WO2016151962A1 - 複合膜の製造方法 - Google Patents

複合膜の製造方法 Download PDF

Info

Publication number
WO2016151962A1
WO2016151962A1 PCT/JP2015/084720 JP2015084720W WO2016151962A1 WO 2016151962 A1 WO2016151962 A1 WO 2016151962A1 JP 2015084720 W JP2015084720 W JP 2015084720W WO 2016151962 A1 WO2016151962 A1 WO 2016151962A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating liquid
coating
filter
resin
porous
Prior art date
Application number
PCT/JP2015/084720
Other languages
English (en)
French (fr)
Inventor
本元 博行
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US15/559,535 priority Critical patent/US20180093459A1/en
Priority to JP2016533673A priority patent/JP6033507B1/ja
Priority to CN201580077666.XA priority patent/CN107427780B/zh
Priority to KR1020177025617A priority patent/KR102637385B1/ko
Priority to KR1020237014206A priority patent/KR20230061573A/ko
Publication of WO2016151962A1 publication Critical patent/WO2016151962A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/21Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/10Organic solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • B05D3/108Curing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/12Coating on the layer surface on paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a composite membrane.
  • composite membranes having a porous layer on a porous substrate are known as battery separators, gas filters, liquid filters, and the like.
  • a coating liquid containing a resin and a filler is applied onto a porous substrate to form a coating layer, and then the resin contained in the coating layer is solidified to form a porous layer.
  • a manufacturing method is known (see, for example, Patent Document 1).
  • the coating liquid for forming the porous layer on the surface of the porous substrate contains a resin and a filler, and for example, aggregates are formed in the coating liquid after a lapse of time after preparation. Sometimes.
  • the agglomerate may remain in the composite film and cause deterioration in the quality of the composite film. It is known to remove agglomerates and foreign matters in the coating liquid by filtration (see, for example, Patent Document 1).
  • the coating liquid From the viewpoint of production efficiency of the composite membrane, it is desirable to apply the coating liquid onto the porous substrate while conveying the long porous substrate at a high speed. It is necessary to improve the supply speed of the working fluid. On the other hand, from the viewpoint of improving the quality of the composite film, it is desirable to filter the coating solution before coating. However, if the coating liquid is filtered, the supply speed of the coating liquid decreases.
  • An object of an embodiment of the present invention is to provide a method for producing a composite membrane, which produces a high-quality composite membrane with high production efficiency.
  • An aggregate removal step of removing the aggregate through a filter having a minimum pore size larger than the maximum particle size of the contained aggregate, and the coating liquid that has undergone the aggregate removal step is a porous substrate.
  • [2] The production method according to [1], wherein the minimum pore size of the filter is 2 to 10 times the maximum particle size of the aggregate.
  • [3] The production method according to [1] or [2], wherein the aggregate has a maximum particle size of 2 ⁇ m or more and 30 ⁇ m or less.
  • [4] The method according to any one of [1] to [3], wherein the filler has a volume average particle size of primary particles of 0.1 ⁇ m or more and 3.0 ⁇ m or less.
  • [5] The production method according to any one of [1] to [4], wherein the filter has a minimum pore size of 30 ⁇ m or more and 70 ⁇ m or less.
  • the aggregate removal step includes applying the pressure of 0.05 MPa or more and 0.5 MPa or less to the coating liquid and passing the filter, according to any one of [1] to [5].
  • Production method. [7] The manufacturing method according to any one of [1] to [6], wherein in the aggregate removal step, the flow rate of the coating liquid passing through the filter is 0.5 L / min or more.
  • a method for producing a composite membrane which produces a high-quality composite membrane with high production efficiency.
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • process is not limited to an independent process, and is included in this term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • machine direction means the long direction in the porous base material and composite membrane produced in a long shape
  • width direction means the direction orthogonal to the “machine direction”. means.
  • MD direction the “machine direction”
  • TD direction the “width direction”
  • the production method of the present disclosure is a method of producing a composite film including a porous substrate and a porous layer containing a resin and a filler provided on one or both surfaces of the porous substrate.
  • the manufacturing method of the present disclosure is a manufacturing method in which a coating liquid containing a resin and a filler is applied to one or both surfaces of a porous substrate, and a porous layer is provided on one or both surfaces of the porous substrate. .
  • the manufacturing method of this indication has the following processes.
  • -Coating liquid preparation process The process of preparing the coating liquid containing resin and a filler.
  • -Aggregate removal process The process of removing the aggregate contained in a coating liquid by letting a coating liquid pass through a filter.
  • -Coating process The process of applying the coating liquid which passed through the aggregate removal process to the single side
  • Solidification step A step of solidifying the resin contained in the coating layer to obtain a composite film having a porous layer containing a resin and a filler on one or both sides of the porous substrate.
  • the production method of the present disclosure may further include a water washing step for washing the composite membrane with water after the coagulation step, and a drying step for removing water from the composite membrane after the water washing step.
  • FIG. 1 is a conceptual diagram showing an embodiment of a manufacturing method of the present disclosure.
  • a roll of a porous base material used for manufacturing a composite membrane is placed on the left side in the figure, and a roll around which the composite membrane is wound is placed on the right side in the figure.
  • the embodiment shown in FIG. 1 has a coating liquid preparation process, an aggregate removal process, a coating process, a coagulation process, a water washing process, and a drying process, and the coagulation process is a wet process.
  • the coating process, the coagulation process, the water washing process, and the drying process are successively performed sequentially.
  • this embodiment performs a coating liquid preparation process and an aggregate removal process according to the implementation time of a coating process. Details of each step will be described later.
  • FIG. 2 is a conceptual diagram showing another embodiment of the manufacturing method of the present disclosure.
  • the roll of the porous base material used for manufacture of the composite membrane is placed on the left side in the figure, and the roll around which the composite membrane is wound is placed on the right side in the figure.
  • the embodiment shown in FIG. 2 has a coating liquid preparation process, an aggregate removal process, a coating process, and a coagulation process, and the coagulation process is a dry process.
  • the coating process and the coagulation process are sequentially performed sequentially.
  • this embodiment performs a coating liquid preparation process and an aggregate removal process according to the implementation time of a coating process. Details of each step will be described later.
  • the filter used in the aggregate removal step is a filter having a minimum pore diameter larger than the maximum particle diameter of the aggregate included in the coating liquid.
  • a filter having a minimum pore size that is the same as or smaller than the maximum particle size of the aggregate is difficult to pass the coating solution or takes a long time to pass the coating solution.
  • a filter having a minimum pore size larger than the maximum particle size of the aggregate can remove at least a part of the aggregate while smoothly passing the coating liquid, and can reduce the aggregate in the coating liquid. Therefore, according to the manufacturing method of the present disclosure, since the coating liquid can be stably supplied to the coating process, the production efficiency is high, and moreover, since the coating liquid with less aggregate is used in the coating process, High quality composite membranes can be manufactured.
  • the maximum particle size of the aggregate contained in the coating liquid is the size of the aggregate measured by operating according to JIS K5600-2-5: 1999 using a particle size gauge. Specifically, after dripping the coating liquid into the deepest part of the particle size gauge, the scraper is swept at a constant speed and constant pressure so as to scrape the coating liquid toward a depth of 0 ⁇ m, and a granular or linear unique pattern The value obtained by reading the scale at the deepest part where the sapphire appears (that is, the maximum value in a region where a granular or linear unique pattern exists) is the maximum particle size ( ⁇ m) of the aggregate.
  • the minimum pore diameter ( ⁇ m) of the filter is a value measured using a palm porometer based on a mercury intrusion method.
  • the viscosity of the coating liquid prepared in the coating liquid preparation step is 0.1 Pa ⁇ s or more from the viewpoint of suitability for coating on the porous substrate, and is stable in the coating step. From the viewpoint of supplying the coating liquid, it is 5.0 Pa ⁇ s or less.
  • the viscosity (Pa ⁇ s) of the coating liquid is a viscosity obtained by measuring a sample at a temperature of 20 ° C. using a B-type rotational viscometer.
  • a coating liquid preparation process is a process of preparing the coating liquid containing resin and a filler.
  • the coating liquid is prepared, for example, by dissolving a resin in a solvent and further dispersing a filler.
  • the resin and filler used for the preparation of the coating liquid that is, the resin and filler contained in the porous layer will be described in detail in the section of [Porous layer] described later.
  • Examples of the solvent for dissolving the resin (hereinafter also referred to as “good solvent”) used for preparing the coating liquid include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide. From the viewpoint of forming a porous layer having a good porous structure, it is preferable to mix a phase separation agent that induces phase separation in a good solvent.
  • the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the phase separation agent is preferably mixed with the good solvent in an amount ratio within a range that can ensure the viscosity of the coating liquid suitable for coating.
  • the solvent contains 50% by mass or more (more preferably 60% by mass or more) of a good solvent and a phase separation agent of 10% by mass to 50% by mass
  • a mixed solvent containing (more preferably 10% by mass to 40% by mass) is preferable.
  • the coating liquid contains a resin at a concentration of 3% by mass to 10% by mass and a filler at a concentration of 10% by mass to 90% by mass. preferable.
  • a homogenizer for the preparation of the coating solution, a homogenizer, a glass bead mill, a ceramic bead mill, or the like can be used in order to enhance the solubility and dispersibility of the resin and filler in a solvent.
  • pre-dispersion in a dispersant may be performed before the resin or filler is mixed with the solvent.
  • a coating liquid having a viscosity of 0.1 Pa ⁇ s to 5.0 Pa ⁇ s is prepared.
  • the viscosity of the coating solution is 0.1 Pa ⁇ s or more, more preferably 0.5 Pa ⁇ s or more, and further preferably 1.0 Pa ⁇ s or more, from the viewpoint of the suitability for application to the porous substrate. It is.
  • the viscosity of the coating solution is 5.0 Pa ⁇ s or less, more preferably 4.0 Pa ⁇ s or less, more preferably 3.0 Pa, from the viewpoint of stably supplying the coating solution to the coating process. -S or less.
  • the viscosity of the coating liquid can be controlled by the mixing ratio of the solvent, the resin and the filler.
  • the coating liquid for example, when time passes after preparation or the liquid temperature rises, aggregates of various sizes including at least one of a resin and a filler are generated.
  • the maximum particle size of the aggregate contained in the coating liquid is, for example, 2 ⁇ m to 30 ⁇ m.
  • the aggregate removal step is a step of removing the aggregates contained in the coating liquid by passing the coating liquid through the filter, and a filter having a minimum pore size larger than the maximum particle size of the aggregates contained in the coating liquid. It is a process performed using.
  • the minimum pore diameter of the filter used in the aggregate removal step is preferably 2 times or more, more preferably 3 times or more, and 4 times the maximum particle diameter of the aggregate contained in the coating liquid from the viewpoint of processing efficiency.
  • the above is more preferable, and from the viewpoint of the removal efficiency of aggregates, it is preferably 10 times or less, more preferably 9 times or less, and further preferably 8 times or less.
  • the minimum pore size of the filter used in the aggregate removal step is preferably 10 ⁇ m or more, preferably 30 ⁇ m or more, preferably 100 ⁇ m or less, and more preferably 70 ⁇ m or less.
  • the minimum pore size of the filter used in the aggregate removal step is preferably set according to the maximum particle diameter of the aggregate contained in the coating liquid.
  • filter media examples include non-woven fabrics, microporous membranes, network structures, and porous materials.
  • the filter medium of the filter may be either a single layer or a multilayer.
  • the filter medium material include organic materials such as resins (for example, polypropylene, polyester, fluororesin, nylon, etc.) and cellulose; inorganic materials such as metals, glass, and ceramics.
  • filter media examples include resin fiber nonwoven fabric, cellulose filter paper, glass fiber filter paper, metal mesh, and porous ceramic. From the viewpoint of high removal effect of aggregates contained in the coating liquid, resin fiber nonwoven fabric is used. preferable.
  • the filter medium has a thickness in the liquid passage direction of, for example, 5 mm to 40 mm.
  • the filter is a filter in which the filter medium has a continuous density gradient (that is, a pore diameter gradient).
  • the minimum pore diameter ( ⁇ m) of the filter is a value measured using a palm porometer based on a mercury intrusion method for the entire filter medium continuously forming a density gradient.
  • the filter is a filter in which a plurality of filter materials of the same or different materials having different densities are combined, and the filter medium has a density gradient (that is, a pore diameter gradient) discontinuously inside the filter.
  • the minimum pore diameter ( ⁇ m) of the filter is the smallest value among the values measured for each filter medium using a palm porometer based on the mercury intrusion method.
  • the filter used in the agglomerate removing step is one in which the filter medium has a continuous density gradient (that is, pore diameter gradient); a plurality of filter media of the same or different materials having different densities are combined, and the density gradient of the filter medium inside the filter Those having discontinuous (that is, pore diameter gradient) are preferred.
  • Examples of the filter used in the agglomerate removing step include HC series, BO series, SLF series, SRL series, and MPX series manufactured by Loki Techno Co., which have a polypropylene nonwoven fabric as a filter medium. It is preferable that one or two or more of these filters are installed in a housing having an inlet and an outlet for the coating liquid and used for the aggregate removal step.
  • the entire filtration area of the filter used in the aggregate removal step is, for example, 0.01 m 2 to 10 m 2 , and preferably 0.1 m 2 to 10 m 2 .
  • the agglomerate removing step is preferably a step of applying pressure to the coating liquid and passing it through a filter from the viewpoint of processing efficiency.
  • the pressure applied to the coating solution is preferably 0.05 MPa or more, more preferably 0.1 MPa or more, and further preferably 0.2 MPa or more.
  • the pressure applied to the coating solution is preferably 0.5 MPa or less, more preferably 0.45 MPa or less, and still more preferably 0.4 MPa or less, from the viewpoint of reliably removing aggregates contained in the coating solution.
  • the flow rate of the coating liquid passing through the filter is preferably 0.5 L / min or more, more preferably 1 L / min or more, and further preferably 2 L / min or more.
  • the flow rate of the coating liquid passing through the filter is preferably 20 L / min or less, more preferably 15 L / min or less, and even more preferably 10 L / min or less, from the viewpoint of reliably removing aggregates contained in the coating liquid.
  • the temperature of the coating liquid when passing through the filter is, for example, 5 ° C to 50 ° C.
  • a coating process is a process of coating the coating liquid containing resin and a filler on the single side
  • the coating liquid is applied to the porous substrate by a coating means such as a Meyer bar, a die coater, a reverse roll coater, or a gravure coater.
  • the coating amount is the total of both surfaces, for example, 10mL / m 2 ⁇ 60mL / m 2.
  • One embodiment of the coating process includes a first coating means for coating one surface and a second coating for coating the other surface, which are arranged to face each other with a porous substrate interposed therebetween.
  • the coating liquid is applied simultaneously to both surfaces of the porous substrate using the means.
  • One embodiment of the coating process includes a first coating means for coating one surface and a second coating for coating the other surface, which are arranged apart in the transport direction of the porous substrate.
  • the coating liquid is sequentially applied to both surfaces of the porous base material one by one using a processing means.
  • the transport speed of the porous substrate in the coating process is preferably 5 m / min or more, and more preferably 10 m / min or more.
  • the transport speed of the porous substrate in the coating process is preferably 100 m / min or less, more preferably 90 m / min or less, from the viewpoint of reliably coating the coating liquid.
  • the coagulation step is a wet process in which the porous layer is obtained by bringing the coating layer into contact with the coagulation liquid to solidify the resin contained in the coating layer; the solvent contained in the coating layer is removed and contained in the coating layer Any of the dry process of coagulating resin and obtaining a porous layer may be sufficient. Since the porous layer tends to be denser in the dry process than in the wet process, the wet process is preferable from the viewpoint of obtaining a good porous structure.
  • the coagulating liquid used in the wet process is generally a mixed solution of the good solvent and the phase separation agent used for preparing the coating liquid and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is matched to the mixing ratio of the mixed solvent used for preparing the coating liquid.
  • the water content of the coagulation liquid is preferably 40% by mass to 80% by mass from the viewpoint of formation of a porous structure and productivity.
  • the temperature of the coagulation liquid is, for example, 20 ° C. to 50 ° C.
  • the method for removing the solvent from the composite membrane in the dry process is not limited, for example, a method of bringing the composite membrane into contact with a heat generating member; a method of transporting the composite membrane into a chamber adjusted in temperature and humidity; And the like;
  • the temperature is, for example, 50 ° C. to 80 ° C.
  • the manufacturing method of this indication WHEREIN When a wet process is employ
  • the water washing step is a step performed for the purpose of removing the solvent (the solvent for the coating liquid and the solvent for the coagulating liquid) contained in the composite film.
  • the water washing step is preferably a step of transporting the composite membrane through a water bath.
  • the temperature of water for washing is, for example, 0 ° C. to 70 ° C.
  • the manufacturing method of the present disclosure preferably includes a drying step for removing water from the composite membrane after the water washing step.
  • the drying method is not limited, and examples thereof include a method in which the composite film is brought into contact with the heat generating member; a method in which the composite film is conveyed into a chamber whose temperature and humidity are adjusted; a method in which hot air is applied to the composite film; When heat is applied to the composite membrane, the temperature is, for example, 50 ° C. to 80 ° C.
  • the following embodiment may be adopted for the manufacturing method of the present disclosure.
  • a process of passing the solvent through a filter is performed before mixing with the resin.
  • the retained particle diameter of the filter used for this treatment is, for example, 0.1 ⁇ m to 100 ⁇ m.
  • -A stirrer is installed in the tank for carrying out the coating liquid preparation step, and the coating liquid is constantly stirred with the stirrer to suppress sedimentation of solid components (for example, filler) in the coating liquid.
  • the coating liquid transport pipe from the coating liquid preparation process to the coating process is made to be a circulation type, and the coating liquid is circulated in the pipe to suppress aggregation of solid components in the coating liquid.
  • the temperature of the coating liquid in the pipe it is preferable to control the temperature of the coating liquid in the pipe to be constant.
  • a precision metering pump is installed as a pump that supplies the coating liquid from the coating liquid preparation process to the aggregate removal process.
  • a non-pulsating metering pump is installed as a pump that supplies the coating liquid from the aggregate removal process to the coating process.
  • a housing is provided around the coating means to keep the environment of the coating process clean and to control the temperature and humidity of the atmosphere of the coating process.
  • a sensor for detecting the coating amount is arranged downstream of the coating means to correct the coating amount in the coating process.
  • porous substrate and the porous layer of the composite membrane will be described in detail.
  • the porous substrate means a substrate having pores or voids therein.
  • a substrate include a microporous film; a porous sheet made of a fibrous material such as a nonwoven fabric and paper; a composite porous material in which one or more other porous layers are laminated on the microporous film or the porous sheet. Quality sheet; and the like.
  • a microporous membrane is preferable from the viewpoint of thinning and strength of the composite membrane.
  • a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.
  • the material for the porous substrate is preferably an electrically insulating material, and may be either an organic material or an inorganic material.
  • thermoplastic resin As the material for the porous substrate, a thermoplastic resin is preferable from the viewpoint of providing the porous substrate with a shutdown function.
  • the shutdown function means that when the composite membrane is applied to the battery separator, when the battery temperature rises, the constituent materials dissolve and block the pores of the porous substrate, thereby blocking the movement of ions. A function that prevents thermal runaway.
  • thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a microporous membrane containing polyolefin As the porous substrate, a microporous membrane containing polyolefin (referred to as “polyolefin microporous membrane”) is preferable.
  • polyolefin microporous membrane examples include polyolefin microporous membranes that are applied to conventional battery separators, and it is preferable to select one having sufficient mechanical properties and material permeability.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of exhibiting a shutdown function, and the polyethylene content is preferably 95% by mass or more based on the total mass of the polyolefin microporous membrane.
  • the polyolefin microporous membrane is preferably a polyolefin microporous membrane containing polyethylene and polypropylene from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
  • Such a microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a laminated structure of two or more layers, and at least one layer contains polyethylene and at least one layer contains polypropylene.
  • a membrane is also preferred.
  • the polyolefin contained in the polyolefin microporous membrane is preferably a polyolefin having a weight average molecular weight of 100,000 to 5,000,000.
  • the weight average molecular weight of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane.
  • the weight average molecular weight of the polyolefin is 5 million or less, the shutdown characteristics of the microporous membrane are good, and the microporous membrane is easy to mold.
  • a melted polyolefin resin is extruded from a T-die to form a sheet, which is crystallized and then stretched, and then heat treated to form a microporous membrane: liquid paraffin, etc.
  • Examples include a method in which a polyolefin resin melted together with a plasticizer is extruded from a T-die, cooled, formed into a sheet, and stretched, and then the plasticizer is extracted and heat-treated to form a microporous film.
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat-resistant resins such as aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide; cellulose And a porous sheet made of a fibrous material such as non-woven fabric and paper.
  • the heat resistant resin refers to a resin having a melting point of 200 ° C. or higher, or a resin having no melting point and a decomposition temperature of 200 ° C. or higher.
  • Examples of the composite porous sheet include a sheet obtained by laminating a functional layer on a porous sheet made of a microporous film or a fibrous material. Such a composite porous sheet is preferable from the viewpoint of further function addition by the functional layer.
  • Examples of the functional layer include a porous layer made of a heat resistant resin and a porous layer made of a heat resistant resin and an inorganic filler from the viewpoint of imparting heat resistance.
  • Examples of the heat resistant resin include one or more heat resistant resins selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide.
  • Examples of the inorganic filler include metal oxides such as alumina; metal hydroxides such as magnesium hydroxide.
  • a method of applying a functional layer to a microporous membrane or a porous sheet a method of bonding the microporous membrane or porous sheet and the functional layer with an adhesive, a microporous membrane or a porous sheet, Examples include a method of thermocompression bonding with the functional layer.
  • the width of the porous substrate is preferably 0.1 m to 3.0 m from the viewpoint of suitability for the manufacturing method of the present disclosure.
  • the thickness of the porous substrate is preferably 5 ⁇ m to 50 ⁇ m from the viewpoint of mechanical strength.
  • the breaking elongation of the porous substrate is preferably 10% or more in the MD direction, more preferably 20% or more, more preferably 5% or more in the TD direction, and more preferably 10% or more from the viewpoint of mechanical strength.
  • the breaking elongation of the porous substrate is determined by conducting a tensile test at a tensile rate of 100 mm / min using a tensile tester in an atmosphere at a temperature of 20 ° C.
  • the Gurley value (JIS P8117: 2009) of the porous substrate is preferably 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of mechanical strength and material permeability.
  • the porosity of the porous substrate is preferably 20% to 60% from the viewpoint of mechanical strength, handling properties, and material permeability.
  • the average pore diameter of the porous substrate is preferably 20 nm to 100 nm from the viewpoint of substance permeability.
  • the average pore diameter of the porous substrate is a value measured using a palm porometer according to ASTM E1294-89.
  • the porous layer has a structure in which a large number of micropores are formed in the inside and these micropores are connected to each other, and a gas or liquid can pass from one surface to the other surface. It is.
  • the porous layer is preferably an adhesive porous layer capable of adhering to the electrode when the composite membrane is applied to a battery separator.
  • the adhesive porous layer is preferably on both sides rather than on only one side of the porous substrate.
  • the porous layer is formed by applying a coating liquid containing a resin and a filler. Therefore, the porous layer contains a resin and a filler.
  • the filler may be either an inorganic filler or an organic filler. As the filler, inorganic particles are preferable from the viewpoints of making the porous layer porous and heat-resistant.
  • components such as a resin contained in the coating liquid and the porous layer will be described.
  • the type of resin contained in the porous layer is not limited. As resin contained in a porous layer, what has a function which fixes a filler (what is called binder resin) is preferable.
  • the resin contained in the porous layer is preferably a hydrophobic resin from the viewpoint of production compatibility when the composite membrane is produced by a wet process. When the composite membrane is applied to a battery separator, the resin contained in the porous layer is stable in an electrolytic solution, electrochemically stable, has a function of immobilizing inorganic particles, and adheres to an electrode. What is obtained is preferred.
  • the porous layer may contain one kind of resin or two or more kinds.
  • Examples of the resin contained in the porous layer include polyvinylidene fluoride, polyvinylidene fluoride copolymer, styrene-butadiene copolymer, homopolymers or copolymers of vinyl nitriles such as acrylonitrile and methacrylonitrile, polyethylene, and the like.
  • Examples include polyethers such as oxide and polypropylene oxide.
  • polyvinylidene fluoride and a polyvinylidene fluoride copolymer are preferable.
  • polyvinylidene fluoride resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another copolymerizable monomer (polyvinylidene fluoride copolymer); a mixture thereof ;
  • the monomer copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride and the like, and one kind or two or more kinds can be used.
  • the polyvinylidene fluoride resin can be produced by emulsion polymerization or suspension polymerization.
  • the resin contained in the porous layer is preferably a heat-resistant resin (a resin having a melting point of 200 ° C. or higher, or a resin having no melting point and a decomposition temperature of 200 ° C. or higher) from the viewpoint of heat resistance.
  • the heat resistant resin include polyamide (nylon), wholly aromatic polyamide (aramid), polyimide, polyamideimide, polysulfone, polyketone, polyetherketone, polyethersulfone, polyetherimide, cellulose, and a mixture thereof. It is done.
  • wholly aromatic polyamides are preferable from the viewpoints of easy formation of a porous structure, binding properties with inorganic particles, oxidation resistance, and the like.
  • wholly aromatic polyamides meta-type wholly aromatic polyamides are preferable from the viewpoint of easy molding, and polymetaphenylene isophthalamide is particularly preferable.
  • Examples of the resin contained in the porous layer include a particulate resin and a water-soluble resin.
  • the particulate resin include particles containing a resin such as polyvinylidene fluoride resin, fluorine rubber, and styrene-butadiene rubber.
  • the particulate resin is dispersed in a dispersion medium such as water and used for preparing a coating liquid.
  • the water-soluble resin include cellulose resins and polyvinyl alcohol.
  • the water-soluble resin is dissolved in water and used for preparing a coating solution.
  • the particulate resin and the water-soluble resin are suitable when the coagulation process is performed in a dry process.
  • filler there is no limitation on the type of filler contained in the porous layer.
  • the filler contained in the porous layer may be either an inorganic filler or an organic filler.
  • the volume average particle size of the primary particles of the filler is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 10 ⁇ m, and still more preferably 0.1 ⁇ m to 3.0 ⁇ m.
  • the porous layer preferably contains inorganic particles as a filler.
  • the inorganic particles contained in the porous layer are preferably those that are stable to the electrolytic solution and electrochemically stable.
  • the porous layer may contain one kind of inorganic particles or two or more kinds.
  • Examples of inorganic particles contained in the porous layer include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, cerium hydroxide, nickel hydroxide, and boron hydroxide.
  • Metal oxides such as silica, alumina, zirconia and magnesium oxide; carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; clay minerals such as calcium silicate and talc; Among these, metal hydroxides and metal oxides are preferable from the viewpoints of imparting flame retardancy and neutralizing effect.
  • the inorganic particles may be surface-modified with a silane coupling agent or the like.
  • the particle shape of the inorganic particles contained in the porous layer is arbitrary and may be spherical, elliptical, plate-like, needle-like, or indefinite.
  • the volume average particle size of the primary particles of the inorganic particles is preferably 0.01 ⁇ m to 10 ⁇ m, and preferably 0.1 ⁇ m to 10 ⁇ m from the viewpoints of the moldability of the porous layer, the material permeability of the composite membrane, and the slipperiness of the composite membrane. More preferably, 0.1 ⁇ m to 3.0 ⁇ m is even more preferable.
  • the proportion of inorganic particles in the total amount of resin and inorganic particles is, for example, 30% to 90% by volume.
  • the porous layer may contain an organic filler as a filler.
  • the organic filler include cross-linked poly (meth) acrylic acid, cross-linked poly (meth) acrylic acid ester, cross-linked polysilicon, cross-linked polystyrene, cross-linked polydivinylbenzene, styrene-divinylbenzene copolymer cross-linked product, polyimide, and melamine resin.
  • particles made of a crosslinked polymer such as a phenol resin and a benzoguanamine-formaldehyde condensate; particles made of a heat-resistant resin such as polysulfone, polyacrylonitrile, aramid, polyacetal, and thermoplastic polyimide.
  • the thickness of the porous layer is preferably 0.5 ⁇ m to 5 ⁇ m on one side of the porous substrate from the viewpoint of mechanical strength.
  • the porosity of the porous layer is preferably 30% to 80% from the viewpoints of mechanical strength, handling properties, and material permeability.
  • the average pore diameter of the porous layer is preferably 20 nm to 100 nm from the viewpoint of substance permeability.
  • the average pore diameter of the porous layer is a value measured using a palm porometer according to ASTM E1294-89.
  • the thickness of the composite film is, for example, 5 ⁇ m to 100 ⁇ m, and for a battery separator, for example, it is 5 ⁇ m to 50 ⁇ m.
  • the Gurley value (JIS P8117: 2009) of the composite membrane is preferably 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of mechanical strength and material permeability.
  • the porosity of the composite membrane is preferably 30% to 60% from the viewpoints of mechanical strength, handling properties, and material permeability.
  • the porosity of the composite membrane is determined by the following equation. The same applies to the porosity of the porous substrate and the porosity of the porous layer.
  • Porosity (%) ⁇ 1 ⁇ (Wa / da + Wb / db + Wc / dc +... + Wn / dn) / t ⁇ ⁇ 100
  • Wa, Wb, Wc, ..., Wn are the masses (g / cm 2 ) of the constituent materials a, b, c, ..., n, and da, db, dc, ..., dn are constituent materials a, b, c,..., n is the true density (g / cm 3 ), and t is the film thickness (cm).
  • Applications of the composite membrane include, for example, battery separators, capacitor films, gas filters, liquid filters, and the like, and particularly preferable applications include non-aqueous secondary battery separators.
  • the volume average particle size ( ⁇ m) of the primary particles of the filler was measured using a Zeta Sizer Nano ZSP manufactured by Spectris.
  • Viscosity of coating liquid The viscosity (Pa ⁇ s) of the coating solution was measured using a B-type rotational viscometer (Brookfield product number RVDV + I, spindle: SC4-18). The sample was collected from the coating liquid homogenized by stirring, and measured under conditions of a sample volume of 7 mL, a sample temperature of 20 ° C., and a spindle rotation speed of 10 revolutions / min.
  • the maximum particle size ( ⁇ m) of the agglomerates contained in the coating solution was measured with a particle size gauge (maximum depth 25 ⁇ m, scale interval 5 ⁇ m, measurement range 0 ⁇ m to 25 ⁇ m) of the first test mill. This measurement was performed according to JIS K5600-2-5: 1999. Specifically, after dripping the coating liquid into the deepest part of the particle size gauge, the scraper is swept at a constant speed and constant pressure so as to scrape the coating liquid toward a depth of 0 ⁇ m, and a granular or linear unique pattern The graduation at the deepest part where the sapphire appears was read (that is, the maximum value of the region where the granular or linear peculiar pattern exists) was obtained. This measurement was performed 10 times and the average was calculated to obtain the maximum particle size ( ⁇ m) of the aggregate. Since the coating solution may precipitate aggregates over time, the sample placed on the particle size gauge was collected from the coating solution homogenized by stirring.
  • the minimum pore diameter ( ⁇ m) of the filter was measured by a mercury intrusion method using a palm porometer manufactured by PMI. A sample for measurement was taken from the inside of the filter taking care to keep a part of the filter medium in shape.
  • A Less than 1 per 100 m 2 .
  • B 1 or more and less than 5 per 100 m 2 .
  • C 5 or more and less than 10 per 100 m 2 .
  • D 10 or more per 100 m 2 .
  • the composite membrane was cut into a width of 8 cm and a length of 10 m to obtain a sample.
  • the film thickness at each position in the center, 1 cm inside from one end and 1 cm inside from the other end in the width direction of the sample was measured every 10 cm in the sample length direction, and the average value of all values And the standard deviation was calculated.
  • the obtained standard deviation was divided by the average value to obtain a ratio Q (standard deviation / average value) of the standard deviation of the film thickness to the average value of the film thickness and classified as follows.
  • AA The ratio Q is 1% or less.
  • A The ratio Q is more than 1% and 2% or less.
  • B Ratio Q is more than 2% and 3% or less.
  • C Ratio Q is more than 3%.
  • Example 1 ⁇ Manufacture of composite membrane>
  • Polymetaphenylene isophthalamide is dissolved in a mixed solvent of dimethylacetamide (DMAc) and tripropylene glycol (TPG) (mass ratio 1: 1), and aluminum hydroxide particles (Al (OH) 3 ) are dispersed and applied.
  • a working solution was prepared.
  • Table 1 shows the viscosity of the coating liquid and the maximum particle size of the aggregates contained in the coating liquid.
  • This filter has a hollow cylindrical shape, has a density gradient of a filter medium continuously inside the filter, and is a filter through which liquid flows from the outside toward the inside.
  • One filter was installed in the housing, and 10 L of coating solution was passed through it.
  • the supply of the coating liquid from the tank in which the coating liquid was prepared to the filter was performed by a motor-driven precision metering pump (Takumina smooth flow pump), and the pressure applied to the coating liquid and the flow rate of the coating liquid were adjusted.
  • Table 1 shows the processing conditions of the aggregate removal step.
  • -Coating process Prepare a long 1m wide polyethylene microporous membrane (PE membrane) as the porous substrate, and apply the coating liquid after removing the aggregates on one side of the porous substrate with a die coater. A construction layer was formed. The conveyance speed of the porous substrate in the coating process was 10 m / min.
  • PE membrane polyethylene microporous membrane
  • drying process- The composite membrane was transported to a water bath controlled at a water temperature of 30 ° C. and washed with water, and the composite membrane after washing was passed through a drying apparatus equipped with a heating roll and dried.
  • Table 1 shows the results of quality evaluation of the manufactured composite membrane.
  • the other examples and comparative examples are also shown in Table 1.
  • Example 2 A composite membrane was produced in the same manner as in Example 1 except that the filter was changed to Loki Techno's model number 62.5L-HC-25AD (filter medium: polypropylene nonwoven fabric, filtration area 0.02 m 2 ).
  • Example 3 A composite membrane was produced in the same manner as in Example 1 except that the filter was changed to Loki Techno's model number 62.5L-HC-100AD (filter medium: polypropylene nonwoven fabric, filtration area 0.02 m 2 ).
  • Example 4 A composite membrane was produced in the same manner as in Example 1 except that a coating solution having a maximum particle size of the aggregate contained was 15 ⁇ m.
  • Example 5 A composite membrane was produced in the same manner as in Example 1 except that a coating solution having a maximum particle size of the aggregate contained was 20 ⁇ m.
  • Example 6 A composite membrane was produced in the same manner as in Example 1 except that the coating liquid having the maximum particle size of the aggregate contained was 8 ⁇ m.
  • Examples 7 to 10 A composite membrane was produced in the same manner as in Example 1 except that the conditions of the aggregate removal step were changed as shown in Table 1.
  • Example 11 In the coating liquid preparation step, the composite was made in the same manner as in Example 1 except that polymetaphenylene isophthalamide was changed to polyvinylidene fluoride (PVDF) and aluminum hydroxide particles were changed to alumina particles (Al 2 O 3 ). A membrane was produced.
  • PVDF polyvinylidene fluoride
  • Al 2 O 3 alumina particles
  • Example 12 In the coating liquid preparation process, polymetaphenylene isophthalamide was changed to polyvinylidene fluoride (PVDF), aluminum hydroxide particles were changed to magnesium hydroxide particles (Mg (OH) 2 ), and the conditions for the aggregate removal process were changed.
  • PVDF polyvinylidene fluoride
  • Mg (OH) 2 magnesium hydroxide particles
  • a composite membrane was produced in the same manner as in Example 1 except that the changes were made as described in Table 1.
  • Example 13 In the coating liquid preparation process, polymetaphenylene isophthalamide is changed to polyvinylidene fluoride (PVDF), aluminum hydroxide particles are changed to crosslinked polymethyl methacrylate particles (PMMA), and the conditions for the aggregate removal process are shown in Table 1.
  • PVDF polyvinylidene fluoride
  • PMMA crosslinked polymethyl methacrylate particles
  • Table 1 A composite membrane was produced in the same manner as in Example 1 except that it was changed as described in 1.
  • Example 14 In the coating liquid preparation process, polymetaphenylene isophthalamide is changed to polyvinylidene fluoride (PVDF) emulsion, the conditions for the aggregate removal process are changed as shown in Table 1, and the coagulation process is dried at a temperature of 60 ° C.
  • PVDF polyvinylidene fluoride
  • a composite membrane was produced in the same manner as in Example 1 except that the process was changed to the dry process (therefore, the water washing process and the subsequent drying process were not performed).
  • Example 15 A composite membrane was produced in the same manner as in Example 1 except that the porous substrate was changed to a polyethylene terephthalate nonwoven fabric (PET nonwoven fabric).
  • PET nonwoven fabric polyethylene terephthalate nonwoven fabric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Cell Separators (AREA)

Abstract

 樹脂及びフィラーを含有し、粘度が0.1Pa・s以上5.0Pa・s以下である塗工液を調製する塗工液調製工程と、前記塗工液を、前記塗工液に含まれる凝集物の最大粒径よりも大きい最小細孔径を有するフィルタに通して前記凝集物を除去する凝集物除去工程と、前記凝集物除去工程を経た前記塗工液を、多孔質基材の片面又は両面に塗工して塗工層を形成する塗工工程と、前記塗工層に含まれる前記樹脂を凝固させて、前記多孔質基材の片面又は両面に前記樹脂及び前記フィラーを含有する多孔質層を備えた複合膜を得る凝固工程と、を有する、複合膜の製造方法。

Description

複合膜の製造方法
 本発明は、複合膜の製造方法に関する。
 従来、電池セパレータ、ガスフィルタ、液体フィルタ等として、多孔質基材上に多孔質層を有する複合膜が知られている。この複合膜の製造方法として、樹脂及びフィラーを含む塗工液を多孔質基材上に塗工して塗工層を形成した後、塗工層に含まれる樹脂を凝固させて多孔質層を作製する方法が知られている(例えば、特許文献1参照)。多孔質基材の表面に多孔質層を形成するための塗工液は、樹脂とフィラーを含んでいることにより、例えば作製してから時間が経過すると塗工液中に凝集物が形成されることがある。この凝集物を含んだ塗工液を多孔質基材上に塗工すると、凝集物が複合膜に残存し複合膜の品質低下を招くおそれがあるため、従来、塗工液を塗工前に濾過処理して塗工液中の凝集物や異物を除去することが知られている(例えば、特許文献1参照)。
特許第5424179号公報
 複合膜の生産効率の観点からは、長尺の多孔質基材を高速で搬送しながら該多孔質基材上に塗工液の塗工を行うことが望ましく、その実現のためには、塗工液の供給速度を向上させる必要がある。一方で、複合膜の品質を向上させる観点からは、塗工液を塗工前に濾過処理することが望ましい。しかし、塗工液の濾過処理を行えば塗工液の供給速度が低下してしまう。
 本発明の実施形態は、上記状況のもとになされた。
 本発明の実施形態は、高い生産効率で高品質の複合膜を製造する、複合膜の製造方法を提供することを目的とする。
 前記課題を解決するための具体的手段には、下記の態様が含まれる。
[1] 樹脂及びフィラーを含有し、粘度が0.1Pa・s以上5.0Pa・s以下である塗工液を調製する塗工液調製工程と、前記塗工液を、前記塗工液に含まれる凝集物の最大粒径よりも大きい最小細孔径を有するフィルタに通して前記凝集物を除去する凝集物除去工程と、前記凝集物除去工程を経た前記塗工液を、多孔質基材の片面又は両面に塗工して塗工層を形成する塗工工程と、前記塗工層に含まれる前記樹脂を凝固させて、前記多孔質基材の片面又は両面に前記樹脂及び前記フィラーを含有する多孔質層を備えた複合膜を得る凝固工程と、を有する、複合膜の製造方法。
[2] 前記フィルタの最小細孔径が前記凝集物の最大粒径の2倍以上10倍以下である、[1]に記載の製造方法。
[3] 前記凝集物の最大粒径が2μm以上30μm以下である、[1]又は[2]に記載の製造方法。
[4] 前記フィラーは、一次粒子の体積平均粒径が0.1μm以上3.0μm以下である、[1]~[3]のいずれかに記載の製造方法。
[5] 前記フィルタの最小細孔径が30μm以上70μm以下である、[1]~[4]のいずれかに記載の製造方法。
[6] 前記凝集物除去工程は、前記塗工液に対し0.05MPa以上0.5MPa以下の圧力をかけて前記フィルタを通すことを含む、[1]~[5]のいずれかに記載の製造方法。
[7] 前記凝集物除去工程は、前記フィルタを通る前記塗工液の流量が0.5L/min以上である、[1]~[6]のいずれかに記載の製造方法。
 本発明の実施形態によれば、高い生産効率で高品質の複合膜を製造する、複合膜の製造方法が提供される。
本開示の製造方法の一実施形態を示す概念図である。 本開示の製造方法の別の一実施形態を示す概念図である。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において、「機械方向」とは、長尺状に製造される多孔質基材及び複合膜において長尺方向を意味し、「幅方向」とは、「機械方向」に直交する方向を意味する。「機械方向」を「MD方向」ともいい、「幅方向」を「TD方向」ともいう。
 以下に、本発明の実施形態について説明する。これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。
<複合膜の製造方法>
 本開示の製造方法は、多孔質基材と、該多孔質基材の片面又は両面に設けられた、樹脂及びフィラーを含有する多孔質層と、を備えた複合膜を製造する方法である。本開示の製造方法は、樹脂及びフィラーを含有する塗工液を、多孔質基材の片面又は両面に塗工して、多孔質基材の片面又は両面に多孔質層を設ける製造方法である。本開示の製造方法は、下記の工程を有する。
・塗工液調製工程:樹脂及びフィラーを含有する塗工液を調製する工程。
・凝集物除去工程:塗工液をフィルタに通して塗工液に含まれる凝集物を除去する工程。
・塗工工程:凝集物除去工程を経た塗工液を多孔質基材の片面又は両面に塗工して塗工層を形成する工程。
・凝固工程:塗工層に含まれる樹脂を凝固させて、多孔質基材の片面又は両面に樹脂及びフィラーを含有する多孔質層を備えた複合膜を得る工程。
 本開示の製造方法は、凝固工程の後に、複合膜を水洗する水洗工程と、水洗工程の後に、複合膜から水を除去する乾燥工程と、をさらに有してもよい。
 図1は、本開示の製造方法の一実施形態を示す概念図である。図1では、図内の左側に、複合膜の製造に供する多孔質基材のロールが置かれ、図内の右側に、複合膜を巻き取ったロールが置かれている。図1に示す実施形態は、塗工液調製工程、凝集物除去工程、塗工工程、凝固工程、水洗工程、及び乾燥工程を有し、凝固工程が湿式の工程である。本実施形態は、塗工工程、凝固工程、水洗工程、及び乾燥工程を連続的に順次行う。また、本実施形態は、塗工工程の実施時期に合わせて塗工液調製工程及び凝集物除去工程を行う。各工程の詳細は後述する。
 図2は、本開示の製造方法の別の一実施形態を示す概念図である。図2では、図内の左側に、複合膜の製造に供する多孔質基材のロールが置かれ、図内の右側に、複合膜を巻き取ったロールが置かれている。図2に示す実施形態は、塗工液調製工程、凝集物除去工程、塗工工程、及び凝固工程を有し、凝固工程が乾式の工程である。本実施形態は、塗工工程、及び凝固工程を連続的に順次行う。また、本実施形態は、塗工工程の実施時期に合わせて塗工液調製工程及び凝集物除去工程を行う。各工程の詳細は後述する。
 本開示の製造方法においては、凝集物除去工程に用いるフィルタが、塗工液に含まれる凝集物の最大粒径よりも大きい最小細孔径を有するフィルタである。凝集物の最大粒径と同じ又はより小さい最小細孔径を有するフィルタは、塗工液を通すことが困難であるか、塗工液の通過に時間がかかる。凝集物の最大粒径より大きい最小細孔径を有するフィルタは、塗工液をスムーズに通しつつ、凝集物の少なくとも一部を除去し、塗工液中の凝集物の低減が可能である。したがって、本開示の製造方法によれば、塗工液を塗工工程に安定的に供給することができるので生産効率が高く、しかも、凝集物が少ない塗工液を塗工工程に用いるので、高品質の複合膜を製造することができる。
 本開示において、塗工液に含まれる凝集物の最大粒径とは、粒度ゲージを用い、JIS K5600-2-5:1999に従って操作を行って測定される凝集物の大きさである。具体的には、粒度ゲージの最深部に塗工液を滴下した後、スクレーパーを深度0μmに向かって塗工液を掻き取るように等速及び等圧で掃引し、粒状又は線状の特異模様が現れる最深部の目盛を読み取った値(つまり、粒状又は線状の特異模様が存在する領域の最大値)が、凝集物の最大粒径(μm)である。
 本開示において、フィルタの最小細孔径(μm)は、水銀圧入法に基づき、パームポロメーターを用いて測定される値である。
 本開示の製造方法において、塗工液調製工程で調製する塗工液の粘度は、多孔質基材への塗工適性の観点から0.1Pa・s以上であり、塗工工程に安定的に塗工液を供給する観点から5.0Pa・s以下である。塗工液の粘度(Pa・s)は、B型回転粘度計を用いて、温度20℃の試料を測定した粘度である。
 以下、本開示の製造方法の各工程を詳しく説明する。
[塗工液調製工程]
 塗工液調製工程は、樹脂及びフィラーを含有する塗工液を調製する工程である。塗工液は、例えば、樹脂を溶媒に溶かし、さらにフィラーを分散させて調製する。塗工液の調製に用いる樹脂やフィラー、即ち、多孔質層に含まれる樹脂やフィラーについては、後述する[多孔質層]の項において詳細に説明する。
 塗工液の調製に用いる、樹脂を溶解する溶媒(以下、「良溶媒」ともいう。)としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が挙げられる。良好な多孔構造を有する多孔質層を形成する観点から、相分離を誘発させる相分離剤を良溶媒に混合することが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。相分離剤は、塗工に適切な塗工液の粘度が確保できる範囲の量比で良溶媒と混合することが好ましい。
 塗工液の調製に用いる溶媒としては、良好な多孔構造を形成する観点から、良溶媒を50質量%以上(より好ましくは60質量%以上)含み、相分離剤を10質量%~50質量%(より好ましくは10質量%~40質量%)含む混合溶媒が好ましい。塗工液は、良好な多孔構造を形成する観点から、樹脂が3質量%~10質量%の濃度で含まれており、フィラーが10質量%~90質量%の濃度で含まれていることが好ましい。
 塗工液の調製には、樹脂及びフィラーの溶媒への溶解性及び分散性を高めるために、ホモジナイザー、グラスビーズミル、セラミックビーズミル等を用いることができる。さらに分散効率を高めるために、樹脂又はフィラーを溶媒に混合する前に、分散剤へのプレ分散を行ってもよい。
 塗工液調製工程においては、粘度0.1Pa・s~5.0Pa・sの塗工液を調製する。塗工液の粘度は、多孔質基材への塗工適性の観点から、0.1Pa・s以上であり、より好ましくは0.5Pa・s以上であり、更に好ましくは1.0Pa・s以上である。塗工液の粘度は、塗工工程に安定的に塗工液を供給する観点から、5.0Pa・s以下であり、より好ましくは4.0Pa・s以下であり、更に好ましくは3.0Pa・s以下である。塗工液の粘度は、溶媒、樹脂及びフィラーの混合比によって制御可能である。
 塗工液には、例えば、調製後に時間が経ったり、液温が上昇したりすると、樹脂及びフィラーの少なくとも一方を含む、様々な大きさの凝集物が生じる。塗工液に含まれる凝集物の最大粒径は、例えば2μm~30μmである。
[凝集物除去工程]
 凝集物除去工程は、塗工液をフィルタに通して塗工液に含まれる凝集物を除去する工程であり、塗工液に含まれる凝集物の最大粒径よりも大きい最小細孔径を有するフィルタを用いて行う工程である。
 凝集物除去工程に用いるフィルタの最小細孔径は、塗工液に含まれる凝集物の最大粒径に対して、処理効率の観点から、2倍以上が好ましく、3倍以上がより好ましく、4倍以上が更に好ましく、凝集物の除去効率の観点から、10倍以下が好ましく、9倍以下がより好ましく、8倍以下が更に好ましい。
 凝集物除去工程に用いるフィルタの最小細孔径は、10μm以上が好ましく、30μm以上が好ましく、100μm以下が好ましく、70μm以下がより好ましい。凝集物除去工程に用いるフィルタの最小細孔径は、塗工液に含まれる凝集物の最大粒径に応じて設定することが好ましい。
 フィルタの濾材としては、不織布、微多孔膜、網目状構造物、多孔質体等が挙げられる。フィルタの濾材は、単層及び多層のいずれでもよい。フィルタの濾材の材料としては、樹脂(例えば、ポリプロピレン、ポリエステル、フッ素系樹脂、ナイロン等)、セルロース等の有機材料;金属、ガラス、セラミック等の無機材料;が挙げられる。
 フィルタの濾材としては、樹脂繊維の不織布、セルロース濾紙、ガラス繊維濾紙、金属メッシュ、多孔質セラミック等が挙げられ、塗工液に含まれる凝集物の除去効果が高い観点から、樹脂繊維の不織布が好ましい。フィルタの濾材は、液の通過方向の厚さが、例えば5mm~40mmである。
 フィルタの一実施形態は、濾材が連続的に密度勾配(即ち細孔径の勾配)を有するフィルタである。本実施形態において、フィルタの最小細孔径(μm)とは、連続的に密度勾配をなしている濾材全体について、水銀圧入法に基づきパームポロメーターを用いて測定される値である。
 フィルタの一実施形態は、密度の異なる同種材料又は異種材料の濾材を複数種組み合せ、フィルタ内部に濾材の密度勾配(即ち細孔径の勾配)を不連続的に有するフィルタである。本実施形態において、フィルタの最小細孔径(μm)とは、各濾材について水銀圧入法に基づきパームポロメーターを用いて測定される値のうちの最も小さい値である。
 凝集物除去工程に用いるフィルタとしては、濾材が連続的に密度勾配(即ち細孔径の勾配)を有するもの;密度の異なる同種材料又は異種材料の濾材を複数種組み合せ、フィルタ内部に濾材の密度勾配(即ち細孔径の勾配)を不連続的に有するもの;が好ましい。
 凝集物除去工程に用いるフィルタとしては、例えば、ポリプロピレン不織布を濾材として備えるロキテクノ社製のHCシリーズ、BOシリーズ、SLFシリーズ、SRLシリーズ、MPXシリーズ等が挙げられる。これらのフィルタは、塗工液の入口及び出口を有するハウジング内に1個又は2個以上設置して、凝集物除去工程に供することが好ましい。
 凝集物除去工程に用いるフィルタは、全体の濾過面積が、例えば0.01m~10mであり、0.1m~10mが好ましい。
 凝集物除去工程は、処理効率の観点から、塗工液に対し圧力をかけてフィルタを通す工程であることが好ましい。塗工液に対してかける圧力は、処理効率の観点から、0.05MPa以上が好ましく、0.1MPa以上がより好ましく、0.2MPa以上が更に好ましい。塗工液に対してかける圧力は、塗工液に含まれる凝集物の除去を確実に行う観点から、0.5MPa以下が好ましく、0.45MPa以下がより好ましく、0.4MPa以下が更に好ましい。
 凝集物除去工程においては、フィルタを通る塗工液の流量を調製することが好ましい。フィルタを通る塗工液の流量は、処理効率の観点から、0.5L/min以上が好ましく、1L/min以上がより好ましく、2L/min以上が更に好ましい。フィルタを通る塗工液の流量は、塗工液に含まれる凝集物の除去を確実に行う観点から、20L/min以下が好ましく、15L/min以下がより好ましく、10L/min以下が更に好ましい。
 フィルタを通す際の塗工液の温度は、例えば5℃~50℃である。
[塗工工程]
 塗工工程は、多孔質基材の片面又は両面に、樹脂及びフィラーを含有する塗工液を塗工して塗工層を形成する工程である。多孔質基材への塗工液の塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーター等の塗工手段により行う。塗工量は、両面の合計で、例えば10mL/m~60mL/mである。
 塗工工程の一実施形態は、多孔質基材を介して対向して配置された、一方の面を塗工する第一の塗工手段と、他方の面を塗工する第二の塗工手段とを用いて、塗工液を多孔質基材の両面に同時に塗工する形態である。
 塗工工程の一実施形態は、多孔質基材の搬送方向において離間して配置された、一方の面を塗工する第一の塗工手段と、他方の面を塗工する第二の塗工手段とを用いて、塗工液を多孔質基材の両面に片面ずつ順次塗工する形態である。
 塗工工程における多孔質基材の搬送速度は、生産効率の観点から、5m/min以上が好ましく、10m/min以上がより好ましい。塗工工程における多孔質基材の搬送速度は、塗工液の塗工を確実に行う観点から、100m/min以下が好ましく、90m/min以下がより好ましい。
[凝固工程]
 凝固工程は、塗工層を凝固液に接触させて塗工層に含まれる樹脂を凝固させて多孔質層を得る湿式工程;塗工層に含まれる溶媒を除去して塗工層に含まれる樹脂を凝固させて多孔質層を得る乾式工程;のいずれでもよい。乾式工程は湿式工程に比べて多孔質層が緻密になりやすいので、良好な多孔構造を得られる観点から湿式工程の方が好ましい。
 湿式工程は、塗工層を有する多孔質基材を凝固液に浸漬させることが好ましく、具体的には、凝固液の入った槽(凝固槽)を通過させることが好ましい。
 湿式工程において用いる凝固液は、塗工液の調製に用いた良溶媒及び相分離剤と、水との混合溶液が一般的である。良溶媒と相分離剤の混合比は、塗工液の調製に用いた混合溶媒の混合比に合わせるのが生産上好ましい。凝固液の水の含有量は、多孔構造の形成及び生産性の観点から、40質量%~80質量%が好ましい。凝固液の温度は例えば20℃~50℃である。
 乾式工程において、複合膜から溶媒を除去する方法は、限定はなく、例えば、複合膜を発熱部材に接触させる方法;温度及び湿度を調整したチャンバー内に複合膜を搬送する方法;複合膜に熱風をあてる方法;などが挙げられる。複合膜に熱を付与する場合、その温度は、例えば50℃~80℃である。
[水洗工程]
 本開示の製造方法は、凝固工程に湿式工程を採用した場合、凝固工程の後、複合膜を水洗する水洗工程を設けることが好ましい。水洗工程は、複合膜に含まれている溶媒(塗工液の溶媒、及び、凝固液の溶媒)を除去する目的で行われる工程である。水洗工程は、複合膜を水浴の中を搬送する工程であることが好ましい。水洗用の水の温度は、例えば0℃~70℃である。
[乾燥工程]
 本開示の製造方法は、水洗工程の後、複合膜から水を除去する乾燥工程を設けることが好ましい。乾燥方法は、限定はなく、例えば、複合膜を発熱部材に接触させる方法;温度及び湿度を調整したチャンバー内に複合膜を搬送する方法;複合膜に熱風をあてる方法;などが挙げられる。複合膜に熱を付与する場合、その温度は、例えば50℃~80℃である。
 本開示の製造方法は、下記の実施形態を採用してもよい。
・塗工液調製工程の一部として、塗工液の調製用溶媒から異物を除去する目的で、該溶媒を樹脂との混合前にフィルタを通過させる処理を行う。この処理に使用するフィルタの保留粒子径は、例えば0.1μm~100μmである。
・塗工液調製工程を実施するタンクに攪拌機を設置し、攪拌機で常に塗工液を攪拌し、塗工液中の固形成分(例えばフィラー)の沈降を抑制する。
・塗工液調製工程から塗工工程までの塗工液輸送配管を循環式にし、配管内を塗工液を循環させて塗工液中の固形成分の凝集を抑制する。この場合、配管内の塗工液の温度を一定に制御することが好ましい。
・塗工液調製工程から凝集物除去工程に塗工液を供給するポンプとして、精密定量ポンプを設置する。
・凝集物除去工程から塗工工程に塗工液を供給するポンプとして、無脈動定量ポンプを設置する。
・塗工工程の上流に、静電気除去装置を配置し、多孔質基材表面を除電する。
・塗工手段の周囲にハウジングを設け、塗工工程の環境を清浄に保ち、また、塗工工程の雰囲気の温度及び湿度を制御する。
・塗工手段の下流に塗工量を検知するセンサーを配置し、塗工工程における塗工量を補正する。
 以下、複合膜の多孔質基材及び多孔質層を詳細に説明する。
[多孔質基材]
 本開示において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;これら微多孔膜や多孔性シートに他の多孔性の層を1層以上積層した複合多孔質シート;などが挙げられる。本開示においては、複合膜の薄膜化及び強度の観点から、微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材の材料としては、電気絶縁性を有する材料が好ましく、有機材料及び無機材料のいずれでもよい。
 多孔質基材の材料としては、多孔質基材にシャットダウン機能を付与する観点からは、熱可塑性樹脂が好ましい。シャットダウン機能とは、複合膜が電池セパレータに適用された場合において電池温度が高まった際に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
 多孔質基材としては、ポリオレフィンを含む微多孔膜(「ポリオレフィン微多孔膜」という。)が好ましい。ポリオレフィン微多孔膜としては、例えば、従来の電池セパレータに適用されているポリオレフィン微多孔膜が挙げられ、この中から十分な力学特性と物質透過性を有するものを選択することが好ましい。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては、ポリオレフィン微多孔膜の全質量に対して、95質量%以上が好ましい。
 ポリオレフィン微多孔膜は、高温に曝されたときに容易に破膜しない程度の耐熱性を付与する観点からは、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好ましい。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点からは、ポリオレフィン微多孔膜が2層以上の積層構造を備えており、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンとしては、重量平均分子量が10万~500万のポリオレフィンが好ましい。ポリオレフィンの重量平均分子量が10万以上であると、微多孔膜に十分な力学特性を付与できる。一方、ポリオレフィンの重量平均分子量が500万以下であると、微多孔膜のシャットダウン特性が良好であるし、微多孔膜の成形がしやすい。
 ポリオレフィン微多孔膜の製造方法としては、溶融したポリオレフィン樹脂をT-ダイから押し出してシート化し、これを結晶化処理した後延伸し、次いで熱処理をして微多孔膜とする方法:流動パラフィンなどの可塑剤と一緒に溶融したポリオレフィン樹脂をT-ダイから押し出し、これを冷却してシート化し、延伸した後、可塑剤を抽出し熱処理をして微多孔膜とする方法;などが挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性樹脂;セルロース;などの繊維状物からなる、不織布、紙等の多孔性シートが挙げられる。耐熱性樹脂とは、融点が200℃以上の樹脂、又は、融点を有さず分解温度が200℃以上の樹脂を指す。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層したシートが挙げられる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる観点から好ましい。機能層としては、例えば耐熱性を付与するという観点からは、耐熱性樹脂からなる多孔性の層や、耐熱性樹脂及び無機フィラーからなる多孔性の層が挙げられる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性樹脂が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物;水酸化マグネシウム等の金属水酸化物;などが挙げられる。複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを熱圧着する方法等が挙げられる。
 多孔質基材の幅は、本開示の製造方法への適合性の観点から、0.1m~3.0mが好ましい。
 多孔質基材の厚さは、機械強度の観点から、5μm~50μmが好ましい。
 多孔質基材の破断伸度は、機械強度の観点から、MD方向に10%以上が好ましく、20%以上がより好ましく、TD方向に5%以上が好ましく、10%以上がより好ましい。多孔質基材の破断伸度は、温度20℃の雰囲気中で、引張試験機を用いて、引張速度100mm/minで引張試験を行って求める。
 多孔質基材のガーレ値(JIS P8117:2009)は、機械強度と物質透過性の観点から、50秒/100cc~800秒/100ccが好ましい。
 多孔質基材の空孔率は、機械強度、ハンドリング性、及び物質透過性の観点から、20%~60%が好ましい。
 多孔質基材の平均孔径は、物質透過性の観点から、20nm~100nmが好ましい。多孔質基材の平均孔径は、ASTM E1294-89に準拠しパームポロメーターを用いて測定される値である。
[多孔質層]
 本開示において多孔質層は、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層である。
 多孔質層は、複合膜が電池セパレータに適用される場合、電極と接着し得る接着性多孔質層であることが好ましい。接着性多孔質層は、多孔質基材の片面のみにあるよりも両面にある方が好ましい。
 多孔質層は、樹脂及びフィラーを含有する塗工液を塗工して形成される。したがって、多孔質層は、樹脂及びフィラーを含有する。フィラーは、無機フィラー及び有機フィラーのいずれでもよい。フィラーとしては、多孔質層の多孔化及び耐熱性の観点から、無機粒子が好ましい。以下、塗工液及び多孔質層に含有される樹脂などの成分について説明する。
[樹脂]
 多孔質層に含まれる樹脂は、種類の限定はない。多孔質層に含まれる樹脂としては、フィラーを固定化する機能を有するもの(所謂、バインダ樹脂)が好ましい。多孔質層に含まれる樹脂は、複合膜を湿式工程で製造する場合は製造適合性の観点から、疎水性樹脂が好ましい。多孔質層に含まれる樹脂は、複合膜が電池セパレータに適用される場合、電解液に安定であり、電気化学的に安定であり、無機粒子を固定化する機能を有し、電極と接着し得るものが好ましい。多孔質層は、樹脂を1種含んでもよく2種以上含んでもよい。
 多孔質層に含まれる樹脂としては、例えば、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体、スチレン-ブタジエン共重合体、アクリロニトリルやメタクリロニトリル等のビニルニトリル類の単独重合体又は共重合体、ポリエチレンオキサイドやポリプロピレンオキサイド等のポリエーテル類が挙げられる。中でも、ポリフッ化ビニリデン及びポリフッ化ビニリデン共重合体(これらを「ポリフッ化ビニリデン系樹脂」という。)が好ましい。
 ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他の共重合可能なモノマーとの共重合体(ポリフッ化ビニリデン共重合体);これらの混合物;が挙げられる。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種類又は2種類以上を用いることができる。ポリフッ化ビニリデン系樹脂は、乳化重合又は懸濁重合により製造し得る。
 多孔質層に含まれる樹脂としては、耐熱性の観点からは、耐熱性樹脂(融点が200℃以上の樹脂、又は、融点を有さず分解温度が200℃以上の樹脂)が好ましい。耐熱性樹脂としては、例えば、ポリアミド(ナイロン)、全芳香族ポリアミド(アラミド)、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、セルロース、及びこれらの混合物が挙げられる。中でも、多孔構造の形成のしやすさ、無機粒子との結着性、耐酸化性などの観点から、全芳香族ポリアミドが好ましい。全芳香族ポリアミドの中でも、成形が容易な観点から、メタ型全芳香族ポリアミドが好ましく、特にポリメタフェニレンイソフタルアミドが好ましい。
 多孔質層に含まれる樹脂としては、粒子状樹脂又は水溶性樹脂も挙げられる。粒子状樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、フッ素系ゴム、スチレン-ブタジエンゴム等の樹脂を含む粒子が挙げられる。粒子状樹脂は、水等の分散媒に分散させて塗工液の作製に使用する。水溶性樹脂としては、例えば、セルロース系樹脂、ポリビニルアルコール等が挙げられる。水溶性樹脂は、例えば水に溶解させて塗工液の作製に使用する。粒子状樹脂及び水溶性樹脂は、凝固工程を乾式工程にて実施する場合に好適である。
[フィラー]
 多孔質層に含まれるフィラーは、種類の限定はない。多孔質層に含まれるフィラーとしては、無機フィラー及び有機フィラーのいずれでもよい。フィラーの一次粒子の体積平均粒径は、0.01μm~10μmが好ましく、0.1μm~10μmがより好ましく、0.1μm~3.0μmが更に好ましい。
 多孔質層はフィラーとして無機粒子を含むことが好ましい。多孔質層に含まれる無機粒子は、電解液に安定であり、且つ、電気化学的に安定なものが好ましい。多孔質層は、無機粒子を1種含んでもよく2種以上含んでもよい。
 多孔質層に含まれる無機粒子としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化セリウム、水酸化ニッケル、水酸化ホウ素等の金属水酸化物;シリカ、アルミナ、ジルコニア、酸化マグネシウム等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウム、硫酸カルシウム等の硫酸塩;ケイ酸カルシウム、タルク等の粘土鉱物;などが挙げられる。中でも、難燃性付与や除電効果の観点から、金属水酸化物及び金属酸化物が好ましい。無機粒子は、シランカップリング剤等により表面修飾されたものでもよい。
 多孔質層に含まれる無機粒子の粒子形状は任意であり、球形、楕円形、板状、針状、不定形のいずれでもよい。無機粒子の一次粒子の体積平均粒径は、多孔質層の成形性、複合膜の物質透過性、及び複合膜のすべり性の観点から、0.01μm~10μmが好ましく、0.1μm~10μmがより好ましく、0.1μm~3.0μmが更に好ましい。
 多孔質層が無機粒子を含有する場合、樹脂と無機粒子の合計量に占める無機粒子の割合は、例えば30体積%~90体積%である。
 多孔質層は、フィラーとして有機フィラーを含有していてもよい。有機フィラーとしては、例えば、架橋ポリ(メタ)アクリル酸、架橋ポリ(メタ)アクリル酸エステル、架橋ポリシリコーン、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物等の架橋高分子からなる粒子;ポリスルホン、ポリアクリロニトリル、アラミド、ポリアセタール、熱可塑性ポリイミド等の耐熱性樹脂からなる粒子;などが挙げられる。
 多孔質層の厚さは、機械強度の観点から、多孔質基材の片面において0.5μm~5μmが好ましい。
 多孔質層の空孔率は、機械強度、ハンドリング性、及び物質透過性の観点から、30%~80%が好ましい。
 多孔質層の平均孔径は、物質透過性の観点から、20nm~100nmが好ましい。多孔質層の平均孔径は、ASTM E1294-89に準拠しパームポロメーターを用いて測定される値である。
[複合膜の特性]
 複合膜の厚さは、例えば5μm~100μmであり、電池セパレータ用の場合、例えば5μm~50μmである。
 複合膜のガーレ値(JIS P8117:2009)は、機械強度と物質透過性の観点から、50秒/100cc~800秒/100ccが好ましい。
 複合膜の空孔率は、機械強度、ハンドリング性、及び物質透過性の観点から、30%~60%が好ましい。
 本開示において複合膜の空孔率は、下記の式により求める。多孔質基材の空孔率及び多孔質層の空孔率も同様である。
 空孔率(%)={1-(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100
 Wa、Wb、Wc、…、Wnは、構成材料a、b、c、…、nの質量(g/cm)であり、da、db、dc、…、dnは、構成材料a、b、c、…、nの真密度(g/cm)であり、tは膜厚(cm)である。
[複合膜の用途]
 複合膜の用途としては、例えば、電池セパレータ、コンデンサー用フィルム、ガスフィルタ、液体フィルタ等が挙げられ、特に好適な用途として、非水系二次電池用セパレータが挙げられる。
 以下に実施例を挙げて、本発明の実施形態をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の実施形態の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<物性の測定方法>
 実施例及び比較例に適用した測定方法は、下記のとおりである。
[フィラーの一次粒径]
 フィラーの一次粒子の体積平均粒径(μm)は、スペクトリス社のゼータサイザーナノZSPを用いて測定した。
[塗工液の粘度]
 塗工液の粘度(Pa・s)は、B型回転粘度計(ブルックフィールド社の品番RVDV+I、スピンドル:SC4-18)を用いて測定した。試料は、攪拌によって均質化された塗工液から採取し、試料の量7mL、試料の温度20℃、スピンドルの回転数10回転/minの条件で測定した。
[凝集物の最大粒径]
 塗工液に含まれる凝集物の最大粒径(μm)は、第一測範製作所の粒度ゲージ(最大深さ25μm、目盛間隔5μm、測定範囲0μm~25μm)で測定した。本測定は、JIS K5600-2-5:1999に従って操作を行った。具体的には、粒度ゲージの最深部に塗工液を滴下した後、スクレーパーを深度0μmに向かって塗工液を掻き取るように等速及び等圧で掃引し、粒状又は線状の特異模様が現れる最深部の目盛を読み取った(つまり、粒状又は線状の特異模様が存在する領域の最大値を求めた。)。この測定を10回行って平均を算出し、凝集物の最大粒径(μm)とした。塗工液は経時により凝集物が沈降する場合があるので、粒度ゲージにのせる試料は、攪拌によって均質化された塗工液から採取した。
[フィルタの最小細孔径]
 フィルタの最小細孔径(μm)は、PMI社のパームポロメーターを用いて、水銀圧入法で測定した。測定用の試料は、フィルタ内部から濾材の一部を形状を保つように留意して採取した。
<複合膜の品質評価方法>
 実施例及び比較例で製造した複合膜を、下記の品質評価方法によって評価した。
[表面の異物個数]
 複合膜の多孔質層側の表面をニレコ社の無地検査機で観察し、長径100μm以上の大きさの異物(黒点)を計数し、下記のとおり分類した。
A:100m当り1個未満である。
B:100m当り1個以上5個未満である。
C:100m当り5個以上10個未満である。
D:100m当り10個以上である。
[表面の平滑性]
 複合膜を幅8cm、長さ10mに切り出し試料とした。試料の幅方向における、中央、一方の端から1cm内側、もう一方の端から1cm内側、のそれぞれの位置における膜厚を、試料の長さ方向に10cm毎に測定し、全ての値の平均値及び標準偏差を算出した。得られた標準偏差を平均値で除して、膜厚の平均値に対する膜厚の標準偏差の比Q(標準偏差/平均値)を求め、下記のとおり分類した。
AA:比Qが1%以下である。
A:比Qが1%超2%以下である。
B:比Qが2%超3%以下である。
C:比Qが3%超である。
<複合膜の製造>
[実施例1]
-塗工液調製工程-
 ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(質量比1:1)に、ポリメタフェニレンイソフタルアミドを溶解し、さらに水酸化アルミニウム粒子(Al(OH))を分散させて塗工液を調製した。塗工液の組成(質量比)は、Al(OH):ポリメタフェニレンイソフタルアミド:DMAc:TPG=16:4:40:40とした。塗工液の粘度、及び、塗工液に含まれる凝集物の最大粒径を表1に示す。
-凝集物除去工程-
 フィルタとしてロキテクノ社の型番62.5L-HC-50AD(濾材:ポリプロピレン不織布、濾過面積0.02m)を用いた。このフィルタは、中空の円筒形であり、フィルタ内部に濾材の密度勾配を連続的に有し、外側から内側に向かって液体が流れるフィルタである。このフィルタをハウジング内に1個設置し、10Lの塗工液を通した。塗工液を調製したタンクからフィルタへの塗工液の供給は、モータ駆動精密定量ポンプ(タクミナ社のスムーズフローポンプ)によって行い、塗工液にかける圧力及び塗工液の流量を調節した。凝集物除去工程の処理条件を表1に示す。
-塗工工程-
 多孔質基材として長尺状の幅1mのポリエチレン微多孔膜(PE膜)を用意し、凝集物の除去処理後の塗工液を多孔質基材の片面にダイコーターにより塗工して塗工層を形成した。塗工工程における多孔質基材の搬送速度は、10m/minとした。
-凝固工程-
 塗工層形成後の多孔質基材を凝固槽に搬送して凝固液(水:DMAc:TPG=43:40:17[質量比]、液温30℃)に浸漬して塗工層に含まれる樹脂を凝固させて、複合膜を得た。
-水洗工程、乾燥工程-
 複合膜を、水温30℃に制御された水浴に搬送して水洗し、水洗後の複合膜を、加熱ロールを備えた乾燥装置を通過させて乾燥させた。
 上記の各工程を連続的に実施し、ポリエチレン微多孔膜の片面に多孔質層を備えた複合膜を得た。製造した複合膜の品質評価の結果を表1に示す。また、ほかの実施例及び比較例についても同様に表1に示す。
[実施例2]
 フィルタをロキテクノ社の型番62.5L-HC-25AD(濾材:ポリプロピレン不織布、濾過面積0.02m)に変更した以外は、実施例1と同様にして複合膜を製造した。
[実施例3]
 フィルタをロキテクノ社の型番62.5L-HC-100AD(濾材:ポリプロピレン不織布、濾過面積0.02m)に変更した以外は、実施例1と同様にして複合膜を製造した。
[比較例1]
 フィルタをロキテクノ社の型番62.5L-HC-10AD(濾材:ポリプロピレン不織布、濾過面積0.02m)に変更したところ、フィルタが目詰まりして凝集物の除去処理ができなかったため、複合膜を製造できなかった。
[比較例2]
 フィルタをロキテクノ社の型番62.5L-HC-05AD(濾材:ポリプロピレン不織布、濾過面積0.02m)に変更したところ、フィルタが目詰まりして凝集物の除去処理ができなかったため、複合膜を製造できなかった。
[実施例4]
 含まれる凝集物の最大粒径が15μmの塗工液を用いた以外は、実施例1と同様にして複合膜を製造した。
[実施例5]
 含まれる凝集物の最大粒径が20μmの塗工液を用いた以外は、実施例1と同様にして複合膜を製造した。
[実施例6]
 含まれる凝集物の最大粒径が8μmの塗工液を用いた以外は、実施例1と同様にして複合膜を製造した。
[実施例7~10]
 凝集物除去工程の条件を表1に記載のとおりに変更した以外は、実施例1と同様にして複合膜を製造した。
[実施例11]
 塗工液調製工程において、ポリメタフェニレンイソフタルアミドをポリフッ化ビニリデン(PVDF)に変更し、水酸化アルミニウム粒子をアルミナ粒子(Al)に変更した以外は、実施例1と同様にして複合膜を製造した。
[実施例12]
 塗工液調製工程において、ポリメタフェニレンイソフタルアミドをポリフッ化ビニリデン(PVDF)に変更し、水酸化アルミニウム粒子を水酸化マグネシウム粒子(Mg(OH))に変更し、凝集物除去工程の条件を表1に記載のとおりに変更した以外は、実施例1と同様にして複合膜を製造した。
[実施例13]
 塗工液調製工程において、ポリメタフェニレンイソフタルアミドをポリフッ化ビニリデン(PVDF)に変更し、水酸化アルミニウム粒子を架橋ポリメタクリル酸メチル粒子(PMMA)に変更し、凝集物除去工程の条件を表1に記載のとおりに変更した以外は、実施例1と同様にして複合膜を製造した。
[実施例14]
 塗工液調製工程において、ポリメタフェニレンイソフタルアミドをポリフッ化ビニリデン(PVDF)エマルジョンに変更し、凝集物除去工程の条件を表1に記載のとおりに変更し、凝固工程を温度60℃で乾燥させる乾式工程に変更した(したがって、水洗工程及びその後の乾燥工程を行わない)以外は、実施例1と同様にして複合膜を製造した。
[実施例15]
 多孔質基材をポリエチレンテレフタレート不織布(PET不織布)に変更した以外は、実施例1と同様にして複合膜を製造した。
[実施例16]
 塗工液の組成(質量比)をAl(OH):ポリメタフェニレンイソフタルアミド:DMAc:TPG=16:4:35:45に変更し、フィルタをロキテクノ社の型番62.5L-HC-100AD(濾材:ポリプロピレン不織布、濾過面積0.02m)に変更し、凝集物除去工程の条件を表1に記載のとおりに変更した以外は、実施例1と同様にして複合膜を製造した。
Figure JPOXMLDOC01-appb-T000001
 2015年3月24日に出願された日本国出願番号第2015-61572号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  樹脂及びフィラーを含有し、粘度が0.1Pa・s以上5.0Pa・s以下である塗工液を調製する塗工液調製工程と、
     前記塗工液を、前記塗工液に含まれる凝集物の最大粒径よりも大きい最小細孔径を有するフィルタに通して前記凝集物を除去する凝集物除去工程と、
     前記凝集物除去工程を経た前記塗工液を、多孔質基材の片面又は両面に塗工して塗工層を形成する塗工工程と、
     前記塗工層に含まれる前記樹脂を凝固させて、前記多孔質基材の片面又は両面に前記樹脂及び前記フィラーを含有する多孔質層を備えた複合膜を得る凝固工程と、
     を有する、複合膜の製造方法。
  2.  前記フィルタの最小細孔径が前記凝集物の最大粒径の2倍以上10倍以下である、請求項1に記載の製造方法。
  3.  前記凝集物の最大粒径が2μm以上30μm以下である、請求項1又は請求項2に記載の製造方法。
  4.  前記フィラーは、一次粒子の体積平均粒径が0.1μm以上3.0μm以下である、請求項1~請求項3のいずれか1項に記載の製造方法。
  5.  前記フィルタの最小細孔径が30μm以上70μm以下である、請求項1~請求項4のいずれか1項に記載の製造方法。
  6.  前記凝集物除去工程は、前記塗工液に対し0.05MPa以上0.5MPa以下の圧力をかけて前記フィルタを通すことを含む、請求項1~請求項5のいずれか1項に記載の製造方法。
  7.  前記凝集物除去工程は、前記フィルタを通る前記塗工液の流量が0.5L/min以上である、請求項1~請求項6のいずれか1項に記載の製造方法。
PCT/JP2015/084720 2015-03-24 2015-12-10 複合膜の製造方法 WO2016151962A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/559,535 US20180093459A1 (en) 2015-03-24 2015-12-10 Method of manufacturing composite film
JP2016533673A JP6033507B1 (ja) 2015-03-24 2015-12-10 複合膜の製造方法
CN201580077666.XA CN107427780B (zh) 2015-03-24 2015-12-10 复合膜的制造方法
KR1020177025617A KR102637385B1 (ko) 2015-03-24 2015-12-10 복합막의 제조 방법
KR1020237014206A KR20230061573A (ko) 2015-03-24 2015-12-10 복합막의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061572 2015-03-24
JP2015061572 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016151962A1 true WO2016151962A1 (ja) 2016-09-29

Family

ID=56977146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084720 WO2016151962A1 (ja) 2015-03-24 2015-12-10 複合膜の製造方法

Country Status (6)

Country Link
US (1) US20180093459A1 (ja)
JP (1) JP6033507B1 (ja)
KR (2) KR20230061573A (ja)
CN (1) CN107427780B (ja)
TW (1) TW201634602A (ja)
WO (1) WO2016151962A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085899A1 (en) * 2017-10-31 2019-05-09 Shanghai Energy New Materials Technology Co., Ltd. Methods for preparing polymer solutions, separators, electrochemical devices and products thereof
KR101996642B1 (ko) * 2018-07-13 2019-07-04 주식회사 엘지화학 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
CN111266008A (zh) * 2020-03-03 2020-06-12 江苏厚生新能源科技有限公司 水过滤膜及其制备方法、高粘性涂覆浆料
EP4285944A1 (en) * 2022-06-01 2023-12-06 MedSkin Solutions Dr. Suwelack AG Method of making a composition with a film-coated porous material
CN115178097B (zh) * 2022-08-15 2024-02-23 无锡零界净化设备股份有限公司 一种pvdf微孔滤膜及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192420A (ja) * 1998-01-05 1999-07-21 Nitto Denko Corp 分離膜およびこれを用いたオレフィンの分離方法
JP2011062682A (ja) * 2009-02-16 2011-03-31 Kuraray Co Ltd バラスト水製造装置
JP2012119224A (ja) * 2010-12-02 2012-06-21 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424179B2 (ja) 1971-11-15 1979-08-18
JPS5424179Y2 (ja) 1975-07-28 1979-08-16
WO2008062727A1 (fr) * 2006-11-20 2008-05-29 Teijin Limited Séparateur pour batterie auxiliaire non aqueuse, procédé de production associé, et batterie auxiliaire non aqueuse
WO2008149895A1 (ja) * 2007-06-06 2008-12-11 Teijin Limited 非水系二次電池セパレータ用ポリオレフィン微多孔膜基材、その製造方法、非水系二次電池セパレータおよび非水系二次電池
JP5696826B2 (ja) * 2009-09-30 2015-04-08 日本ゼオン株式会社 電極用バインダー組成物、電極用スラリー組成物、電極および電池
JP5917944B2 (ja) * 2012-02-23 2016-05-18 日東電工株式会社 混紡不織布、フィルタ濾材およびフィルタユニット
CN103143269A (zh) * 2013-03-02 2013-06-12 福建农林大学 一种壳聚糖/纤维素复合分离膜及其制备方法
CN103531736B (zh) * 2013-10-27 2016-08-24 乐凯胶片股份有限公司 一种高耐热锂离子电池隔膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192420A (ja) * 1998-01-05 1999-07-21 Nitto Denko Corp 分離膜およびこれを用いたオレフィンの分離方法
JP2011062682A (ja) * 2009-02-16 2011-03-31 Kuraray Co Ltd バラスト水製造装置
JP2012119224A (ja) * 2010-12-02 2012-06-21 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池

Also Published As

Publication number Publication date
JP6033507B1 (ja) 2016-11-30
TW201634602A (zh) 2016-10-01
US20180093459A1 (en) 2018-04-05
KR20230061573A (ko) 2023-05-08
KR20170130401A (ko) 2017-11-28
CN107427780A (zh) 2017-12-01
KR102637385B1 (ko) 2024-02-16
JPWO2016151962A1 (ja) 2017-04-27
CN107427780B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
JP6072368B1 (ja) 複合膜の製造方法
JP6033507B1 (ja) 複合膜の製造方法
JP6028129B1 (ja) 複合膜の製造方法
JP6126324B1 (ja) 複合膜の製造方法
JP5158522B2 (ja) フッ素樹脂薄膜の製造方法
JP6020592B2 (ja) 多孔質中空糸膜及びその製造方法
WO2016157656A1 (ja) 複合膜の製造方法
US20120067548A1 (en) Polymeric membrane for heat exchange applications and method of fabrication thereof
KR20180005879A (ko) 역삼투막
WO2023162368A1 (ja) 多孔質膜積層体
Zhang Fibrous Microfilters by Multiplier Co-extrusion
TW202406625A (zh) 不對稱聚合物多孔濾膜及相關方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016533673

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025617

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886514

Country of ref document: EP

Kind code of ref document: A1