WO2016155056A1 - 低温多晶硅tft基板结构及其制作方法 - Google Patents

低温多晶硅tft基板结构及其制作方法 Download PDF

Info

Publication number
WO2016155056A1
WO2016155056A1 PCT/CN2015/077160 CN2015077160W WO2016155056A1 WO 2016155056 A1 WO2016155056 A1 WO 2016155056A1 CN 2015077160 W CN2015077160 W CN 2015077160W WO 2016155056 A1 WO2016155056 A1 WO 2016155056A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysilicon
insulating layer
layer
segment
polysilicon segment
Prior art date
Application number
PCT/CN2015/077160
Other languages
English (en)
French (fr)
Inventor
张晓星
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/779,336 priority Critical patent/US20170098667A1/en
Publication of WO2016155056A1 publication Critical patent/WO2016155056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1229Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different crystal properties within a device or between different devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1233Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different thicknesses of the active layer in different devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a low temperature polysilicon TFT substrate structure and a method of fabricating the same.
  • Low Temperature Poly-silicon (LTPS) technology is the manufacturing technology of the new generation of TFT substrate.
  • a-Si amorphous silicon
  • Poly-Si has excellent electrical properties and has good driving ability for Active-Matrix Organic Light Emitting Diode (AMOLED). Therefore, AMOLED display backplanes based on low temperature polysilicon technology are currently widely used.
  • the manufacturing method of the existing low-temperature polysilicon TFT substrate structure mainly includes the following steps:
  • Step 1 as shown in FIG. 1, providing a substrate 100, the substrate 100 includes a driving TFT region and a display TFT region, and depositing a buffer layer 110 on the substrate 100;
  • Step 2 As shown in FIG. 2, an amorphous silicon layer is deposited on the buffer layer 110, and after excimer laser annealing, the amorphous silicon layer is subjected to excimer laser annealing treatment to make the non- The crystalline silicon layer is crystallized and converted into a polysilicon layer 130;
  • Step 3 the polysilicon layer 130 is patterned to obtain a first polysilicon segment 140 in the driving TFT region, and a second polysilicon segment 150 in the display TFT region;
  • Step 4 depositing a gate insulating layer 160 on the first polysilicon segment 140, the second polysilicon segment 150 and the buffer layer 110;
  • Step 5 depositing and patterning a first metal layer on the gate insulating layer 160, respectively forming a first gate 170 and a second gate corresponding to the first polysilicon segment 140 and the second polysilicon segment 150 Extreme 180;
  • Step 6 Deposit an interlayer insulating layer 190 on the gate insulating layer 160, the first gate 170, and the second gate 180, and respectively on the interlayer insulating layer 190 and the gate insulating layer 160.
  • the first polysilicon segment 140 and the second polysilicon segment 150 forming a first via hole 200 and a second via hole 200';
  • Step 7 as shown in FIG. 4, depositing and patterning a second metal layer on the interlayer insulating layer 190, respectively forming a first source/drain 210 located in the driving TFT region, and located in the display TFT a second source/drain 220 of the region, the first source/drain 210 passing through the first via 200
  • the first polysilicon section 140 is in contact
  • the second source/drain 220 is in contact with the second polysilicon section 150 via the second via 200'.
  • Excimer Laser Annealing (ELA) technology uses a laser to instantaneously illuminate the surface of amorphous silicon to dissolve and recrystallize. Since the AMOLED driver needs to drive the TFT and the display TFT, the driving TFT requires a high electron mobility, so a relatively large crystal lattice is required, and the display TFT needs to have sufficient electron mobility and current uniformity, so that the OLED device can uniformly emit light.
  • ELA Excimer Laser Annealing
  • the current ELA crystallization technique cannot effectively control the uniformity of the crystal lattice and the crystallographic direction of the crystal lattice, so the crystallization condition is uneven in the distribution of the entire substrate, resulting in a non-uniform long-range display effect.
  • the object of the present invention is to provide a method for fabricating a low-temperature polysilicon TFT substrate structure, which can control the crystallization process of polycrystalline silicon, so that the polysilicon layer in the driving TFT region forms a larger lattice size during crystallization, and the electron mobility is improved.
  • the polysilicon layer in the display TFT region is crystallized during the crystallization process, the uniformity of the grain boundary is ensured, and the current uniformity is improved, thereby satisfying the electrical requirements of different TFTs and improving the uniformity of OLED illumination.
  • Another object of the present invention is to provide a low-temperature polysilicon TFT substrate structure.
  • the polysilicon layer of the driving TFT region has a larger lattice size, a higher electron mobility, and a uniformity of grain boundaries of the polysilicon layer in the TFT region. Has a higher current uniformity.
  • the present invention provides a method for fabricating a low temperature polysilicon TFT substrate structure, comprising the following steps:
  • Step 1 Providing a substrate, the substrate comprising a driving TFT region and a display TFT region, and depositing a buffer layer on the substrate;
  • Step 2 depositing an amorphous silicon layer on the buffer layer, and patterning the amorphous silicon layer such that a thickness of the amorphous silicon layer of the display TFT region is greater than an amorphous portion of the driving TFT region The thickness of the silicon layer;
  • Step 3 after excimer laser annealing pretreatment, the amorphous silicon layer is subjected to excimer laser annealing treatment, so that the amorphous silicon layer is crystallized and converted into a polysilicon layer;
  • Step 4 performing a patterning process on the polysilicon layer to obtain a first polysilicon segment located in the driving TFT region and a second polysilicon segment located in the display TFT region;
  • Step 5 depositing a gate insulating layer on the first polysilicon segment, the second polysilicon segment, and the buffer layer;
  • Step 6 Depositing and patterning a first metal layer on the gate insulating layer, corresponding to the first Forming a first gate and a second gate over the polysilicon segment and the second polysilicon segment;
  • Step 7 depositing an interlayer insulating layer on the gate insulating layer, the first gate, and the second gate, and respectively corresponding to the first plurality on the interlayer insulating layer and the gate insulating layer Forming a first via and a second via above the crystalline silicon segment and the second polysilicon segment;
  • Step 8 Depositing and patterning a second metal layer on the interlayer insulating layer to form a first source/drain located in the driving TFT region and a second source/drain in the display TFT region
  • the first source/drain is in contact with the first polysilicon via a first via
  • the second source/drain is in contact with the second poly via via a second via.
  • the thickness of the second polysilicon segment is greater than the thickness of the first polysilicon segment; the lattice size in the first polysilicon segment is greater than the lattice size in the second polysilicon segment;
  • the fragmentation crystals in the second polysilicon section are more than the fragmentation crystals in the first polysilicon section.
  • the substrate is a glass substrate, and the buffer layer is made of silicon oxide, silicon nitride, or a combination of the two.
  • the material of the interlayer insulating layer is silicon oxide, silicon nitride, or a combination of the two.
  • the difference in thickness between the amorphous silicon layer of the driving TFT region and the amorphous silicon layer of the display TFT region is greater than 500A.
  • the present invention also provides a low-temperature polysilicon TFT substrate structure including a driving TFT region and a display TFT region, the driving TFT region including a substrate, a buffer layer disposed on the substrate, and a first layer disposed on the buffer layer a polysilicon segment, a gate insulating layer disposed on the buffer layer and the first polysilicon segment, and a first gate disposed on the gate insulating layer above the first polysilicon segment, An interlayer insulating layer disposed on the gate insulating layer and the first gate, and a first source/drain provided on the interlayer insulating layer;
  • the display TFT region includes a substrate, a buffer layer disposed on the substrate, a second polysilicon segment disposed on the buffer layer, and a gate disposed on the buffer layer and the second polysilicon segment An insulating layer, a second gate disposed on the gate insulating layer corresponding to the second polysilicon segment, an interlayer insulating layer disposed on the gate insulating layer and the second gate, and a second source/drain on the interlayer insulating layer;
  • the thickness of the second polysilicon segment is greater than the thickness of the first polysilicon segment.
  • the lattice size in the first polysilicon segment is larger than the lattice size in the second polysilicon segment; the fragmentation in the second polysilicon segment is more than the fragmentation in the first polysilicon segment .
  • the substrate is a glass substrate, and the material of the buffer layer is silicon oxide, silicon nitride, or a combination of the two, and the material of the interlayer insulating layer is silicon oxide, silicon nitride, or a combination of the two.
  • a first via hole is formed on the interlayer insulating layer and the gate insulating layer of the driving TFT region corresponding to the first polysilicon segment, and the first source/drain passes through the first via hole and the The first polysilicon segments are in contact;
  • a second via hole is formed on the interlayer insulating layer and the gate insulating layer of the display TFT region corresponding to the second polysilicon segment, and the second source/drain is via the second via hole
  • the second polysilicon segments are in contact.
  • the difference in thickness between the second polysilicon segment and the first polysilicon segment is greater than 500A.
  • the present invention also provides a low-temperature polysilicon TFT substrate structure including a driving TFT region and a display TFT region, the driving TFT region including a substrate, a buffer layer disposed on the substrate, and a first plurality disposed on the buffer layer a crystalline silicon segment, a gate insulating layer disposed on the buffer layer and the first polysilicon segment, and a first gate disposed on the gate insulating layer corresponding to the first polysilicon segment An interlayer insulating layer on the gate insulating layer and the first gate; and a first source/drain provided on the interlayer insulating layer;
  • the display TFT region includes a substrate, a buffer layer disposed on the substrate, a second polysilicon segment disposed on the buffer layer, and a gate disposed on the buffer layer and the second polysilicon segment An insulating layer, a second gate disposed on the gate insulating layer corresponding to the second polysilicon segment, an interlayer insulating layer disposed on the gate insulating layer and the second gate, and a second source/drain on the interlayer insulating layer;
  • the thickness of the second polysilicon segment is greater than the thickness of the first polysilicon segment
  • the lattice size in the first polysilicon segment is larger than the lattice size in the second polysilicon segment; the crushed crystal in the second polysilicon segment is more than in the first polysilicon segment Crushed crystal
  • the substrate is a glass substrate
  • the material of the buffer layer is silicon oxide, silicon nitride, or a combination of the two
  • the material of the interlayer insulating layer is silicon oxide, silicon nitride, or a combination of the two.
  • a low-temperature polysilicon TFT substrate structure and a method of fabricating the same are provided, wherein amorphous silicon is driven in a TFT region by setting an amorphous silicon layer of a driving TFT region and a display TFT region to different thicknesses.
  • the thickness of the layer is small, and the thickness of the amorphous silicon layer in the TFT region is large, so that the amorphous silicon layer in the driving TFT region and the display TFT region is different under the action of the same energy laser during the excimer laser annealing process.
  • the crystallization effect realizes the control of the crystal grain size, so that the polysilicon layer of the driving TFT region forms a larger lattice size during the crystallization process, and the electron mobility is improved, so that the polysilicon layer of the display TFT region is in the crystallization process.
  • the realization of the fragmentation crystal ensures the uniformity of the grain boundary and improves the uniformity of the current, thereby satisfying the electrical requirements of different TFTs and improving the uniformity of the OLED illumination.
  • step 1 is a schematic diagram of step 1 of a method for fabricating a conventional low-temperature polysilicon TFT substrate structure
  • step 2 is a schematic diagram of step 2 of a method for fabricating a conventional low-temperature polysilicon TFT substrate structure
  • step 3 is a schematic diagram of step 3 of a method for fabricating a conventional low-temperature polysilicon TFT substrate structure
  • step 7 is a schematic diagram of step 7 of a method for fabricating a conventional low-temperature polysilicon TFT substrate structure
  • FIG. 5 is a flow chart of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention
  • step 1 is a schematic diagram of step 1 of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention
  • step 7 is a schematic diagram of step 2 of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention.
  • step 3 is a schematic diagram of step 3 of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention.
  • step 4 is a schematic diagram of step 4 of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention.
  • step 5 is a schematic diagram of step 5 of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention
  • step 6 is a schematic diagram of step 6 of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention.
  • step 7 is a schematic diagram of step 7 of a method for fabricating a low temperature polysilicon TFT substrate structure according to the present invention.
  • FIG. 13 is a schematic view showing the step 8 of the method for fabricating the low-temperature polysilicon TFT substrate structure of the present invention and a cross-sectional view showing the structure of the low-temperature polysilicon TFT substrate of the present invention.
  • the present invention first provides a method for fabricating a low temperature polysilicon TFT substrate structure, including the following steps:
  • Step 1 As shown in FIG. 6, a substrate 1 is provided.
  • the substrate 1 includes a driving TFT region and a display TFT region, and a buffer layer 11 is deposited on the substrate 1.
  • the substrate 1 is a glass substrate, and the material of the buffer layer 11 may be silicon oxide (SiOx), silicon nitride (SiNx), or a combination of the two.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • Step 2 depositing an amorphous silicon layer 12 on the buffer layer 11, and patterning the amorphous silicon layer 12 to make the amorphous silicon layer 12 of the display TFT region
  • the thickness is greater than the thickness of the amorphous silicon layer 12 of the driving TFT region.
  • amorphous silicon layer 12 Setting the amorphous silicon layer 12 to different regions corresponding to different thicknesses can make subsequent standards Different crystallization effects occur during molecular laser annealing.
  • the difference in thickness between the amorphous silicon layer 12 of the driving TFT region and the amorphous silicon layer 12 of the display TFT region is greater than 500A.
  • Step 3 As shown in FIG. 8, after the excimer laser annealing treatment, the amorphous silicon layer 12 is subjected to excimer laser annealing treatment, and the amorphous silicon layer 12 is crystallized and converted into the polysilicon layer 13.
  • Step 4 as shown in FIG. 9, patterning the polysilicon layer 13 to obtain a first polysilicon segment 14 in the driving TFT region and a second polysilicon segment in the display TFT region. 15.
  • the thickness of the amorphous silicon layer 12 of the driving TFT region is small, the thickness of the amorphous silicon layer 12 of the display TFT region is large, thereby driving the TFT region and the display TFT region.
  • the amorphous silicon layer 12 produces different crystallization effects under the action of the same energy laser, and the polysilicon layer 12 of the driving TFT region forms a larger lattice size during crystallization, which improves electron mobility, and the display TFT
  • the polysilicon layer 12 of the region realizes the crystallizing during the crystallization process, ensuring the uniformity of the grain boundary and improving the uniformity of the current.
  • the thickness of the first polysilicon segment 14 is greater than the thickness of the second polysilicon segment 15.
  • the lattice size in the first polysilicon segment 14 is greater than the lattice size in the second polysilicon segment 15; the fragmentation in the second polysilicon segment 15 is greater than the first polysilicon segment 14 Broken crystals in the middle.
  • Step 5 as shown in FIG. 10, a gate insulating layer 16 is deposited on the first polysilicon segment 14, the second polysilicon segment 15, and the buffer layer 11.
  • Step 6 depositing and patterning a first metal layer on the gate insulating layer 16, respectively forming a first portion corresponding to the first polysilicon segment 14 and the second polysilicon segment 15
  • Step 7 as shown in FIG. 12, an interlayer insulating layer 19 is deposited on the gate insulating layer 16, the first gate 17, and the second gate 18, and the interlayer insulating layer 19 and the gate are A first via hole 20 and a second via hole 20 ′ are formed on the pole insulating layer 16 corresponding to the first polysilicon segment 14 and the second polysilicon segment 15 respectively.
  • An interlayer insulating layer 19 is deposited on the gate insulating layer 16, the first gate 17, and the second gate 18, and corresponds to the interlayer insulating layer 19 and the gate insulating layer 16, respectively.
  • a first via 20 and a second via 20 ′ are formed over the first polysilicon segment 14 and the second polysilicon segment 15 .
  • the material of the interlayer insulating layer 19 may be silicon oxide, silicon nitride, or a combination of the two.
  • Step 8 As shown in FIG. 13, depositing and patterning a second metal on the interlayer insulating layer 19 a first source/drain 21 in the driving TFT region and a second source/drain 22 in the display TFT region, the first source/drain 21 passing through the first via 20 In contact with the first polysilicon segment 14, the second source/drain 22 is in contact with the second polysilicon segment 15 via the second via 20'.
  • the method for fabricating the low-temperature polysilicon TFT substrate structure is characterized in that the thickness of the amorphous silicon layer in the driving TFT region is small by setting the amorphous silicon layer of the driving TFT region and the display TFT region to a different thickness, and the amorphous region of the TFT region is displayed.
  • the thickness of the silicon layer is large, so that during the excimer laser annealing process, the amorphous silicon layer of the driving TFT region and the display TFT region generates different crystallization effects under the action of the same energy laser, thereby realizing the control of the crystal particle size.
  • the polysilicon layer in the driving TFT region is formed into a larger lattice size during the crystallization process, and the electron mobility is improved, so that the polysilicon layer in the display TFT region is crystallized during the crystallization process, thereby ensuring grain boundary uniformity.
  • the uniformity of the current is improved, thereby satisfying the electrical requirements of different TFTs, and improving the uniformity of OLED illumination.
  • the present invention further provides a low temperature polysilicon TFT substrate structure including a driving TFT region and a display TFT region, the driving TFT region including a substrate 1 , a buffer layer 11 disposed on the substrate 1 , and a first polysilicon segment 14 on the buffer layer 11 , a gate insulating layer 16 disposed on the buffer layer 11 and the first polysilicon segment 14 , corresponding to the first polysilicon segment 14 a first gate electrode 17 on the gate insulating layer 16, an interlayer insulating layer 19 disposed on the gate insulating layer 16 and the first gate electrode 17, and an interlayer insulating layer 19 disposed on the interlayer insulating layer 19.
  • the display TFT region includes a substrate 1, a buffer layer 11 disposed on the substrate 1, a second polysilicon segment 15 disposed on the buffer layer 11, and a buffer layer 11 and a second poly layer. a gate insulating layer 16 on the silicon segment 15 , a second gate electrode 18 disposed on the gate insulating layer 16 corresponding to the second polysilicon segment 15 , and the gate insulating layer 16 and An interlayer insulating layer 19 on the second gate 18, and a second source/drain 22 disposed on the interlayer insulating layer 19;
  • the thickness of the second polysilicon segment 15 is greater than the thickness of the first polysilicon segment 14.
  • the lattice size in the first polysilicon segment 14 is greater than the lattice size in the second polysilicon segment 15; the fragmentation in the second polysilicon segment 15 is greater than the first polysilicon segment 14 Broken crystals in the middle.
  • a first via hole 20 is formed on the interlayer insulating layer 19 and the gate insulating layer 16 of the driving TFT region corresponding to the first polysilicon segment 14, and the first source/drain 21 is via the first via/drain 21
  • the first via 20 is in contact with the first polysilicon segment 14.
  • a second via hole 20 ′ is formed on the interlayer insulating layer 19 and the gate insulating layer 16 of the display TFT region corresponding to the second polysilicon segment 15 , and the second source/drain 22 is The second via 20' is in contact with the second polysilicon segment 15.
  • the substrate 1 is a glass substrate, and the material of the buffer layer 11 is silicon oxide, silicon nitride, or a combination of the two, and the material of the interlayer insulating layer 19 is silicon oxide, silicon nitride, or a combination of the two.
  • the difference in thickness between the second polysilicon segment 15 and the first polysilicon segment 14 is greater than 500A.
  • the amorphous silicon layer of the driving TFT region and the display TFT region are set to have different thicknesses in advance, the thickness of the amorphous silicon layer in the driving TFT region is small, and the thickness of the amorphous silicon layer in the TFT region is displayed.
  • the amorphous silicon layer of the driving TFT region and the display TFT region generates different crystallization effects under the action of the same energy laser, and the polysilicon layer of the driving TFT region is formed during the crystallization process.
  • the lattice size is larger and has higher electron mobility.
  • the polysilicon layer in the TFT region exhibits better grain boundary uniformity during crystallization, and has higher current uniformity, which satisfies the electrical requirements of different TFTs. Improve the uniformity of OLED illumination.
  • the low-temperature polysilicon TFT substrate structure of the present invention and the manufacturing method thereof have a thickness of the amorphous silicon layer in the driving TFT region by setting the driving TFT region and the amorphous silicon layer of the display TFT region to different thicknesses.
  • the thickness of the amorphous silicon layer in the TFT region is large, so that during the excimer laser annealing process, the amorphous silicon layer of the driving TFT region and the display TFT region produces different crystallization effects under the action of the same energy laser.
  • the control of the crystal grain size is realized, so that the polysilicon layer of the driving TFT region forms a larger lattice size during the crystallization process, and the electron mobility is improved, so that the polysilicon layer of the display TFT region is crushed during the crystallization process.
  • the grain boundary uniformity is ensured, and the uniformity of the current is improved, thereby satisfying the electrical requirements of different TFTs and improving the uniformity of OLED illumination.

Abstract

一种低温多晶硅TFT基板结构及其制作方法,通过将驱动TFT区域与显示TFT区域的非晶硅层(12)设置成不同的厚度,使驱动TFT区域的非晶硅层(12)的厚度较小,显示TFT区域的非晶硅层(12)的厚度较大,从而在准分子激光退火处理过程中,驱动TFT区域与显示TFT区域的非晶硅层(12)在相同能量激光的作用下产生不同的结晶效果,实现了对结晶颗粒大小的控制,使得驱动TFT区域的多晶硅层(12)在晶化过程中形成较大的晶格尺寸,提高了电子迁移率,使得显示TFT区域的多晶硅层(12)在晶化过程中实现碎晶,保证了晶界均一性,提高了电流的均一性,从而满足了不同TFT的电性要求,提高了OLED发光的均一性。

Description

低温多晶硅TFT基板结构及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种低温多晶硅TFT基板结构及其制作方法。
背景技术
低温多晶硅(Low Temperature Poly-silicon,LTPS)技术是新一代TFT基板的制造技术,与传统非晶硅(a-Si)技术的最大差异在于,低温多晶硅显示器反应速度较快,且有高亮度、高解析度与低耗电量等优点。多晶硅(Poly-Si)具有优异的电学性能,对于主动式矩阵有机发光二极管(Active-Matrix Organic Light Emitting Diode,AMOLED)具有较好的驱动能力。因此,基于低温多晶硅技术的AMOLED显示背板目前被广泛使用。
现有低温多晶硅TFT基板结构的制作方法主要包括如下步骤:
步骤1、如图1所示,提供基板100,所述基板100包括驱动TFT区域与显示TFT区域,在所述基板100上沉积缓冲层110;
步骤2、如图2所示,在所述缓冲层110上沉积非晶硅层,并经过准分子激光退火前处理后,对所述非晶硅层进行准分子激光退火处理,使所述非晶硅层结晶、转变为多晶硅层130;
步骤3、对所述多晶硅层130进行图案化处理,得到位于所述驱动TFT区域的第一多晶硅段140、及位于所述显示TFT区域的第二多晶硅段150;
步骤4、在所述第一多晶硅段140、第二多晶硅段150及缓冲层110上沉积栅极绝缘层160;
步骤5、在所述栅极绝缘层160上沉积并图案化第一金属层,分别对应第一多晶硅段140与第二多晶硅段150的上方形成第一栅极170与第二栅极180;
步骤6、在所述栅极绝缘层160、第一栅极170、及第二栅极180上沉积层间绝缘层190,并在所述层间绝缘层190、及栅极绝缘层160上分别对应所述第一多晶硅段140、及第二多晶硅段150上方形成第一过孔200与第二过孔200’;
步骤7、如图4所示,在所述层间绝缘层190上沉积并图案化第二金属层,分别形成位于所述驱动TFT区域的第一源/漏极210、及位于所述显示TFT区域的第二源/漏极220,所述第一源/漏极210经由第一过孔200与所 述第一多晶硅段140相接触,所述第二源/漏极220经由第二过孔200’与第二多晶硅段150相接触。
其中,准分子激光退火处理(Excimer Laser Annealing,ELA)技术是利用激光的瞬间脉冲照射到非晶硅表面,使其溶化并重新结晶。因为AMOLED驱动需要驱动TFT和显示TFT,驱动TFT需要较高的电子迁移率,所以需要比较大的晶格,显示TFT需要有足够的电子迁移率和电流均一性,从而可以使OLED器件均匀发光。
然而目前的ELA结晶技术对于晶格的均一性和晶格结晶方向不能做到有效控制,所以结晶状况在整个基板的分布上很不均匀,造成显示效果的长程不均一。
发明内容
本发明的目的在于提供一种低温多晶硅TFT基板结构的制作方法,可对多晶硅的结晶过程进行控制,使驱动TFT区域的多晶硅层在晶化过程中形成较大的晶格尺寸,提高电子迁移率,使显示TFT区域的多晶硅层在晶化过程中实现碎晶,保证晶界的均一性,提高电流均一性,从而满足不同TFT的电性要求,提高OLED发光的均一性。
本发明的另一目的在于提供一种低温多晶硅TFT基板结构,驱动TFT区域的多晶硅层的晶格尺寸较大,具有较高的电子迁移率,显示TFT区域的多晶硅层的晶界均一性好,具有较高的电流均一性。
为实现上述目的,本发明提供一种低温多晶硅TFT基板结构的制作方法,包括如下步骤:
步骤1、提供基板,所述基板包括驱动TFT区域与显示TFT区域,在所述基板上沉积缓冲层;
步骤2、在所述缓冲层上沉积非晶硅层,并对所述非晶硅层进行图案化处理,使所述显示TFT区域的非晶硅层的厚度大于所述驱动TFT区域的非晶硅层的厚度;
步骤3、经过准分子激光退火前处理后,对所述非晶硅层进行准分子激光退火处理,使所述非晶硅层结晶,转变为多晶硅层;
步骤4、对所述多晶硅层进行图案化处理,得到位于所述驱动TFT区域的第一多晶硅段、及位于所述显示TFT区域的第二多晶硅段;
步骤5、在所述第一多晶硅段、第二多晶硅段及缓冲层上沉积栅极绝缘层;
步骤6、在所述栅极绝缘层上沉积并图案化第一金属层,分别对应第一 多晶硅段、及第二多晶硅段的上方形成第一栅极、及第二栅极;
步骤7、在所述栅极绝缘层、第一栅极、及第二栅极上沉积层间绝缘层,并在所述层间绝缘层、及栅极绝缘层上分别对应所述第一多晶硅段、及第二多晶硅段上方形成第一过孔与第二过孔;
步骤8、在所述层间绝缘层上沉积并图案化第二金属层,分别形成位于所述驱动TFT区域的第一源/漏极、及位于所述显示TFT区域的第二源/漏极,所述第一源/漏极经由第一过孔与所述第一多晶硅段相接触,所述第二源/漏极经由第二过孔与第二多晶硅段相接触。
所述第二多晶硅段的厚度大于所述第一多晶硅段的厚度;所述第一多晶硅段中的晶格尺寸大于第二多晶硅段中的晶格尺寸;所述第二多晶硅段中的碎晶多于第一多晶硅段中的碎晶。
所述基板为玻璃基板,所述缓冲层的材料为氧化硅、氮化硅、或二者的组合。所述层间绝缘层的材料为氧化硅、氮化硅、或二者的组合。
所述驱动TFT区域的非晶硅层与所述显示TFT区域的非晶硅层的厚度差大于500A。
本发明还提供一种低温多晶硅TFT基板结构,其包括驱动TFT区域与显示TFT区域,所述驱动TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第一多晶硅段、设于所述缓冲层及第一多晶硅段上的栅极绝缘层、对应所述第一多晶硅段上方设于所述栅极绝缘层上的第一栅极、设于所述栅极绝缘层及第一栅极上的层间绝缘层、及设于所述层间绝缘层上的第一源/漏极;
所述显示TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第二多晶硅段、设于所述缓冲层及第二多晶硅段上的栅极绝缘层、对应所述第二多晶硅段上方设于所述栅极绝缘层上的第二栅极、设于所述栅极绝缘层及第二栅极上的层间绝缘层、及设于所述层间绝缘层上的第二源/漏极;
其中,所述第二多晶硅段的厚度大于所述第一多晶硅段的厚度。
所述第一多晶硅段中的晶格尺寸大于第二多晶硅段中的晶格尺寸;所述第二多晶硅段中的碎晶多于第一多晶硅段中的碎晶。
所述基板为玻璃基板,所述缓冲层的材料为氧化硅、氮化硅、或二者的组合,所述层间绝缘层的材料为氧化硅、氮化硅、或二者的组合。
所述驱动TFT区域的层间绝缘层及栅极绝缘层上对应所述第一多晶硅段上方形成有第一过孔,所述第一源/漏极经由所述第一过孔与所述第一多晶硅段相接触;
所述显示TFT区域的层间绝缘层及栅极绝缘层上对应所述第二多晶硅段上方形成有第二过孔,所述第二源/漏极经由所述第二过孔与所述第二多晶硅段相接触。
所述第二多晶硅段与所述第一多晶硅段的厚度差大于500A。
本发明还提供一种低温多晶硅TFT基板结构,包括驱动TFT区域与显示TFT区域,所述驱动TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第一多晶硅段、设于所述缓冲层及第一多晶硅段上的栅极绝缘层、对应所述第一多晶硅段上方设于所述栅极绝缘层上的第一栅极、设于所述栅极绝缘层及第一栅极上的层间绝缘层、及设于所述层间绝缘层上的第一源/漏极;
所述显示TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第二多晶硅段、设于所述缓冲层及第二多晶硅段上的栅极绝缘层、对应所述第二多晶硅段上方设于所述栅极绝缘层上的第二栅极、设于所述栅极绝缘层及第二栅极上的层间绝缘层、及设于所述层间绝缘层上的第二源/漏极;
其中,所述第二多晶硅段的厚度大于所述第一多晶硅段的厚度;
其中,所述第一多晶硅段中的晶格尺寸大于第二多晶硅段中的晶格尺寸;所述第二多晶硅段中的碎晶多于第一多晶硅段中的碎晶;
其中,所述基板为玻璃基板,所述缓冲层的材料为氧化硅、氮化硅、或二者的组合,所述层间绝缘层的材料为氧化硅、氮化硅、或二者的组合。
本发明的有益效果:本发明提供的一种低温多晶硅TFT基板结构及其制作方法,通过将驱动TFT区域与显示TFT区域的非晶硅层设置成不同的厚度,使驱动TFT区域的非晶硅层的厚度较小,显示TFT区域的非晶硅层的厚度较大,从而在准分子激光退火处理过程中,驱动TFT区域与显示TFT区域的非晶硅层在相同能量激光的作用下产生不同的结晶效果,实现了对结晶颗粒大小的控制,使得驱动TFT区域的多晶硅层在晶化过程中形成较大的晶格尺寸,提高了电子迁移率,使得显示TFT区域的多晶硅层在晶化过程中实现碎晶,保证了晶界均一性,提高了电流的均一性,从而满足了不同TFT的电性要求,提高了OLED发光的均一性。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为现有低温多晶硅TFT基板结构的制作方法的步骤1的示意图;
图2为现有低温多晶硅TFT基板结构的制作方法的步骤2的示意图;
图3为现有低温多晶硅TFT基板结构的制作方法的步骤3的示意图;
图4为现有低温多晶硅TFT基板结构的制作方法的步骤7的示意图;
图5为本发明低温多晶硅TFT基板结构的制作方法的流程图;
图6为本发明低温多晶硅TFT基板结构的制作方法的步骤1的示意图;
图7为本发明低温多晶硅TFT基板结构的制作方法的步骤2的示意图;
图8为本发明低温多晶硅TFT基板结构的制作方法的步骤3的示意图;
图9为本发明低温多晶硅TFT基板结构的制作方法的步骤4的示意图;
图10为本发明低温多晶硅TFT基板结构的制作方法的步骤5的示意图;
图11为本发明低温多晶硅TFT基板结构的制作方法的步骤6的示意图;
图12为本发明低温多晶硅TFT基板结构的制作方法的步骤7的示意图;
图13为本发明低温多晶硅TFT基板结构的制作方法的步骤8的示意图暨本发明低温多晶硅TFT基板结构的剖面示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图5,本发明首先提供一种低温多晶硅TFT基板结构的制作方法,包括如下步骤:
步骤1、如图6所示,提供基板1,所述基板1包括驱动TFT区域与显示TFT区域,在所述基板1上沉积缓冲层11。
具体地,所述基板1为玻璃基板,所述缓冲层11的材料可以是氧化硅(SiOx)、氮化硅(SiNx)、或二者的组合。
步骤2、如图7所示,在所述缓冲层11上沉积非晶硅层12,并对所述非晶硅层12进行图案化处理,使所述显示TFT区域的非晶硅层12的厚度大于所述驱动TFT区域的非晶硅层12的厚度。
将所述非晶硅层12对应不同的区域设置成不同的厚度,可以使后续准 分子激光退火处理过程中产生不同的结晶效果。
优选的,所述驱动TFT区域的非晶硅层12与所述显示TFT区域的非晶硅层12的厚度差大于500A。
步骤3、如图8所示,经过准分子激光退火前处理后,对所述非晶硅层12进行准分子激光退火处理,使所述非晶硅层12结晶,转变为多晶硅层13。
步骤4、如图9所示,对所述多晶硅层13进行图案化处理,得到位于所述驱动TFT区域的第一多晶硅段14、及位于所述显示TFT区域的第二多晶硅段15。
在所述准分子激光退火处理过程中,由于驱动TFT区域的非晶硅层12的厚度较小,显示TFT区域的非晶硅层12的厚度较大,从而使驱动TFT区域与显示TFT区域的非晶硅层12在相同能量激光的作用下产生不同的结晶效果,所述驱动TFT区域的多晶硅层12在晶化过程中形成较大的晶格尺寸,提高了电子迁移率,所述显示TFT区域的多晶硅层12在晶化过程中实现碎晶,保证了晶界均一性,提高了电流的均一性。
因此在本实施例中,所述第一多晶硅段14的厚度大于所述第二多晶硅段15的厚度。所述第一多晶硅段14中的晶格尺寸大于第二多晶硅段15中的晶格尺寸;所述第二多晶硅段15中的碎晶多于第一多晶硅段14中的碎晶。
步骤5、如图10所示,在所述第一多晶硅段14、第二多晶硅段15及缓冲层11上沉积栅极绝缘层16。
步骤6、如图11所示,在所述栅极绝缘层16上沉积并图案化第一金属层,分别对应第一多晶硅段14、及第二多晶硅段15的上方形成第一栅极17、及第二栅极18。
步骤7、如图12所示,在所述栅极绝缘层16、第一栅极17、及第二栅极18上沉积层间绝缘层19,并在所述层间绝缘层19、及栅极绝缘层16上分别对应所述第一多晶硅段14、及第二多晶硅段15上方形成第一过孔20与第二过孔20’。
在所述栅极绝缘层16、第一栅极17、及第二栅极18上沉积层间绝缘层19,并在所述层间绝缘层19、及栅极绝缘层16上分别对应所述第一多晶硅段14、及第二多晶硅段15上方形成第一过孔20与第二过孔20’。
具体地,所述层间绝缘层19的材料可以是氧化硅、氮化硅、或二者的组合。
步骤8、如图13所示,在所述层间绝缘层19上沉积并图案化第二金属 层,分别形成位于所述驱动TFT区域的第一源/漏极21、及位于所述显示TFT区域的第二源/漏极22,所述第一源/漏极21经由第一过孔20与所述第一多晶硅段14相接触,所述第二源/漏极22经由第二过孔20’与第二多晶硅段15相接触。
上述低温多晶硅TFT基板结构的制作方法,通过将驱动TFT区域与显示TFT区域的非晶硅层设置成不同的厚度,使驱动TFT区域的非晶硅层的厚度较小,显示TFT区域的非晶硅层的厚度较大,从而在准分子激光退火处理过程中,驱动TFT区域与显示TFT区域的非晶硅层在相同能量激光的作用下产生不同的结晶效果,实现了对结晶颗粒大小的控制,使得驱动TFT区域的多晶硅层在晶化过程中形成较大的晶格尺寸,提高了电子迁移率,使得显示TFT区域的多晶硅层在晶化过程中实现碎晶,保证了晶界均一性,提高了电流的均一性,从而满足了不同TFT的电性要求,提高了OLED发光的均一性。
请参阅图13,本发明还提供一种低温多晶硅TFT基板结构,其包括驱动TFT区域与显示TFT区域,所述驱动TFT区域包括基板1、设于所述基板1上的缓冲层11、设于所述缓冲层11上的第一多晶硅段14、设于所述缓冲层11及第一多晶硅段14上的栅极绝缘层16、对应所述第一多晶硅段14上方设于所述栅极绝缘层16上的第一栅极17、设于所述栅极绝缘层16及第一栅极17上的层间绝缘层19、及设于所述层间绝缘层19上的第一源/漏极21;
所述显示TFT区域包括基板1、设于所述基板1上的缓冲层11、设于所述缓冲层11上的第二多晶硅段15、设于所述缓冲层11及第二多晶硅段15上的栅极绝缘层16、对应所述第二多晶硅段15上方设于所述栅极绝缘层16上的第二栅极18、设于所述栅极绝缘层16及第二栅极18上的层间绝缘层19、及设于所述层间绝缘层19上的第二源/漏极22;
其中,所述第二多晶硅段15的厚度大于所述第一多晶硅段14的厚度。
所述第一多晶硅段14中的晶格尺寸大于第二多晶硅段15中的晶格尺寸;所述第二多晶硅段15中的碎晶多于第一多晶硅段14中的碎晶。
具体地,所述驱动TFT区域的层间绝缘层19及栅极绝缘层16上对应所述第一多晶硅段14上方形成有第一过孔20,所述第一源/漏极21经由所述第一过孔20与所述第一多晶硅段14相接触。
所述显示TFT区域的层间绝缘层19及栅极绝缘层16上对应所述第二多晶硅段15上方形成有第二过孔20’,所述第二源/漏极22经由所述第二过孔20’与所述第二多晶硅段15相接触。
具体地,所述基板1为玻璃基板,所述缓冲层11的材料为氧化硅、氮化硅、或二者的组合,所述层间绝缘层19的材料为氧化硅、氮化硅、或二者的组合。
优选的,所述第二多晶硅段15与所述第一多晶硅段14的厚度差大于500A。
上述低温多晶硅TFT基板结构,预先将驱动TFT区域与显示TFT区域的非晶硅层设置成不同的厚度,驱动TFT区域的非晶硅层的厚度较小,显示TFT区域的非晶硅层的厚度较大,从而在准分子激光退火处理过程中,驱动TFT区域与显示TFT区域的非晶硅层在相同能量激光的作用下产生不同的结晶效果,驱动TFT区域的多晶硅层在晶化过程中形成的晶格尺寸较大,具有较高的电子迁移率,显示TFT区域的多晶硅层在晶化过程中晶界均一性较好,具有较高的电流均一性,满足了不同TFT的电性要求,提高了OLED发光的均一性。
综上所述,本发明的低温多晶硅TFT基板结构及其制作方法,通过将驱动TFT区域与显示TFT区域的非晶硅层设置成不同的厚度,使驱动TFT区域的非晶硅层的厚度较小,显示TFT区域的非晶硅层的厚度较大,从而在准分子激光退火处理过程中,驱动TFT区域与显示TFT区域的非晶硅层在相同能量激光的作用下产生不同的结晶效果,实现了对结晶颗粒大小的控制,使得驱动TFT区域的多晶硅层在晶化过程中形成较大的晶格尺寸,提高了电子迁移率,使得显示TFT区域的多晶硅层在晶化过程中实现碎晶,保证了晶界均一性,提高了电流的均一性,从而满足了不同TFT的电性要求,提高了OLED发光的均一性。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (13)

  1. 一种低温多晶硅TFT基板结构的制作方法,包括如下步骤:
    步骤1、提供基板,所述基板包括驱动TFT区域与显示TFT区域,在所述基板上沉积缓冲层;
    步骤2、在所述缓冲层上沉积非晶硅层,并对所述非晶硅层进行图案化处理,使所述显示TFT区域的非晶硅层的厚度大于所述驱动TFT区域的非晶硅层的厚度;
    步骤3、经过准分子激光退火前处理后,对所述非晶硅层进行准分子激光退火处理,使所述非晶硅层结晶,转变为多晶硅层;
    步骤4、对所述多晶硅层进行图案化处理,得到位于所述驱动TFT区域的第一多晶硅段、及位于所述显示TFT区域的第二多晶硅段;
    步骤5、在所述第一多晶硅段、第二多晶硅段及缓冲层上沉积栅极绝缘层;
    步骤6、在所述栅极绝缘层上沉积并图案化第一金属层,分别对应第一多晶硅段、及第二多晶硅段的上方形成第一栅极、及第二栅极;
    步骤7、在所述栅极绝缘层、第一栅极、及第二栅极上沉积层间绝缘层,并在所述层间绝缘层、及栅极绝缘层上分别对应所述第一多晶硅段、及第二多晶硅段上方形成第一过孔与第二过孔;
    步骤8、在所述层间绝缘层上沉积并图案化第二金属层,分别形成位于所述驱动TFT区域的第一源/漏极、及位于所述显示TFT区域的第二源/漏极,所述第一源/漏极经由第一过孔与所述第一多晶硅段相接触,所述第二源/漏极经由第二过孔与第二多晶硅段相接触。
  2. 如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其中,所述第一多晶硅段的厚度大于所述第二多晶硅段的厚度;所述第一多晶硅段中的晶格尺寸大于第二多晶硅段中的晶格尺寸;所述第二多晶硅段中的碎晶多于第一多晶硅段中的碎晶。
  3. 如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其中,所述基板为玻璃基板,所述缓冲层的材料为氧化硅、氮化硅、或二者的组合。
  4. 如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其中,所述层间绝缘层的材料为氧化硅、氮化硅、或二者的组合。
  5. 如权利要求1所述的低温多晶硅TFT基板结构的制作方法,其中, 所述驱动TFT区域的非晶硅层与所述显示TFT区域的非晶硅层的厚度差大于500A。
  6. 一种低温多晶硅TFT基板结构,包括驱动TFT区域与显示TFT区域,所述驱动TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第一多晶硅段、设于所述缓冲层及第一多晶硅段上的栅极绝缘层、对应所述第一多晶硅段上方设于所述栅极绝缘层上的第一栅极、设于所述栅极绝缘层及第一栅极上的层间绝缘层、及设于所述层间绝缘层上的第一源/漏极;
    所述显示TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第二多晶硅段、设于所述缓冲层及第二多晶硅段上的栅极绝缘层、对应所述第二多晶硅段上方设于所述栅极绝缘层上的第二栅极、设于所述栅极绝缘层及第二栅极上的层间绝缘层、及设于所述层间绝缘层上的第二源/漏极;
    其中,所述第二多晶硅段的厚度大于所述第一多晶硅段的厚度。
  7. 如权利要求6所述的低温多晶硅TFT基板结构,其中,所述第一多晶硅段中的晶格尺寸大于第二多晶硅段中的晶格尺寸;所述第二多晶硅段中的碎晶多于第一多晶硅段中的碎晶。
  8. 如权利要求6所述的低温多晶硅TFT基板结构,其中,所述基板为玻璃基板,所述缓冲层的材料为氧化硅、氮化硅、或二者的组合,所述层间绝缘层的材料为氧化硅、氮化硅、或二者的组合。
  9. 如权利要求6所述的低温多晶硅TFT基板结构,其中,所述驱动TFT区域的层间绝缘层及栅极绝缘层上对应所述第一多晶硅段上方形成有第一过孔,所述第一源/漏极经由所述第一过孔与所述第一多晶硅段相接触;
    所述显示TFT区域的层间绝缘层及栅极绝缘层上对应所述第二多晶硅段上方形成有第二过孔,所述第二源/漏极经由所述第二过孔与所述第二多晶硅段相接触。
  10. 如权利要求6所述的低温多晶硅TFT基板结构,其中,所述第二多晶硅段与所述第一多晶硅段的厚度差大于500A。
  11. 一种低温多晶硅TFT基板结构,包括驱动TFT区域与显示TFT区域,所述驱动TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第一多晶硅段、设于所述缓冲层及第一多晶硅段上的栅极绝缘层、对应所述第一多晶硅段上方设于所述栅极绝缘层上的第一栅极、设于所述栅极绝缘层及第一栅极上的层间绝缘层、及设于所述层间绝缘层上的第一源/漏极;
    所述显示TFT区域包括基板、设于所述基板上的缓冲层、设于所述缓冲层上的第二多晶硅段、设于所述缓冲层及第二多晶硅段上的栅极绝缘层、对应所述第二多晶硅段上方设于所述栅极绝缘层上的第二栅极、设于所述栅极绝缘层及第二栅极上的层间绝缘层、及设于所述层间绝缘层上的第二源/漏极;
    其中,所述第二多晶硅段的厚度大于所述第一多晶硅段的厚度;
    其中,所述第一多晶硅段中的晶格尺寸大于第二多晶硅段中的晶格尺寸;所述第二多晶硅段中的碎晶多于第一多晶硅段中的碎晶;
    其中,所述基板为玻璃基板,所述缓冲层的材料为氧化硅、氮化硅、或二者的组合,所述层间绝缘层的材料为氧化硅、氮化硅、或二者的组合。
  12. 如权利要求11所述的低温多晶硅TFT基板结构,其中,所述驱动TFT区域的层间绝缘层及栅极绝缘层上对应所述第一多晶硅段上方形成有第一过孔,所述第一源/漏极经由所述第一过孔与所述第一多晶硅段相接触;
    所述显示TFT区域的层间绝缘层及栅极绝缘层上对应所述第二多晶硅段上方形成有第二过孔,所述第二源/漏极经由所述第二过孔与所述第二多晶硅段相接触。
  13. 如权利要求11所述的低温多晶硅TFT基板结构,其中,所述第二多晶硅段与所述第一多晶硅段的厚度差大于500A。
PCT/CN2015/077160 2015-03-27 2015-04-22 低温多晶硅tft基板结构及其制作方法 WO2016155056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/779,336 US20170098667A1 (en) 2015-03-27 2015-04-22 Low temperature poly-silicon tft substrate structure and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510140649.8 2015-03-27
CN201510140649.8A CN104701265A (zh) 2015-03-27 2015-03-27 低温多晶硅tft基板结构及其制作方法

Publications (1)

Publication Number Publication Date
WO2016155056A1 true WO2016155056A1 (zh) 2016-10-06

Family

ID=53348233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077160 WO2016155056A1 (zh) 2015-03-27 2015-04-22 低温多晶硅tft基板结构及其制作方法

Country Status (3)

Country Link
US (1) US20170098667A1 (zh)
CN (1) CN104701265A (zh)
WO (1) WO2016155056A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206569A (zh) * 2015-10-23 2015-12-30 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
CN106356378B (zh) * 2016-09-26 2023-10-27 合肥鑫晟光电科技有限公司 阵列基板及其制作方法
US10418385B2 (en) * 2016-11-18 2019-09-17 Shanghai Tianma Micro-electronics Co., Ltd. Array substrate and fabrication method thereof, display panel
CN106682626A (zh) * 2016-12-29 2017-05-17 信利(惠州)智能显示有限公司 指纹识别结构及其制作方法
CN109669319B (zh) * 2018-12-19 2022-06-14 上海华力集成电路制造有限公司 改善多晶硅层线端尺寸均一性的opc修正方法
CN111081633A (zh) * 2020-01-07 2020-04-28 Tcl华星光电技术有限公司 阵列基板的制备方法及阵列基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188683A1 (en) * 2003-03-28 2004-09-30 Fujitsu Display Technologies Corporation Thin film transistor substrate and manufacturing method thereof
CN1691090A (zh) * 2004-04-21 2005-11-02 统宝光电股份有限公司 平面显示器面板构造与制造方法
CN101075635A (zh) * 2006-05-17 2007-11-21 统宝光电股份有限公司 图像显示系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853696B1 (en) * 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
KR100496300B1 (ko) * 2003-04-02 2005-06-17 삼성에스디아이 주식회사 박막 트랜지스터를 구비한 평판표시장치
TWI247169B (en) * 2004-03-24 2006-01-11 Toppoly Optoelectronics Corp Planar display panel structure and its producing method
KR101192746B1 (ko) * 2004-11-12 2012-10-18 엘지디스플레이 주식회사 폴리형 박막 트랜지스터 기판의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188683A1 (en) * 2003-03-28 2004-09-30 Fujitsu Display Technologies Corporation Thin film transistor substrate and manufacturing method thereof
CN1691090A (zh) * 2004-04-21 2005-11-02 统宝光电股份有限公司 平面显示器面板构造与制造方法
CN101075635A (zh) * 2006-05-17 2007-11-21 统宝光电股份有限公司 图像显示系统

Also Published As

Publication number Publication date
US20170098667A1 (en) 2017-04-06
CN104701265A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2016155055A1 (zh) 低温多晶硅tft基板结构及其制作方法
WO2016155056A1 (zh) 低温多晶硅tft基板结构及其制作方法
WO2016101392A1 (zh) Amoled背板的制作方法及其结构
KR100882909B1 (ko) 박막트랜지스터, 그의 제조 방법, 이를 포함하는유기전계발광표시장치, 및 그의 제조 방법
CN106057735B (zh) Tft背板的制作方法及tft背板
US20160020096A1 (en) Manufacture Method Of Low Temperature Poly Silicon, Manufacturing Method Of TFT Substrate Utilizing The Method, And TFT Substrate Structure
CN104362084B (zh) 低温多晶硅薄膜及其制备方法、低温多晶硅薄膜晶体管
WO2016206151A1 (zh) 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构
JP6239606B2 (ja) 薄膜トランジスタ、アレイ基板及びその製造方法
WO2016101401A1 (zh) 低温多晶硅tft基板的制作方法及其结构
WO2016101400A1 (zh) 低温多晶硅tft基板的制作方法及其结构
KR101015844B1 (ko) 박막트랜지스터, 그의 제조방법 및 그를 구비하는유기전계발광표시장치의 제조방법
WO2016033836A1 (zh) 氧化物半导体tft基板的制作方法及结构
WO2015192558A1 (zh) 低温多晶硅薄膜晶体管、其制备方法及阵列基板与显示装置
US10192903B2 (en) Method for manufacturing TFT substrate
WO2017124603A1 (zh) 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
KR100785019B1 (ko) 하부 게이트 박막 트랜지스터 및 그 제조방법
US20170263735A1 (en) Method of Manufacturing Thin Film Transistor (TFT) and TFT
US11521989B2 (en) Display substrate, display apparatus and manufacturing method of display substrate
TW200532285A (en) Planar display panel structure and its producing method
TWI260702B (en) Method of selective laser crystallization and display panel fabricated by using the same
WO2015192552A1 (zh) 低温多晶硅薄膜的制造方法、tft、阵列基板及显示装置
WO2019144451A1 (zh) 固相结晶方法与低温多晶硅tft基板的制作方法
Sugawara et al. The uniform crystallization process towards the bottom-gated LTPS TFT back-plane technology for large-sized AM-OLED displays by CW green laser annealing
US20190228968A1 (en) Solid phase crystallization method and manufacturing method of low-temperature poly-silicon tft substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14779336

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887024

Country of ref document: EP

Kind code of ref document: A1