WO2016155117A1 - 一种投影仪及其散热装置 - Google Patents

一种投影仪及其散热装置 Download PDF

Info

Publication number
WO2016155117A1
WO2016155117A1 PCT/CN2015/081171 CN2015081171W WO2016155117A1 WO 2016155117 A1 WO2016155117 A1 WO 2016155117A1 CN 2015081171 W CN2015081171 W CN 2015081171W WO 2016155117 A1 WO2016155117 A1 WO 2016155117A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
metal
condensation
heat sink
heat pipe
Prior art date
Application number
PCT/CN2015/081171
Other languages
English (en)
French (fr)
Inventor
张永亮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016155117A1 publication Critical patent/WO2016155117A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • This paper relates to the field of projectors, and more particularly to a projector with better heat dissipation function and a heat sink thereof.
  • Intelligent micro projectors usually based on micro projectors, add wireless compatibility authentication wifi (WIreless Fidelity), Bluetooth (Bluetooth) and wireless data services, and even wireless voice, etc., where wireless data services are currently 4G LTE (4G, 4th) Generation, fourth-generation mobile communication standard; LTE, Long Time Evolution, long-term evolution) is dominated by data networks, and wireless voice is dominated by 3G channels.
  • wireless compatibility authentication wifi WIreless Fidelity
  • Bluetooth Bluetooth
  • wireless data services are currently 4G LTE (4G, 4th) Generation, fourth-generation mobile communication standard; LTE, Long Time Evolution, long-term evolution
  • LTE Long Time Evolution, long-term evolution
  • 3G channels wireless voice is dominated by 3G channels.
  • the technical problem to be solved by the present invention is to provide a projector with a good heat dissipation function and a heat dissipating device thereof.
  • a projector includes: a optomechanical module and a motherboard chip assembly electrically connected to the optomechanical module, the optomechanical module is provided with a plurality of illuminating components, and the motherboard chip module is provided with a plurality of heating
  • the device further includes a heat sink, the heat sink including a first heat pipe, a second heat pipe, and a condensation heat sink, wherein
  • One end of the first heat pipe is connected to the motherboard chip assembly, and the other end is connected to the condensation heat sink;
  • One end of the second heat pipe is indirectly or directly connected to the light emitting element of the light machine module, and the other end is connected to the condensation heat sink.
  • the condensation end of the first heat pipe is welded to the outside of the condensation heat sink or housed inside the condensation heat sink.
  • the motherboard chip assembly further includes a shield cover covering the plurality of heat generating devices, and an evaporation end of the first heat pipe is closely bonded to the shield cover.
  • the heat dissipation device further includes a first metal heat dissipation fin fastened to the plurality of the light emitting elements, and an evaporation end of the second heat pipe is connected to a lower end of the first metal heat dissipation fin.
  • the condensation end of the second heat pipe is welded to the outside of the condensation radiator or received in the condensation radiator.
  • the heat dissipating device further includes an axial flow fan disposed on the optical fan module and the advection fan below the first heat pipe and the second heat pipe or an inner side of the projector, the advection fan or the shaft
  • the air outlet of the flow fan is disposed close to the condensing radiator.
  • the heat dissipating device further includes a second metal heat sink fin, the second metal heat sink fin is disposed above the light machine module, the second metal heat sink fin and the light machine mold A thermal silicone pad is placed between the groups.
  • the optical module includes a single-chip digital micro-mirror device DMD
  • the heat-dissipating device includes a metal cover connected to the DMD, the metal cover is disposed above the optical module and Below the thermal silica gel pad, the metal cover is provided with a rectangular metal frame directly pressed against the four side heat dissipation zones of the DMD.
  • the projector further includes a display panel and a power button located at a same level as the display panel, and the display panel and the motherboard chip component are provided with three layers of graphite sheets, or a power button and the motherboard chip. Three layers of graphite sheets are placed between the components.
  • a heat dissipating device includes: a first heat pipe for dissipating heat for a first heat source, a second heat pipe for dissipating heat for a second heat source, and a condensation radiator;
  • One end of the first heat pipe is connected to the condensation heat sink, and the other end is connected to the first heat source;
  • One end of the second heat pipe is connected to the condensation radiator, and the other end is connected to the second heat source.
  • the heat dissipation device further includes: a first metal heat dissipation fin for dissipating heat for the second heat source, wherein the first metal heat dissipation fin is connected to the second heat source, and the second heat pipe One end is connected to the first metal heat sink fin.
  • the heat dissipation device further includes: a second metal heat dissipation fin for dissipating heat for the second heat source, the second metal heat dissipation fin is disposed above the second heat source, and the second metal heat dissipation A thermally conductive silicone pad is disposed between the fin and the second heat source.
  • the heat dissipating device further includes: a metal cover plate for dissipating heat from the digital micromirror device DMD of the second heat source, the metal cover plate is disposed above the second heat source and below the thermal conductive silicone pad The metal cover plate is provided with a rectangular metal frame directly pressed against the four side heat dissipation regions of the DMD.
  • the heat dissipating device further includes: a fan for dissipating heat from the first heat source, the second heat source, the first heat pipe, the second heat pipe, and the condensation heat sink, wherein the fan is disposed in the second heat source, first Below or on the side of the heat pipe and the second heat pipe, the condensation radiator is disposed at an air outlet of the fan.
  • the heat dissipating device further includes: a three-layer graphite sheet that dissipates heat for the third heat source, the three-layer graphite sheet being located between the third heat source and the first heat source.
  • the first heat source is a motherboard chip component of the smart device
  • the second heat source is a light machine module of the smart device.
  • the third heat source is a display panel or a power button.
  • the beneficial effects of the technical solution of the present invention are: adding a first heat pipe in the heating zone of the motherboard module, the first heat pipe transferring heat of the motherboard module to the condensing heat sink for heat dissipation; adding a second heat pipe in the optomechanical module The heat of the optomechanical module is transmitted to the condensing radiator for heat dissipation; the convection fan is added to the optomechanical module to accelerate the overall heat dissipation; the large area shielding between the LCD panel back shell and the metal middle frame or between the boot button and the PCB board
  • the cover is filled with artificial features of three layers of graphite sheets to dissipate heat from the LCD screen and the power button area.
  • the technical solution of the present invention is limited by the projection space, and the main board is superimposed by the intelligent communication system and the optical system, and the optical module power supply driving chip, the high-speed signal processor and the power supply system required for the intelligent projection are integrated on one PCB board. Therefore, the heat is very powerful, and the invention adopts a double heat pipe and an advection fan to perform good system heat dissipation.
  • FIG. 1 is a schematic diagram of an overall heat sink of a projector according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a heat dissipation device of a projector optical module according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a heat sink of a display panel of a projector according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a heat sink device for a projector power button according to an embodiment of the present invention.
  • the optical module 10 includes a motherboard chip assembly 20 electrically connected to the optical module 10 and a heat sink.
  • the optomechanical module 10 is a ladder-like digital optical processor DLP (Digital Lighting Processor) projection technology, and includes a plurality of illuminating elements 101 and a digital micro-mirror device DMD (Digital Micro-mirror Device) 14 and corresponding optical lenses.
  • DLP Digital Lighting Processor
  • DMD Digital Micro-mirror Device
  • a system (not shown) in which the light-emitting elements 101 are red (R), green (G), and blue (B) three-color LEDs (Lighting Emitting Diode) lamps.
  • the main board chip assembly 20 includes a printed circuit board (PCB), a plurality of heat generating devices (not shown) integrated on the PCB, and a shield case 201 covering a plurality of heat generating devices.
  • the heating device includes an intelligent communication system and an optical system driver, a light source module 10 power driving chip, a high speed signal processor, and a power supply system thereof.
  • the shield cover 201 in this embodiment coats the surface of the heat generating device body with a thermally conductive silicone.
  • the heat dissipating device includes a first metal heat dissipating device disposed at the front end of the illuminating device module 10 , such as a red (R), green (G), or blue (B) tri-color LED (Lighting Emitting Diode) lamp 101.
  • the first metal heat sink fin 40 has a step shape as a whole, and the first gold in this embodiment
  • the heat sink fin 40 is an aluminum extruded fin, and in other embodiments, it may be a copper material or other heat dissipation fins having a heat dissipation function.
  • the first metal heat sink fins 40 are fastened to the PCB board (not shown) of the RGB LED lamp 101 with a thermal conductive silicone pad 50 disposed therebetween.
  • the heat generated by the RGB LED lamp 101 of the optomechanical module 10 in this embodiment is conducted to the first metal heat sink fin 40 through the thermal conductive silicone pad 50 for effective heat dissipation.
  • the condensing heat sink 70 is tubular and composed of dense metal condensation fins.
  • the metal condensation fins are copper or aluminum thin blades.
  • the condensing heat sink includes upper and lower ends, and left and right ends, and a receiving cavity surrounded by the upper, lower, left and right ends, and the right end side of the condensing heat sink is closely attached to the outer casing (not shown) and exposed.
  • the plurality of heat pipes include a first heat pipe 30 and a second heat pipe 60.
  • the first heat pipe 30 and the second heat pipe 60 are made of copper, and the first heat pipe 30 is used for heat dissipation of the motherboard chip assembly 20.
  • the second heat pipe 60 is used for heat dissipation of the RGB LED lamp 101.
  • the first heat pipe 30 and the second heat pipe 60 in this embodiment are curved flat tubes, which can ensure that the thickness of the whole machine is not increased and the appearance is beautiful.
  • Both the first heat pipe 30 and the second heat pipe 60 include a condensation end and an evaporation end, of which the first The evaporation end of the heat pipe 30 is closely adhered to the shield cover 201 on the PCB board, and the condensation end is received in the receiving cavity of the condensation heat sink 70; the evaporation end of the second heat pipe 60 is welded to the lower end of the first metal heat sink fin 40, and the condensation end Soldered to the outside of the condensing radiator.
  • the first heat pipe 30 can also be connected to the condensing heat sink 70 by means of welding to the outside of the condensing heat sink 70.
  • the condensation ends of the first heat pipe 30 and the second heat pipe 60 are both received in the condensation radiator 70 or both are welded to the outside of the condensation radiator 70.
  • the two heat pipes 30, 60 are respectively in contact with the condensation radiator 70. But not direct contact between the two.
  • the advection fan 80 is a horizontal convection fan, located below the optomechanical module 10 and the two heat pipes 30 , 60 , and disposed on the left side of the condensing radiator 70 .
  • the air outlet of the advection fan 80 is close to the condensing radiator.
  • the bottom wall of the advection fan 80 is provided with a plurality of through holes (not shown) for accelerating air circulation.
  • FIG. 2 is a schematic diagram of a heat dissipation device of a projector optical module according to an embodiment of the present invention.
  • the second metal heat dissipation fins 11 are generally plate-shaped.
  • the second metal heat dissipation fins 11 have a double-sided shape.
  • the large-area aluminum plate of the fin has an upper end that is indirectly exposed to the outer casing (not shown).
  • a thermally conductive silicone pad 12 is disposed between the second metal heat sink fin 11 and the optomechanical module 10.
  • FIG. 3 is a schematic diagram of a heat sink of a projector display panel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a heat sink device for projecting a power button according to an embodiment of the present invention.
  • the projector of the embodiment of the present invention further includes a display.
  • the display panel in this embodiment is an LCD panel, a structural shell 94 disposed at the edge of the LCD panel 90, a three-layer graphite sheet 91, a power-on button 93, and a metal middle frame 92.
  • the LCD panel 90 and the motherboard chip assembly 20 and the three-layer graphite sheet 91 are both embedded in the metal middle frame 92, and the power-on button 93 is disposed on the outer casing at the same level as the LCD panel 90.
  • the three-layer graphite sheet 91 is disposed between the main board chip assembly 20 and the LCD screen 90, or the three-layer graphite sheet 91 is disposed between the main board chip assembly 20 and the power-on button, and the three-layer graphite sheet 91 is a special artificial three-layer graphite sheet.
  • the three-layer graphite is not a manual physical superposition of three layers of graphite.
  • the soaking heat is dissipated between the back shell and the metal middle frame or between the boot button and the large-area shield of the motherboard chip assembly 20.
  • the special artificial three-layer graphite is used because the single-layer graphite has high transverse heat transfer coefficient, but the heat volume is effective, and it is easy to appear thermal saturation. If more than four layers are used, although the thermal volume is increased, the thermal conductivity of the graphite is low due to the thermal conductivity. It will fall, so the three layers are more suitable.
  • the heat dissipation of the motherboard chip assembly 20 in the embodiment of the present invention: the power driver chip, the high-speed signal processor, and the power supply system of the optomechanical module 10 required for projection are integrated on the PCB, and the internal space limitation causes the heat to be very high.
  • the first heat pipe 30 is added to the embodiment of the present invention.
  • the evaporation end of the first heat pipe 30 is disposed in the heat generating area of the PCB board, and the surface of the heat generating device body on the PCB board is coated with the heat conductive silica gel 201 to closely bond the evaporation end of the first heat pipe 30.
  • the absorbent core is filled with alcohol or other liquid which is easily vaporized, and the liquid absorbed by the evaporation end of the first heat pipe 30 is vaporized by heat absorption, and the steam is passed from the first end of the pipe to the first heat pipe.
  • the air passage in the middle of 30 runs to the condensation end.
  • the condensation end is not heated, the temperature is low, and the steam is released and liquefied at the condensation end.
  • the condensed liquid is adsorbed by the capillary structure absorption core attached to the heat pipe wall, and is returned by capillary action. When it reaches the heated end, the liquid in the first heat pipe 30 is continuously vaporized and liquefied, and the heat is transferred from one end to the other end for the main board chip assembly 20 to be effective. Heat dissipation.
  • the heat dissipation of the optomechanical module 10 the first metal heat sink fin 40 and the RGB LED lamp 101 shared by the RGB LED lamp 101 are filled with a thermal conductive silica gel to ensure the heat conduction efficiency is used for the first stage conduction heat dissipation.
  • the evaporation end of the second heat pipe 60 is welded to the side of the first metal heat sink fin 40, and the condensation end of the second heat pipe 60 is disposed on the condensation heat sink 70, thereby performing the second stage heat dissipation.
  • the thermal principle is similar to motherboard chip assembly 20.
  • the heat dissipation of the DMD digital micromirror device 14 in the embodiment of the present invention is that the chip of the DMD digital micromirror device 14 is a complex optical switching device, and the DMD digital micromirror device 14 is usually a piece of up to 130 A rectangular array of thousands of hinged mounted micromirrors, each micromirror being smaller than 1/5 of the hair, and one micromirror corresponding to one pixel.
  • the micromirror on the surface of the DMD digital micromirror device 14 is mounted on a very small hinge. In the DLP projection system, when the micromirror is tilted toward the light source, the light is reflected onto the lens, which is equivalent to the "on" state of the optical switch.
  • a metal cover 13 is disposed on the optical module 10, and the metal cover 13 is provided with a rectangular metal frame 131 directly pressed against the DMD digital micro.
  • the four side heat dissipating regions of the mirror device 14 firstly conduct heat to the metal cover 13 through the narrow strip heat dissipation region extended by the circumferential line thereof for direct heat dissipation of the first stage, and then pass through the metal cover plate 13
  • the thermal conductive silica gel 12 further conducts heat to the large-area second metal heat-dissipating fins 11 of the chassis of the whole machine for heat dissipation of the second stage.
  • the increased thermal silica gel 12 and the second metal heat sink fin 11 are mainly due to the limited heat dissipation of the metal cover 13 of the optical machine itself, which is insufficient to dissipate the DMD heat.
  • the thermal conductivity of the thermal conductive silicone should be greater than 5 W/mK, and the second metal heat dissipation fins 11 can be adjusted according to actual experimental data.
  • the shape of the second metal heat dissipation fin 11 of the present embodiment is due to the inner layer and the optical metal.
  • the cover plate fits into the overall regular plane relief, and the outer layer can be adjusted according to the actual shell shape.
  • the micro-projector of the embodiment of the present invention has a large temperature rise of the backlight and the liquid crystal array of the LCD screen 90, and the area of the power-on button 93 of the LCD screen 90 is relatively Large, at least 1cm*1cm or more, the key gap has internal and external thermal convection space of the casing, which causes the surface temperature to be higher than other non-gaped casing regions.
  • a large-area special artificial three-layer graphite sheet 91 is used to fill the LCD. The soaking heat is dissipated between the screen 90 back shell and the metal middle frame 94 or between the boot button and the large-area shield of the PCB board.
  • the present invention employs a smoothing fan 80 between the first metal heat sink fin 40 and the blade condensing heat sink 70 and supplements the necessary air duct design to accelerate air circulation flow heat dissipation.
  • a large area of heat dissipation holes can be opened on the bottom case (not shown) of the projector, and an air filter can be added to change
  • the wind flow direction of the advection fan 80 causes the wind of the advection fan 80 to flow through the surface of the metal casing of the optical machine to lower the DMD temperature.
  • the PCB temperature is slightly increased, the overall balance is more balanced.
  • the projector can be integrally dissipated by means of an axial fan, and the position of the axial fan can be set on the inner side of the projector.
  • two heat pipes 30 and 60 are connected to the same condensing heat sink 70 for heat dissipation of the optomechanical module 10 and the main board chip assembly 20, and the structure is simple.
  • the two heat pipes 30 and 60 may also adopt separate The heat is removed by a condenser 70.
  • the heat dissipation device of the second embodiment of the present invention includes a condensing heat sink 70 and a first heat pipe 30 for dissipating heat for the first heat source 20, and a second heat pipe 60 and a heat pipe for dissipating heat for the second heat source 10.
  • the second metal heat sink fins 40 and 11 are a three-layer graphite sheet 91 that dissipates heat from the third heat source 90, and an advection fan 80 that dissipates heat from the first, second, and third heat sources 20, 10, and 90.
  • the first heat pipe 30 includes a condensation end connected to the condensation radiator 70 and an evaporation end connected to the first heat source;
  • the second heat pipe 60 includes a condensation end connected to the condensation radiator 70 and evaporation connected to the second heat source 10.
  • the first metal fin 40 is connected to the second heat source 10 at one end, and the other end is welded to the second heat pipe 60;
  • the second metal fin is plate-shaped and disposed above the second heat source 10;
  • the advection fan 80 is disposed at the second Below the heat source 10, the condensing radiator 70 is disposed at an air outlet of the draft fan 80;
  • a three-layer graphite sheet 91 covers the third heat source 90 and the first heat source 20.
  • the specific first heat source is the motherboard chip component 20 of the smart device
  • the second heat source is the light machine module 10
  • the third heat source is the display panel 90 and the power button 93.
  • the smart device of the second embodiment of the present invention may be a projector, in particular, a WeChat projector capable of realizing intelligent connection, or other smart products having high heat generation.
  • the invention adopts a double heat pipe and an advection fan to perform good system heat dissipation. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影仪,包括光机模组(10),与光机模组(10)电性连接的主板芯片组件(20)以及散热装置。光机模组(10)设有多个发光元件(101),主板芯片组件(20)设有多个发热器件。散热装置包括第一热管(30)、第二热管(60)以及冷凝散热器(70)。第一热管(30)的一端与主板芯片组件(20)连接,另外一端与冷凝散热器(70)连接。第二热管(60)的一端与光机模组(10)的发光元件(101)间接或者直接连接,另外一端与冷凝散热器(70)连接。

Description

一种投影仪及其散热装置 技术领域
本文涉及投影仪领域,尤其涉及一种具有较佳散热功能的投影仪及其散热装置。
背景技术
智能微型投影仪,通常是在微型投影仪基础上增加无线相容性认证wifi(WIreless Fidelity)、蓝牙(Bluetooth)和无线数据业务乃至无线语音等,其中无线数据业务当前以4G LTE(4G,4th generation,第四代移动通信标准;LTE,Long Time Evolution,长期演进)数据网络为主,无线语音以3G通道为主。原本因为微型投影仪结构空间狭小、光学处理模块本身的功耗就比较大,加上智能应用后由于强大的数据处理能力使得系统功耗更大,且随着用户对微型投影仪上的光学照度、流媒体处理速度要求越来越高,由此带来了更加棘手的设备散热处理的问题。
发明内容
本发明要解决的技术问题是提供一种具有良好散热功能的投影仪及其散热装置。
为达上述目的,采用如下技术方案:
一种投影仪,包括:光机模组及与该光机模组电性连接的主板芯片组件,所述光机模组设有多个发光元件,所述主板芯片模组设有多个发热器件,所述投影仪还包括散热装置,所述散热装置包括第一热管、第二热管及冷凝散热器,其中,
所述第一热管的一端与所述主板芯片组件连接,另外一端与所述冷凝散热器连接;
所述第二热管的一端与所述光机模组的发光元件间接或者直接连接,另外一端与所述冷凝散热器连接。
可选地,所述第一热管的所述冷凝端焊接于所述冷凝散热器的外侧或者收容于所述冷凝散热器内部。
可选地,所述主板芯片组件还包括覆盖于多个所述发热器件的屏蔽罩,所述第一热管的蒸发端紧密黏结于所述屏蔽罩。
可选地,所述散热装置还包括紧扣于多个所述发光元件的第一金属散热鳍片,所述第二热管的蒸发端连接于所述第一金属散热鳍片的下端。
可选地,所述第二热管的冷凝端焊接于所述冷凝散热器的外侧或者收容于所述冷凝散热器。
可选地,所述散热装置还包括设置于所述光机模组及所述第一热管和所述第二热管下方的平流风扇或者投影仪内部侧面的轴流风扇,所述平流风扇或者轴流风扇的出风口靠近所述冷凝散热器设置。
可选地,所述散热装置还包括第二金属散热鳍片,所述第二金属散热鳍片设置于所述光机模组的上方,所述第二金属散热鳍片与所述光机模组之间设置有导热硅胶垫。
可选地,所述光机模组包括单片数字微镜装置DMD,所述散热装置包括连接于所述DMD的金属盖板,该金属盖板设置于所述光机模组上方和所述导热硅胶垫下方,该金属盖板设置有矩形金属框直接压在所述DMD的四个边散热区。
可选地,所述投影仪还包括显示面板及与显示面板位于同一水平面的开机键,所述显示面板与所述主板芯片组件之间设置有三层石墨片,或者说开机键与所述主板芯片组件之间设置有三层石墨片。
一种散热装置,包括:用于为第一热源散热的第一热管,用于为第二热源散热的第二热管,及冷凝散热器,
所述第一热管的一端与所述冷凝散热器连接,另外一端与所述第一热源连接;
所述第二热管的一端与所述冷凝散热器连接,另外一端与所述第二热源连接。
可选地,所述散热装置还包括:用于为所述第二热源散热的第一金属散热鳍片,所述第一金属散热鳍片连接于所述第二热源,所述第二热管的一端与所述第一金属散热器鳍片连接。
可选地,所述散热装置还包括:用于为第二热源散热的第二金属散热鳍片,所述第二金属散热鳍片设置于所述第二热源的上方,所述第二金属散热鳍片与所述第二热源之间设置有导热硅胶垫。
可选地,所述散热装置还包括:用于为所述第二热源的数字微镜装置DMD散热的金属盖板,该金属盖板设置于所述第二热源上方和所述导热硅胶垫下方,该金属盖板设置有矩形金属框直接压在所述DMD的四个边散热区。
可选地,所述散热装置还包括:为所述第一热源、第二热源、第一热管、第二热管及冷凝散热器散热的风扇,所述风扇设置于所述第二热源、第一热管及第二热管的下方或者侧面,所述冷凝散热器设置于所述风扇的出风口。
可选地,所述散热装置还包括:为第三热源散热的三层石墨片,所述三层石墨片位于所述第三热源和所述第一热源之间。
可选地,所述第一热源为智能设备的主板芯片组件,所述第二热源为智能设备的光机模组。
可选地,,所述第三热源为显示面板或开机键。
本发明技术方案的有益效果是:在主板模组的发热区增设第一导热管,第一导热管把主板模组的热量传导至冷凝散热器进行散热;在光机模组增设第二导热管,将光机模组的热量传导至冷凝散热器进行散热;在光机模组增设平流风扇加速整体散热;在LCD屏背壳和金属中框之间或开机按键和PCB板之间的大面积屏蔽罩间填充人工特征三层石墨片对LCD屏和开机键区域的散热。本发明技术方案因投影空间限制,且主板因智能通信系统和光学系统驱动叠加,同时智能投影所需的光机模组电源驱动芯片、高速信号处理器以及其电源系统集成于一块PCB板上,从而发热非常厉害,本发明采用双热管外加平流风扇能够进行良好的系统散热。
附图概述
图1为本发明实施例投影仪整体散热装置的示意图;
图2为本发明实施例投影仪光学模组的散热装置示意图;
图3为本发明实施例投影仪显示面板散热装置的示意图;
图4为本发明实施例投影仪开机键散热装置的示意图。
本发明的较佳实施方式
下面结合附图对本发明作进一步的描述,并不能用来限制本发明的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
图1为本发明实施例投影仪整体散热装置的示意图,如图1所示,包括光机模组10,与光机模组10电性连接的主板芯片组件20,及散热装置。
光机模组10整体为阶梯状采用数字光学处理器DLP(Digital Lighting Processor)投影技术,包括多个发光元件101和单片数字微镜装置DMD(Digital Micro-mirror Device)14以及相应的光学透镜系统(未图示),其中发光元件101为红(R)、绿(G)、蓝(B)三色发光二极管LED(Lighting Emitting Diode)灯。
主板芯片组件20包括电路板PCB(Printed circuit board)、集成在PCB上的多个发热器件(未图示)、及覆盖多个发热器件的屏蔽罩201。其中,发热器件包括智能通信系统和光学系统驱动、光机模组10电源驱动芯片、高速信号处理器以及其电源系统。本实施例中的屏蔽罩201为发热器件本体表面涂覆导热硅胶。
如图1所示,散热装置包括设置于光机模组10,如红(R)、绿(G)、蓝(B)三色发光二极管LED(Lighting Emitting Diode)灯101前端的第一金属散热鳍片40,设置于光机模组10上方的第二金属散热鳍片11(如图2所示),冷凝散热器70,与冷凝散热器70连接的多个热管30、60,及设置于光机模组10下方的平流风扇80。
如图1所示,第一金属散热鳍片40整体为阶梯状,本实施例中的第一金 属散热鳍片40为铝挤鳍片,在其他实施方式中也可以为铜材质或者其他具有散热功能的散热鳍片。第一金属散热鳍片40紧扣在RGB LED灯101的PCB板(未图示)上,两者之间设置有导热硅胶垫50。本实施例中的光机模组10的RGB LED灯101产生的热通过导热硅胶垫50传导至第一金属散热鳍片40进行有效的散热。
如图1所示,冷凝散热器70为管状由密集的金属冷凝鳍片构成,本实施例中金属冷凝鳍片为铜或铝质薄插片。冷凝散热器包括上、下端和左、右端,及上下左右端围成的收容腔,冷凝散热器右端侧面紧贴外壳(未图示)并外露。
如图1所示,多个热管包括第一热管30和第二热管60,本实施例中第一热管30和第二热管60材料为铜,第一热管30用于主板芯片组件20散热,第二热管60用于RGB LED灯101散热。本实施例中的第一热管30和第二热管60为弯曲扁管,可以确保不增加整机厚度并且造型美观,第一热管30和第二热管60都包括冷凝端和蒸发端,其中第一热管30的蒸发端与PCB板上的屏蔽罩201紧密黏结,冷凝端收容于冷凝散热器70的收容腔内;第二热管60的蒸发端焊接在第一金属散热鳍片40的下端,冷凝端焊接于冷凝散热器外侧。在其他实施方式中第一热管30也可以采用焊接于凝散热器70外侧的方式与冷凝散热器70连接,这主要根据布局需要并参考散热效果综合考虑,在中空区域足够的情况下还可以为第一热管30和第二热管60的冷凝端都采用收容于冷凝散热器70的方式或者两者都焊接在冷凝散热器70外侧的方式,两个热管30、60需分别和冷凝散热器70接触,但不能两者之间直接接触。
如图1所示,平流风扇80为水平对流风扇,位于光机模组10和两个热管30、60的下方,并且设置于冷凝散热器70左侧,平流风扇80的出风口靠近冷凝散热器70设置,平流风扇80底壁设有多个通孔(未图示),用于加速空气流通。
图2为本发明实施例投影仪光学模组的散热装置示意图,如图2所示,第二金属散热鳍片11整体为板状,本实施例中第二金属散热鳍片11为双面具有鳍片的大面积铝板,上端贴近外壳(未图示)间接外露。第二金属散热鳍片11与光机模组10之间设置有导热硅胶垫12。
图3为本发明实施例投影仪显示面板散热装置的示意图,图4为本发明实施例投影开机键散热装置的示意图,如图3和图4所示,本发明实施例的投影仪还包括显示面板90,本实施例中显示面板为LCD屏,设置在LCD屏90边缘的结构壳94,三层石墨片91,开机键93,及金属中框92。LCD屏90和主板芯片组件20及三层石墨片91都嵌于金属中框92,开机键93设置在外壳上与LCD屏90同一水平面。三层石墨片91设置于主板芯片组件20和LCD屏90之间,或者说三层石墨片91设置于主板芯片组件20和开机键之间,三层石墨片91为特制人工三层石墨片,该三层石墨并非石墨单纯整机装配时手工物理叠加三层,是石墨厂家出厂前通过特定工艺制作的厚度和单层石墨一样厚的(如,做到0.07mm),用于填充在LCD屏背壳和金属中框之间或开机按键和主板芯片组件20的大面积屏蔽罩间,进行均热散热。采用特制人工三层石墨,是因为单层石墨虽然横向热传导系数高,但热容积有效,很容易出现热饱和;如果采用四层以上,虽然热容积提升,但由于石墨纵向热传导系数低,热传导能力就会下降,所以三层较为合适。
本发明实施例对主板芯片组件20的散热:由于投影所需的光机模组10的电源驱动芯片、高速信号处理器以及其电源系统都集成于PCB板上,而且内部空间限制导致发热非常高,本发明实施例增设了第一热管30,第一热管30的蒸发端设置在PCB板的发热区,PCB板上的发热器件本体表面涂覆导热硅胶201紧密黏结第一热管30的蒸发端,由于第一热管30内壁衬有多孔材料吸收芯充有酒精或其他易汽化的液体,第一热管30的蒸发端受热时吸收的液体因吸热而汽化,蒸汽沿管子由蒸发端从第一热管30中间的风道跑到冷凝端,冷凝端由于未受热,温度低,蒸汽就在冷凝端放热而液化,冷凝的液体被热管壁内附的毛细结构吸收芯吸附,通过毛细作用又回到了受热的一端,如此循环往复,第一热管30里的液体不断地汽化和液化,把热量从一端传到另一端进行主板芯片组件20有效的散热。
本发明实施例对光机模组10的散热:RGB LED灯101共用的第一金属散热鳍片40和RGB LED灯101之间加填充导热硅胶,确保热传导效率用于第一级传导散热,同时在第一金属散热鳍片40侧边焊接第二热管60的蒸发端,第二热管60的冷凝端设置于冷凝散热器70,从而进行第二级散热,散 热原理与主板芯片组件20类似。
本发明实施例对DMD数字微镜装置14的散热:DLP投影技术的核心是DMD数字微镜装置14的芯片是一种复杂的光开关器件,DMD数字微镜装置14是一块通常有多达130万个铰接安装的微镜组成的矩形阵列,每个微镜比头发丝的1/5还小,一个微镜对应一个像素。DMD数字微镜装置14面上的微镜安装在极小的绞链上,在DLP投影系统中,微镜向光源倾斜时,光反射到镜头上,相当于光开关的“开”状态。反之,则为“关”状态,被光吸收系统吸收。这种对应1和0的二进制数字化处理结果使得投影界面上呈现数字化图像。微镜每秒开关上千次,这种密集开关会产生大量的热量。由于DMD数字微镜装置14中间是信号部分,无法用于散热,本实施例中在光机模组10上设置金属盖板13,金属盖板13设置有矩形金属框131直接压在DMD数字微镜装置14的四个边散热区,DMD数字微镜装置14首先通过其周长线延展的窄条散热区把热传导给金属盖板13进行第一级的直接散热,再通过把金属盖板13上覆导热硅胶12进而把热量传导到整机底壳的大面积第二金属散热鳍片11来进行第二级散热。增加的导热硅胶12和第二金属散热鳍片11主要是因为光机本身金属盖板13散热体积有限,不足以把DMD热散出。为了保证较佳导热效果,导热硅胶导热系数宜大于5W/m.K,第二金属散热鳍片11可以根据实际实验数据调整,本实施例的第二金属散热鳍片11的外形因内层和光机金属盖板配合为总体规则平面凹凸,外层则可以根据实际外壳造型调整。
本发明实施例对LCD屏90和开机键93的散热:由于本发明实施例的微型投影仪具有LCD屏90的背光和液晶阵列均存较大温升,同时LCD屏90的开机键93区域较大,至少1cm*1cm以上,按键间隙存在壳体内部和外部热对流空间,造成表面温度较其他无间隙的壳体区域高,本发明实施例采用大面积特制人工三层石墨片91填充在LCD屏90背壳和金属中框94之间或开机按键和PCB板的大面积屏蔽罩间,进行均热散热。
为了加速散热,本发明在第一金属散热鳍片40和插片式冷凝散热器70之间采用了平流风扇80并辅以必要的风道设计加速空气循环流动散热。其次,可以在投影仪底部壳体(未图示)上开大面积散热孔,加防尘网,改变 平流风扇80的风流向,使得平流风扇80的风流经光机的金属壳体表面,降低DMD温度,虽PCB温度稍有增加,但整体更加平衡。在其他实施方式中也可采用轴流风扇的方式对投影仪进行整体散热,轴流风扇的位置可设置于投影仪的内部侧面。
本实施例中采用两个热管30、60连接同一冷凝散热器70分别为光机模组10和主板芯片组件20进行散热,结构简洁,在其他实施方式中两个热管30、60也可以采用分别接一个冷凝器70的方式进行散热。
如图2所示,本发明实施例二的散热装置,包括用于为第一热源20散热的冷凝散热器70和第一热管30,用于为第二热源10散热的第二热管60和第一、第二金属散热鳍片40、11,为第三热源90散热的三层石墨片91,及为第一、第二、第三热源20、10、90散热的平流风扇80。
其中第一热管30包括与冷凝散热器70连接的冷凝端和与第一热源连接的蒸发端;第二热管60包括与所述冷凝散热器70连接的冷凝端及与第二热源10连接的蒸发端;第一金属鳍片40一端连接于第二热源10,另外一端与第二热管60焊接;第二金属鳍片为板状并设置于第二热源10的上方;平流风扇80设置于第二热源10的下方,所述冷凝散热器70设置于平流风扇80的出风口;三层石墨片91覆盖所述第三热源90和第一热源20之间。
具体的第一热源为智能设备的主板芯片组件20,第二热源为光机模组10,第三热源为显示面板90及开机键93。本发明实施例二的智能设备可以为投影仪,尤其是指能够实现智能连接的微信投影仪,也可以为具有高发热量的其他智能产品。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
工业实用性
本发明采用双热管外加平流风扇能够进行良好的系统散热。因此本发明具有很强的工业实用性。

Claims (17)

  1. 一种投影仪,包括:光机模组及与该光机模组电性连接的主板芯片组件,所述光机模组设有多个发光元件,所述主板芯片模组设有多个发热器件,所述投影仪还包括散热装置,所述散热装置包括第一热管、第二热管及冷凝散热器,其中,
    所述第一热管的一端与所述主板芯片组件连接,另外一端与所述冷凝散热器连接;
    所述第二热管的一端与所述光机模组的发光元件间接或者直接连接,另外一端与所述冷凝散热器连接。
  2. 如权利要求1所述的投影仪,其中,所述第一热管的所述冷凝端焊接于所述冷凝散热器的外侧或者收容于所述冷凝散热器内部。
  3. 如权利要求1所述的投影仪,其中,所述主板芯片组件还包括覆盖于多个所述发热器件的屏蔽罩,所述第一热管的蒸发端紧密黏结于所述屏蔽罩。
  4. 如权利要求1所述的投影仪,其中,所述散热装置还包括紧扣于多个所述发光元件的第一金属散热鳍片,所述第二热管的蒸发端连接于所述第一金属散热鳍片的下端。
  5. 如权利要求4所述的投影仪,其中,所述第二热管的冷凝端焊接于所述冷凝散热器的外侧或者收容于所述冷凝散热器。
  6. 如权利要求1所述的投影仪,其中,所述散热装置还包括设置于所述光机模组及所述第一热管和所述第二热管下方的平流风扇或者投影仪内部侧面的轴流风扇,所述平流风扇或者轴流风扇的出风口靠近所述冷凝散热器设置。
  7. 如权利要求1所述的投影仪,其中,所述散热装置还包括第二金属散热鳍片,所述第二金属散热鳍片设置于所述光机模组的上方,所述第二金属散热鳍片与所述光机模组之间设置有导热硅胶垫。
  8. 如权利要求7所述的投影仪,其中,所述光机模组包括单片数字微镜装置DMD,所述散热装置包括连接于所述DMD的金属盖板,该金属盖板设置于所述光机模组上方和所述导热硅胶垫下方,该金属盖板设置有矩形金属 框直接压在所述DMD的四个边散热区。
  9. 如权利要求1所述的投影仪,其中,所述投影仪还包括显示面板及与显示面板位于同一水平面的开机键,所述显示面板与所述主板芯片组件之间设置有三层石墨片,或者说开机键与所述主板芯片组件之间设置有三层石墨片。
  10. 一种散热装置,包括:用于为第一热源散热的第一热管,用于为第二热源散热的第二热管,及冷凝散热器,
    所述第一热管的一端与所述冷凝散热器连接,另外一端与所述第一热源连接;
    所述第二热管的一端与所述冷凝散热器连接,另外一端与所述第二热源连接。
  11. 如权利要求10所述的散热装置,所述散热装置还包括:用于为所述第二热源散热的第一金属散热鳍片,所述第一金属散热鳍片连接于所述第二热源,所述第二热管的一端与所述第一金属散热器鳍片连接。
  12. 如权利要求10所述的散热装置,所述散热装置还包括:用于为第二热源散热的第二金属散热鳍片,所述第二金属散热鳍片设置于所述第二热源的上方,所述第二金属散热鳍片与所述第二热源之间设置有导热硅胶垫。
  13. 如权利要求12所述的散热装置,所述散热装置还包括:用于为所述第二热源的数字微镜装置DMD散热的金属盖板,该金属盖板设置于所述第二热源上方和所述导热硅胶垫下方,该金属盖板设置有矩形金属框直接压在所述DMD的四个边散热区。
  14. 如权利要求10所述的散热装置,所述散热装置还包括:为所述第一热源、第二热源、第一热管、第二热管及冷凝散热器散热的风扇,所述风扇设置于所述第二热源、第一热管及第二热管的下方或者侧面,所述冷凝散热器设置于所述风扇的出风口。
  15. 如权利要求10所述的散热装置,所述散热装置还包括:为第三热源散热的三层石墨片,所述三层石墨片位于所述第三热源和所述第一热源之间。
  16. 如权利要求10至15中任意一项所述的散热装置,其中:所述第一 热源为智能设备的主板芯片组件,所述第二热源为智能设备的光机模组。
  17. 如权利要求15所述的散热装置,其中,所述第三热源为显示面板或开机键。
PCT/CN2015/081171 2015-03-31 2015-06-10 一种投影仪及其散热装置 WO2016155117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510147759.7 2015-03-31
CN201510147759.7A CN106154709A (zh) 2015-03-31 2015-03-31 一种投影仪及其散热装置

Publications (1)

Publication Number Publication Date
WO2016155117A1 true WO2016155117A1 (zh) 2016-10-06

Family

ID=57003936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081171 WO2016155117A1 (zh) 2015-03-31 2015-06-10 一种投影仪及其散热装置

Country Status (2)

Country Link
CN (1) CN106154709A (zh)
WO (1) WO2016155117A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192209B2 (ja) * 2017-12-27 2022-12-20 セイコーエプソン株式会社 プロジェクター
CN108391110A (zh) * 2018-04-28 2018-08-10 深圳暴风统帅科技有限公司 一种投影设备
CN108628067A (zh) * 2018-06-15 2018-10-09 广州达森灯光股份有限公司 一种防水投影仪灯的散热系统
CN108662499A (zh) * 2018-06-22 2018-10-16 广州达森灯光股份有限公司 一种用于舞台和景观照明的防水投影仪
CN114967304B (zh) * 2022-05-17 2024-03-15 峰米(重庆)创新科技有限公司 投影仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101135836A (zh) * 2006-08-29 2008-03-05 台达电子工业股份有限公司 用于投影装置的散热模块
CN201652271U (zh) * 2010-01-27 2010-11-24 深圳市科创数字显示技术有限公司 投影机中led光源的散热装置
CN201689266U (zh) * 2010-03-08 2010-12-29 四川维优科技有限责任公司 高效散热的微型投影机
JP2013038242A (ja) * 2011-08-09 2013-02-21 Seiko Epson Corp 冷却装置、およびプロジェクター
CN103895277A (zh) * 2014-04-11 2014-07-02 江苏悦达新材料科技有限公司 一种石墨膜/导热硅胶/石墨烯复合散热片及其制备方法
CN203909460U (zh) * 2014-06-05 2014-10-29 陈祗源 投影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101135836A (zh) * 2006-08-29 2008-03-05 台达电子工业股份有限公司 用于投影装置的散热模块
CN201652271U (zh) * 2010-01-27 2010-11-24 深圳市科创数字显示技术有限公司 投影机中led光源的散热装置
CN201689266U (zh) * 2010-03-08 2010-12-29 四川维优科技有限责任公司 高效散热的微型投影机
JP2013038242A (ja) * 2011-08-09 2013-02-21 Seiko Epson Corp 冷却装置、およびプロジェクター
CN103895277A (zh) * 2014-04-11 2014-07-02 江苏悦达新材料科技有限公司 一种石墨膜/导热硅胶/石墨烯复合散热片及其制备方法
CN203909460U (zh) * 2014-06-05 2014-10-29 陈祗源 投影装置

Also Published As

Publication number Publication date
CN106154709A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016155117A1 (zh) 一种投影仪及其散热装置
JP4274178B2 (ja) プロジェクタ
CN101587286B (zh) 图像投影装置
JP4559361B2 (ja) 投写型表示装置
TWM447998U (zh) 微型光學影像裝置
JP7301680B2 (ja) 放熱モジュール及び投影装置
WO2009082871A1 (fr) Module de source de lumière à del ayant un système de conduction thermique et un système de rayonnement thermique
TWM467084U (zh) 微型光學影像裝置
US20100033689A1 (en) Cooling solution for a solid state light illuminated display
CN202394030U (zh) 微型光学影像装置
JP2007219075A (ja) バックライト装置
JP2006251149A (ja) 照明装置及び投写型画像表示装置。
TWM435618U (en) Light-emitting module and display apparatus
CN105974719A (zh) 一种波长转换装置及激光显示系统
CN202975577U (zh) 一种投影机的散热机构
JP2005062373A (ja) ランプ冷却システム、光源装置及びプロジェクタ装置
TWM451566U (zh) 微型光學影像裝置
TWI393989B (zh) 投影機
TWI715854B (zh) 光閥散熱裝置及投影機
CN101907820A (zh) Dmd散热结构及其应用的投影机
CN109557748A (zh) 微投影机的光学系统
CN208832264U (zh) 一种高散热led灯具
CN207831017U (zh) 一种led结构及投影系统
TWI407240B (zh) Dmd散熱結構及其應用的投影機
JP2005221640A (ja) 光源装置及びプロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887084

Country of ref document: EP

Kind code of ref document: A1