WO2018150582A1 - 空調装置及び空調システム - Google Patents
空調装置及び空調システム Download PDFInfo
- Publication number
- WO2018150582A1 WO2018150582A1 PCT/JP2017/006172 JP2017006172W WO2018150582A1 WO 2018150582 A1 WO2018150582 A1 WO 2018150582A1 JP 2017006172 W JP2017006172 W JP 2017006172W WO 2018150582 A1 WO2018150582 A1 WO 2018150582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adsorbent
- gas
- air
- air conditioner
- flow path
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
Definitions
- the present invention relates to an air conditioner and an air conditioning system.
- the greenhouse gas examples include carbon dioxide (CO 2 ), methane (CH 4 ), and chlorofluorocarbons (CFCs and the like).
- CO 2 carbon dioxide
- CH 4 methane
- CFCs and the like chlorofluorocarbons
- carbon dioxide has the greatest influence, and construction of a method for removing carbon dioxide (for example, carbon dioxide discharged from thermal power plants, steelworks, etc.) is required.
- Carbon dioxide is known to affect sleepiness, physical condition of the human body, etc. (see Patent Documents 1 and 2).
- CO 2 concentration concentration of carbon dioxide in the room
- CO 2 reduction amount (CO 2 concentration in the chamber - external air CO 2 concentration) ⁇ ventilation
- Examples of a solution to the problem include a method of removing carbon dioxide by a chemical absorption method, a physical absorption method, a membrane separation method, an adsorption separation method, a cryogenic separation method, or the like.
- a method of separating and recovering carbon dioxide using a CO 2 adsorbent (hereinafter simply referred to as “adsorbent”) (CO 2 separation and recovery method) can be mentioned.
- CO 2 separation and recovery method CO 2 separation and recovery method
- zeolite is known as an adsorbent (see, for example, Patent Document 3 below).
- a fixed bed type adsorption tower in which the adsorbent is fixedly filled may be used.
- the larger the amount of adsorbent packed the greater the amount of CO 2 adsorbed and the better the CO 2 removal efficiency.
- the adsorbent is usually in a powder form, increasing the filling amount of the adsorbent increases the pressure loss when the adsorbent approaches the closest packed state and the gas to be treated flows. For this reason, conventionally, much energy has been required for the adsorption of CO 2 .
- the present invention has been made in view of the above circumstances, and an air conditioner that can suppress pressure loss when the gas to be treated flows through the adsorption tower and can adsorb CO 2 with low energy. It aims at providing an air-conditioning system provided with the said air-conditioner.
- the air conditioner according to one aspect of the present invention is used in an air-conditioning target space including a processing target gas containing carbon dioxide.
- a processing target gas containing carbon dioxide containing carbon dioxide.
- Such an air conditioner includes a fixed bed type adsorption tower in which a gas to be treated flows, and an adsorbent granule filled in an adsorbent filling section in the adsorption tower.
- the adsorbent adsorbs carbon dioxide when it comes into contact with the gas to be processed.
- the pressure loss when the gas to be treated flows through the adsorption tower can be suppressed, and more CO 2 is adsorbed with low energy. be able to.
- the reason why the pressure loss can be reduced in the air conditioner is presumed to be due to the use of a granulated product of adsorbent. That is, in the said air conditioner, since the granulated material of an adsorbent is used, it is guessed that the porosity of an adsorbent filling part increases and a pressure loss is reduced.
- the air conditioner As compared with the case of using as a powdered adsorbent, it is excellent in adsorption of CO 2.
- the reason why the air conditioner is excellent in CO 2 adsorption is that the adsorbents in the granulated material are in a state of being fixed to each other, and in the gap formed between the fixed adsorbents, the physical properties of CO 2 It is assumed that this is because adsorption occurs.
- the porosity of the adsorbent filling portion is 60 to 90%. In this aspect, the pressure loss when the gas to be treated flows can be further reduced, and the effect of the present invention tends to be remarkable.
- the adsorbent granulate comprises cerium oxide and a binder.
- cerium oxide has excellent adsorptivity for carbon dioxide (CO 2 adsorptivity) when the carbon dioxide concentration is 1000 ppm or less, particularly in a dry state where the gas to be treated does not contain a water component.
- the tendency to have an excellent adsorptivity to carbon dioxide (CO 2 adsorptivity) is particularly prominent when the gas to be treated is in a wet state containing a water component, and the concentration that is superior to other adsorbents is 1000 ppm. That's it.
- the air-conditioning apparatus tends to be excellent in carbon dioxide removal efficiency when used in a processing target space including such a processing target gas having a carbon dioxide concentration.
- cerium oxide has superior CO 2 adsorptivity compared to other adsorbents even when the gas to be treated contains water as described above. Therefore, a dehumidifying device is unnecessary and CO 2 can be removed more efficiently.
- the concentration of the gas to be treated is 5000 ppm or more but 5000 ppm or less. This is not something that will be rejected.
- the Building Standard Law stipulates that the indoor CO 2 concentration should be 1000 ppm or less.
- the carbon dioxide concentration (atmospheric carbon dioxide concentration) that can be achieved by treating the gas to be treated may be 5000 ppm or less, and 1000 ppm or less. There may be.
- An air conditioning system includes a plurality of the air conditioning devices.
- the untreated gas it is possible to suppress the pressure loss when flowing through the adsorption column, providing an air conditioning system comprising an air conditioning apparatus and the air-conditioning apparatus capable of adsorption of CO 2 at low energy
- the purpose is to do.
- FIG. 1 is a schematic diagram showing an air conditioning system according to an embodiment of the present invention.
- FIG. 2 is a partially enlarged cross-sectional view of an air conditioner according to an embodiment of the present invention.
- FIG. 3 is a view showing a photograph of a granulated product of an adsorbent used in one embodiment.
- FIG. 4 is a view showing a photograph of the granulated product of the adsorbent used in one embodiment.
- upstream or downstream means “upstream” or “downstream” in the flow direction of the gas to be processed.
- Drawing 1 is a mimetic diagram showing the air-conditioning system concerning this embodiment.
- the air conditioning system 100 according to the present embodiment includes a plurality of air conditioners 50 (air conditioners 50A and 50B) and a control device 19 that controls the plurality of air conditioners 50.
- the air conditioner 50 and the air conditioning system 100 according to the present embodiment are used to remove CO 2 in the air conditioning target space R including the processing target gas containing carbon dioxide (CO 2 ).
- the air conditioner 50 is connected to the adsorption tower 10, the adsorption tower 10 through which the gas to be treated flows, the flow path 2 that connects the blower 1 and the adsorption tower 10, and the adsorption tower 10.
- the flow path 3, the adsorbent granule 9, the control device 14, the heating device 15, the temperature detection device 16, the CO 2 concentration detection device 17, and the decompression device 18 are provided.
- the blower 1 is, for example, a blower.
- the air blower 1 is provided in the air conditioning target space R.
- the blower 1 is connected to the flow path 2 connected to the adsorption tower 10.
- the blower 1 supplies the processing target gas in the air conditioning target space R to the adsorption tower 10 by sending the processing target gas in the air conditioning target space R into the flow path 2.
- the blower 1 is electrically connected to the control device 14 and is controlled by the control device 14.
- the blower 1 may be an exhaust device such as an exhaust fan, for example. Further, when the gas to be processed is supplied to the adsorption tower 10 by natural convection, the blower 1 may not be used.
- the flow path 2 is a flow path through which the processing target gas flows from the blower 1 to the adsorption tower 10. One end of the flow path 2 is connected to the blower 1, and the other end of the flow path 2 is connected to the adsorption tower 10.
- the flow path 2 is provided with a manual valve 4a and an electromagnetic valve 5a.
- the electromagnetic valve 5 a is electrically connected to the control device 14 and is controlled by the control device 14.
- the flow rate of the processing target gas to the adsorption tower 10 can be adjusted by the manual valve 4a and the electromagnetic valve 5a.
- the manual valve 4a is not always necessary.
- the adsorption tower 10 is a fixed bed type adsorption tower. That is, the adsorption tower 10 is configured to come into contact with the gas to be treated in a state where the granulated material 9 of the adsorbent is fixedly filled.
- the adsorption tower 10 includes an adsorbent filling portion 11 filled with an adsorbent granulated material 9, a first space 12, and a second space 13.
- the adsorbent filling part 11 is a space filled with the granulated material 9 of the adsorbent.
- the processing target gas supplied to the adsorption tower 10 flows in the order of the adsorbent filling unit 11, the first space 12, and the second space 13.
- the adsorbent filling unit 11 is arranged on the most upstream side, the first space 12 is arranged on the downstream side of the adsorbent filling unit 11, and the second space 13 is the first space 13. It is arranged on the downstream side of the space 12.
- a flow path 2 is connected to the upstream side of the adsorption tower 10, and a flow path 3 is connected to the downstream side of the adsorption tower 10.
- the adsorption tower 10 treats the gas to be treated supplied from the blower 1 through the flow path 2 in the adsorbent filling unit 11, and then removes the treated gas (CO 2) through the flow path 3. Gas to be processed) is supplied to the air conditioning target space R.
- the flow path 3 is a flow path for supplying the gas processed in the adsorption tower 10 to the air conditioning target space R.
- One end of the flow path 3 is connected to the adsorption tower 10, and the other end of the flow path 3 is disposed in the air conditioning target space R and opened to the air conditioning target space R.
- the flow path 3 includes a flow path 3 a connected to the adsorption tower 10, and a flow path 3 b and a flow path 3 c that are bifurcated from the flow path 3 a and opened to the air conditioning target space R.
- the open ends of the flow path 3b and the flow path 3c may be disposed at any position as long as they are disposed in the air conditioning target space R.
- the open end of the flow path 3c in the air conditioner 50 (50A) is directed to the adsorbent filling unit 11 in the air conditioner 50 (50B).
- the open end of the flow path 3c in the air conditioner 50 (50B) is directed to the adsorbent filling unit 11 in the air conditioner 50 (50A). That is, the flow path 3 c is configured so that the gas flowing out from the flow path 3 c of one air conditioner 50 contacts the outer wall of the adsorbent filling unit 11 in the other air conditioner 50.
- the flow path 3 is provided with a manual valve 4b and an electromagnetic valve 5b.
- the electromagnetic valve 5b is provided in the flow path 3a.
- the manual valve 4b is provided at a branching portion that branches from the flow path 3a to the flow path 3b and the flow path 3c.
- the electromagnetic valve 5 b is electrically connected to the control device 14 and is controlled by the control device 14.
- the flow rate of the gas flowing out from the adsorption tower 10 can be adjusted by the electromagnetic valve 5b, and the distribution ratio of the flow rate of the gas flowing out to the flow path 3b and the flow path 3c is adjusted by the manual valve 4b. be able to.
- the flow path 3 may include a flow path that is opened to a space (outside air) outside the air conditioning target space R in addition to the flow path 3b and the flow path 3c, or instead of the flow path 3b or the flow path 3c. Good. Moreover, the flow path 3 does not need to be provided with either the flow path 3b or the flow path 3c. In this case, the manual valve 4b is unnecessary.
- the installation place of the adsorption tower 10 is not specifically limited.
- the first space 12 is located downstream of the second space 13 in the flow direction of the processing target gas, but is not limited thereto.
- the first space 12 and the second space 13 may exist as the same space without being distinguished.
- FIG.3 and FIG.4 is a figure which shows the granulated material of an adsorbent.
- FIG. 3 shows a granulated product of the adsorbent having a particle size of 3 mm
- FIG. 4 shows a granulated product of the adsorbent having a particle size of 2 mm.
- the adsorbent granulated product 9 is formed by granulating the adsorbent with a binder. That is, the granulated product 9 includes an adsorbent and a binder.
- “granulation” means that a plurality of powdery adsorbents are bound together by a binder and integrated.
- the amount of CO 2 adsorbed decreases due to the presence of a binder in the granulated product.
- the adsorbent granule 9 is used.
- Adsorbent upon contact with the treatment target gas to adsorb CO 2, has a function to desorb the CO 2 adsorbed by the adsorbent to be heated.
- the adsorbent is cerium oxide.
- the adsorbent may be a porous body such as zeolite, activated carbon, or MOF (Metal Organic Frameworks), and those porous bodies filled with cerium oxide (for example, ceria) or these porous bodies are cerium oxidized. It may be coated with a material, or may be a ceria porous material (porous material made of cerium oxide) modified or filled with an amine.
- the binder may be, for example, a resin that binds to cerium oxide by heat treatment, or a filler having a functional group that can bind to cerium oxide such as a silanol group (for example, alumina, silica, or the like).
- the shape and size of the adsorbent granules, as well as the shape, size, and specific surface area of the adsorbent, are the required reaction rate, pressure loss, adsorption amount of adsorbent, gas adsorbed on the adsorbent (adsorption gas ) And the like (CO 2 purity).
- the shape of the granulated product of the adsorbent may be a granular sphere, and may be a pellet shape, a honeycomb shape, or the like.
- the particle size of the adsorbent granule is, for example, from 100 ⁇ m to 10 mm, from 750 ⁇ m to 10 mm, or from 3 mm to 5 mm from the viewpoint of easily setting the porosity of the adsorbent filling portion within the above range.
- the adsorbent may be in the form of a powder having a particle size of 1 ⁇ m to 100 ⁇ m, for example.
- the particle size of the granulated product of the adsorbent and the particle size of the adsorbent mean a particle size distribution specified from an average diameter measured by a metal microscope or a mesh size obtained by a sieve.
- the porosity of the adsorbent granule is, for example, 77 to 84% from the viewpoint of making it difficult for pressure loss to decrease during CO 2 adsorption.
- the specific gravity may be obtained by placing the adsorbent granule in a container of known capacity and measuring the weight.
- the true density of the adsorbent granule is the physical property of the components contained in the adsorbent granule.
- the adsorbent granulation method includes, for example, methods such as thermocompression bonding, extrusion processing, mold transfer, and spray drying.
- the adsorbent is cerium oxide, particularly in a dry state where the gas to be treated does not contain a water component, excellent adsorbability for carbon dioxide (CO 2 adsorption) when the carbon dioxide concentration is 1000 ppm or less. Tend to have a sex). The tendency to have excellent adsorptivity to carbon dioxide (CO 2 adsorptivity) is particularly noticeable when the gas to be treated contains a water component, and the concentration that is superior to other adsorbents is 1000 ppm or more. Become. The present inventors speculate that the reason why CO 2 can be efficiently removed as compared with other adsorbents is as follows.
- cerium oxide When cerium oxide is used as the adsorbent, CO 2 is not physically adsorbed on the surface of the adsorbent (cerium oxide), but CO 2 is adsorbed on the surface of the adsorbent (cerium oxide) by a chemical bond. Conceivable. In this case, the CO 2 partial pressure dependency in adsorption to the adsorbent is reduced. Therefore, in the dry state, when the CO 2 concentration of the gas to be processed is 1000 ppm or less, it becomes more advantageous than other adsorbents (adsorbents that physically adsorb CO 2 ), and CO 2 can be efficiently adsorbed. It is guessed.
- the gas to be treated contains a water component
- the CO 2 concentration of the gas to be treated is 1000 ppm or more
- the hydroxyl group of the water component Is considered to contribute greatly to chemical bonding and to efficiently adsorb CO 2 .
- adsorbents such as zeolite
- the gas to be treated contains water
- the CO 2 adsorptivity tends to be greatly reduced. Therefore, when an adsorbent such as zeolite is used, in order to improve the CO 2 adsorptivity of the adsorbent, it is necessary to perform a dehumidification step of removing moisture from the treatment target gas before bringing the treatment target gas into contact with the adsorbent.
- the dehumidifying step is performed using, for example, a dehumidifying device, which leads to an increase in equipment and an increase in energy consumption.
- cerium oxide is used as the adsorbent, even if the gas to be treated contains water, it has excellent CO 2 adsorption. Therefore, a dehumidifying device is unnecessary and CO 2 can be removed more efficiently.
- the adsorbent filling portion 11 is defined by the outer wall 40. That is, the adsorbent filling unit 11 is an internal space of the adsorption tower 10 defined by the outer wall 40.
- the outer wall 40 is made of a material having high thermal conductivity. Examples of such materials include simple metals such as iron, copper, and aluminum, and alloys such as stainless steel.
- the outer wall 40 includes an upper wall 40a, a bottom wall 40b, and a side wall 40c.
- the upper wall 40 a is located above the adsorbent filling unit 11.
- the bottom wall 40 b is located below the adsorbent filling part 11.
- the side wall 40 c is located on the side of the adsorbent filling part 11.
- the side wall 40c is connected to the peripheral edge of the upper wall 40a and the peripheral edge of the bottom wall 70b, and extends in the vertical direction.
- the upper wall 40a is configured to be removable.
- the upper wall 40a is provided with an outlet 43 through which the gas to be treated (untreated or treated gas) flows out.
- the bottom wall 40b is provided with an inlet 42 to which the flow path 2 is connected and into which the processing target gas flows.
- the processing target gas flows from the lower side to the upper side.
- a direction in which the gas to be processed flows in the adsorbent filling unit 11 is defined as a flow direction D1.
- the outlet 43 is connected to the first space 12, and the inlet 42 is connected to the flow path 2.
- the inflow port 42 is provided with a net (not shown) for preventing the adsorbent granulated material 9 from falling.
- the side wall 40c is provided with an opening for attaching the heating device 15 and the temperature detection device 16 to the adsorbent filling unit 11 (FIG. 2 shows the temperature detection device 16 and the temperature detection device 16 for simplification.
- the opening for connection is not shown.
- the inlet 42 since the adsorption tower 10 is designed assuming that the inlet 42 side is directed downward, the inlet 42 has a net part. However, when the outlet 43 side is directed downward, The net 43 may be provided at the outlet 43.
- the adsorbent filling portion 11 is filled with a granulated product 9 of the adsorbent.
- the pressure loss when the gas to be treated flows can be further reduced, and the porosity of the adsorbent filling portion 11 is 60 to 90% from the viewpoint that the effect of the present invention becomes significant.
- it is 75 to 85%, more preferably 77 to 84%.
- the heating device 15 includes a heating element 20, a wiring 21 that connects the heating element 20 to a power source (not shown), and a cover 22 that covers the wiring 21.
- the heating device 15 is, for example, a heater.
- the heat generating body 20 may be arrange
- the heating device 15 is electrically connected to the control device 14 and is controlled by the control device 14.
- the heating device 15 can heat the adsorbent filling unit 11 by causing the heating element 20 to generate heat, and can desorb CO 2 from the adsorbent.
- the heating element 20 is located on the upstream side in the flow direction D1 of the gas to be processed.
- the processing target gas flows from below to above, so that the heating element 20 is positioned below the adsorbent filling unit 11. Since the heat rises, the temperature rise of the entire adsorbent filling part 11 tends to be promoted efficiently.
- the downstream side of the adsorbent also becomes being heated by CO 2 desorbed from the upstream side of the adsorbent (CO 2 the heated state) tends to excellent energy efficiency during CO 2 desorption.
- the temperature detection device 16 is attached to the outer wall 40 (side wall 40c).
- the temperature detection device 16 is a temperature sensor, for example, and has a function of detecting the temperature in the adsorbent filling unit 11.
- the CO 2 concentration detector 17 is attached to the outer wall of the first space 12.
- the CO 2 concentration detection device 17 is a CO 2 sensor, for example, and has a function of detecting the CO 2 concentration of gas flowing out from the adsorbent filling unit 11.
- the decompression device 18 is attached to the outer wall of the second space 13.
- the decompression device 18 is, for example, a decompression pump, and has a function of decompressing the inside of the adsorbent filling unit 11.
- the decompression device 18 includes a flow path that is open to the outside air, and CO 2 desorbed from the adsorbent is discharged to the outside air via the decompression device 18.
- the decompression device 18 is electrically connected to the control device 14 and is controlled by the control device 14. Note that the decompression device 18 may not include a flow path that is open to the outside air. In this case, CO 2 desorbed from the adsorbent is discharged into the air conditioning target space R.
- the decompression device 18 is not always necessary.
- the air conditioner 50 may further include a flow path connected to the second space 13 and the outside air instead of the decompression device 18.
- the control device 14 is electrically connected to the electromagnetic valve 5 a, the electromagnetic valve 5 b, the blower 1, the heating device 15, the temperature detection device 16, the CO 2 concentration detection device 17, and the decompression device 18. Controller 14, for example, on the basis of the CO 2 concentration detected by the temperature and CO 2 concentration detection apparatus 17 detected by the temperature detecting device 16, the inflow of untreated gas to the adsorption tower 10, adsorbent-packed portion 11 (the temperature of the granulated product 9) and the pressure in the adsorbent filling unit 11 can be controlled.
- the air conditioner 50 configured as described above, it is possible to suppress a pressure loss when the gas to be treated flows through the adsorption tower, and it is possible to adsorb CO 2 with low energy.
- the air conditioner 50 can be suitably implemented in a sealed space where the CO 2 concentration needs to be managed.
- the space in which the CO 2 concentration needs to be managed include a building, a vehicle, an automobile, a space station, a submersible, a food or chemical production plant, and the like.
- the air conditioner 50 according to the present embodiment can be preferably implemented particularly in a space where the CO 2 concentration is limited to 5000 ppm or less (for example, a space where the density of people such as buildings and vehicles is high).
- the air conditioner 50 according to the present embodiment can be suitably implemented in a food or chemical product production plant or the like. .
- the air conditioner 50 can also be used for recovering CO 2 discharged from the adsorption tower 10 and reusing the recovered CO 2 in the field of using CO 2 .
- the air conditioner 50 can also be used for recovering CO 2 discharged from the adsorption tower 10 and reusing the recovered CO 2 in the field of using CO 2 .
- CO 2 enhances the CO 2 concentration 1000ppm level.
- the removal of CO 2 using the air conditioner is performed, for example, by repeatedly executing the adsorption mode, the desorption mode, and the cooling mode in this order. Specifically, first, the manual valve 4a is opened, and the manual valve 4b is operated so that the flow path 3a is connected to the flow path 3b and / or the flow path 3c, and then the adsorption mode is executed. In the adsorption mode, after the electromagnetic valve 5 a and the electromagnetic valve 5 b are opened by the control device 14, the process target gas starts to be blown from the blower 1, and the process target gas passes through the flow path 2 to the adsorption tower 10. To be supplied.
- the processing target gas supplied to the adsorption tower 10 flows into the adsorbent filling unit 11 and comes into contact with the adsorbent contained in the granulated product 9. Thereby, CO 2 contained in the gas to be processed is adsorbed by the adsorbent, and CO 2 is removed from the gas to be processed.
- the processing target gas from which CO 2 has been removed flows out from the outlet 43, then flows out from the adsorption tower 10 to the flow path 3 through the first space 12 and the second space 13, and passes through the flow path 3. It flows out into the air conditioning target space R. At this time, the first space 12, the CO 2 concentration detector 17, the CO 2 concentration of the gas flowing out of the adsorbent-packed portion 11 is detected.
- a signal is output from the CO 2 concentration detection device 17 to the control device 14.
- the electromagnetic valve 5a and the electromagnetic valve 5b are closed by a signal from the control device 14, the blowing of the processing target gas by the blower 1 is stopped.
- the desorption mode is executed.
- the desorption mode the adsorbent filling unit 11 is heated and the inside of the adsorbent filling unit 11 is decompressed to desorb CO 2 from the adsorbent. Tend to amount desorbed increases the CO 2 from the adsorbent higher temperature of the adsorbent tends to amount desorbed increases the CO 2 from all the more pressure is low adsorbent atmosphere present in the adsorbent .
- pressure reduction by the decompression device 18 is started by a signal from the control device 14, and heating of the adsorbent filling unit 11 by the heating device 15 is started.
- the temperature detection device 16 detects the temperature of the adsorbent filling unit 11 (the temperature of the granulated product 9).
- a signal is output from the temperature detection device 16 to the control device 14.
- heating by the heating device 15 is controlled by a signal from the control device 14.
- the CO 2 concentration detector 17 to the controller 14 signals is issued, by a signal from the controller 14, Heating by the heating device 15 is stopped.
- the gas containing CO 2 desorbed from the adsorbent is discharged from the decompression device 18 to the air conditioning target space R.
- the cooling mode is executed.
- cooling mode to cool the adsorbent, to adjust the temperature T 1 of the adsorbent material when contacting the untreated gas to the adsorbent in a subsequent adsorption mode.
- T 1 the temperature of the adsorbent material
- the cooling mode the adsorbent filling unit 11 detected by the temperature detector 16 (the temperature of the granulated product 9) is left in a state where the pressure is reduced by the pressure reducing device 18 until the temperature reaches a predetermined temperature.
- the control device 19 controls the air conditioning operation of the plurality of air conditioners 50 by controlling the control device 14 in each air conditioner 50.
- the control device 19 can adjust the air conditioning operations of the plurality of air conditioning devices 50 to be performed under the same condition or different conditions.
- the control device 19 may perform control so that the adsorption mode is executed in the other air conditioner 50 when the cooling mode is executed in the one air conditioner 50. In this case, by operating the manual valve 4b so that the gas discharged from the flow path 3c of the other air conditioner 50 is blown to the outer wall of the adsorbent filling unit 11 in the one air conditioner 50, the one air conditioner is operated. Cooling of the adsorbent at 50 can be facilitated.
- the air conditioning target space R includes a processing target gas containing carbon dioxide (CO 2 ).
- the gas to be treated is not particularly limited as long as it contains CO 2 and may contain gas components other than CO 2 .
- gas components other than CO 2 include water (water vapor, H 2 O), oxygen (O 2 ), nitrogen (N 2 ), carbon monoxide (CO), SOx, NOx, and volatile organic substances (VOC). It is done.
- Specific examples of the processing target gas include air in a room such as a building or a vehicle. When the gas to be treated contains water, carbon monoxide, SOx, NOx, volatile organic matter, etc., these gas components may be adsorbed by the adsorbent.
- the processing target gas preferably does not contain SOx, NOx, soot and the like.
- the gas to be treated contains impurities such as SOx, NOx, and dust (for example, when the gas to be treated is exhaust gas discharged from a coal-fired power plant or the like), for example, denitration is performed upstream of the adsorption tower 10.
- impurity removal apparatuses such as an apparatus, a desulfurization apparatus, and a dedusting apparatus.
- the impurities adsorbed on the adsorbent can be removed by heating the adsorbent, for example.
- the CO 2 concentration in the processing target gas may be 1000 ppm or less (0.1% by volume or less) based on the total volume of the processing target gas.
- the CO 2 concentration when the CO 2 concentration is in the above range, when cerium oxide is used as the adsorbent, CO 2 can be efficiently removed as compared with the case where another adsorbent is used. From the standpoint that the above-described effect due to the use of cerium oxide as the adsorbent becomes remarkable, the CO 2 concentration may be 750 ppm or less or 500 ppm or less based on the total volume of the gas to be treated.
- the CO 2 concentration may be 100 ppm or more, 200 ppm or more, or 400 ppm or more on the basis of the total volume of the gas to be treated from the viewpoint of easily increasing the amount of carbon dioxide removed. From these viewpoints, the CO 2 concentration may be 100 to 1000 ppm, 200 to 1000 ppm, 400 to 1000 ppm, or 400 to 750 ppm based on the total volume of the gas to be treated. It may be 400 to 500 ppm.
- the building environmental health management standards stipulate that the carbon dioxide concentration should be adjusted to 1000 ppm or less.
- the CO 2 concentration in the gas to be treated is not limited to the above range, and may be, for example, 500 to 5000 ppm, 750 to 5000 ppm, or 5000 ppm or more.
- the CO 2 concentration (atmospheric carbon dioxide concentration) that can be achieved by treating the gas to be treated may be 5000 ppm or less, or 1000 ppm or less.
- the dew point of the gas to be treated may be, for example, ⁇ 40 ° C. or more and 50 ° C. or less, 0 ° C. or more and 40 ° C. or less, or 10 ° C. or more and 30 ° C. or less.
- the dew point of the gas to be treated is in the above range, when cerium oxide is used as the adsorbent, the hydroxyl group on the surface of the cerium oxide tends to be increased and the reactivity with CO 2 tends to be increased.
- the relative humidity of the gas to be treated is preferably 100% or less (that is, no condensation occurs on the adsorbent), more preferably 0.1% or more and 90% or less, from the viewpoint of reducing energy consumption due to dehumidification. % To 80% is more preferable.
- the relative humidity is a relative humidity at 30 ° C., for example.
- the air conditioning apparatus, the air conditioning system, and the air conditioning target space in which the air conditioning apparatus and the air conditioning system are used have been described above.
- the air conditioning apparatus and the air conditioning system according to the present embodiment are limited to the above embodiments.
- the present invention is not intended to be modified and may be changed as appropriate without departing from the spirit of the invention.
- the air conditioning system 100 may be used in a plurality of air conditioning target spaces by connecting the adsorption towers 10 in the plurality of air conditioning apparatuses 50 to different air conditioning target spaces. Moreover, you may use the air conditioning system 100 in several air-conditioning object space by connecting the one adsorption tower 10 to several air-conditioning object space.
- the air conditioner 50 may include a humidity controller for adjusting the dew point and relative humidity of the gas to be treated; a humidity measuring device for measuring the humidity of the air conditioning target space; the above-described impurity removing device, and the like.
- the outer wall 40 may not have the upper wall 40a and may not have the bottom wall 40b.
- the outer wall 40 may be a box made up of a bottom wall 40b and a side wall 40c, or may be a cylinder made up of the side wall 40c.
- a net portion may be provided on the side wall 40c.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Central Air Conditioning (AREA)
- Gas Separation By Absorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
二酸化炭素を含有する処理対象ガスを含む空調対象空間Rに用いられる空調装置50であって、処理対象ガスが流通する固定床型の吸着塔10と、吸着塔10内の吸着材充填部11に充填された吸着材の造粒物9と、を備え、吸着材は、処理対象ガスに接触すると二酸化炭素を吸着する。
Description
本発明は、空調装置及び空調システムに関する。
近年、温室効果ガスの排出による地球温暖化が世界的な問題となっている。温室効果ガスとしては、二酸化炭素(CO2)、メタン(CH4)、フロン類(CFCs等)などが挙げられる。温室効果ガスの中でも二酸化炭素の影響が最も大きく、二酸化炭素(例えば、火力発電所、製鉄所等から排出される二酸化炭素)の除去方法の構築が求められている。
また、二酸化炭素は眠気、人体の体調等に影響を与えることが知られている(特許文献1及び2参照)。人の密度が高い空間(ビル、車輛等)においては、人の呼気により室内の二酸化炭素濃度(以下、場合により「CO2濃度」という)が上昇しやすく、労働安全衛生法の事務所衛生基準規則において室内のCO2濃度は、5000ppm以下に調整されるべきことが規定されている。そのため、CO2濃度が5000ppmを超過しないように換気することでCO2濃度を調整する場合がある。
室内空気と外気とを素早く換気するためには、ブロア等の送風装置を稼働させる必要がある。また、外から取り込む空気(外気)は温度及び湿度が調整されていないため、夏季には冷房を稼働させ、冬季には暖房を稼働させる必要がある。これらの理由から、室内のCO2濃度上昇は、空調に伴う消費電力の増加の要因となっている。
換気による室内の二酸化炭素の減少量(CO2減少量)は、下記式で表される。下記式において、左辺のCO2減少量が、人の呼気によるCO2増加量と同等であればCO2濃度を一定に保つことができる。
CO2減少量=(室内のCO2濃度-外気のCO2濃度)×換気量
CO2減少量=(室内のCO2濃度-外気のCO2濃度)×換気量
しかしながら、近年では、外気のCO2濃度が増加しているため、室内とのCO2濃度差が小さくなっている。そのため、CO2濃度を調整するために必要な換気量も増加している。今後、外気のCO2濃度が更に増加した場合、換気によるCO2濃度の調整では消費電力が増加すると考えられる。
前記課題は、外気との換気により生じるものである。そのため、換気以外の方法を用いて二酸化炭素を選択的に除去できれば、換気量を低減でき、結果として、空調に伴う消費電力を低減できる可能性がある。
また、空気の存在する外気から遮断された空間(宇宙ステーション、潜水艇等)においては、外気と室内空気との換気が困難であるため、換気以外の方法により二酸化炭素を選択的に除去する必要がある。
前記課題の解決策としては、例えば、化学吸収法、物理吸収法、膜分離法、吸着分離法、深冷分離法等により二酸化炭素を除去する方法が挙げられる。例えば、CO2吸着材(以下、単に「吸着材」という。)を用いて二酸化炭素を分離及び回収する方法(CO2分離回収法)が挙げられる。吸着材としては、例えば、ゼオライトが知られている(例えば、下記特許文献3参照)。
ところで、吸着材を用いて空調対象空間内のCO2の除去を行う場合、内部に吸着材が固定的に充填された、固定床型の吸着塔が用いられることがある。固定床型の吸着塔を用いる方法では、吸着材の充填量が多い程、CO2の吸着量が増加し、CO2の除去効率に優れる傾向がある。一方、通常、吸着材は粉状であるため、吸着材の充填量を増加させると、吸着材が最密充填状態に近づき、処理対象ガスが流通する際の圧力損失が高まる。このため、従来は、CO2の吸着に多くのエネルギーが必要となっていた。
本発明は、上記事情に鑑みてなされたものであり、処理対象ガスが吸着塔内を流通する際の圧力損失を抑えることができ、低エネルギーでCO2の吸着を行うことができる空調装置及び当該空調装置を備える空調システムを提供することを目的とする。
本発明の一側面に係る空調装置は、二酸化炭素を含有する処理対象ガスを含む空調対象空間に用いられる。かかる空調装置は、処理対象ガスが流通する固定床型の吸着塔と、吸着塔内の吸着材充填部に充填された吸着材の造粒物と、を備える。また、かかる空調装置において、吸着材は、処理対象ガスに接触すると二酸化炭素を吸着する。
上記空調装置では、粉状の吸着材をそのまま用いる場合と比較して、処理対象ガスが吸着塔内を流通する際の圧力損失を抑えることができ、低エネルギーでより多くのCO2を吸着することができる。上記空調装置において圧力損失を低減できる理由は、吸着材の造粒物を用いることに起因すると推察される。すなわち、上記空調装置では、吸着材の造粒物を用いるため、吸着材充填部の空隙率が高まり、圧力損失が低減されると推察される。また、上記空調装置では、粉状の吸着材をそのまま用いる場合と比較して、CO2の吸着性にも優れる。上記空調装置がCO2の吸着性に優れる理由は、造粒物中の吸着材が相互に固着した状態で存在しており、固着した吸着材同士の間に形成された間隙においてCO2の物理吸着が起こるためであると推察される。
一態様において、吸着材充填部の空隙率は60~90%である。本態様では、処理対象ガスが流通する際の圧力損失を更に低減することができ、本願発明の効果が顕著となる傾向がある。
一態様において、吸着材の造粒物はセリウム酸化物及びバインダーを含む。セリウム酸化物は、他の吸着材と比較して、特に処理対象ガスが水成分を含まない乾燥状態では、二酸化炭素濃度が1000ppm以下である場合に二酸化炭素に対する優れた吸着性(CO2吸着性)を有する傾向がある。二酸化炭素に対する優れた吸着性(CO2吸着性)を有する傾向は、処理対象ガスが水成分を含む湿った状態である場合特に顕著となり、他の吸着材と比較して優位となる濃度は1000ppm以上となる。そのため、本態様に係る空調装置は、このような二酸化炭素濃度の処理対象ガスを含む処理対象空間で用いられる場合に二酸化炭素の除去効率に優れる傾向がある。また、セリウム酸化物は、他の吸着材と比較して、前述したように処理対象ガスが水を含有する場合であっても、優れたCO2吸着性を有する。そのため、除湿装置が不要であり、より効率的にCO2を除去することができる。
前述したように、労働安全衛生法の事務所衛生基準規則において室内のCO2濃度は、5000ppm以下に調整すべきとあるため、処理対象ガスの濃度は、5000ppm以上であるが、5000ppm以下であることを必ず退けるものではない。建築基準法では室内のCO2濃度を1000ppm以下とすべきことが定められている。本発明の吸着材では、外気の導入を少なくして、これらを実現することが可能である。このため、一態様において、処理対象ガスを処理して(処理対象ガスから二酸化炭素を回収して)達成できる二酸化炭素濃度(雰囲気二酸化炭素の濃度)は、5000ppm以下であってよく、1000ppm以下であってもよい。
本発明の一側面に係る空調システムは、上記空調装置を複数備える。
本発明によれば、処理対象ガスが吸着塔内を流通する際の圧力損失を抑えることができ、低エネルギーでCO2の吸着を行うことができる空調装置及び当該空調装置を備える空調システムを提供することを目的とする。
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。本明細書において、「上流」又は「下流」とは、処理対象ガスの流通方向における「上流」又は「下流」を意味する。
<空調装置及び空調システム>
図1は、本実施形態に係る空調システムを示す模式図である。本実施形態に係る空調システム100は、複数の空調装置50(空調装置50A及び空調装置50B)と、複数の空調装置50を制御する制御装置19と、を備えている。本実施形態に係る空調装置50及び空調システム100は、二酸化炭素(CO2)を含有する処理対象ガスを含む空調対象空間RにおいてCO2を除去するために用いられる。
図1は、本実施形態に係る空調システムを示す模式図である。本実施形態に係る空調システム100は、複数の空調装置50(空調装置50A及び空調装置50B)と、複数の空調装置50を制御する制御装置19と、を備えている。本実施形態に係る空調装置50及び空調システム100は、二酸化炭素(CO2)を含有する処理対象ガスを含む空調対象空間RにおいてCO2を除去するために用いられる。
(空調装置)
まず、本実施形態に係る空調装置の構成ついて説明する。図1に示すように、空調装置50は、送風装置1と、処理対象ガスが流通する吸着塔10と、送風装置1と吸着塔10とを接続する流路2と、吸着塔10に接続された流路3と、吸着材の造粒物9と、制御装置14と、加熱装置15と、温度検出装置16と、CO2濃度検出装置17と、減圧装置18と、を備える。
まず、本実施形態に係る空調装置の構成ついて説明する。図1に示すように、空調装置50は、送風装置1と、処理対象ガスが流通する吸着塔10と、送風装置1と吸着塔10とを接続する流路2と、吸着塔10に接続された流路3と、吸着材の造粒物9と、制御装置14と、加熱装置15と、温度検出装置16と、CO2濃度検出装置17と、減圧装置18と、を備える。
送風装置1は、例えばブロワーである。送風装置1は、空調対象空間Rに設けられている。送風装置1は、吸着塔10に接続された流路2に接続されている。そして、送風装置1は、空調対象空間Rの処理対象ガスを流路2に送り込むことで、空調対象空間Rの処理対象ガスを吸着塔10に供給する。送風装置1は、制御装置14と電気的に接続されており、制御装置14により制御される。送風装置1は、例えば、排気ファン等の排気装置であってもよい。また、自然対流により処理対象ガスが吸着塔10へ供給される場合には、送風装置1を用いなくてもよい。
流路2は、送風装置1から吸着塔10に処理対象ガスが流通する流路である。流路2の一端は、送風装置1に接続されており、流路2の他端は、吸着塔10に接続されている。流路2には、手動バルブ4a及び電磁バルブ5aが設けられている。電磁バルブ5aは、制御装置14と電気的に接続されており、制御装置14により制御される。本実施形態では、手動バルブ4a及び電磁バルブ5aにより吸着塔10への処理対象ガスの流量を調整することができる。なお、手動バルブ4aは必ずしも必要ではない。
本実施形態に係る吸着塔10は、固定床型の吸着塔である。すなわち、吸着塔10は、吸着材の造粒物9が固定的に充填された状態で処理対象ガスと接触するように構成されている。吸着塔10は、吸着材の造粒物9が充填された吸着材充填部11と、第1の空間12と、第2の空間13と、を有する。吸着材充填部11は、吸着材の造粒物9が充填される空間である。吸着塔10に供給された処理対象ガスは、吸着材充填部11、第1の空間12、及び第2の空間13の順に流通する。つまり、処理対象ガスの流通方向において、吸着材充填部11は最も上流側に配置され、第1の空間12は吸着材充填部11の下流側に配置され、第2の空間13は第1の空間12の下流側に配置される。吸着塔10の上流側には、流路2が接続されており、吸着塔10の下流側には、流路3が接続されている。そして、吸着塔10は、流路2を介して送風装置1から供給された処理対象ガスを吸着材充填部11において処理した後、流路3を介して処理後のガス(CO2が除去された処理対象ガス)を空調対象空間Rに供給する。
流路3は、吸着塔10で処理されたガスを空調対象空間Rに供給する流路である。流路3の一端は、吸着塔10に接続されており、流路3の他端は、空調対象空間R内に配置されて空調対象空間Rに開放されている。具体的には、流路3は、吸着塔10に接続される流路3aと、流路3aから二分岐して空調対象空間Rに開放される流路3b及び流路3cと、により構成される。流路3b及び流路3cの開放端(流路3の他端)は、空調対象空間R内に配置されていれば如何なる位置に配置されていてもよい。本実施形態に係る空調システム100においては、空調装置50(50A)における流路3cの開放端は、空調装置50(50B)における吸着材充填部11に向けられている。同様に、空調装置50(50B)における流路3cの開放端は、空調装置50(50A)における吸着材充填部11に向けられている。すなわち、一方の空調装置50の流路3cから流出するガスが他方の空調装置50における吸着材充填部11の外壁に接触するように流路3cが構成されている。
また、流路3には、手動バルブ4b及び電磁バルブ5bが設けられている。電磁バルブ5bは、流路3aに設けられている。手動バルブ4bは、流路3aから流路3b及び流路3cに分岐する分岐部に設けられている。電磁バルブ5bは、制御装置14と電気的に接続されており、制御装置14により制御される。本実施形態では、電磁バルブ5bによって、吸着塔10から流出するガスの流量を調整することができ、手動バルブ4bによって、流路3b及び流路3cに流出するガスの流量の分配比率を調整することができる。流路3は、流路3b及び流路3cに加えて、又は、流路3b若しくは流路3cに代えて、空調対象空間R外の空間(外気)に開放される流路を備えていてもよい。また、流路3は流路3b又は流路3cの一方を備えていなくてもよい。この場合、手動バルブ4bは不要である。
なお、図1では、吸着塔10が空調対象空間Rに設置されているが、吸着塔10の設置場所は特に限定されない。また、図1では、第1の空間12が第2の空間13よりも処理対象ガスの流通方向における下流側に位置しているが、これに限定されない。例えば、第1の空間12と第2の空間13が区別されずに同一の空間として存在していてもよい。
図3及び図4は、吸着材の造粒物を示す図である。図3は、粒径が3mmの吸着材の造粒物を示し、図4は、粒径が2mmの吸着材の造粒物を示す。吸着材の造粒物9は、吸着材をバインダーによって造粒してなる。すなわち、造粒物9は、吸着材及びバインダーを含む。ここで、「造粒」とは、複数の粉状の吸着材をバインダーによって結着して一体化させることをいう。通常、固定床型の吸着塔において吸着材の造粒物を用いる場合、造粒物中のバインダーの存在によりCO2の吸着量が低下すると考えられており、固定床型の吸着塔を用いる場合には吸着材の造粒物は用いられていなかったが、本実施形態では、敢えて吸着材の造粒物9を用いている。
吸着材は、処理対象ガスに接触するとCO2を吸着し、加熱されると吸着材に吸着したCO2を脱着する機能を有する。本実施形態において、吸着材はセリウム酸化物である。セリウム酸化物としては、CeOx(x=1.5~2.0)等が挙げられ、具体的には、CeO2、Ce2O3等が挙げられる。なお、吸着材は、ゼオライト、活性炭、MOF(Metal Organic Frameworks)等の多孔体であってもよく、これらの多孔体にセリウム酸化物(例えばセリア)を充填したもの又はこれらの多孔体をセリウム酸化物で被覆したものであってもよく、セリア多孔体(セリウム酸化物からなる多孔体)にアミンを修飾又は充填したものなどであってもよい。バインダーは、例えば、熱処理によってセリウム酸化物と結着する樹脂、又は、シラノール基等のセリウム酸化物と結合し得る官能基を有するフィラー(例えば、アルミナ、シリカ等)であってよい。
吸着材の造粒物の形状及び大きさ、並びに吸着材の形状、大きさ及び比表面積は、必要となる反応速度、圧力損失、吸着材の吸着量、吸着材に吸着されるガス(吸着ガス)の純度(CO2純度)等を勘案して決定すればよい。例えば、吸着材の造粒物の形状は粒状の球体であってよく、ペレット状、ハニカム状等であってもよい。吸着材の造粒物の粒径は、吸着材充填部の空隙率を上記範囲内に設定しやすい観点から、例えば、100μm~10mmであり、750μm~10mm又は3mm~5mmであってもよい。吸着材は、例えば、粒径1μm~100μmの粉状であってよい。ここで、吸着材の造粒物の粒径及び吸着材の粒径とは、金属顕微鏡によって測定される平均直径、又は、篩によって得られるメッシュサイズから特定される粒度分布を意味する。
吸着材の造粒物における空隙率は、CO2の吸着時に圧力損失の低下を起こりにくくする観点から、例えば、77~84%である。空隙率は、「空隙率(%)=(1-比重(g/cm3)/吸着材の造粒物の真密度(g/cm3)×100」で表される。本実施形態では、例えば、既知容量の容器に吸着材の造粒物をいれて重量を測定することによって比重を得てよい。吸着材の造粒物の真密度は吸着材の造粒物に含まれる成分の物性値と吸着材の造粒物の組成から計算してよい。また、例えば、吸着材の造粒物の断面を金属顕微鏡、SEM等により観察した際に、断面の全面積に占める空隙部分の面積の割合を空隙率とすることができる。吸着材の造粒方法は、例えば、熱圧着、押し出し加工、型転写等の方法、スプレードライ法などが挙げられる。
本実施形態では、吸着材がセリウム酸化物であるため、特に処理対象ガスが水成分を含まない乾燥状態では、二酸化炭素濃度が1000ppm以下である場合に二酸化炭素に対する優れた吸着性(CO2吸着性)を有する傾向がある。二酸化炭素に対する優れた吸着性(CO2吸着性)を有する傾向は、処理対象ガスに水成分を含む湿った状態で特に顕著となり、他の吸着材と比較して優位となる濃度は1000ppm以上となる。このように他の吸着材と比較して、効率的にCO2を除去することができる理由は、以下の通りであると本発明者らは推察している。吸着材としてセリウム酸化物を用いる場合、CO2が吸着材(セリウム酸化物)の表面に物理吸着するのではなく、CO2が吸着材(セリウム酸化物)の表面に化学結合によって吸着されると考えられる。この場合、吸着材への吸着におけるCO2の分圧依存性が小さくなる。そのため、乾燥状態では、処理対象ガスのCO2濃度が1000ppm以下の場合に他の吸着材(CO2を物理吸着する吸着材)より有利となり、効率的にCO2を吸着することが可能であると推察される。また、処理対象ガスが水成分を含む湿った状態では、処理対象ガスのCO2濃度が1000ppm以上の場合に他の吸着材(CO2を物理吸着する吸着材)より有利となり、水成分の水酸基が化学結合に大きく寄与し、効率的にCO2を吸着することが可能であると推察される。
ところで、ゼオライト等の吸着材では、処理対象ガスが水を含有する場合にCO2吸着性が大幅に低下する傾向がある。そのため、ゼオライト等の吸着材を用いる場合、吸着材のCO2吸着性を向上させるためには、処理対象ガスを吸着材に接触させる前に処理対象ガスから水分を取り除く除湿工程を行う必要がある。除湿工程は、例えば、除湿装置を用いて行われるため、設備の増加及びエネルギー消費量の増加につながる。一方、本実施形態では、吸着材としてセリウム酸化物を用いるため、処理対象ガスが水を含有する場合であっても、優れたCO2吸着性を有する。そのため、除湿装置が不要であり、より効率的にCO2を除去することができる。
吸着材充填部11は、外壁40により画成されている。つまり、吸着材充填部11は、外壁40により画成される吸着塔10の内部空間である。外壁40は、熱伝導性の高い材料で構成されている。このような材料としては、例えば、鉄、銅、アルミ等の金属単体、ステンレス等の合金などが挙げられる。
外壁40は、上壁40aと、底壁40bと、側壁40cとによって構成されている。上壁40aは、吸着材充填部11の上方に位置する。底壁40bは、吸着材充填部11の下方に位置する。側壁40cは、吸着材充填部11の側方に位置する。側壁40cは、上壁40aの周縁部と底壁70bの周縁部とに接続されて、上下方向に延びる。上壁40aは、取り外し可能なように構成されている。上壁40aには、処理対象ガス(未処理又は処理後のガス)を流出させる流出口43が設けられている。底壁40bには、流路2が接続されて処理対象ガスを流入させる流入口42が設けられている。このため、吸着材充填部11では、処理対象ガスは下方から上方に流通する。吸着材充填部11において処理対象ガスが流通する方向を、流通方向D1とする。流出口43は、第1の空間12に接続されており、流入口42は、流路2に接続されている。流入口42には、吸着材の造粒物9の落下を防止するための網部(図示せず)が設けられている。側壁40cには、加熱装置15及び温度検出装置16を吸着材充填部11に取り付けるための開口が設けられている(図2には、簡略化のため、温度検出装置16及び温度検出装置16を接続するための開口は図示していない。)。なお、本実施形態では、流入口42側を下に向けることを想定して吸着塔10が設計されているため流入口42に網部を有するが、流出口43側を下に向ける場合には、流出口43に網部を設けてよい。
図2に示すように、吸着材充填部11には、吸着材の造粒物9が充填されている。本実施形態では、処理対象ガスが流通する際の圧力損失を更に低減することができると共に、本願発明の効果が顕著となる観点から、吸着材充填部11の空隙率は、60~90%であることが好ましく、75~85%であることがさらに好ましく、77~84%であることがより好ましい。
加熱装置15は、発熱体20と、発熱体20を電源(図示せず)に接続する配線21と、配線21を被覆するカバー22と、を有する。加熱装置15は、例えばヒータである。発熱体20は、吸着材充填部11の外に配置されてもよいが、本実施形態では、加熱効率の観点から、吸着材充填部11に配置される。加熱装置15は、制御装置14と電気的に接続されており、制御装置14により制御される。加熱装置15は、発熱体20を発熱させることで吸着材充填部11を加熱し、吸着材からCO2を脱着させることができる。本実施形態では、発熱体20は、処理対象ガスの流通方向D1における上流側に位置する。吸着材充填部11では、処理対象ガスが下方から上方に流通するため、発熱体20は、吸着材充填部11の下部に位置する。熱は上昇するため、効率的に吸着材充填部11全体の昇温が促進される傾向がある。また、下流側の吸着材が、上流側の吸着材から脱着したCO2(加熱された状態のCO2)によっても加熱されることとなり、CO2脱着時のエネルギー効率に優れる傾向がある。
温度検出装置16は、外壁40(側壁40c)に取り付けられている。温度検出装置16は例えば温度センサであり、吸着材充填部11内の温度を検出する機能を有する。
CO2濃度検出装置17は第1の空間12の外壁に取り付けられている。CO2濃度検出装置17は例えばCO2センサであり、吸着材充填部11から流出するガスのCO2濃度を検出する機能を有する。
減圧装置18は第2の空間13の外壁に取り付けられている。減圧装置18は例えば減圧ポンプであり、吸着材充填部11内を減圧する機能を有する。図1には示していないが、減圧装置18は、外気に開放された流路を備えており、吸着材から脱着されたCO2は減圧装置18を介して外気に排出される。減圧装置18は、制御装置14と電気的に接続されており、制御装置14により制御される。なお、減圧装置18は、外気に開放された流路を備えていなくてもよい。この場合、吸着材から脱着されたCO2は空調対象空間R内に排出される。減圧装置18は必ずしも必要ではない。空調装置50が減圧装置18を備えない場合、空調装置50は、減圧装置18に代えて、第2の空間13及び外気に接続される流路を更に備えていてもよい。
制御装置14は、電磁バルブ5a、電磁バルブ5b、送風装置1、加熱装置15、温度検出装置16、CO2濃度検出装置17及び減圧装置18と電気的に接続されている。制御装置14は、例えば、温度検出装置16によって検出される温度及びCO2濃度検出装置17によって検出されるCO2濃度に基づいて、吸着塔10への処理対象ガスの流入量、吸着材充填部11の温度(造粒物9の温度)、及び吸着材充填部11内の圧力を制御することができる。
以上のように構成された空調装置50を用いることにより、処理対象ガスが吸着塔内を流通する際の圧力損失を抑えることができ、低エネルギーでCO2の吸着を行うことができる。
空調装置50は、CO2濃度の管理が必要な密閉された空間において好適に実施することができる。CO2濃度の管理が必要な空間としては、例えば、ビル;車輛;自動車;宇宙ステーション;潜水艇;食品又は化学製品の製造プラント等が挙げられる。本実施形態に係る空調装置50は、特に、CO2濃度が5000ppm以下に制限される空間(例えば、ビル、車輛等の人の密度が高い空間)において好適に実施することができる。また、食品又は化学製品等の製造時においてCO2が悪影響を与える可能性があることから、本実施形態に係る空調装置50は、食品又は化学製品の製造プラント等において好適に実施することができる。また、空調装置50は、吸着塔10から排出されるCO2を回収し、CO2を利用する分野において、回収したCO2を再利用するために用いることもできる。例えば、温室栽培向けハウス等では、CO2濃度を高めることで植物の成長が促進されることから、CO2を利用してCO2濃度を1000ppmレベルに高める場合がある。
空調装置を用いたCO2の除去は、例えば、吸着モード、脱着モード及び冷却モードをこの順に繰り返し実行することによって行われる。具体的には、まず、手動バルブ4aを開状態とし、手動バルブ4bを操作して流路3aと流路3b及び/又は流路3cが接続された状態とした後に吸着モードが実行される。吸着モードでは、制御装置14によって、電磁バルブ5a及び電磁バルブ5bが開状態とされた後、送風装置1から処理対象ガスの送風が開始され、処理対象ガスが流路2を介して吸着塔10に供給される。吸着塔10に供給された処理対象ガスは吸着材充填部11に流入し、造粒物9に含まれる吸着材に接触する。これにより、処理対象ガスに含有されるCO2が吸着材に吸着され、処理対象ガスからCO2が除去される。CO2が除去された処理対象ガスは、流出口43から流出した後、第1の空間12、第2の空間13を通って吸着塔10から流路3へ流出し、流路3を通って空調対象空間Rに流出する。この際、第1の空間12では、CO2濃度検出装置17により、吸着材充填部11から流出したガスのCO2濃度が検出される。CO2濃度が所定濃度(例えば、処理対象ガスにおけるCO2濃度)に到達すると、CO2濃度検出装置17から制御装置14へ信号が出される。次いで、制御装置14からの信号によって、電磁バルブ5a及び電磁バルブ5bが閉状態とされた後、送風装置1による処理対象ガスの送風が停止される。
続いて、脱着モードが実行される。脱着モードでは、吸着材充填部11を加熱すると共に、吸着材充填部11内を減圧することにより、吸着材からCO2を脱着させる。吸着材の温度が高い程吸着材からのCO2の脱着量が多くなる傾向があり、吸着材の存在する雰囲気の全圧が低いほど吸着材からのCO2の脱着量が多くなる傾向がある。吸着モードでは、まず、制御装置14からの信号によって、減圧装置18よる減圧が開始され、加熱装置15による吸着材充填部11の加熱が開始される。これにより、吸着材からのCO2の脱着が開始される。この際、温度検出装置16により吸着材充填部11の温度(造粒物9の温度)が検出される。前記温度が所定温度T2に到達すると、温度検出装置16から制御装置14へ信号が出される。次いで、制御装置14からの信号によって、加熱装置15による加熱が制御される。一定時間が経過してCO2濃度検出装置17により検出されるCO2濃度が一定値を下回ると、CO2濃度検出装置17から制御装置14へ信号が出され、制御装置14からの信号によって、加熱装置15による加熱が停止される。これにより、脱着モードが終了する。吸着材から脱着したCO2を含むガスは、減圧装置18から空調対象空間Rへ排出される。
続いて、冷却モードが実行される。冷却モードでは、吸着材を冷却することで、続く吸着モードにおいて処理対象ガスを吸着材に接触させる際の吸着材の温度T1を調整する。温度T1が低いほど吸着材のCO2吸着量が多くなる傾向がある。冷却モードでは、温度検出装置16において検出される吸着材充填部11の温度(造粒物9の温度)が所定温度となるまで、減圧装置18による減圧が行われた状態で放置する。吸着材充填部11が前記所定温度まで冷却されると、減圧装置18による減圧が停止され、冷却モードが終了する。冷却モードの終了後は、再度吸着モードが実行される。以上のようにして、空調対象空間R内のCO2の除去が連続的に行われる。
(制御装置)
制御装置19は、各空調装置50における上述の制御装置14を制御することにより、複数の空調装置50の空調運転を制御する。例えば、制御装置19により、複数の空調装置50の空調運転を、互いに同じ条件又は異なる条件で行うように調整することができる。また、例えば、制御装置19により、一方の空調装置50において冷却モードが実行されている際に、他方の空調装置50で吸着モードが実行されるように制御してもよい。この場合、他方の空調装置50の流路3cから排出されるガスが、一方の空調装置50における吸着材充填部11の外壁に吹き付けられるように手動バルブ4bを操作することで、一方の空調装置50における吸着材の冷却を促進させることができる。
制御装置19は、各空調装置50における上述の制御装置14を制御することにより、複数の空調装置50の空調運転を制御する。例えば、制御装置19により、複数の空調装置50の空調運転を、互いに同じ条件又は異なる条件で行うように調整することができる。また、例えば、制御装置19により、一方の空調装置50において冷却モードが実行されている際に、他方の空調装置50で吸着モードが実行されるように制御してもよい。この場合、他方の空調装置50の流路3cから排出されるガスが、一方の空調装置50における吸着材充填部11の外壁に吹き付けられるように手動バルブ4bを操作することで、一方の空調装置50における吸着材の冷却を促進させることができる。
<空調対象空間>
空調対象空間Rは、二酸化炭素(CO2)を含有する処理対象ガスを含む。処理対象ガスは、CO2を含有するガスであれば特に限定されず、CO2以外のガス成分を含有していてもよい。CO2以外のガス成分としては、水(水蒸気、H2O)、酸素(O2)、窒素(N2)、一酸化炭素(CO)、SOx、NOx、揮発性有機物(VOC)等が挙げられる。処理対象ガスの具体例としては、ビル、車輛等の室内における空気が挙げられる。処理対象ガスが水、一酸化炭素、SOx、NOx、揮発性有機物等を含有する場合、これらのガス成分は吸着材に吸着される場合がある。吸着材にSOx、NOx、煤塵等が吸着した場合、吸着工程における吸着材のCO2吸着性が低下する可能性があるため、処理対象ガスはSOx、NOx、煤塵等を含有しないことが好ましい。処理対象ガスがSOx、NOx、煤塵等の不純物を含有する場合(例えば、処理対象ガスが、石炭火力発電所等から排出される排ガスである場合)、例えば、吸着塔10の上流側に、脱硝装置、脱硫装置、脱塵装置等の不純物除去装置を設置してよい。不純物除去装置によってあらかじめ不純物を除去することで、吸着材のCO2吸着性を保持しやすくなる。なお、吸着材に吸着した不純物は、例えば、吸着材を加熱することにより除去することもできる。
空調対象空間Rは、二酸化炭素(CO2)を含有する処理対象ガスを含む。処理対象ガスは、CO2を含有するガスであれば特に限定されず、CO2以外のガス成分を含有していてもよい。CO2以外のガス成分としては、水(水蒸気、H2O)、酸素(O2)、窒素(N2)、一酸化炭素(CO)、SOx、NOx、揮発性有機物(VOC)等が挙げられる。処理対象ガスの具体例としては、ビル、車輛等の室内における空気が挙げられる。処理対象ガスが水、一酸化炭素、SOx、NOx、揮発性有機物等を含有する場合、これらのガス成分は吸着材に吸着される場合がある。吸着材にSOx、NOx、煤塵等が吸着した場合、吸着工程における吸着材のCO2吸着性が低下する可能性があるため、処理対象ガスはSOx、NOx、煤塵等を含有しないことが好ましい。処理対象ガスがSOx、NOx、煤塵等の不純物を含有する場合(例えば、処理対象ガスが、石炭火力発電所等から排出される排ガスである場合)、例えば、吸着塔10の上流側に、脱硝装置、脱硫装置、脱塵装置等の不純物除去装置を設置してよい。不純物除去装置によってあらかじめ不純物を除去することで、吸着材のCO2吸着性を保持しやすくなる。なお、吸着材に吸着した不純物は、例えば、吸着材を加熱することにより除去することもできる。
処理対象ガスにおけるCO2濃度は、例えば、処理対象ガスの全体積基準で1000ppm以下(0.1体積%以下)であってよい。CO2濃度が上記範囲である場合、吸着材としてセリウム酸化物を用いると、他の吸着材を用いる場合と比較して効率的にCO2を除去することができる。吸着材としてセリウム酸化物を用いることによる上記効果が顕著となる観点から、CO2濃度は、処理対象ガスの全体積基準で、750ppm以下であってもよく、500ppm以下であってもよい。CO2濃度は、二酸化炭素の除去量が多くなりやすい観点から、処理対象ガスの全体積基準で、100ppm以上であってもよく、200ppm以上であってもよく、400ppm以上であってもよい。これらの観点から、CO2濃度は、処理対象ガスの全体積基準で、100~1000ppmであってもよく、200~1000ppmであってもよく、400~1000ppmであってもよく、400~750ppmであってもよく、400~500ppmであってもよい。建築物環境衛生管理基準において二酸化炭素濃度は、1000ppm以下に調整されるべきことが規定されている。処理対象ガスにおけるCO2濃度は、前記範囲に限られず、例えば、500~5000ppmであってもよく、750~5000ppmであってもよく、5000ppm以上であってもよい。
処理対象ガスを処理して(処理対象ガスから二酸化炭素を回収して)達成できるCO2濃度(雰囲気二酸化炭素の濃度)は、5000ppm以下であってよく、1000ppm以下であってもよい。
処理対象ガスの露点は、例えば、-40℃以上50℃以下であってよく、0℃以上40℃以下であってもよく、10℃以上30℃以下であってもよい。処理対象ガスの露点を上記範囲とすると、吸着材としてセリウム酸化物を用いる場合に、セリウム酸化物表面の水酸基を増加させ、CO2との反応性を高めることができる傾向がある。
処理対象ガスの相対湿度は、除湿によるエネルギー消費を低減する観点から、100%以下である(すなわち、吸着材上で結露しない)ことが好ましく、0.1%以上90%以下がより好ましく、10%以上80%以下が更に好ましい。前記相対湿度は、例えば30℃における相対湿度である。
以上、本実施形態に係る空調装置、空調システム、並びに、空調装置及び空調システムが用いられる空調対象空間について説明したが、本実施形態に係る空調装置及び空調システムは、前記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。
例えば、複数の空調装置50における吸着塔10をそれぞれ異なる空調対象空間に接続することで、空調システム100を複数の空調対象空間において用いてもよい。また、1つの吸着塔10を複数の空調対象空間に接続することで、空調システム100を複数の空調対象空間において用いてもよい。
また、空調装置50は、処理対象ガスの露点及び相対湿度を調整するための調湿器;空調対象空間の湿度を測定する湿度測定器;上述の不純物除去装置などを備えていてもよい。
また、外壁40は、上壁40aを有しなくてもよく、底壁40bを有しなくてもよい。例えば、外壁40は、底壁40bと側壁40cとからなる箱体であってよく、側壁40cからなる筒体であってもよい。外壁40が底壁40bを有しない場合は、側壁40cに網部を設ければよい。
9…吸着材の造粒物、10…吸着塔、11…吸着材充填部、50,50A,50B…空調装置、100…空調システム。
Claims (5)
- 二酸化炭素を含有する処理対象ガスを含む空調対象空間に用いられる空調装置であって、
前記処理対象ガスが流通する固定床型の吸着塔と、前記吸着塔内の吸着材充填部に充填された吸着材の造粒物と、を備え、
前記吸着材は、前記処理対象ガスに接触すると前記二酸化炭素を吸着する、空調装置。 - 前記吸着材充填部の空隙率が60~90%である、請求項1に記載の空調装置。
- 前記吸着材の造粒物がセリウム酸化物及びバインダーを含む、請求項1又は2に記載の空調装置。
- 前記処理対象ガスを処理して達成できる二酸化炭素濃度が5000ppm以下である、請求項3に記載の空調装置。
- 請求項1~4のいずれか一項に記載の空調装置を複数備える、空調システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019500161A JPWO2018150582A1 (ja) | 2017-02-20 | 2017-02-20 | 空調装置及び空調システム |
PCT/JP2017/006172 WO2018150582A1 (ja) | 2017-02-20 | 2017-02-20 | 空調装置及び空調システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/006172 WO2018150582A1 (ja) | 2017-02-20 | 2017-02-20 | 空調装置及び空調システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018150582A1 true WO2018150582A1 (ja) | 2018-08-23 |
Family
ID=63170207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/006172 WO2018150582A1 (ja) | 2017-02-20 | 2017-02-20 | 空調装置及び空調システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018150582A1 (ja) |
WO (1) | WO2018150582A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7226751B1 (ja) | 2022-04-19 | 2023-02-21 | 株式会社レブセル | 空気清浄機 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109737511A (zh) * | 2018-12-29 | 2019-05-10 | 深圳我氧你绿色科技有限公司 | 一种释放负离子抗菌除异味的家用空调口罩 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004223366A (ja) * | 2003-01-21 | 2004-08-12 | Panahome Corp | 球状吸放湿材とその製造方法、吸放湿ボールおよび吸放湿装置 |
JP2005021781A (ja) * | 2003-07-01 | 2005-01-27 | Toshiba Corp | 炭酸ガス吸収材、炭酸ガス吸収材の製造方法、炭酸ガスの吸収方法、炭酸ガス分離方法及び炭酸ガス分離装置 |
JP2012024648A (ja) * | 2010-07-20 | 2012-02-09 | Hitachi Ltd | 二酸化炭素捕捉材 |
US20150139887A1 (en) * | 2012-07-17 | 2015-05-21 | Antecy B.V. | Materials and process for reversible adsorption of carbon dioxide |
JP2016016369A (ja) * | 2014-07-09 | 2016-02-01 | 日立化成株式会社 | Co2除去装置及びco2除去方法 |
WO2016152363A1 (ja) * | 2015-03-26 | 2016-09-29 | 日立化成株式会社 | Co2濃度低減装置 |
JP2016179467A (ja) * | 2015-03-24 | 2016-10-13 | 東ソー株式会社 | ガスの脱水剤 |
-
2017
- 2017-02-20 JP JP2019500161A patent/JPWO2018150582A1/ja not_active Withdrawn
- 2017-02-20 WO PCT/JP2017/006172 patent/WO2018150582A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004223366A (ja) * | 2003-01-21 | 2004-08-12 | Panahome Corp | 球状吸放湿材とその製造方法、吸放湿ボールおよび吸放湿装置 |
JP2005021781A (ja) * | 2003-07-01 | 2005-01-27 | Toshiba Corp | 炭酸ガス吸収材、炭酸ガス吸収材の製造方法、炭酸ガスの吸収方法、炭酸ガス分離方法及び炭酸ガス分離装置 |
JP2012024648A (ja) * | 2010-07-20 | 2012-02-09 | Hitachi Ltd | 二酸化炭素捕捉材 |
US20150139887A1 (en) * | 2012-07-17 | 2015-05-21 | Antecy B.V. | Materials and process for reversible adsorption of carbon dioxide |
JP2016016369A (ja) * | 2014-07-09 | 2016-02-01 | 日立化成株式会社 | Co2除去装置及びco2除去方法 |
JP2016179467A (ja) * | 2015-03-24 | 2016-10-13 | 東ソー株式会社 | ガスの脱水剤 |
WO2016152363A1 (ja) * | 2015-03-26 | 2016-09-29 | 日立化成株式会社 | Co2濃度低減装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7226751B1 (ja) | 2022-04-19 | 2023-02-21 | 株式会社レブセル | 空気清浄機 |
JP2023158752A (ja) * | 2022-04-19 | 2023-10-31 | 株式会社レブセル | 空気清浄機 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018150582A1 (ja) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6603299B2 (ja) | 換気空調装置 | |
KR102511403B1 (ko) | 환기 공조 장치 | |
WO2018150583A1 (ja) | 空調装置及び空調システム | |
WO2018150582A1 (ja) | 空調装置及び空調システム | |
WO2017199599A1 (ja) | 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム | |
WO2017199920A1 (ja) | 空調装置、空調システム、二酸化炭素の除去方法、吸着剤及び二酸化炭素除去器 | |
US20190262795A1 (en) | Adsorbent, method for removing carbon dioxide, carbon dioxide remover, and air conditioner | |
WO2018003323A1 (ja) | 吸着剤及びその製造方法、二酸化炭素の除去方法、二酸化炭素除去器、並びに、空調装置 | |
JP2008253672A (ja) | Voc除去装置 | |
JP2018065069A (ja) | 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置 | |
WO2017199917A1 (ja) | 吸着剤及びその製造方法、二酸化炭素の除去方法、二酸化炭素除去器、並びに、空調装置 | |
JP2018065068A (ja) | 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置 | |
JP2018034088A (ja) | 吸着剤、二酸化炭素の除去方法、及び、空調装置 | |
JP2018051505A (ja) | 吸着体の製造方法、及び、二酸化炭素の除去方法 | |
JP2018051504A (ja) | 吸着剤、当該吸着剤を備える吸着体、これらの製造方法、及び、二酸化炭素の除去方法 | |
JP2018038940A (ja) | 吸着剤、二酸化炭素の除去方法、及び、空調装置 | |
JP2018001074A (ja) | 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17897191 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019500161 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17897191 Country of ref document: EP Kind code of ref document: A1 |