WO2016152363A1 - Co2濃度低減装置 - Google Patents

Co2濃度低減装置 Download PDF

Info

Publication number
WO2016152363A1
WO2016152363A1 PCT/JP2016/055383 JP2016055383W WO2016152363A1 WO 2016152363 A1 WO2016152363 A1 WO 2016152363A1 JP 2016055383 W JP2016055383 W JP 2016055383W WO 2016152363 A1 WO2016152363 A1 WO 2016152363A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
heating
concentration
container
induction heating
Prior art date
Application number
PCT/JP2016/055383
Other languages
English (en)
French (fr)
Inventor
晃平 吉川
金枝 雅人
中村 英博
敏明 白坂
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to EP16768266.5A priority Critical patent/EP3287185A4/en
Priority to CA2973462A priority patent/CA2973462C/en
Priority to JP2017507621A priority patent/JP6399208B2/ja
Priority to CN201680007630.9A priority patent/CN107206307A/zh
Priority to US15/546,814 priority patent/US10456731B2/en
Publication of WO2016152363A1 publication Critical patent/WO2016152363A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • B01D53/12Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents according to the "fluidised technique"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40096Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by using electrical resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40098Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating with other heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a CO 2 concentration reducing device.
  • the indoor CO 2 concentration (carbon dioxide concentration) is likely to increase due to human exhalation.
  • CO 2 concentration is known to induce sleepiness when exceeding 1000 ppm. Therefore, as the CO 2 concentration does not exceed the 1000ppm in buildings, and adjust the CO 2 concentration by ventilation with outside air.
  • a blower such as a blower, which requires ventilation power.
  • the temperature and humidity of the air taken in from the outside are not adjusted, and it is necessary to perform cooling in the summer and heating in the winter. For this reason, an increase in indoor CO 2 concentration is a major cause of an increase in power consumption due to air conditioning such as ventilation power and air conditioning.
  • the amount of CO 2 reduction due to ventilation is calculated by the following calculation formula.
  • Patent Document 1 describes a CO 2 removal apparatus using a rotor coated with H 2 O and a CO 2 adsorbent. This apparatus has a configuration in which CO 2 is adsorbed at room temperature, and then CO 2 is desorbed by circulating a heating gas and heating the CO 2 adsorbent.
  • the carbon dioxide capturing material described in Patent Document 2 was developed by the present inventors and includes a porous body containing cerium oxide having a pore volume distribution with a peak pore diameter of 1.5 to 10 nm, It captures and separates carbon dioxide from gas containing carbon.
  • the porous body preferably contains Sm, La, and the like.
  • Patent Document 3 a part of a filter composed of an adsorbent that adsorbs organic gas such as moisture and odor in the air is composed of a material capable of electromagnetic induction heating, and a magnetic field such as an electromagnetic coil is located near the filter.
  • a technique is disclosed in which a generator is installed, the filter is self-heated by a magnetic field, and moisture and organic gas are desorbed from the adsorbent.
  • CO 2 can be selectively removed using a method other than ventilation, the ventilation amount can be reduced, and as a result, ventilation power and air conditioning power may be reduced.
  • Patent Document 3 The technique described in Patent Document 3 is effective in that electromagnetic induction heating is used, but the object of desorption is an organic gas such as moisture or odor, and is not applied to desorption of carbon dioxide.
  • An object of the present invention is to reduce the amount of ventilation when removing CO 2 accumulated in a room, and to reduce the power required for ventilation and the power for air conditioning.
  • CO 2 concentration reduction apparatus of the present invention is an apparatus for separating off CO 2 using CO 2 adsorbent from a gas containing CO 2, and adsorbent vessel filled with CO 2 adsorbent, CO And a heating unit for heating the adsorbent by induction heating or dielectric heating.
  • CO 2 concentration reduction apparatus of the present invention is a graph comparing the power consumption in the conventional ventilation (Comparative Example 1) CO 2.
  • Examples of the CO 2 concentration reducing device for heating the air heated the CO 2 adsorbent is a schematic configuration diagram showing a. It is a graph which compares and shows the required air quantity in Example 1 and Comparative Examples 1 and 2.
  • FIG. 6A It is a figure which shows typically the condition which advanced from the initial stage of FIG. 6A. It is a figure which shows typically the condition which further advanced from the step of FIG. 6B. It is a schematic perspective view showing an example of a configuration with attached CO 2 adsorbent linear magnetic body. It is a schematic perspective view showing an example of a configuration with attached CO 2 adsorbent spiral magnetic material. It is a schematic perspective view showing an example of a configuration with attached CO 2 adsorbent to the magnetic ring.
  • the present invention relates to an apparatus for reducing ventilation power and air-conditioning power by reducing the amount of ventilation in buildings, vehicles, and the like, and more particularly to an apparatus for reducing indoor CO 2 concentration with power saving.
  • the present inventor has intensively studied the above problems, an apparatus for separating and removing CO 2 with solid CO 2 adsorbent material from gas containing CO 2, the CO 2 adsorbent is cerium oxide
  • the CO 2 concentration can be reduced. It has been found that the power consumption required can be reduced.
  • the composite oxide of cerium refers to a material obtained by adding Na, Mg, Y, La, Sm or the like as a second component to cerium oxide, and has excellent adsorption characteristics as described in Patent Document 2. It is what you have.
  • the heating medium is an alternating magnetic field (alternating magnetic field) or an alternating electric field (alternating electric field)
  • alternating magnetic field alternating magnetic field
  • alternating electric field alternating electric field
  • induction heating or dielectric heating is not limited by the heat transfer rate.
  • the entire adsorbent must be heated by heat transfer.
  • the heat transfer rate is proportional to the temperature gradient.
  • the temperature gradient becomes gentle, the heat transfer rate becomes slow, and the necessary amount of heat increases, so the heating rate becomes slow. Since induction heating and dielectric heating do not depend on a temperature gradient, it is easy to cope with a case where the adsorbent capacity is increased.
  • any of induction heating and dielectric heating may be used for heating the CO 2 adsorbent.
  • a method of generating an alternating magnetic field as a heating device for example, a method of circulating an alternating current through a coiled conductor.
  • an eddy current may be generated in a magnetic field
  • examples of the heating element material used include conductors such as metals.
  • the magnetic material include iron, chromium, cobalt, alloys and compounds thereof.
  • the shape of the induction heating element may be any shape, but various shapes such as a columnar shape, a plate shape, a powder shape, a honeycomb shape, and a net shape may be mentioned.
  • a columnar shape for example, a configuration in which a columnar induction heating element is installed in an adsorbent container and then filled with a granular CO 2 adsorbent can be considered.
  • the induction heating element does not need to be in contact with the container.
  • the induction heating element needs to penetrate outside the container to introduce the fluid into the heat transfer tube. There is no.
  • a method is conceivable in which a powdery CO 2 adsorbent and a powdery induction heating element are mixed in advance and then molded into a granular shape and used. In this method, since the formed particles themselves become heating elements, it is easy to perform spatially uniform heating.
  • a method of supporting a mixed powder of a CO 2 adsorbent and an induction heating element on a honeycomb or the like a method of supporting a powdery induction heating element on a honeycomb-shaped CO 2 adsorbent, a powdered CO 2 adsorption material It is conceivable to carry the above on a honeycomb-shaped induction heating element.
  • a binder may be utilized to facilitate mixing and contacting the induction heating element and the CO 2 adsorbent.
  • the binder may be used either organic or inorganic, but towards the inorganic binder is preferred because heating the CO 2 adsorbent for CO 2 desorption, boehmite examples, alumina sol, silicon such as silica sol A compound or an aluminum compound is mentioned.
  • the CO 2 adsorbent itself may be used as a dielectric.
  • the adsorbed gas contains moisture
  • the moisture adsorbed on the CO 2 adsorbent or the condensed moisture acts as a dielectric, and the energy is easily used for heating the moisture. Therefore, when the amount of water is large, the heating rate increases, and the spatial distribution of the CO 2 adsorbent temperature is biased. Since the heating rate of the CO 2 adsorbent after the water has been desorbed or vaporized is reduced, this can be used to heat the CO 2 adsorbent to the desorption temperature or vaporization temperature of water under the conditions. It can be used as a method.
  • a heating device for induction heating or dielectric heating may be installed inside the adsorbent container or outside the container.
  • a heating device for induction heating is installed outside the container, for example, a method in which the adsorbent container is formed of a non-magnetic material or a non-metal, and the inside of the container is filled with the CO 2 adsorbent and the induction heating element can be considered.
  • an AC current may be passed through a coiled conductor, and a method of installing the conductor outside the adsorbent container is conceivable.
  • This configuration is characterized in that the configuration inside the adsorbent container is simple and the filling of the CO 2 adsorbent and the induction heating element is simple.
  • the container itself may be an induction heating element such as a magnetic body, and the adsorbent container itself may be heated to transfer heat to the CO 2 adsorbent.
  • the heating device for induction heating or dielectric heating may be movable.
  • the adsorbent container is formed of a non-magnetic material or a non-metal, the inside of the container is filled with a CO 2 adsorbent and an induction heating element
  • a conducting wire is installed outside the adsorbent container and an alternating current flows through the conducting wire.
  • the induction heating element when the induction heating element is locally heated and the material is expected to sinter and deteriorate due to a high temperature, the position of the coil is changed before the temperature rises.
  • the heating position of the adsorbent can be changed, and deterioration can be suppressed.
  • the adsorbent container is formed of a non-magnetic material or a non-metal, the container is filled with a CO 2 adsorbent and an induction heating element, and a movable coiled conductor is installed outside the adsorbent container.
  • a blower for circulating room air through the CO 2 adsorbent it is possible to install a blower for circulating room air through the CO 2 adsorbent.
  • the adsorbent A section. The temperature T.
  • a predetermined temperature by the induction heating of CO 2 was heated to Detach.
  • the sensible heat of the adsorbent A part is transported to a part of the unheated CO 2 adsorbent (referred to as adsorbent B part).
  • the adsorbent B part is heated by this heat transport.
  • the adsorbent B part is heated by induction heating.
  • the amount of heat necessary for heating the adsorbent B to the temperature T is reduced by heat transport from the adsorbent A. Furthermore, the adsorbent A unit because it is cooled by heat transport can reduce the time and required amount of air for cooling the CO 2 adsorbent to adsorb the CO 2 again.
  • Examples of the CO 2 adsorption separation method include a fixed bed method in which the adsorbent is fixed and a fluidized bed in which the adsorbent is circulated and any method may be used.
  • the CO 2 concentration reduction apparatus When using a fluidized bed of the CO 2 concentration reduction apparatus, may be used gas such as air transportation of CO 2 adsorbent, using a mixed material of the CO 2 adsorbent and the magnetic substance, the mixture material by magnetic force May be transported.
  • gas such as air transportation of CO 2 adsorbent, using a mixed material of the CO 2 adsorbent and the magnetic substance, the mixture material by magnetic force May be transported.
  • FIG. 1 shows a configuration example for reducing the CO 2 concentration of indoor air by a fixed bed system using a CO 2 adsorbent.
  • the CO 2 concentration reduction apparatus shown in this figure includes an adsorbent container 101, flow control valves 201 to 203, a magnetic field generator 301 for induction heating having a coiled conductor, a CO 2 adsorbent made of cerium oxide, and a magnetic substance. Of the mixed particles 401 and the blower 501.
  • the adsorbent container 101 is preferably made of a nonmagnetic material such as ceramic or organic material or a nonmetallic material.
  • the operation method of this apparatus shall repeat the steps of adsorption, heating and cooling.
  • the CO 2 adsorbent temperature during adsorption was set at 30 ° C.
  • the CO 2 adsorbent temperature during desorption was set at 200 ° C.
  • the flow control valves 201 and 202 are opened, and the flow control valve 203 is closed.
  • the CO 2 adsorption removed by introducing indoor air into the adsorbent vessel 101 by using the blower 501, returning the gas to remove the CO 2 into the room.
  • a flow control valve 201 and 202 are closed, the flow control valve 203 is opened, by induction heating the magnetic field generating unit 301 The mixed particles 401 are heated to desorb CO 2 and be released to the atmosphere. Thereafter, at the time of cooling, the flow control valves 201 and 202 are opened, the flow control valve 203 is closed, indoor air is introduced into the adsorbent container 101 using the blower 501, and the mixed particles 401 are cooled.
  • the power consumption when CO 2 is selectively removed using a CO 2 adsorbent was estimated by the following method.
  • the power consumption was calculated by the following formula.
  • the energy for reducing the CO 2 concentration derived from the physical property values in this table is 8.1 kJ / g-CO 2 .
  • the enthalpy difference between outside air and room air was calculated, and the difference divided by the performance coefficient was regarded as power consumption.
  • the enthalpy of air was calculated based on an air temperature of 25 ° C., and water and water vapor were calculated based on 25 ° C. condensed water. Changes in air specific heat and density due to CO 2 concentration were ignored as minute.
  • the outside air was assumed to be 30 ° C., the relative density 70%, the CO 2 concentration 400 ppm, the room air 28 ° C., the relative humidity 50%, and the CO 2 concentration 1000 ppm.
  • Table 2 shows the amount of CO 2 and enthalpy for 1 kg of dry air for each gas state.
  • the enthalpy difference between outside air and room air was 19.1 kJ, and the CO 2 content difference was 0.91 g.
  • the coefficient of performance of this cooling was assumed to be 2.0, and the electric power for reducing the CO 2 concentration by ventilation was calculated by the following equation.
  • FIG. 2 shows electric power for reducing CO 2 concentration by the adsorbent method and conventional ventilation.
  • Example 1 Compared with Comparative Example 1, the adsorbent method in Example 1 requires less CO 2 reduction power and is power saving.
  • FIG. 3 shows an example of a configuration for reducing the CO 2 concentration of room air by a fixed bed system using a CO 2 adsorbent.
  • the CO 2 concentration reduction device is composed of an adsorbent container 101, flow control valves 201 to 203, a CO 2 adsorbent 411 made of cerium oxide, a blower 501 and a heater 601 for heating gas. Yes.
  • the operation method of this apparatus uses a heater 601 for heating a gas instead of the induction heating magnetic field generator 301 of FIG. Except this, it is the same as the first embodiment.
  • Table 3 shows the conditions used for the trial calculation in Comparative Example 2.
  • FIG. 4 is a graph showing the required ventilation volume in Comparative Examples 1 and 2 and Example 1 in comparison.
  • Example 1 which uses induction heating, it turns out that the ventilation at the time of heating is theoretically unnecessary, and ventilation volume can further be reduced.
  • FIG. 5 shows a configuration in which the induction heating magnetic field generating unit is movable in a CO 2 concentration reducing apparatus for reducing the CO 2 concentration of room air by a fixed bed system using a CO 2 adsorbent.
  • the CO 2 concentration reducing apparatus shown in this figure includes an adsorbent container 101, flow rate control valves 201 to 203, a movable induction heating magnetic field generator 311 having a coiled conductor, a CO 2 adsorbent composed of cerium oxide and a magnetic material. It consists of mixed particles 401 with the body and a blower 501.
  • the adsorbent container 101 is preferably made of a nonmagnetic material such as ceramic or organic material or a nonmetallic material.
  • the induction heating magnetic field generator 311 is movable, and can locally heat the magnetic material inside the adsorbent container 101.
  • the operation method of this device shall repeat the steps of adsorption, heating and cooling.
  • the CO 2 adsorbent temperature during adsorption was set at 30 ° C.
  • the CO 2 adsorbent temperature during desorption was set at 200 ° C.
  • FIG. 6A is a diagram schematically illustrating the arrangement of the initial stage of the heating process of Example 2 and the temperature distribution in the adsorbent container.
  • FIG. 6B is a diagram schematically illustrating a situation that has progressed from the initial stage of FIG. 6A.
  • FIG. 6C is a diagram schematically illustrating a situation further advanced from the stage of FIG. 6B.
  • an adsorbent container, a coil schematically representing the induction heating magnetic field generator, and a graph showing the temperature in the adsorbent container are shown side by side.
  • the flow control valves 201 and 202 shown in FIG. 5 are opened and the flow control valve 203 is closed.
  • the CO 2 adsorption removed by introducing indoor air into the adsorbent vessel 101 by using the blower 501, returning the gas to remove the CO 2 into the room.
  • the flow control valve 202 is closed, the flow control valves 201 and 203 are opened, and mixing is performed by the induction heating magnetic field generator 311.
  • the particles 401 are heated from the side close to the blower 501 (inlet side).
  • the temperature of the portion is increased to 200 ° C., to a CO 2 elimination. This step is referred to as heating step-1 (FIG. 6A).
  • the blower 501 causes the indoor air to flow through the CO 2 adsorbent container.
  • the heat of the adsorbent heated on the blower side is transported to the outlet side by the circulation of the air, the CO 2 adsorbent on the inlet side is cooled, and the CO 2 adsorbent on the outlet side is heated.
  • This step is referred to as heating step-2 (FIG. 6B).
  • the CO 2 adsorbent is not heated up to 200 ° C., so that the amount of heat required to reach 200 ° C. is generated by moving the movable induction heating device to the outlet side and applying an alternating magnetic field. . Since the CO 2 adsorbent is heated in advance for heat transport by air circulation, the power consumption required for heating the CO 2 adsorbent can be further reduced as compared with the first embodiment.
  • the heated portion of the CO 2 adsorbent is gradually moved to the outlet side by continuously blowing the indoor air during heating, and continuously moving the induction heating magnetic field generating unit according to the heating, and as a result, the CO 2 2 is detached. This process is referred to as heating process-3 (FIG. 6C).
  • FIG. 7 is a schematic perspective view showing an example of a configuration in which a CO 2 adsorbent is attached to a linear magnetic body.
  • CO 2 adsorbent particles 702 are attached to the surface of a straight linear (rod-like) magnetic body 701.
  • FIG. 8 is a schematic perspective view showing an example of a configuration in which a CO 2 adsorbent is attached to a spiral magnetic body.
  • CO 2 adsorbent particles 702 are attached to the surface of a helical (spring-shaped) magnetic body 801.
  • the magnetic body 801 is formed of metal or the like and has electrical conductivity by arranging the mixed particles so that the magnetic field is generated in parallel to the central axis of the spiral shape, if the magnetic body 801 is formed, A current is generated in the spiral and heat is easily generated.
  • FIG. 9 is a schematic perspective view showing an example of a configuration in which a CO 2 adsorbent is attached to an annular magnetic body.
  • CO 2 adsorbent particles 702 are attached to the surface of an annular magnetic body 901.
  • the magnetic body 901 is formed of metal or the like and has electrical conductivity by arranging the mixed particles so that the magnetic field is generated in parallel with the central axis of the ring, the ring formed of the magnetic body 901 is formed. Current is generated and heat is easily generated.
  • the dimensions of the composite material are not particularly limited as long as they are efficient as a heating element that generates heat by induction heating or dielectric heating.
  • 1, 5 and 6A to 6C show examples in which the coils of the induction heating magnetic field generation units 301 and 311 are arranged on the side surface of the adsorbent container 101.
  • This position is not limited to this, and a configuration that efficiently generates an alternating magnetic field at the position of the magnetic body or the like inside the adsorbent container 101 is desirable. Therefore, the coil may be arranged such that the central axis of the coil overlaps with the adsorbent container 101 or the central axis of the coil coincides with the central axis of the adsorbent container 101.
  • Electrodes pairs in the case of dielectric heating by an alternating electric field, although not shown, it is desirable to arrange electrode pairs so as to sandwich the adsorbent container 101 so that the electric field penetrates the dielectric inside the adsorbent container 101.
  • 101 adsorbent vessels
  • 201, 202, 203 flow control valve
  • 301, 311 induction heating field generating unit
  • 401 particle mixture of CO 2 adsorbent and the magnetic body
  • 411 CO 2 adsorbent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 COを含有するガスからCO吸着材を用いてCOを分離除去するためのCO濃度低減装置であって、CO吸着材を充填した吸着材容器と、CO吸着材を誘導加熱又は誘電加熱により加熱する加熱ユニットと、を含む。これにより、室内に蓄積されるCOを除去する際の換気量を減らし、換気に要する電力及び冷暖房の電力を低減することができる。

Description

CO2濃度低減装置
 本発明は、CO濃度低減装置に関する。
 ビルや車輛など、人の密度が高い空間においては、人の呼気により室内のCO濃度(二酸化炭素濃度)が上昇しやすい。CO濃度が1000ppmを超える場合には眠気を誘発することが知られている。このため、ビルなどではCO濃度が1000ppmを超過しないよう、外気との換気することでCO濃度を調整している。外気と素早く換気するためには、ブロアなどの送風装置を稼働させる必要があり、このために換気電力を必要とする。さらに、外から取り込んだ空気は、温度および湿度が調整されておらず、夏季には冷房を、冬季には暖房を行う必要がある。このため、室内のCO濃度上昇は、換気電力及び冷暖房などの空調による消費電力の増加の主原因となっている。換気による室内のCO減少量は、次の計算式で算出される。
 {(室内CO濃度)-(外気CO濃度)}×(換気量)=(換気によるCO減少量)
 この式の右辺のCO減少量が人の呼気によるCO増加量と同等であれば、CO濃度を一定に保つことができる。
 吸着材を用いた室内空気からのCO除去に着目すると、例えば、特許文献1には、HO及びCO吸着材を塗布したローターを利用したCO除去装置が記載されている。
この装置は、室温でCOを吸着し、その後、加熱ガスを流通するとともにCO吸着材を加熱することによりCOを脱離する構成を有している。
 特許文献2に記載の二酸化炭素捕捉材は、本発明者らが開発したものであり、細孔容積分布のピーク細孔径が1.5~10nmのセリウム酸化物を含有する多孔体を含み、二酸化炭素を含有するガスから二酸化炭素を捕捉・分離するものである。ここで、当該多孔体は、Sm、La等を含むことが望ましい。
 特許文献3には、空気中の水分や臭いなどの有機ガスを吸着する吸着剤で構成されたフィルタの一部を電磁誘導加熱が可能な材料で構成し、フィルタの近くに電磁コイル等の磁界発生装置を設置し、磁界によりフィルタを自己発熱させ、水分や有機ガスを吸着剤から脱着する技術が開示されている。
国際公開第2010/100739号 特開2012-24648号公報 特開2005-279390号公報
 近年では、外気CO濃度(2013年時点で約400ppm)が増加しているため、室内とのCO濃度差が少なくなっている。このため、CO濃度を調整するために必要な換気量も増加している。今後、外気CO濃度が更に増加した場合、換気によるCO濃度の調整では消費電力が増加すると考えられる。
 換気以外の方法を用いてCOを選択的に除去できれば、換気量を低減でき、結果として換気電力及び空調電力を低減できる可能性がある。
 特許文献1に記載の装置では、CO脱離のために吸着材を加熱する媒体として室内空気を用いる。この場合、加熱媒体である室内空気を室外に排気する必要がある。排気したガスと同量の外気を取り込む必要があるため、結果として吸着材の加熱およびCO脱離を行うために換気が必要となる。
 特許文献2に記載の二酸化炭素捕捉材は、優れた吸着特性を有するが、効率的な再生をするための加熱手段が求められる。
 特許文献3に記載の技術は、電磁誘導加熱を用いる点で有力であるが、脱着の対象が水分や臭いなどの有機ガスであり、二酸化炭素の脱着に適用するものではない。
 本発明の目的は、室内に蓄積されるCOを除去する際の換気量を減らし、換気に要する電力及び冷暖房の電力を低減することにある。
 本発明のCO濃度低減装置は、COを含有するガスからCO吸着材を用いてCOを分離除去するための装置であって、CO吸着材を充填した吸着材容器と、CO吸着材を誘導加熱又は誘電加熱により加熱する加熱ユニットと、を含む。
 本発明によれば、室内に蓄積されるCOを除去する際の換気量を減らし、換気に要する電力及び冷暖房の電力を低減することができる。
本発明のCO濃度低減装置を示す模式構成図である。 実施例1のCO濃度低減装置と、従来の換気法(比較例1)COとで消費電力を比較して示すグラフである。 CO吸着材を加熱した空気により加熱するCO濃度低減装置の例(比較例2)を示す模式構成図である。 実施例1並びに比較例1及び2における必要空気量を比較して示すグラフである。 可動式の誘導加熱用磁場発生部を有するCO濃度低減装置(実施例2)を示す模式構成図である。 実施例2の加熱工程の初期段階の配置と吸着材容器内の温度分布を模式的に示す図である。 図6Aの初期段階から進行した状況を模式的に示す図である。 図6Bの段階から更に進行した状況を模式的に示す図である。 線状の磁性体にCO吸着材を付着させた構成の例を示す模式斜視図である。 らせん状の磁性体にCO吸着材を付着させた構成の例を示す模式斜視図である。 環状の磁性体にCO吸着材を付着させた構成の例を示す模式斜視図である。
 本発明は、ビルや車輛などの換気量を低減することにより換気電力及び空調電力を低減するための装置に関し、特に省電力で室内CO濃度を低減するための装置に関する。
 以下、本発明の実施形態について説明する。なお、本発明の範囲は、下記に挙げる例に限定されるものではない。
 本発明者は、上記課題を鋭意検討した結果、COを含有するガスから固体のCO吸着材を用いてCOを分離除去するための装置であって、該CO吸着材が酸化セリウムもしくはセリウムの複合酸化物を含み、CO吸着材を加熱する装置が誘導加熱もしくは誘電加熱を用いた装置を有することを特徴とするCO濃度低減装置を利用することにより、CO濃度低減に要する消費電力を低減できることを見出した。ここで、セリウムの複合酸化物とは、酸化セリウムに第二成分としてNa、Mg、Y、La、Sm等を添加した材料をいい、特許文献2に記載されているように優れた吸着特性を有するものである。
 本装置では、加熱媒体が交流磁場(交番磁界)もしくは交流電場(交番電界)であるため、COを加熱脱離させる際の加熱ガス流通が不要もしくは低流量で可能である。その結果、CO吸着材にガスを流通させるための圧力損失、加熱媒体であるガスそのものの熱容量、及びガスの排気に伴う換気電力を低減できる。
 また、CO吸着材として酸化セリウムもしくはセリウムの複合酸化物を用いることで水分存在下においてもCOを吸着可能である。本特性は、人の呼気や大気など水分を含むガスからCOを除去する用途に適している。本装置の運転例としては、たとえばCOを含有するガスを前記CO吸着材に流通させてCOを吸着除去し、COを除去したガスを室内に戻し、CO吸着後はCO吸着材を誘導加熱などにより加熱することにより、COを脱離させ、CO吸着材を再生する方法が挙げられる。
 誘導加熱又は誘電加熱を用いる利点の一つは、伝熱速度に律速されないことである。外部からヒーターなどの加熱装置により吸着材を加熱する場合、伝熱により吸着材全体を加熱しなければならない。伝熱速度は、温度勾配に比例する。特に吸着材容量が大きい場合には、温度勾配が緩やかになり、伝熱速度が遅くなり、しかも必要な熱量が増加するため、加熱速度が遅くなる。誘導加熱及び誘電加熱は、温度勾配に依存しないため、吸着材容量を大きくした場合にも対応しやすい。
 CO吸着材の加熱は、誘導加熱及び誘電加熱のうちいずれを用いてもよい。誘導加熱によりCO吸着材を加熱する構成としては、加熱装置として交流磁場を発生させる装置、例えばコイル状に巻いた導線に交流電流を流通させる方法が挙げられる。誘導加熱により発熱するためには磁場中で渦電流が発生すればよく、使用する発熱体材料(以降、「誘導発熱体」という。)としては、金属などの導体が挙げられる。また、磁性体を用いた場合には、交流磁場によるヒステリシス加熱が発生するため、加熱効率をさらに高めることができる。磁性体としては、例えば鉄、クロム、コバルトやその合金及び化合物などが挙げられる。
 誘導発熱体の形状としてはどのような形状でもよいが、柱状、板状、粉状、ハニカム状、網状など様々な形状が挙げられる。
 柱状の場合、例えば吸着材容器中に柱状の誘導発熱体を設置し、その後、粒状のCO吸着材を充填して設置する構成が考えられる。本構成では、誘導発熱体は、容器と接触する必要がなく、例えば一般的な伝熱管を容器内部に付設する場合のように、伝熱管内に流体を導入するために容器外に貫通させる必要はない。
 粉状の誘導発熱体を用いる場合には、粉状のCO吸着材と粉状の誘導発熱体とをあらかじめ混合させておき、その後、粒状に成型して利用する方法が考えられる。本方法では、成形した粒自体が発熱体となることから、空間的に均一な加熱を行いやすい。その他に、CO吸着材と誘導発熱体の混合粉末をハニカムなどに担持する方法、ハニカム状に成型したCO吸着材に粉状の誘導発熱体を担持する方法、粉状のCO吸着材をハニカム状の誘導発熱体に担持する方法が考えられる。
 誘導発熱体とCO吸着材の混合及び接触を促進するために、バインダーを利用してもよい。バインダーには有機及び無機のどちらを用いてもよいが、CO脱離のためにCO吸着材を加熱することから無機のバインダーの方が好ましく、例としてはベーマイト、アルミナゾル、シリカゾルなどのケイ素化合物又はアルミニウム化合物が挙げられる。
 CO吸着材の加熱に誘電加熱を用いる場合には、CO吸着材そのものを誘電体として利用してもよい。吸着ガスが水分を含有する場合には、CO吸着材に吸着した水分や凝縮した水分が誘電体として作用し、エネルギーは水分の加熱に利用されやすくなる。従って、水分量が多い場合に加熱速度が上昇し、CO吸着材温度の空間分布の偏りが生じる。水が脱離もしくは気化した後のCO吸着材は、加熱速度が低下するため、これを利用すれば、当該条件での水の脱離温度もしくは気化温度までCO吸着材を加熱するための手法として利用できる。
 誘導加熱又は誘電加熱のための加熱装置は、吸着材容器内部に設置してもよいし、容器外に設置してもよい。誘導加熱のための加熱装置を容器外部に設置する構成としては、例えば吸着材容器を非磁性体又は非金属で形成し、容器内部にCO吸着材及び誘導発熱体を充填する方法が考えられる。交流磁場を発生させる装置としては、コイル状の導線に交流電流を流せばよく、導線は吸着材容器の外部に設置する方法が考えられる。本構成では、吸着材容器内部の構成が簡潔であり、CO吸着材及び誘導発熱体の充填が簡便になるという特徴がある。その他の構成として、例えば容器そのものを磁性体など誘導発熱体とし、吸着材容器そのものを加熱してCO吸着材に伝熱してもよい。
 誘導加熱又は誘電加熱のための加熱装置の一部または全部が可動であってもよい。誘導加熱のための加熱装置が可動である構成としては、例えば吸着材容器を非磁性体又は非金属で形成し、容器内部にCO吸着材及び誘導発熱体を充填し、可動なコイル状の導線を吸着材容器の外部に設置して該導線に交流電流を流す構成が考えられる。本構成を用いた場合には、コイルの位置を変化させることにより、吸着材容器内の任意の場所を加熱することができる。なお、本構成により、例えば誘導発熱体が局所的に加熱され、高温になることで材料が焼結し、劣化することが予測される場合、高温となる前にコイルの位置を変化させることにより、吸着材の加熱位置を変更することができ、劣化を抑制することができる。
 CO吸着材を加熱する工程において、該CO吸着材にガスを流通させてもよい。流通ガスはどの様なガスでもよいが、取り扱いの容易さから特に室内の空気、外気、水蒸気及びこれらガスの混合ガスが挙げられる。本構成としては、例えば吸着材容器を非磁性体又は非金属で形成し、容器内部にCO吸着材及び誘導発熱体を充填し、可動なコイル状の導線を吸着材容器の外部に設置し、さらにCO吸着材に室内空気を流通させるための送風機を設置することが挙げられる。
 本構成を用いたCO除去装置の使用方法としては、次のようなものが考えられる。
 室内空気の流通によりCOを吸着させた後、CO吸着材の一部(吸着材A部とする。)を誘導加熱により所定の温度(温度Tとする。)まで加熱してCOを脱離させる。
次に、室内空気を流通させることで、吸着材A部の有する顕熱を、加熱されていないCO吸着材の一部(吸着材B部とする。)に輸送する。この熱輸送によって吸着材B部は加熱される。その後、可動なコイル状の導線を吸着材B部付近まで移動させた後、誘導加熱により吸着材B部を加熱する。吸着材B部は吸着材A部からの熱輸送により、温度Tまで加熱するための必要熱量が低減している。さらに、吸着材A部は該熱輸送により冷却されているため、COを再度吸着させるためにCO吸着材を冷却するための時間及び必要な空気量が低減できる。
 CO吸着分離の方法としては、吸着材を固定して使用する固定床方式と、吸着材を循環させて使用する流動床などの方式が挙げられ、いずれの方法を用いてもよい。
 流動床式のCO濃度低減装置を用いる場合、CO吸着材の輸送に空気等のガスを用いてもよいし、該CO吸着材と磁性体の混合材を用い、磁力によって該混合材を輸送してもよい。
 また、一般に、固体材料を流動させた際には、材同士の衝突によって材の粉化、及び粉化に伴う材の飛散が懸念される。このような装置では、材が大気へ飛散しないようフィルタなどで集塵を行う。本課題に対して、該CO吸着材と磁性体の混合材を用い、かつ、フィルタに磁力を印加することにより、吸着材粉末の捕集能力を高め、材の大気への飛散を抑制することができると考えられる。
 以下、本発明の実施例を詳細に説明する。
 図1は、CO吸着材を用いた固定床方式により、室内空気のCO濃度を低減するための構成例を示したものである。
 本図に示すCO濃度低減装置は、吸着材容器101、流量制御弁201~203、コイル状の導線を有する誘導加熱用磁場発生部301、セリウム酸化物からなるCO吸着材と磁性体との混合粒子401、及び送風機501から構成されている。吸着材容器101は、セラミックもしくは有機物などの非磁性体又は非金属の材料を用いることが好ましい。
 本装置の運転方法は、吸着、加熱及び冷却の工程を繰り返すものとする。吸着時のCO吸着材温度は30℃、脱離時のCO吸着材温度は200℃と設定した。
 まず、流量制御弁201及び202を開とし、流量制御弁203を閉とする。送風機501を用いて吸着材容器101内に室内空気を導入してCOを吸着除去し、COを除去したガスを室内に戻す。
 COが充分に吸着された後、COを脱離して大気へ放出する際には、流量制御弁201及び202を閉とし、流量制御弁203を開とし、誘導加熱用磁場発生部301により混合粒子401を加熱してCOを脱離し、大気へと放出する。その後、冷却時には、流量制御弁201及び202を開とし、流量制御弁203を閉とし、送風機501を用いて吸着材容器101内に室内空気を導入し、混合粒子401を冷却する。
 (消費電力の試算)
 CO吸着材を用いて選択的にCOを除去する場合の消費電力を次の方法で試算した。消費電力は、次の計算式により算出した。
 (消費電力)=(必要熱量)/(電力から熱への変換効率)
 必要熱量は、CO吸着材の加熱と及びCO脱離熱の和として算出した。試算に用いた物性値を表1に示す。
 本表の物性値から導出したCO濃度を低減するためのエネルギーは、8.1kJ/g-COである。
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 換気によってCO濃度を調整する場合に必要な電力、特に冷房に要する消費電力は、次の方法で試算した。
 まず、外気及び室内空気のエンタルピー差を算出し、その差を性能係数で割ったものを消費電力と見なした。なお、空気のエンタルピーは、空気温度25℃を基準とし、水及び水蒸気については25℃の凝縮した水を基準に算出した。CO濃度による空気比熱及び密度の変化は微小として無視した。外気は30℃、相対密度70%、CO濃度400ppm、室内空気は28℃、相対湿度50%、CO濃度1000ppmと見なした。
 各状態のガスに対し、ドライでの空気1kgに対するCO量及びエンタルピーを表2に示す。
 外気と室内空気とのエンタルピー差は19.1kJ、CO含有量差は0.91gであった。本冷房の成績係数を2.0と仮定し、換気によってCO濃度を低減するための電力を次の式により算出した。
 (消費電力)=(エンタルピー差)/{(CO含有量差)×(成績係数)}
 この式から、CO濃度を低減するための電力は、10.5kJ/g-COと試算された。
Figure JPOXMLDOC01-appb-T000002
 図2に吸着材法と従来の換気によるCO濃度低減のための電力を示す。
 本図から、比較例1と比べ、実施例1における吸着材法はCO低減電力が少なく済み、省電力であることがわかる。
 (比較例2)
 図3は、CO吸着材を用いた固定床方式により、室内空気のCO濃度を低減するための構成例を示したものである。
 本図において、CO濃度低減装置は、吸着材容器101、流量制御弁201~203、セリウム酸化物からなるCO吸着材411、送風機501、及び気体を加熱するためのヒーター601から構成されている。
 本装置の運転方法は、図1の誘導加熱用磁場発生部301の代わりに、気体を加熱するためのヒーター601を用いている。これ以外は、実施例1と同様である。
 (必要換気量の試算)
 比較例2において、加熱に必要な空気量は、次の方法で試算した。吸着材加熱に必要な熱量は実施例1と同等とし、熱は吸着材に流通する加熱空気の入口-出口のエンタルピー差より得られるとした。本法により必要な空気量は60.9g-Air/g-COと算出された。
 表3は、比較例2における試算に用いた条件を示したものである。
 図4は、比較例1、2及び実施例1における必要換気量を比較して示すグラフである。
 換気のみでCO濃度低減を行う比較例1と比べ、吸着材を用いる比較例2では大幅に必要空気量が低減されている。さらに、誘導加熱を用いる実施例1では、理論上は加熱時の送風は不要であり、換気量を更に低減できることがわかる。
 CO吸着材を用いた固定床方式により室内空気のCO濃度を低減するためのCO濃度低減装置において、誘導加熱用磁場発生部を可動とした構成を図5に示す。
 本図に示すCO濃度低減装置は、吸着材容器101、流量制御弁201~203、コイル状の導線を有する可動な誘導加熱用磁場発生部311、セリウム酸化物からなるCO吸着材と磁性体との混合粒子401、及び送風機501から構成されている。吸着材容器101は、セラミックもしくは有機物などの非磁性体又は非金属の材料を用いることが好ましい。誘導加熱用磁場発生部311は、移動可能であり、吸着材容器101の内部の磁性体を局所的に加熱することができるようになっている。
 本装置の運転方法は、吸着、加熱及び冷却の工程を繰り返すものとする。
 図6A~6Cは、加熱工程の状態を3段階に分けて示したものである。吸着時のCO吸着材温度は30℃、脱離時のCO吸着材温度は200℃と設定した。
 図6Aは、実施例2の加熱工程の初期段階の配置と吸着材容器内の温度分布を模式的に示す図である。図6Bは、図6Aの初期段階から進行した状況を模式的に示す図である。
図6Cは、図6Bの段階から更に進行した状況を模式的に示す図である。これらの図には、吸着材容器と、誘導加熱用磁場発生部を模式的に表したコイルと、吸着材容器内の温度を示すグラフと、を並べて示してある。
 前段階として吸着工程においては、図5に示す流量制御弁201及び202を開とし、流量制御弁203を閉とする。送風機501を用いて吸着材容器101内に室内空気を導入してCOを吸着除去し、COを除去したガスを室内に戻す。
 COが充分に吸着された後、COを脱離して大気へ放出する際には流量制御弁202を閉とし、流量制御弁201及び203を開とし、誘導加熱用磁場発生部311により混合粒子401を送風機501に近い側(入口側)から加熱する。当該箇所の温度を200℃まで上昇させ、COを脱離させる。本工程を加熱工程-1とする(図6A)。
 その後、送風機501により室内空気をCO吸着材容器に流通させる。該空気の流通により送風機側の加熱された吸着材の熱は出口側へと輸送され、入口側のCO吸着材は冷却され、出口側のCO吸着材は加熱される。本工程を加熱工程-2とする(図6B)。
 この熱輸送のみでは、CO吸着材は200℃まで加熱されないため、可動な誘導加熱装置を出口側に移動し、交流磁場を印加することにより、200℃に達するために必要な熱量を発生させる。CO吸着材は、空気流通による熱輸送のために予め加熱されているため、CO吸着材の加熱に要する消費電力を実施例1よりも更に低減できる。加熱中の室内空気の送風、及び加熱に応じた誘導加熱用磁場発生部の移動を連続的に行うことで、CO吸着材の加熱された部分は徐々に出口側に移動し、結果としてCOが脱離する。
本工程を加熱工程-3とする(図6C)。
 本方法では、CO脱離の際にCO吸着材を入口側から冷却しているため、CO脱離後の冷却工程を短縮もしくは省略できる。冷却工程を行う場合には、流量制御弁201及び202を開とし、流量制御弁203を閉として、送風機501を用いて吸着材容器101内に室内空気を導入して混合粒子401を冷却すればよい。
 以下、CO吸着材と磁性体との混合粒子(複合材料)の形状の具体的な例として、磁性体にCO吸着材の粒子を付設した例について説明する。
 図7は、線状の磁性体にCO吸着材を付着させた構成の例を示す模式斜視図である。
 本図においては、真っ直ぐな線状(棒状)の磁性体701の表面にCO吸着材粒子702を付着させている。
 図8は、らせん状の磁性体にCO吸着材を付着させた構成の例を示す模式斜視図である。
 本図においては、らせん状(ばね形状)の磁性体801の表面にCO吸着材粒子702を付着させている。このような形状とし、磁界がらせん形の中心軸に平行に生じるように混合粒子を配置することにより、磁性体801が金属等で形成され電気伝導性を有する場合、磁性体801で形成されたらせん曲線に電流が発生し、発熱しやすくなる。
 図9は、環状の磁性体にCO吸着材を付着させた構成の例を示す模式斜視図である。
 本図においては、環状の磁性体901の表面にCO吸着材粒子702を付着させている。このような形状とし、磁界が環の中心軸に平行に生じるように混合粒子を配置することにより、磁性体901が金属等で形成され電気伝導性を有する場合、磁性体901で形成された環に電流が発生し、発熱しやすくなる。
 なお、複合材料の寸法は、特に限定されるものではなく、誘導加熱又は誘電加熱により発熱する発熱体として効率的なものであればよい。
 以上のように、発熱体となる磁性体にCO吸着材の粒子を付設することにより、CO吸着材の粒子に熱が伝わりやすくなり、入力するエネルギーに対するCO吸着材に吸着しているCOの脱着効率が高くすることができる。
 なお、図1、5及び6A~6Cにおいては、誘導加熱用磁場発生部301、311のコイルが吸着材容器101の側面部に配置されている例を示しているが、誘導加熱用磁場発生部の位置は、これに限定されるものではなく、吸着材容器101の内部の磁性体等の位置に交番磁界を効率的に発生させる構成が望ましい。よって、コイルの中心軸が吸着材容器101と重なるように、或いは、コイルの中心軸が吸着材容器101の中心軸と一致するように配置してもよい。
 また、交番電界による誘電加熱の場合、図示していないが、吸着材容器101を挟み込むように電極対を配置し、電界が吸着材容器101の内部の誘電体を貫くようにすることが望ましい。
 101:吸着材容器、201、202、203:流量制御弁、301、311:誘導加熱用磁場発生部、401:CO吸着材と磁性体との混合粒子、411:CO吸着材、501:送風機、601:ヒーター。

Claims (15)

  1.  COを含有するガスからCO吸着材を用いてCOを分離除去するためのCO濃度低減装置であって、
     前記CO吸着材を充填した吸着材容器と、
     前記CO吸着材を誘導加熱又は誘電加熱により加熱する加熱ユニットと、を含む、CO濃度低減装置。
  2.  前記CO吸着材は、酸化セリウム又はセリウムの複合酸化物を含む、請求項1記載のCO濃度低減装置。
  3.  前記CO吸着材の間には、前記誘導加熱により発熱する発熱体が配置されている、請求項1又は2に記載のCO濃度低減装置。
  4.  前記CO吸着材は、前記誘導加熱により発熱する発熱体と混合した状態で前記吸着材容器に充填されている、請求項1又は2に記載のCO濃度低減装置。
  5.  前記CO吸着材は、前記発熱体に付着した状態で前記吸着材容器に充填されている、請求項3又は4に記載のCO濃度低減装置。
  6.  前記発熱体は、柱状、板状、粉状、ハニカム状、網状、線状、らせん状又は環状である、請求項3~5のいずれか一項に記載のCO濃度低減装置。
  7.  前記発熱体は、磁性体である、請求項3~6のいずれか一項に記載のCO濃度低減装置。
  8.  前記磁性体は、鉄、クロム及びコバルトからなる群から選ばれる少なくとも一種類を含む合金又は化合物である、請求項7記載のCO濃度低減装置。
  9.  前記CO吸着材と前記発熱体との間には、これらを付着させるためのバインダーが設けられている、請求項5~8のいずれか一項に記載のCO濃度低減装置。
  10.  前記バインダーは、ケイ素化合物又はアルミニウム化合物を含む、請求項9記載のCO濃度低減装置。
  11.  前記加熱ユニットは、前記吸着材容器の外部に設置されている、請求項1~10のいずれか一項に記載のCO濃度低減装置。
  12.  前記加熱ユニットは、前記吸着材容器の内部の前記CO吸着材を局所的に加熱可能であり、加熱する位置を変更するために移動可能とした、請求項1~11のいずれか一項に記載のCO濃度低減装置。
  13.  前記CO吸着材によるCOの吸着及び脱着は、流動床式で行うことができる構成である、請求項1~12のいずれか一項に記載のCO濃度低減装置。
  14.  前記CO吸着材の粉末を捕集するためのフィルタを有し、前記フィルタにおけるCO吸着材の捕集に磁力を用いる、請求項13記載のCO濃度低減装置。
  15.  前記CO吸着材の輸送に磁力を用いる、請求項13又は14に記載のCO濃度低減装置。
PCT/JP2016/055383 2015-03-26 2016-02-24 Co2濃度低減装置 WO2016152363A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16768266.5A EP3287185A4 (en) 2015-03-26 2016-02-24 Co2 concentration reducing device
CA2973462A CA2973462C (en) 2015-03-26 2016-02-24 Co2 concentration reducing device
JP2017507621A JP6399208B2 (ja) 2015-03-26 2016-02-24 Co2濃度低減装置
CN201680007630.9A CN107206307A (zh) 2015-03-26 2016-02-24 Co2浓度降低装置
US15/546,814 US10456731B2 (en) 2015-03-26 2016-02-24 CO2 concentration reducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064101 2015-03-26
JP2015064101 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152363A1 true WO2016152363A1 (ja) 2016-09-29

Family

ID=56977232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055383 WO2016152363A1 (ja) 2015-03-26 2016-02-24 Co2濃度低減装置

Country Status (6)

Country Link
US (1) US10456731B2 (ja)
EP (1) EP3287185A4 (ja)
JP (1) JP6399208B2 (ja)
CN (1) CN107206307A (ja)
CA (1) CA2973462C (ja)
WO (1) WO2016152363A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150582A1 (ja) * 2017-02-20 2018-08-23 日立化成株式会社 空調装置及び空調システム
WO2018150583A1 (ja) * 2017-02-20 2018-08-23 日立化成株式会社 空調装置及び空調システム
WO2018156020A1 (en) 2017-02-22 2018-08-30 Skytree B.V. Improved process and apparatus for the removal of metabolic carbon dioxide from a confined space
JP2018159698A (ja) * 2017-03-23 2018-10-11 株式会社住化分析センター 水素ガス分析用キット、水素ガス分析方法、及び水素ガスの品質管理方法
JP2020159672A (ja) * 2019-03-28 2020-10-01 株式会社Nttドコモ Co2濃度調整装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109153003A (zh) * 2016-05-16 2019-01-04 日立化成株式会社 空调装置、空调系统、二氧化碳的除去方法、吸附剂以及二氧化碳除去器
DE102018212898A1 (de) * 2018-08-02 2020-02-27 Thyssenkrupp Ag Regenerativer CO2-Absorber für ein Unterseeboot
JP7205866B2 (ja) * 2018-08-28 2023-01-17 株式会社西部技研 ハニカム吸着体及びそれを用いた除湿空調装置
CN112169533A (zh) * 2020-08-27 2021-01-05 广东美的白色家电技术创新中心有限公司 可再生的吸附材料、吸附装置及家用电器
CN112479313B (zh) * 2020-12-10 2022-08-26 南京环保产业创新中心有限公司 一种强化磁性树脂脱附的装置及方法
CN113426433B (zh) * 2021-07-30 2023-09-26 南京环保产业创新中心有限公司 一种磁性树脂的高效再生装置及方法
EP4360738A1 (en) * 2022-10-26 2024-05-01 Airbus Defence and Space GmbH System for separation of co2 from air using an adsorbing material in an electromagnetic induction process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938460A (ja) * 1995-07-28 1997-02-10 Aqueous Res:Kk 自動車用空気清浄方法及び装置
JP2005194132A (ja) * 2004-01-07 2005-07-21 National Institute Of Advanced Industrial & Technology 活性炭の加熱方法
JP2005279390A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 吸脱着フィルタおよび吸脱着管および吸着再生装置
JP2012024648A (ja) * 2010-07-20 2012-02-09 Hitachi Ltd 二酸化炭素捕捉材
JP2013128908A (ja) * 2011-12-22 2013-07-04 Jfe Steel Corp ガス分離回収方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710216Y1 (ja) 1968-10-31 1972-04-17
DE2056096B2 (de) 1970-11-14 1978-09-28 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Abtrennung von Fluorwasserstoff aus Gasen
US4115927A (en) * 1975-09-03 1978-09-26 Exxon Research & Engineering Co. Process for operating a magnetically stabilized fluidized bed
US4132005A (en) * 1977-08-02 1979-01-02 Exxon Research & Engineering Co. Fluidization of permanently magnetic particle beds
JP3244365B2 (ja) * 1993-10-15 2002-01-07 フジクリーン工業株式会社 流動床担体回収方法
JPH11147085A (ja) * 1997-09-11 1999-06-02 Ebara Corp 流動床焼却炉の焼却灰及び流動床式ガス化炉の炉底残渣の再資源化方法
US20050069464A1 (en) * 2003-09-25 2005-03-31 Obee Timothy N. Photocatalytic oxidation of contaminants through selective desorption of water utilizing microwaves
WO2005082489A1 (ja) * 2004-02-27 2005-09-09 Shimadzu Corporation 二酸化炭素の吸着装置と吸着用具およびその製造方法
JP2008519134A (ja) * 2004-11-08 2008-06-05 トラスティーズ オブ タフツ カレッジ 非再生式および再生式高温ガス脱硫のための装置および方法
JP4982893B2 (ja) * 2007-06-28 2012-07-25 独立行政法人産業技術総合研究所 高周波加熱式吸着塔
AU2009316229A1 (en) * 2008-11-11 2010-05-20 The University Of Queensland A method for producing sorbents for CO2 capture under high temperatures
WO2010128599A1 (ja) 2009-05-08 2010-11-11 新日本製鐵株式会社 ハイブリッド吸着剤及びガス中の二酸化炭素の回収方法
EP2463013A1 (en) * 2010-12-13 2012-06-13 Shell Internationale Research Maatschappij B.V. Process for removing carbon dioxide from a gas stream
US9073003B2 (en) * 2012-08-23 2015-07-07 The Boeing Company System and method for collecting carbon dioxide utilizing dielectric heating
JP6628422B2 (ja) 2017-06-29 2020-01-08 株式会社大一商会 遊技機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938460A (ja) * 1995-07-28 1997-02-10 Aqueous Res:Kk 自動車用空気清浄方法及び装置
JP2005194132A (ja) * 2004-01-07 2005-07-21 National Institute Of Advanced Industrial & Technology 活性炭の加熱方法
JP2005279390A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 吸脱着フィルタおよび吸脱着管および吸着再生装置
JP2012024648A (ja) * 2010-07-20 2012-02-09 Hitachi Ltd 二酸化炭素捕捉材
JP2013128908A (ja) * 2011-12-22 2013-07-04 Jfe Steel Corp ガス分離回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287185A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150582A1 (ja) * 2017-02-20 2018-08-23 日立化成株式会社 空調装置及び空調システム
WO2018150583A1 (ja) * 2017-02-20 2018-08-23 日立化成株式会社 空調装置及び空調システム
WO2018156020A1 (en) 2017-02-22 2018-08-30 Skytree B.V. Improved process and apparatus for the removal of metabolic carbon dioxide from a confined space
US11369914B2 (en) 2017-02-22 2022-06-28 Skytree, B.V. Process and apparatus for the removal of metabolic carbon dioxide from a confined space
JP2018159698A (ja) * 2017-03-23 2018-10-11 株式会社住化分析センター 水素ガス分析用キット、水素ガス分析方法、及び水素ガスの品質管理方法
JP2020159672A (ja) * 2019-03-28 2020-10-01 株式会社Nttドコモ Co2濃度調整装置
JP7129938B2 (ja) 2019-03-28 2022-09-02 株式会社Nttドコモ Co2濃度調整装置

Also Published As

Publication number Publication date
EP3287185A4 (en) 2018-12-26
JPWO2016152363A1 (ja) 2017-07-06
US10456731B2 (en) 2019-10-29
CA2973462A1 (en) 2016-09-29
CN107206307A (zh) 2017-09-26
JP6399208B2 (ja) 2018-10-03
US20180021717A1 (en) 2018-01-25
CA2973462C (en) 2020-01-14
EP3287185A1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP6399208B2 (ja) Co2濃度低減装置
JP5064600B2 (ja) ガス中の二酸化炭素の回収方法及び装置
CA2981718C (en) Method of adsorptive gas separation using thermally conductive contactor structure
Chang et al. Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems
Gholami et al. Induction heating as an alternative electrified heating method for carbon capture process
CN107106979B (zh) 一种用于空气净化的新型热催化氧化材料及其装置
Bellusci et al. Fe3O4@ HKUST-1 magnetic composites by mechanochemical route for induction triggered release of carbon dioxide
CN208986389U (zh) 一种高安全性高除湿高压开关柜
Bellusci et al. High porosity-magnetic composite materials for magnetic induction swing adsorption (MISA): Improvement of performance properties
Schoukens et al. Hybrid induction vacuum swing adsorption, a rapid and fully electrified carbon capture process
TWI278341B (en) Regeneration process for electric current-conducting adsorbents loaded with organic substances
WO2018150583A1 (ja) 空調装置及び空調システム
JP2014014760A (ja) 揮発性有機化合物の濃縮回収方法及び装置
Yoshikawa et al. CO 2 concentration reducing device
TW201802402A (zh) 空調裝置、空調系統、二氧化碳的去除方法、吸附劑及二氧化碳去除器
Ion et al. Modelling of thermal desorption of volatile organic compounds from activated carbon
US10315159B2 (en) Method of adsorptive gas separation using thermally conductive contactor structure
WO2018150582A1 (ja) 空調装置及び空調システム
CN206762589U (zh) 一种节能型分子筛电加热装置
TW201815465A (zh) 吸附劑、二氧化碳的去除方法、二氧化碳去除器及空調裝置
WO2024171532A1 (ja) ガス吸脱着ユニット、ガス吸脱着装置及び磁性体の製造方法
JPH11179139A (ja) 有機ガス処理装置
JP4912379B2 (ja) 流体処理装置及びこれを備えた冷蔵庫
JP5361461B2 (ja) 除湿システム
Paul et al. REGENERATION PERFORMANCE ANALYSIS OF A MULTILAYER DESICCANT DEHUMIDIFICATION SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507621

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2973462

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016768266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15546814

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016768266

Country of ref document: EP