WO2016152596A1 - 網状成形品用射出成形金型、網状成形品用射出成形金型の製造方法、及び網状成形品 - Google Patents

網状成形品用射出成形金型、網状成形品用射出成形金型の製造方法、及び網状成形品 Download PDF

Info

Publication number
WO2016152596A1
WO2016152596A1 PCT/JP2016/057895 JP2016057895W WO2016152596A1 WO 2016152596 A1 WO2016152596 A1 WO 2016152596A1 JP 2016057895 W JP2016057895 W JP 2016057895W WO 2016152596 A1 WO2016152596 A1 WO 2016152596A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
protrusions
cavity
protrusion
openings
Prior art date
Application number
PCT/JP2016/057895
Other languages
English (en)
French (fr)
Inventor
橋本 将臣
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2016152596A1 publication Critical patent/WO2016152596A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings

Definitions

  • the present invention relates to an injection mold used for injection molding a reticulated product (for example, a mesh filter used for filtering out foreign substances in a fluid), a method for manufacturing the injection mold, and an injection thereof.
  • a reticulated product for example, a mesh filter used for filtering out foreign substances in a fluid
  • the present invention relates to a reticulated product that is injection-molded using a molding die.
  • a fluid eg, gas such as air, liquid such as fuel or oil
  • a mesh filter net-shaped molded product
  • FIG. 14 is a cross-sectional view schematically showing a part of a mesh filter injection molding die 100 (injection molding die) 100 attached to a ventilation port of an air conditioner.
  • FIG. 15 is a view showing the cavity 102 of the movable mold 101 in the mold 100.
  • 15A is a plan view of the cavity 102
  • FIG. 15B is an enlarged view of part B6 in FIG. 15A (a partially enlarged view of the cavity 102).
  • FIG. FIG. 16 is a partial cross-sectional view of the movable mold 101 cut along the line A10-A10 in FIG.
  • the mold 100 includes a fixed mold 103 and a movable mold 101 that are overlapped to form a cavity 102 on the mold mating surface side of the fixed mold 103 and the movable mold 101.
  • the mesh filter 105 is injected into the cavity 102 and the shape of the cavity 102 is transferred (see FIG. 16).
  • the gate 104 is formed on the fixed mold 103, and the cavity 102 is formed on the mold matching surface side of the movable mold 101.
  • the cavity 102 formed in the movable mold 101 has a quadrangular planar shape, and a frame cavity 106 is formed along the outer edge.
  • a mesh cavity 107 is formed inside the frame cavity 106. Is formed.
  • the mesh cavity 107 includes a plurality of first rib grooves 108 extending in the diagonal direction of the cavity 102 at equal intervals and in parallel, and a second rib groove 110 orthogonal to the first rib grooves 108.
  • a plurality of protrusions 111 are formed in a region surrounded by a pair of adjacent first rib grooves 108 and 108 and a pair of adjacent second rib grooves 110 and 110 that are formed in parallel at equal intervals.
  • a plurality of projections 111 are formed at equal intervals in a matrix in the net cavity 107, and the tip surface comes into contact with the inner surface of the fixed mold 103 when the fixed mold 103 and the movable mold 101 are aligned. Yes.
  • FIG. 16 is a view showing a mesh filter 105 injection-molded by such a mold 100.
  • the mesh filter 105 includes a frame portion 112 that forms a rectangular outer edge, and a net portion 113 that is integrally formed inside the frame portion 112.
  • the mesh portion 113 of the mesh filter 105 includes a first rib 114 shaped such that the first rib groove 108 has been transferred, and a second rib shaped such that the second rib groove 110 has been transferred. 115 and an opening 116 formed by the protrusion 111.
  • the rib width L21 of the first rib 114 is formed to be 0.5 mm like the groove width L21 of the first rib groove 108 of the movable mold 101, and the rib width of the second rib 115 is set.
  • L22 is formed to be 0.5 mm like the groove width L22 of the second rib groove 110 of the movable mold 101, and the width L23 on one side of the opening 116 is 1 like the width L23 of one side of the protrusion 111 of the movable mold 101.
  • the height (thickness) L24 of the first rib 114 and the height (thickness) L24 of the second rib 115 are the groove depth L24 of the first rib groove 108 of the movable mold 101 and Similarly to the groove depth L24 of the second rib groove 110, it is formed to 0.5 mm (see Patent Document 1).
  • the rib width L21 of the first rib 114 and the rib width L22 of the second rib 115 are as large as 0.5 mm, and the width L23 on one side of the opening 116 is 1. Since it is as large as 0.0 mm, it can be pushed out (released) without difficulty from the cavity 102 with an eject pin after injection molding.
  • the mesh filter 105 attached in the middle of an oil pipe such as a fuel supply pipe or a lubrication apparatus connected to a fuel injection device of an automobile has a fine foreign matter (particle size) in a fluid (for example, fuel, oil, etc.).
  • a fluid for example, fuel, oil, etc.
  • the conventional injection mold 100 shown in FIGS. 14 to 15 cannot be molded.
  • the groove width L21 of the first rib groove 108 and the second rib groove 110 are provided so that fine foreign matters can be filtered out.
  • the groove width L22 of the first rib groove 108 is 0.1 mm
  • the width L23 of one side of the protrusion 111 is 0.1 mm
  • the groove depth L24 of the first rib groove 108 and the groove depth L24 of the second rib groove 110 are 0.1 mm.
  • such a mold 100 can fill the cavity 102 with molten resin, but the mold filter 105 as an injection-molded product has a high release resistance, and the mesh filter 105 after the injection molding can be removed from the cavity 102. It was impossible to push out from the inside with the eject pin, and the mesh filter 105 was damaged with the eject pin.
  • the applicant of the present application performed microblasting on the surface of the protrusion 111 to reduce the release resistance of the mesh filter 105 after injection molding. As a result, the mesh filter 105 was removed from the cavity 102. It could be easily extruded with an eject pin.
  • the protrusion 111 subjected to the microblast treatment is sharply cut at the tip side, and the tip side is thinly formed.
  • the protrusion 111 that has been subjected to the microblasting process is cut off by about 0.02 mm, while one side is 0.1 mm. Accordingly, when the mesh filter 105 is injection-molded using the mold 100 having such a shape of the protrusion 111, the opening 116 corresponding to the distal end side of the protrusion 111 is formed on the base end side of the protrusion 111 as shown in FIG. As a result, the aperture ratio is reduced, the flow rate of the fluid is increased, and the filter performance is deteriorated.
  • the present invention can improve the shape accuracy of the opening of the reticulated molded product, does not decrease the aperture ratio, and can be used to form a reticulated molded product that does not increase the fluid flow resistance.
  • An object of the present invention is to provide a manufacturing method thereof and a reticulated molded product.
  • the second mold 12 is pressed against the first mold 11 to form a cavity 13 on the mold mating surface side of the first mold 11 and the second mold 12.
  • a plurality of protrusions 20 projecting into the cavity 13 are formed on one or both of the second mold 12 and the second mold 12, and the plurality of protrusions 20 are either the first mold 11 or the second mold 12.
  • the top surface 20a of the protrusion 20 is abutted against one of the first mold 11 and the second mold 12, and the plurality of protrusions 20 are in the first mold 11.
  • the second mold 12 the top surfaces 20 a and 20 a of the projection 20 are brought into contact with each other, and the cavity 13 is formed from the gates 18 and 31 formed in the first mold 11.
  • the present invention relates to an injection mold 10 for a net-like molded product that molds.
  • the plurality of protrusions 20 have a square bar shape, and a microblast treatment is applied to the surface, and the tip side that has been thinned by the microblast treatment is removed.
  • the length is suitable for forming the plurality of openings 8.
  • the second mold 12 is pressed against the first mold 11 to form a cavity 13 on the mold mating surface side of the first mold 11 and the second mold 12.
  • a plurality of protrusions 20 projecting into the cavity 13 are formed on one or both of the mold 11 and the second mold 12, and the plurality of protrusions 20 are the first mold 11 and the second mold 12.
  • the present invention relates to a method for manufacturing an injection mold 10 for a net-like molded product for molding a mold.
  • the plurality of protrusions 20 have a square bar shape, and are subjected to microblasting on the surface and thinned by the microblasting. By removing the front end side, it is characterized in that it is formed in a length suitable for forming the plurality of openings 8.
  • the second mold 12 is pressed against the first mold 11 to form a cavity 13 on the mold mating surface side of the first mold 11 and the second mold 12.
  • a plurality of protrusions 20 projecting into the cavity 13 are formed on one or both of the mold 11 and the second mold 12, and the plurality of protrusions 20 are the first mold 11 and the second mold 12.
  • the plurality of protrusions 20 are in the shape of a square bar, and the surface is subjected to microblasting, and the tip side that has been thinned by the microblasting is removed, thereby An injection molding length suitable for forming a plurality of openings 8 is formed.
  • the opening 8 is characterized in that the projection 20 is formed in a transferred shape.
  • the protrusion forming the opening of the reticulated product has a shape that is reduced in mold release resistance by the microblasting process and is caused by the microblasting process.
  • the shape is formed with high accuracy without causing collapse.
  • the injection mold for a reticulated product according to the present invention can form the reticulated product opening with high accuracy, does not decrease the opening ratio of the reticulated product, and does not increase the fluid flow resistance.
  • the product can be injection molded.
  • a reticulated product that is injection-molded using an injection mold for a reticulated product according to the present invention is easily released from the mold after injection molding, and is damaged due to release resistance at the time of release. Etc. will not occur.
  • a reticulated product that is injection-molded by using an injection mold for a reticulated product according to the present invention has a highly accurate opening and does not lower the opening ratio. Excellent filter performance without increasing flow resistance.
  • FIG. 1 (a) is a front view of a mesh filter
  • FIG.1 (b) is a side view of a mesh filter
  • FIG. ) Is a rear view of the mesh filter
  • FIG. 1 (d) is a cross-sectional view of the mesh filter cut along the line A1-A1 of FIG. 1 (a)
  • FIG. 1 (e) is B1 of FIG. 1 (a).
  • FIG. 1F is a sectional view taken along line A2-A2 of FIG. 1E
  • FIG. 1G is taken along line A3-A3 of FIG. 1E. It is sectional drawing cut
  • FIG.2 (a) is a longitudinal cross-sectional view of a metal mold
  • figure 2 (b) is an enlarged view of a portion B2 in FIG. 2 (a)
  • FIG. 2 (c) is a partial plan view of the first mold viewed from the F1 direction in FIG. 2 (b).
  • FIG. 3 (a-1) is a plan view of the protrusion before the microblasting process
  • FIG. 3 (a-2) is a side view of the protrusion before the microblasting process
  • FIG. 3B is a plan view of the protrusion after the microblasting process
  • FIG. 3B-2 is a side view of the protrusion after the microblasting process.
  • 4A-1 and 4A-2 are enlarged sectional views of the openings of the mesh filter to which the shape of the projections of FIGS. 3A-1 and 3A-2 is transferred.
  • b-1) and (b-2) are enlarged sectional views of the openings of the mesh filter formed by using the second mold in which the protrusions of FIGS. 3 (b-1) and (b-2) are formed. It is. It is a figure which shows typically the 1st manufacturing method of a metal mold
  • FIG. 9 (a-1) and 9 (a-2) show an enlarged view of the opening of the filter portion of the mesh filter injection-molded using the first mold and the second mold shown in FIG. 9 (a-1) is a plan view of the opening, and FIG. 9 (a-2) is a side sectional view of the opening.
  • FIGS. 9B-1 and 9B-2 are meshes generated when the protrusions of the first mold and the second mold shown in FIG. 8 are not formed according to the manufacturing method shown in FIG. 5 or FIG.
  • FIG. 9B is a plan view of the opening, and FIG.
  • FIG. 9B-2 is a side cross-sectional view of the opening. It is a figure which shows the mesh filter which concerns on 2nd Embodiment of this invention
  • Fig.10 (a) is a front view of a mesh filter
  • FIG.10 (b) is a side view of a mesh filter
  • FIG.10 (c) is a mesh filter
  • 10D is a cross-sectional view of the mesh filter cut along the line A4-A4 in FIG. 10A
  • FIG. 10E is an enlarged view of B1 and B3 in FIG. 10A.
  • FIG. 10 (f) is a sectional view taken along line A5-A5 in FIG. 10 (e)
  • FIG. 10 (g) is cut along line A6-A6 in FIG. 10 (e).
  • FIG.12 (a) is a front view of a mesh filter
  • FIG.12 (b) is a side view of a mesh filter
  • FIG.12 (c) is a mesh filter.
  • FIG. 12D is a rear view
  • FIG. 12D is a sectional view of the mesh filter cut along the line A7-A7 in FIG. 12A
  • FIG. 12E is an enlarged view of a portion B4 in FIG.
  • FIG. 12F is a cross-sectional view taken along the line A8-A8 in FIG. 12E
  • FIG. 12G is a cross-sectional view taken along the line A9-A9 in FIG. FIG.
  • Fig.13 (a) is a longitudinal cross-sectional view of a metal mold
  • FIG.13 (b) is FIG.13 (a). It is an enlarged view of B5 part. It is sectional drawing which simplifies and shows a part of injection mold (injection mold) of the conventional mesh filter.
  • FIG.15 (a) is a top view of a cavity
  • FIG.15 (b) is an enlarged view of B6 part of Fig.15 (a) (partial enlarged view of a cavity).
  • 15 (c) is a partial sectional view of the movable type cut along the line A10-A10 in FIG. 15 (b).
  • FIG. 16 (a) is a top view of a mesh filter
  • FIG.16 (b) is an enlarged view of B7 part of FIG. 16 (a)
  • FIG. 16C is a cross-sectional view taken along the line A11-A11 in FIG. It is an expanded sectional view of the permite
  • FIG. 1 is a view showing a mesh filter (net-shaped molded product) 1 according to the first embodiment of the present invention.
  • 1A is a front view of the mesh filter 1
  • FIG. 1B is a side view of the mesh filter 1
  • FIG. 1C is a rear view of the mesh filter 1
  • FIG. 3D is a cross-sectional view of the mesh filter 1 cut along the line A1-A1 in FIG.
  • FIG. 1 (e) is an enlarged view of a portion B1 in FIG. 1 (a) (a partially enlarged view of the mesh filter 1)
  • FIG. 1 (f) is along the line A2-A2 in FIG. 1 (e).
  • FIG. 1G is a cross-sectional view taken along the line A3-A3 of FIG. 1E (mesh filter 1).
  • FIG. 1A is a front view of the mesh filter 1
  • FIG. 1B is a side view of the mesh filter 1
  • FIG. 1C is a rear view of the mesh filter 1
  • the mesh filter 1 includes a cylindrical inner cylinder 2 (inner frame) and a cylindrical outer cylinder 3 concentric with the inner cylinder 2 (outer frame surrounding the inner frame). Body) and the filter portion 4 that connects the outer peripheral surface 2a of the inner cylinder 2 and the inner peripheral surface 3a of the outer cylinder 3 along the radial direction.
  • the mesh filter 1 is integrally formed of a thermoplastic or thermosetting resin material (for example, polyacetal, 66 nylon).
  • a mesh filter 1 is arranged, for example, in a fuel supply pipe connected to a fuel injection device of an automobile, and the inner cylinder 2 and the outer cylinder 3 are sealed in a fuel supply pipe or the like.
  • the outer diameter of the inner cylinder 2 is 10 mm, and the outer diameter of the outer cylinder 3 is 16 mm.
  • the thickness of the inner cylinder 2 is 1 mm, and the thickness of the outer cylinder 3 is 1 mm.
  • the numerical values regarding the inner cylinder 2 and the outer cylinder 3 are examples for facilitating understanding of the invention, and are appropriately changed according to use conditions and the like.
  • the inner cylinder 2 and the outer cylinder 3 have the same length L1 along the central axis 5, and one end surfaces 2 b and 3 b in the direction along the central axis 5 are both on the same virtual plane perpendicular to the central axis 5.
  • the other end faces 2 c and 3 c in the direction along the central axis 5 are both located on the same virtual plane orthogonal to the central axis 5.
  • the relationship between the inner cylinder 2 and the outer cylinder 3 is not limited to the present embodiment, but is deformed according to the attachment state of the mesh filter 1 and along the central axis 5 of the inner cylinder 2 and the outer cylinder 3.
  • the dimension of the direction is different, and the one end face 2b in the direction along the central axis 5 of the inner cylinder 2 and the one end face 3b in the direction along the central axis 5 of the outer cylinder 3 are shifted from each other. It may be configured. Further, the other end surface 2 c in the direction along the central axis 5 of the inner cylinder 2 may be configured to be shifted from the other end surface 3 c in the direction along the central axis 5 of the outer cylinder 3.
  • the filter unit 4 is formed along the XY plane when a virtual plane orthogonal to the direction along the central axis 5 of the inner cylinder 2 is an XY plane.
  • a portion of the filter portion 4 other than the connecting portion between the inner tube 2 and the outer tube 3 is formed by a plurality of vertical ribs 6 that are orthogonal to the X axis and are formed at equal intervals in parallel with the Y axis.
  • a plurality of rectangular openings 8 are formed by a plurality of lateral ribs 7 that are orthogonal to 6 and formed at equal intervals in parallel with the X axis.
  • the opening part 8 is a regular square whose one side is 0.1 mm.
  • the vertical rib 6 and the horizontal rib 7 are the dimension between the adjacent opening parts 8 and 8 (dimension L2 of the direction along the X-axis of FIG.1 (e), or the Y-axis of FIG.1 (e).
  • the rib width dimension (L2, L3) which is the dimension L3 in the direction is 0.1 mm, and the direction along the central axis 5 of the inner cylinder 2 (Z-axis direction in FIG. 1 (f) or FIG.
  • the thickness dimension (L4, L5) of the vertical rib 6 and the horizontal rib 7 in the Z-axis direction) is 0.4 mm. Further, as shown in FIG.
  • the filter portion 4 is formed with a radial dimension L6 in the range of 2 to 5 mm along the X axis, and is optimal according to the structure of the attachment portion of the mesh filter 1 and the like. The dimensions are set. Further, in the filter portion 4, a regular square opening 8 having a side of 0.1 mm is also formed at a connection portion between the inner cylinder 2 and the outer cylinder 3. The filter part 4 is formed so as to connect the central part of the inner cylinder 2 and the outer cylinder 3 in the direction along the central axis 5 in the radial direction.
  • FIG. 2 is a view showing a mold (injection mold for net-like molded product) 10 used for injection molding of the mesh filter 1 according to the present embodiment.
  • 2A is a longitudinal sectional view of the mold 10
  • FIG. 2B is an enlarged view of a portion B2 in FIG. 2A (a partially enlarged sectional view of the mold 10).
  • 2 (c) is a partial plan view of the second mold 12 as viewed from the F1 direction of FIG. 2 (b).
  • the mold 10 has a cavity 13 for injection molding of the mesh filter 1 on the mold mating surface side of the first mold 11 and the second mold 12.
  • the cavity 13 includes a cylindrical first cavity portion 14 for forming the inner cylinder 2 of the mesh filter 1, a cylindrical second cavity portion 15 for forming the outer cylinder 3 of the mesh filter 1, and the mesh filter 1.
  • a plurality of gates 18 that open to the one end face 14 a side in the direction along the central axis 17 of the first cavity portion 14 are arranged at equal intervals along the circumferential direction of the first cavity portion 14 (6 (Refer to the gate mark 18a in FIG. 1C).
  • a plurality of projections 20 for forming the opening 8 are formed at equal intervals (the same number as the opening 8) (FIG. 2B to FIG. 2). (See (c)).
  • the projection 20 formed in the portion forming the third cavity portion 16 of the second mold 12 has a regular quadrilateral shape (a shape viewed from the F1 direction in FIG. 2B).
  • the dimension L7 of one side is formed to a dimension capable of forming a regular square opening 8 having a size of 0.1 mm.
  • the protrusion 20 formed on the portion forming the third cavity portion 16 of the second mold 12 has a height dimension (dimension L8 along the Z-axis direction in FIG.
  • the rib 7 is formed to have a thickness dimension (0.4 mm).
  • the protrusion 20 formed on the portion forming the third cavity portion 16 of the second mold 12 is abutted against the inner surface of the portion forming the third cavity portion 16 of the first die 11 at the top surface 20a of the tip.
  • the gate 18 opened to the cavity 13 is exemplified as being provided at six locations at equal intervals along the circumferential direction of the first cavity portion 14.
  • the present invention is not limited to this, and the first cavity portion 14 is not limited thereto. It is provided in two or more places according to the outer diameter size of the. Further, a ring gate may be provided in place of the plurality of gates 18.
  • the mold 10 having such a structure is a molten resin material (for example, 66 nylon) in a state where the first mold 11 and the second mold 12 are clamped.
  • the pressure in the cavity 13 is maintained at a predetermined pressure, and the mold 10 is cooled.
  • the second mold 12 is moved away from the first mold 11 in the ⁇ C direction (the mold is opened), and the mesh filter 1 in the cavity 13 is pushed out from the cavity 13 by an ejector pin (not shown). A certain mesh filter 1 is taken out from the mold 10 (see FIG. 1).
  • the second mold 12 in the mold open state is moved in the + C direction (direction approaching the first mold 11), and the second mold 12 is pressed against the first mold 11. Then, the first mold 11 and the second mold 12 are clamped, and one cycle of injection molding is completed.
  • FIG. 3 is a view showing one protrusion 20 formed on a portion forming the third cavity portion 16 of the second mold 12.
  • the shape of the protrusion 20 before the microblast treatment and the microblast treatment are performed. It is a figure which compares and shows the shape of the proceedings
  • FIGS. 3A-1 and 3A-2 are views showing the shape of the protrusion 20 before the microblast treatment.
  • FIGS. 3B-1 and 3B-2 are views showing the shape of the protrusion 20 after the microblast treatment.
  • the projection 20 has a regular square shape, the length L7 of one side of the top surface 20a is 0.1 mm, and the projection height L8 is 0.1 mm. 0.4 mm.
  • the third cavity portion 16 of the second mold 12 in which a large number of such protrusions 20 are formed has a large mold release resistance of the mesh filter 1 as an injection molded product. This causes the problem of scratching 1 with an eject pin. Therefore, when the microblast process is performed on the protrusion 20 in order to reduce the release resistance acting between the mesh filter 1 and the protrusion 20, as shown in FIGS.
  • the tip side of the projection 20 is scraped off, and the thickness of the tip side of the projection 20 (the range of the length dimension L9 along the Z-axis direction from the tip) gradually decreases toward the tip (thinner becomes thinner toward the tip). Then, the protrusion 20 has the maximum amount ( ⁇ L7) at the tip, which is scraped off by the microblasting process. Note that the dimension of ⁇ L7 and the dimension of L9 vary depending on the conditions of the microblast treatment (such as the injection pressure of the granular material).
  • FIGS. 4B-1 and 4B-2 show a mesh filter 1 formed by using the second mold 12 on which the protrusions 20 of FIGS. 3B-1 and 3B-2 are formed. It is an expanded sectional view of the opening part 8 of.
  • the opening 8 of the mesh filter 1 is a square hole to which the shape of the protrusion 20 is transferred, and a portion where the tip side of the protrusion 20 is transferred. (Range indicated by L9 in FIG. 4 (b-2)) is narrower than the other parts.
  • the mesh filter 1 in which such an opening 8 is formed is compared with the mesh filter 1 in the opening 8 to which the shape of the protrusion 20 in FIGS. 3A-1 and 3A-2 is transferred (FIG. 4). (See (a-1) and (a-2)), the aperture ratio of the filter unit 4 decreases, the flow resistance acting on the fluid passing through the filter unit 4 increases, and the filter performance decreases.
  • the applicant of the present application has devised a mold (injection mold for a reticulated product) 10 and a method for manufacturing the same as shown in FIG.
  • the protrusion 20 of the second mold 12 has a length dimension L9 in a range where the original protrusion height dimension L8 is reduced by the microblasting process before the microblasting process.
  • Projection height that is the same as or larger than the length dimension (L8 + L9) including the length dimension L9 along the Z-axis direction from the tip shown in FIGS. 3 (b-2) and 4 (b-2) Ls (Ls ⁇ (L8 + L9))
  • the protrusion 20 of the second mold 12 is formed by wire electric discharge machining.
  • the microblast treatment is performed on the protrusions 20 that form the third cavity portion 16. Accordingly, the protrusion 20 of the second mold 12 can be easily released from the mesh filter 1 after injection molding, but the tip side (the range of the length dimension L9 along the Z direction from the tip surface) is microblasted. It becomes thin by processing.
  • the second mold 12 has a molten resin material (for example, polyacetal) poured into a portion constituting the third cavity portion 16, and around all the protrusions 20. Is hardened with a cooled and solidified resin material (resin material for fixing protrusions).
  • a molten resin material for example, polyacetal
  • the second mold 12 is such that the tip side of the protrusion 20 and the resin material 21 (for example, polyacetal) are ground by the grinding process until the protrusion height dimension changes from Ls to L8. Scraped off. At this time, since the periphery of the protrusion 20 is hardened by the resin material 21, the protrusion 20 does not bend or deform due to grinding resistance. When the periphery of the protrusion 20 is not solidified by the resin material 21, the protrusion 20 is bent by the grinding resistance, and the desired opening 8 cannot be formed in the filter portion 4 of the mesh filter 1.
  • the resin material 21 for example, polyacetal
  • the second mold 12 has a resin material 21 (for example, polyacetal) remaining around the protrusions 20 in a solvent (for example, 1,1,1,3,3, It is dissolved and removed by 3-hexafluoro-2-propanol (abbreviation: HFIP).
  • a solvent for example, 1,1,1,3,3, It is dissolved and removed by 3-hexafluoro-2-propanol (abbreviation: HFIP).
  • HFIP 3-hexafluoro-2-propanol
  • FIG. 6 is a view showing a modified example of the mold (injection mold for net-like molded product) 10 shown in FIG. 5 and the manufacturing method thereof.
  • the protrusion 20 of the second mold 12 is in the state before the microblasting process, as shown in FIG. Similar to the manufacturing process shown, the length L9 in the range where the original projection height dimension L8 is reduced by the microblast treatment (from the tip shown in FIGS. 3 (b-2) and 4 (b-2) to the Z-axis)
  • the protrusion height Ls (Ls ⁇ (L8 + L9)) is the same as or larger than the length dimension (L8 + L9) including the length dimension L9) along the direction.
  • the projection 20 of the second mold 12 is subjected to a microblasting process in the same manner as the manufacturing process shown in FIG. 5B.
  • a grinding jig 22 is attached to the second mold 12.
  • the protrusion 20 of the second mold 12 is accommodated in the protrusion engagement hole 23 of the grinding jig 22, and the portion that is scraped off by the grinding process protrudes outward from the surface of the grinding jig 22.
  • the portion to be scraped off by grinding is a portion that has been thinned by at least microblasting, and has a length range of (Ls ⁇ L8) from the tip of the protrusion 20 along the Z-axis direction.
  • the protrusion 20 of the second mold 12 has its portion protruding outward from the surface of the grinding jig 22 removed by grinding.
  • the protrusion height 20 of the second mold 12 changes from Ls to L8.
  • the projection 20 of the second mold 12 is accommodated in the projection engagement hole 23 of the grinding jig 22, and deformation is limited by the inner wall surface of the projection engagement hole 23. There is no deformation such as bending due to grinding resistance at the time.
  • the grinding jig 22 attached to the second mold 12 is removed.
  • the surface of the protrusion 20 is microblasted similarly to the second mold 12 shown in FIG.
  • no deformation (part narrowed by the microblasting process) due to the microblasting process remains, and it is possible to form the opening 8 having a good shape accuracy in the filter unit 4 (FIG. 1 (e) to FIG. 1). (G), see FIGS. 4 (a-1) and (a-2)).
  • FIG. 7 is a view showing a first modification of the protrusion 20 for forming the opening 8.
  • the protrusion 20 for forming the opening 8 is not formed in the portion forming the third cavity portion 16 of the second mold 12, and the third cavity portion 16 of the first mold 11 is formed. You may make it form only in the part to shape.
  • the protrusion 20 formed on the portion forming the third cavity portion 16 of the first mold 11 is abutted against the inner surface of the portion forming the third cavity portion 16 of the second mold 12.
  • Such a protrusion 20 of the first mold 11 is formed according to the manufacturing method shown in FIG.
  • FIG. 8 is a view showing a second modification of the protrusion 20 for forming the opening 8.
  • the protrusion 20 for forming the opening 8 includes a portion for forming the third cavity portion 16 of the first mold 11 and a portion for forming the third cavity portion 16 of the second mold 12. It may be formed separately.
  • the height dimension of each of the protrusions 20A and 20B of the first mold 11 and the second mold 12 is 1 / height of the height dimension of the protrusion 20 in the embodiment and the first modification. 2 height dimension (L8 / 2).
  • the top surface 20a of the protrusion 20A and the top surface 20a of the protrusion 20B are brought into contact with each other.
  • the projection 20A of the first mold 11 and the projection 20B of the second mold 12 are formed according to the manufacturing method shown in FIG. 5 or FIG.
  • FIGS. 9A-1 and 9A-2 show the opening 8 of the filter portion 4 of the mesh filter 1 that is injection-molded using the first mold 11 and the second mold 12 shown in FIG. It is a figure which expands and shows.
  • the openings 8 of the filter portion 4 of the mesh filter 1 have deformed portions (protrusions 20A and 20B at their tips caused by the microblasting process). No deformation part due to thinning by microblasting occurs.
  • the protrusion 20A of the first mold 11 and the protrusion 20B of the second mold 12 have good releasability from the mesh filter 1 after injection molding, and the opening 8 can be accurately formed. It becomes possible to manufacture the mesh filter 1 having excellent filter performance.
  • the protrusion 20A and the protrusion 20B are not formed according to the manufacturing method shown in FIG. 5 or FIG. 6 and the protrusion 20A and the protrusion 20B having the height dimension (L8 / 2) are subjected to microblast treatment, Although the mold release performance is improved, the tips of the projections 20A and 20B become narrow, and the opening 8 of the mesh filter 1 after injection molding becomes narrow at the center in the direction along the Z axis. The shape accuracy is lowered, the aperture ratio of the filter portion 4 is lowered, the flow resistance of the fluid passing through the opening portion 8 is increased, and the filter performance is lowered (FIGS. 9B-1 and 9B). -2)).
  • the mold 10 according to the manufacturing method of the mold (injection mold for reticulated molded product) 10 according to this embodiment, the protrusion of the second mold 12 that forms the opening 8 of the filter portion 4 of the mesh filter 1.
  • the mold release resistance is reduced by the microblast treatment, and the shape is not deformed due to the microblast treatment, and the shape is formed with high accuracy.
  • the mold 10 according to the present embodiment can form the opening 8 of the filter portion 4 of the mesh filter 1 with high accuracy, does not decrease the opening ratio of the filter portion 4, and does not increase the fluid flow resistance.
  • the filter 1 can be injection molded.
  • the mesh filter 1 injection-molded using the mold 10 according to the present embodiment is easily released from the mold 10 after injection molding, and there are defects such as damage due to release resistance at the time of release. Will not occur.
  • the opening 8 of the filter unit 4 is formed with high accuracy, and the aperture ratio of the filter unit 4 does not decrease. The flow resistance of the fluid passing through the four openings 8 is not increased, and excellent filter performance is exhibited.
  • the dimension L7 of the protrusion 20 (the length L7 of one side of the cross section perpendicular to the height direction of the protrusion 20) is 0.07 to 0.1 mm.
  • the dimension L8 in the height direction of the protrusion 20 is 0.1 to 0.4 mm, and the pitch between the adjacent protrusions 20 and 20 is 1.7 ⁇ L7 to 2.0 ⁇ L7 mm. In this range, it has been confirmed by experiments that the mesh filter 1 after injection molding can be easily released from the mold 10 and the effects according to the present embodiment can be obtained.
  • FIG. 10 is a diagram showing a mesh filter 1 according to the second embodiment of the present invention.
  • the mesh filter 1 according to the present embodiment shown in FIG. 10 has the same reference numerals as those of the mesh filter 1 according to the first embodiment, and the description overlapping that of the mesh filter 1 according to the first embodiment. Omitted.
  • a center side filter portion 24 extending from the central axis 5 of the inner cylinder 2 to the inner peripheral surface 2d of the inner cylinder 2 is formed on the radially inner side of the inner cylinder 2.
  • This center side filter part 24 is formed similarly to the filter part 4 of the mesh filter 1 which concerns on the said 1st Embodiment (refer FIG.1 (e) and FIG.10 (e)).
  • the particle size of the foreign matter to be filtered out by the center side filter unit 24 and the particle size of the foreign material to be filtered out by the filter unit 4 are different, the particle size of the foreign matter to be filtered out
  • the opening area of the opening 8 of the center side filter part 24 and the opening 8 of the filter part 4 may be changed according to the above.
  • FIG. 11 is a view showing a mold 10 used for injection molding of the mesh filter 1 according to this embodiment, and is a cross-sectional view corresponding to FIG.
  • the same parts as those of the mold 10 of FIG. 2 are denoted by the same reference numerals, and description overlapping with the description of the mold 10 of FIG. 2 is omitted.
  • a fourth cavity portion 25 for forming the center side filter portion 24 is formed on the radially inner side of the first cavity portion 14 for forming the inner cylinder 2.
  • the molten thermoplastic resin when the molten thermoplastic resin is injected from the gate 18 that opens to the first cavity portion 14, the molten thermoplastic resin is converted into the first cavity portion 14.
  • the third cavity portion 16 and the fourth cavity portion 25 and the whole are integrally and highly accurately injection-molded. .
  • the protrusions 20 that form the openings 8 of the filter unit 4 and the center side filter unit 24 are formed by the method of manufacturing the mold 10 according to FIG.
  • the mesh filter 1 injection-molded using the mold 10 according to the present embodiment is easily released from the mold 10 after injection molding, and damage caused by the release resistance at the time of release There is no problem.
  • the opening 4 of the filter unit 4 and the center side filter unit 24 is formed with high accuracy, and the filter unit 4 and the center side filter are formed. Since the opening ratio of the portion 24 does not decrease, the flow resistance of the fluid passing through the opening portion 8 of the filter portion 4 and the center side filter portion 24 is not increased, and the filter portion 4 and the center side filter portion 24 are excellent filters. Demonstrate performance.
  • FIG. 12 is a diagram showing a mesh filter 1 according to the third embodiment of the present invention.
  • the mesh filter 1 shown in FIG. 12 includes a disk-shaped gate connection portion 26 and a cylindrical outer cylinder (outer side) that is concentric with the central axis 27 of the gate connection portion 26 and that surrounds the gate connection portion 26. And a filter portion 30 that connects the outer peripheral surface 26a of the gate connection portion 26 and the inner peripheral surface 28a of the outer cylinder 28 along the radial direction.
  • the mesh filter 1 is entirely formed of the same resin material as that of the mesh filter 1 according to the first and second embodiments.
  • the gate connecting portion 26 is a portion where the injection molding gate 31 is opened, and the outer dimension is set to be larger than the inner diameter dimension of the opening of the gate 31 (see FIG. 12). 12 (c) and the gate mark 31a and FIG. 13).
  • the filter part 30 has the same shape as the filter part 4 of the mesh filter 1 according to the first and second embodiments, and a plurality of openings 8 are formed. (See FIGS. 1 (e) to (g) and FIGS. 10 (e) to (g)).
  • the outer cylinder 28 has a shape and a size that match the attachment portion structure of a mating member (such as a control oil supply conduit of the hydraulic control device) to which the mesh filter 1 is attached. It is formed.
  • FIG. 13 is a view showing a mold 10 used for injection molding of the mesh filter 1 according to this embodiment, and is a cross-sectional view corresponding to FIG.
  • a cavity 13 is formed on the mold mating surface side of the first mold 11 and the second mold 12.
  • the cavity 13 of the mold 10 includes a first cavity portion 32 for forming the gate connection portion 26, a second cavity portion 33 for forming the outer tube 28, and a third cavity portion 34 for forming the filter portion 30. And have.
  • a plurality of projections 20 for forming the opening 8 of the filter unit 30 are formed on the portion of the second mold 12 that forms the third cavity portion 34.
  • the plurality of protrusions 20 formed on the second mold 12 are formed by the method for manufacturing the mold 10 shown in FIG.
  • the plurality of projections 20 formed on the second mold 12 is abutted against the inner surface of the portion where the top surface 20 a of the tip forms the third cavity portion 34 of the first mold 11.
  • molten thermoplastic resin when molten thermoplastic resin is injected from the gate 31 that opens to the first cavity portion 32, the molten resin is transferred from the first cavity portion 32 to the third cavity. It flows into the portion 34 and flows from the third cavity portion 34 toward the second cavity portion 33, and the whole is integrally formed with high accuracy.
  • the protrusion 20 that forms the opening 8 of the filter unit 30 is formed by the method for manufacturing the mold 10 according to FIG.
  • the mesh filter 1 injection-molded using the mold 10 according to the present embodiment is easily released from the mold 10 after injection molding, and damage caused by the release resistance at the time of release There is no problem.
  • the opening 8 of the filter unit 30 is formed with high accuracy, and the aperture ratio of the filter unit 30 does not decrease.
  • the filter part 30 exhibits excellent filter performance without increasing the flow resistance of the fluid that passes through the 30 openings 8.
  • the mesh filter 1 according to the first and second embodiments is not limited to the case where the shapes of the inner cylinder 2 and the outer cylinder 3 (the shapes shown in FIGS. 1A and 10A) are formed in a circular shape.
  • the shape of the filter unit 4 (shown in FIGS. 1 (a) and 10 (a)) may be changed to a shape (rectangular, hexagonal, etc.) according to a mating member (fuel conduit, etc.) to which the mesh filter 1 is attached. May be deformed according to the shapes of the inner cylinder 2 and the outer cylinder 3.
  • the mesh filter 1 according to the third embodiment is not limited to the case where the gate connection portion 26 and the outer cylinder 28 are formed in a circular shape (the shape shown in FIG.
  • the shape (rectangular, hexagonal, etc.) according to the mating member (fuel line, etc.) to be used can be made, and the shape of the filter part 30 (the shape shown in FIGS. 1 (a) and 10 (a)) is connected to the gate. You may deform
  • FIG. 1 (a) and 10 (a) You may deform
  • the mesh filter 1 is installed in a fuel supply pipe connected to a fuel injection device of an automobile, an oil pipeline such as an automobile lubrication device, a pipeline of a water supply pipe, a pipeline of a blower pipe, etc. It can be used in a wide range of technical fields in order to remove foreign substances mixed in a fluid (a liquid such as water or a gas such as air).
  • a fluid a liquid such as water or a gas such as air.
  • SYMBOLS 1 Mesh filter (reticulated molded article), 8 ... Opening part, 10 ... Mold (Injection mold for reticulated molded article, 11 ... 1st mold, 12 ... 2nd mold, 13 ... ... cavity, 18, 31 ... gate, 20 ... protrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

【課題】網状成形品の開口部の形状精度を高め、網状成形品の開口率を低下させず、網状成形品の開口部を通過する流体の流動抵抗を増大させないようにする。 【解決手段】網状成形品1を成形する金型10は、第1金型11と第2金型12の型合わせ面側にキャビティ13を形作り、第2金型12にキャビティ13内に突出する複数の突起20を形成し、第1金型11に形成したゲート18からキャビティ13内に溶融樹脂を射出することにより、キャビティ13内の複数の突起20が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が網状成形品1に複数の突起20と同数形成される。そして、複数の突起20は、角棒形状であり、表面にマイクロブラスト処理が施されると共に、マイクロブラスト処理によって細くなった先端側が取り除かれることにより、複数の開口部を形作るのに適した長さに形成される。

Description

網状成形品用射出成形金型、網状成形品用射出成形金型の製造方法、及び網状成形品
 この発明は、網状成形品(例えば、流体中の異物を濾し取るために使用するメッシュフィルタ)を射出成形するために使用される射出成形金型、その射出成形金型の製造方法、及びその射出成形金型を使用して射出成形された網状成形品に関するものである。
 例えば、空調機器の通風口、自動車の燃料噴射装置に接続される燃料供給管や潤滑装置等のオイル配管の途中には、流体(例えば、空気等の気体、燃料やオイル等の液体)中の異物を濾し取るためのメッシュフィルタ(網状成形品)が配置されている。
 図14は、空調機器の通風口に取り付けられるメッシュフィルタの射出成形用の金型(射出成形金型)100の一部を簡略化して示す断面図である。また、図15は、金型100のうちの可動型101のキャビティ102を示す図である。なお、図15(a)はキャビティ102の平面図であり、図15(b)は図15(a)のB6部の拡大図(キャビティ102の一部拡大図)であり、図15(c)は図15(b)のA10-A10線に沿って切断して示す可動型101の部分断面図である。
 図14乃至図15に示すように、金型100は、固定型103と可動型101を重ね合わせ、固定型103と可動型101の型合わせ面側にキャビティ102を形成し、溶融樹脂をゲート104からキャビティ102内に射出し、キャビティ102の形状が転写されたようなメッシュフィルタ105を成形するようになっている(図16参照)。なお、金型100は、固定型103にゲート104が形成され、可動型101の型合わせ面側にキャビティ102が形成されている。
 図15に示すように、可動型101に形成されたキャビティ102は、平面形状が四角形状であり、外縁に沿って枠部キャビティ106が形成され、この枠部キャビティ106の内側に網部キャビティ107が形成されている。網部キャビティ107は、キャビティ102の対角線方向に沿って延びる第1のリブ溝108が等間隔で且つ平行に複数形成されると共に、第1のリブ溝108に直交する第2のリブ溝110が等間隔で且つ平行に複数形成され、隣合う一対の第1のリブ溝108,108と隣合う一対の第2のリブ溝110,110によって囲まれる領域に突起111が形成されている。この突起111は、網部キャビティ107内において、マトリックス状に等間隔で複数形成されており、先端面が固定型103と可動型101の型合わせ時に固定型103の内面に当接するようになっている。
 図16は、このような金型100によって射出成形されたメッシュフィルタ105を示す図である。この図16に示すように、メッシュフィルタ105は、四角形の外縁を形作る枠部112と、この枠部112の内側に一体に形作られた網部113と、を備えている。また、メッシュフィルタ105の網部113は、第1のリブ溝108が転写されたような形状の第1のリブ114と、第2のリブ溝110が転写されたような形状の第2のリブ115と、突起111によって形作られる開口部116と、を有している。そして、このメッシュフィルタ105は、第1のリブ114のリブ幅L21が可動型101の第1のリブ溝108の溝幅L21と同様に0.5mmに形成され、第2のリブ115のリブ幅L22が可動型101の第2のリブ溝110の溝幅L22と同様に0.5mmに形成され、開口部116の一辺の幅L23が可動型101の突起111の一辺の幅L23と同様に1.0mmに形成され、第1のリブ114の高さ(厚さ)L24及び第2のリブ115の高さ(厚さ)L24が可動型101の第1のリブ溝108の溝深さL24及び第2のリブ溝110の溝深さL24と同様に0.5mmに形成されている(特許文献1参照)。
特開平9-1690号公報(特に、段落0014乃至0017、図1乃至2参照)
 図16に示した従来のメッシュフィルタ105は、第1のリブ114のリブ幅L21及び第2のリブ115のリブ幅L22が0.5mmと大きく、また、開口部116の一辺の幅L23が1.0mmと大きいため、射出成形後にキャビティ102内からエジェクトピンで無理なく押し出す(離型する)ことができる。
 しかしながら、近年、自動車の燃料噴射装置に接続される燃料供給管や潤滑装置等のオイル配管の途中に取り付けられるメッシュフィルタ105は、流体(例えば、燃料、オイル等)中の微細な異物(粒径が0.1mmの異物)を濾し取ることが求められており、図14乃至図15に示した従来の射出成形用の金型100では成形できない。
 そこで、このようなメッシュフィルタ105を射出成形するための金型100は、微細な異物を濾し取ることができるようにするため、第1のリブ溝108の溝幅L21及び第2のリブ溝110の溝幅L22を0.1mmとし、突起111の一辺の幅L23を0.1mmとし、第1のリブ溝108の溝深さL24及び第2のリブ溝110の溝深さL24を0.1mmとして、メッシュフィルタ105の射出成形を試みた。その結果、このような金型100は、キャビティ102内に溶融樹脂を充填させることができるものの、射出成形品としてのメッシュフィルタ105の離型抵抗が大きく、射出成形後のメッシュフィルタ105をキャビティ102内からエジェクトピンで押し出すことができず、メッシュフィルタ105をエジェクトピンで傷付けるという不具合を生じた。
 このような不具合を解消するため、本願の出願人は、突起111の表面にマイクロブラスト処理を施し、射出成形後のメッシュフィルタ105の離型抵抗を軽減した結果、メッシュフィルタ105をキャビティ102内からエジェクトピンで容易に押し出すことができた。
 しかしながら、図17に示すように、マイクロブラスト処理を施した突起111は、先端側が大きく削られ、先端側が細く形作られてしまう。なお、マイクロブラスト処理を施された突起111は、一辺が0.1mmであるのに対し、0.02mm程度削り取られている。したがって、このような突起111の形状の金型100を使用してメッシュフィルタ105を射出成形すると、図18に示すように、突起111の先端側に対応する開口部116が突起111の基端側に対応する開口部116よりも狭くなり、開口率が低下してしまうと共に、流体の流動抵抗を増大させてしまい、フィルタ性能を低下させてしまうという新たな問題を生じた。
 そこで、本発明は、網状成形品の開口部の形状精度を高めることができ、開口率を低下させず、流体の流動抵抗を増大させない網状成形品を成形できる網状成形品用射出成形金型、その製造方法、及び網状成形品を提供することを目的とする。
 本発明は、第1金型11に対して第2金型12を押し付け、前記第1金型11と前記第2金型12の型合わせ面側にキャビティ13を形作り、前記第1金型11と前記第2金型12のいずれか一方又は両方に前記キャビティ13内に突出する複数の突起20を形成し、前記複数の突起20が前記第1金型11と前記第2金型12のいずれか一方に形成された場合には前記突起20の頂面20aを前記第1金型11と前記第2金型12のいずれか他方に突き当て、前記複数の突起20が前記第1金型11と前記第2金型12の両方にそれぞれ形成された場合には前記突起20の前記頂面20a,20a同士を突き当てて、前記第1金型11に形成したゲート18,31から前記キャビティ13内に溶融樹脂を射出することにより、前記キャビティ13内の前記複数の突起20が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部8が前記複数の突起20と同数形成された網状成形品1を成形する網状成形品用射出成形金型10に関するものである。本発明に係る網状成形品用射出成形金型10において、前記複数の突起20は、角棒形状であり、表面にマイクロブラスト処理が施されると共に、前記マイクロブラスト処理によって細くなった先端側が取り除かれることにより、前記複数の開口部8を形作るのに適した長さに形成されたことを特徴としている。
 また、本発明は、第1金型11に対して第2金型12を押し付け、前記第1金型11と前記第2金型12の型合わせ面側にキャビティ13を形作り、前記第1金型11と前記第2金型12のいずれか一方又は両方に前記キャビティ13内に突出する複数の突起20を形成し、前記複数の突起20が前記第1金型11と前記第2金型12のいずれか一方に形成された場合には前記突起20の頂面20aを前記第1金型11と前記第2金型12のいずれか他方に突き当て、前記複数の突起20が前記第1金型11と前記第2金型12の両方にそれぞれ形成された場合には前記突起20の前記頂面20a,20a同士を突き当てて、前記第1金型11に形成したゲート18,31から前記キャビティ13内に溶融樹脂を射出することにより、前記キャビティ13内の前記複数の突起20が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部8が前記複数の突起20と同数形成された網状成形品1を成形する網状成形品用射出成形金型10の製造方法に関するものである。本発明に係る網状成形品用射出成形金型10の製造方法において、前記複数の突起20は、角棒形状であり、表面にマイクロブラスト処理が施されると共に、前記マイクロブラスト処理によって細くなった先端側が取り除かれることにより、前記複数の開口部8を形作るのに適した長さに形成されることを特徴としている。
 また、本発明は、第1金型11に対して第2金型12を押し付け、前記第1金型11と前記第2金型12の型合わせ面側にキャビティ13を形作り、前記第1金型11と前記第2金型12のいずれか一方又は両方に前記キャビティ13内に突出する複数の突起20を形成し、前記複数の突起20が前記第1金型11と前記第2金型12のいずれか一方に形成された場合には前記突起20の頂面20aを前記第1金型11と前記第2金型12のいずれか他方に突き当て、前記複数の突起20が前記第1金型11と前記第2金型12の両方にそれぞれ形成された場合には前記突起20の前記頂面20a,20a同士を突き当てて、前記第1金型11に形成したゲート18,31から前記キャビティ13内に溶融樹脂を射出することにより、前記キャビティ13内の前記複数の突起20が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部8が前記複数の突起20と同数形成された網状成形品1に関するものである。本発明に係る網状成形品1において、前記複数の突起20は、角棒形状であり、表面にマイクロブラスト処理が施されると共に、前記マイクロブラスト処理によって細くなった先端側が取り除かれることにより、前記複数の開口部8を形作るのに適した射出成形用の長さに形成されている。そして、前記開口部8は、前記突起20が転写された形状に形作られたことを特徴としている。
 本発明に係る網状成形品用射出成形金型の製造方法によれば、網状成形品の開口部を形作る突起は、マイクロブラスト処理によって離型抵抗が軽減され、且つ、マイクロブラスト処理に起因する形状の崩れを生じることがなく、形状が高精度に形作られる。その結果、本発明に係る網状成形品用射出成形金型は、網状成形品の開口部を高精度に形成でき、網状成形品の開口率を低下させず、流体の流動抵抗を増大させない網状成形品を射出成形することが可能になる。また、本発明に係る網状成形品用射出成形金型を使用して射出成形された網状成形品は、射出成形後に金型から容易に離型され、離型時の離型抵抗に起因する損傷等の不具合を発生することがない。また、本発明に係る網状成形品用射出成形金型を使用して射出成形された網状成形品は、開口部が高精度に形作られ、開口率が低下しないため、開口部を通過する流体の流動抵抗を増大させることがなく、優れたフィルタ性能を発揮する。
本発明の第1実施形態に係るメッシュフィルタ(網状成形品)を示す図であり、図1(a)がメッシュフィルタの正面図、図1(b)がメッシュフィルタの側面図、図1(c)がメッシュフィルタの背面図、図1(d)が図1(a)のA1-A1線に沿って切断して示すメッシュフィルタの断面図、図1(e)が図1(a)のB1部の拡大図、図1(f)が図1(e)のA2-A2線に沿って切断して示す断面図、図1(g)が図1(e)のA3-A3線に沿って切断して示す断面図である。 本発明の第1実施形態に係るメッシュフィルタの射出成形に使用される金型(網状成形品用射出成形金型)を示す図であり、図2(a)が金型の縦断面図、図2(b)が図2(a)のB2部の拡大図、図2(c)が図2(b)のF1方向から見た第1金型の一部平面図である。 第2金型の第3キャビティ部分を形作る部分に形成された一本の突起を示す図であり、マイクロブラスト処理を施す前の突起の形状とマイクロブラスト処理を施した後の突起の形状を対比して示す図であり、図3(a-1)がマイクロブラスト処理を施す前の突起の平面図、図3(a-2)がマイクロブラスト処理を施す前の突起の側面図、図3(b-1)がマイクロブラスト処理を施した後の突起の平面図、図3(b-2)がマイクロブラスト処理を施した後の突起の側面図である。 図4(a-1)及び(a-2)は図3(a-1)及び(a-2)の突起の形状が転写されたメッシュフィルタの開口部の拡大断面図であり、図4(b-1)及び(b-2)は図3(b-1)及び(b-2)の突起が形成された第2金型を使用して形作られたメッシュフィルタの開口部の拡大断面図である。 金型の第1の製造方法を模式的に示す図である。 金型の第2の製造方法を模式的に示す図である。 開口部を形作る突起の第1変形例を示す図であり、図2(b)に対応する図である。 開口部を形作る突起の第2変形例を示す図であり、図2(b)に対応する図である。 図9(a-1)及び(a-2)は、図8に示した第1金型及び第2金型を使用して射出成形されたメッシュフィルタのフィルタ部の開口部を拡大して示す図であり、図9(a-1)が開口部の平面図、図9(a-2)が開口部の側面側断面図である。図9(b-1)及び(b-2)は、図8に示した第1金型及び第2金型の突起が図5又は図6に示した製造方法にしたがって形成されない場合に生じるメッシュフィルタの開口部における不具合を示す図であり、図9(b-1)が開口部の平面図、図9(b-2)が開口部の側面側断面図である。 本発明の第2実施形態に係るメッシュフィルタを示す図であり、図10(a)がメッシュフィルタの正面図、図10(b)がメッシュフィルタの側面図、図10(c)がメッシュフィルタの背面図、図10(d)が図10(a)のA4-A4線に沿って切断して示すメッシュフィルタの断面図、図10(e)が図10(a)のB1,B3部の拡大図、図10(f)が図10(e)のA5-A5線に沿って切断して示す断面図、図10(g)が図10(e)のA6-A6線に沿って切断して示す断面図である。 本発明の第2実施形態に係るメッシュフィルタの射出成形に使用される金型を示す図であり、図2(a)に対応する断面図である。 本発明の第3実施形態に係るメッシュフィルタを示す図であり、図12(a)がメッシュフィルタの正面図、図12(b)がメッシュフィルタの側面図、図12(c)がメッシュフィルタの背面図、図12(d)が図12(a)のA7-A7線に沿って切断して示すメッシュフィルタの断面図、図12(e)が図12(a)のB4部の拡大図、図12(f)が図12(e)のA8-A8線に沿って切断して示す断面図、図12(g)が図12(e)のA9-A9線に沿って切断して示す断面図である。 本発明の第3実施形態に係るメッシュフィルタの射出成形に使用される金型を示す図であり、図13(a)が金型の縦断面図、図13(b)が図13(a)のB5部の拡大図である。 従来のメッシュフィルタの射出成形用の金型(射出成形金型)の一部を簡略化して示す断面図である。 従来の金型における可動型のキャビティを示す図であり、図15(a)がキャビティの平面図、図15(b)が図15(a)のB6部の拡大図(キャビティの一部拡大図)、図15(c)は図15(b)のA10-A10線に沿って切断して示す可動型の部分断面図である。 図15に示した金型によって射出成形されたメッシュフィルタを示す図であり、図16(a)がメッシュフィルタの平面図、図16(b)が図16(a)のB7部の拡大図、図16(c)が図16(b)のA11-A11線に沿って切断して示す断面図である。 マイクロブラスト処理を施した突起の拡大断面図である。 図17の突起形状が転写されたメッシュフィルタの開口部の拡大断面図である。
 以下、本発明の実施形態を図面に基づき詳述する。
 [第1実施形態]
 図1は、本発明の第1実施形態に係るメッシュフィルタ(網状成形品)1を示す図である。なお、図1(a)はメッシュフィルタ1の正面図であり、図1(b)はメッシュフィルタ1の側面図であり、図1(c)はメッシュフィルタ1の背面図であり、図1(d)は図1(a)のA1-A1線に沿って切断して示すメッシュフィルタ1の断面図である。また、図1(e)は図1(a)のB1部の拡大図(メッシュフィルタ1の一部拡大図)であり、図1(f)は図1(e)のA2-A2線に沿って切断して示す断面図(メッシュフィルタ1の一部拡大断面図)であり、図1(g)は図1(e)のA3-A3線に沿って切断して示す断面図(メッシュフィルタ1の一部拡大断面図)である。
 この図1に示すように、メッシュフィルタ1は、円筒状の内筒2(内側の枠体)と、この内筒2と同心の円筒状の外筒3(内側の枠体を取り囲む外側の枠体)と、内筒2の外周面2aと外筒3の内周面3aとを径方向に沿って接続するフィルタ部4と、を一体に有している。そして、このメッシュフィルタ1は、全体が熱可塑性又は熱硬化性の樹脂材料(例えば、ポリアセタール、66ナイロン)によって一体に形成されている。なお、このようなメッシュフィルタ1は、例えば、自動車の燃料噴射装置に接続される燃料供給管に配置されるようになっており、内筒2及び外筒3が燃料供給管路等にシール部材(図示せず)を介して取り付けられ、フィルタ部4を通過する燃料(流体)の漏洩が生じないように使用される。また、本実施形態において、内筒2の外径が10mmであり、外筒3の外径が16mmである。また、内筒2の肉厚が1mmであり、外筒3の肉厚が1mmである。なお、これら内筒2及び外筒3に関する数値は、発明の理解を容易にするための例示であり、使用条件等に応じて適宜変更される。
 内筒2及び外筒3は、中心軸5に沿った長さ寸法L1が同一であり、中心軸5に沿った方向の一端面2b,3bが共に中心軸5に直交する同一の仮想平面上に位置し、中心軸5に沿った方向の他端面2c,3cが共に中心軸5に直交する同一の仮想平面上に位置するようになっている。なお、内筒2と外筒3の関係は、本実施形態に限定されるものではなく、メッシュフィルタ1の取付状態に応じて変形され、内筒2と外筒3の中心軸5に沿った方向の寸法を異なる寸法としたり、また、内筒2の中心軸5に沿った方向の一端面2bと外筒3の中心軸5に沿った方向の一端面3bとがずれて位置するように構成してもよい。また、内筒2の中心軸5に沿った方向の他端面2cは、外筒3の中心軸5に沿った方向の他端面3cとずれて位置するように構成してもよい。
 フィルタ部4は、内筒2の中心軸5に沿った方向に直交する仮想平面をX-Y平面とすると、このX-Y平面に沿って形成されている。そして、フィルタ部4のうちの内筒2と外筒3との接続部分以外の部分は、X軸に直交し且つY軸と並行に等間隔で複数形成された縦リブ6と、この縦リブ6と直交し且つX軸と並行に等間隔で複数形成された横リブ7と、によって四角形状の開口部8が複数形成されている。また、開口部8は、一辺が0.1mmの正四角形になっている。そして、縦リブ6及び横リブ7は、隣り合う開口部8,8間の寸法(図1(e)のX軸に沿った方向の寸法L2、又は図1(e)のY軸に沿った方向の寸法L3)であるリブ幅寸法(L2,L3)が0.1mmで、且つ、内筒2の中心軸5に沿った方向(図1(f)のZ軸方向、又は図1(g)のZ軸方向)の縦リブ6及び横リブ7の厚さ寸法(L4,L5)が0.4mmになっている。また、このフィルタ部4は、図1(a)に示すように、X軸に沿った径方向寸法L6が2~5mmの範囲で形成され、メッシュフィルタ1の取り付け部の構造等に応じて最適の寸法が設定される。また、このフィルタ部4は、内筒2と外筒3との接続部分にも、一辺が0.1mmの正四角形の開口部8が形成されている。なお、このフィルタ部4は、内筒2と外筒3の中心軸5に沿った方向の中央部を径方向に接続するように形成されているが、これに限られず、内筒2及び外筒3の中心軸5に沿った方向の一端寄りの位置にずらして配置したり、内筒2及び外筒3の中心軸5に沿った方向の他端寄りの位置にずらして配置してもよい。
 図2は、本実施形態に係るメッシュフィルタ1の射出成形に使用される金型(網状成形品用射出成形金型)10を示す図である。なお、この図2において、図2(a)が金型10の縦断面図であり、図2(b)が図2(a)のB2部の拡大図(金型10の一部拡大断面図)であり、図2(c)が図2(b)のF1方向から見た第2金型12の一部平面図である。
 図2(a)に示すように、金型10は、第1金型11と第2金型12の型合わせ面側に、メッシュフィルタ1を射出成形するためのキャビティ13が形成されている。キャビティ13は、メッシュフィルタ1の内筒2を形作るための円筒状の第1キャビティ部分14と、メッシュフィルタ1の外筒3を形作るための円筒状の第2キャビティ部分15と、メッシュフィルタ1のフィルタ部4を形作るための中空円板状の第3キャビティ部分16と、を有している。そして、第1金型11は、第1キャビティ部分14の中心軸17に沿った方向の一端面14a側に開口するゲート18が第1キャビティ部分14の周方向に沿って等間隔で複数(6箇所)設けられている(図1(c)のゲート痕18a参照)。また、第2金型12の第3キャビティ部分16を形作る部分は、開口部8を形作るための突起20が等間隔で複数(開口部8と同数)形成されている(図2(b)~(c)参照)。この第2金型12の第3キャビティ部分16を形作る部分に形成された突起20は、平面視した形状(図2(b)のF1方向から見た形状)が正四角形であり、その正四角形の一辺の寸法L7が0.1mmの正四角形の開口部8を形作ることができる寸法に形成されている。また、第2金型12の第3キャビティ部分16を形作る部分に形成された突起20は、その高さ寸法(図2(b)のZ軸方向に沿った寸法L8)が縦リブ6及び横リブ7の厚さ寸法(0.4mm)となるように形成されている。そして、第2金型12の第3キャビティ部分16を形作る部分に形成された突起20は、先端の頂面20aが第1金型11の第3キャビティ部分16を形作る部分の内面に突き当てられる。なお、本実施形態において、キャビティ13に開口するゲート18は、第1キャビティ部分14の周方向に沿って等間隔で6箇所設けられる態様を例示したが、これに限られず、第1キャビティ部分14の外径寸法等に応じて2箇所以上の複数箇所に設けられる。また、複数のゲート18に代えてリングゲートを設けるようにしてもよい。
 このような構造の金型10は、図2(a)に示すように、第1金型11と第2金型12とを型締めした状態で、溶融状態の樹脂材料(例えば、66ナイロン)が複数のゲート18からキャビティ13内に射出された後、キャビティ13内の圧力が所定圧に保持され、金型10が冷却される。その後、第2金型12が第1金型11から-C方向へ離され(型開きされ)、キャビティ13内のメッシュフィルタ1が図示しないエジェクタピンでキャビティ13内から押し出され、射出成形品であるメッシュフィルタ1が金型10から取り出される(図1参照)。その後、この金型10は、型開きの状態にある第2金型12が+C方向(第1金型11に近づく方向)に移動させられ、第2金型12が第1金型11に押し付けられ、第1金型11と第2金型12とが型締めされ、射出成形の1サイクルが完了する。
 図3は、第2金型12の第3キャビティ部分16を形作る部分に形成された一本の突起20を示す図であり、マイクロブラスト処理を施す前の突起20の形状とマイクロブラスト処理を施した後の突起20の形状を対比して示す図である。なお、図3(a-1)及び(a-2)は、マイクロブラスト処理を施す前の突起20の形状を示す図である。また、図3(b-1)及び(b-2)は、マイクロブラスト処理を施した後の突起20の形状を示す図である。
 図3(a-1)及び(a-2)に示すように、突起20は、平面形状が正四角形であり、頂面20aの一辺の長さL7が0.1mmで、突起高さL8が0.4mmである。このような突起20が多数形成された第2金型12の第3キャビティ部分16は、射出成形品としてのメッシュフィルタ1の離型抵抗が大きくなり、エジェクトピンで押し出そうとすると、メッシュフィルタ1をエジェクトピンで傷付けるという不具合を生じる。そこで、メッシュフィルタ1と突起20との間に作用する離型抵抗を低減するため、突起20にマイクロブラスト処理を施すと、図3(b-1)及び(b-2)に示すように、突起20の先端側が削り取られ、突起20の先端側(先端からZ軸方向に沿った長さ寸法L9の範囲)の太さが先端に向かうに従って漸減する(先端に向かうに従って細くなる)。そして、突起20は、マイクロブラスト処理によって削り取られる量が先端において最大の値(ΔL7)になる。なお、ΔL7の寸法及びL9の寸法は、マイクロブラスト処理の条件(粒状体の噴射圧力等)によって変化するが、例えば、突起20の一辺の長さがL7が0.1mmである場合に、突起20の先端で2・ΔL7=0.02mm程度削り取られ、突起高さ方向でL9=0.01mm程度削り取られる。
 図4(b-1)及び(b-2)は、図3(b-1)及び(b-2)の突起20が形成された第2金型12を使用して形成されたメッシュフィルタ1の開口部8の拡大断面図である。この図4(b-1)及び(b-2)に示すように、メッシュフィルタ1の開口部8は、突起20の形状が転写された四角穴であり、突起20の先端側が転写された部分(図4(b-2)のL9で示す範囲)が他部よりも狭くなっている。このような開口部8が形成されたメッシュフィルタ1は、図3(a-1)及び(a-2)の突起20の形状が転写された開口部8のメッシュフィルタ1と比較し(図4(a-1)及び(a-2)参照)、フィルタ部4の開口率が低下し、フィルタ部4を通過する流体に作用する流動抵抗が大きくなり、フィルタ性能が低下してしまう。
  (金型の第1の製造方法)
 そこで、本願出願人は、図5に示すような金型(網状成形品用射出成形金型)10及びその製造方法を案出した。図5(a)に示すように、第2金型12の突起20は、マイクロブラスト処理を施す前の状態において、本来の突起高さ寸法L8にマイクロブラスト処理によって細くなる範囲の長さ寸法L9(図3(b-2)及び図4(b-2)に示す先端からZ軸方向に沿った長さ寸法L9)を加えた長さ寸法(L8+L9)と同じか又は大きくなるような突起高さLs(Ls≧(L8+L9)に形成される。なお、この第2金型12の突起20は、ワイヤ放電加工によって形成される。
 次に、図5(b)に示すように、第2金型12は、第3キャビティ部分16を形作る部分の突起20にマイクロブラスト処理が施される。これにより、第2金型12の突起20は、射出成形後のメッシュフィルタ1の離型が容易になるが、先端側(先端面からZ方向に沿った長さ寸法L9の範囲)がマイクロブラスト処理によって細くなる。
 次に、図5(c)に示すように、第2金型12は、第3キャビティ部分16を構成する部分に溶融状態の樹脂材料(例えば、ポリアセタール)が流し込まれ、全ての突起20の周囲が冷却固化した樹脂材料(突起固定用の樹脂材料)で固められる。
 次に、図5(d)に示すように、第2金型12は、突起高さ寸法がLsからL8になるまで、突起20の先端側及び樹脂材料21(例えば、ポリアセタール)が研削加工によって削り取られる。この際、突起20は、周囲を樹脂材料21で固められているため、研削抵抗によって折れ曲がり等の変形を生じることがない。なお、突起20は、周囲が樹脂材料21で固められていない場合、研削抵抗によって折れ曲がり、メッシュフィルタ1のフィルタ部4に所望の開口部8を形成することができない。
 次に、図5(e)に示すように、第2金型12は、突起20の周囲に残った樹脂材料21(例えば、ポリアセタール)が溶剤(例えば、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(略称:HFIP))によって溶解除去される。これによって、第2金型12は、突起20の表面がマイクロブラスト処理され、突起20の離型性が良くなると共に、突起20にマイクロブラスト処理に起因する変形(マイクロブラスト処理で削り取られて細くなった部分)が残らず、フィルタ部4に形状精度の良い開口部8を形作ることが可能になる(図1(e)~(g)、図4(a-1)及び(a-2)参照)。
  (金型の第2の製造方法)
 図6は、図5に示した金型(網状成形品用射出成形金型)10及びその製造方法の変形例を示す図である。この変形例に係る金型10及びその製造方法は、図6(a)に示すように、第2金型12の突起20は、マイクロブラスト処理を施す前の状態において、図5(a)に示した製造工程と同様に、本来の突起高さ寸法L8にマイクロブラスト処理によって細くなる範囲の長さ寸法L9(図3(b-2)及び図4(b-2)に示す先端からZ軸方向に沿った長さ寸法L9)を加えた長さ寸法(L8+L9)と同じか又は大きくなるような突起高さLs(Ls≧(L8+L9))に形成される。
 次に、図6(b)に示すように、第2金型12の突起20は、図5(b)に示した製造工程と同様に、マイクロブラスト処理が施される。
 次に、図6(c)に示すように、第2金型12に研削治具22が取り付けられる。これにより、第2金型12の突起20は、研削治具22の突起係合穴23に収容され、研削加工によって削り取られる部分が研削治具22の表面から外方へ出っ張っている。ここで、研削加工によって削り取られる部分は、少なくともマイクロブラスト処理によって細くなった部分であって、突起20の先端からZ軸方向に沿って(Ls-L8)の長さ範囲である。
 次に、図6(d)に示すように、第2金型12の突起20は、研削治具22の表面から外方へ出っ張っている部分が研削加工によって削り取られる。その結果、第2金型12の突起20は、突起高さ寸法がLsからL8になる。この研削加工時において、第2金型12の突起20は、研削治具22の突起係合穴23に収容されており、突起係合穴23の内壁面によって変形が制限されるため、研削加工時における研削抵抗によって折れ曲がり等の変形を生じることがない。
 次に、図6(e)に示すように、第2金型12に取り付けられた研削治具22が取り外される。これによって、第2金型12は、図5(e)に示した第2金型12と同様に、突起20の表面がマイクロブラスト処理され、突起20の離型性が良くなると共に、突起20にマイクロブラスト処理に起因する変形(マイクロブラスト処理で削り取られて細くなった部分)が残らず、フィルタ部4に形状精度の良い開口部8を形作ることが可能になる(図1(e)~(g)、図4(a-1)及び(a-2)参照)。
  (突起の第1変形例)
 図7は、開口部8を形作るための突起20の第1変形例を示す図である。この図7に示すように、開口部8を形作るための突起20は、第2金型12の第3キャビティ部分16を形作る部分に形成せず、第1金型11の第3キャビティ部分16を形作る部分にのみ形成するようしてもよい。そして、第1金型11の第3キャビティ部分16を形作る部分に形成された突起20は、頂面20aが第2金型12の第3キャビティ部分16を形作る部分の内面に突き当てられる。このような第1金型11の突起20は、図5又は図6に示した製造方法にしたがって形成される。
  (突起の第2変形例)
 図8は、開口部8を形作るための突起20の第2変形例を示す図である。この図8に示すように、開口部8を形作るための突起20は、第1金型11の第3キャビティ部分16を形作る部分と、第2金型12の第3キャビティ部分16を形作る部分とに分けて形成するようにしてもよい。この第2変形例において、第1金型11と第2金型12の各々の突起20A,20Bの高さ寸法は、上記実施形態及び上記第1変形例における突起20の高さ寸法の1/2の高さ寸法(L8/2)に形成される。そして、第1金型11と第2金型12の型締め時において、突起20Aの頂面20aと突起20Bの頂面20aが突き合わされる。このような第1金型11の突起20Aと第2金型12の突起20Bは、図5又は図6に示した製造方法にしたがって形成される。
 図9(a-1)及び(a-2)は、図8に示した第1金型11及び第2金型12を使用して射出成形されたメッシュフィルタ1のフィルタ部4の開口部8を拡大して示す図である。この図9(a-1)及び(a-2)に示すように、メッシュフィルタ1のフィルタ部4の開口部8には、マイクロブラスト処理に起因する変形部分(突起20A及び突起20Bの先端がマイクロブラスト処理で細くなることに起因する変形部分)が生じない。その結果、第1金型11の突起20A及び第2金型12の突起20Bは、射出成形後のメッシュフィルタ1との離型性が良く、また、開口部8を精度良く形作ることができ、フィルタ性能に優れたメッシュフィルタ1を製造することが可能となる。
 一方、突起20A及び突起20Bが図5又は図6に示した製造方法にしたがって形成されず、高さ寸法が(L8/2)の突起20A及び突起20Bにマイクロブラスト処理を施した場合には、離型性能が向上するものの、突起20A及び突起20Bの先端が細くなり、射出成形後のメッシュフィルタ1の開口部8がZ軸に沿った方向の中央部で狭くなってしまい、開口部8の形状精度が低下し、フィルタ部4の開口率が低下して、開口部8を通過する流体の流動抵抗が大きくなり、フィルタ性能が低下することになる(図9(b-1)及び(b-2)参照)。
 以上のように、本実施形態に係る金型(網状成形品用射出成形金型)10の製造方法によれば、メッシュフィルタ1のフィルタ部4の開口部8を形作る第2金型12の突起20は、マイクロブラスト処理によって離型抵抗が軽減され、且つ、マイクロブラスト処理に起因する形状の崩れを生じることがなく、形状が高精度に形作られる。その結果、本実施形態に係る金型10は、メッシュフィルタ1のフィルタ部4の開口部8を高精度に形成でき、フィルタ部4の開口率を低下させず、流体の流動抵抗を増大させないメッシュフィルタ1を射出成形することが可能になる。また、本実施形態に係る金型10を使用して射出成形されたメッシュフィルタ1は、射出成形後に金型10から容易に離型され、離型時の離型抵抗に起因する損傷等の不具合を発生することがない。また、本実施形態に係る金型10を使用して射出成形されたメッシュフィルタ1は、フィルタ部4の開口部8が高精度に形作られ、フィルタ部4の開口率が低下しないため、フィルタ部4の開口部8を通過する流体の流動抵抗を増大させることがなく、優れたフィルタ性能を発揮する。
 なお、本実施形態に係る金型10の製造方法によれば、突起20の寸法L7(突起20の高さ方向に直交する断面の一辺の長さL7)が0.07~0.1mmで、突起20の高さ方向の寸法L8(Z軸方向に沿った寸法L8)が0.1~0.4mmで、隣合う突起20,20間のピッチが1.7・L7~2.0・L7mmの範囲において、射出成形後のメッシュフィルタ1を金型10から容易に離型でき、上記本実施形態に係る効果を奏し得ることが実験により確認されている。
 [第2実施形態]
 図10は、本発明の第2実施形態に係るメッシュフィルタ1を示す図である。この図10に示す本実施形態に係るメッシュフィルタ1は、第1実施形態に係るメッシュフィルタ1と同一部分に同一符号を付し、第1実施形態に係るメッシュフィルタ1の説明と重複する説明を省略する。
 本実施形態に係るメッシュフィルタ1は、内筒2の径方向内方側に、内筒2の中心軸5から内筒2の内周面2dに至る中心側フィルタ部24が形成されている。この中心側フィルタ部24は、上記第1実施形態に係るメッシュフィルタ1のフィルタ部4と同様に形成されている(図1(e)及び図10(e)参照)。なお、本実施形態に係るメッシュフィルタ1は、中心側フィルタ部24で濾し取るべき異物の粒径とフィルタ部4で濾し取るべき異物の粒径とが異なる場合、その濾し取るべき異物の粒径に応じて、中心側フィルタ部24の開口部8とフィルタ部4の開口部8の開口面積を変えてもよい。
 図11は、本実施形態に係るメッシュフィルタ1の射出成形に使用される金型10を示す図であり、図2(a)に対応する断面図である。なお、図11に示す金型10は、図2の金型10と同一部分には同一符号を付し、図2の金型10の説明と重複する説明を省略する。
 この図11に示す金型10は、内筒2を形作るための第1キャビティ部分14の径方向内方側に、中心側フィルタ部24を形作るための第4キャビティ部分25が形成されている。
 このような本実施形態に係る金型10によれば、第1キャビティ部分14に開口するゲート18から溶融状態の熱可塑性樹脂が射出されると、溶融状態の熱可塑性樹脂が第1キャビティ部分14から第3キャビティ部分16と第4キャビティ部分25へ向けて流動し、全体(内筒2、外筒3、フィルタ部4、及び中心側フィルタ部21)が一体に且つ高精度に射出成形される。
 本実施形態に係る金型10は、フィルタ部4及び中心側フィルタ部24の開口部8を形作る突起20が図5又は図6に係る金型10の製造方法によって形成される。その結果、本実施形態に係る金型10を使用して射出成形されたメッシュフィルタ1は、射出成形後に金型10から容易に離型され、離型時の離型抵抗に起因する損傷等の不具合を発生することがない。また、本実施形態に係る金型10を使用して射出成形されたメッシュフィルタ1は、フィルタ部4及び中心側フィルタ部24の開口部8が高精度に形作られ、フィルタ部4及び中心側フィルタ部24の開口率が低下しないため、フィルタ部4及び中心側フィルタ部24の開口部8を通過する流体の流動抵抗を増大させることがなく、フィルタ部4及び中心側フィルタ部24が優れたフィルタ性能を発揮する。
 [第3実施形態]
 図12は、本発明の第3実施形態に係るメッシュフィルタ1を示す図である。この図12に示すメッシュフィルタ1は、円板状のゲート接続部26と、このゲート接続部26の中心軸27と同心で且つゲート接続部26を取り囲むように位置する円筒状の外筒(外側の枠体)28と、ゲート接続部26の外周面26aと外筒28の内周面28aとを径方向に沿って接続するフィルタ部30と、を一体に有している。そして、このメッシュフィルタ1は、第1及び第2実施形態に係るメッシュフィルタ1と同様の樹脂材料によって全体が形作られている。
 図12に示すメッシュフィルタ1において、ゲート接続部26は、射出成形用のゲート31が開口する部分であり、外形寸法がゲート31の開口部の内径寸法以上の大きさに設定されている(図12(c)に示すゲート痕31a及び図13参照)。また、図12に示すメッシュフィルタ1において、フィルタ部30は、第1及び第2実施形態に係るメッシュフィルタ1のフィルタ部4と同様の形状になっており、複数の開口部8が形成されている(図1(e)~(g)及び図10(e)~(g)参照)。また、図12に示すメッシュフィルタ1において、外筒28は、メッシュフィルタ1が取り付けられる相手部材(油圧制御装置の制御用オイルの供給管路等)の取付部構造に合致した形状及び大きさに形成される。
 図13は、本実施形態に係るメッシュフィルタ1の射出成形に使用される金型10を示す図であり、図2(a)に対応する断面図である。この図13に示す金型10は、第1金型11と第2金型12の型合わせ面側にキャビティ13が形成されるようになっている。この金型10のキャビティ13は、ゲート接続部26を形作るための第1キャビティ部分32と、外筒28を形作るための第2キャビティ部分33と、フィルタ部30を形作るための第3キャビティ部分34とを有している。そして、第2金型12の第3キャビティ部分34を形作る部分には、フィルタ部30の開口部8を形成するための突起20が複数形成されている。この第2金型12に形成された複数の突起20は、図5又は図6に示した金型10の製造方法によって形成されている。このような第2金型12に形成された複数の突起20は、先端の頂面20aが第1金型11の第3キャビティ部分34を形作る部分の内面に突き当てられる。
 このような本実施形態に係る金型10によれば、第1キャビティ部分32に開口するゲート31から溶融状態の熱可塑性樹脂が射出されると、溶融樹脂が第1キャビティ部分32から第3キャビティ部分34に流動し、第3キャビティ部分34から第2キャビティ部分33へ向けて流動し、全体が一体に且つ高精度に射出成形される。
 本実施形態に係る金型10は、フィルタ部30の開口部8を形作る突起20が図5又は図6に係る金型10の製造方法によって形成される。その結果、本実施形態に係る金型10を使用して射出成形されたメッシュフィルタ1は、射出成形後に金型10から容易に離型され、離型時の離型抵抗に起因する損傷等の不具合を発生することがない。また、本実施形態に係る金型10を使用して射出成形されたメッシュフィルタ1は、フィルタ部30の開口部8が高精度に形作られ、フィルタ部30の開口率が低下しないため、フィルタ部30の開口部8を通過する流体の流動抵抗を増大させることがなく、フィルタ部30が優れたフィルタ性能を発揮する。
 [その他の実施形態]
 第1及び第2実施形態に係るメッシュフィルタ1は、内筒2及び外筒3の形状(図1(a)及び図10(a)に示した形状)を円形状に形成する場合に限られず、メッシュフィルタ1が取り付けられる相手部材(燃料管路等)に応じた形状(四角形、六角形等)にしてもよく、フィルタ部4の形状(図1(a)及び図10(a)に示した形状)を内筒2及び外筒3の形状に応じて変形してもよい。また、第3実施形態に係るメッシュフィルタ1は、ゲート接続部26及び外筒28の形状(図12(a)に示した形状)を円形状に形成する場合に限られず、メッシュフィルタ1が取り付けられる相手部材(燃料管路等)に応じた形状(四角形、六角形等)にしてもよく、フィルタ部30の形状(図1(a)及び図10(a)に示した形状)をゲート接続部26及び外筒28の形状に応じて変形してもよい。
 また、本発明に係るメッシュフィルタ1は、自動車の燃料噴射装置に接続される燃料供給管、自動車の潤滑装置等のオイル管路、給水管の管路、送風管の管路等に設置し、流体(水等の液体や空気等の気体)に混ざった異物を取り除くために広範囲の技術分野で使用することができる。
 1……メッシュフィルタ(網状成形品)、8……開口部、10……金型(網状成形品用射出成形金型、11……第1金型、12……第2金型、13……キャビティ、18,31……ゲート、20……突起

Claims (9)

  1.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品を成形する網状成形品用射出成形金型において、
     前記複数の突起は、角棒形状であり、表面にマイクロブラスト処理が施されると共に、前記マイクロブラスト処理によって細くなった先端側が取り除かれることにより、前記複数の開口部を形作るのに適した長さに形成された、
     ことを特徴とする網状成形品用射出成形金型。
  2.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品を成形する網状成形品用射出成形金型において、
     前記複数の突起は、角棒形状であり、前記複数の開口部を形作る長さよりも長く形成された状態で前記マイクロブラスト処理が施された後、前記マイクロブラスト処理が施された各突起の周囲が突起固定用の樹脂材料で隙間無く埋められ、前記マイクロブラスト処理によって細くなった先端側が前記突起固定用の樹脂材料と共に研削加工によって削り取られ、前記複数の開口部を形作るのに適した長さに形成された後、前記突起固定用の樹脂材料が溶剤によって溶解除去されることにより形成された、
     ことを特徴とする網状成形品用射出成形金型。
  3.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品を成形する網状成形品用射出成形金型において、
     前記複数の突起は、角棒形状であり、前記複数の開口部を形作る長さよりも長く形成された状態で前記マイクロブラスト処理が施された後、前記マイクロブラスト処理が施された各突起が研削治具に設けられた複数の突起係合穴に別々に係合されることにより、前記マイクロブラスト処理によって細くなった先端側が前記研削治具の表面から突出させられ、前記研削治具の表面から突出した前記マイクロブラスト処理によって細くなった先端側が研削加工によって削り取られ、前記複数の開口部を形作るのに適した長さに形成された後、前記研削治具から分離されることにより形成された、
     ことを特徴とする網状成形品用射出成形金型。
  4.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品を成形する網状成形品用射出成形金型の製造方法において、
     前記複数の突起は、角棒形状であり、表面にマイクロブラスト処理が施されると共に、前記マイクロブラスト処理によって細くなった先端側が取り除かれることにより、前記複数の開口部を形作るのに適した長さに形成される、
     ことを特徴とする網状成形品用射出成形金型の製造方法。
  5.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品を成形する網状成形品用射出成形金型の製造方法において、
     前記複数の突起は、角棒形状であり、前記複数の開口部を形作る長さよりも長く形成された後、前記マイクロブラスト処理が施され、前記マイクロブラスト処理が施された各突起の周囲が突起固定用の樹脂材料で隙間無く埋められ、前記マイクロブラスト処理によって細くなった先端側が前記突起固定用の樹脂材料と共に研削加工によって削り取られ、前記複数の開口部を形作るのに適した長さに形成された後、前記突起固定用の樹脂材料が溶剤によって溶解除去されることにより形成される、
     ことを特徴とする網状成形品用射出成形金型の製造方法。
  6.   第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品を成形する網状成形品用射出成形金型の製造方法において、
     前記複数の突起は、角棒形状であり、前記複数の開口部を形作る長さよりも長く形成された後、前記マイクロブラスト処理が施され、前記マイクロブラスト処理が施された各突起が研削治具に設けられた複数の突起係合穴に別々に係合されることにより、前記マイクロブラスト処理によって細くなった先端側が前記研削治具の表面から突出させられ、前記研削治具の表面から突出させられた前記マイクロブラスト処理によって細くなった先端側が研削加工によって削り取られ、前記複数の開口部を形作るのに適した長さに形成された後、前記研削治具から分離されることにより形成される、
     ことを特徴とする網状成形品用射出成形金型の製造方法。
  7.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品において、
     前記複数の突起は、角棒形状であり、表面にマイクロブラスト処理が施されると共に、前記マイクロブラスト処理によって細くなった先端側が取り除かれることにより、前記複数の開口部を形作るのに適した射出成形用の長さに形成され、
     前記開口部は、前記突起が転写された形状に形作られた、
     ことを特徴とする網状成形品。
  8.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品において、
     前記複数の突起は、角棒形状であり、前記複数の開口部を形作る長さよりも長く形成された後、前記マイクロブラスト処理が施され、前記マイクロブラスト処理が施された各突起の周囲が突起固定用の樹脂材料で隙間無く埋められ、前記マイクロブラスト処理によって細くなった先端側が前記突起固定用の樹脂材料と共に研削加工によって削り取られ、前記複数の開口部を形作るのに適した長さに形成された後、前記突起固定用の樹脂材料が溶剤によって溶解除去されることにより形成され、
     前記開口部は、前記突起が転写された形状に形作られた、
     ことを特徴とする網状成形品。
  9.  第1金型に対して第2金型を押し付け、前記第1金型と前記第2金型の型合わせ面側にキャビティを形作り、前記第1金型と前記第2金型のいずれか一方又は両方に前記キャビティ内に突出する複数の突起を形成し、前記複数の突起が前記第1金型と前記第2金型のいずれか一方に形成された場合には前記突起の頂面を前記第1金型と前記第2金型のいずれか他方に突き当て、前記複数の突起が前記第1金型と前記第2金型の両方にそれぞれ形成された場合には前記突起の前記頂面同士を突き当てて、前記第1金型に形成したゲートから前記キャビティ内に溶融樹脂を射出することにより、前記キャビティ内の前記複数の突起が位置する部分に溶融樹脂を充填させないようにして、流体の通過を可能にする複数の開口部が前記複数の突起と同数形成された網状成形品において、
      前記複数の突起は、角棒形状であり、前記複数の開口部を形作る長さよりも長く形成された後、前記マイクロブラスト処理が施され、前記マイクロブラスト処理が施された各突起が研削治具に設けられた複数の突起係合穴に別々に係合されることにより、前記マイクロブラスト処理によって細くなった先端側が前記研削治具の表面から突出させられ、前記研削治具の表面から突出させられた前記マイクロブラスト処理によって細くなった先端側が研削加工によって削り取られ、前記複数の開口部を形作るのに適した長さに形成された後、前記研削治具から分離されることにより形成され、
     前記開口部は、前記突起が転写された形状に形作られた、
     ことを特徴とする網状成形品。
PCT/JP2016/057895 2015-03-25 2016-03-14 網状成形品用射出成形金型、網状成形品用射出成形金型の製造方法、及び網状成形品 WO2016152596A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061902 2015-03-25
JP2015061902A JP2016179634A (ja) 2015-03-25 2015-03-25 網状成形品用射出成形金型、網状成形品用射出成形金型の製造方法、及び網状成形品

Publications (1)

Publication Number Publication Date
WO2016152596A1 true WO2016152596A1 (ja) 2016-09-29

Family

ID=56978424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057895 WO2016152596A1 (ja) 2015-03-25 2016-03-14 網状成形品用射出成形金型、網状成形品用射出成形金型の製造方法、及び網状成形品

Country Status (2)

Country Link
JP (1) JP2016179634A (ja)
WO (1) WO2016152596A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203520A (ja) * 2015-04-24 2016-12-08 株式会社エンプラス メッシュフィルタ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947539B2 (ja) * 2017-06-06 2021-10-13 日本スピンドル製造株式会社 混練装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091690A (ja) * 1995-06-20 1997-01-07 Nissei Plastics Ind Co 合成樹脂による網状製品の成形方法及び成形金型
JPH09117939A (ja) * 1995-10-23 1997-05-06 Daizo Kotaki プラスチックフィルターの金型装置及びその成形品
JP2006301147A (ja) * 2005-04-19 2006-11-02 Mitsubishi Engineering Plastics Corp 光ビーコンフィルター用樹脂組成物
JP2007196169A (ja) * 2006-01-27 2007-08-09 Max Co Ltd 水切り網構造及び厨芥物処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091690A (ja) * 1995-06-20 1997-01-07 Nissei Plastics Ind Co 合成樹脂による網状製品の成形方法及び成形金型
JPH09117939A (ja) * 1995-10-23 1997-05-06 Daizo Kotaki プラスチックフィルターの金型装置及びその成形品
JP2006301147A (ja) * 2005-04-19 2006-11-02 Mitsubishi Engineering Plastics Corp 光ビーコンフィルター用樹脂組成物
JP2007196169A (ja) * 2006-01-27 2007-08-09 Max Co Ltd 水切り網構造及び厨芥物処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203520A (ja) * 2015-04-24 2016-12-08 株式会社エンプラス メッシュフィルタ

Also Published As

Publication number Publication date
JP2016179634A (ja) 2016-10-13

Similar Documents

Publication Publication Date Title
WO2016158817A1 (ja) メッシュフィルタ
JP6254794B2 (ja) メッシュフィルタ
EP3081362B1 (en) Mesh filter
WO2016152596A1 (ja) 網状成形品用射出成形金型、網状成形品用射出成形金型の製造方法、及び網状成形品
US10112129B2 (en) Mesh filter
WO2017195774A1 (ja) メッシュフィルタ
WO2016047205A1 (ja) 筒状メッシュフィルタ
JP6594703B2 (ja) メッシュフィルタの射出成形方法、射出成形金型、及びメッシュフィルタ
JP6453667B2 (ja) メッシュフィルタの射出成形金型及びメッシュフィルタの射出成形方法
JP6522407B2 (ja) メッシュフィルタ及びその製造方法
JP2017042984A5 (ja)
JP2004255791A (ja) フィルタ製造用金型装置、フィルタ製造用金型装置の製造方法およびフィルタ
JP2015171776A (ja) 樹脂成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768499

Country of ref document: EP

Kind code of ref document: A1