WO2010128599A1 - ハイブリッド吸着剤及びガス中の二酸化炭素の回収方法 - Google Patents
ハイブリッド吸着剤及びガス中の二酸化炭素の回収方法 Download PDFInfo
- Publication number
- WO2010128599A1 WO2010128599A1 PCT/JP2010/003163 JP2010003163W WO2010128599A1 WO 2010128599 A1 WO2010128599 A1 WO 2010128599A1 JP 2010003163 W JP2010003163 W JP 2010003163W WO 2010128599 A1 WO2010128599 A1 WO 2010128599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- adsorbent
- hybrid
- gas
- hybrid adsorbent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
- B01J20/0229—Compounds of Fe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/183—Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
- B01J20/28007—Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/2803—Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3433—Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3441—Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/304—Linear dimensions, e.g. particle shape, diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40088—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
- B01D2259/40094—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by applying microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to a hybrid adsorbent and a method for separating and recovering carbon dioxide from a carbon dioxide-containing gas such as blast furnace gas or combustion exhaust gas using the hybrid adsorbent.
- Carbon dioxide in the atmosphere is the main component of greenhouse gases that cause global warming. Therefore, it is thought that global warming can be greatly suppressed if carbon dioxide in the flue gas discharged from thermal power plants, etc. and carbon dioxide in the blast furnace gas of steelworks are separated and recovered, and this carbon dioxide can be fixed or effectively used. .
- Patent Document 1 As a method for separating and recovering carbon dioxide from a carbon dioxide-containing gas, a chemical absorption method using an amine-based absorbent and a physical adsorption method using an adsorbent have been put into practical use.
- a chemical absorption method using an amine was developed in the 1930s and put into practical use at a urea synthesis plant.
- Patent Document 1 when an aqueous solution of an alkanolamine such as monoethanolamine is used as the absorbing solution, this aqueous solution is likely to corrode the device, and therefore it is necessary to use an expensive corrosion-resistant steel device.
- high energy is required to desorb carbon dioxide from the absorbing solution.
- a pressure swing (PSA) method in which carbon dioxide is desorbed from the adsorbent by depressurization using a vacuum pump is widely used for small-scale apparatuses.
- this PSA method has a merit that it is a dry method, and therefore does not require a countermeasure against corrosion that is required in the chemical absorption method.
- the PSA method has a drawback of requiring high energy when desorbing carbon dioxide using a vacuum pump.
- Non-Patent Document 2 when a large-scale apparatus is used, the layer thickness of the packed bed in the apparatus becomes thick, and the pressure loss ⁇ P increases when carbon dioxide is desorbed. For this reason, the required ultimate vacuum (several kPa level) cannot be ensured in the upper part of the layer, and the amount of carbon dioxide recovered decreases. In addition, a high-performance vacuum pump is required to ensure the necessary ultimate vacuum above the layer. In this case, there arises a problem that the energy required for desorbing carbon dioxide further increases.
- Patent Document 2 when regenerated activated carbon used for water treatment such as industrial wastewater treatment, domestic wastewater treatment, and water treatment, solvent recovery or air purification, waste carbon is treated under microwave heating.
- a method of contacting with an activated carbon utilization gas such as water vapor is disclosed.
- the contents relating to the desorption of carbon dioxide are not disclosed, and the detailed contents relating to the microwave irradiation method are not disclosed.
- Patent Document 3 discloses that zeolite, activated carbon, or a mixture of zeolite and activated carbon is effective as an adsorbent.
- the method of desorbing the adsorbed carbon dioxide from the adsorbent is to reduce the pressure in the system (packed bed) and remove the carbon dioxide from the adsorbent.
- a pressure swing (PSA) method for desorbing carbon is generally used.
- PSA pressure swing
- TSA thermal swing
- the adsorbent is heated using heated carbon dioxide, the adsorbed carbon dioxide is desorbed from the adsorbent, and the adsorbent is cooled using a gas such as low-temperature nitrogen or air.
- the contained gas is circulated to adsorb carbon dioxide.
- the temperature increase and temperature decrease in the TSA method basically depends on heat transfer between the gas and the solid (adsorbent). Therefore, the TSA method has a problem that it takes longer time to desorb carbon dioxide than the PSA method.
- the present inventors have been able to carry out the carbon dioxide from the adsorbent more efficiently than the PSA method if the temperature increase and decrease can be performed in a short time in the TSA method. We thought that it could be desorbed. Therefore, as a result of intensive studies, the present inventors have found that carbon dioxide can be efficiently desorbed by irradiating microwaves during desorption of carbon dioxide (see Patent Document 3). However, in order to further reduce the carbon dioxide recovery cost, it is necessary to further reduce the energy required for desorption of carbon dioxide and further increase the amount of carbon dioxide recovered.
- an object of the present invention is to provide a method for recovering carbon dioxide in a gas that can reduce energy consumption as compared with conventional methods when desorbing carbon dioxide from an adsorbent by a physical adsorption method. .
- the present inventors believe that the above problem can be solved by using a hybrid adsorbent mixed with a substance that can easily absorb microwaves in the adsorbent as an adsorbent capable of further reducing the carbon dioxide recovery energy intensity. It was. Thus, as a result of intensive studies on this substance, the present inventors have found that nanoparticulate iron oxide is effective. That is, the present inventors have found that carbon dioxide can be desorbed with lower energy and the amount of carbon dioxide recovered can be increased by using a hybrid adsorbent in which nanoparticulate iron oxide is mixed in an adsorbent.
- the term “carbon dioxide recovery energy intensity” refers to the amount of energy required to recover unit mass (eg, 1 kg) of carbon dioxide. That is, the carbon dioxide recovery energy intensity is calculated by converting the amount of power of the irradiation microwave into the amount of power used and dividing this amount of power used by the mass of carbon dioxide desorbed.
- the gist of the present invention is as follows. (1)
- the hybrid adsorbent which concerns on 1 aspect of this invention contains the adsorbent which adsorb
- the mixing amount of the nanoparticulate iron oxide may be 0.1 mass% or more and 50 mass% or less.
- an average particle size of the nano-particle iron oxide may be 20 nm or more and 200 nm or less.
- an average particle size of the adsorbent may be not less than 0.5 ⁇ m and not more than 50 ⁇ m.
- the nano-particle iron oxide may contain at least one of magnetite, hematite, and wustite.
- the nano-particle iron oxide may be magnetite.
- the adsorbent may include at least one of activated carbon and crystalline zeolite.
- the adsorbent may be a crystalline zeolite represented by a chemical formula of Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ] ⁇ 276H 2 O. Good.
- the hybrid adsorbent described in (1) above may be used after being molded with a binder.
- carbon dioxide in the gas is adsorbed on the hybrid adsorbent according to any one of (1) to (9) above;
- the hybrid adsorbent is irradiated with microwaves to desorb the carbon dioxide adsorbed on the hybrid adsorbent from the hybrid adsorbent; and the carbon dioxide desorbed from the hybrid adsorbent is recovered.
- carbon dioxide can be separated and recovered from the carbon dioxide-containing gas at a lower cost and more efficiently than before.
- FIG. 1 is an explanatory diagram showing an example of a recovery apparatus for carrying out the carbon dioxide recovery method of the present invention.
- FIG. 2 is an example of a time schedule when two adsorption towers are used.
- the adsorbent used in the present invention is a substance that absorbs microwaves and generates heat effectively due to dielectric loss effect or conductive loss effect among adsorbents having carbon dioxide adsorption ability.
- the adsorbent preferably contains at least one of crystalline zeolite (A type, X type, Y type, mordenite (MOR) type, etc.) and activated carbon excellent in carbon dioxide adsorption ability.
- the adsorbent is more preferably a crystalline zeolite (molecular sieve 13X (MS-13X)) represented by a chemical formula of Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ] ⁇ 276H 2 O.
- This crystalline zeolite is effective as an adsorbent because it absorbs a large amount of carbon dioxide and easily absorbs microwaves.
- adsorbent for example, a powder having an average particle size of 0.5 ⁇ m or more and 50 ⁇ m or less can be used.
- the average particle diameter of this adsorbent is 1 micrometer or more and 10 micrometers or less.
- a hybrid adsorbent in which the adsorbent is mixed with nano-particle iron oxide is used.
- the nano-particle iron oxide mixed with the adsorbent contains at least one of magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ), and wustite (FeO).
- the nano-particle iron oxide is more preferably magnetite having magnetism. Since this magnetite easily absorbs microwaves, it is efficiently heated. Since wustite is a non-stoichiometric compound, the ratio of Fe to O is not exactly 1: 1.
- hybrid adsorbent used in the present specification is an adsorbent obtained by mixing an adsorbent such as the above-mentioned zeolite and the above-described nanoparticulate iron oxide.
- nanoparticle iron oxide used in the present specification is, for example, iron oxide produced by a physical vapor synthesis (PVS) method. This iron oxide has an average particle diameter of, for example, about 20 nm to 100 nm.
- the nano-particle iron oxide in the hybrid adsorbent has a particle diameter of 10 nm to 500 nm.
- the nanoparticulate iron oxide in the hybrid adsorbent preferably has an average particle diameter of 20 nm to 200 nm. More preferably, the average particle diameter of nanoparticulate iron oxide is 20 nm or more and 100 nm or less.
- This nanoparticulate iron oxide can be efficiently brought into contact with an adsorbent having an average particle size of about 0.5 ⁇ m to 50 ⁇ m, for example. Therefore, heat transfer from the iron oxide particles heated by absorbing the microwaves to the adsorbent is effectively performed.
- the mixing amount (blending amount) of the nano-particle iron oxide in the hybrid adsorbent is preferably 0.1 mass% to 50 mass%. If the mixing amount of nanoparticle iron oxide is 0.1 mass% or more, heat transfer from the nanoparticle iron oxide to the adsorbent can be sufficiently performed. Moreover, if the mixing amount of nanoparticle iron oxide is 50 mass% or less, the amount of carbon dioxide adsorbed by the adsorbent can be sufficiently secured. More preferably, the mixing amount of the nanoparticulate iron oxide is 2 mass% to 30 mass%.
- the adsorbent mixing amount in the hybrid adsorbent is preferably 50 mass% to 99.9 mass%.
- the hybrid adsorbent can also be used as a powder.
- a hybrid adsorbent is granulated (molded) into a spherical or pellet shape of about 2 mm to 5 mm using a binder such as clay in accordance with the gas flow rate to suppress pressure loss. ) Is preferable. Note that the amount of the binder is evaluated as an external number of the amount of the hybrid adsorbent.
- General iron oxide reagents can be produced by a liquid phase method.
- an iron oxide reagent is manufactured using the following method. That is, an alkali is added to an iron sulfate aqueous solution to obtain a cloudy solution containing iron hydroxide. An oxidizing gas is blown into the white turbid liquid to oxidize iron hydroxide to obtain a precipitate of iron oxide.
- a reagent for iron oxide can be produced by drying the precipitate after filtration and collection.
- the nano-particle iron oxide is produced by, for example, a physical vapor (Synthesis Vapor synthesis, PVS) method.
- iron metal vapor is generated by heating the raw metal iron, and this vapor is brought into contact with oxygen gas to form iron oxide (iron oxide) molecules and clusters.
- the nano-particle iron oxide is produced by instantaneously cooling the iron oxide in order to control the average particle diameter to about 20 nm, for example. Therefore, nanoparticulate iron oxide is produced by a completely different production method from a general iron oxide reagent. Therefore, the average particle diameter (diameter) of nanoparticulate iron oxide is 1 to 2 orders of magnitude smaller than the average particle diameter of general iron oxide reagents.
- the adsorption process, the cleaning process, the desorption process, and the cooling process are repeated to recover carbon dioxide.
- the switching valves V1 and V2 are open and the switching valves V3 to V5 are closed.
- a gas containing dehumidified carbon dioxide is introduced through a flow path 1 into a packed bed (not shown) filled with a hybrid adsorbent in the adsorption tower 2.
- carbon dioxide is preferentially adsorbed compared to other gases, and the gas that has not been adsorbed is discharged through the flow path 9.
- the flow path 6 is closed.
- the switching valve V1 is closed and the switching valve V4 is opened, and the flow path 1 is switched to the flow path 3. Furthermore, a part of the carbon dioxide already recovered is flowed from the product tank 7 into the adsorption tower 2 as a carrier gas, and impurity components such as nitrogen remaining in the adsorption tower 2 are discharged from the flow path 9.
- the switching valve V2 is closed and the switching valve V3 is opened to switch the flow path 9 to the flow path 6.
- the microwave adsorbed from the microwave oscillator 5 is irradiated to the hybrid adsorbent in the adsorption tower 2 through the waveguide 4 connected to the adsorption tower 2.
- the hybrid adsorbent irradiated with microwaves generates heat from the inside of the hybrid adsorbent due to the dielectric loss effect or the conductive loss effect, and thus is rapidly and uniformly heated.
- carbon dioxide adsorbed on the hybrid adsorbent is efficiently desorbed from the hybrid adsorbent.
- the carbon dioxide after desorption passes through the flow path 6 (at this time, the flow path 9 is closed) and is collected in the product tank 7.
- the switching valve V2 is opened again, the switching valve V3 is closed, and the flow path 6 is switched to the flow path 9. Further, the switching valve V4 is closed and the switching valve V5 is opened to switch the flow path 3 to the flow path 8. Furthermore, a cooling gas such as dried nitrogen or air is introduced from the flow path 8 to cool the hybrid adsorbent after desorption of carbon dioxide. After the cooling step, the switching valve V5 is closed and the switching valve V1 is opened to switch the flow path 8 to the flow path 1. Again, a gas containing carbon dioxide is introduced into the adsorption tower 2 through the flow path 1 to perform adsorption of carbon dioxide (adsorption process). In this way, the adsorption process, the cleaning process, the desorption process, and the cooling process are repeated.
- a cooling gas such as dried nitrogen or air
- FIG 2 shows an example of the time schedule when two adsorption towers are used.
- the desorption step microwave irradiation
- the cooling step the adsorption step, or the cleaning step (discharge of impurity components)
- the cleaning step discharge of impurity components
- the adsorption time is shorter than the desorption time, there may occur a time during which carbon dioxide cannot be adsorbed when carbon dioxide is recovered from continuously discharged gas such as combustion exhaust gas.
- a gas holder is provided in front of the adsorption tower (upstream of the gas flow) to adjust the gas introduction time.
- the method of the present invention can be applied to any gas as long as it contains carbon dioxide.
- combustion exhaust gas carbon dioxide concentration: about 15 vol.%)
- BFG Blast furnace gas
- hot blast furnace exhaust gas carbon dioxide concentration: about 25 vol.%
- combustion exhaust gas carbon dioxide concentration: about 15 vol.%
- BFG Blast furnace gas
- hot blast furnace exhaust gas carbon dioxide concentration: about 25 vol.%
- carbon dioxide concentration: about 25 vol.% Of a coal-fired power plant. It can be suitably applied to such a gas containing a relatively high concentration of carbon dioxide.
- the carbon dioxide concentration in the gas is 10 vol. % Or more is desirable.
- BFG having a high carbon dioxide concentration (about 20 vol.%) Or blast furnace hot-blast furnace exhaust gas (about 25 vol.%) is optimal.
- Carbon dioxide concentration is 10 vol. If it is less than%, the amount of carbon dioxide adsorbed per unit mass of the adsorbent decreases rapidly, and a large amount of adsorbent is required. Therefore, 10 vol. It is economically undesirable to recover carbon dioxide from a gas having a carbon dioxide concentration of less than%.
- zeolitic adsorbent zeolite
- zeolite has a strong affinity for water vapor, and therefore needs to be dehumidified to a dew point of about ⁇ 40 ° C. to ⁇ 60 ° C.
- activated carbon-based adsorbent has a weak affinity with water vapor, and therefore may be dehumidified to a dew point of about 10 ° C. to 20 ° C.
- pre-dry the hybrid adsorbent before introducing the gas into the adsorption tower.
- moisture can be removed by irradiating and heating microwaves while flowing dehumidified gas through the adsorbent.
- a hygrometer is provided at the outlet of the adsorption tower (downstream of the gas flow), and it can be determined that the hygrometer has been sufficiently dried beforehand by confirming that the humidity of the outlet gas has been lowered and stabilized.
- a wide range of frequencies from 300 MHz to 300 GHz can be used as the microwave frequency.
- the frequency band is limited by communication-related restrictions. That is, in Japan, a frequency of 2,450 MHz or 915 MHz is used. Furthermore, in the United States, a frequency of 5,800 MHz is also available.
- the number of waveguides 4 is one in the above description (FIG. 1). However, it is preferable to arrange a plurality of waveguides 4 in the adsorption tower according to the shape and dimensions of the packed bed. When the width of the filling layer is wide (in the case of a cylinder, the diameter of the filling layer is large), a plurality of waveguides 4 are arranged in the circumferential direction of the filling layer. It is preferable to arrange a plurality of waveguides 4 in the length direction.
- the packed bed may have any shape.
- the inner circumference of the adsorption tower is preferably 31.4 cm or less (when the packed bed is cylindrical, the inner diameter of the adsorption tower is 10 cm or less).
- the inner circumference of the adsorption tower is more preferably 15.7 cm or less (when the packed bed has a cylindrical shape, the inner diameter of the adsorption tower is 5 cm or less).
- the inner circumference of the adsorption tower is more than 31.4 cm, it is a problem in that microwaves do not easily reach the center of the packed bed, and heating in the packed bed tends to be uneven.
- the lower limit of the inner periphery of the adsorption tower is determined from the dimensions of the hybrid adsorbent. For example, when using a hybrid adsorbent formed into a spherical shape with a diameter of 0.2 cm, the cylindrical packed bed needs to have a diameter (1 cm) that is about five times the diameter of the adsorbent, so The minimum inner circumference is 3.14 cm. The smaller the inner circumference of the adsorption tower, the smaller the packed amount per unit length of the packed bed.
- the lower limit of the inner periphery of the adsorption tower is not determined from the efficiency of microwave irradiation and the heat removal efficiency.
- the adsorption temperature is preferably room temperature.
- the adsorption time is comprehensively determined from the performance of the hybrid adsorbent and the number of adsorption towers. Unlike adsorption, the higher the desorption temperature, the higher the desorption rate and desorption amount.
- a hybrid adsorbent including a zeolite adsorbent zeolite
- An optical fiber thermometer that is not affected by an electromagnetic field caused by microwave irradiation can be used for temperature measurement.
- microwave irradiation and microwave pause are alternately performed. Specifically, for example, microwave irradiation for 30 seconds and microwave irradiation pause for 30 seconds are alternately repeated five times.
- the desorption time, the microwave irradiation time, and the irradiation interval are comprehensively determined from the performance of the adsorbent, the microwave output, the arrangement of the waveguide, and the like.
- the outer wall of the adsorption tower holding the hybrid adsorbent is made of any one of SiO 2 , MgO, Si 3 N 4 , AlN, and BN.
- the above substance alone does not absorb microwaves (the temperature does not rise due to microwave irradiation) and has relatively good thermal conductivity (easy to be cooled even when heated). Therefore, the microwave can be efficiently absorbed by the adsorbent by using the above-described substance in the absorption tower.
- quartz glass can be used for SiO 2 .
- refractories manufactured by firing each material after molding each material can be used as MgO, Si 3 N 4 , AlN, and BN.
- the protrusion has a fin shape, a columnar shape, or a weight shape.
- carbon dioxide in a gas is adsorbed on a hybrid adsorbent obtained by mixing an adsorbent and nano-particle iron oxide. Furthermore, the hybrid adsorbent is irradiated with microwaves to desorb the adsorbed carbon dioxide from the hybrid adsorbent, and the desorbed carbon dioxide is recovered.
- the adsorbent is heated by convective heat transfer from the atmospheric gas to the adsorbent, so heat is released from the adsorbent during heating. I can't.
- the hybrid adsorbent itself generates heat, heat can be radiated from the adsorbent surface to the atmosphere gas to the outside.
- the nanoparticulate iron oxide in the hybrid adsorbent absorbs more microwaves, so the efficiency is further improved compared to the case where the adsorbent is used alone.
- Comparative Example 1 As a model gas for blast furnace gas and hot blast furnace exhaust gas, 20 vol. % Carbon dioxide and 80 vol. A mixed gas with% nitrogen was used. Further, in order to recover carbon dioxide from this mixed gas, a commercial molecular sieve 13X (MS-13X), which is zeolite, was used as an adsorbent. To clarify the effect of mixing nanoparticle iron oxide and adsorbent, which will be described later, this adsorbent is pressure-molded without using a binder such as clay, then pulverized, sized and adsorbed. A sample was prepared.
- MS-13X commercial molecular sieve 13X
- the carbon dioxide adsorption amount (CO 2 adsorption amount) was evaluated as the carbon dioxide adsorption rate (mass%). That is, the adsorption rate of carbon dioxide is calculated by dividing the mass of adsorbed carbon dioxide by the mass of the adsorbent filled. Thereafter, while the mixed gas was allowed to flow through the quartz pipe as it was, the adsorbent was irradiated with microwaves of 2,450 MHz and 200 W for 2 minutes to desorb the adsorbed carbon dioxide from the adsorbent. While measuring the carbon dioxide concentration in the exhaust gas, the carbon dioxide concentration was 20 vol. % Measured value of carbon dioxide and 20 vol.
- % Difference (increase in carbon dioxide concentration) was integrated to determine the amount of desorbed carbon dioxide.
- the amount of carbon dioxide desorbed (CO 2 desorption rate) was evaluated as the desorption rate (%). This desorption rate is calculated by dividing the mass of desorbed carbon dioxide by the mass of adsorbed carbon dioxide. Further, the energy intensity E is calculated by the following equation (1).
- E P ⁇ t / 60 / k P / Nx (1)
- the microwave irradiation power P is 200 W
- the microwave irradiation time is 2 min.
- the coefficient k P for converting the irradiated microwave power to the power consumption is 0.7.
- Nx is the mass (g) of desorbed carbon dioxide. Further, the temperature of the adsorbent was measured with a thermocouple.
- Example 1 Next, under the same conditions as in Comparative Example 1 except that a hybrid adsorbent in which 2.5 mass% of magnetite (Fe 3 O 4 ) nanoparticles having an average particle diameter of 80 nm is mixed with molecular sieve 13X is used as the adsorbent, Carbon dioxide adsorption and desorption were performed.
- the magnetite (Fe 3 O 4 ) nanoparticles were produced by a physical evaporation method using plasma.
- the carbon dioxide desorption rate of Example 1 was 28.6%, which was higher than the desorption rate of Comparative Example 1.
- the energy intensity of Example 1 was 7.3 kWh / kg-CO 2 , which was lower than the energy intensity of Comparative Example 1.
- Example 2 Carbon dioxide was adsorbed and desorbed under the same conditions as in Example 1 except that the mixing amount of magnetite (Fe 3 O 4 ) nanoparticles in the hybrid adsorbent was 5.0 mass%.
- the maximum temperature reached by the hybrid adsorbent of Example 2 increased from 55 ° C. to 64 ° C. in Comparative Example 1 and Example 1. Therefore, the desorption rate of carbon dioxide in Example 2 was 32.1%, which was further improved than the desorption rate in Example 1.
- the energy intensity of Example 2 was 5.8 kWh / kg-CO 2 , which was further lower than the energy intensity of Example 1.
- Example 3 Carbon dioxide was adsorbed and desorbed under the same conditions as in Example 1 except that the mixing amount of the magnetite (Fe 3 O 4 ) nanoparticles in the hybrid adsorbent was 10 mass%.
- the maximum reached temperature of the hybrid adsorbent of Example 3 increased from 55 ° C. to 75 ° C. in Comparative Example 1 and Example 1. Therefore, the desorption rate of carbon dioxide in Example 3 was 33.2%, which could be further improved than the desorption rate in Example 2.
- the energy basic unit of Example 3 was 5.4 kWh / kg-CO 2 , which was further lower than the energy basic unit of Example 2.
- Example 4 Carbon dioxide was adsorbed and desorbed under the same conditions as in Example 1 except that the mixing amount of magnetite (Fe 3 O 4 ) nanoparticles in the hybrid adsorbent was 15 mass%. As a result, as shown in Table 1, the maximum reached temperature of the hybrid adsorbent of Example 4 increased from 55 ° C. to 90 ° C. in Comparative Example 1 and Example 1. Therefore, the desorption rate of carbon dioxide in Example 4 was 36.6%, which could be further improved than the desorption rate in Example 3. In addition, the energy intensity of Example 4 was 5.0 kWh / kg-CO 2 , which was further lower than the energy intensity of Example 3.
- Example 5 Carbon dioxide was adsorbed and desorbed under the same conditions as in Example 1 except that the mixing amount of magnetite (Fe 3 O 4 ) nanoparticles in the hybrid adsorbent was 20 mass%.
- the maximum attainable temperature of the hybrid adsorbent of Example 5 increased from 55 ° C. to 121 ° C. in Comparative Example 1 and Example 1. Therefore, the desorption rate of carbon dioxide in Example 5 was 42.9%, which could be further improved than the desorption rate in Example 4.
- the energy basic unit of Example 5 was 4.7 kWh / kg-CO 2 , which was further lower than the energy basic unit of Example 4.
- Example 6 Under the same conditions as in Example 2 except that a hybrid adsorbent in which 5.0 mass% of hematite (Fe 2 O 3 ) nanoparticles having an average particle diameter of 40 nm is mixed with molecular sieve 13X is used as the adsorbent, carbon dioxide Adsorption and desorption were performed.
- the hematite (Fe 2 O 3 ) nanoparticles were produced by a physical vapor deposition method using plasma.
- Table 1 the desorption rate of carbon dioxide in Example 6 was improved as compared with the desorption rate in Comparative Example 1, but not as high as that in Example 2. It was.
- the energy basic unit of Example 6 fell rather than the energy basic unit of the comparative example 1, it did not fall as much as the energy basic unit of Example 2.
- Comparative Example 2 Adsorption and desorption of carbon dioxide were carried out under the same conditions as in Comparative Example 1 except that the microwave irradiation time was increased so that the maximum temperature of the adsorbent reached 64 ° C., which was the same as in Example 2. It was. Under the conditions of Comparative Example 2, only molecular sieve 13X was used as the adsorbent. As a result, as shown in Table 1, the maximum temperature reached in Comparative Example 2 was higher than the maximum temperature reached in Comparative Example 1, and the desorption rate of carbon dioxide was improved from the desorption rate of Comparative Example 1. .
- Example 3 Example 2 with the exception of using an adsorbent obtained by mixing molecular sieve 13X and a general magnetite (Fe 3 O 4 ) reagent (manufactured by Kanto Chemical Co., Ltd., deer grade 1, average particle size of about 3 ⁇ m) as the adsorbent. Under the same conditions, carbon dioxide was adsorbed and desorbed. As a result, as shown in Table 1, when compared with Examples 2 and 3 in which nanoparticle iron oxide having the same mass as Comparative Example 3 was mixed, both the desorption rate of carbon dioxide and the energy intensity of Comparative Example 3 were both It got worse. From this result, it can be understood that the desorption rate can be improved and the energy intensity can be efficiently reduced by mixing nanoparticle iron oxide in the adsorbent instead of the iron oxide reagent.
- a general magnetite (Fe 3 O 4 ) reagent manufactured by Kanto Chemical Co., Ltd., deer grade 1, average particle size of about 3 ⁇ m
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
本願は、2009年5月8日に、日本に出願された特願2009-113817号に基づき優先権を主張し、その内容をここに援用する。
アミンを用いる化学吸収法は、1930年代に開発され尿素合成プラントで実用化されている。しかし、特許文献1に示すように、吸収液としてモノエタノールアミン等のアルカノールアミンの水溶液を用いた場合、この水溶液が装置を腐食しやすいため、高価な耐食鋼の装置を用いる必要がある。また、特許文献1では、吸収液から二酸化炭素を脱離させるために高いエネルギーを必要とする。
本明細書で用いる用語「二酸化炭素回収エネルギー原単位」は、単位質量(例えば、1kg)の二酸化炭素を回収するために必要とされるエネルギー量を表す。すなわち、二酸化炭素回収エネルギー原単位は、照射マイクロ波の電力量を使用電力量に換算し、この使用電力量を脱離した二酸化炭素の質量で除して計算される。
(1)本発明の一態様に係るハイブリッド吸着剤は、二酸化炭素を吸着する吸着剤と;10nm以上500nm以下の平均粒子径を有するナノ粒子酸化鉄と;を含有する。
本発明で使用する吸着剤は、二酸化炭素吸着能を有する吸着剤のうち、マイクロ波を吸収して誘電損失効果または導電損失効果により効果的に発熱する物質である。
本明細書で用いる用語「ナノ粒子酸化鉄」は、例えば、物理蒸発(Physical Vapor Synthesis, PVS)法によって製造される酸化鉄である。この酸化鉄は、例えば、20nm~100nm程度の平均粒子径を有する。
本発明の実施形態では、例えば、図1に示すような回収装置を用いて、吸着工程と、洗浄工程と、脱離工程と、冷却工程とを繰り返し、二酸化炭素を回収する。
吸着工程では、切替弁V1及びV2が開状態かつ切替弁V3~V5が閉状態にある。この吸着工程では、除湿した二酸化炭素を含有したガスが流路1を通って吸着塔2内のハイブリッド吸着剤を充填した充填層(図示せず)に導入される。吸着塔2内では、他のガスに比べて二酸化炭素が優先的に吸着され、吸着されなかったガスは、流路9を通って排出される。この吸着工程では、流路6は、閉じられている。
冷却工程の後、切替弁V5を閉じ切替弁V1を開いて、流路8を流路1に切り替える。再度、二酸化炭素を含有したガスを流路1を通して吸着塔2内に導入し、二酸化炭素の吸着(吸着工程)を行う。このようにして、吸着工程と、洗浄工程と、脱離工程と、冷却工程とを繰り返す。
温度計測には、マイクロ波照射による電磁界の影響を受けない光ファイバー温度計を用いることができる。
外壁の外側からの間接外部加熱や加熱した流通ガスによる内部加熱のような従来技術では、雰囲気ガスから吸着剤への対流熱伝達により吸着剤が加熱されるため、加熱時に吸着剤から放熱することはできない。マイクロ波加熱の場合、ハイブリッド吸着剤自身が発熱するため、吸着材表面から雰囲気ガスへと外部への放熱を行うことができる。本発明では、ハイブリッド吸着剤中のナノ粒子酸化鉄が、より多くのマイクロ波を吸収するので、吸着剤を単独で用いた場合よりも、さらに効率が向上する。
高炉ガス及び熱風炉排ガスのモデルガスとして、20vol.%の二酸化炭素と80vol.%の窒素との混合ガスを使用した。また、この混合ガスから二酸化炭素を回収するために、吸着剤として、ゼオライトである市販のモレキュラーシーブ13X(MS-13X)を用いた。後述のナノ粒子酸化鉄と吸着剤との混合による効果を明確にするために、この吸着剤を粘土のようなバインダーを使用することなく加圧成型した後、粉砕し、整粒して、吸着試料を作製した。この吸着試料を石英製パイプに40g充填し、この石英製パイプ中に混合ガスを2L/minの流速で流し、混合ガス中の二酸化炭素を約40℃で吸着剤に飽和吸着させた。二酸化炭素が吸着剤に吸着されている間は、石英管からの排出ガス中の二酸化炭素の濃度が20vol.%未満に低下する。二酸化炭素が吸着剤に飽和吸着すると、再び排出ガス中の二酸化炭素の濃度が20vol.%に戻る。そのため、排出ガス中の二酸化炭素濃度を測定して、上述した二酸化炭素濃度の変化から飽和吸着を確認した。二酸化炭素の吸着量は、二酸化炭素濃度が20vol.に安定するまで、測定された二酸化炭素濃度の減少量を積算することにより求められる。この二酸化炭素の吸着量(CO2吸着量)は、二酸化炭素の吸着率(mass%)として評価した。すなわち、吸着した二酸化炭素の質量を充填した吸着剤の質量で割ることにより二酸化炭素の吸着率が計算される。その後、石英製パイプ中に混合ガスをそのまま流通させながら、2,450MHz、200Wのマイクロ波を吸着剤に2分間照射して、吸着された二酸化炭素を吸着剤から脱離させた。排出ガス中の二酸化炭素濃度を測定しながら、二酸化炭素濃度が20vol.%に安定するまで二酸化炭素濃度の測定値と20vol.%との差分(二酸化炭素濃度の増加量)を積算して、脱離した二酸化炭素の量を求めた。この脱離した二酸化炭素の量(CO2の脱離率)は、脱離率(%)として評価した。この脱離率は、脱離した二酸化炭素の質量を、吸着した二酸化炭素の質量で割ることにより計算される。さらに、エネルギー原単位Eは、下記(1)式により算出される。
E=P×t/60/kP/Nx・・・・・(1)
ここで、マイクロ波の照射電力Pは、200W、マイクロ波の照射時間は、2minである。また、照射マイクロ波電力を使用電力に換算するための係数kPは、0.7である。Nxは、脱離した二酸化炭素の質量(g)である。また、吸着剤の温度を熱電対で測定した。
次に、吸着剤としてモレキュラーシーブ13Xに80nmの平均粒子径を有するマグネタイト(Fe3O4)ナノ粒子を2.5mass%混合したハイブリッド吸着剤を用いる条件以外は、比較例1と同じ条件で、二酸化炭素の吸着及び脱離を行った。なお、このマグネタイト(Fe3O4)ナノ粒子は、プラズマを利用した物理蒸発法によって作製された。その結果、表1に示すように、実施例1の二酸化炭素の脱離率は、28.6%であり、比較例1の脱離率よりも向上することができた。また、実施例1のエネルギー原単位は、7.3kWh/kg-CO2であり、比較例1のエネルギー原単位よりも下げることができた。
ハイブリッド吸着剤中のマグネタイト(Fe3O4)ナノ粒子の混合量を5.0mass%にする条件以外は、実施例1と同じ条件で、二酸化炭素の吸着及び脱離を行った。その結果、表1に示すように、実施例2のハイブリッド吸着剤の最高到達温度は、比較例1及び実施例1における55℃から64℃まで上昇した。そのため、実施例2の二酸化炭素の脱離率は、32.1%であり、実施例1の脱離率よりも更に向上することができた。また、実施例2のエネルギー原単位は、5.8kWh/kg-CO2であり、実施例1のエネルギー原単位よりも更に下げることができた。
ハイブリッド吸着剤中のマグネタイト(Fe3O4)ナノ粒子の混合量を10mass%にする条件以外は、実施例1と同じ条件で、二酸化炭素の吸着及び脱離を行った。その結果、表1に示すように、実施例3のハイブリッド吸着剤の最高到達温度は、比較例1及び実施例1における55℃から75℃まで上昇した。そのため、実施例3の二酸化炭素の脱離率は、33.2%であり、実施例2の脱離率よりも更に向上することができた。また、実施例3のエネルギー原単位は、5.4kWh/kg-CO2であり、実施例2のエネルギー原単位よりも更に下げることができた。
ハイブリッド吸着剤中のマグネタイト(Fe3O4)ナノ粒子の混合量を15mass%にする条件以外は、実施例1と同じ条件で、二酸化炭素の吸着及び脱離を行った。その結果、表1に示すように、実施例4のハイブリッド吸着剤の最高到達温度は、比較例1及び実施例1における55℃から90℃まで上昇した。そのため、実施例4の二酸化炭素の脱離率は、36.6%であり、実施例3の脱離率よりも更に向上することができた。また、実施例4のエネルギー原単位は、5.0kWh/kg-CO2であり、実施例3のエネルギー原単位よりも更に下げることができた。
ハイブリッド吸着剤中のマグネタイト(Fe3O4)ナノ粒子の混合量を20mass%にする条件以外は、実施例1と同じ条件で、二酸化炭素の吸着及び脱離を行った。その結果、表1に示すように、実施例5のハイブリッド吸着剤の最高到達温度は、比較例1及び実施例1における55℃から121℃まで上昇した。そのため、実施例5の二酸化炭素の脱離率は、42.9%であり、実施例4の脱離率よりも更に向上することができた。また、実施例5のエネルギー原単位は、4.7kWh/kg-CO2であり、実施例4のエネルギー原単位よりも更に下げることができた。
吸着剤としてモレキュラーシーブ13Xに40nmの平均粒子径を有するヘマタイト(Fe2O3)ナノ粒子を5.0mass%混合したハイブリッド吸着剤を用いる条件以外は、実施例2と同じ条件で、二酸化炭素の吸着及び脱離を行った。なお、このヘマタイト(Fe2O3)ナノ粒子は、プラズマを利用した物理蒸着法によって作製された。その結果、表1に示すように、実施例6の二酸化炭素の脱離率は、比較例1の脱離率よりも向上することができたが、実施例2の脱離率ほど向上しなかった。また、実施例6のエネルギー原単位は、比較例1のエネルギー原単位よりも低下したが、実施例2のエネルギー原単位ほど低下しなかった。
マイクロ波照射の時間を長くして、吸着剤の最高到達温度を実施例2と等しい64℃となるようにした条件以外は、比較例1と同じ条件で、二酸化炭素の吸着及び脱離を行った。比較例2の条件では、吸着剤としてモレキュラーシーブ13Xのみを使用した。その結果、表1に示すように、比較例2の最高到達温度は、比較例1の最高到達温度よりも高くなり、二酸化炭素の脱離率は、比較例1の脱離率よりも向上した。しかしながら、脱離率の増加に対する投入エネルギーの増加割合が大きいため、比較例2のエネルギー原単位は、比較例1及び実施例2のエネルギー原単位よりも大きくなった。したがって、ナノ粒子酸化鉄を混合したハイブリッド吸着剤が、マイクロ波加熱による二酸化炭素の脱離に効果的であることがわかる。
吸着剤として、モレキュラーシーブ13Xと一般的なマグネタイト(Fe3O4)試薬(関東化学製、鹿1級、平均粒子径約3μm)とを混合した吸着剤を用いる条件以外は、実施例2と同じ条件で、二酸化炭素の吸着及び脱離を行った。その結果、表1に示すように、比較例3と同じ質量のナノ粒子酸化鉄を混合した実施例2及び3と比較すると、比較例3の二酸化炭素の脱離率及びエネルギー原単位は、ともに悪化した。この結果より、酸化鉄試薬ではなくナノ粒子酸化鉄を吸着剤に混合することにより、脱離率の向上及びエネルギー原単位の低減を効率的に行うことが可能であることがわかる。
2 吸着塔
3 流路
4 導波管
5 マイクロ波発振器
6 流路
7 製品タンク
8 流路
9 流路
Claims (10)
- 二酸化炭素を吸着する吸着剤と;
10nm以上500nm以下の平均粒子径を有するナノ粒子酸化鉄と;
を含有する
ことを特徴とするハイブリッド吸着剤。 - 前記ナノ粒子酸化鉄の混合量が、0.1mass%以上50mass%以下であることを特徴とする請求項1に記載のハイブリッド吸着剤。
- 前記ナノ粒子酸化鉄の平均粒子径が、20nm以上200nm以下であることを特徴とする請求項1に記載のハイブリッド吸着剤。
- 前記吸着剤の平均粒子径が、0.5μm以上50μm以下であることを特徴とする請求項1に記載のハイブリッド吸着剤。
- 前記ナノ粒子酸化鉄は、マグネタイト、ヘマタイト、ウスタイトの少なくとも一つを含むことを特徴とする請求項1に記載のハイブリッド吸着剤。
- 前記ナノ粒子酸化鉄は、マグネタイトであることを特徴とする請求項5に記載のハイブリッド吸着剤。
- 前記吸着剤は、活性炭、結晶性ゼオライトの少なくとも一つを含むことを特徴とする請求項1に記載のハイブリッド吸着剤。
- 前記吸着剤は、Na86[(AlO2)86(SiO2)106]・276H2Oの化学式で示される結晶性ゼオライトであることを特徴とする請求項7に記載のハイブリッド吸着剤。
- 結合材により成形して使用されることを特徴とする請求項1に記載のハイブリッド吸着剤。
- 請求項1~9のいずれか一項に記載のハイブリッド吸着剤に、ガス中の二酸化炭素を吸着させ;
前記ハイブリッド吸着剤にマイクロ波を照射して、前記ハイブリッド吸着剤に吸着されている前記二酸化炭素を前記ハイブリッド吸着剤から脱離させ;
前記ハイブリッド吸着剤から脱離した前記二酸化炭素を回収する;
ことを特徴とするガス中の二酸化炭素の回収方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080019758XA CN102413920A (zh) | 2009-05-08 | 2010-05-10 | 混合吸附剂及气体中的二氧化碳的回收方法 |
BRPI1014541A BRPI1014541A2 (pt) | 2009-05-08 | 2010-05-10 | adsorvente híbrido, método para capturar dióxido de carbono em um gás e equipamento para capturar dióxido de carbono em um gás |
JP2011512314A JP5064600B2 (ja) | 2009-05-08 | 2010-05-10 | ガス中の二酸化炭素の回収方法及び装置 |
US13/318,719 US8500856B2 (en) | 2009-05-08 | 2010-05-10 | Hybrid adsorbent method of capturing carbon dioxide in gas and apparatus for capturing carbon dioxide in gas |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009113817 | 2009-05-08 | ||
JP2009-113817 | 2009-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010128599A1 true WO2010128599A1 (ja) | 2010-11-11 |
Family
ID=43050107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003163 WO2010128599A1 (ja) | 2009-05-08 | 2010-05-10 | ハイブリッド吸着剤及びガス中の二酸化炭素の回収方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8500856B2 (ja) |
JP (1) | JP5064600B2 (ja) |
CN (1) | CN102413920A (ja) |
BR (1) | BRPI1014541A2 (ja) |
WO (1) | WO2010128599A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012250224A (ja) * | 2011-06-07 | 2012-12-20 | Nippon Steel & Sumitomo Metal Corp | ハイブリッド吸着剤及びガス中の二酸化炭素の回収方法 |
WO2013022521A1 (en) * | 2011-08-10 | 2013-02-14 | Praxair Technology, Inc. | Process for separating gases and adsorbent compositions used therein |
CN102949913A (zh) * | 2011-08-19 | 2013-03-06 | 杰智环境科技股份有限公司 | 二氧化碳捕捉装置及方法 |
JP2014506301A (ja) * | 2010-12-30 | 2014-03-13 | ウニーヴァラスィテッツ エコノミッツニィ ス ポズナーニョ | ナノ鉄型酸素除去剤 |
JP2014531562A (ja) * | 2011-08-31 | 2014-11-27 | エルジー・ハウシス・リミテッドLg Hausys,Ltd. | 複合ゲッター材を含む真空断熱材 |
JP2017058012A (ja) * | 2015-09-15 | 2017-03-23 | 三菱電機株式会社 | 真空断熱パネルおよびその製造方法、ガス吸着パック |
JP2019098220A (ja) * | 2017-11-29 | 2019-06-24 | 日本精工株式会社 | 二酸化炭素の回収・放出装置 |
WO2021117704A1 (ja) * | 2019-07-30 | 2021-06-17 | 田島 秀春 | 二酸化炭素濃度制御装置及び二酸化炭素吸収材 |
WO2022259929A1 (ja) * | 2021-06-07 | 2022-12-15 | 戸田工業株式会社 | 二酸化炭素の固体回収材及びその製造方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9283511B2 (en) | 2010-10-25 | 2016-03-15 | William Marsh Rice University | Composite materials for reversible CO2 capture |
US8915987B2 (en) * | 2011-11-29 | 2014-12-23 | Lawrence V. Dressler | Carbon dioxide absorption system |
US9597656B2 (en) | 2012-01-11 | 2017-03-21 | William Marsh Rice University | Porous carbon materials for CO2 separation in natural gas |
CA2860615A1 (en) | 2012-01-11 | 2013-07-18 | William Marsh Rice University | Composites for carbon dioxide capture |
US9205357B2 (en) | 2012-03-29 | 2015-12-08 | The Boeing Company | Carbon dioxide separation system and method |
US9156703B2 (en) * | 2012-03-30 | 2015-10-13 | The Boeing Company | System and method for producing carbon dioxide |
EP2885076B1 (en) | 2012-08-17 | 2020-11-11 | Biokol Lilliestråle & Co Kb | Methods for preparing magnetic activated carbon |
US9103549B2 (en) | 2012-08-23 | 2015-08-11 | The Boeing Company | Dual stream system and method for producing carbon dioxide |
US9777628B2 (en) | 2012-08-23 | 2017-10-03 | The Boeing Company | System and method for processing greenhouse gases |
CA2835993C (en) * | 2013-02-14 | 2017-10-03 | The Boeing Company | System and method for collecting carbon dioxide utilizing dielectric heating |
US9073001B2 (en) | 2013-02-14 | 2015-07-07 | The Boeing Company | Monolithic contactor and associated system and method for collecting carbon dioxide |
US9604849B2 (en) | 2013-08-13 | 2017-03-28 | William Marsh Rice University | Nucleophilic porous carbon materials for CO2 and H2S capture |
JP6107695B2 (ja) * | 2014-02-10 | 2017-04-05 | 日立化成株式会社 | 二酸化炭素回収装置及び二酸化炭素回収方法 |
US10005019B2 (en) * | 2014-02-21 | 2018-06-26 | Sharp Kabushiki Kaisha | Carbon dioxide concentration-controlling device and electronic apparatus |
WO2016027608A1 (ja) | 2014-08-20 | 2016-02-25 | シャープ株式会社 | 二酸化炭素濃度制御システムおよび二酸化炭素濃度制御装置 |
JP6330204B2 (ja) * | 2014-09-04 | 2018-05-30 | 本田技研工業株式会社 | 二酸化炭素回収装置 |
US9387430B2 (en) | 2014-11-19 | 2016-07-12 | Apache Corporation | Methods and systems of enhanced carbon dioxide recovery |
EP3287185A4 (en) * | 2015-03-26 | 2018-12-26 | Hitachi Chemical Company, Ltd. | Co2 concentration reducing device |
CN108069434B (zh) * | 2016-11-14 | 2020-09-04 | 中国科学院过程工程研究所 | 一种提硼的方法 |
CN111054098B (zh) * | 2018-10-17 | 2023-11-28 | 中国石油化工股份有限公司 | 一种用于含有酸性气体的溶剂的再生方法及装置 |
KR102331408B1 (ko) * | 2019-11-27 | 2021-11-26 | 한국항공우주연구원 | 공기 중 이산화탄소 제거 및 재생장치와 이를 이용하는 방법. |
EP3906995A1 (en) * | 2020-05-04 | 2021-11-10 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Adsorbent material on the basis of a metal-organic framework, method for the production and use of the same |
JP7394469B2 (ja) * | 2021-06-14 | 2023-12-08 | 龍祥 權 | 二酸化炭素回収装置及び二酸化炭素回収システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293501A (ja) * | 1993-04-06 | 1994-10-21 | Dowa Mining Co Ltd | フロンの分解法 |
JP2003070887A (ja) * | 2001-09-05 | 2003-03-11 | Otsuka Sangyo Interior Kk | 吸着消臭材および物 |
JP2006159102A (ja) * | 2004-12-08 | 2006-06-22 | Matsushita Electric Ind Co Ltd | 廃液の処理方法及び処理装置 |
JP2008273821A (ja) * | 2007-04-06 | 2008-11-13 | Nippon Steel Corp | ガス中の二酸化炭素の回収方法 |
JP2009082888A (ja) * | 2007-10-03 | 2009-04-23 | Panasonic Corp | 吸着素子および空調装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5143394A (en) | 1974-10-14 | 1976-04-14 | Mitsubishi Chem Ind | Katsuseitanno saiseihoho |
US4312641A (en) | 1979-05-25 | 1982-01-26 | Pall Corporation | Heat-reactivatable adsorbent gas fractionator and process |
JPS57184435A (en) * | 1981-05-07 | 1982-11-13 | Mitsubishi Heavy Ind Ltd | Adsorbent for adsorbing and desorbing gas |
DE19703068A1 (de) * | 1997-01-29 | 1998-07-30 | Dornier Gmbh | Verfahren zur thermischen Regeneration eines dielektrischen Adsorbers |
JP3044279B2 (ja) | 1997-05-01 | 2000-05-22 | 工業技術院長 | 簡易ガス吸着回収方法 |
CA2294477A1 (en) * | 1997-06-30 | 1999-01-07 | Sanyo Electric Co., Ltd. | Adsorbing device, deodorizing method and method of supplying high-concentration oxygen using the same |
CA2453094A1 (en) * | 2001-07-06 | 2003-01-16 | 3M Innovative Properties Company | Inorganic fiber substrates for exhaust systems and methods of making same |
US20050184062A1 (en) | 2002-03-27 | 2005-08-25 | Satoru Kobayashi | Method for regenerating adsorbent by heating |
JP2004202393A (ja) | 2002-12-25 | 2004-07-22 | Tokyo Electric Power Co Inc:The | 二酸化炭素の脱着方法 |
JP2004344703A (ja) | 2003-05-20 | 2004-12-09 | Mitsubishi Heavy Ind Ltd | 二酸化炭素の処理方法及び二酸化炭素処理装置 |
JP2006240966A (ja) | 2005-03-07 | 2006-09-14 | Research Institute Of Innovative Technology For The Earth | 排ガス中の二酸化炭素を吸収及び脱離して回収する方法 |
US7513921B1 (en) * | 2005-09-02 | 2009-04-07 | Hrl Laboratories, Llc | Exhaust gas filter apparatus capable of regeneration of a particulate filter and method |
-
2010
- 2010-05-10 WO PCT/JP2010/003163 patent/WO2010128599A1/ja active Application Filing
- 2010-05-10 US US13/318,719 patent/US8500856B2/en not_active Expired - Fee Related
- 2010-05-10 JP JP2011512314A patent/JP5064600B2/ja not_active Expired - Fee Related
- 2010-05-10 CN CN201080019758XA patent/CN102413920A/zh active Pending
- 2010-05-10 BR BRPI1014541A patent/BRPI1014541A2/pt not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293501A (ja) * | 1993-04-06 | 1994-10-21 | Dowa Mining Co Ltd | フロンの分解法 |
JP2003070887A (ja) * | 2001-09-05 | 2003-03-11 | Otsuka Sangyo Interior Kk | 吸着消臭材および物 |
JP2006159102A (ja) * | 2004-12-08 | 2006-06-22 | Matsushita Electric Ind Co Ltd | 廃液の処理方法及び処理装置 |
JP2008273821A (ja) * | 2007-04-06 | 2008-11-13 | Nippon Steel Corp | ガス中の二酸化炭素の回収方法 |
JP2009082888A (ja) * | 2007-10-03 | 2009-04-23 | Panasonic Corp | 吸着素子および空調装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014506301A (ja) * | 2010-12-30 | 2014-03-13 | ウニーヴァラスィテッツ エコノミッツニィ ス ポズナーニョ | ナノ鉄型酸素除去剤 |
JP2012250224A (ja) * | 2011-06-07 | 2012-12-20 | Nippon Steel & Sumitomo Metal Corp | ハイブリッド吸着剤及びガス中の二酸化炭素の回収方法 |
WO2013022521A1 (en) * | 2011-08-10 | 2013-02-14 | Praxair Technology, Inc. | Process for separating gases and adsorbent compositions used therein |
CN103857466A (zh) * | 2011-08-10 | 2014-06-11 | 普莱克斯技术有限公司 | 用于分离气体的方法以及其中所使用的吸附剂组合物 |
CN102949913A (zh) * | 2011-08-19 | 2013-03-06 | 杰智环境科技股份有限公司 | 二氧化碳捕捉装置及方法 |
JP2014531562A (ja) * | 2011-08-31 | 2014-11-27 | エルジー・ハウシス・リミテッドLg Hausys,Ltd. | 複合ゲッター材を含む真空断熱材 |
JP2017058012A (ja) * | 2015-09-15 | 2017-03-23 | 三菱電機株式会社 | 真空断熱パネルおよびその製造方法、ガス吸着パック |
JP2019098220A (ja) * | 2017-11-29 | 2019-06-24 | 日本精工株式会社 | 二酸化炭素の回収・放出装置 |
JP7043806B2 (ja) | 2017-11-29 | 2022-03-30 | 日本精工株式会社 | 二酸化炭素の回収・放出装置 |
WO2021117704A1 (ja) * | 2019-07-30 | 2021-06-17 | 田島 秀春 | 二酸化炭素濃度制御装置及び二酸化炭素吸収材 |
WO2022259929A1 (ja) * | 2021-06-07 | 2022-12-15 | 戸田工業株式会社 | 二酸化炭素の固体回収材及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20120048111A1 (en) | 2012-03-01 |
JPWO2010128599A1 (ja) | 2012-11-01 |
CN102413920A (zh) | 2012-04-11 |
BRPI1014541A2 (pt) | 2016-04-05 |
JP5064600B2 (ja) | 2012-10-31 |
US8500856B2 (en) | 2013-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5064600B2 (ja) | ガス中の二酸化炭素の回収方法及び装置 | |
JP5098762B2 (ja) | ガス中の二酸化炭素の回収方法 | |
Shan et al. | Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas | |
CN206500151U (zh) | 固体吸附剂的再生装置及应用该再生装置的吸附装置 | |
WO2006088083A1 (ja) | オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材 | |
CN106563428A (zh) | 固体吸附剂的再生装置及应用该再生装置的吸附装置 | |
KR101323108B1 (ko) | 수평방향으로의 마이크로웨이브 조사에 의한 허니컴 로터식 VOCs가스 제거 시스템 | |
CN103933854A (zh) | 一种有机废气的流化床吸脱附装置及方法 | |
CN107106965A (zh) | 空气清洁系统 | |
Yanase et al. | CO2 capture from ambient air by β-NaFeO2 in the presence of water vapor at 25–100° C | |
CN102166465B (zh) | 用于从气体物流中除去湿气的方法 | |
CN102145278B (zh) | 一种二氧化碳的吸附系统 | |
JP5682461B2 (ja) | ハイブリッド吸着剤及びガス中の二酸化炭素の回収方法 | |
Yang et al. | Granulation of Mn-based perovskite adsorbent for cyclic Hg0 capture from coal combustion flue gas | |
WO2010109477A2 (en) | A process for the preparation of molecular sieve adsorbent for the size/shape selective adsorption of carbon dioxide from its gaseous mixture with nitrogen | |
JP2014014760A (ja) | 揮発性有機化合物の濃縮回収方法及び装置 | |
Liping et al. | Effect of rare earth addition on Cu-Fe/AC adsorbents for phosphine adsorption from yellow phosphorous tail gas | |
CN108745295B (zh) | 一种硅氧烷吸附材料及其应用 | |
CN100336588C (zh) | 一种载硫活性炭的再生方法 | |
EP2767323B1 (en) | System and method for collecting carbon dioxide utilizing dielectric heating | |
US11305229B1 (en) | CO2 sorbent materials for advanced carbon capture technologies and dielectric barrier discharge (DBD) plasma based processes | |
CN107497185A (zh) | 一种升温反应处理的空气净化方法 | |
JP6089579B2 (ja) | 二酸化炭素吸着剤及びこれを用いた二酸化炭素回収装置並びに二酸化炭素の回収方法 | |
JP2012081412A (ja) | 溶剤脱水装置 | |
TWI405606B (zh) | A carbon dioxide adsorption system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080019758.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10772123 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011512314 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8448/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13318719 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10772123 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1014541 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1014541 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111104 |