WO2013183314A1 - 構造物の分析装置および構造物の分析方法 - Google Patents

構造物の分析装置および構造物の分析方法 Download PDF

Info

Publication number
WO2013183314A1
WO2013183314A1 PCT/JP2013/050416 JP2013050416W WO2013183314A1 WO 2013183314 A1 WO2013183314 A1 WO 2013183314A1 JP 2013050416 W JP2013050416 W JP 2013050416W WO 2013183314 A1 WO2013183314 A1 WO 2013183314A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
state
analysis
value
analyzing
Prior art date
Application number
PCT/JP2013/050416
Other languages
English (en)
French (fr)
Inventor
尚武 高橋
茂樹 篠田
佐々木 康弘
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/405,902 priority Critical patent/US20150114121A1/en
Priority to JP2014519850A priority patent/JPWO2013183314A1/ja
Publication of WO2013183314A1 publication Critical patent/WO2013183314A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils

Definitions

  • the present invention relates to a structure analyzing apparatus and a structure analyzing method.
  • Non-destructive inspection technology is being researched and developed to ensure the safety and security of structures such as high-pressure pipelines, water and sewage systems, high-speed railways, long-span bridges, skyscrapers, large passenger planes, and automobiles.
  • nondestructive inspection of a structure there are a penetrating flaw detection method and an ultrasonic flaw detection method (for example, see Non-Patent Document 1).
  • FIG. 11A shows an outline of the penetration flaw detection method.
  • the penetrant flaw detection method is a method in which the fluorescent material 2 is applied to the member 1 constituting the equipment, the fluorescent material 2 that has penetrated into the structural defect 3 is caused to emit light, and the scratch 3 is visually confirmed. This method is frequently used because it can be easily inspected.
  • FIG. 11B shows an outline of the ultrasonic flaw detection method.
  • the ultrasonic flaw detection method is a method of identifying the flaw 3 of the member 1 by using the ultrasonic transducer 4 which is an electromechanical transducer and irradiating the member 1 with ultrasonic waves. This method utilizes the fact that the acoustic impedance is different between the normal part and the part of the wound 3 in the member 1. Identification of the flaw 3 of the member 1 is performed by receiving a reflected wave signal at the position of the flaw 3 with an electromechanical transducer for the ultrasonic signal propagating through the member.
  • Both the penetrant flaw detection method and the ultrasonic flaw detection method are methods for detecting the defect after the occurrence of a structural defect such as a flaw, and it is difficult to grasp the deterioration state before the occurrence of the defect.
  • a structural defect such as a flaw
  • it is difficult to grasp the deterioration state before the occurrence of the defect once a defect has occurred, even a minor one can cause serious consequences. Therefore, there is a demand for an inspection method that can capture the deterioration state before the occurrence of the defect.
  • An object of the present invention is to provide a structure analysis apparatus and a structure analysis method capable of analyzing a state change of a structure such as deterioration before the structure is destroyed.
  • the structure analyzing apparatus of the present invention comprises: Vibration detecting means for detecting the vibration of the structure; Analyzing means for analyzing the output signal of the vibration detecting means, The analysis means compares the value in the reference state with the value in the state of analysis for at least one of the vibration amplitude of the structure and the vibration duration of the structure, thereby changing the state of the structure. It is a device to analyze.
  • the structure analyzing method of the present invention includes: A vibration detection step for detecting the vibration of the structure; Analyzing the output signal output in the vibration detection step, The analysis step compares the value in the reference state with the value in the state of analysis for at least one of the vibration amplitude of the structure and the vibration duration of the structure, thereby changing the state of the structure. It is a method of analysis.
  • the structure analyzing apparatus and the structure analyzing method of the present invention it is possible to analyze a state change of the structure such as deterioration before the structure is destroyed.
  • FIG. 1 is a block diagram showing the configuration of an example (Embodiment 1) of the structure analyzing apparatus of the present invention.
  • FIG. 2 is a flowchart showing an example (Embodiment 1) of the structure analysis method of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a first modification of the structure analyzing apparatus according to the first embodiment.
  • FIG. 4 is a flowchart showing a first modification of the structure analyzing method according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of an input signal to the vibrator and an output waveform of the vibration sensor according to the present invention.
  • FIG. 6 is a schematic diagram for explaining a vibration waveform analysis method according to the present invention.
  • FIG. 1 is a block diagram showing the configuration of an example (Embodiment 1) of the structure analyzing apparatus of the present invention.
  • FIG. 2 is a flowchart showing an example (Embodiment 1) of the structure analysis method of the present invention.
  • FIG. 3 is
  • FIG. 7 is a schematic diagram for explaining a vibration waveform analysis method according to the present invention.
  • FIG. 8 is a schematic diagram illustrating a structure analyzing method according to the first and second embodiments of the present invention.
  • FIG. 9 is a schematic diagram illustrating a structure analysis method according to Embodiment 3 of the present invention.
  • FIG. 10 is a block diagram showing the configuration of the analyzer according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing an outline of the nondestructive inspection technique described in Non-Patent Document 1.
  • FIG. 1 is a block diagram showing the configuration of the structure analyzing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart of the structure analysis method according to the first embodiment.
  • the structure analyzing apparatus 10 of this embodiment includes a vibration detecting means 11 and an analyzing means 12 as main components.
  • the vibration detection means 11 is, for example, a vibration sensor, detects vibration of the structure, and acquires vibration waveform data from the structure.
  • the vibration sensor is not particularly limited, and a known vibration sensor can be used. Specific examples include an acceleration sensor, a speed sensor, a displacement sensor, and the like.
  • the acceleration sensor is preferably of a piezoelectric type and has a built-in signal amplification circuit. It is preferable that the vibration detection means 11 (vibration sensor) has high sensitivity and can detect signals in a wide frequency band.
  • a contact type vibration detection means installed on a structure can be used as the vibration detection means 11, for example, a contact type vibration detection means installed on a structure can be used.
  • the installation location on the structure is not particularly limited, and the vibration detection means 11 is installed at an appropriate location on the structure according to the use of the structure analysis apparatus 10.
  • the vibration detection means 11 can also be a non-contact type vibration detection means that can be installed away from the structure. For example, a frequency response of vibration amplitude is optically measured using a laser Doppler vibrometer or the like. May be.
  • Non-contact type vibration detection means can be installed in non-contact with the structure to be analyzed, so it is effective when vibration detection means cannot be installed, for example, in places with large irregularities, high or low temperature places, small members, etc. It is.
  • the non-contact type vibration detecting means is used when the weight of the vibration detecting means itself is affected when it is attached to the structure, such as when the structure to be analyzed is light or soft. Can also be used.
  • an antenna can be installed to irradiate electromagnetic waves, and the frequency response of the vibration amplitude can be measured from the voltage output response of the reflected wave. If the antenna is scanned by moving the surface of the structure and the frequency response of the vibration amplitude is measured, the same result as that obtained when a plurality of vibration sensors described later are installed and measured can be obtained.
  • the analysis means 12 is a means for analyzing the output signal of the vibration detection means 11, and at least one of the vibration amplitude of the structure and the vibration duration time of the structure is a value in the reference state and a value in the state at the time of analysis. Is compared to analyze the state change of the structure.
  • the reference state is, for example, a state before a state change occurs in the structure, and in the case of analyzing the deterioration of the structure, it means a normal state in which no deterioration occurs.
  • the value in the reference state is stored in, for example, storage means, and the analysis means reads out the value in the reference state from the storage means, and the value in the reference state and the value in the state at the time of analysis. Is preferably compared.
  • the structure analysis method of the present embodiment performs the following steps as shown in the flowchart of FIG. 2 using the structure analysis apparatus of FIG.
  • the vibration detection means 11 detects the vibration of the structure to be detected, and acquires vibration waveform data (vibration detection step (step S11)).
  • the analysis means 12 analyzes the output signal of the vibration waveform data acquired by the vibration detection means 11 (analysis step (step S12)).
  • the analysis step (S12) for at least one of the vibration amplitude of the structure and the vibration continuation time of the structure, the value in the reference state is compared with the value in the state at the time of analysis. This is a process of analyzing changes.
  • a feature of the present invention is that a change in state (for example, mechanical strain of a structure) caused by vibration is detected from the time response of the vibration amplitude by the installed vibration detection means, based on the rigidity, mass, and mechanical resistance of the structure.
  • the purpose is to measure the maximum amplitude of the determined mechanical free vibration and the vibration damping rate ⁇ .
  • the maximum amplitude value is inversely proportional to the mechanical resistance R of the structure.
  • the relationship between the vibration damping rate ⁇ and the mechanical resistance R and mass M of the structure is expressed as ⁇ R / M.
  • FIG. 3 is a block diagram showing the structure of the structure analyzing apparatus according to the first modification of the first embodiment including the vibration means.
  • FIG. 4 shows a flowchart of the structure analyzing method in the first modification.
  • the analysis apparatus of the first modification includes an excitation unit 13 and a control unit 14 in addition to the vibration detection unit 11 and the analysis unit 12.
  • the control means 14 is a means for controlling the vibration detection means 11, the analysis means 12 and the vibration means 13, and includes, for example, a constant voltage oscillation circuit or the like, and applies a vibration waveform to the vibration means 13 for vibration.
  • the means 13 is vibrated.
  • the control means 14 is an arbitrary component and may not be included, but is preferably included. Except for this point, the structure analyzing apparatus shown in FIG. 3 has the same configuration as the structure analyzing apparatus 10 shown in FIG. Further, the structure analyzing method of the first modification includes an excitation step (S13) prior to the vibration detection step (S11). Except for this point, the structure analyzing method shown in FIG. 4 has the same steps as the structure analyzing method shown in FIG.
  • the vibration means 13 only needs to be able to apply vibration to the structure to be analyzed.
  • a vibration exciter, a speaker, or the like can be used, and can be appropriately selected according to the measurement environment.
  • the exciter applies an AC voltage waveform (for example, FIG. 5A) including a predetermined range of frequency with a preset amplitude from a constant voltage oscillation circuit for a certain period of time, and the applied electric energy is oscillated. Converted to energy, the structure to be analyzed is vibrated.
  • the speaker Sound waves are radiated from the speaker and a structure to be analyzed is vibrated.
  • FIG. 8A is a model diagram when the measurement object 38 on which the vibration sensor 31 is disposed is placed on the support base 39 and is vibrated by the vibrator 37.
  • the portion A of the measurement object 38 was mechanically deteriorated over time and analyzed.
  • Excitation by the exciter 37 is performed as follows, for example. First, the vibrator 37 is installed at the position F, and the measurement object 38 is vibrated. At this time, a plurality of mechanical resonance modes are excited in the measurement object 38 by vibration energy input from the vibrator 37, and free vibrations corresponding to the excited plurality of mechanical resonance modes are superimposed after the excitation is stopped. .
  • the vibration sensor 31 outputs a voltage signal corresponding to the vibration of the measurement object.
  • FIGS. 5B and 5C illustrate waveforms obtained by extracting only the fundamental wave and the second harmonic component with an electric filter from among a plurality of free vibrations. In both vibrations, the vibration amplitude is attenuated over time due to internal friction of the measurement object 38.
  • the vibration sensor 31 outputs a voltage signal corresponding to the vibration amplitude of the measurement object 38.
  • FIG. 6 illustrates a typical free vibration waveform.
  • the vibration waveform shows the maximum value a (1) at time T (1).
  • the vibration waveform shows a half value of the maximum value.
  • a (1) is defined as a vibration amplitude maximum value
  • T (3) is defined as a damping time, and is used for analyzing the mechanical characteristics of the measurement object 38 as a vibration amplitude and a damping rate ⁇ index.
  • the maximum value of vibration amplitude measured by the vibration sensor i installed on the measurement object is represented by a ijk and the decay time is represented by ⁇ T (50) ijk .
  • i is a number for identifying the installed vibration sensor
  • j is a resonance mode number
  • j 1, 2, 3,...
  • Attenuation time (vibration continuation time) ⁇ T (50) ijk changes along with the vibration amplitude maximum value aijk to be performed.
  • the degree of degradation of the structure an unused time value a ij1 and [Delta] T (50) ij1 normalized basis, a formula and [Delta] T (50) of ijk / a ij1 ijk / ⁇ T ( 50) ij1
  • Quantitative evaluation can be performed using the following formula.
  • such a deterioration state is also captured. Can do.
  • FIG. 8B the mechanism of the analysis method when two vibration sensors, the vibration sensor 31 and the vibration sensor 32, are arranged on the measurement object 38 will be described.
  • the vibrator 37 is installed at the position F of the measurement object 38, and the measurement object 38 is vibrated.
  • the A portion of the measurement object 38 is mechanically deteriorated with time.
  • the vibration sensor 32 is disposed immediately above the portion A (deteriorated portion).
  • FIG. 7B shows a time response measured by the vibration sensor 32 and focusing on the basic resonance.
  • FIG. 7B corresponds to FIG. 7A that shows the measurement results for the vibration sensor 31. Compared with FIG. 7A, it can be seen that the response change is larger in FIG. 7B.
  • the vibration means 13 applies a vibration having a higher-order resonance frequency to the structure to excite a higher-order resonance phenomenon, thereby generating unevenness (mechanical strain) with a plurality of vibration amplitudes. I do. Except for this point, the structure analysis apparatus and analysis method of the present embodiment have the same configuration as the structure analysis apparatus and analysis method of Embodiment 1 or 2.
  • FIGS. 9A to 9C are examples in which vibration sensors 31, 32, 33, and 34 are arranged on the measurement object 38.
  • the vibration sensor 32 is disposed immediately above the B portion of the measurement object 38
  • the vibration sensor 34 is disposed immediately above the A portion of the measurement object 38.
  • FIG. 9A shows a stationary state
  • FIGS. 9B and 9C show a vibration state.
  • a high-order resonance phenomenon in the measurement object that is, unevenness of a plurality of vibration amplitudes in the measurement object.
  • a state in which (mechanical strain) is generated is shown.
  • the case of the third resonance is shown.
  • the mechanical strain increases at the plurality of deteriorated portions A and B, and the response appears sensitively to the measured value. That is, in the high-order mechanical resonance mode, the concave and convex regions of the vibration amplitude are present in a narrow region of the measurement object, and the influence of locally generated mechanical strain appears greatly.
  • a value measured in a normal state corresponding to the reference state of the first embodiment
  • each vibration amplitude maximum value a ijk and each vibration duration ⁇ T (50) ijk .
  • analysis such as evaluation of the degree of deterioration of the structure and identification of the position can be performed with higher accuracy.
  • the case of the third-order resonance has been described.
  • the present invention is not limited to this, and for example, second-order or fourth-order resonance can be used.
  • the higher order resonance frequency is preferably in the second to twentieth range, and more preferably in the second to tenth range. If the order of resonance becomes too high, separation from the adjacent resonance (if it is 19th, 18th or 20th) becomes difficult and detection tends to be difficult.
  • FIG. 10 is a block diagram showing the configuration of the structure analyzing apparatus according to the fourth embodiment of the present invention.
  • the structure analyzing apparatus 20 includes a constant voltage oscillation circuit 21, a vibrator (vibrating means) 22, a vibration acceleration sensor (vibration detecting means) 24, and an analyzing means 28.
  • the analysis unit 28 includes an analysis unit 25 that calculates the resonance frequency and the resonance sharpness Q, a reference data storage device 26 that stores data, and a calculator 27 that compares and determines the reference data.
  • the structure analyzing apparatus 20 can be installed in a structure (measurement object) 23 to be analyzed for analysis.
  • the vibrator 22 may be attached to the measurement object 23 or may be non-contact.
  • the structure analysis device and the structure analysis method of the present invention can be applied to, for example, a water leakage detection device and a water leakage detection method.
  • the vibration detection means of the structural analysis device detects vibrations of water pipes such as water intake pipes, water conduits, water distribution pipes, and water supply pipes.
  • the installation location of the vibration detection means may be, for example, a water pipe such as a water intake pipe, a water conduit, a water distribution pipe, a water supply pipe, a manhole, a fire hydrant, a water stop valve, or the like.
  • the vibration detecting means detects vibration caused by abnormal vibration or abnormal sound
  • the analyzing means detects the vibration of the water conduit.
  • the state where the conduit is normal is set as a reference state, and the value in the reference state is compared with the value in the state of analysis.
  • the deterioration state of the water pipe can be analyzed.
  • the deterioration state can be analyzed in the same manner as the water conduit.
  • the structure analyzing apparatus and the structure analyzing method of the present invention can be applied to, for example, an intrusion detection apparatus and an intrusion detection method for a building.
  • the installation location of the vibration detection means of the structural analyzer may be, for example, a window frame, glass, door, floor surface, pillar, or the like.
  • the vibration detection means detects vibration caused by an action related to intrusion
  • the analysis means sets at least one of the vibration amplitude and the vibration duration as a reference state, and in a reference state By comparing the value with the value in the state at the time of analysis, it is possible to analyze the state such as the presence or absence of intrusion.
  • the structure analysis apparatus and the structure analysis method of the present invention can be applied to, for example, a structure deterioration detection apparatus and a structure deterioration detection method.
  • the installation location of the vibration detecting means of the structural analysis device may be, for example, a wall or a pillar, a beam, a floor, a foundation portion or the like of a building or a house.
  • the vibration detection means detects vibration caused by the abnormal vibration or abnormal sound
  • the analysis means uses the state where there is no abnormality in the structure for at least one of the vibration amplitude and the vibration duration as a reference state.
  • the deterioration state of the structure can be analyzed by comparing the value in the reference state with the value in the state at the time of analysis.
  • Example 1 The structure was analyzed using the structure analyzing apparatus 20 having the configuration shown in the block diagram of FIG.
  • a stainless steel plate having a length of 40 cm, a width of 1 cm, and a thickness of 5 mm was prepared.
  • 1 kg of a steel ball was repeatedly dropped from a height of 1 m to a location 12 cm from the left end, and collided with the stainless steel plate.
  • both ends of the stainless steel plate were mechanically supported as shown in FIG.
  • the vibrator 22 is installed at a position 5 cm from the left end of the stainless steel plate, and the vibrator 22 is driven by a band-limited white noise electric signal including a frequency of 10 Hz to 10 kHz to add the stainless steel plate with 1N.
  • the vibration acceleration sensor 24 was installed at four positions of 5 cm, 15 cm, 25 cm, and 35 cm from the left end of the stainless steel plate, and a voltage output proportional to the vibration amplitude of the measurement object corresponding to the installation position of each sensor was obtained. .
  • the fundamental resonance frequency is obtained from the vibration time waveform in the free vibration state as shown in FIG. 5 by the analysis unit 25, the frequency component is extracted by the digital filter provided in the analysis unit 25, and the vibration amplitude is obtained.
  • Example 3 A steel ball drop test on a stainless steel plate was performed in the same manner as in Example 2 except that the measured object was vibrated using an impulse hammer instead of the vibrator. The results are shown in Table 3. Also in this example, the same result as in Example 2 was obtained, and in the present invention, it was found that the analysis result was obtained without depending on the vibration method.
  • Example 4 A steel ball drop test on a stainless steel plate was performed in the same manner as in Example 2 except that a laser Doppler vibrometer was used instead of the vibration acceleration sensor. The results are shown in Table 4. In the present example, the same result as in Example 2 was obtained. In the present invention, it was found that the result did not depend on the type of sensor for detecting the vibration amplitude.
  • Example 5 A steel ball drop test on a stainless steel plate was performed in the same manner as in Example 2 except that the object to be measured was vibrated using sound waves radiated from a speaker instead of the vibrator. The results are shown in Table 5. Also in this example, the same result as in Example 2 was obtained, and in the present invention, it was found that the analysis result was obtained without depending on the vibration method.
  • Example 6 A steel ball drop test on a stainless steel pipe was performed in the same manner as in Example 1 except that a stainless steel pipe having a length of 40 cm, an inner diameter of 50 mm, and an outer diameter of 60 mm was used as a measurement object. And the same analysis and evaluation were performed in the state which performed the mechanical support similarly to Example 1.
  • FIG. The results are shown in Table 6. Also in the present embodiment, as in the first embodiment, the vibration amplitude maximum value a ijk and the vibration duration time ⁇ T (50) ijk are increased only with the vibration sensor installed in the vicinity of the steel ball dropping position as the number of steel ball drops increases. It was confirmed that the change in position was clearly identifiable and the degradation position was identified and the degree of degradation could be evaluated with high accuracy. Thus, in the present invention, it was found that the analysis result can be obtained without depending on the shape of the measurement object. This result shows that the present invention is applicable to pipes used in water pipes and chemical plants.
  • Example 7 In this example, a simulation was performed when the material properties of the entire stainless steel plate were changed for the same stainless steel plate (length 40 cm, width 1 cm, thickness 5 mm) as used in Example 1. The results are shown in Table 7.
  • “a” is a vibration amplitude maximum value (standard value with reference to before deterioration)
  • ⁇ T is vibration duration (damping time) (standard value with reference to before deterioration)
  • fr is a resonance frequency (before deterioration). Is a standard value).
  • the simulation was performed using the finite element method, assuming that the Young's modulus and damping coefficient of the stainless steel plate before degradation were 1, the Young's modulus after degradation was 0.98, and the damping coefficient after degradation was 1.06.
  • the resonance frequency fr changes 1% before and after deterioration
  • the maximum vibration amplitude “a” changes 3%
  • the vibration duration ⁇ T changes 6%. It has become.
  • the vibration amplitude or the vibration duration time for which a larger change can be obtained is the reference state. It can be said that the deterioration can be detected by comparing the value in the above and the value in the state at the time of analysis.
  • the structure analyzing apparatus and structure analyzing method of the present invention can be applied to structures such as stainless steel, aluminum alloys, vinyl chloride pipes, concrete, and the like. Applicable to pipe breakage detection, building or residential structure deterioration detection, oil pipeline system oil leak or pipeline breakage detection, gas pipeline gas leak or pipeline breakage detection, etc. Not wide.
  • Vibration detecting means for detecting the vibration of the structure; Analyzing means for analyzing the output signal of the vibration detecting means, The analysis means compares the value in the reference state with the value in the state of analysis for at least one of the vibration amplitude of the structure and the vibration duration of the structure, thereby changing the state of the structure. Analyzing equipment for structures.
  • Appendix 2 The structure analysis apparatus according to appendix 1, wherein the reference state is a state before a state change occurs in the structure.
  • Appendix 4 A plurality of the vibration detection means, The structure analyzing apparatus according to any one of appendices 1 to 3, wherein the plurality of vibration detection units are arranged at different locations.
  • Appendix 7 The structure analyzing apparatus according to any one of appendices 1 to 6, further comprising a vibration means for vibrating the structure.
  • the excitation means applies a vibration having a higher order resonance frequency to the structure; Causing mechanical distortion in the structure,
  • Appendix 9 A nondestructive inspection apparatus including the structure analysis apparatus according to any one of appendices 1 to 8.
  • a vibration detection step for detecting the vibration of the structure Analyzing the output signal output in the vibration detection step, The analysis step compares the value in the reference state with the value in the state of analysis for at least one of the vibration amplitude of the structure and the vibration duration of the structure, thereby changing the state of the structure. Analyzing method of structure.
  • Appendix 11 The structure analysis method according to appendix 10, wherein the reference state is a state before a state change occurs in the structure.
  • the excitation step is a step of applying a vibration having a higher-order resonance frequency to the structure; Causing mechanical strain to the structure by application of the vibration; In the vibration detection step, the vibration of the structure where the mechanical strain occurs is detected, 15.
  • Appendix 16 A nondestructive inspection method using the structure analysis method according to any one of appendices 10 to 15.
  • the vibration detecting means detects the vibration of the water pipe; For at least one of the vibration amplitude of the water pipe and the vibration duration of the water pipe, the deterioration state of the water pipe is analyzed by comparing the value in the reference state with the value in the state at the time of analysis. Water leakage analyzer.
  • the vibration detection step is a step of detecting vibration of a water pipe, For at least one of the vibration amplitude of the water pipe and the vibration duration of the water pipe, the deterioration state of the water pipe is analyzed by comparing the value in the reference state with the value in the state at the time of analysis. Water leakage analysis method.

Abstract

 構造物が破壊される前段階での劣化等の構造物の状態変化を分析可能な、構造物の分析装置および構造物の分析方法を提供する。 本発明の構造物の分析装置(10)は、構造物の振動を検出する振動検出手段(11)と、振動検出手段(11)の出力信号を分析する分析手段(12)とを備え、分析手段(12)は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する。

Description

構造物の分析装置および構造物の分析方法
 本発明は、構造物の分析装置および構造物の分析方法に関する。
 高圧パイプライン、上下水道、高速鉄道、長大橋、超高層建築、大型旅客機、自動車などの構造物の安心・安全を確保するために、非破壊検査技術が研究、開発されている。構造物の非破壊検査の例として、浸透探傷法および超音波探傷法がある(例えば、非特許文献1参照)。図11(a)に、浸透探傷法の概略を示す。浸透探傷法は、設備を構成する部材1に蛍光材料2を塗布し、構造上の欠陥である傷3に浸透した蛍光材料2を発光させ、目視でその傷3を確認する方法である。この方法は、簡易に検査ができるため、多用されている。図11(b)に、超音波探傷法の概略を示す。超音波探傷法は、電気機械変換子である超音波トランスデューサ4を用い、超音波を部材1に照射して、部材1の傷3を同定する方法である。この方法は、部材1において、正常箇所と傷3の箇所とで、異なる音響インピーダンスであることを利用したものである。部材1の傷3の同定は、部材を伝播する超音波信号について、傷3の箇所での反射波信号を機械電気変換子で受信することで行う。
やさしい非破壊検査技術、5ページ、1996年、工業調査会
 浸透探傷法および超音波探傷法は、いずれも、傷など構造上の欠陥の発生後に、前記欠陥を検知する方法であり、前記欠陥の発生前に劣化状態を捉えることは困難であった。しかし、一旦欠陥が発生すると、軽微なものであっても、重大な結果を生じさせるおそれがある。そのため、前記欠陥の発生前に劣化状態を捉えることのできる検査方法が要望されている。
 本発明の目的は、構造物が破壊される前段階での劣化等の構造物の状態変化を分析可能な、構造物の分析装置および構造物の分析方法を提供することにある。
 前記目的を達成するために、本発明の構造物の分析装置は、
構造物の振動を検出する振動検出手段と、
前記振動検出手段の出力信号を分析する分析手段とを備え、
前記分析手段は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する装置である。
 本発明の構造物の分析方法は、
構造物の振動を検出する振動検出工程と、
前記振動検出工程において出力される出力信号を分析する分析工程とを備え、
前記分析工程は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する方法である。
 本発明の構造物の分析装置および構造物の分析方法によれば、構造物が破壊される前段階での劣化等の構造物の状態変化を分析可能である。
図1は、本発明の構造物の分析装置の一例(実施形態1)の構成を示すブロック図である。 図2は、本発明の構造物の分析方法の一例(実施形態1)を示すフローチャートである。 図3は、前記実施形態1の構造物の分析装置の変形例1の構成を示すブロック図である。 図4は、前記実施形態1の構造物の分析方法の変形例1を示すフローチャートである。 図5は、本発明における加振器への入力信号および振動センサの出力波形の一例を示す図である。 図6は、本発明における振動波形の分析方法を説明する模式図である。 図7は、本発明における振動波形の分析方法を説明する模式図である。 図8は、本発明の実施形態1および2における構造物の分析方法を説明する模式図である。 図9は、本発明の実施形態3における構造物の分析方法を説明する模式図である。 図10は、本発明の実施形態4の分析装置の構成を示すブロック図である。 図11は、非特許文献1に記載の非破壊検査技術の概略を示す模式図である。
 以下、本発明の構造物の分析装置および構造物の分析方法について、図面を参照し、例をあげて詳細に説明する。ただし、本発明は、以下の例に限定されない。なお、以下の図1から図10において、同一部分には、同一符号を付している。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なり、模式的に示す場合がある。
(実施形態1)
 図1のブロック図に、実施形態1の構造物の分析装置の構成を示す。また、図2は、実施形態1における構造物の分析方法のフローチャートである。図1に示すように、本実施形態の構造物の分析装置10は、振動検出手段11と、分析手段12とを主要な構成要素として含む。
 振動検出手段11は、例えば、振動センサであり、構造物の振動を検出し、前記構造物から振動波形データを取得する。前記振動センサは、特に制限されず、公知の振動センサを使用できる。具体的には、例えば、加速度センサ、速度センサ、変位センサ等があげられる。前記加速度センサは、圧電型であり、信号増幅回路が内蔵されたものが好ましい。振動検出手段11(振動センサ)は、感度が高く、広い周波数帯域の信号を検知できるものであることが好ましい。振動検出手段11は、例えば、構造物に設置する接触型振動検出手段を用いることができる。前記構造物への設置箇所は、特に制限されず、構造物の分析装置10の用途に応じて、振動検出手段11は、前記構造物の適切な箇所に設置される。また、振動検出手段11は、構造物から離れて設置可能である非接触型振動検出手段を用いることもでき、例えば、レーザドップラー振動計等を用いて、光学的に振動振幅の周波数応答を計測してもよい。非接触型振動検出手段は、分析対象の構造物と非接触で設置できるので、例えば、凹凸の大きい箇所、高温または低温の箇所、小さい部材など、振動検出手段を設置できないような場合に、有効である。また、非接触型の振動検出手段は、分析対象の構造物が軽い場合、柔らかい場合などのように、前記構造物に取り付けた際に、振動検出手段自体の重さが影響するような場合にも使用できる。また、振動センサに代えて、アンテナを設置して電磁波を照射し、その反射波の電圧出力応答から振動振幅の周波数応答の測定を行うこともできる。アンテナを、前記構造物の表面を移動させてスキャンし、振動振幅の周波数応答を計測すれば、後述する複数の振動センサを設置して計測する場合と、同様の結果が得られる。
 分析手段12は、振動検出手段11の出力信号を分析する手段であり、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する。前記基準状態は、例えば、前記構造物に状態変化が生じる前の状態であり、構造物の劣化を分析する場合においては、劣化が生じていない正常時の状態を意味する。前記基準状態での値は、例えば、記憶手段に記憶され、前記分析手段は、前記記憶手段から前記基準状態での値を読み出し、前記基準状態での値と前記分析の際の状態での値とを比較することが好ましい。
 本実施形態の構造物の分析方法は、図1の構造物の分析装置を用いて、図2のフローチャートに示すように、以下のステップを実施する。
 まず、振動検出手段11により、検出対象である構造物の振動を検出し、振動波形データを取得する(振動検出工程(ステップS11))。
 つぎに、分析手段12により、振動検出手段11により取得した振動波形データについて出力信号の分析を行う(分析工程(ステップS12))。分析工程(S12)は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する工程である。
 本発明の特徴は、振動により生じた状態変化(例えば、構造物の機械歪)を、設置した振動検出手段により、振動振幅の時間応答から、前記構造物の剛性、質量、および、機械抵抗で決まる機械自由振動の振幅最大値と、振動減衰率σとを計測することにある。振幅最大値は、構造物の機械抵抗Rと反比例する。また、振動減衰率σと、構造物の機械抵抗Rおよび質量Mとの関係は、σ∝R/Mと表される。例えば、構造物に外部から力が加わると、前記構造物に機械歪が生じ、前記構造物を構成する原子の移動が起こり、やがて原子同士の結合が切断されて、前記構造物の破損(欠陥)の発生に至る。原子の移動が生じる際には、機械特性、特に、剛性や機械抵抗が変化する。本発明では、前記自由振動の振幅最大値と振動減衰率σとの変化を計測することにより、これらの変化を、構造上の欠陥が発生する予兆としての劣化状態として、高精度な定量評価が可能になる。
 振動検出手段11で検出される振動は、構造物を振動させる加振手段により、構造物に付与することも好ましく、本実施形態の構造物の分析装置は、さらに、加振手段を含むことが好ましい。前記加振手段を含む、実施形態1の変形例1の構造物の分析装置の構成を、図3のブロック図に示す。また、図4に、変形例1における構造物の分析方法のフローチャートを示す。図3に示すように、変形例1の分析装置は、振動検出手段11と分析手段12に加えて、加振手段13および制御手段14を含む。制御手段14は、振動検出手段11、分析手段12および加振手段13を制御する手段であり、例えば、定電圧発振回路等を含んでおり、振動波形を加振手段13に印加し、加振手段13を振動させる。制御手段14は、任意の構成要素であり、含まれなくともよいが、含まれることが好ましい。この点を除いて、図3に示す構造物の分析装置は、図1に示す構造物の分析装置10と同様の構成を有する。また、変形例1の構造物の分析方法は、振動検出工程(S11)に先立ち、加振工程(S13)を含む。この点を除いて、図4に示す構造物の分析方法は、図2に示す構造物の分析方法と同様の工程を有する。
 加振手段13は、分析の対象となる構造物に振動を与えることができればよく、例えば、加振器、スピーカ等が使用でき、測定環境等に応じて適宜選択できる。前記加振器は、定電圧発振回路から、あらかじめ設定された振幅で一定範囲の周波数を含む交流電圧波形(例えば、図5(a))を一定時間印加し、印加された電気エネルギーが、振動エネルギーに変換されて、分析の対象の構造物が加振される。前記スピーカを用いる場合、前記スピーカから音波を放射し、分析の対象となる構造物を加振する。
 ここで、本発明の構造物の分析方法のメカニズムを、図8を用いて説明する。図8(a)は、振動センサ31が配置された測定物38を、支持台39に設置して、加振器37により加振した場合の、モデル図である。測定物38のA部分には、経時的に、機械的な劣化を生じさせ、分析を行った。加振器37による加振は、例えば、次のように行う。まず、加振器37を位置Fに設置し、測定物38を加振する。このとき、加振器37による振動エネルギー入力により、測定物38には複数の機械共振モードが励起され、加振停止後には、これら励起された複数の機械共振モードに対応した自由振動が重畳する。振動センサ31は測定物の振動に応じた電圧信号を出力する。図5(b)および(c)には、複数の自由振動のうち、電気フィルタで基本波および第2高調波成分のみ取り出した波形を例示している。どちらの振動も測定物38が有する内部摩擦によりその振動振幅は時間経過とともに減衰する。
 振動センサ31は、測定物38の振動振幅に応じた電圧信号を出力する。図6に、典型的な自由振動波形を例示する。図6において、時間T(1)において振動波形が最大値a(1)を示している。また、時間T(3)において振動波形が最大値の1/2の値を示している。a(1)を振動振幅最大値およびT(3)を減衰時間と定義して、振動振幅および減衰率σ指標として測定物38の機械特性の分析に用いる。ここで、測定物に設置した振動センサiにより計測された振動振幅最大値をaijkで、減衰時間をΔT(50)ijkで表わす。iは設置した振動センサを識別する番号で、jは共振モードの番号であって周波数の低い順にj=1、2、3・・・で表す。また、kは測定物の使用時間(経過時間)に応じて計測した順番であり、未使用、すなわち劣化していない測定物から、使用時間に応じて順番にk=1、2、3・・・と表す。
 図7(a)に示すように、前記測定物の使用時間、すなわちk=1、2、3となるに従って、構造物の耐久性に応じた機械的な劣化が生じると、振動センサ31で計測される振動振幅最大値aijkとともに、減衰時間(振動継続の時間)ΔT(50)ijkが変化する。このとき、構造物の劣化の度合いは、未使用時の値aij1およびΔT(50)ij1を基準として規格化した、aijk/aij1の式およびΔT(50)ijk/ΔT(50)ij1の式を用いて定量評価が可能となる。なお、前記背景技術の方法では、構造物の破損の前段階(予兆)である内部変化を検知することは不可能または困難であったが、本発明においては、このような劣化状態も捉えることができる。
(実施形態2)
 本実施形態では、振動検出手段11が複数設けられている。この点を除いて、本実施形態の構造物の分析装置および分析方法は、実施形態1の構造物の分析装置および分析方法と同様の構成を有する。
 図8(b)に示すように、振動センサ31および振動センサ32の、2つの振動センサが測定物38に配置されている場合の分析方法のメカニズムを説明する。図8(b)において、加振器37を測定物38の位置Fに設置し、測定物38を加振する。測定物38のA部分には、経時的に、機械的な劣化を生じさせる。振動センサ32は、A部分(劣化箇所)の直上に配置されている。振動センサ32で計測される、基本共振に着目した時間応答を図7(b)に示す。図7(b)は、振動センサ31についての計測結果を示した図7(a)と対応する。図7(a)と比較すると、図7(b)では、応答変化が大きくなっていることがわかる。この場合、劣化箇所Aにおいて、機械歪が大きくなるため、計測値にその応答が敏感に表れる。このように、振動センサが劣化箇所の直上に設置されていると、その応答変化が大きくなり劣化の度合いの高精度検査(分析)が可能になることがわかる。さらに、他の位置に設置されたセンサの応答変化の大きさを比較することで、劣化位置の同定等の分析が可能になる。
(実施形態3)
 本実施形態では、加振手段13によって、高次の共振周波数を有する振動を構造物に印加し、高次の共振現象を励起させ、複数の振動振幅の凹凸(機械歪)を生じさせ、分析を行う。この点を除いて、本実施形態の構造物の分析装置および分析方法は、実施形態1または2の構造物の分析装置および分析方法と同様の構成を有する。
 図9(a)~(c)は、測定物38について、振動センサ31、32、33、34を配置させた例である。ここで、振動センサ32は、測定物38のB部分の直上に配置され、振動センサ34は、測定物38のA部分の直上に配置され、前記A部分およびB部分に、経時的に、機械的な劣化を生じさせた例である。図9(a)は、静置状態を示し、図9(b)および(c)は、加振状態であり、測定物に高次の共振現象、すなわち、測定物に複数の振動振幅の凹凸(機械歪)を生じさせた状態を示す。ここでは、第3次の共振の場合を示す。このように、測定物に複数の振動振幅の凹凸(複数の機械歪)を生じさせると、複数の劣化箇所AおよびBにおいて、機械歪が大きくなるため、計測値にその応答が敏感に表れる。すなわち、高次の機械共振モードにおいては、振動振幅の凹および凸の領域が測定物の狭い領域に存在することになり、局所的に生じた機械歪の影響が大きく現れる。この場合、正常状態(実施形態1の基準状態に相当)で計測した値を参照して、各共振周波数における複数の振動センサからの出力を比較すると、劣化箇所と劣化の度合いが、より高精度でセンサ位置、各振動振幅最大値aijk、各振動継続時間ΔT(50)ijkに現れる。このように、本実施形態によると、構造物の劣化の度合いおよび位置の同定の評価等の分析を、より高精度で行うことができる。本実施形態では、第3次の共振の場合を説明したが、本発明はこれに限定されず、例えば、第2次あるいは第4次等の共振を用いることもできる。高次の共振周波数としては、第2次~第20次の範囲が好ましく、より好ましくは、第2次~第10次の範囲である。共振の次数が高くなりすぎると、隣の共振(19次であれば、18次や20次)との分離が難しくなり、検出が困難となる傾向があるため、前記範囲にあることが好ましい。
(実施形態4)
 図10は、本発明の実施形態4の構造物の分析装置の構成を示すブロック図である。構造物の分析装置20は、定電圧発振回路21、加振器(加振手段)22、振動加速度センサ(振動検出手段)24および分析手段28から構成される。分析手段28は、共振周波数および共振先鋭度Qを計算する分析部25、データを保存する参照データ記憶装置26および参照データと比較判定する演算器27を含む。図10に示すように、構造物の分析装置20を、分析対象の構造物(測定物)23に設置して分析を行うことができる。前述のように、加振器22は、測定物23に取り付けてもよいし、非接触とすることもできる。
(実施形態5)
 本発明の構造物の分析装置および構造物の分析方法は、例えば、漏水検知装置および漏水検知方法に適用することができる。漏水検知に適用する場合、前記構造物の分析装置の振動検出手段は、取水管、導水管、配水管、給水管等の水道管の振動を検出する。前記振動検出手段の設置箇所は、例えば、取水管、導水管、配水管、給水管等の水道管、マンホール、消火栓、止水弁等とすればよい。例えば、導水管に異常が発生し、漏水による異常振動や異常音が発生する場合、前記振動検出手段により、異常振動や異常音に起因する振動を検出し、前記分析手段により、前記導水管の振動振幅および前記導水管の振動継続時間の少なくとも一方について、導水管に異常がない状態を基準状態とし、基準状態での値と分析の際の状態での値とを比較することで、前記導水管の劣化状態を分析することができる。前記導水管以外の他の水道管についても、例えば、前記導水管と同様にして、劣化状態を分析することができる。
(実施形態6)
 本発明の構造物の分析装置および構造物の分析方法は、例えば、建物への侵入検知装置および侵入検知方法に適用することができる。侵入検知に適用する場合、前記構造物の分析装置の振動検出手段の設置箇所は、例えば、窓枠、ガラス、ドア、床面、柱等とすればよい。前記振動検出手段を、建造物の窓枠に設置することで、例えば、窓の破壊行為、窓の開錠、および、窓の開閉等の侵入に関係する行為を検知することができる。前記振動検出手段により、侵入に関係する行為に起因する振動を検出し、前記分析手段により、前記振動振幅および前記振動継続時間の少なくとも一方について、異常がない状態を基準状態とし、基準状態での値と分析の際の状態での値とを比較することで、侵入行為の有無等の状態を分析することができる。
(実施形態7)
 本発明の構造物の分析装置および構造物の分析方法は、例えば、構造物の劣化検知装置および構造物の劣化検知方法に適用することができる。構造物劣化検知に適用する場合、前記構造物の分析装置の振動検出手段の設置箇所は、例えば、ビルもしくは住宅等の壁、柱、梁、床、基礎部分等とすればよい。例えば、構造物に劣化が発生した場合、劣化に起因する異常振動や異常音が発生する。前記振動検出手段により、前記異常振動や異常音に起因する振動を検出し、前記分析手段により、前記振動振幅および前記振動継続時間の少なくとも一方について、前記構造物に異常がない状態を基準状態とし、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の劣化状態を分析することができる。
[実施例1]
 図10のブロック図に示す構成の構造物の分析装置20を使用して、構造物の分析を行った。分析対象の構造物23として、長さ40cm、幅1cm、厚さ5mmのステンレス鋼板を用意した。このステンレス鋼板の長さ方向において、左端から12cmの箇所に、1kgの鋼球を1mの高さから繰り返し落下させ、ステンレス鋼板に衝突させた。鋼球落下前、落下1000回後、落下5000回後に、図9(a)に示すようにステンレス鋼板の両端を機械的に支持した状態とした。
 加振器22を、前記ステンレス鋼板の左端から5cmの箇所に設置し、10Hz~10kHzの周波数を含む帯域制限されたホワイトノイズの電気信号により加振器22を駆動し、1Nでステンレス鋼板を加振した。振動加速度センサ24を、ステンレス鋼板の左端から5cm、15cm、25cm、35cmの4箇所の位置に設置して、各々のセンサの設置位置に対応した測定物の振動振幅に比例する電圧出力を得た。
 次に、図5に示したような自由振動状態の振動時間波形から、分析部25により、基本共振周波数を求め、その周波数成分を、分析部25に備えたデジタルフィルタにより抽出して、振動振幅最大値aijkおよび振動継続時間ΔT(50)ijkを求めた(j=1)。さらに、それらの鋼球落下前と落下1000回後および落下5000回後との比を、それぞれ算出することにより、劣化箇所の特定と、その度合いを評価した。その結果を表1に示す。鋼球落下回数の増加に伴い、鋼球落下位置付近に設置した振動センサのみで、振動振幅最大値aijkおよび振動継続時間ΔT(50)ijkの変化が明確に読み取れ、劣化位置の同定と劣化の度合いの評価が高精度で行えることが確認できた。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 実施例1と同様に、ステンレス鋼板への鋼球落下試験を行った。ここでは、劣化箇所の特定とその度合いの評価に、図9に示す第3次の高次共振における振動振幅最大値aijkと振動継続時間ΔT(50)ijkを用いた(j=3)。その結果を表2に示す。実施例1と同様に、鋼球落下位置付近に設置したセンサによる値の変化が観察されるが、実施例1に比べ、その値の変化が大きいことがわかる。高次共振周波数では、その大きな機械歪のため、劣化の度合いが敏感に測定に現れたといえる。このように、高次共振周波数を用いることにより、測定の高精度化が行われたことが確認できた。
Figure JPOXMLDOC01-appb-T000002
[実施例3]
 加振器に替えて、インパルスハンマを用いて測定物を加振させた以外は、実施例2と同様にして、ステンレス鋼板への鋼球落下試験を行った。その結果を表3に示す。本実施例においても、実施例2と同様の結果が得られ、本発明において、加振方法に依存せずに、分析結果が得られることがわかった。
Figure JPOXMLDOC01-appb-T000003
[実施例4]
 振動加速度センサに替えて、レーザドップラー振動計を用いた以外は、実施例2と同様にして、ステンレス鋼板への鋼球落下試験を行った。その結果を表4に示す。本実施例においても実施例2と同様の結果が得られ、本発明において、振動振幅を検知するセンサの種類に結果が依存しないことがわかった。
Figure JPOXMLDOC01-appb-T000004
[実施例5]
 加振器に替えて、スピーカから放射される音波を用いて測定物を加振させた以外は、実施例2と同様にして、ステンレス鋼板への鋼球落下試験を行った。その結果を表5に示す。本実施例においても、実施例2と同様の結果が得られ、本発明において、加振方法に依存せずに、分析結果が得られることがわかった。
Figure JPOXMLDOC01-appb-T000005
[実施例6]
 測定物として、長さ40cm、内径50mm、外径60mmのステンレス鋼管を用いた以外は、実施例1と同様にして、ステンレス鋼管への鋼球落下試験を行った。そして、実施例1と同様に機械的支持を行った状態で、同様の分析、評価を行った。その結果を表6に示す。本実施例においても、実施例1と同様に、鋼球落下回数の増加に伴い、鋼球落下位置付近に設置した振動センサのみで、振動振幅最大値aijkおよび振動継続時間ΔT(50)ijkの変化が明確に読み取れ、劣化位置の同定と劣化の度合いの評価が高精度で行えることが確認できた。このように、本発明において、測定物の形状に依存せずに、分析結果が得られることがわかった。本結果は、水道管や化学プラントで使用される配管に、本発明が適用可能なことを示している。
Figure JPOXMLDOC01-appb-T000006
[実施例7]
 本実施例では、実施例1で使用したものと同様のステンレス鋼板(長さ40cm、幅1cm、厚さ5mm)について、ステンレス鋼板全体の材料物性を変化させた場合のシミュレーションを行った。その結果を表7に示す。表7において、「a」は振動振幅最大値(劣化前を基準とした規格値)、ΔTは振動継続時間(減衰時間)(劣化前を基準とした規格値)、frは共振周波数(劣化前を基準とした規格値)である。シミュレーションは、劣化前のステンレス鋼板のヤング率および減衰係数を1、劣化後のヤング率を0.98、劣化後の減衰係数を1.06として、有限要素法を用いて行った。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、劣化前後において、共振周波数frは、1%の変化であるのに対し、振動振幅最大値「a」は、3%の変化、振動継続時間ΔTは、6%の変化となっている。このように、材料物性の変化がわずかであって、共振周波数の変化からは、劣化の検出が困難である場合であっても、より大きい変化が得られる振動振幅または振動継続時間について、基準状態での値と分析の際の状態での値とを比較することで、劣化の検出が可能であるといえる。
 本発明の構造物の分析装置および構造物の分析方法は、ステンレス、アルミニウム合金、塩化ビニル管、コンクリート等の構造物に適用可能であり、例えば、社会インフラ事業の水道管システムにおける水漏れもしくは水道管の破壊検知、ビルもしくは住居等の構造物の劣化検知、石油パイプラインシステムにおける石油漏れもしくはパイプラインの破壊検知、ガスパイプラインにおけるガス漏れもしくはパイプラインの破壊検知等に応用でき、その用途は制限されず、広い。
 上記の実施形態の一部または全部は、以下の付記のようにも記載しうるが、以下には限定されない。
(付記1)
 構造物の振動を検出する振動検出手段と、
前記振動検出手段の出力信号を分析する分析手段とを備え、
前記分析手段は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する、構造物の分析装置。
(付記2)
 前記基準状態は、前記構造物に状態変化が生じる前の状態である、付記1記載の構造物の分析装置。
(付記3)
 前記基準状態での値は記憶手段に記憶され、
前記分析手段は、前記記憶手段から前記基準状態での値を読み出し、前記基準状態での値と前記分析の際の状態での値とを比較する、付記1または2記載の構造物の分析装置。
(付記4)
 前記振動検出手段を複数備え、
前記複数の振動検出手段が、異なる場所に配置されている、付記1から3のいずれかに記載の構造物の分析装置。
(付記5)
 前記振動検出手段が、非接触型振動検出手段である、付記1から4のいずれかに記載の構造物の分析装置。
(付記6)
 前記振動検出手段が、接触型振動検出手段である、付記1から4のいずれかに記載の構造物の分析装置。
(付記7)
 さらに、構造物を振動させる加振手段を備える、付記1から6のいずれかに記載の構造物の分析装置。
(付記8)
 前記加振手段が、高次の共振周波数を有する振動を前記構造物に印加し、
前記構造物に、機械歪を生じさせ、
前記振動検出手段は、前記機械歪の生じた箇所に配置され、前記振動検出手段からの出力信号に基づいて前記構造物の状態変化を分析する、付記7記載の構造物の分析装置。
(付記9)
 付記1から8のいずれかに記載の構造物の分析装置を含む、非破壊検査装置。
(付記10)
 構造物の振動を検出する振動検出工程と、
前記振動検出工程において出力される出力信号を分析する分析工程とを備え、
前記分析工程は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する、構造物の分析方法。
(付記11)
 前記基準状態は、前記構造物に状態変化が生じる前の状態である、付記10記載の構造物の分析方法。
(付記12)
 前記基準状態での値は記憶されており、
前記分析工程において、記憶された前記基準状態での値を読み出し、前記基準状態での値と前記分析の際の状態での値とを比較する、付記10または11記載の構造物の分析方法。
(付記13)
 前記振動検出工程において、異なる場所における複数の振動を検出する、付記10から12のいずれかに記載の構造物の分析方法。
(付記14)
 前記振動検出工程に先立ち、さらに、構造物を振動させる加振工程を備える、付記10から13のいずれかに記載の構造物の分析方法。
(付記15)
 前記加振工程が、高次の共振周波数を有する振動を前記構造物に印加する工程であり、
前記振動の印加によって前記構造物に、機械歪を生じさせ、
前記振動検出工程において、前記機械歪の生じた箇所の構造物の振動を検出し、
前記分析工程において、前記機械歪の生じた箇所の構造物の振動の出力信号に基づいて前記構造物の状態変化を分析する、付記14記載の構造物の分析方法。
(付記16)
 付記10から15のいずれかに記載の構造物の分析方法を用いる、非破壊検査方法。
(付記17)
 付記1から8のいずれかに記載の構造物の分析装置を含み、
前記振動検出手段が、水道管の振動を検出し、
前記水道管の振動振幅および前記水道管の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記水道管の劣化状態を分析する、漏水分析装置。
(付記18)
 付記10から15のいずれかに記載の構造物の分析方法を用い、
前記振動検出工程が、水道管の振動を検出する工程であり、
前記水道管の振動振幅および前記水道管の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記水道管の劣化状態を分析する、漏水分析方法。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 この出願は、2012年6月6日に出願された日本出願特願2012-129200を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10、20  構造物の分析装置
11  振動検出手段
12  分析手段
13  加振手段
14  制御手段
21  定電圧発信回路
22、37  加振器
23  分析対象の構造物(測定物)
24  振動加速度センサ
25  分析部
26  参照データ記憶装置
27  演算器
28  分析手段
31、32、33、34  振動センサ
38  測定物
39  支持台
 
1  部材
2  蛍光材料
3  傷
4  超音波トランスデューサ

Claims (16)

  1. 構造物の振動を検出する振動検出手段と、
    前記振動検出手段の出力信号を分析する分析手段とを備え、
    前記分析手段は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する、構造物の分析装置。
  2. 前記基準状態は、前記構造物に状態変化が生じる前の状態である、請求項1記載の構造物の分析装置。
  3. 前記基準状態での値は記憶手段に記憶され、
    前記分析手段は、前記記憶手段から前記基準状態での値を読み出し、前記基準状態での値と前記分析の際の状態での値とを比較する、請求項1または2記載の構造物の分析装置。
  4. 前記振動検出手段を複数備え、
    前記複数の振動検出手段が、異なる場所に配置されている、請求項1から3のいずれか一項に記載の構造物の分析装置。
  5. 前記振動検出手段が、非接触型振動検出手段である、請求項1から4のいずれか一項に記載の構造物の分析装置。
  6. 前記振動検出手段が、接触型振動検出手段である、請求項1から4のいずれか一項に記載の構造物の分析装置。
  7. さらに、構造物を振動させる加振手段を備える、請求項1から6のいずれか一項に記載の構造物の分析装置。
  8. 前記加振手段が、高次の共振周波数を有する振動を前記構造物に印加し、
    前記構造物に、機械歪を生じさせ、
    前記振動検出手段は、前記機械歪の生じた箇所に配置され、前記振動検出手段からの出力信号に基づいて前記構造物の状態変化を分析する、請求項7記載の構造物の分析装置。
  9. 請求項1から8のいずれか一項に記載の構造物の分析装置を含む、非破壊検査装置。
  10. 構造物の振動を検出する振動検出工程と、
    前記振動検出工程において出力される出力信号を分析する分析工程とを備え、
    前記分析工程は、構造物の振動振幅および構造物の振動継続時間の少なくとも一方について、基準状態での値と分析の際の状態での値とを比較することで、前記構造物の状態変化を分析する、構造物の分析方法。
  11. 前記基準状態は、前記構造物に状態変化が生じる前の状態である、請求項10記載の構造物の分析方法。
  12. 前記基準状態での値は記憶されており、
    前記分析工程において、記憶された前記基準状態での値を読み出し、前記基準状態での値と前記分析の際の状態での値とを比較する、請求項10または11記載の構造物の分析方法。
  13. 前記振動検出工程において、異なる場所における複数の振動を検出する、請求項10から12のいずれか一項に記載の構造物の分析方法。
  14. 前記振動検出工程に先立ち、さらに、構造物を振動させる加振工程を備える、請求項10から13のいずれか一項に記載の構造物の分析方法。
  15. 前記加振工程が、高次の共振周波数を有する振動を前記構造物に印加する工程であり、
    前記振動の印加によって前記構造物に、機械歪を生じさせ、
    前記振動検出工程において、前記機械歪の生じた箇所の構造物の振動を検出し、
    前記分析工程において、前記機械歪の生じた箇所の構造物の振動の出力信号に基づいて前記構造物の状態変化を分析する、請求項14記載の構造物の分析方法。
  16. 請求項10から15のいずれか一項に記載の構造物の分析方法を用いる、非破壊検査方法。
PCT/JP2013/050416 2012-06-06 2013-01-11 構造物の分析装置および構造物の分析方法 WO2013183314A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/405,902 US20150114121A1 (en) 2012-06-06 2013-01-11 Structure analyzing device and a structure analyzing method
JP2014519850A JPWO2013183314A1 (ja) 2012-06-06 2013-01-11 構造物の分析装置および構造物の分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012129200 2012-06-06
JP2012-129200 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013183314A1 true WO2013183314A1 (ja) 2013-12-12

Family

ID=49711717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050416 WO2013183314A1 (ja) 2012-06-06 2013-01-11 構造物の分析装置および構造物の分析方法

Country Status (3)

Country Link
US (1) US20150114121A1 (ja)
JP (1) JPWO2013183314A1 (ja)
WO (1) WO2013183314A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190825A (ja) * 2014-03-28 2015-11-02 日本電気株式会社 分析装置、分析システム及び分析方法
JP2017502345A (ja) * 2013-12-20 2017-01-19 ターボメカTurbomeca 内視鏡及びその使用方法
WO2017145900A1 (ja) * 2016-02-26 2017-08-31 日本電気株式会社 配管診断装置、配管診断方法、判別問題最適化装置、判別問題最適化方法、基準分布生成装置、基準分布生成方法、及び記憶媒体
JP2019011998A (ja) * 2017-06-29 2019-01-24 株式会社フジタ 検査対象物の状態評価装置および状態評価方法
JP2019011993A (ja) * 2017-06-29 2019-01-24 株式会社フジタ 検査対象物の状態評価装置および状態評価方法
CN109342572A (zh) * 2018-11-30 2019-02-15 中国航空工业集团公司沈阳飞机设计研究所 一种外场飞机翼面蜂窝结构腐蚀损伤无损检测方法及系统
JP2020008562A (ja) * 2018-07-06 2020-01-16 ザ・ボーイング・カンパニーThe Boeing Company 温度に敏感でない損傷検出のためのシステム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6293537B2 (ja) * 2014-03-19 2018-03-14 株式会社東芝 検査システム、及び異常検出方法
US10416120B2 (en) * 2014-08-29 2019-09-17 University Of Louisiana At Lafayette System and methods for determining sensitization of alloy by measuring and correlating ultrasonic parameters
DE102015017237B3 (de) * 2015-08-13 2020-12-24 Christoph Lucks Verfahren zur Analyse und/oder Überwachung von Brücken sowie entsprechendes System
JP6587874B2 (ja) * 2015-09-10 2019-10-09 株式会社東芝 検知システム、信号処理装置及び検知方法
CN109959709B (zh) * 2019-03-06 2021-11-05 中国建筑科学研究院有限公司 全隐框玻璃幕墙边界结构密封胶损伤识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349775A (ja) * 2000-06-07 2001-12-21 Hitachi Ltd 風車翼破損検知装置
JP2002131291A (ja) * 2000-10-27 2002-05-09 Kawasaki Heavy Ind Ltd 構造物検査方法および装置
JP2006058291A (ja) * 2004-07-23 2006-03-02 Tokyo Institute Of Technology 欠陥検査装置及び方法
JP2008286619A (ja) * 2007-05-17 2008-11-27 Tobishima Corp 性状評価装置及び性状評価方法
JP2010048762A (ja) * 2008-08-25 2010-03-04 Takenaka Komuten Co Ltd 積層ゴムの診断方法
JP2011027452A (ja) * 2009-07-22 2011-02-10 Jfe Mechanical Co Ltd データ収集装置及び該データ収集装置を備えた設備機器の診断装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550434A (en) * 1968-01-11 1970-12-29 Arvin Systems Inc Flaw detection system and probe
US3623358A (en) * 1970-02-20 1971-11-30 Iwatani & Co Method of non-destructive examination of specimens
CH592302A5 (ja) * 1974-08-12 1977-10-31 Laue Guenter
US4061017A (en) * 1975-11-17 1977-12-06 Time/Data Corporation Structural analysis system
US4539847A (en) * 1984-01-03 1985-09-10 Texaco Inc. Acoustic method and apparatus for measuring thickness of a coating layer on a substrate
US4901575A (en) * 1988-11-30 1990-02-20 Gp Taurio, Inc. Methods and apparatus for monitoring structural members subject to transient loads
US5255565A (en) * 1991-11-12 1993-10-26 Vibra-Metrics, Inc. Method and apparatus for monitoring multiple points on a vibrating structure
US5526694A (en) * 1994-11-15 1996-06-18 Infrastructure Instruments Inc. Instrument for detecting hidden structural damage in multi-story buildings
US5631423A (en) * 1995-03-25 1997-05-20 Quatro Corporation Method for resonant measurement
US6006163A (en) * 1997-09-15 1999-12-21 Mcdonnell Douglas Corporation Active damage interrogation method for structural health monitoring
SE518997C2 (sv) * 2001-04-02 2002-12-17 Impressonic Ab Förfarande och anordning för att detektera skada i material eller föremål
WO2008103176A1 (en) * 2007-02-22 2008-08-28 Micro Motion, Inc. Vibratory pipeline diagnostic system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349775A (ja) * 2000-06-07 2001-12-21 Hitachi Ltd 風車翼破損検知装置
JP2002131291A (ja) * 2000-10-27 2002-05-09 Kawasaki Heavy Ind Ltd 構造物検査方法および装置
JP2006058291A (ja) * 2004-07-23 2006-03-02 Tokyo Institute Of Technology 欠陥検査装置及び方法
JP2008286619A (ja) * 2007-05-17 2008-11-27 Tobishima Corp 性状評価装置及び性状評価方法
JP2010048762A (ja) * 2008-08-25 2010-03-04 Takenaka Komuten Co Ltd 積層ゴムの診断方法
JP2011027452A (ja) * 2009-07-22 2011-02-10 Jfe Mechanical Co Ltd データ収集装置及び該データ収集装置を備えた設備機器の診断装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502345A (ja) * 2013-12-20 2017-01-19 ターボメカTurbomeca 内視鏡及びその使用方法
JP2015190825A (ja) * 2014-03-28 2015-11-02 日本電気株式会社 分析装置、分析システム及び分析方法
GB2563351B (en) * 2016-02-26 2021-07-21 Nec Corp Piping diagnostic device, piping diagnostic method, discriminant-problem optimizing device, discriminant-problem optimizing method, criteria distribution ge
GB2563351A (en) * 2016-02-26 2018-12-12 Nec Corp Piping diagnostic device, piping diagnostic method, discriminant-problem optimizing device, discriminant-problem optimizing method, criteria distribution ge
JPWO2017145900A1 (ja) * 2016-02-26 2018-12-27 日本電気株式会社 配管診断装置、配管診断方法、判別問題最適化装置、判別問題最適化方法、基準分布生成装置、基準分布生成方法、及びプログラム
WO2017145900A1 (ja) * 2016-02-26 2017-08-31 日本電気株式会社 配管診断装置、配管診断方法、判別問題最適化装置、判別問題最適化方法、基準分布生成装置、基準分布生成方法、及び記憶媒体
US11614205B2 (en) 2016-02-26 2023-03-28 Nec Corporation Piping diagnostic device, piping diagnostic method, discriminant-problem optimizing device, discriminant-problem optimizing method, criteria distribution generating device, criteria distribution generating method, and storage medium
JP2019011998A (ja) * 2017-06-29 2019-01-24 株式会社フジタ 検査対象物の状態評価装置および状態評価方法
JP2019011993A (ja) * 2017-06-29 2019-01-24 株式会社フジタ 検査対象物の状態評価装置および状態評価方法
JP2020008562A (ja) * 2018-07-06 2020-01-16 ザ・ボーイング・カンパニーThe Boeing Company 温度に敏感でない損傷検出のためのシステム
JP7247007B2 (ja) 2018-07-06 2023-03-28 ザ・ボーイング・カンパニー 温度に敏感でない損傷検出のためのシステム
CN109342572A (zh) * 2018-11-30 2019-02-15 中国航空工业集团公司沈阳飞机设计研究所 一种外场飞机翼面蜂窝结构腐蚀损伤无损检测方法及系统
CN109342572B (zh) * 2018-11-30 2022-02-22 中国航空工业集团公司沈阳飞机设计研究所 一种外场飞机翼面蜂窝结构腐蚀损伤无损检测方法及系统

Also Published As

Publication number Publication date
JPWO2013183314A1 (ja) 2016-01-28
US20150114121A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6079776B2 (ja) 構造物の分析装置および構造物の分析方法
WO2013183314A1 (ja) 構造物の分析装置および構造物の分析方法
US11639915B2 (en) Identifying structural defect geometric features from acoustic emission waveforms
US8327709B2 (en) Method and apparatus for nondestructive evaluation and monitoring of materials and structures
Ryles et al. Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
WO2017064855A1 (ja) 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体
CA2783089A1 (en) Damage detection in pipes and joint systems
Qiu et al. Measurement of structural vibration by using optic-electronic sensor
WO2017064854A1 (ja) 構造物異常検知装置、構造物異常検知方法、記録媒体及び構造物異常検知システム
Tsai et al. Simulation and experiments of airborne zero-group-velocity Lamb waves in concrete plate
WO2014157539A1 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
Luk et al. Rapid evaluation of tile-wall bonding integrity using multiple-head impact acoustic method
WO2015059956A1 (ja) 構造物診断装置、構造物診断方法、及びプログラム
JP6229659B2 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
Fröjd Structural health monitoring of concrete structures using diffuse waves
JP2003207487A (ja) 欠陥検査方法および欠陥検査装置
Li et al. Linear and nonlinear guided wave based debonding monitoring in CFRP-reinforced steel structures
Huang et al. Time-frequency methods for structural health monitoring of deepwater risers subjected to vortex induced vibrations
Shardakov et al. Experimental study of dynamic deformation processes in gas pipeline
Watanabe et al. Cross-sectional visualization of defects by SIBIE
Бисвас et al. ACOUSTIC EMISSION-BASED DAMAGE DETECTION IN STEEL FRAMED STRUCTURE-A REVIEW
Fiala et al. Experimental and theoretical analysis of acoustic properties of building materials
CA2404102A1 (en) Nondestructive detection of reinforcing member degradation
Bagheri On the processing of highly nonlinear solitary waves and guided ultrasonic waves for structural health monitoring and nondestructive evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800051

Country of ref document: EP

Kind code of ref document: A1