Composite of metal oxide nanoparticles and carbon, method of production thereof, electrode and electrochemical element employing said composite
US9868105B2 (en) Spinel-type lithium titanium oxide/graphene composite and method of preparing the same
JP6783828B2 (ja) チタン酸化物結晶体、チタン酸化物結晶体を含む蓄電デバイス用電極
JP2010212309A (ja) 電極材料及びこの電極材料を含有する電極
JP6688840B2 (ja) 金属化合物粒子群の製造方法、金属化合物粒子群及び金属化合物粒子群を含む蓄電デバイス用電極
WO2019093513A1 (ja) リチウムバナジウム酸化物結晶体、電極材料及び蓄電デバイス
JP6155316B2 (ja) 金属化合物ナノ粒子とカーボンの複合体、この複合体を有する電極及び電気化学素子
JP2018166100A (ja) リチウムイオン二次電池用負極活物質の製造方法
KR101046432B1 (ko) 새로운 나노복합체 산화티타늄 제조법 및 고에너지, 고출력전하저장용 전극재료로의 적용
JP2017228437A (ja) リチウムナトリウムチタン酸化物粒子、リチウムナトリウムチタン酸化物粒子を含む蓄電デバイス用電極、及びリチウムナトリウムチタン酸化物粒子の製造方法
JP2012104288A (ja) 酸化マンガンナノ粒子とカーボンの複合体、その製造方法、この複合体を用いた電極及び電気化学素子
WO2021075168A1 (ja) リチウムバナジウム酸化物結晶体、電極材料及び蓄電デバイス、並びにリチウムバナジウム酸化物結晶体の製造方法
CN110335763B (zh) 金属化合物粒子群及蓄电装置用电极
JP2015227281A (ja) チタン酸リチウムナノ粒子、その製造方法、チタン酸リチウムナノ粒子とカーボンの複合体、この複合体からなる電極材料、この電極材料を用いた電極、電気化学素子及び電気化学キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023359

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558169

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015887693

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE