WO2016152143A1 - 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体 - Google Patents

欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体 Download PDF

Info

Publication number
WO2016152143A1
WO2016152143A1 PCT/JP2016/001638 JP2016001638W WO2016152143A1 WO 2016152143 A1 WO2016152143 A1 WO 2016152143A1 JP 2016001638 W JP2016001638 W JP 2016001638W WO 2016152143 A1 WO2016152143 A1 WO 2016152143A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
frequency band
point
defect analysis
frequency
Prior art date
Application number
PCT/JP2016/001638
Other languages
English (en)
French (fr)
Inventor
慎 冨永
尚武 高橋
乾太 三宅
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to GB1714312.4A priority Critical patent/GB2552108A/en
Priority to JP2017507503A priority patent/JPWO2016152143A1/ja
Priority to US15/557,535 priority patent/US20180045687A1/en
Publication of WO2016152143A1 publication Critical patent/WO2016152143A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • E03B7/071Arrangement of safety devices in domestic pipe systems, e.g. devices for automatic shut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/15Leakage reduction or detection in water storage or distribution

Definitions

  • the present invention relates to a defect analysis apparatus, a defect analysis system, a defect analysis method, and a computer-readable recording medium for analyzing defects.
  • Patent Document 1 describes an example of a leakage inspection method using a machine.
  • a vibration detection rod having an upper end on the ground surface is installed in a water pipe buried in the ground, and a leakage frequency is determined from a spectrum change at the time of a water pressure change.
  • the leak location in piping is specified from the vibration level in the leak frequency, and arrangement
  • Patent Document 1 In the method described in Patent Document 1, it is difficult to determine whether the cause contributing to the spectrum increase is leakage or disturbance. Therefore, the technique described in Patent Document 1 has a problem that if disturbance is mixed in the leakage vibration, it is erroneously determined that there is leakage.
  • the main object of the present invention is to provide a defect analysis apparatus, a defect analysis method, and a program for solving the above-described problems.
  • the defect analysis apparatus comprises: The first frequency band is determined based on the first vibration generated from the first point within a predetermined range from the installation point of the vibration detection unit capable of detecting the vibration generated in the pipe, and from the second point different from the first point Frequency determining means for determining a second frequency band based on the generated second vibration and determining a leakage frequency band based on the first frequency band and the second frequency band; Signal processing means for determining a defect between the first point and the second point based on the vibration level of the vibration in the leakage frequency band.
  • the defect analysis method includes: A first frequency band is determined based on a first vibration generated from a first point within a predetermined range from a point at which vibration generated in the pipe is detected, and a second vibration generated from a second point different from the first point A second frequency band is determined based on the first frequency band and a leakage frequency band is determined based on the first frequency band and the second frequency band; Based on the vibration level of the vibration in the leakage frequency band, it is determined whether there is a fluid leakage between the first point and the second point.
  • the computer-readable recording medium of the present invention is On the computer,
  • the first frequency band is determined based on the first vibration generated from the first point corresponding to the point where the vibration generated in the pipe is detected, and the second frequency generated based on the second vibration generated from the second point different from the first point.
  • a program for executing a signal processing procedure for determining whether or not there is a fluid leakage between the first point and the second point based on the vibration level of vibration in the leakage frequency band is stored temporarily.
  • each component of each device represents a functional unit block. Some or all of the components of each device (system) are realized by any combination of an information processing device 500 and a program as shown in FIG. 7, for example.
  • the information processing apparatus 500 includes the following configuration as an example.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a program 504 loaded into the RAM 503
  • a storage device 505 for storing the program 504
  • a drive device 507 for reading / writing the recording medium 506
  • Communication interface 508 connected to the communication network 509
  • An input / output interface 510 for inputting / outputting data -Bus 511 connecting each component
  • Each component of each device in each embodiment is realized by the CPU 501 acquiring and executing a program 504 that realizes these functions.
  • the program 504 that realizes the function of each component of each device is stored in advance in the storage device 505 or the RAM 503, for example, and is read by the CPU 501 as necessary.
  • the program 504 may be supplied to the CPU 501 via the communication network 509 or may be stored in the recording medium 506 in advance, and the drive device 507 may read the program and supply it to the CPU 501.
  • each device may be realized by an arbitrary combination of the information processing device 500 and a program that are separately provided for each component.
  • a plurality of constituent elements included in each device may be realized by an arbitrary combination of one information processing device 500 and a program.
  • each device may be realized by an arbitrary combination of the information processing device 500 and a program that are separately provided for each component.
  • a plurality of constituent elements included in each device may be realized by an arbitrary combination of one information processing device 500 and a program.
  • each device is realized by general-purpose or dedicated circuits, processors, etc., or combinations thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
  • each device When some or all of the constituent elements of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. Also good.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • the defect analysis apparatus and the defect analysis system of the present embodiment are configured to determine whether there is a defect formed in a pipe installed at a position away from the ground (for example, underground), a stopcock connected to the pipe or the pipe, Judgment is made using a vibration sensor installed in a connecting part such as a fire hydrant.
  • the defect analysis apparatus determines that a defect exists when the vibration level leaks from the defect to the outside of the pipe by the vibration sensor and the vibration level in a predetermined frequency band exceeds a predetermined threshold.
  • the predetermined frequency band is a frequency band mainly composed of vibrations caused by fluid leakage.
  • the vibration level represents the magnitude of vibration and is, for example, vibration acceleration.
  • the predetermined frequency band is selected by a method of approximately calculating from the material of the transmission path or the like, or by detecting the vibration of the fluid flowing in the pipe or the pipe in advance without leakage and obtaining the frequency characteristics.
  • the method can be used.
  • the defect analysis system in the present embodiment not only detects vibration from one point away from the vibration sensor, but also independently detects vibration near the vibration sensor installation point, and generates mutual response and self-response.
  • the frequency band to be used for defect analysis is selected in a complementary manner. Then, the defect analysis system performs defect analysis using the vibration in the frequency band. By selecting and using the frequency band in this way, the detection accuracy of vibration caused by fluid leakage from the defect is improved. Furthermore, when the frequency band described above is selected, if the frequency band that is approximately calculated in advance based on the material of the piping is also used, the detection accuracy is further improved.
  • FIG. 1 shows a configuration of a defect analysis apparatus 100 and a defect analysis system 10 according to the first embodiment of the present invention.
  • the defect analysis apparatus 100 according to the present embodiment illustrated in FIG. 1 determines the presence of a defect 126 that has occurred in the pipe 120 as an example.
  • the defect 126 is a leak hole generated in the pipe 120, for example.
  • the pipe 120 is installed in the ground surrounded by soil 121,122.
  • a fluid flows in the pipe 120.
  • the fluid corresponds to a liquid such as water or a gas such as air or gas.
  • the pipe 120 may be installed in the attic or underground of the building, or may be embedded in a wall or a pillar.
  • the defect analysis system 10 includes a defect analysis apparatus 100 and a vibration detection unit 101.
  • the defect analysis apparatus 100 includes a signal processing unit 102 and a frequency determination unit 103. First, the positional relationship between these components will be described.
  • the vibration detection unit 101 detects vibration propagating through the pipe 120 or the fluid.
  • the vibration detection unit 101 is installed at a position where these vibrations can be detected.
  • the vibration detection unit 101 may be directly installed on the outer surface or the inner surface of the pipe 120, or may be installed on a connection part 123 (flange, fire hydrant, etc.) included in the pipe 120.
  • the vibration detection unit 101 is installed in the connection unit 123 in the manhole.
  • a plurality of vibration detection units 101 may be provided.
  • at least one of the vibration detection units 101 may be installed at a position where, for example, the pipe 120 near the second point or the vibration propagating the fluid can be detected.
  • the defect analysis system 10 includes the plurality of vibration detection units 101, it is possible to specify the position of the defect in addition to the determination of the presence of the defect using the vibration data from the plurality of vibration detection units 101.
  • the position where the defect has occurred is specified. That is, the distance from one vibration detection unit to the position of the defect is calculated using the formula (L ⁇ v ⁇ t) / 2.
  • the position of the defect can be specified based on the magnitude of the vibration detected by each vibration detection unit 101.
  • the vibration detection unit 101 when determining fluid leakage, the vibration detection unit 101 generates vibration (first vibration) generated from the first point 124 such as the wall surface of the connection unit 123 and the second point 125. Vibration (second vibration) is detected.
  • first vibration generated from the first point 124 such as the wall surface of the connection unit 123 and the second point 125.
  • Vibration (second vibration) is detected.
  • the first point is determined, for example, as a point within a predetermined range from the point where the vibration detection unit 101 is installed (for example, near the point where the vibration detection unit 101 is installed).
  • the first point is, for example, a point within about 1 m from the point where the vibration detection unit 101 is installed, and is typically an area of 5 cm to 50 cm.
  • the means for applying the first vibration and the second vibration is not particularly defined.
  • the first point and the second point can be vibrated.
  • the simplest means is that the vibration detected when a human strikes the first point using a hammer or the like is the vibration from the first point, and the vibration detected when the second point is hit with a hammer.
  • the vibration from the second point is mentioned.
  • the vibration detection unit 101 detects vibrations from various other vibration sources.
  • the vibration from the first point is dominant several hundred times more than other vibrations.
  • the first point may be set in a range in which vibration from the first point becomes dominant as compared with other vibrations when the vibration detection unit 101 detects vibration.
  • the second point is preferably from about 1 m to about 10 km from the point where the vibration detection unit 101 is installed, and typically from 50 m to 500 m.
  • the installation position of the defect analysis apparatus 100 is not particularly limited, and may be anywhere as long as communication with the vibration detection unit 101 is possible.
  • the defect analysis apparatus 100 may be installed on the ground or in the ground.
  • the defect analysis apparatus 100 may be installed on the ground, and may communicate with the vibration detection unit 101 by communication using wired and / or wireless.
  • the vibration detection unit 101 detects a second vibration that is generated from the second point 125 and is at least one of a vibration propagating through the pipe 120, a vibration propagating through the fluid, and a vibration propagating through the connection unit 123 (mutual response).
  • the first vibration which is generated from the first point 124 and is at least one of the vibration propagating through the pipe 120, the vibration propagating through the fluid, and the vibration propagating through the connecting portion 123 is detected (self-response).
  • the vibration detection unit 101 is realized using a piezoelectric vibration sensor, an electromagnetic vibration sensor, an ultrasonic sensor, a microphone, or the like. For example, an electrical signal corresponding to the amplitude and frequency of the vibration detected by the vibration detection unit 101 is input to the signal processing unit 102 and the frequency determination unit 103 as a detection signal.
  • the frequency determination unit 103 uses the mutual response vibration waveform and the self-response vibration waveform to select a frequency band corresponding to the fluid leakage during the defect analysis. By doing in this way, the frequency band which the vibration resulting from the fluid leakage from a defect propagates through the piping 120 or a fluid can be selected appropriately. Hereinafter, the reason will be described.
  • the vibration detection unit 101 detects a first self-response vibration having a vibration acceleration peak in a specific frequency band.
  • the vibration detection unit 101 detects the second vibration of the mutual response of the frequency response having a shape different from that in FIG.
  • the frequency determination part 103 determines the 1st frequency band which has the peak of the vibration acceleration of a 1st vibration based on a 1st vibration.
  • the first frequency band is, for example, a frequency band in a predetermined range from the frequency at which the vibration acceleration peaks of the first vibration.
  • the frequency determination part 103 determines the 2nd frequency band which has the peak of the vibration acceleration of a 2nd vibration based on a 2nd vibration.
  • the second frequency band is, for example, a frequency band within a predetermined range from the frequency at which the vibration acceleration of the second vibration becomes a peak.
  • the frequency determination part 103 determines the leaky frequency band which is a frequency band used at the time of a defect analysis based on the 1st frequency band and the 2nd frequency band.
  • the frequency determining unit 103 includes the second frequency band including the frequency peak in the self-response in FIG. 2A among the second frequency band including the frequency peak in the mutual response in FIG. A range excluding one frequency band is determined as a leakage frequency band.
  • each of the first frequency band and the second frequency band is not limited to one.
  • the peak of vibration acceleration for example, a point where the magnitude of vibration acceleration is maximized is selected.
  • a frequency equal to or higher than a predetermined threshold may be set as the frequency band.
  • an appropriate frequency band to be used for the defect analysis can be selected.
  • the frequency range (third frequency band) used as the leakage frequency band is approximately determined based on physical information indicating the material (physical properties) of the vibration propagation path. It may be calculated.
  • the frequency determination unit 103 performs multi-step processing of excluding frequency peaks in the self-response after derivation of the third frequency band.
  • the calculation result of the approximate frequency range is typically 1 Hz to 2 kHz for a metal tube and 1 Hz to 500 Hz for a plastic tube, but is not limited to this range.
  • the frequency determination unit 103 can select a frequency band corresponding to leakage with higher accuracy than in the case where only the self-response is excluded from the mutual response. Therefore, the defect analysis apparatus 100 can determine the presence of a defect with high accuracy.
  • the signal processing unit 102 determines whether or not there is a fluid leak from the pipe based on the vibration level in the leak frequency band specified as described above. For example, when the level of vibration in the leakage frequency band exceeds a predetermined threshold, the signal processing unit 102 determines that fluid leakage from the pipe exists.
  • FIG. 3 is a flowchart illustrating an example of a processing flow of the defect analysis method according to the present embodiment.
  • step S ⁇ b> 1 the vibration detection unit 101 detects a first vibration that is generated from the first point 124 and is at least one of a vibration propagating through the pipe 120, a vibration propagating through the fluid, and a vibration propagating through the connection unit 123. . Then, the vibration detection unit 101 transmits a detection signal to the frequency determination unit 103.
  • step S ⁇ b> 2 the vibration detection unit 101 detects a second vibration that is generated from the second point 125 and is at least one of a vibration propagating through the pipe 120, a vibration propagating through the fluid, and a vibration propagating through the connection unit 123. . Then, the vibration detection unit 101 transmits a detection signal to the frequency determination unit 103.
  • the order in which vibrations are acquired can be reversed or acquired simultaneously. In other words, the first vibration can be detected after the second vibration is detected.
  • the frequency determination part 103 determines the leaky frequency band used for a defect analysis based on the waveform of the 1st vibration which the vibration detection part 101 detected, and the waveform of a 2nd vibration (step S3). Details are as described above.
  • FIG. 4 is a diagram illustrating an example of a configuration when the defect analysis apparatus 100 is provided with the control device 110.
  • the defect analysis apparatus 100 further includes a control device 110.
  • the frequency data approximately calculated based on the material (physical properties) and the like stored in the control device 110 is input to the frequency determination unit 103 as the frequency determination instruction signal 111 and the leakage frequency band is determined. Used.
  • the second vibration may be sequentially acquired (measured) at the same timing (for example, the same day and the same time) as the timing at which the first vibration is acquired (measured), and may be input to the frequency determination unit 103.
  • the second vibration may be acquired (measured) before the first vibration is acquired (measured) and stored in the frequency determination unit 103 in advance.
  • the first vibration may be acquired (measured) before the second vibration is acquired and stored in the frequency determination unit 103 in advance.
  • the signal processing unit 102 determines whether or not the vibration level (vibration acceleration) in the leakage frequency band exceeds a preset threshold value (step S4). If the vibration level in the leakage frequency band does not exceed a preset threshold value, the signal processing unit 102 determines that there is no defect (leakage) (step S5), and the process of step S1 is performed. On the other hand, when the vibration level in the leakage frequency band exceeds a preset threshold, the signal processing unit 102 determines that there is a defect (leakage) (step S6).
  • the vibration detection unit 101 detects the vibrations generated at two points. Then, the frequency determination unit 103 of the defect analysis apparatus 100 determines the leakage frequency band based on the vibration level of vibration, and the signal processing unit 102 determines the presence / absence of leakage based on the vibration level in the leakage frequency band. . Since the defect analysis apparatus 100 determines the presence or absence of leakage based on the vibration level or the like in the leakage frequency band, which is a frequency band suitable for defect analysis, determined as described above, the presence / absence of defects in the piping is accurately determined. It becomes possible to judge.
  • FIG. 5 is a diagram showing a second embodiment of the defect analysis apparatus of the present invention.
  • the defect analysis system 20 in the second embodiment is obtained by adding a first vibrator 112 and a second vibrator 113 to the defect analysis system 10 in the first embodiment.
  • the first vibrator 112 is installed at a position where vibration can be applied to the pipe 120 or the fluid.
  • the first vibrator 112 may be directly installed on the outer surface or the inner surface of the pipe 120, or may be installed on a connection portion 123 (a flange, a fire hydrant, etc.) of the pipe 120.
  • the first vibration exciter 112 is installed at the same position as the first point 124 in the first embodiment at the connection portion 123 in the manhole.
  • the second vibrator 113 is installed at a position where vibration can be applied to the pipe 120 or the fluid.
  • the second vibrator 113 may be directly installed on the outer surface or the inner surface of the pipe 120, or may be installed on a connection portion 123 (a flange, a fire hydrant, etc.) of the pipe 120.
  • the second vibration exciter 113 is installed at the same position as the second point 125 in the first embodiment at the connection portion 123 in the manhole.
  • the first vibrator 112 can apply vibrations having a plurality of frequencies (broadband frequencies) to a first point 124 such as a wall surface of the connection portion 123.
  • the means for applying vibrations having a plurality of frequencies is not particularly limited.
  • the first vibrator 112 may simultaneously apply vibrations having a plurality of frequencies, or sequentially apply vibrations having a plurality of frequencies while changing the frequency.
  • the first vibrator 112 may apply impulse vibration or white noise.
  • the first vibrator 112 is realized by an electromagnetic vibrator, a permanent magnet vibrator, an electromagnetic speaker, an ultrasonic vibrator, or the like.
  • the first vibrator 112 is different from the above-described device as long as it can vibrate the fluid or the pipe 120 and can change the vibration frequency or can vibrate vibration having a plurality of frequency components. It may be a device.
  • the second vibrator 113 can apply vibrations having a plurality of frequencies (broadband frequencies) to the second point 125 such as the wall surface of the connection portion 123.
  • the means for applying vibrations having a plurality of frequencies is not particularly limited.
  • the second vibrator 113 may simultaneously apply vibrations having a plurality of frequencies, or sequentially apply vibrations having a plurality of frequencies while changing the frequency.
  • the second vibrator 113 may apply, for example, impulse vibration or white noise.
  • the second vibrator 113 is realized by an electromagnetic vibrator, a permanent magnet vibrator, an electromagnetic speaker, an ultrasonic vibrator, or the like.
  • the second vibrator 113 is different from the above-described device as long as it can vibrate the fluid or the pipe 120 and can change the vibration frequency or can vibrate vibration having a plurality of frequency components. It may be a device.
  • first vibrator 112 and a second vibrator 113 are provided.
  • first vibrator 112 and the second vibrator 113 may be provided.
  • FIG. 6 is a diagram illustrating an example of a configuration in the case where the defect analysis apparatus 200 is provided with a control device 210. As shown in FIG. 6, the defect analysis apparatus 200 may further include a control device 210. In this case, even if the first shaker 112 vibrates according to the vibration instruction signal 114 controlled by the control device 210 and the second shaker 113 vibrates according to the vibration instruction signal 115 controlled by the control device 210. Good.
  • the defect analysis apparatus 200 or the defect analysis system 20 can perform more accurate defect analysis by actively vibrating the leak-induced frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 配管の欠陥有無を高精度に判定する。 欠陥分析装置は、配管に生じた振動を検知可能な振動検出部の設置地点から所定の範囲にある第1地点から発生した第1振動に基づいて第1周波数帯を決定し、第1地点と異なる第2地点から発生した第2振動に基づいて第2周波数帯を決定し、第1周波数帯と第2周波数帯とに基づいて漏洩周波数帯を決定する周波数決定部と、漏洩周波数帯における振動の振動レベルに基づいて、第1地点と第2地点との間の欠陥を判定する信号処理部とを有する。

Description

欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体
 本発明は、欠陥を分析する欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体に関する。
 デジタル化が支えるIT(Information Technology)やネットワーク技術の進展により、人や電子機器が扱い、蓄積する情報量は増大の一途をたどっている。入力デバイスであるセンサから事象の正確なデータを取得し、それを正確に分析、判断、加工を施し有用情報として人が認知することは、多量の情報に散漫になりつつある人間社会にとって安心・安全な社会を形成する上で重要な位置づけにある。
 現代生活では、上下水道網や、ガスや石油などの高圧化学パイプライン、高速鉄道、長大橋、超高層建築、大型旅客機、自動車などの設備が構築され、豊かな社会の基盤となっている。これらが、予期せぬ震災などの自然災害や寿命劣化によって破壊されて、重大事故に至れば、社会への影響は多大であり、経済的損失は大きい。設備に用いられる部材は、使用時間に応じて腐食、磨耗、ガタツキなどの劣化が進み、やがて破壊などの機能不全に至る。設備の安心・安全を確保するために科学、工学、社会学などの学術的領域を超えた技術開発に多大な努力がおこなわれている。なかでも、低コストかつ操作が簡便な検査技術である非破壊検査技術の進展は、設備の劣化や破壊による重大事故の防止を図る上でますます重要になっている。
 ところで、上下水道網やパイプライン等の配管の劣化や破壊による流体の漏洩検査として、人間が漏洩音を聴き取る聴感官能検査が一般的におこなわれている。しかしながら、配管は地中へ埋没されている場合や建造物の高所に設置されている場合が多いため、その検査には危険な作業がともない、かつ多大な労力を必要とする。このため、高精度かつ十分な検査の実現が困難となっている。また、聴感官能検査は検査員の熟練度合いに依存しており、その低い検出精度のため漏洩事故防止が困難である要因になっている。
 また、漏洩の存在が明らかになった場合、修理修繕費用を低く抑える必要から、その位置を高精度に特定することが求められる。現在では、専門の検査員の聴感官能検査によって位置を特定している。しかしながら、例えば検査中には交通騒音などの外乱が存在し、漏洩により生じる音とその周波数成分とが類似した場合、漏洩発生の判別が困難な状況となる可能性がある。そのため外乱の少ない深夜時間帯での計測を行うなど工夫がなされているが、検査員にとって大きな負担となる。
 このような課題を解決するため、機械による漏洩検査法が提案されている。
 特許文献1には、機械による漏洩検査法の一例が記載されている。特許文献1に記載の手法では、地中に埋設された水道管に、上端を地表に出した振動検出用の棒が設置され、水圧変化時のスペクトル変化から漏洩周波数が決定される。そして、その漏洩周波数における振動レベルと棒の配置とから配管における漏洩箇所が特定される。
特開2005-265663号公報
 しかしながら、このような機械による漏洩検査法は、その精度が十分なものではない。
 特許文献1に記載の手法では、スペクトルの上昇に寄与する原因が漏洩であるか又は外乱であるかを切り分けることが困難である。そのため、特許文献1に記載の手法では、漏洩振動に外乱が混入してしまうと、漏洩が存在すると誤判定してしまうという課題がある。
 本発明は、上述した課題を解決する欠陥分析装置、欠陥分析方法およびプログラムを提供することを主たる目的とする。
 本発明の一態様における欠陥分析装置は、
 配管に生じた振動を検知可能な振動検出部の設置地点から所定の範囲にある第1地点から発生した第1振動に基づいて第1周波数帯を決定し、第1地点と異なる第2地点から発生した第2振動に基づいて第2周波数帯を決定し、第1周波数帯と第2周波数帯とに基づいて漏洩周波数帯を決定する周波数決定手段と、
 漏洩周波数帯における振動の振動レベルに基づいて、第1地点と第2地点との間の欠陥を判定する信号処理手段とを有する。
 また、本発明の一態様における欠陥分析方法は、
 配管に生じた振動を検出する地点から所定の範囲にある第1地点から発生した第1振動に基づいて第1周波数帯を決定し、第1地点と異なる第2地点から発生した第2振動に基づいて第2周波数帯を決定し、第1周波数帯と第2周波数帯とに基づいて漏洩周波数帯を決定し、
 漏洩周波数帯における振動の振動レベルに基づいて、第1地点と第2地点との間に流体漏洩が存在するか否かを判定する。
 また、本発明のコンピュータ読み取り可能記録媒体は、
 コンピュータに、
 配管に生じた振動を検出する地点に応じた第1地点から発生した第1振動に基づいて第1周波数帯を決定し、第1地点と異なる第2地点から発生した第2振動に基づいて第2周波数帯を決定し、第1周波数帯と第2周波数帯とに基づいて漏洩周波数帯を決定する周波数決定手順と、
 漏洩周波数帯における振動の振動レベルに基づいて、第1地点と第2地点との間に流体漏洩が存在するか否かを判定する信号処理手順とを実行させるプログラムを非一時的に格納する。
 本発明においては、配管の欠陥有無を高精度に判定することが可能となる。
本発明の第1の実施形態における欠陥分析装置及び欠陥分析システムの構成を示す図である。 本発明の第1の実施形態における欠陥分析装置の周波数選定法の一例を示す図である。 本発明の第1の実施形態における欠陥分析装置の周波数選定法の一例を示す図である。 本発明の第1の実施形態における欠陥分析装置の周波数選定法の一例を示す図である。 本発明の第1の実施形態における欠陥分析装置の処理の流れの一例を示すフローチャートである。 本発明の第1の実施形態における欠陥分析装置に制御装置が設けられた場合の一例を示す図である。 本発明の第2の実施形態における欠陥分析装置及び欠陥分析システムの構成を示す図である。 本発明の第2の実施形態における欠陥分析装置に制御装置が設けられた場合の形態の一例を示す図である。 本発明の各実施形態における装置等を実現する情報処理装置の一例を示す図である。
 以下、本発明の実施形態について図面を用いて説明する。

 本発明の各実施形態において、各装置(システム)の各構成要素 は、機能単位のブロックを示している。各装置(システム)の各構成要素の一部又は全部は、例えば図7に示すような情報処理装置500とプログラムとの任意の組み合わせにより実現される。情報処理装置500は、一例として、以下のような構成を含む。
  ・CPU(Central Processing Unit)501
  ・ROM(Read Only Memory)502
  ・RAM(Random Access Memory)503
  ・RAM503にロードされるプログラム504
  ・プログラム504を格納する記憶装置505
  ・記録媒体506の読み書きを行うドライブ装置507
  ・通信ネットワーク509と接続する通信インターフェース508
  ・データの入出力を行う入出力インターフェース510
  ・各構成要素を接続するバス511
 各実施形態における各装置の各構成要素は、これらの機能を実現するプログラム504をCPU501が取得して実行することで実現される。各装置の各構成要素の機能を実現するプログラム504は、例えば、予め記憶装置505やRAM503に格納されており、必要に応じてCPU501が読み出す。なお、プログラム504は、通信ネットワーク509を介してCPU501に供給されてもよいし、予め記録媒体506に格納されており、ドライブ装置507が当該プログラムを読み出してCPU501に供給してもよい。
 各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個の情報処理装置500とプログラムとの任意の組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つの情報処理装置500とプログラムとの任意の組み合わせにより実現されてもよい。

 各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個の情報処理装置500とプログラムとの任意の組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つの情報処理装置500とプログラムとの任意の組み合わせにより実現されてもよい。
 また、各装置の各構成要素の一部又は全部は、汎用または専用の回路(circuitry)、プロセッサ等やこれらの組み合わせによって実現される。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。
 各装置の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 (第1の実施形態)
 まず、第1の実施形態における欠陥分析装置の概要について説明する。本実施形態の欠陥分析装置及び欠陥分析システムは、地面から離れた位置(例:地中)に設置されている配管に形成された欠陥の有無を、配管または配管に接続された止水栓や消火栓などの接続部に設置した振動センサを用いて判定する。
 配管に欠陥が存在する場合、当該欠陥から流体漏洩に起因する振動が、配管又は配管内を流れる流体を伝搬し、振動センサに到達する。本実施形態における欠陥分析装置は、振動センサにより欠陥から配管の外部に漏れた振動において、所定の周波数帯の振動レベルが所定の閾値を超えた場合に欠陥が存在すると判定する。所定の周波数帯は、流体漏洩に起因する振動が主となる周波数帯域である。振動レベルは、振動の大きさを表し、例えば振動加速度である。
 ところで、配管または配管内を流れる流体を伝搬する振動は、その周波数帯域によって距離に応じた減衰量が異なる。そこで、所定の周波数帯の選定には、伝達経路の材質等から近似的に算出する方法や、漏洩のない状態で予め配管または配管内を流れる流体の振動を検出し周波数特性を得て選定する方法を用いることができる。これらの方法を用いれば、漏洩が生じた際に漏洩に起因した振動が、充分遠方まで到達する周波数帯によって欠陥の存在を判定することができる。
 しかし、所定の周波数帯を近似的に算出する方法では、所定の広い周波数範囲までは選定可能だが、さらに詳細な調査のために狭い周波数範囲を選定することは困難である。また、別の方法として、振動センサから離れた1点からの振動(相互応答)を検出すると、本来検出すべき相互応答に、振動センサ設置地点近辺の振動応答(自己応答)を強く反映するノイズが重畳する場合がある。ノイズ要因は、振動センサ近辺の外乱や、振動センサ設置地点に到達した振動の多重反射等が考えられる。結果、欠陥分析に適切な周波数帯が得られない。
 そこで、本実施形態における欠陥分析システムは、振動センサから離れた1点からの振動を検出するのみでなく、振動センサ設置地点近辺の振動も独立して検出して、相互応答と自己応答とを相補的に用いて欠陥分析に使用する周波数帯を選定する。そして、欠陥分析システムは当該周波数帯の振動を使用して欠陥分析を行う。このように周波数帯を選定し利用することで、欠陥からの流体漏洩に起因する振動の検出精度が向上する。さらに、上述した周波数帯を選定する際に、配管の材質などに基づいて予め近似的に算出した周波数帯も利用すると、検出精度がさらに向上する。
 次に、図面を用いて本実施形態における欠陥分析システムの構成について詳細に説明する。図1は、本発明の第1の実施の形態における欠陥分析装置100及び欠陥分析システム10の構成を示す。図1に示す本実施形態における欠陥分析装置100は、一例として、配管120に生じた欠陥126の存在を判定する。欠陥126は、例えば配管120に生じた漏洩孔である。
 図1に示す配管120は、土壌121、122に囲まれた地中に設置されている。配管120内には、流体が流れている。流体は、水等の液体や、空気、ガス等の気体が該当する。なお、配管120は、建造物の屋根裏や地下に設置されてもよく、また、壁や柱等に埋設されてもよい。
 欠陥分析システム10は、欠陥分析装置100と、振動検出部101とを備える。欠陥分析装置100は、信号処理部102と、周波数決定部103とを有する。まず、これら構成要素の位置関係について説明する。
 振動検出部101は、配管120または流体を伝搬する振動を検出する。振動検出部101は、これらの振動を検出可能な位置に設置される。例えば、振動検出部101は、配管120の外面や内面に直接設置されてもよいし、配管120が有する接続部123(フランジ、消火栓等)に設置されてもよい。図1に示す例の場合、振動検出部101は、マンホール内の接続部123に設置されている。なお、振動検出部101が複数備えられてもよい。例えば、振動検出部101の少なくとも一つは、例えば第2地点近傍の配管120または流体を伝搬する振動を検出可能な位置に設置されてもよい。欠陥分析システム10が複数の振動検出部101を備えることで、複数の振動検出部101からの振動データを用いて、欠陥の存在の判定に加え、欠陥の位置を特定することも可能となる。例えば、2つの振動検出部101が備えられている場合、欠陥から発生した振動がそれぞれの振動検出部へ到達する時間差Δtと、それぞれの振動検出部間の距離Lと、振動の音速vとに基づいて欠陥が生じた位置を特定する。すなわち、一方の振動検出部から欠陥の位置までの距離は、(L-vΔt)/2の式を用いて算出される。さらに、振動の距離に対する減衰率があらかじめ算出されている場合には、それぞれの振動検出部101が検出した振動の大きさに基づいて、欠陥の位置が特定され得る。
 本実施形態では、流体の漏洩を判定する場合には、振動検出部101は、接続部123の壁面等の第1地点124から発生した振動(第1振動)と、第2地点125から発生した振動(第2振動)とを検出する。なお、第1地点は、例えば振動検出部101が設置されている地点から所定の範囲にある地点(例えば、振動検出部101が設置されている地点の近傍)に定められる。第1地点は、例えば振動検出部101が設置されている地点から1m程度以内の地点であり、典型的には5cm以上50cm以下のエリアであることが好ましい。ここで、第1振動および第2振動を与える手段としては特に規定しないが、例えば、人間や自転車、自動車などの交通騒音が土壌やマンホールの壁面を経由して、配管や接続部を揺らし、間接的に第1地点や第2地点を加振することが挙げられる。また、最も単純な手段としては、人間がハンマ等を用いて第1地点を叩いた際に検出した振動を第1地点からの振動とし、第2地点をハンマで叩いた際に検出した振動を第2地点からの振動とすることが挙げられる。
 振動検出部101は、他の様々な振動源からの振動を検出する。上述した範囲に第1地点が定められる場合には、振動検出部101が検知する振動においては、第1地点からの振動が他の振動に比べて数100倍以上と支配的となる。換言すると、第1地点は、振動検出部101が振動を検知した場合、第1地点からの振動が他の振動と比較して支配的になるような範囲に定められればよい。なお、第2地点は、振動検出部101が設置されている地点から1m程度以上10km程度以内であることが好ましく、典型的には50m以上500m以内である。
 欠陥分析装置100の設置位置は特段制限されず、振動検出部101と通信可能であればどこでもよい。欠陥分析装置100は、地上に設置されてもよいし、地中に設置されてもよい。例えば、欠陥分析装置100は地上に設置され、有線及び/又は無線を用いた通信により、振動検出部101と通信してもよい。
 次に、各要素の構成について詳細に説明する。振動検出部101は、第2地点125から発生し、配管120を伝搬する振動および流体を伝搬する振動および接続部123を伝搬する振動の少なくとも一つである第2振動を検出し(相互応答)、第1地点124から発生し、配管120を伝搬する振動および流体を伝搬する振動および接続部123を伝搬する振動の少なくとも一つである第1振動を検出する(自己応答)。
 振動検出部101は、圧電式振動センサや電磁式振動センサ、超音波センサ、マイクなどを用いて実現される。信号処理部102や周波数決定部103には、検出信号として、例えば振動検出部101によって検出された振動の振幅および周波数に応じた電気信号等が入力される。
 周波数決定部103は、相互応答の振動波形と自己応答の振動波形とを用いて欠陥分析時に流体漏洩に対応する周波数帯を選定する。このようにすることで、欠陥からの流体漏洩に起因する振動が配管120または流体を伝搬する周波数帯を適切に選定することができる。以下、この理由を説明する。
 図2(a)~(c)は、本実施の形態における欠陥分析方法の周波数選定法の一例を示す図である。振動検出部101は、図2(a)に示すように特定の周波数帯に振動加速度のピークを有する自己応答の第1振動を検出する。同様に、振動検出部101は、図2(b)に示すように図2(a)とは別の形状の周波数応答の相互応答の第2振動を検出する。そして、周波数決定部103は、第1振動に基づいて、第1振動の振動加速度のピークを有する第1周波数帯を決定する。第1周波数帯は、例えば、第1振動の振動加速度のピークとなる周波数から所定の範囲にある周波数帯である。また、周波数決定部103は、第2振動に基づいて、第2振動の振動加速度のピークを有する第2周波数帯を決定する。第2周波数帯は、例えば、第2振動の振動加速度のピークとなる周波数から所定の範囲にある周波数帯である。そして、周波数決定部103は、周波数決定部103は、第1周波数帯及び第2周波数帯に基づいて、欠陥分析時に使用する周波数帯である漏洩周波数帯を決定する。周波数決定部103は、図2(c)に示すように、図2(b)の相互応答における周波数ピークを含む第2周波数帯のうち、図2(a)の自己応答における周波数ピークを含む第1周波数帯を除いた範囲を漏洩周波数帯として決定する。
 なお、第1周波数帯又は第2周波数帯は、それぞれ一つとは限られない。振動加速度のピークとして、例えば振動加速度の大きさが極大となる点が選ばれる。第1周波数帯又は第2周波数帯は、所定の閾値以上の周波数を周波数帯として設定してもよい。
 以上のような処理により、相互応答から自己応答の影響を除外することで、欠陥分析に使用する適切な周波数帯を選定することができる。なお、相互応答から自己応答を除外する前に、振動の伝搬経路の材質(物性)等を示す物理的情報に基づいて、漏洩周波数帯として使用する周波数範囲(第三周波数帯)を近似的に算出してもよい。この場合には、周波数決定部103は、第三周波数帯の導出の後に、自己応答における周波数ピークを除外するという多段階の処理を行う。近似的な周波数範囲の算出結果は、典型的には金属管で1Hz以上2kHz以下、プラスチック管で1Hz以上500Hz以下であるが、この範囲に限定されるものではない。このように多段階で処理を施すことにより、周波数決定部103は、相互応答から自己応答を除外するのみの場合と比較して高精度に漏洩に対応する周波数帯を選定することができる。したがって、欠陥分析装置100は、欠陥の存在を高精度に判定することが可能となる。
 そして、信号処理部102は、上述のように特定された漏洩周波数帯における振動のレベルに基づいて、配管からの流体漏洩が存在するか否かを判定する。信号処理部102は、例えば漏洩周波数帯における振動のレベルが所定の閾値を超える場合に、配管からの流体漏洩が存在すると判定する。
 次に、本実施形態における欠陥分析装置を用いて実現される欠陥分析方法について説明する。図3は、本実施形態における欠陥分析方法の処理の流れの一例を示すフローチャートである。
 ステップS1では、振動検出部101は、第1地点124から発生し、配管120を伝搬する振動および流体を伝搬する振動および接続部123を伝搬する振動の少なくとも一つである第1振動を検出する。そして振動検出部101は、検出信号を周波数決定部103へ送信する。
 ステップS2では、振動検出部101は、第2地点125から発生し、配管120を伝搬する振動および流体を伝搬する振動および接続部123を伝搬する振動の少なくとも一つである第2振動を検出する。そして振動検出部101は、検出信号を周波数決定部103へ送信する。ここで、振動を取得する順番は、逆とすることもでき、同時に取得することもできる。つまり、第2振動を検出した後に、第1振動を検出する構成とすることもできる。
 すると、周波数決定部103は、振動検出部101が検出した第1振動の波形と、第2振動の波形とに基づいて、欠陥分析に使用する漏洩周波数帯を決定する(ステップS3)。
詳細は上述の通りである。
 図4は、欠陥分析装置100に制御装置110が設けられた場合の形態の一例を示す図である。図4に示すように、欠陥分析装置100は、制御装置110をさらに備える。制御装置110に蓄えられた、材質(物性)等に基づいて近似的に算出された周波数データは、周波数決定指示信号111として周波数決定部103へ入力され、漏洩周波数帯が決定される場合等に用いられる。
 なお、第2振動は、第1振動が取得(測定)されるタイミングと同じタイミング(例えば、同じ日、同じ時間)で順次取得(測定)され、周波数決定部103に入力されてもよい。また、第2振動は、第1振動が取得(測定)されるよりも前に取得(測定)され、予め周波数決定部103に記憶されていてもよい。また、第1振動は、第2振動が取得されるよりも前に取得(測定)され、予め周波数決定部103に記憶されていてもよい。
 続いて、信号処理部102が、漏洩周波数帯における振動レベル(振動加速度)が予め設定した閾値を超えるか否かを判定する(ステップS4)。漏洩周波数帯における振動レベルが予め設定した閾値を超えない場合、信号処理部102は、欠陥(漏洩)がないと判定し(ステップS5)、ステップS1の処理が行われる。一方、漏洩周波数帯における振動レベルが予め設定した閾値を超える場合、信号処理部102は、欠陥(漏洩)があると判定する(ステップS6)。
 このように、本実施形態においては、振動検知部101が2つの地点で発生したそれぞれの振動を検出する。そして、欠陥分析装置100の周波数決定部103が、それぞれ振動の振動レベルに基づいて漏洩周波数帯を決定し、信号処理部102が、漏洩周波数帯における振動レベルに基づいて、漏洩の有無を判定する。欠陥分析装置100は、上述のように決定された、欠陥の分析に適した周波数帯である漏洩周波数帯における振動レベル等に基づいて漏洩の有無を判定するため、配管の欠陥有無を高精度に判定することが可能となる。
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図5は、本発明の欠陥分析装置の第2の実施形態を示す図である。第2の実施形態における欠陥分析システム20は、第1の実施形態における欠陥分析システム10に、第1加振器112および第2加振器113が追加されたものである。
 第1加振器112は、配管120または流体に振動を加振可能な位置に設置される。例えば、第1加振器112は、配管120の外面や内面に直接設置されてもよいし、配管120が有する接続部123(フランジ、消火栓等)に設置されてもよい。図5に示した形態では、第1加振器112は、マンホール内の接続部123で、第1の実施形態における第1地点124と同じ位置に設置されている。
 第2加振器113は、配管120または流体に振動を加振可能な位置に設置される。例えば、第2加振器113は、配管120の外面や内面に直接設置されてもよいし、配管120が有する接続部123(フランジ、消火栓等)に設置されてもよい。図5に示した形態では、第2加振器113は、マンホール内の接続部123で、第1の実施形態における第2地点125と同じ位置に設置されている。
 第1加振器112は、接続部123の壁面等の第1地点124へ複数の周波数(広帯域な周波数)の振動を印加することができる。複数の周波数の振動を印加する手段は特段制限されない。第1加振器112は、複数の周波数の振動を同時に印加してもよいし、周波数を変えながら複数の周波数の振動を順次印加してもよい。第1加振器112は、例えばインパルス振動やホワイトノイズを印加してもよい。
 第1加振器112は、電磁式加振器や永久磁石式加振器、電磁式スピーカー、超音波振動子等にて実現される。第1加振器112は、流体や配管120に振動を加振可能で、かつ、振動周波数を変化できる、または複数の周波数成分を有する振動を加振できるのであれば、上述した機器とは異なる機器であってもよい。
 第2加振器113は、接続部123の壁面等の第2地点125へ複数の周波数(広帯域な周波数)の振動を印加することができる。複数の周波数の振動を印加する手段は特段制限されない。第2加振器113は、複数の周波数の振動を同時に印加してもよいし、周波数を変えながら複数の周波数の振動を順次印加してもよい。第2加振器113は、例えばインパルス振動やホワイトノイズを印加してもよい。
 第2加振器113は、電磁式加振器や永久磁石式加振器、電磁式スピーカー、超音波振動子等にて実現される。第2加振器113は、流体や配管120に振動を加振可能で、かつ、振動周波数を変化できる、または複数の周波数成分を有する振動を加振できるのであれば、上述した機器とは異なる機器であってもよい。
 なお、図5に示した形態では、第1加振器112及び第2加振器113の2つの加振器が設けられている。しかしながら、本実施形態においては、第1加振器112と第2加振器113とのうち一方のみが設けられている構成であってもよい。
 図6は、欠陥分析装置200に制御装置210が設けられた場合の形態の一例を示す図である。図6に示すように、欠陥分析装置200は、制御装置210をさらに備えてもよい。この場合、第1加振器112が制御装置210の制御による加振指示信号114に従って加振し、第2加振器113が制御装置210の制御による加振指示信号115に従って加振してもよい。
 本実施形態においては、欠陥分析装置200又は欠陥分析システム20は、漏洩起因の周波数を能動的に加振して得ることで、さらに高精度な欠陥分析をすることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2015年3月24日に出願された日本出願特願2015-60443を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10、20  欠陥分析システム
 100,200  欠陥分析装置
 101  振動検出部
 102  信号処理部
 103  周波数決定部
 110,210  制御装置
 111  周波数決定指示信号
 112  第1加振器
 113  第2加振器
 114,115  加振指示信号
 120  配管
 121,122  土壌
 123  接続部
 124  第1地点
 125  第2地点
 126  欠陥

Claims (10)

  1.  配管に生じた振動を検知可能な振動検出手段の設置地点から所定の範囲にある第1地点から発生した第1振動に基づいて第1周波数帯を決定し、前記第1地点と異なる第2地点から発生した第2振動に基づいて第2周波数帯を決定し、前記第1周波数帯と前記第2周波数帯とに基づいて漏洩周波数帯を決定する周波数決定手段と、
     前記漏洩周波数帯における前記振動の振動レベルに基づいて、前記第1地点と前記第2地点との間の欠陥を判定する信号処理手段とを有する欠陥分析装置。
  2.  前記周波数決定手段は、前記配管または前記流体の物性に基づいて第三周波数帯を決定し、該第三周波数帯の範囲内で前記漏洩周波数帯を決定する、請求項1に記載の欠陥分析装置。
  3.  前記周波数決定手段は、前記第1振動のピークとなる周波数に基づいて前記第1周波数帯を決定する、請求項1又は2に記載の欠陥分析装置。
  4.  前記周波数決定手段は、前記第2振動のピークとなる周波数に基づいて前記第2周波数帯を決定する、請求項1から3のいずれか一項に記載の欠陥分析装置。
  5.  請求項1から4のいずれか一項に記載の欠陥分析装置と、
     配管または前記配管に接続された接続部に設置され、前記配管と前記配管内を流れる流体との少なくとも一方を伝搬する振動を検出する前記振動検出手段とを備える欠陥分析システム。
  6.  前記第1地点と前記第2地点との少なくとも一方に振動を与える加振器を有する、請求項5に記載の欠陥分析システム。
  7.  前記加振器はインパルス振動を与える、請求項6に記載の欠陥分析装置。
  8.  複数の前記振動検出手段を有する、請求項5から7のいずれか一項に記載の欠陥分析システム。
  9.  配管に生じた振動を検出する地点から所定の範囲にある第1地点から発生した第1振動に基づいて第1周波数帯を決定し、前記第1地点と異なる第2地点から発生した第2振動に基づいて第2周波数帯を決定し、前記第1周波数帯と前記第2周波数帯とに基づいて漏洩周波数帯を決定し、
     前記漏洩周波数帯における前記振動の振動レベルに基づいて、前記第1地点と前記第2地点との間の欠陥を判定する欠陥分析方法。
  10.  コンピュータに、
     配管に生じた振動を検出する地点に応じた第1地点から発生した第1振動に基づいて第1周波数帯を決定し、前記第1地点と異なる第2地点から発生した第2振動に基づいて第2周波数帯を決定し、前記第1周波数帯と前記第2周波数帯とに基づいて漏洩周波数帯を決定する周波数決定手順と、
     前記漏洩周波数帯における前記振動の振動レベルに基づいて、前記第1地点と前記第2地点との間の欠陥を判定する信号処理手順とを実行させるためのプログラムを格納したコンピュータ読み取り可能記録媒体。
PCT/JP2016/001638 2015-03-24 2016-03-22 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体 WO2016152143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1714312.4A GB2552108A (en) 2015-03-24 2016-03-22 Defect analysis device, defect analysis system, efect analysis method, and computer readable recording medium
JP2017507503A JPWO2016152143A1 (ja) 2015-03-24 2016-03-22 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体
US15/557,535 US20180045687A1 (en) 2015-03-24 2016-03-22 Defect analysis device, defect analysis system, defect analysis method, and computer readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015060443 2015-03-24
JP2015-060443 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152143A1 true WO2016152143A1 (ja) 2016-09-29

Family

ID=56978870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001638 WO2016152143A1 (ja) 2015-03-24 2016-03-22 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体

Country Status (4)

Country Link
US (1) US20180045687A1 (ja)
JP (1) JPWO2016152143A1 (ja)
GB (1) GB2552108A (ja)
WO (1) WO2016152143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093294A1 (ja) * 2017-11-08 2019-05-16 日本電気株式会社 推定装置、推定方法及びプログラム記憶媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102038689B1 (ko) * 2018-06-14 2019-10-30 한국원자력연구원 거리차-주파수 분석을 이용한 배관의 누설 감지장치 및 방법
CN109567717B (zh) * 2019-01-22 2022-01-28 佛山市顺德区美的洗涤电器制造有限公司 家用电器和家用电器的控制方法
CN112861399B (zh) * 2020-12-30 2022-08-02 广东电网有限责任公司电力科学研究院 一种干式铁心电抗器振动缺陷检测定位方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201858A (ja) * 1998-01-19 1999-07-30 Osaka Gas Co Ltd 相関法を用いる管路系の振動測定方法
JP3630394B2 (ja) * 1999-02-01 2005-03-16 三菱電機株式会社 異常箇所検出装置
JP3688400B2 (ja) * 1996-08-23 2005-08-24 東京瓦斯株式会社 配管漏洩位置特定方法における信号処理方法
WO2014157539A1 (ja) * 2013-03-29 2014-10-02 日本電気株式会社 欠陥分析装置、欠陥分析方法及びプログラム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6609733A (ja) * 1966-07-12 1968-01-15
US4046220A (en) * 1976-03-22 1977-09-06 Mobil Oil Corporation Method for distinguishing between single-phase gas and single-phase liquid leaks in well casings
CA1301775C (en) * 1986-06-04 1992-05-26 Karel Petrus Agnes Maria Van Putte Fractionation of fat blends
US5038614A (en) * 1989-08-10 1991-08-13 Atlantic Richfield Company Acoustic vibration detection of fluid leakage from conduits
US5117676A (en) * 1991-02-25 1992-06-02 Hughes Aircraft Company Leak detector for natural gas pipelines
US5341670A (en) * 1991-12-13 1994-08-30 Atlantic Richfield Company Method and apparatus for locating seepage from tanks
US5650943A (en) * 1995-04-10 1997-07-22 Leak Detection Services, Inc. Apparatus and method for testing for valve leaks by differential signature method
US5623421A (en) * 1995-11-03 1997-04-22 Rensselaer Polytechnic Institute Monitoring pressurized vessels for leaks, ruptures or hard hits
US6404343B1 (en) * 1999-06-25 2002-06-11 Act Lsi Inc. Water leakage monitoring apparatus
GB0128704D0 (en) * 2001-11-30 2002-01-23 Univ Manchester Remote pipeline inspection
WO2003096007A1 (fr) * 2002-05-08 2003-11-20 Sekisui Chemical Co., Ltd. Procede et equipement destines a inspecter une conduite en beton arme
US7891246B2 (en) * 2002-11-12 2011-02-22 Itron, Inc. Tracking vibrations in a pipeline network
GB0914463D0 (en) * 2009-08-19 2009-09-30 Sev Trent Water Ltd Leak detector
US8346492B2 (en) * 2009-10-21 2013-01-01 Acoustic Systems, Inc. Integrated acoustic leak detection system using intrusive and non-intrusive sensors
AU2012210186A1 (en) * 2011-01-30 2013-09-19 Aquarius Spectrum Ltd. Method and system for leak detection in a pipe network
US20120312078A1 (en) * 2011-06-09 2012-12-13 Mehrdad Sharif Bakhtiar Pipeline reflectometry apparatuses and methods
US20130166227A1 (en) * 2011-12-27 2013-06-27 Utc Fire & Security Corporation System and method for an acoustic monitor self-test
WO2014050358A1 (ja) * 2012-09-27 2014-04-03 日本電気株式会社 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム
US9909949B2 (en) * 2012-09-28 2018-03-06 Nec Corporation Leakage determination method, leakage determination system, and program
WO2014050619A1 (ja) * 2012-09-28 2014-04-03 日本電気株式会社 欠陥分析装置、欠陥分析方法及びプログラム
WO2014051036A1 (ja) * 2012-09-28 2014-04-03 日本電気株式会社 漏洩検知装置、漏洩検知方法及びプログラム
SG11201503041SA (en) * 2012-10-26 2015-05-28 Mueller Int Llc Detecting leaks in a fluid distribution system
WO2014156990A1 (ja) * 2013-03-27 2014-10-02 日本電気株式会社 漏洩検出システム、振動検出装置、情報処理装置、及び漏洩検出方法
KR101447925B1 (ko) * 2013-08-22 2014-10-08 주식회사 엘지씨엔에스 누출 신호 분석 방법
WO2015194137A1 (ja) * 2014-06-16 2015-12-23 日本電気株式会社 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
EP3153834B1 (en) * 2015-10-08 2020-04-01 Carrier Corporation Acoustic profile recognition for discriminating between hazardous emissions and non-hazardous emissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3688400B2 (ja) * 1996-08-23 2005-08-24 東京瓦斯株式会社 配管漏洩位置特定方法における信号処理方法
JPH11201858A (ja) * 1998-01-19 1999-07-30 Osaka Gas Co Ltd 相関法を用いる管路系の振動測定方法
JP3630394B2 (ja) * 1999-02-01 2005-03-16 三菱電機株式会社 異常箇所検出装置
WO2014157539A1 (ja) * 2013-03-29 2014-10-02 日本電気株式会社 欠陥分析装置、欠陥分析方法及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093294A1 (ja) * 2017-11-08 2019-05-16 日本電気株式会社 推定装置、推定方法及びプログラム記憶媒体
JPWO2019093294A1 (ja) * 2017-11-08 2020-11-19 日本電気株式会社 推定装置、推定方法及びコンピュータプログラム
JP7004005B2 (ja) 2017-11-08 2022-01-21 日本電気株式会社 推定装置、推定方法及びコンピュータプログラム

Also Published As

Publication number Publication date
GB201714312D0 (en) 2017-10-18
JPWO2016152143A1 (ja) 2018-01-11
GB2552108A (en) 2018-01-10
US20180045687A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
Bao et al. Vibration‐based bridge scour detection: a review
EP2902766B1 (en) Leak detecting device, leak detecting method and program
JP6406013B2 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
WO2016152143A1 (ja) 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体
WO2013183314A1 (ja) 構造物の分析装置および構造物の分析方法
JP6287467B2 (ja) 分析装置、分析システム及び分析方法
US10458878B2 (en) Position determination device, leak detection system, position determination method, and computer-readable recording medium
WO2015141129A1 (ja) 音速算出装置、音速算出方法および音速算出プログラム
JP6459186B2 (ja) 情報処理装置、配管音速分布測定装置、それを用いた配管異常位置検出装置、および配管音速分布測定方法
WO2014157539A1 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
JP6316131B2 (ja) 異常音発生位置の特定方法
WO2016017168A1 (ja) 診断装置、診断システム、診断方法、及びコンピュータ読み取り可能記録媒体
WO2015059956A1 (ja) 構造物診断装置、構造物診断方法、及びプログラム
JP2016095265A (ja) 漏洩検知方法および漏洩検知装置
JP6229659B2 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
KR100402685B1 (ko) 타공사에 의한 매설배관의 실시간 손상감지 모니터링시스템 및 가스배관의 충격위치 산출방법
JP2014219342A (ja) 埋設管路の漏洩検出方法および装置
JP2020101394A (ja) 漏洩検出システム及び漏洩検出方法
WO2015145972A1 (ja) 欠陥分析装置、欠陥分析方法および記憶媒体
WO2015194138A1 (ja) 位置特定装置、位置特定システム、位置特定方法及びコンピュータ読み取り可能記録媒体
KR101931686B1 (ko) 배관의 감육상태 감시 시스템 및 그 방법
JP2016217766A (ja) 振動増幅器、及び、振動増幅方法
US20180136173A1 (en) Condition assessment device, condition assessment method, program recording medium
JPH08166315A (ja) 漏水検出装置
Watts et al. A novel acoustic sensor for condition assessment and early leak detection in water pipes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507503

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201714312

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160322

WWE Wipo information: entry into national phase

Ref document number: 15557535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768050

Country of ref document: EP

Kind code of ref document: A1