WO2016151909A1 - 透明導電フィルムおよびタッチパネル - Google Patents

透明導電フィルムおよびタッチパネル Download PDF

Info

Publication number
WO2016151909A1
WO2016151909A1 PCT/JP2015/079031 JP2015079031W WO2016151909A1 WO 2016151909 A1 WO2016151909 A1 WO 2016151909A1 JP 2015079031 W JP2015079031 W JP 2015079031W WO 2016151909 A1 WO2016151909 A1 WO 2016151909A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
wire
line width
metal
Prior art date
Application number
PCT/JP2015/079031
Other languages
English (en)
French (fr)
Inventor
昌哉 中山
須藤 淳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017507315A priority Critical patent/JP6254746B2/ja
Publication of WO2016151909A1 publication Critical patent/WO2016151909A1/ja
Priority to US15/695,846 priority patent/US10437093B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present invention relates to a transparent conductive film, and more particularly to a transparent conductive film used for a touch panel or the like.
  • the present invention also relates to a touch panel using a transparent conductive film.
  • touch panels that are used in combination with a display device such as a liquid crystal display device and perform an input operation to the electronic device by touching a screen have been widely used.
  • a first electrode made of striped copper wiring is formed on the surface of a transparent insulating substrate, and a stripe in a direction perpendicular to the copper wiring of the first electrode is formed on the back surface of the transparent insulating substrate.
  • a touch panel in which a second electrode made of a copper wire is formed is disclosed.
  • the black wiring made of a black copper oxide film is formed on the end of the copper wiring that becomes the viewing side.
  • the end of the copper wiring of the first electrode opposite to the transparent insulating substrate and the copper of the second electrode A blackened layer is formed at each end of the wiring on the transparent insulating substrate side.
  • the first electrode and the second electrode The copper wiring forming the electrode needs to be thinned to a width of about 1 to 5 ⁇ m.
  • Such a copper wiring can be obtained by forming a copper foil on a transparent insulating substrate and patterning the copper foil by a photolithography method using a resist. In this case, in order to carry out high-precision thinning patterning with a line width of about 1 to 5 ⁇ m, it is necessary to perform wet etching by bringing the resist into close contact with the copper foil with high adhesion.
  • the copper wiring 2 having a reverse tapered cross-sectional shape in which the line width W2 on the transparent insulating substrate 1 side is smaller than the line width W1 on the opposite side to the transparent insulating substrate 1. And 3 are formed.
  • mesh or stripe-shaped copper wirings 2 and 3 having the same line width of about 1 to 5 ⁇ m are formed on the front surface 1A and the back surface 1B of the transparent insulating substrate 1, respectively.
  • the transparent insulating substrate 1 is observed vertically from the surface 1A side, the copper wiring 2 positioned on the viewing side is positioned on the opposite side even though the copper wiring is thinned and designed with the same line width.
  • the line width is larger than that of the copper wiring 3 and the presence of the copper wirings 2 and 3 is easily recognized, and the visibility is lowered.
  • each of the copper wirings 2 and 3 has a reverse tapered cross-sectional shape, so that the line width W1 at the end of the copper wiring 2 on the viewing side formed on the surface 1A of the transparent insulating substrate 1 is transparent. It has been found that the cause is that the line width W2 is larger than the line width W2 at the end of the copper wiring 3 formed on the back surface 1B of the insulating substrate 1 on the viewing side. As shown in FIG. 8, the problem that the presence of the copper wirings 2 and 3 is easily visible is that the end portion on the visual recognition side of the copper wiring 2 formed on the surface 1 ⁇ / b> A of the transparent insulating substrate 1 and the transparent insulating substrate 1. A blackening layer 4 was formed on each end of the copper wiring 3 formed on the back surface 1B of the copper wire to reduce the specular reflection of the copper wiring and to improve the pattern appearance due to the reflection of external light. Especially in cases.
  • the present invention has been made in order to solve such a conventional problem, and has excellent visual recognition when an electrode made of a thin metal wire that is thinned and patterned on the visual recognition side and the opposite side to the visual recognition side, respectively. It aims at providing the transparent conductive film which can ensure property. Another object of the present invention is to provide a touch panel using such a transparent conductive film.
  • the transparent conductive film according to the present invention is a transparent conductive film having a transmissive region, and includes a first electrode made of a first metal thin wire disposed in the transmissive region and a first metal thin wire in the transmissive region so as to intersect with the first electrode.
  • a first electrode having a line width W1A directed to the viewer side and the viewer side, the second electrode comprising a second metal wire disposed on the side opposite to the viewer side of the first electrode.
  • the second metal thin line is directed to the opposite side of the second front surface and the viewing side of the line width W2A directed to the viewing side.
  • a second rear surface having a line width W2B the line widths W1A, W1B, W2A and W2B are in the range of 0.5 to 10 ⁇ m and satisfy the relationship of W1B ⁇ W2A ⁇ W1A ⁇ W2B. .
  • the line widths W1A and W2A satisfy the relationship of W1A ⁇ W2A ⁇ 0.3 ⁇ W1A. Further, it is preferable that the line widths W1A, W1B, W2A and W2B satisfy the relationship of W2B ⁇ W2A ⁇ W1A ⁇ W1B. In this case, it is more preferable that the thickness H2 of the second fine metal wire is larger than the thickness H1 of the first fine metal wire.
  • the difference between the line width W2B and the line width W1A is preferably smaller than 4 ⁇ m, and particularly preferably smaller than 1 ⁇ m.
  • the line width W1A is not less than 1.5 ⁇ m and not more than 5 ⁇ m, and the thickness H1 of the first metal fine wire and the thickness H2 of the second metal fine wire are not less than 0.5 ⁇ m and not more than 3 ⁇ m.
  • it can also comprise so that the 1st front surface of a 1st metal fine wire and the 2nd front surface of a 2nd metal fine wire may be a blackening layer. It is preferable that a 1st metal fine wire and a 2nd metal fine wire consist of copper.
  • Each of the first electrode and the second electrode can be disposed on both surfaces of one transparent insulating substrate.
  • the touch panel according to the present invention uses the above transparent conductive film.
  • a projected capacitive touch panel capable of detecting multi-touch is preferable.
  • the first thin metal wire of the first electrode has a first front surface with a line width W1A directed to the viewing side and a first rear surface with a line width W1B directed to the side opposite to the viewing side.
  • the second thin metal wire of the second electrode disposed on the opposite side of the first electrode than the first electrode is on the opposite side of the second front surface of the line width W2A directed to the visible side and the visible side.
  • the line width W1A, W1B, W2A and W2B are in the range of 0.5-10 ⁇ m and satisfy the relationship W1B ⁇ W2A ⁇ W1A ⁇ W2B Excellent visibility can be ensured in the transparent conductive film in which an electrode made of a fine metal wire patterned with high-precision thinning is formed on the viewing side and the side opposite to the viewing side.
  • FIG. 3 is a plan view showing a transparent conductive film used in the touch panel according to Embodiment 1.
  • FIG. 4 is a partial plan view showing a detection electrode of a transparent conductive film used in the touch panel according to Embodiment 1.
  • FIG. It is a fragmentary sectional view which shows the 1st metal fine wire and 2nd metal fine wire of the transparent conductive film used for the touchscreen which concerns on Embodiment 1.
  • FIG. It is a fragmentary sectional view which shows the 1st metal fine wire and 2nd metal fine wire of the transparent conductive film used for the touchscreen which concerns on Embodiment 2.
  • FIG. 10 is a partial plan view showing a detection electrode of a transparent conductive film used in a touch panel according to Embodiment 3.
  • FIG. It is a fragmentary sectional view which shows the 1st metal fine wire and 2nd metal fine wire of the transparent conductive film used for the conventional touch panel. It is a fragmentary sectional view which shows the 1st metal fine wire and 2nd metal fine wire of the transparent conductive film used for the other conventional touch panel.
  • Embodiment 1 In FIG. 1, the structure of the touch panel 11 using the transparent conductive film 13 which concerns on Embodiment 1 of this invention is shown.
  • the touch panel 11 includes a transparent insulating cover panel 12 having a flat plate shape, and a transparent conductive film 13 is bonded to the surface of the cover panel 12 opposite to the viewing side by a transparent adhesive 14.
  • conductive members 32 are formed on both surfaces of the transparent insulating substrate 31, that is, on the front surface 31A and the back surface 31B.
  • a transparent protective layer 33 may be formed on both surfaces of the transparent insulating substrate 31 so as to cover the conductive member 32 for the purpose of flattening or protecting the conductive member 32.
  • the cover panel 12 tempered glass, polycarbonate (PC), polymethyl methacrylate resin (PMMA) or the like can be used, and the thickness is preferably 0.1 to 1.5 mm.
  • the material of the transparent insulating substrate 31 glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), cycloolefin polymer (COP), cyclic olefin copolymer (COC), etc. can be used, and the thickness is 20 to 200 ⁇ m. preferable.
  • the transparent conductive film 13 has a transmissive region S1 and a peripheral region S2 defined outside the transmissive region S1.
  • each of the transparent regions S1 extends in the first direction D1 and is arranged in parallel in the second direction D2 orthogonal to the first direction D1 and is provided by the conductive member 32.
  • a plurality of formed first electrodes 34 are formed, and a plurality of first peripheral wirings 35 connected to the plurality of first electrodes 34 and formed by the conductive member 32 are arranged in proximity to each other in the peripheral region S2. Yes.
  • a second electrode 36 is formed, and a plurality of second peripheral wirings 37 connected to the plurality of second electrodes 36 and formed by the conductive members 32 are arranged in the vicinity of the peripheral region S2.
  • FIG. 3 shows an intersection between the first electrode 34 and the second electrode 36.
  • the first electrode 34 disposed on the front surface 31A of the transparent insulating substrate 31 is formed by a mesh pattern composed of the first thin metal wires 38, and the second electrode 36 disposed on the back surface 31B of the transparent insulating substrate 31 is also included.
  • the mesh pattern is formed of the second metal fine wires 39. And when it sees from the visual recognition side in the crossing part of the 1st electrode 34 and the 2nd electrode 36, it arrange
  • the second metal fine line 39 is shown by a dotted line in order to make the distinction between the first metal fine line 38 and the second metal fine line 39 easy to understand.
  • the mesh pattern a pattern in which the same mesh is repeatedly arranged as shown in FIG. 3 is preferable, and the shape of the mesh is particularly preferably a rhombus, but may be a parallelogram, a square, a rectangle, or another polygon. May be.
  • the distance between mesh centers (mesh pitch) is preferably 100 to 600 ⁇ m from the viewpoint of visibility. It is preferable that the mesh pattern composed of the first fine metal wires 38 and the mesh pattern composed of the second fine metal wires 39 have the same shape. Further, as shown in FIG.
  • the mesh pattern composed of the first fine metal wires 38 and the mesh pattern composed of the second fine metal wires 39 are arranged by being shifted by a distance corresponding to half the mesh pitch, and the mesh pitch is halved from the viewing side. It is preferable from a viewpoint of visibility to arrange so as to form a mesh pattern.
  • the mesh shape may be a random pattern.
  • a dummy mesh pattern is formed between the first electrodes 34 adjacent to each other and between the second electrodes 36 adjacent to each other, insulated from the electrodes formed by the first metal fine wires 38 and the second metal fine wires 39, respectively. It may be.
  • the dummy mesh pattern is preferably formed in the same mesh shape as the mesh pattern forming the electrodes.
  • the first metal thin line 38 of the first electrode 34 disposed on the surface 31A of the transparent insulating substrate 31 is opposite to the first front surface 38A directed to the viewing side and the viewing side.
  • the first rear surface 38B is directed to the first rear surface 38A, and the line width W1A of the first front surface 38A is larger than the line width W1B of the first rear surface 38B.
  • the second thin metal wire 39 of the second electrode 36 disposed on the back surface 31B of the transparent insulating substrate 31 is also the second front surface 39A directed to the viewing side and the second facing the opposite side to the viewing side.
  • the second rear surface 39B has a so-called reverse tapered cross-sectional shape in which the line width W2B of the second rear surface 39B is larger than the line width W2A of the second front surface 39A.
  • a metal or an alloy such as copper, silver, aluminum, gold or molybdenum is used, and the film thickness is preferably 0.1 to 5 ⁇ m.
  • copper is preferable from the viewpoint of resistance value, stability, and cost.
  • the transparent insulating substrate 31, the first metal thin wire 38, and the second metal thin wire 39 are directly in contact with each other, but the transparent insulating substrate 31, the first metal thin wire 38, and the second metal thin wire 39 are One or more functional layers such as an adhesion reinforcing layer, an undercoat layer, and a hard coat layer can be formed between them.
  • Blackening layers 40 are respectively formed on the first front surface 38 ⁇ / b> A on the viewing side of the first thin metal wire 38 and the second front surface 39 ⁇ / b> A on the viewing side of the second thin metal wire 39.
  • the blackening layer 40 is for reducing the specular reflection of the metal thin wires on the first front surface 38A of the first metal fine wires 38 and the second front surface 39A of the second metal fine wires 39.
  • the blackening layer 40 is preferably an oxide containing copper, CuO (copper oxide (II)), CuO—Cr 2 O 3 , CuO—Fe 3 O 4 —Mn 2 O 3 , CuO—Fe 2 O 3 —. cr 2 O 3 and the like.
  • Other materials include black iron oxide (Fe 3 O 4 ), titanium black, nickel, chromium and the like, and the film thickness is preferably 0.01 to 0.4 ⁇ m.
  • the light shielding member on the back side uses light refracted on the surface of the transparent plate.
  • the line width W1A of the first front surface 38A of the first metal thin wire 38 disposed on the front surface 31A of the transparent insulating substrate 31 is set in advance as the second metal thin wire disposed on the rear surface 31B of the transparent insulating substrate 31. It is preferable to set a value slightly larger than the line width W2A of the second front surface 39A.
  • the line widths W1A and W1B of the first metal fine wires 38 and the line widths W2A and W2B of the second metal fine wires 39 are: W1B ⁇ W2A ⁇ W1A ⁇ W2B (1) It is set to satisfy the relationship. Further, the first metal fine wires 38 and the second metal fine wires 39 are all set within a range of 0.5 to 10 ⁇ m so that the line widths W1A, W1B, W2A, and W2B are less visible. .
  • the first metal fine line 38 and the second metal fine line 39 are better prevented from being visually recognized due to the difference in line width between the first metal fine line 38 and the second metal fine line 39 when viewed from the viewing side. Therefore, the difference (W1A ⁇ W2A) between the line width W1A of the first front surface 38A of the first thin metal wire 38 and the line width W2A of the second front surface 39A of the second thin metal wire 39 is 0.3 of the line width W1A. It is desirable that the value is not more than double. That is, the line widths W1A and W2A are W1A-W2A ⁇ 0.3 ⁇ W1A (2) It is desirable to satisfy the relationship.
  • the line width W1A is preferably larger than the line width W2A by 0.02 ⁇ m or more, and 0.02 ⁇ m ⁇ W1A ⁇ W2A ⁇ 0.3 ⁇ W1A.
  • first metal fine wires 38 and second metal fine wires 39 By disposing such first metal fine wires 38 and second metal fine wires 39 on the front surface 31A and the back surface 31B of the transparent insulating substrate 31, respectively, the position is located on the viewing side of the front surface 31A and the back surface 31B of the transparent insulating substrate 31.
  • the line width W1A of the first front surface 38A on the viewing side of the first metal thin wire 38 disposed on the front surface 31A is the second metal thin wire 39 disposed on the back surface 31B located on the side opposite to the viewing side.
  • the transparent insulating substrate Since it is set to a value substantially equal to the line width W2A of the second front surface 39A on the viewing side or a value slightly larger than the line width W2A, when the transparent conductive film 13 is observed from the viewing side, the transparent insulating substrate
  • the first fine metal wires 38 on the front surface 31A of the 31 and the second fine metal wires 39 on the back surface 31B appear to have the same line width. Accordingly, the presence of the fine metal wires of the first electrode 34 formed by the first thin metal wires 38 and the second electrode 36 formed by the second fine metal wires 39 is difficult to be visually recognized, and the transmission region S1 of the transparent conductive film 13 is not visible. Visibility will be improved.
  • the line width W2B of the second rear surface 39B of the second thin metal wire 39 and the line width of the second front surface 39A so that the side surface 39C of the second thin metal wire 39 on the back surface 31B side of the transparent insulating substrate 31 are difficult to see.
  • the difference (W2B ⁇ W2A) from W2A is preferably smaller than the difference (W1A ⁇ W1B) between the line width W1A of the first front surface 38A of the first metal thin wire 38 and the line width W1B of the first rear surface 38B.
  • the line widths W1A and W1B of the first thin metal wires 38 and the line widths W2A and W2B of the second thin metal wires 39 are: W2B-W2A ⁇ W1A-W1B (3) It is desirable to satisfy the relationship.
  • the first metal fine wires 38 and the second metal fine wires 39 having a reverse tapered cross-sectional shape can be formed by simultaneously wet-etching metal layers such as copper respectively formed on both surfaces of the transparent insulating substrate 31.
  • the thickness H2 of the second thin metal wire 39 is larger than the thickness H1 of the first thin metal wire 38. This is because when metals with different thicknesses are wet etched at the same time, the metal with a smaller thickness has a longer overetching time, the reverse taper shape becomes tighter, and the shape that satisfies the above conditions is easy to make. It is.
  • the line width W1A of the first front surface 38A of the first metal thin wire 38 is 1.5 ⁇ m or more and 5 ⁇ m or less, and the thickness of the first metal thin wire 38 is set. It is desirable that the thickness H2 of the H1 and the second thin metal wire 39 is set to 0.5 ⁇ m or more and 3 ⁇ m or less. By making the thickness of the first metal fine wire 38 and the second metal fine wire 39 0.5 ⁇ m or more and 3 ⁇ m or less, it becomes easy to form a metal thin wire having a line width of 1.5 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the thin metal wire is set to a value equal to or less than half the line width, it becomes easy to form a fine line width of 5 ⁇ m or less by wet etching.
  • the line width W1A of the first front surface 38A of the first metal thin wire 38 is 2 ⁇ m or more and 4 ⁇ m or less, the thickness H1 of the first metal thin wire 38 and the thickness H2 of the second metal thin wire 39. Is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the line width W2B of the second rear surface 39B of the second thin metal wire 39 and the first of the first thin metal wires 38 are such that the side surface 39C of the second fine metal wire 39 on the back surface 31B side of the transparent insulating substrate 31 is difficult to see.
  • the difference (W2B ⁇ W1A) from the line width W1A of the front surface 38A is preferably smaller than 4 ⁇ m. In particular, it is effective to make the difference (W2B ⁇ W1A) between the line widths W2B and W1A smaller than 1 ⁇ m in order to make the mesh pattern of the first electrode 34 and the second electrode 36 difficult to see and to improve the viewing angle dependency. It is.
  • the blackening layer 40 for reducing specular reflection can be formed from copper oxide, for example, when copper is used as a material for forming the first metal fine wires 38 and the second metal fine wires 39.
  • the specular reflection on the first front surface 38A of the first thin metal wire 38 and the second front surface 39A of the second thin metal wire 39, which are located on the viewing side, is reduced, and the pattern appearance due to the reflection of external light is reduced.
  • the line widths W1A and W1B of the first fine metal wires 38 and the line widths W2A and W2B of the second fine metal wires 39 satisfy the relationship of the above formula (1).
  • the presence of the first fine metal wires 38 and the second fine metal wires 39 is hardly visible, and it is possible to improve the appearance of the pattern due to reflection of external light while ensuring excellent visibility.
  • Such a transparent conductive film 13 forms the conductive member 32 including the first electrode 34 and the first peripheral wiring 35 on the surface 31 ⁇ / b> A of the transparent insulating substrate 31, and is formed on the back surface 31 ⁇ / b> B of the transparent insulating substrate 31. It is manufactured by forming the conductive member 32 including the two electrodes 36 and the second peripheral wiring 37.
  • the method for forming these conductive members 32 is not particularly limited. For example, after forming a blackened layer made of, for example, copper oxide on the back surface 31B of the transparent insulating substrate 31, a conductive layer made of copper is formed on the front surface 31A of the transparent insulating substrate 31 and on the blackened layer of the back surface 31B, respectively.
  • a blackening layer made of copper oxide is formed on the conductive layer on the front surface 31A of the transparent insulating substrate 31, and patterned on the blackening layer on the front surface 31A of the transparent insulating substrate 31 and on the conductive layer on the back surface 31B.
  • the conductive member 32 can be formed by removing the unnecessary portion of copper and copper oxide by forming the resist and performing wet etching using an etching solution. At this time, in the step of exposing the resist formed on the conductive layer, it is preferable that the resist applied on the conductive layer formed on both surfaces of the transparent insulating substrate 31 is simultaneously exposed on both sides through an exposure mask.
  • the alignment of the pattern of the first fine metal wires 38 and the pattern of the second fine metal wires 39 can be produced with high accuracy.
  • Etching is preferably wet etching using an etchant because it has a high etching rate or does not require a vacuum device and is low cost.
  • it is preferable that the conductive members 32 on both sides are wet-etched simultaneously. Since the process can be simplified by simultaneous etching on both sides, the manufacturing cost can be further reduced.
  • Embodiment 2 The transparent conductive film 13 used in the touch panel 11 according to the first embodiment described above is applied to the first front surface 38A on the viewing side of the first metal thin wire 38 and the second front surface 39A on the viewing side of the second metal thin wire 39, respectively.
  • the blackened layer 40 is formed, the present invention is not limited to this.
  • the first metal fine wire 38 and the second metal fine wire 39 have the blackened layer 40. It does not have to be.
  • the line widths W1A and W1B of the first fine metal wires 38 and the line widths W2A and W2B of the second fine metal wires 39 are both set within the range of 0.5 to 10 ⁇ m, and the above formula If the relationship (1) is satisfied, the first fine metal wires 38 and the second fine metal wires 39 are hardly visually recognized, and excellent visibility can be secured. Further, when the line width W1A of the first thin metal wire 38 and the W2A of the second thin metal wire 39 further satisfy the relationship of the above formula (2), the visibility can be further improved, and the first thin metal wire 38 can be improved. If the line widths W1A and W1B and the line widths W2A and W2B of the second thin metal wires 39 satisfy the relationship of the above formula (3), it is possible to further reduce the influence of reflected light according to the viewing angle. Become.
  • Embodiment 3 In the first and second embodiments, as shown in FIG. 3, the first fine metal wires 38 of the first electrode 34 disposed on the front surface 31 ⁇ / b> A of the transparent insulating substrate 31 and the rear surface 31 ⁇ / b> B of the transparent insulating substrate 31 are disposed.
  • Each of the second thin metal wires 39 of the second electrode 36 has a mesh pattern, but the present invention is not limited to this.
  • each of the first electrodes 34 is bent and formed from a plurality of first metal wires 48 parallel to each other, and each of the second electrodes 36 is bent and parallel to each other.
  • a plurality of first metal wires 48 and a plurality of second metal wires 49 may overlap each other to form a plurality of polygonal meshes when viewed from the viewing side. it can.
  • the distance between adjacent first metal fine wires and the distance between adjacent second metal fine wires are preferably 50 to 300 ⁇ m from the viewpoint of visibility. Even when such first metal fine wires 48 and second metal fine wires 49 are used, excellent visibility can be ensured as in the first and second embodiments.
  • the second metal fine wire 49 is shown by a dotted line. It is formed by connected lines in the same manner as the thin line 48.
  • a plurality of first electrodes 34 and a plurality of first peripheral wirings 35 are disposed on the front surface 31 A of the transparent insulating substrate 31, and on the back surface 31 B of the transparent insulating substrate 31.
  • the plurality of second electrodes 36 and the plurality of second peripheral wirings 37 are arranged, the present invention is not limited to this.
  • a plurality of first electrodes 34 and a plurality of second electrodes 36 are disposed on one surface of the front surface 31A and the back surface 31B of the transparent insulating substrate 31 via an interlayer insulating film, and the transparent insulating substrate 31
  • a plurality of first peripheral wirings 35 and a plurality of second peripheral wirings 37 may be arranged on the same surface.
  • a plurality of first electrodes 34 and a plurality of first peripheral wirings 35 are arranged on the surface of the first transparent insulating substrate, and a plurality of second electrodes 36 and a plurality of first electrodes are arranged on the surface of the second transparent insulating substrate.
  • Two peripheral wirings 37 may be arranged, and the first transparent insulating substrate and the second transparent insulating substrate may be used by being overlapped with each other.
  • the transparent conductive film according to the present invention can be used for a touch panel as shown in FIG. 1, but is also applicable to a heating element for generating heat, an electromagnetic wave shield for blocking electromagnetic waves, and the like. Is possible.
  • Example 1 A transparent conductive film having the structure shown in FIGS. 2 to 4 was produced as follows. First, a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m is prepared as a transparent insulating substrate, a 5 ⁇ m-thick primer layer made of polyester resin is formed on both sides of the transparent insulating substrate, and further on these primer layers. A 100 nm thick adhesion strengthening layer was formed by silicon oxide formed by the sol-gel method.
  • PET polyethylene terephthalate
  • a blackened layer having a thickness of 0.1 ⁇ m made of copper oxide was formed by sputtering on the adhesion reinforcing layer located on the back surface of the transparent insulating substrate opposite to the viewing side. Further, a copper layer having a thickness of 0.9 ⁇ m is formed by sputtering on the adhesion reinforcing layer on the front surface side and the blackening layer on the back surface side of the transparent insulating substrate, and the thickness made of copper oxide on the copper layer on the front surface side.
  • a blackened layer having a thickness of 0.1 ⁇ m was formed by sputtering to form a laminate in which a copper layer with a blackened layer was disposed on the front and back surfaces of the transparent insulating substrate.
  • a resist is applied on the front surface and the back surface of the laminate, respectively, and prebaking is performed at a temperature of 80 ° C. for 30 minutes.
  • a first exposure mask made of quartz and a second resist are formed on the resist on the front surface and the back surface of the laminate, respectively. Pattern exposure with ultraviolet rays was simultaneously performed on both sides through an exposure mask. After the exposure, alkali development was performed to pattern the resist. Thereafter, post-baking was performed at a temperature of 120 ° C. for 1 hour.
  • a rhombus mesh shape having a mesh pitch of 400 ⁇ m and a narrow angle of intersection of 60 degrees on each of the front and back surfaces of the laminate is adopted as the mesh shape shown in FIG. 3 on both sides of the laminate
  • the line width M1 of the first exposure mask with respect to the first metal fine line on the viewing side was set to 3.0 ⁇ m
  • the line width M2 of the second exposure mask with respect to the second metal fine line on the side opposite to the viewing side was set to 4.0 ⁇ m.
  • Etching of copper and copper oxide on both sides of the laminate was simultaneously performed on the laminate having a patterned resist by wet etching using an etchant composed of a ferric chloride aqueous solution at a temperature of 40 ° C. Then, the resist was peeled from both surfaces of the laminate, and the transparent conductive film of Example 1 was produced by washing with water and drying.
  • Examples 2 and 3 The transparent conductive materials of Examples 2 and 3 were obtained in the same manner as in Example 1 except that the line width M2 of the second exposure mask with respect to the second thin metal wire on the side opposite to the viewing side was set to 3.5 ⁇ m and 3.2 ⁇ m. Each film was produced.
  • Example 4 The line width M1 of the first exposure mask with respect to the first metal fine line on the viewing side is 4.0 ⁇ m, and the line width M2 of the second exposure mask with respect to the second metal thin line on the side opposite to the viewing side is 5.0 ⁇ m, A transparent conductive film of Example 4 was produced in the same manner as in Example 1.
  • Examples 5 and 6 The transparent conductive materials of Examples 5 and 6 were obtained in the same manner as in Example 4 except that the line width M2 of the second exposure mask with respect to the second metal fine line on the side opposite to the viewing side was set to 4.5 ⁇ m and 4.2 ⁇ m. Each film was produced.
  • Example 7 The thickness of the copper layer on both sides of the transparent insulating substrate is changed to 1.9 ⁇ m, the line width M1 of the first exposure mask with respect to the first metal fine line on the viewing side is 5.0 ⁇ m, and the second metal on the side opposite to the viewing side A transparent conductive film of Example 7 was produced in the same manner as in Example 1 except that the line width M2 of the second exposure mask with respect to the fine line was 6.0 ⁇ m.
  • Examples 8 and 9 The transparent conductive materials of Examples 8 and 9 were obtained in the same manner as in Example 7 except that the line width M2 of the second exposure mask with respect to the second thin metal line on the side opposite to the viewing side was set to 5.5 ⁇ m and 5.2 ⁇ m. Each film was produced.
  • Examples 10 and 11 Except for forming a copper layer with a thickness of 0.5 ⁇ m on the copper layer only on the back surface of the transparent insulating substrate opposite to the viewing side, the same method as in Examples 4 and 5, Transparent conductive films of Examples 10 and 11 were produced.
  • Comparative Example 1 A transparent conductive film of Comparative Example 1 was produced in the same manner as in Example 1 except that the line width M2 of the second exposure mask with respect to the second metal fine line on the side opposite to the viewing side was set to 3.0 ⁇ m.
  • Comparative Example 2 A transparent conductive film of Comparative Example 2 was produced in the same manner as in Example 4 except that the line width M2 of the second exposure mask with respect to the second thin metal wire on the side opposite to the viewing side was 4.0 ⁇ m.
  • Comparative Example 3 A transparent conductive film of Comparative Example 3 was produced in the same manner as in Example 7 except that the line width M2 of the second exposure mask with respect to the second metal fine line on the side opposite to the viewing side was 5.0 ⁇ m.
  • Each of the transparent conductive films of Examples 1 to 11 and Comparative Examples 1 to 3 was observed with a cross section using an electron microscope, and the first was directed to the viewing side of the first metal thin wire 38 shown in FIG.
  • the line width W2B of the second rear surface 39B directed to the side opposite to the viewing side was measured.
  • the mesh appearance and the viewing angle were evaluated, respectively.
  • the mesh appearance was evaluated by placing a transparent conductive film on a horizontal black plate so that the second thin metal wire is on the black plate side (the side opposite to the viewing side), and white from above toward the transparent conductive film. Light is irradiated, and the transparent conductive film is visually observed at a depression angle of 45 degrees at two observation points, a 40 cm high observation point from the transparent conductive film and a 10 cm high observation point from the transparent conductive film, and the fine metal wires of the mesh are visually recognized. It was evaluated whether or not.
  • the evaluation result A in the evaluation of the mesh appearance is a level having excellent visibility in which the fine metal wire of the mesh is not visually recognized at any of the observation point having a height of 40 cm and the observation point having a height of 10 cm
  • evaluation result B Shows a level where there is substantially no problem in visibility, in which the fine metal wire of the mesh is not visually recognized at the observation point of 40 cm in height, but the fine metal wire of the mesh is slightly visible at the observation point of 10 cm in height.
  • the evaluation result D has a problem in visibility that the presence of the first fine metal wire is conspicuous at the observation point of 40 cm in height and the observation point of 10 cm in height, and the fine metal wire in the mesh is clearly visible. Indicates the level.
  • the viewing angle is evaluated by placing a transparent conductive film on a horizontal black plate so that the second thin metal wire is on the black plate side (the side opposite to the viewing side), and white light is directed toward the transparent conductive film from above. Irradiate and observe the transparent conductive film at a height of 20 cm from the transparent conductive film and at three angles of 60 degrees, 45 degrees, and 30 degrees, respectively, and whether or not metallic luster is observed in the transparent conductive film. evaluated.
  • the evaluation result A in the evaluation of the viewing angle is a level excellent in the viewing angle that no metallic luster is observed at any of the angles of 60 degrees, 45 degrees, and 30 degrees
  • the evaluation result B is the angles of 60 degrees and 45 degrees.
  • No metallic luster is observed at an angle of 30 degrees, and a slight metallic luster is observed at an angle of 30 degrees, but there is no problem.
  • the evaluation result C is that no metallic luster is observed at an angle of 60 degrees, and at 45 degrees and 30 degrees Although the metallic luster is observed, it shows a practically no problem level.
  • All of the transparent conductive films of Examples 1 to 3 have the above-described formula (1), that is, The relationship of W1B ⁇ W2A ⁇ W1A ⁇ W2B and the above-described formula (2), that is, The relationship of W1A ⁇ W2A ⁇ 0.3 ⁇ W1A and the above-described formula (3), that is, The relationship of W2B ⁇ W2A ⁇ W1A ⁇ W1B is satisfied, and the difference between the line widths W2B and W1A (W2B ⁇ W1A) is smaller than 1 ⁇ m.
  • the mesh appearance evaluation results and the viewing angle evaluation results are Both were A. It was confirmed that a transparent conductive film excellent in visibility and viewing angle dependency was obtained.
  • the transparent conductive films of Examples 4 to 6 all satisfy the relationship of the above-described formulas (1) and (2), and the difference (W2B ⁇ W1A) between the line widths W2B and W1A is less than 1 ⁇ m.
  • the evaluation result of mesh appearance was A.
  • none of the transparent conductive films of Examples 4 to 6 satisfied the relationship of the formula (3), and the evaluation result of the viewing angle was B, but the metallic luster was at a level where there was no problem. It was confirmed that a transparent conductive film having excellent visibility and sufficient viewing angle dependency was obtained.
  • the transparent conductive film of Example 7 satisfy
  • the transparent conductive film of Example 8 satisfies the relationship of the above formulas (1) and (2), and the difference (W2B ⁇ W1A) between the line widths W2B and W1A is less than 1 ⁇ m.
  • the evaluation result of appearance was A.
  • the transparent conductive film of Example 8 did not satisfy the relationship of the formula (3), and the evaluation result of the viewing angle was C, but the metallic luster was at a level having no practical problem, and visibility It was confirmed that a transparent conductive film with excellent practicality was obtained.
  • the transparent conductive film of Example 9 satisfies the relationship of the above-described formula (1) and the difference between the line widths W2B and W1A (W2B ⁇ W1A) is smaller than 1 ⁇ m, the formula (2)
  • the evaluation result of mesh appearance was B, and the evaluation result of viewing angle was C.
  • the transparent conductive films of Examples 10 and 11 all satisfy the relationship of the above formulas (1), (2) and (3), and the difference (W2B ⁇ W1A) between the line widths W2B and W1A is 1 ⁇ m. Further, the thickness H2 of the second metal fine wire was set to a value larger than the thickness H1 of the first metal fine wire, and both the mesh appearance evaluation result and the viewing angle evaluation result were A. It was confirmed that a transparent conductive film excellent in visibility and viewing angle dependency was obtained.

Abstract

視認側および視認側とは反対側にそれぞれ細線化パターニングされた金属細線からなる電極を形成した場合に優れた視認性を確保することができる透明導電フィルムおよびタッチパネルを提供する。第1電極の第1金属細線38は、視認側に向けられた線幅W1Aの第1の前面38Aと視認側とは反対側に向けられた線幅W1Bの第1の後面38Bとを含み、第2電極の第2金属細線39は、視認側に向けられた線幅W2Aの第2の前面39Aと視認側とは反対側に向けられた線幅W2Bの第2の後面39Bとを有し、線幅W1A、W1B、W2AおよびW2Bが、0.5~10μmの範囲内にあり、W1B<W2A≦W1A<W2Bの関係を満たしている。

Description

透明導電フィルムおよびタッチパネル
 この発明は、透明導電フィルムに係り、特に、タッチパネル等に使用される透明導電フィルムに関する。
 また、この発明は、透明導電フィルムを用いたタッチパネルにも関している。
 近年、携帯情報機器を始めとした各種の電子機器において、液晶表示装置等の表示装置と組み合わせて用いられ、画面に接触することにより電子機器への入力操作を行うタッチパネルの普及が進んでいる。
 例えば、特許文献1には、透明絶縁基板の表面上にストライプ状の銅配線からなる第1電極を形成し、かつ、透明絶縁基板の裏面上に第1電極の銅配線と直交する方向のストライプ状の銅配線からなる第2電極を形成したタッチパネルが開示されている。
 このタッチパネルでは、第1電極の銅配線と第2電極の銅配線の双方に対し、タッチパネルを表示装置等に設置した際に視認側となる銅配線の端部に黒色の酸化銅皮膜からなる黒化層を形成することによって、鏡面反射を低減してコントラストの向上を図っている。例えば、透明絶縁基板の表面上に形成された第1電極が視認側に配置されるものとした場合、第1電極の銅配線の透明絶縁基板とは反対側の端部および第2電極の銅配線の透明絶縁基板側の端部にそれぞれ黒化層が形成される。
特開2013-206315号公報
 遮光性を有する銅配線の存在が視認されることを防止するため、また、タッチパネルが設置される表示装置の画素と銅配線との干渉によるモアレの発生を低減するため、第1電極および第2電極を形成する銅配線は、1~5μm程度の幅に細線化する必要がある。
 このような銅配線は、透明絶縁基板上に銅箔を形成し、レジストを使用したフォトリソグラフィ法により銅箔をパターニングすることによって得ることができる。この場合、線幅1~5μm程度の高精度の細線化パターニングを実施するためには、レジストを銅箔に高い密着力で密着させてウエットエッチングを行う必要がある。その場合、図7に示されるように、透明絶縁基板1側の線幅W2が透明絶縁基板1とは反対側の線幅W1よりも小さくなる、逆テーパ状の断面形状を有した銅配線2および3が形成される。
 しかしながら、図7に示されるように、透明絶縁基板1の表面1A上および裏面1B上にそれぞれ1~5μm程度の同じ線幅を有するメッシュ状またはストライプ状の銅配線2および3を形成して、例えば、表面1A側から透明絶縁基板1を垂直に観察した場合、銅配線を細線化し且つ同じ線幅で設計したにも関わらず、視認側に位置する銅配線2の方が、反対側に位置する銅配線3よりも線幅が大きく見えて銅配線2および3の存在が視認されやすくなり、視認性が低下するという問題があった。
 これは、それぞれの銅配線2および3が逆テーパ状の断面形状を有するので、透明絶縁基板1の表面1A上に形成されている銅配線2の視認側の端部における線幅W1が、透明絶縁基板1の裏面1B上に形成されている銅配線3の視認側の端部における線幅W2よりも大きくなってしまうことが原因であることが判明した。
 銅配線2および3の存在が視認されやすいという問題は、図8に示されるように、透明絶縁基板1の表面1A上に形成されている銅配線2の視認側の端部および透明絶縁基板1の裏面1B上に形成されている銅配線3の視認側の端部に、それぞれ、黒化層4を形成して銅配線の鏡面反射を低減し、外光反射によるパターン見えの改善を図った場合に、特に顕著なものとなる。
 この発明は、このような従来の問題点を解消するためになされたもので、視認側および視認側とは反対側にそれぞれ細線化パターニングされた金属細線からなる電極を形成した場合に優れた視認性を確保することができる透明導電フィルムを提供することを目的とする。
 また、この発明は、このような透明導電フィルムを用いたタッチパネルを提供することも目的としている。
 この発明に係る透明導電フィルムは、透過領域を有する透明導電フィルムであって、透過領域に配置された第1金属細線からなる第1電極と、透過領域における第1金属細線に交差するように第1電極よりも視認側とは反対側に配置された第2金属細線からなる第2電極とを備え、第1金属細線は、視認側に向けられた線幅W1Aの第1の前面と視認側とは反対側に向けられた線幅W1Bの第1の後面とを含み、第2金属細線は、視認側に向けられた線幅W2Aの第2の前面と視認側とは反対側に向けられた線幅W2Bの第2の後面とを有し、線幅W1A、W1B、W2AおよびW2Bが、0.5~10μmの範囲内にあり、W1B<W2A≦W1A<W2Bの関係を満たすものである。
 線幅W1AおよびW2Aが、W1A-W2A≦0.3×W1Aの関係を満たすことが好ましい。
 また、線幅W1A、W1B、W2AおよびW2Bが、W2B-W2A<W1A-W1Bの関係を満たすことが好ましい。この場合、第2金属細線の厚さH2が第1金属細線の厚さH1より大きいことがさらに好ましい。
 線幅W2Bと線幅W1Aとの差分が4μmより小さいことが好ましく、特に、1μmより小さいことが好ましい。
 好ましくは、線幅W1Aが1.5μm以上で且つ5μm以下であり、第1金属細線の厚さH1および第2金属細線の厚さH2が0.5μm以上で且つ3μm以下である。
 また、第1金属細線の第1の前面および第2金属細線の第2の前面が、黒化層であるように構成することもできる。
 第1金属細線および第2金属細線は、銅からなることが好ましい。
 第1電極および第2電極は、それぞれ、1枚の透明絶縁基板の両面上に配置することができる。
 この発明に係るタッチパネルは、上記の透明導電フィルムを用いたものである。タッチパネルとしては、マルチタッチの検出が可能な投影型静電容量式タッチパネルが好ましい。
 この発明によれば、第1電極の第1金属細線は、視認側に向けられた線幅W1Aの第1の前面と視認側とは反対側に向けられた線幅W1Bの第1の後面とを含み、第1電極よりも視認側とは反対側に配置された第2電極の第2金属細線は、視認側に向けられた線幅W2Aの第2の前面と視認側とは反対側に向けられた線幅W2Bの第2の後面とを有し、線幅W1A、W1B、W2AおよびW2Bが、0.5~10μmの範囲内にあり且つW1B<W2A≦W1A<W2Bの関係を満たすので、視認側および視認側とは反対側にそれぞれ高精度の細線化パターニングされた金属細線からなる電極を形成した透明導電フィルムにおいて、優れた視認性を確保することが可能となる。
この発明の実施の形態1に係るタッチパネルを示す部分断面図である。 実施の形態1に係るタッチパネルに用いられた透明導電フィルムを示す平面図である。 実施の形態1に係るタッチパネルに用いられた透明導電フィルムの検出電極を示す部分平面図である。 実施の形態1に係るタッチパネルに用いられた透明導電フィルムの第1金属細線および第2金属細線を示す部分断面図である。 実施の形態2に係るタッチパネルに用いられた透明導電フィルムの第1金属細線および第2金属細線を示す部分断面図である。 実施の形態3に係るタッチパネルに用いられた透明導電フィルムの検出電極を示す部分平面図である。 従来のタッチパネルに用いられた透明導電フィルムの第1金属細線および第2金属細線を示す部分断面図である。 従来の他のタッチパネルに用いられた透明導電フィルムの第1金属細線および第2金属細線を示す部分断面図である。
実施の形態1
 図1に、この発明の実施の形態1に係る透明導電フィルム13を用いたタッチパネル11の構成を示す。このタッチパネル11は、平板形状を有する透明な絶縁性のカバーパネル12を有し、視認側とは反対側のカバーパネル12の表面上に透明導電フィルム13が透明な接着剤14により接合されている。透明導電フィルム13は、透明絶縁基板31の両面上、すなわち表面31A上と裏面31B上とにそれぞれ導電部材32が形成されている。また、図1のように、平坦化または導電部材32を保護する目的で、導電部材32を覆うように透明絶縁基板31の両面上に透明な保護層33が形成されていてもよい。
 カバーパネル12の材質としては、強化ガラス、ポリカーボネート(PC)、ポリメタクリル酸メチル樹脂(PMMA)等が使用でき、厚さは0.1~1.5mmが好ましい。
 透明絶縁基板31の材質としては、ガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シクロオレフィンポリマー(COP)、環状オレフィン・コポリマー(COC)等が使用でき、厚さは20~200μmが好ましい。
 図2に示されるように、透明導電フィルム13には、透過領域S1が区画され、かつ、透過領域S1の外側に周辺領域S2が区画されている。透明絶縁基板31の表面31A上には、透過領域S1内に、それぞれ第1の方向D1に沿って延びると共に第1の方向D1に直交する第2の方向D2に並列配置され且つ導電部材32により形成された複数の第1電極34が形成され、周辺領域S2に、複数の第1電極34に接続され且つ導電部材32により形成された複数の第1周辺配線35が互いに近接して配列されている。
 同様に、透明絶縁基板31の裏面31B上には、透過領域S1内に、それぞれ第2の方向D2に沿って延び且つ第1の方向D1に並列配置され且つ導電部材32により形成された複数の第2電極36が形成され、周辺領域S2に、複数の第2電極36に接続され且つ導電部材32により形成された複数の第2周辺配線37が互いに近接して配列されている。
 なお、図3は、第1電極34と第2電極36との交差部を示す。透明絶縁基板31の表面31A上に配置された第1電極34は、第1金属細線38からなるメッシュパターンにより形成されており、透明絶縁基板31の裏面31B上に配置された第2電極36も、第2金属細線39からなるメッシュパターンにより形成されている。そして、第1電極34と第2電極36との交差部において、視認側から見た場合に、第1金属細線38と第2金属細線39とが互いに交差するように配置されている。なお、図3では、第1金属細線38と第2金属細線39との区別を分かりやすくするために、第2金属細線39を点線で示しているが、実際は第1金属細線38と同様に接続された線で形成されている。
 メッシュパターンの形状としては、図3のような同一のメッシュが繰り返し配置されたパターンが好ましく、メッシュの形状は菱形が特に好ましいが、平行四辺形、正方形、長方形でも良く、他の多角形であっても良い。メッシュの中心間距離(メッシュピッチ)は100~600μmであることが視認性の観点から好ましい。第1金属細線38からなるメッシュパターンと第2金属細線39からなるメッシュパターンが同一形状であることが好ましい。さらに、図3のように、第1金属細線38からなるメッシュパターンと第2金属細線39からなるメッシュパターンとを、メッシュピッチ半分相当の距離だけずらして配置し、視認側からはメッシュピッチが半分になるメッシュパターンを形成するように配置することが、視認性の観点から好ましい。別の形態としては、メッシュの形状はランダムなパターンであっても良い。
 また、互いに隣り合う第1電極34の間、互いに隣り合う第2電極36の間に、それぞれ第1金属細線38、第2金属細線39により形成された電極と絶縁されたダミーメッシュパターンを有していてもよい。ダミーメッシュパターンは、電極を形成するメッシュパターンと同一のメッシュ形状で形成することが好ましい。
 図4に示されるように、透明絶縁基板31の表面31A上に配置された第1電極34の第1金属細線38は、視認側に向けられた第1の前面38Aと視認側とは反対側に向けられた第1の後面38Bとを有し、第1の前面38Aの線幅W1Aが第1の後面38Bの線幅W1Bよりも大きい、いわゆる逆テーパ状の断面形状を有している。
 また、透明絶縁基板31の裏面31B上に配置された第2電極36の第2金属細線39も、視認側に向けられた第2の前面39Aと視認側とは反対側に向けられた第2の後面39Bとを有し、第2の後面39Bの線幅W2Bが第2の前面39Aの線幅W2Aよりも大きい、いわゆる逆テーパ状の断面形状を有している。
 第1金属細線38と第2金属細線39の材料としては、銅、銀、アルミニウム、金、モリブデン等の金属または合金が使用され、膜厚としては、好ましくは、0.1~5μmである。その中でも、銅が抵抗値、安定性およびコストの観点から好ましい。
 図4では、透明絶縁基板31と第1金属細線38および第2金属細線39とが直接接している形状で示しているが、透明絶縁基板31と第1金属細線38および第2金属細線39との間に、密着強化層、下塗層、ハードコート層等の機能層を一層以上形成することもできる。
 第1金属細線38の視認側の第1の前面38Aおよび第2金属細線39の視認側の第2の前面39Aに、それぞれ黒化層40が形成されている。黒化層40は、第1金属細線38の第1の前面38Aおよび第2金属細線39の第2の前面39Aにおける金属細線の鏡面反射を低減するためのものである。黒化層40としては、銅を含む酸化物が好ましく、CuO(酸化銅(II))、CuO-Cr、CuO-Fe-Mn、CuO-Fe-Cr等が挙げられる。その他の材料としては、黒色酸化鉄(Fe)、チタンブラック、ニッケル、クロム等が挙げられ、その膜厚は、0.01~0.4μmであることが好ましい。
 なお、一般に、透明板の表面と裏面に互いに同じ線幅の遮光部材をそれぞれ配置して表面側から透明板を観察した場合、裏面側の遮光部材は透明板の表面で屈折した光を利用して見ることとなるため、裏面上に配置された遮光部材の方が表面上に配置された遮光部材よりも線幅が広く見えることも、実験の結果、分かった。
 このため、予め、透明絶縁基板31の表面31A上に配置される第1金属細線38の第1の前面38Aの線幅W1Aを、透明絶縁基板31の裏面31B上に配置される第2金属細線39の第2の前面39Aの線幅W2Aよりもわずかに大きい値に設定することが好ましい。
 そこで、この発明においては、第1金属細線38の線幅W1AおよびW1Bと第2金属細線39の線幅W2AおよびW2Bは、
  W1B<W2A≦W1A<W2B  ・・・(1)
の関係を満たすように設定されている。
 また、第1金属細線38および第2金属細線39は、視認されにくいように、これらの線幅W1A、W1B、W2AおよびW2Bが、いずれも、0.5~10μmの範囲内に設定されている。
 ただし、視認側から見た場合の第1金属細線38と第2金属細線39の線幅の違いに起因して第1金属細線38と第2金属細線39とが視認されることをより良く防止するため、第1金属細線38の第1の前面38Aの線幅W1Aと第2金属細線39の第2の前面39Aの線幅W2Aの差分(W1A-W2A)が、線幅W1Aの0.3倍の値以下であることが望ましい。すなわち、線幅W1AおよびW2Aは、
  W1A-W2A≦0.3×W1A  ・・・(2)
の関係を満たすことが望ましい。この範囲の線幅にすることにより、第1金属細線38と第2金属細線39の見た目の線幅が均一となり、第1金属細線38と第2金属細線39とが視認されることをより良く防止することができる。
 さらに好ましい範囲としては、線幅W1Aは、線幅W2Aより0.02μm以上大きくすることが好ましく、0.02μm≦W1A-W2A≦0.3×W1Aである。
 このような第1金属細線38および第2金属細線39を透明絶縁基板31の表面31Aおよび裏面31B上にそれぞれ配置することにより、透明絶縁基板31の表面31Aおよび裏面31Bのうち、視認側に位置する表面31A上に配置された第1金属細線38の視認側の第1の前面38Aの線幅W1Aが、視認側とは反対側に位置する裏面31B上に配置された第2金属細線39の視認側の第2の前面39Aの線幅W2Aにほぼ等しい値、あるいは、線幅W2Aよりもわずかに大きい値に設定されるので、視認側から透明導電フィルム13を観察した場合に、透明絶縁基板31の表面31A上の第1金属細線38と裏面31B上の第2金属細線39とが互いに同様の線幅を有するように見える。従って、第1金属細線38により形成される第1電極34と第2金属細線39により形成される第2電極36が有する金属細線の存在が視認されにくくなり、透明導電フィルム13の透過領域S1の視認性が向上することとなる。
 また、視認側から見た場合に、透明絶縁基板31の裏面31B上に配置されている逆テーパ状の断面形状を有する第2金属細線39の側面39Cが見えやすくなると、視野角により、この側面39Cでの反射光の影響が大きくなって、斜めから見た場合、視野角によって、金属細線の金属光沢が目立つという視野角依存性の問題が生じてしまう。
 そこで、透明絶縁基板31の裏面31B側の第2金属細線39の側面39Cが見えにくくなるように、第2金属細線39の第2の後面39Bの線幅W2Bと第2の前面39Aの線幅W2Aとの差分(W2B-W2A)が、第1金属細線38の第1の前面38Aの線幅W1Aと第1の後面38Bの線幅W1Bとの差分(W1A-W1B)よりも小さいことが望ましい。すなわち、第1金属細線38の線幅W1AおよびW1Bと第2金属細線39の線幅W2AおよびW2Bは、
  W2B-W2A<W1A-W1B  ・・・(3)
の関係を満たすことが望ましい。
 このようにすれば、視野角に応じた反射光の影響を低減することが可能となる。
 逆テーパ状の断面形状を有する第1金属細線38および第2金属細線39は、透明絶縁基板31の両面にそれぞれ形成された銅等の金属層を両面同時にウエットエッチングすることにより形成することができるが、上記の式(3)に示される構成を実現するために、第2金属細線39の厚さH2は、第1金属細線38の厚さH1より大きい値を有することが好ましい。これは、厚さが異なる金属を同時にウエットエッチングした場合、厚さが小さい金属の方がオーバーエッチングされる時間が長くなり、逆テーパの形状がきつくなり、上記の条件を満たす形状が作りやすいためである。
 具体的には、タッチパネル11に使用される透明導電フィルム13として、第1金属細線38の第1の前面38Aの線幅W1Aが1.5μm以上で且つ5μm以下、第1金属細線38の厚さH1および第2金属細線39の厚さH2が0.5μm以上で且つ3μm以下に設定されることが望ましい。第1金属細線38と第2金属細線39の厚みを0.5μm以上で且つ3μm以下にすることにより、線幅が1.5μm以上で且つ5μm以下の金属細線を作りやすくなる。特に、金属細線の厚みを線幅の半分以下の値に設定することにより、5μm以下の微細な線幅をウエットエッチングにより形成することが容易となる。さらには、製造適性を考慮して、第1金属細線38の第1の前面38Aの線幅W1Aが2μm以上4μm以下、第1金属細線38の厚さH1および第2金属細線39の厚さH2が0.5μm以上で且つ2μm以下であることが好ましい。
 また、透明絶縁基板31の裏面31B側の第2金属細線39の側面39Cが見えにくくなるように、第2金属細線39の第2の後面39Bの線幅W2Bと第1金属細線38の第1の前面38Aの線幅W1Aとの差分(W2B-W1A)は、4μmより小さいことが好ましい。特に、第1電極34および第2電極36が有するメッシュパターンを見えにくく且つ視野角依存性を改善するために、線幅W2BとW1Aとの差分(W2B-W1A)を1μmより小さくすることが有効である。
 鏡面反射を低減するための黒化層40は、例えば、第1金属細線38および第2金属細線39の形成材料として銅を用いる場合に、酸化銅から形成することができる。
 黒化層40の形成により、それぞれ視認側に位置する第1金属細線38の第1の前面38Aおよび第2金属細線39の第2の前面39Aにおける鏡面反射が低減され、外光反射によるパターン見えの改善ができる。
 ここで、第1金属細線38の線幅W1AおよびW1Bと第2金属細線39の線幅W2AおよびW2Bは、上記の式(1)の関係を満たしているので、黒化層40を形成しても、第1金属細線38および第2金属細線39の存在が視認されにくく、優れた視認性を確保しながら外光反射によるパターン見えの改善を図ることが可能となる。
 このような透明導電フィルム13は、透明絶縁基板31の表面31A上に第1電極34および第1の周辺配線35を含む導電部材32を形成し、かつ、透明絶縁基板31の裏面31B上に第2電極36および第2の周辺配線37を含む導電部材32を形成することにより製造される。
 これらの導電部材32の形成方法は、特に限定されるものではない。例えば、透明絶縁基板31の裏面31B上に例えば酸化銅からなる黒化層を形成した後、透明絶縁基板31の表面31A上および裏面31Bの黒化層上にそれぞれ銅からなる導電層を形成し、さらに、透明絶縁基板31の表面31Aの導電層の上に酸化銅からなる黒化層を形成し、透明絶縁基板31の表面31Aの黒化層上および裏面31Bの導電層上にそれぞれパターン化されたレジストを形成してエッチング液を用いたウエットエッチングを施すことにより不要部分の銅および酸化銅を除去することによって、導電部材32を形成することができる。
 この際、導電層上に形成されたレジストを露光する工程において、透明絶縁基板31の両面に形成された導電層上に塗布されたレジストを、露光マスクを介して両面同時露光することが好ましい。両面同時露光することにより、第1金属細線38のパターンと第2金属細線39のパターンとのアライメントを高精度で作製できる。エッチングは、エッチング速度が速い、または、真空装置が不要で低コストである点から、エッチング液を用いたウエットエッチングが好ましく、さらには両面の導電部材32を同時にウエットエッチング処理することが好ましい。両面同時エッチングにより、工程を簡易化できるので、さらなる製造コストの低減が可能となる。
実施の形態2
 上述した実施の形態1のタッチパネル11に用いられた透明導電フィルム13は、第1金属細線38の視認側の第1の前面38Aおよび第2金属細線39の視認側の第2の前面39Aにそれぞれ形成された黒化層40を有しているが、これに限るものではなく、例えば、図5に示されるように、第1金属細線38および第2金属細線39が黒化層40を有していなくてもよい。
 この場合であっても、第1金属細線38の線幅W1AおよびW1Bと第2金属細線39の線幅W2AおよびW2Bが、いずれも、0.5~10μmの範囲内に設定され、上記の式(1)の関係を満たしていれば、第1金属細線38および第2金属細線39が視認されにくくなり、優れた視認性を確保することができる。
 また、第1金属細線38の線幅W1Aおよび第2金属細線39のW2Aが、さらに上記の式(2)の関係を満たすことによって、視認性を一層向上させることができ、第1金属細線38の線幅W1AおよびW1Bと第2金属細線39の線幅W2AおよびW2Bが、上記の式(3)の関係を満たせば、さらに、視野角に応じた反射光の影響を低減することが可能となる。
実施の形態3
 実施の形態1および2では、図3に示したように、透明絶縁基板31の表面31A上に配置された第1電極34の第1金属細線38および透明絶縁基板31の裏面31B上に配置された第2電極36の第2金属細線39が、それぞれ、メッシュパターンを有していたが、これに限るものではない。例えば、図6に示されるように、第1電極34をそれぞれ屈曲し且つ互いに並行する複数の第1金属細線48から形成すると共に、第2電極36をそれぞれ屈曲し且つ互いに並行する複数の第2金属細線49から形成し、視認側から見た場合に、複数の第1金属細線48と複数の第2金属細線49が互いに重なって多角形からなる多数のメッシュを形成するように構成することもできる。この場合の隣接する第1金属細線間距離および隣接する第2金属細線間距離は、50~300μmであることが視認性の観点から好ましい。
 このような第1金属細線48および第2金属細線49を使用しても、実施の形態1および2と同様に、優れた視認性を確保することが可能となる。
 なお、図6では、図3と同様に、第1金属細線48と第2金属細線49との区別を分かりやすくするために、第2金属細線49を点線で示しているが、実際は第1金属細線48と同様に接続された線で形成されている。
 なお、上記の実施の形態1~3では、透明絶縁基板31の表面31A上に複数の第1電極34と複数の第1周辺配線35を配置し、かつ、透明絶縁基板31の裏面31B上に複数の第2電極36と複数の第2周辺配線37を配置したが、これに限るものではない。
 例えば、透明絶縁基板31の表面31Aおよび裏面31Bのうちの一方の面上に、複数の第1電極34と複数の第2電極36が層間絶縁膜を介して配置され、かつ、透明絶縁基板31の同じ面上に複数の第1周辺配線35および複数の第2周辺配線37が配置される構成とすることもできる。
 また、2枚基板の構成とすることもできる。すなわち、第1の透明絶縁基板の表面上に複数の第1電極34と複数の第1周辺配線35を配置し、第2の透明絶縁基板の表面上に複数の第2電極36と複数の第2周辺配線37を配置し、これら第1の透明絶縁基板および第2の透明絶縁基板を、互いに重ね合わせて使用することもできる。
 この発明に係る透明導電フィルムは、図1に示したようなタッチパネルに使用することができるが、その他、熱を発生するための発熱体、電磁波を遮断するための電磁波シールド体等にも、適用することが可能である。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができ、本発明の範囲は、以下の実施例により限定的に解釈されるべきものではない。
実施例1
 次のようにして、図2~4に示される構成の透明導電フィルムを作製した。
 まず、透明絶縁基板として、厚さ100μmのポリエチレンテレフタレート(PET)フィルムを準備し、透明絶縁基板の両面にポリエステル樹脂による厚さ5μmの下塗層を形成し、さらにこれらの下塗層の上にゾルゲル法により形成した酸化シリコンによる厚さ100nmの密着強化層を形成した。
 次に、視認側とは反対側の透明絶縁基板の裏面に位置する密着強化層上に酸化銅からなる厚さ0.1μmの黒化層をスパッタにより形成した。さらに、透明絶縁基板の表面側の密着強化層上および裏面側の黒化層上にそれぞれ厚さ0.9μmの銅層をスパッタにより形成し、表面側の銅層の上に酸化銅からなる厚さ0.1μmの黒化層をスパッタにより形成して、透明絶縁基板の表面および裏面にそれぞれ黒化層付きの銅層が配置された積層体を形成した。
 この積層体の表面上および裏面上にそれぞれレジストを塗布し、温度80℃で30分間のプレベークを実施し、積層体の表面上および裏面上のレジストにそれぞれ石英製の第1露光マスクおよび第2露光マスクを介して両面同時に紫外線によるパターン露光を行った。露光後に、アルカリ現像を実施し、レジストのパターニングを行った。その後、温度120℃で1時間のポストベークを実施した。
 パターンとしては、積層体の両面共に図3に示したメッシュ形状で、積層体の表面および裏面のそれぞれにおいてメッシュピッチが400μmで且つ交差角の狭角が60度である菱形メッシュ形状を採用し、視認側の第1金属細線に対する第1露光マスクの線幅M1を3.0μm、視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を4.0μmとした。
 パターン化されたレジストを有する積層体に対し、温度40℃の塩化第2鉄水溶液からなるエッチング液を用いてウエットエッチングにて積層体の両面の銅および酸化銅のエッチングを同時に実施した。
 その後、積層体の両面からレジストを剥離し、水洗および乾燥を行うことによって、実施例1の透明導電フィルムを作製した。
実施例2および3
 視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を3.5μmおよび3.2μmとした以外は、実施例1と同様の方法により、実施例2および3の透明導電フィルムをそれぞれ作製した。
実施例4
 視認側の第1金属細線に対する第1露光マスクの線幅M1を4.0μm、視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を5.0μmとした以外は、実施例1と同様の方法により、実施例4の透明導電フィルムを作製した。
実施例5および6
 視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を4.5μmおよび4.2μmとした以外は、実施例4と同様の方法により、実施例5および6の透明導電フィルムをそれぞれ作製した。
実施例7
 透明絶縁基板の両面の銅層の厚さを1.9μmに変更し、視認側の第1金属細線に対する第1露光マスクの線幅M1を5.0μm、視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を6.0μmとした以外は、実施例1と同様の方法により、実施例7の透明導電フィルムを作製した。
実施例8および9
 視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を5.5μmおよび5.2μmとした以外は、実施例7と同様の方法により、実施例8および9の透明導電フィルムをそれぞれ作製した。
実施例10および11
 視認側とは反対側の透明絶縁基板の裏面のみに銅層の上にさらに厚さ0.5μmの銅を形成して銅層を厚くした以外は、実施例4および5と同様の方法により、実施例10および11の透明導電フィルムをそれぞれ作製した。
比較例1
 視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を3.0μmとした以外は、実施例1と同様の方法により、比較例1の透明導電フィルムを作製した。
比較例2
 視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を4.0μmとした以外は、実施例4と同様の方法により、比較例2の透明導電フィルムを作製した。
比較例3
 視認側とは反対側の第2金属細線に対する第2露光マスクの線幅M2を5.0μmとした以外は、実施例7と同様の方法により、比較例3の透明導電フィルムを作製した。
 実施例1~11および比較例1~3の透明導電フィルムに対して、それぞれ、電子顕微鏡を用いて断面観察を行い、図4に示した第1金属細線38の視認側に向けられた第1の前面38Aの線幅W1A、視認側とは反対側に向けられた第1の後面38Bの線幅W1B、第2金属細線39の視認側に向けられた第2の前面39Aの線幅W2A、視認側とは反対側に向けられた第2の後面39Bの線幅W2Bを測定した。
 また、実施例1~11および比較例1~3の透明導電フィルムに対して、それぞれ、メッシュ見えの評価および視野角の評価を行った。
 これらの測定結果および評価結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、メッシュ見えの評価は、水平な黒色板上に透明導電フィルムを第2金属細線が黒色板側(視認側とは反対側)になるように配置し、上方から透明導電フィルムに向けて白色光を照射し、透明導電フィルムから高さ40cmの観察点と、透明導電フィルムから高さ10cmの観察点の2点で、それぞれ俯角45度で透明導電フィルムを目視し、メッシュの金属細線が視認されるか否かを評価した。
 表1において、メッシュ見えの評価における評価結果Aは、高さ40cmの観察点と高さ10cmの観察点のいずれにおいても全くメッシュの金属細線が視認されない優れた視認性を有するレベル、評価結果Bは、高さ40cmの観察点ではメッシュの金属細線が視認されないものの高さ10cmの観察点ではわずかにメッシュの金属細線が視認されるという実質的に視認性に問題がないレベルをそれぞれ示している。これに対して、評価結果Dは、高さ40cmの観察点でも高さ10cmの観察点でも第1金属細線の存在が目立ち、メッシュの金属細線が明確に視認されるという視認性に問題があるレベルを示している。
 視野角の評価は、水平な黒色板上に透明導電フィルムを第2金属細線が黒色板側(視認側とは反対側)になるように配置し、上方から透明導電フィルムに向けて白色光を照射し、透明導電フィルムから20cmの高さで且つ角度60度、45度、30度の3種類の角度でそれぞれ透明導電フィルムを目視し、透明導電フィルムに金属光沢が観察されるか否かを評価した。
 表1において、視野角の評価における評価結果Aは、角度60度、45度、30度のいずれにおいても金属光沢が観察されないという視野角に優れたレベル、評価結果Bは、角度60度および45度では金属光沢が観察されず、角度30度ではわずかに金属光沢が観察されるものの問題のないレベル、評価結果Cは、角度60度では金属光沢が観察されず、角度45度および30度では金属光沢が観察されるものの実用上問題のないレベルをそれぞれ示している。
 実施例1~3の透明導電フィルムは、いずれも、上述した式(1)すなわち、
  W1B<W2A≦W1A<W2Bの関係と、上述した式(2)すなわち、
  W1A-W2A≦0.3×W1Aの関係と、上述した式(3)すなわち、
  W2B-W2A<W1A-W1Bの関係をすべて満たし、かつ、線幅W2BとW1Aとの差分(W2B-W1A)が1μmより小さい値になっており、メッシュ見えの評価結果および視野角の評価結果は共にAであった。視認性および視野角依存性の優れた透明導電フィルムが得られたことが確認された。
 実施例4~6の透明導電フィルムは、いずれも、上述した式(1)および(2)の関係を満たし、かつ、線幅W2BとW1Aとの差分(W2B-W1A)が1μmより小さい値になっており、メッシュ見えの評価結果はAであった。なお、これら実施例4~6の透明導電フィルムは、いずれも、式(3)の関係を満たしておらず、視野角の評価結果はBとなったが、金属光沢は問題のないレベルであり、視認性に優れ、かつ、十分な視野角依存性を有する透明導電フィルムが得られたことが確認された。
 実施例7の透明導電フィルムは、上述した式(1)および(2)の関係を満たしているものの、式(3)の関係を満たしておらず、また、線幅W2BとW1Aとの差分(W2B-W1A)が1μmより大きい値になっており、メッシュ見えの評価結果はB、視野角の評価結果はCであった。ただし、十分に実用性のある透明導電フィルムが得られたことが確認された。
 実施例8の透明導電フィルムは、上述した式(1)および(2)の関係を満たし、かつ、線幅W2BとW1Aとの差分(W2B-W1A)が1μmより小さい値になっており、メッシュ見えの評価結果はAであった。なお、この実施例8の透明導電フィルムは、式(3)の関係を満たしておらず、視野角の評価結果はCとなったが、金属光沢は実用上問題のないレベルであり、視認性に優れた実用性のある透明導電フィルムが得られたことが確認された。
 実施例9の透明導電フィルムは、上述した式(1)の関係を満たし、かつ、線幅W2BとW1Aとの差分(W2B-W1A)が1μmより小さい値になっているものの、式(2)および(3)の関係を満たしておらず、メッシュ見えの評価結果はB、視野角の評価結果はCであった。ただし、十分に実用性のある透明導電フィルムが得られたことが確認された。
 実施例10および11の透明導電フィルムは、いずれも、上述した式(1)、(2)および(3)の関係を満たし、かつ、線幅W2BとW1Aとの差分(W2B-W1A)が1μmより小さく、さらに、第2金属細線の厚さH2が第1金属細線の厚さH1より大きい値に設定されており、メッシュ見えの評価結果および視野角の評価結果は共にAであった。視認性および視野角依存性の優れた透明導電フィルムが得られたことが確認された。
 一方、比較例1~3の透明導電フィルムは、いずれも、上述した式(1)の関係を満たしておらず、メッシュ見えの評価結果がDであった。高さ40cmの観察点でも高さ10cmの観察点でもメッシュの金属細線が明確に観察されてしまい、視認性に問題があることが確認された。
 1 透明絶縁基板、1A 表面、1B 裏面、2,3 銅配線、4 黒化層、11 タッチパネル、12 支持体、13 透明導電フィルム、14 接着剤、31 透明絶縁基板、31A 表面、31B 裏面、32 導電部材、33 保護層、34 第1電極、35 第1周辺配線、36 第2電極、37 第2周辺配線、38,48 第1金属細線、38A 第1の前面、38B 第1の後面、38C,39C 側面、39,49 第2金属細線、39A 第2の前面、39B 第2の後面、40 黒化層、S1 透過領域、S2 周辺領域、D1 第1の方向、D2 第2の方向、W1,W2,W1A,W1B,W2A,W2B 線幅、H1,H2 高さ。

Claims (11)

  1.  透過領域を有する透明導電フィルムであって、
     前記透過領域に配置された第1金属細線からなる第1電極と、
     前記透過領域における前記第1金属細線に交差するように前記第1電極よりも視認側とは反対側に配置された第2金属細線からなる第2電極と
     を備え、
     前記第1金属細線は、視認側に向けられた線幅W1Aの第1の前面と視認側とは反対側に向けられた線幅W1Bの第1の後面とを含み、前記第2金属細線は、視認側に向けられた線幅W2Aの第2の前面と視認側とは反対側に向けられた線幅W2Bの第2の後面とを有し、線幅W1A、W1B、W2AおよびW2Bが、0.5~10μmの範囲内にあり、
     W1B<W2A≦W1A<W2Bの関係を満たすことを特徴とする透明導電フィルム。
  2.  線幅W1AおよびW2Aが、
     W1A-W2A≦0.3×W1Aの関係を満たす請求項1に記載の透明導電フィルム。
  3.  線幅W1A、W1B、W2AおよびW2Bが、
     W2B-W2A<W1A-W1Bの関係を満たす請求項1または2に記載の透明導電フィルム。
  4.  前記第2金属細線の厚さH2が前記第1金属細線の厚さH1より大きい請求項3に記載の透明導電フィルム。
  5.  線幅W2Bと線幅W1Aとの差分が4μmより小さい請求項1~4のいずれか一項に記載の透明導電フィルム。
  6.  線幅W2Bと線幅W1Aとの差分が1μmより小さい請求項5に記載の透明導電フィルム。
  7.  線幅W1Aが1.5μm以上で且つ5μm以下であり、前記第1金属細線の厚さH1および前記第2金属細線の厚さH2が0.5μm以上で且つ3μm以下である請求項1~6のいずれか一項に記載の透明導電フィルム。
  8.  前記第1金属細線の前記第1の前面および前記第2金属細線の前記第2の前面が、黒化層である請求項1~7のいずれか一項に記載の透明導電フィルム。
  9.  前記第1金属細線および前記第2金属細線は、銅からなる請求項1~8のいずれか一項に記載の透明導電フィルム。
  10.  前記第1電極および前記第2電極は、それぞれ、1枚の透明絶縁基板の両面上に配置されている請求項1~9のいずれか一項に記載の透明導電フィルム。
  11.  請求項1~10のいずれか一項に記載の透明導電フィルムを用いたタッチパネル。
PCT/JP2015/079031 2015-03-20 2015-10-14 透明導電フィルムおよびタッチパネル WO2016151909A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017507315A JP6254746B2 (ja) 2015-03-20 2015-10-14 透明導電フィルムおよびタッチパネル
US15/695,846 US10437093B2 (en) 2015-03-20 2017-09-05 Transparent conductive film and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015058283 2015-03-20
JP2015-058283 2015-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/695,846 Continuation US10437093B2 (en) 2015-03-20 2017-09-05 Transparent conductive film and touch panel

Publications (1)

Publication Number Publication Date
WO2016151909A1 true WO2016151909A1 (ja) 2016-09-29

Family

ID=56978058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079031 WO2016151909A1 (ja) 2015-03-20 2015-10-14 透明導電フィルムおよびタッチパネル

Country Status (3)

Country Link
US (1) US10437093B2 (ja)
JP (1) JP6254746B2 (ja)
WO (1) WO2016151909A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383222A (zh) * 2017-03-06 2019-10-25 富士胶片株式会社 导电性部件及触摸面板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569624B (zh) * 2015-10-09 2020-09-29 群创光电股份有限公司 触控基板与触控装置
CN106019678B (zh) * 2016-08-04 2020-03-06 京东方科技集团股份有限公司 一种触控显示装置及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016944A (ja) * 2012-07-11 2014-01-30 Dainippon Printing Co Ltd タッチパネルセンサ、タッチパネル装置および表示装置
JP2014106974A (ja) * 2012-11-22 2014-06-09 Lg Innotek Co Ltd タッチウィンドウ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206315A (ja) 2012-03-29 2013-10-07 Toppan Printing Co Ltd フィルム状タッチパネルセンサー及びその製造方法
KR20140037643A (ko) * 2012-09-19 2014-03-27 삼성전기주식회사 터치패널
KR20150087613A (ko) * 2014-01-22 2015-07-30 삼성전기주식회사 터치센서
JP2016130912A (ja) * 2015-01-13 2016-07-21 大日本印刷株式会社 タッチパネルセンサ、タッチパネル装置および表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016944A (ja) * 2012-07-11 2014-01-30 Dainippon Printing Co Ltd タッチパネルセンサ、タッチパネル装置および表示装置
JP2014106974A (ja) * 2012-11-22 2014-06-09 Lg Innotek Co Ltd タッチウィンドウ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383222A (zh) * 2017-03-06 2019-10-25 富士胶片株式会社 导电性部件及触摸面板
JPWO2018163603A1 (ja) * 2017-03-06 2020-01-16 富士フイルム株式会社 導電性部材およびタッチパネル
US10649606B2 (en) 2017-03-06 2020-05-12 Fujifilm Corporation Conductive member and touch panel
US10908755B2 (en) 2017-03-06 2021-02-02 Fujifilm Corporation Conductive member and touch panel
US11137864B2 (en) 2017-03-06 2021-10-05 Fujifilm Corporation Conductive member and touch panel
US11392256B2 (en) 2017-03-06 2022-07-19 Fujifilm Corporation Conductive member and touch panel

Also Published As

Publication number Publication date
JP6254746B2 (ja) 2017-12-27
US20170363899A1 (en) 2017-12-21
US10437093B2 (en) 2019-10-08
JPWO2016151909A1 (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6298928B2 (ja) 透明導電フィルム、透明導電フィルムの製造方法およびタッチパネル
KR102338612B1 (ko) 도전성 부재 및 터치 패널
TWI746795B (zh) 觸控面板及觸控面板用導電性片及觸控感測器
TWI584163B (zh) Touch panel sensors, touch panel devices and display devices
WO2015146277A1 (ja) タッチパネル、表示装置、並びに、タッチパネルの製造方法
TWI473147B (zh) 包括導電圖案之觸控面板
WO2017017973A1 (ja) タッチパネル用導電フィルム、タッチパネル、および、タッチパネル付き表示装置
CN111316211B (zh) 触摸面板用导电部件、触摸面板及导电部件
JP5884763B2 (ja) タッチパネル用電極基板、及びタッチパネル、ならびに画像表示装置
JP2013161448A (ja) タッチパネルセンサ、タッチパネル付表示装置およびタッチパネルセンサの製造方法
WO2013051443A1 (ja) タッチパネルおよびタッチパネル付き表示装置、ならびにタッチパネルの製造方法
JP6254746B2 (ja) 透明導電フィルムおよびタッチパネル
TWI778147B (zh) 觸控感測器及觸控面板
JP2014186687A (ja) タッチパネル用電極基板、及びタッチパネル、ならびに画像表示装置
JP6465393B2 (ja) 導電性パターンシートの製造方法、導電性パターンシート、導電性パターンシートを備えたタッチパネルセンサおよびフォトマスク
WO2022044574A1 (ja) タッチパネル用導電部材およびタッチパネル
JP6129611B2 (ja) タッチパネルの製造方法
JP2016194751A (ja) タッチパネルセンサ
JP6278261B2 (ja) タッチパネルセンサ、タッチパネル装置、表示装置、並びに、タッチパネルセンサの製造方法
JP2022010745A (ja) タッチパネル用電極部材、タッチパネルおよび画像表示装置
KR20200018009A (ko) 메탈메쉬 구조의 터치 패널의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886461

Country of ref document: EP

Kind code of ref document: A1