WO2016151905A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2016151905A1
WO2016151905A1 PCT/JP2015/078762 JP2015078762W WO2016151905A1 WO 2016151905 A1 WO2016151905 A1 WO 2016151905A1 JP 2015078762 W JP2015078762 W JP 2015078762W WO 2016151905 A1 WO2016151905 A1 WO 2016151905A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
insulating film
nitride semiconductor
electrode
semiconductor layer
Prior art date
Application number
PCT/JP2015/078762
Other languages
English (en)
French (fr)
Inventor
大佑 栗田
福見 公孝
哲三 永久
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016151905A1 publication Critical patent/WO2016151905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8236Combination of enhancement and depletion transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/095Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a nitride semiconductor device having an HFET (heterostructure field-effect transistor) structure.
  • the gate breakdown voltage is as low as several tens of volts. Therefore, in the power device field, a gate breakdown voltage of several hundred volts or more is required, but it is very difficult to realize a sufficient gate breakdown voltage.
  • the two chips of the normally-on nitride semiconductor element and the normally-off MOS (Metal-Oxide-Semiconductor) element are used, and the two chips are formed in a resin package.
  • a normally-off operation is achieved by forming a cascode connection between a single nitride semiconductor and its wiring using a gate portion having a high breakdown voltage and normally-on operation and a gate portion having a low breakdown voltage and normally-off operation. A method to realize it has been proposed.
  • an SBD Schottky Barrier Diode
  • a gate electrode corresponding to a normally-off gate electrode
  • a metal electrode carrier transport electrode
  • a source electrode corresponding to a normally-on gate electrode
  • an n + AlGaN layer and an n + GaN layer first layer connected to the source electrode are formed.
  • n + layer 1 n + layer
  • a + AlGaN layer and an n + GaN layer (second n + layer) are formed.
  • the side wall portion of the gate insulating film (the side wall portion of the recess portion) serves as a channel region. Therefore, it is possible to remove the resistance component that flows along the side wall portion, thereby preventing the gate insulating film of the MOS device from being broken and improving the reliability.
  • the two-dimensional electron gas layer is formed by changing the Al composition of the AlGaN layer on the heterojunction surface between the operation layer made of the GaN layer and the electron supply layer made of the AlGaN layer.
  • Two heterojunction surfaces are provided, a first heterojunction surface in which the electron concentration is adjusted to be relatively high and a second heterojunction surface in which the electron concentration is adjusted to be relatively thin.
  • a gate electrode is formed on the second heterojunction surface in which the electron concentration is adjusted to be relatively thin. Furthermore, a source electrode and a drain electrode are formed on the first heterojunction surface that is adjusted to have a relatively high electron concentration and is located on both sides of the second heterojunction surface.
  • the channel concentration under the gate electrode is lowered to improve the gate-drain breakdown voltage, and the distance between the drain electrode and the source electrode is increased to obtain a high breakdown voltage while increasing the on-resistance. Is suppressed.
  • a semiconductor device that operates normally off and has a high breakdown voltage and a low on-resistance is realized.
  • a source electrode, a first gate electrode, and a shot are formed on a nitride semiconductor layer formed of a GaN electron transit layer and an AlGaN electron supply layer formed on a substrate.
  • a key electrode, a second gate electrode, and a drain electrode are formed.
  • the first gate electrode is a gate electrode of a normally-off FET, and is provided between the source electrode and the drain electrode.
  • the Schottky electrode is provided between the first gate electrode and the drain electrode.
  • the second gate electrode is a gate electrode of a normally-on type FET, and is provided between the Schottky electrode and the drain electrode.
  • the forward voltage of the free-wheeling diode composed of the Schottky barrier diode with the Schottky electrode as the anode and the AlGaN electron supply layer as the cathode can be lowered, and the normally-off with high breakdown voltage and low on-resistance.
  • Type semiconductor device can be realized.
  • Patent Documents 1 to 3 have the following problems.
  • a normally-off transistor element and a normally-on transistor element are formed on the same nitride semiconductor, and the same chip is formed.
  • the gate electrode that operates normally off and the gate electrode that operates normally on are close to each other.
  • Equation (1) shows the relationship between the impedance
  • the relationship between the parasitic capacitance C and the distance d between the two gate electrodes is expressed by the following equation (2).
  • the interlayer insulating film existing between the normally-off side gate electrode and the normally-on side gate electrode is formed of a silicon oxide film, a silicon nitride film, or a silicon oxynitride.
  • a silicon oxide film a silicon oxide film
  • a silicon nitride film a silicon oxynitride.
  • an insulating film such as a film or alumina, but there is no detailed description.
  • alumina having a relative dielectric constant higher than that of the silicon nitride film may be used, it is not a specific measure against the above problem of reducing the parasitic capacitance C.
  • An object of the present invention is to provide a nitride semiconductor device in which a normally-off first transistor element and a normally-on second transistor element are formed on the same nitride semiconductor, and cascode connection is performed in the chip.
  • Nitride that can prevent the operation of the normally-on side gate electrode from becoming unstable (such as fluctuations in the current value) when a gate signal is input to the normally-off side gate electrode during high-frequency operation. It is to provide a semiconductor device.
  • a nitride semiconductor device of the present invention is A nitride semiconductor layer including a heterojunction; A source electrode and a drain electrode formed on the nitride semiconductor layer or with the lower portion inserted into the nitride semiconductor layer and spaced apart from each other; A first gate electrode of a first transistor element disposed on the nitride semiconductor layer between the source electrode and the drain electrode and operating normally off; A second gate electrode of a second transistor element disposed on the nitride semiconductor layer between the first gate electrode and the drain electrode and operating normally on; A lower insulating film formed on the surface of the nitride semiconductor layer between the second gate electrode and the drain electrode; The first transistor element and the second transistor element are cascode-connected, An upper insulating film having a relative dielectric constant smaller than that of the lower insulating film is formed at least partially between the first gate electrode and the second gate electrode.
  • the lower insulating film is also formed on the surface of the nitride semiconductor layer between the source electrode and the first gate electrode and between the first gate electrode and the second gate electrode.
  • the lower insulating film is a silicon nitride film.
  • the inter-gate electrode insulating film is a silicon oxide film.
  • the nitride semiconductor device of the present invention is A nitride semiconductor layer including a heterojunction; A source electrode and a drain electrode formed on the nitride semiconductor layer or with the lower portion inserted into the nitride semiconductor layer and spaced apart from each other; A first gate electrode of a first transistor element disposed on the nitride semiconductor layer between the source electrode and the drain electrode and operating normally off; A second gate electrode of a second transistor element disposed on the nitride semiconductor layer between the first gate electrode and the drain electrode and operating normally on; A lower insulating film formed on the surface of the nitride semiconductor layer between the second gate electrode and the drain electrode; The first transistor element and the second transistor element are cascode-connected, An inter-gate electrode insulating film formed on the nitride semiconductor layer between the first gate electrode and the second gate electrode; An upper insulating film formed to cover at least the second gate electrode, The lower insulating film is a silicon nitride film, The gate electrode insulating film is
  • the nitride semiconductor device is configured to cascode-connect the first transistor element and the second transistor element formed on the same nitride semiconductor layer, and A lower insulating film is formed on the surface of the nitride semiconductor layer between the second gate electrode and the drain electrode. Therefore, if the relative dielectric constant of the lower insulating film is set within the range of 6.5 to 9.0 (preferably 7.5 to 8.5), the lower insulating film suppresses the current collapse phenomenon. Can do.
  • the second gate electrode that operates normally on is affected by the gate signal input to the first gate electrode that operates normally off, and the normally on element operates. It becomes possible to suppress becoming unstable.
  • a nitride semiconductor device includes a first transistor element and a second transistor element formed on the same nitride semiconductor layer in cascode connection, and a second gate electrode and a drain of the second transistor.
  • a lower insulating film made of a silicon nitride film having a high relative dielectric constant is formed on the surface of the nitride semiconductor layer between the electrodes. Accordingly, the relative dielectric constant of the lower insulating film can be set within the range of 6.5 to 9.0 (preferably 7.5 to 8.5), and the current collapse phenomenon is suppressed by the lower insulating film. can do.
  • a gate electrode made of a silicon oxide film having a relative dielectric constant smaller than that of a silicon nitride film on the nitride semiconductor layer between the first gate electrode of the first transistor and the second gate electrode of the second transistor.
  • An inter-insulating film is formed. Therefore, the parasitic capacitance C between the two gate electrodes can be reduced (impedance
  • an upper insulating film made of a silicon nitride film having a high relative dielectric constant is formed so as to cover at least the second gate electrode. Therefore, the electric field intensity around the second gate electrode can be reduced and the breakdown voltage can be improved.
  • FIG. 1 is a schematic cross-sectional view of a nitride semiconductor device according to a first embodiment of the present invention. It is a cross-sectional schematic diagram in 2nd Embodiment. It is a schematic cross section for demonstrating an example of the formation location of the upper insulating film of this invention. It is a schematic cross section for demonstrating an example of the formation location of the upper insulating film of this invention. It is a schematic cross section for demonstrating an example of the formation location of the upper insulating film of this invention. It is a schematic cross section for demonstrating an example of the formation location of the upper insulating film of this invention.
  • FIG. 1 is a schematic cross-sectional view passing through a source electrode 5, a first gate electrode 7, a second gate electrode 8, and a drain electrode 6 in a nitride semiconductor device according to the present embodiment.
  • the nitride semiconductor device includes a normally-off transistor 101 as the first transistor element and a normally-on transistor transistor 102 as the second transistor element.
  • an undoped GaN layer 3 and an undoped AlGaN layer 4 are sequentially formed on a Si substrate 1 via a buffer layer 2.
  • 2DEG two dimensional electron gas
  • the undoped GaN layer 3 and the undoped AlGaN layer 4 constitute a nitride semiconductor layer 9 and are an example of the nitride semiconductor layer.
  • the thickness of the undoped AlGaN layer 4 is 30 nm.
  • the film thickness of the undoped AlGaN layer 4 may be set so that the 2DEG is generated at the interface between the undoped GaN layer 3 and the undoped AlGaN layer 4, and can be formed in the range of several nm to 50 nm. .
  • the substrate 1 is not limited to the Si substrate but may be a sapphire substrate or a SiC substrate, and a nitride semiconductor layer may be grown on the sapphire substrate or the SiC substrate.
  • a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor, such as growing an AlGaN layer on a GaN substrate.
  • an AlN layer having a thickness of about 1 nm may be formed as a hetero-improvement layer between the undoped GaN layer 3 and the undoped AlGaN layer 4.
  • a GaN cap layer may be formed on the AlGaN layer 4.
  • the normally-off transistor 101 has a nitride semiconductor layer 9 provided below the source electrode 5 and the first gate electrode 7.
  • the normally-on transistor 102 includes a nitride semiconductor layer 9 provided below the drain electrode 6 and the second gate electrode 8.
  • the nitride semiconductor layer 9 provided below the first gate electrode 7 and the second gate electrode 8 serves as a shared part of the normally-off transistor 101 and the normally-on transistor 102.
  • the source electrode 5 and the drain electrode 6 may be formed on the undoped AlGaN layer 4 without forming the recess. In that case, ohmic contact becomes possible by annealing the source electrode 5 and the drain electrode 6 by setting the thickness of the undoped AlGaN layer 4 to 20 nm, for example. Further, the thickness of the undoped AlGaN layer 4 is set to 30 nm, for example, and the ohmic contact portion of the undoped AlGaN layer 4 is previously Si-doped so as to be n-type, thereby enabling ohmic contact between the source electrode and the drain electrode. Good.
  • the first insulating film 10a as the lower insulating film is formed so as to be in contact with the surface of the nitride semiconductor layer 9 between the drain electrode 6 and the second gate electrode 8.
  • the first insulating film 10a is used for suppressing current collapse and is formed of a silicon nitride film.
  • the current collapse phenomenon is a phenomenon in which the on-resistance increases and the saturation current decreases as the applied voltage increases. This current collapse phenomenon is a problem in GaN-based power devices.
  • the first insulating film 10a is formed with a film thickness of 50 nm.
  • the film thickness may be in the range of 5 nm to 100 nm.
  • the relative dielectric constant of the first insulating film 10a is 7.5, but it may be in the range of 6.5 to 9.0, more preferably 7.5 to 8.5. This is because if the relative dielectric constant is too small, the collapse suppressing effect is reduced, and if it is too large, leakage occurs at the interface with the nitride semiconductor layer 9.
  • a silicon nitride film is used as the first insulating film 10a.
  • a silicon oxynitride film may be used.
  • the current collapse phenomenon is said to be dominated by the trap of electrons generated between the gate electrode and the drain electrode. Therefore, in the present embodiment, the collapse is suppressed by forming the first insulating film 10a on the surface of the nitride semiconductor layer 9 between the second gate electrode 8 and the drain electrode 6 that operate normally on. The effect is gained. Further, the first insulating film 10b as the lower insulating film is formed so as to be in contact with the surface of the nitride semiconductor layer 9 between the source electrode 5 and the first gate electrode 7, and the first gate electrode 7 and the second gate are formed. The first insulating film 10c as the lower insulating film is formed so as to be in contact with the surface of the nitride semiconductor layer 9 between the electrode 8 and the electrode 8.
  • the first insulating film 10a, the first insulating film 10b, and the first insulating film 10c are collectively referred to as the first insulating film 10.
  • the first insulating film 10a does not necessarily fill the surface of the nitride semiconductor layer 9 between the second gate electrode 8 and the drain electrode 6 without a gap. Even if the first insulating film 10a is not in contact with the surface of the nitride semiconductor layer 9 in the vicinity of the electrodes 6 and 8 due to side etching during the process, the nitride semiconductor between the second gate electrode 8 and the drain electrode 6 is used. If most of the surface of the layer 9 (for example, 80% or more) is in contact with the first insulating film 10a, no significant reduction in the collapse suppression effect is observed.
  • a second insulating film 11 made of a silicon nitride film is formed on the first insulating film 10 in order to ensure a withstand voltage.
  • the silicon nitride film to be the second insulating film 11 is formed with a film thickness of 150 nm as an example, but the film thickness may be 50 nm to 300 nm.
  • the second insulating film 11a, the second insulating film 11b, and the second insulating film 11c as the inter-gate electrode insulating film are collectively referred to as the second insulating film 11.
  • the second insulating film 11 a is formed so as to be in contact with the surface of the first insulating film 10 a and is located on the nitride semiconductor layer 9 between the second gate electrode 8 and the drain electrode 6.
  • the second insulating film 11 b is formed on the first insulating film 10 b and is located on the nitride semiconductor layer 9 between the source electrode 5 and the first gate electrode 7.
  • the second insulating film 11 c is formed on the first insulating film 10 c and is located on the nitride semiconductor layer 9 between the first gate electrode 7 and the second gate electrode 8.
  • the first gate electrode 7 and the second gate electrode 8 are formed using Ni / Au in which Ni and Au are laminated in this order as an example.
  • the present invention is not limited to this, and any material can be used as long as it functions as a gate of a transistor.
  • metals such as W, Ti, Ni, Al, Pd, Pt, and Au, nitrides such as WN and TiN, alloys thereof, and laminated structures thereof can be used.
  • the source electrode 5 and the drain electrode 6 are formed by using Ti / Al in which Ti and Al are laminated in this order as an example.
  • Ti / Al / TiN may be formed using Ti / Al / TiN in which Ti, Al, and TiN are stacked in this order.
  • AlSi, AlCu, and Au may be used in place of the Al, or may be laminated on the Al.
  • Hf / Al / Hf / Au may be formed by stacking Hf / Al on Hf / Al.
  • the lower portion of the first gate electrode 7 is formed of an undoped AlGaN layer 4 in order to operate normally off. Part of it has a recessed shape.
  • a third insulating film 12 is formed in contact with the bottom surface of the first gate electrode 7 for insulation.
  • the third insulating film 12 is formed of a silicon nitride film as an example, but may be formed of another insulating film such as a silicon oxide film.
  • a recess shape is not formed in the undoped AlGaN layer 4 at the bottom of the second gate electrode 8 in order to operate normally on.
  • a fourth insulating film 13 made of a silicon nitride film is formed in contact with the bottom surface of the second gate electrode 8 for insulation.
  • the fourth insulating film 13 is formed of a silicon nitride film as an example, but may be formed of a silicon oxide film or another insulating film. Further, the fourth insulating film 13 may not be formed for the Schottky junction.
  • the fifth insulating film 14 as the upper insulating film covers the surface of the first gate electrode 7, the surface of the second gate electrode 8, and the space between the first gate electrode 7 and the second gate electrode 8.
  • the silicon oxide film is used.
  • the silicon oxide film to be the fifth insulating film 14 is formed with a film thickness of 300 nm as an example.
  • this film thickness only needs to cover between the first gate electrode 7 and the second gate electrode 8 with good coverage, the electrode thicknesses of the first gate electrode 7 and the second gate electrode 8 and the electrode end portions What is necessary is just to set suitably in view of a shape.
  • the relative dielectric constant of the fifth insulating film 14 is 3.9 as an example, but may be any relative dielectric constant smaller than that of the first insulating film 10.
  • the fifth insulating film 14 having a relative dielectric constant ⁇ r smaller than that of the first insulating film 10 between the first gate electrode 7 and the second gate electrode 8, the above formula (1) and As can be seen from Equation (2), the parasitic capacitance C between the first gate electrode 7 operating normally off and the second gate electrode 8 operating normally on is reduced (that is, the impedance
  • the normally-on element operation is unstable due to the influence of the gate signal input to the first gate electrode 7 that operates normally-off when the second gate electrode 8 that operates normally-on. It is possible to suppress the occurrence of (current value fluctuation, etc.).
  • the fifth insulating film 14 is formed by using a silicon oxide film as an example.
  • the fifth insulating film 14 may be an insulating film having a relative dielectric constant smaller than that of the first insulating film 10, for example, SiOF. , SiOC or the like can be used.
  • the fifth insulating film 14 is formed so as to cover the entire area between the first gate electrode 7 and the second gate electrode 8, but this is not necessarily required in the present invention. Absent. In short, it is only necessary that the parasitic capacitance C between the first gate electrode 7 and the second gate electrode 8 is formed in a range that can be reduced to a predetermined capacitance value.
  • the nitride semiconductor element formed as described above is appropriately subjected to an interlayer insulating film process and a wiring process (wiring diagram is simplified in FIG. 2), and the source electrode 5 and the second gate
  • a nitride semiconductor device that operates normally on and has stable operation even during high-frequency operation can be configured on a single chip. That is, a reduction in chip cost and a reduction in package size can be realized at the same time.
  • the nitride semiconductor layer 9 formed by sequentially forming the undoped GaN layer 3 and the undoped AlGaN layer 4 is formed on the Si substrate 1.
  • the source electrode 5 and the drain electrode 6 are formed on the nitride semiconductor layer 9 or at least in the nitride semiconductor layer 9 so as to be spaced from each other.
  • a first gate electrode 7 that operates normally off is formed on the nitride semiconductor layer 9 between the source electrode 5 and the drain electrode 6.
  • a second gate electrode 8 that operates normally on is formed on the nitride semiconductor layer 9 between the first gate electrode 7 and the drain electrode 6.
  • a first insulating film 10 a for suppressing a current collapse phenomenon is formed on the nitride semiconductor layer 9 between the second gate electrode 8 and the drain electrode 6.
  • a fifth insulating film 14 having a relative dielectric constant smaller than that of the first insulating film 10a is formed at least partly between the first gate electrode 7 and the second gate electrode 8.
  • the source electrode 5 and the second gate electrode 8 are connected, and a transistor that operates normally off and a transistor that operates normally on are cascode-connected.
  • the current collapse phenomenon can be suppressed by the first insulating film 10 a formed on the nitride semiconductor layer 9 between the second gate electrode 8 and the drain electrode 6.
  • the parasitic between the gate electrodes 7 and 8 is formed.
  • the capacitance C can be reduced (impedance
  • the second gate electrode 8 that operates normally on is affected by the gate signal input to the first gate electrode 7 that operates normally off, so that the normally on element does not operate properly. It becomes possible to suppress the stability (such as fluctuation of the current value).
  • the current collapse phenomenon is suppressed, and the normally-on element is affected by the gate signal input to the first gate electrode 7 that operates normally at the time of high-frequency operation. It is possible to prevent the operation of the camera from becoming unstable.
  • FIG. 2 is a schematic cross-sectional view passing through the source electrode 5, the first gate electrode 7, the second gate electrode 8, and the drain electrode 6 in the nitride semiconductor device of the present embodiment.
  • the basic configuration in the present embodiment is the same as that in the first embodiment. Therefore, in this embodiment, members corresponding to those in the first embodiment are given the same numbers, and detailed description thereof is omitted. Hereinafter, differences from the first embodiment will be described.
  • the second insulating film 11 is formed of a silicon nitride film.
  • the second insulating film 11 is formed of a silicon oxide film having a relative dielectric constant lower than that of the silicon nitride film.
  • the thickness of the second insulating film 11 is 150 nm, it may be 50 nm to 300 nm.
  • the relative dielectric constant of the second insulating film 11 is set to 3.9, it may be smaller than the relative dielectric constant of the first insulating film 10.
  • the parasitic capacitance C between the first gate electrode 7 and the second gate electrode 8 can be reduced (impedance
  • the second gate electrode 8 that operates in the above-described manner is prevented from being unstable (such as fluctuations in current value) due to the influence of the gate signal input to the first gate electrode 7 that operates normally off. It becomes possible to do.
  • the second insulating film 11 is formed using a silicon oxide film as an example.
  • the second insulating film 11 may be an insulating film having a relative dielectric constant smaller than that of the first insulating film 10, for example, SiOF. , SiOC or the like can be used.
  • the fifth insulating film 14 is formed of a silicon oxide film so as to cover the surface of the first gate electrode 7, the surface of the second gate electrode 8, and the space between the first gate electrode 7 and the second gate electrode 8. is doing.
  • the silicon oxide film to be the fifth insulating film 14 is formed with a film thickness of 300 nm as an example.
  • this film thickness only needs to cover between the first gate electrode 7 and the second gate electrode 8 with good coverage, the electrode thicknesses of the first gate electrode 7 and the second gate electrode 8 and the electrode end portions What is necessary is just to set suitably in view of a shape.
  • the source electrode 5 and the source terminal 15 are connected by the source wiring 16, and the source wiring 16 and the second gate electrode 8 are connected by the cascode wiring 17. Further, the first gate electrode 7 and the first gate terminal 18 are connected by a gate wiring 19. Further, the drain electrode 6 and the drain terminal 20 are connected by the drain wiring 21.
  • a nitride semiconductor device that operates normally on and is stable even at high frequency operation can be configured on a single chip. It becomes. That is, a reduction in chip cost and a reduction in package size can be realized at the same time.
  • the parasitic capacitance C between the first gate electrode 7 and the second gate electrode 8 can be further reduced (impedance
  • the second gate electrode 8 that operates normally on is affected by the gate signal input to the first gate electrode 7 that operates normally normally, It becomes possible to further suppress the operation of the normally-on element from becoming unstable (such as fluctuation of the current value) as compared with the case of the first embodiment.
  • the fifth insulating film 14 is formed of a silicon oxide film.
  • the fifth insulating film 14 is formed of a silicon nitride film having a relative dielectric constant higher than that of the silicon oxide film.
  • the relative dielectric constant which was 3.9 in the second embodiment, is formed at 7.5, which is the same as that of the first insulating film 10 in the present embodiment.
  • the relative dielectric constant of the fifth insulating film 14 is not limited to 7.5. It may be in the range of 6.5 to 9.0, preferably 7.5 to 8.5.
  • the reason is that by covering the second gate electrode 8 with a film having a high relative dielectric constant using the fifth insulating film 14 as a silicon nitride film, the electric field strength around the second gate electrode 8 can be reduced, and the withstand voltage can be reduced. Can be improved. On the other hand, if the relative dielectric constant becomes too high, leakage occurs in the film and at the film interface.
  • the fifth insulating film 14 is formed of a silicon nitride film, but may be formed of a silicon oxynitride film or alumina.
  • the nitride semiconductor element formed as described above is appropriately subjected to an interlayer insulating film process and a wiring process (a wiring diagram is simply shown in FIG. 2), and the source electrode 5 and the second gate
  • a wiring diagram is simply shown in FIG. 2
  • the electrode 8 By connecting the electrode 8 to form a cascode connection, a nitride semiconductor device that operates normally on and has stable operation even during high-frequency operation can be configured on a single chip. That is, a reduction in chip cost and a reduction in package size can be realized at the same time.
  • the present invention reduces the parasitic capacitance between the gate electrodes of both elements in a nitride semiconductor device formed by cascode-connecting the above-described normally-on nitride semiconductor element and normally-off nitride semiconductor element.
  • the stability of the operation of the nitride semiconductor device during high-frequency operation is ensured. Therefore, as in the above embodiments, the recess is formed in the nitride semiconductor layer 9 below the first gate electrode 7 in order to operate the first gate electrode 7 in a normally-off state.
  • a third insulating film 12 is formed therein.
  • the above-described structure is merely an example, and any structure may be used as long as it can perform a normally-off operation.
  • any material having an insulating property such as a silicon nitride film or alumina may be used.
  • a structure in which a normally-off operation is realized by forming a p-type semiconductor on the undoped AlGaN layer 4 and raising the potential under the first gate electrode 7 may be used.
  • the formation method and structure of the normally-on structure portion there is no limitation on the formation method and structure of the normally-on structure portion, the material and formation method of each electrode, the material of the nitride semiconductor layer, the film configuration, and the formation method.
  • the nitride semiconductor device of the present invention is A nitride semiconductor layer 9 including a heterojunction; A source electrode 5 and a drain electrode 6 formed on the nitride semiconductor layer 9 or with a lower portion inserted into the nitride semiconductor layer 9 and spaced apart from each other; A first gate electrode 7 of the first transistor element 101 disposed on the nitride semiconductor layer 9 between the source electrode 5 and the drain electrode 6 and operating normally off; A second gate electrode 8 of the second transistor element 102 disposed on the nitride semiconductor layer 9 between the first gate electrode 7 and the drain electrode 6 and operating normally on; A lower insulating film 10 formed on the surface of the nitride semiconductor layer 9 between the second gate electrode 8 and the drain electrode 6; The first transistor element 101 and the second transistor element 102 are cascode-connected, An upper insulating film 14 having a relative dielectric constant smaller than that of the lower insulating film 10 is formed at least partly between the first gate electrode 7 and the second gate electrode 8.
  • the upper insulating film 14 having a relative dielectric constant smaller than that of the lower insulating film 10 is formed at least partially between the first gate electrode 7 and the second gate electrode 8”.
  • An upper insulating film 14 is formed on a portion between the first gate electrode 7 and the second gate electrode 8 or between the first gate electrode 7 and the second gate electrode 8.
  • one of the states in FIGS. 3 to 6 is “an upper portion having a relative dielectric constant smaller than that of the lower insulating film 10 in at least a part between the first gate electrode 7 and the second gate electrode 8. This corresponds to a state where the insulating film 14 is formed.
  • the first transistor element 101 and the second transistor element 102 formed on the same nitride semiconductor layer 9 are cascode-connected, and the second gate electrode 8 of the second transistor element 102 is connected.
  • a lower insulating film 10 is formed on the surface of the nitride semiconductor layer 9 between the drain electrode 6 and the drain electrode 6. Therefore, if the relative dielectric constant of the lower insulating film 10 is set within the range of 6.5 to 9.0 (preferably 7.5 to 8.5), the lower insulating film 10 suppresses the current collapse phenomenon. can do.
  • the upper insulating film 14 having a relative dielectric constant smaller than that of the lower insulating film 10 is formed at least partially between the first gate electrode 7 and the second gate electrode 8, both gate electrodes
  • the parasitic capacitance C between 7 and 8 can be reduced (impedance
  • the lower insulating film 10 is formed on the surface of the nitride semiconductor layer 9 between the source electrode 5 and the first gate electrode 7 and between the first gate electrode 7 and the second gate electrode 8. Is also formed.
  • the nitride semiconductor layer 9 is between the source electrode 5 and the first gate electrode 7 and between the first gate electrode 7 and the second gate electrode 8.
  • the lower insulating film 10 formed on the surface can prevent the surface of the nitride semiconductor layer 9 from being exposed during the device manufacturing process. Therefore, the surface of the nitride semiconductor layer 9 can be stabilized and the characteristics of the device can be stabilized.
  • the lower insulating film 10 is a silicon nitride film.
  • the lower insulating film 10 is formed of a silicon nitride film having a large relative dielectric constant. Therefore, the relative dielectric constant of the lower insulating film 10 can be easily set within the range of 6.5 to 9.0 (preferably 7.5 to 8.5). The collapse phenomenon can be suppressed.
  • the gate electrode insulating film 11c is a silicon oxide film.
  • the inter-gate insulating film 11c is formed of a silicon oxide film having a relative dielectric constant lower than that of the silicon nitride film. Therefore, an insulating film having a small relative dielectric constant is additionally formed between the first gate electrode 7 and the second gate electrode 8 in addition to the upper insulating film 14, thereby providing a parasitic between the gate electrodes 7 and 8. Capacitance C can be further reduced (impedance
  • the inter-gate electrode insulating film 11c may be formed so as to be in contact with the surface of the nitride semiconductor layer 9 between the first gate electrode 7 and the second gate electrode 8, or on the surface thereof. You may form through another layer.
  • the nitride semiconductor device of the present invention is A nitride semiconductor layer 9 including a heterojunction; A source electrode 5 and a drain electrode 6 formed on the nitride semiconductor layer 9 or with a lower portion inserted into the nitride semiconductor layer 9 and spaced apart from each other; A first gate electrode 7 of the first transistor element 101 disposed on the nitride semiconductor layer 9 between the source electrode 5 and the drain electrode 6 and operating normally off; A second gate electrode 8 of a normally-on element 102 disposed on the nitride semiconductor layer 9 between the first gate electrode 7 and the drain electrode 6 and operating normally on; A lower insulating film 10 formed on the surface of the nitride semiconductor layer 9 between the second gate electrode 8 and the drain electrode 6; The first transistor element 101 and the normally-on element 102 are cascode-connected, An inter-gate electrode insulating film 11c formed on the nitride semiconductor layer 9 between the first gate electrode 7 and the second gate electrode 8, An upper insulating film 14 formed so as to cover
  • the first transistor element 101 and the second transistor element 102 formed on the same nitride semiconductor layer 9 are cascode-connected, and the second gate electrode 8 of the normally-on element 102
  • the lower insulating film 10 made of a silicon nitride film having a high relative dielectric constant is formed on the surface of the nitride semiconductor layer 9 between the drain electrode 6. Accordingly, the relative dielectric constant of the lower insulating film 10 can be set in the range of 6.5 to 9.0 (preferably 7.5 to 8.5).
  • the lower insulating film 10 causes the current collapse phenomenon. Can be suppressed.
  • the inter-gate electrode insulating film 11c made of a silicon oxide film having a relative dielectric constant lower than that of the silicon nitride film. Is forming. Therefore, the parasitic capacitance C between the gate electrodes 7 and 8 can be reduced (impedance
  • the upper insulating film 14 made of a silicon nitride film having a high relative dielectric constant is formed so as to cover at least the second gate electrode 8. Therefore, the electric field intensity around the second gate electrode 8 can be reduced and the breakdown voltage can be improved.
  • the inter-gate electrode insulating film 11c may be formed so as to be in contact with the surface of the nitride semiconductor layer 9 between the first gate electrode 7 and the second gate electrode 8, or on the surface thereof. You may form through another layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

窒化物半導体装置は、ソース電極(5)およびドレイン電極(6)と、第1トランジスタ素子(101)の第1ゲート電極(7)と、第2トランジスタ素子(102)の第2ゲート電極(8)と、上記第2ゲート電極(8)と上記ドレイン電極(6)との間における上記窒化物半導体層(9)の表面に形成された下部絶縁膜(10)とを備え、上記第1トランジスタ素子(101)と上記第2トランジスタ素子(102)とはカスコード接続されており、上記第1ゲート電極(7)と上記第2ゲート電極(8)との間の少なくとも一部を覆うと共に、上記下部絶縁膜(10)よりも比誘電率が小さい上部絶縁膜(14)が形成されている。

Description

窒化物半導体装置
 この発明は、HFET(heterostructure field-effect transistor:ヘテロ構造電界効果トランジスタ)構造を有する窒化物半導体装置に関する。
 現在、上記HFET構造を有する窒化物半導体装置においては、実用レベルではノーマリーオン(ゲート電圧0Vでオン状態となる)動作を行うようになっているのが一般的である。しかしながら、ゲート電圧の制御が異常になった場合でも電流が流れず、安全に動作させることが可能なノーマリーオフ(ゲート電圧0Vでオフ状態となる)動作が強く望まれている。
 ところが、上記ノーマリーオフ動作を実現できたとしてもゲート耐圧は数十Vと低い。そのために、パワーデバイス分野においては数百V以上のゲート耐圧が求められるのに対して、十分なゲート耐圧を実現するのが非常に困難である。
 そこで、上記ノーマリーオン動作の窒化物半導体素子と、ノーマリーオフ動作のMOS(Metal-Oxide-Semiconductor:金属酸化膜半導体)素子との二つのチップを用い、樹脂パッケージ内で上記二つのチップをカスコード接続とする方法や、特許第5548909号(特許文献1),特開2002‐016245号公報(特許文献2)および特開2013‐69785号公報(特許文献3)に開示された半導体装置のように、高耐圧且つノーマリーオン動作のゲート部と低耐圧且つノーマリーオフ動作のゲート部とを用いて、窒化物半導体単体とその配線とでカスコード接続を構成することにより、ノーマリーオフ動作を実現する方法が提案されている。
 例えば、上記特許文献1に開示された窒化物系半導体装置においては、ドレイン電極とゲート電極(ノーマリーオフ動作のゲート電極に相当)の間に設けられたSBD(Schottky Barrier Diode:ショットキーバリアダイオード)金属電極(キャリア輸送電極)(ノーマリーオン動作のゲート電極に相当)とソース電極とが接続されている。そして、上記ソース電極から上記ゲート電極下に位置するリセス部の下部領域に到るまでのゲート絶縁膜の下部領域には、上記ソース電極に接続されたnAlGaN層およびnGaN層(第1のn層)が形成される一方、上記リセス部の下部領域から上記SBD金属電極の手前に到るまでの上記ゲート絶縁膜の下部領域には、上記SBD金属電極に接続されていないnAlGaN層およびnGaN層(第2のn層)が形成されている。
 このように、上記ゲート絶縁膜の下部領域にn領域が設けられていることによって、上記ゲート絶縁膜の側壁部分(上記リセス部の側壁部)がチャネル領域となっている。そのために、当該側壁部分を伝わって流れる抵抗成分を除去することができ、MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させることができる。
 また、上記特許文献2に開示された半導体装置では、GaN層でなる動作層とAlGaN層でなる電子供給層とのヘテロ接合面に、AlGaN層のAl組成を変えることによって二次元電子ガス層の電子濃度が相対的に濃く調整された第1のヘテロ接合面と相対的に薄く調整された第2のヘテロ接合面との2つのヘテロ接合面が設けられている。
 そして、上記電子濃度が相対的に薄く調整された第2のヘテロ接合面上には、ゲート電極が形成されている。さらに、電子濃度が相対的に濃く調整されて上記第2のヘテロ接合面の両側に位置する第1のヘテロ接合面上には、ソース電極およびドレイン電極が形成されている。
 このように、上記ゲート電極下のチャネル濃度を下げてゲート‐ドレイン耐圧の向上を図り、上記ドレイン電極と上記ソース電極との間の距離を長く確保して高い耐圧を得ながら、オン抵抗の増大の抑制している。こうして、ノーマリーオフで動作すると共に、高い耐圧と低いオン抵抗とを備えた半導体装置を実現している。
 また、上記特許文献3に開示された窒化物半導体装置では、基板上に形成されたGaN電子走行層およびAlGaN電子供給層で成る窒化物半導体層上に、ソース電極,第1のゲート電極,ショットキー電極,第2のゲート電極およびドレイン電極が形成されている。そして、上記第1のゲート電極は、ノーマリーオフ型FETのゲート電極であり、上記ソース電極と上記ドレイン電極との間に設けられている。また、上記ショットキー電極は、上記第1のゲート電極と上記ドレイン電極との間に設けられている。また、上記第2のゲート電極は、ノーマリーオン型FETのゲート電極であり、上記ショットキー電極と上記ドレイン電極との間に設けられている。
 上記構造を取ることによって、上記ショットキー電極をアノードとし、上記AlGaN電子供給層をカソードとするショットキーバリアダイオードでなる還流ダイオードの順方向電圧を低くでき、高耐圧で低オン抵抗のノーマリーオフ型半導体装置を実現することができる。
特許第5548909号 特開2002‐016245号公報 特開2013‐69785号公報
 しかしながら、上記従来の特許文献1~特許文献3に開示された半導体装置には、以下のような問題がある。
 すなわち、ノーマリーオン動作のゲート部とノーマリーオフ動作のゲート部とを用いたHFETからなるカスコード接続においては、高周波動作をさせるためにノーマリーオフで動作するゲート電極にゲート信号を入力した際に、上記ノーマリーオフで動作するゲート電極と上記ノーマリーオンで動作するゲート電極との間の寄生容量Cが大きい(インピーダンス|Z|が小さい)場合には、ノーマリーオン側のゲート電極がノーマリーオフ側の上記ゲート信号の影響を受けて、素子の動作が不安定(電流値の変動など)になってしまうという新たな問題が生ずる。
 この問題は、ノーマリーオン動作の窒化物半導体素子とノーマリーオフ動作のMOSの素子との二つのチップを用いて上記両チップ間でカスコード接続した場合には、上記両素子における各ゲート電極間の距離が十分離れているために、生ずることにはならない。
 ところが、上記特許文献1~特許文献3に開示された従来の半導体装置のごとく、同一の窒化物半導体上にノーマリーオフのトランジスタ素子とノーマリーオンのトランジスタ素子とを形成し、同一のチップ内でカスコード接続を行う場合には、ノーマリーオフで動作するゲート電極とノーマリーオンで動作するゲート電極が近接する。
 上記ノーマリーオフで動作するゲート電極と上記ノーマリーオンで動作するゲート電極との間のインピーダンス|Z|と寄生容量Cとの関係を、次式(1)に示す。また、上記寄生容量Cと上記両ゲート電極間の距離dとの関係を、次式(2)に示す。
 |Z|=1/(ωC)=1/(2πfC) …(1)
   C=(εrε0S)/d       …(2)
 ここで、Z : インピーダンス
     ω : 角周波数
     f : 周波数
     C : 静電容量(寄生容量)
     εr : 比誘電率
     ε0 : 真空の誘電率
     S : 面積
     d : 間隔(距離)
 上記式(2)から分かるように、上記両ゲート電極間の距離dが小さい場合には上記両ゲート電極間の寄生容量Cが大きくなる。そうすると、上記式(1)から分かるように、ゲート電極との間のインピーダンス|Z|が小さくなる。そのために、上記特許文献1~特許文献3に開示された従来の半導体装置のごとく、同一の窒化物半導体上にノーマリーオフのトランジスタ素子とノーマリーオンのトランジスタ素子とを形成し、同一のチップ内でカスコード接続を行う場合のように、ノーマリーオフで動作するゲート電極とノーマリーオンで動作するゲート電極が近接する場合には、ノーマリーオン側のゲート電極がノーマリーオフ側の上記ゲート信号の影響を受けて、素子の動作が不安定(電流値の変動など)になってしまうのである。
 しかしながら、上記特許文献1および上記特許文献2に開示された半導体装置においては、ノーマリーオフ側のゲート電極とノーマリーオン側のゲート電極との間には、特に素子の動作を安定化させる対策は、実施されていない。
 また、上記特許文献3に開示された半導体装置においては、ノーマリーオフ側のゲート電極とノーマリーオン側のゲート電極間に存在する層間絶縁膜が、シリコン酸化膜,シリコン窒化膜,シリコン酸窒化膜,アルミナ等の絶縁体の膜でなるとの記述があるのみで、詳細な記述はない。さらに、比誘電率がシリコン窒化膜よりも高いアルミナでもよいとの記載があることから、上記寄生容量Cを小さくするという上記問題に対する具体的な対策とはなっていない。
 そこで、この発明の課題は、同一の窒化物半導体にノーマリーオフの第1トランジスタ素子とノーマリーオンの第2トランジスタ素子とが形成されると共に、チップ内でカスコード接続が行われる窒化物半導体装置であって、高周波動作時にノーマリーオフ側のゲート電極にゲート信号を入力した際に、ノーマリーオン側のゲート電極の動作が不安定(電流値の変動など)になることを抑制できる窒化物半導体装置を提供することにある。
 上記課題を解決するため、この発明の窒化物半導体装置は、
 ヘテロ接合を含む窒化物半導体層と、
 上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
 上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
 上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
 上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と
を備え、
 上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
 上記第1ゲート電極と上記第2ゲート電極との間の少なくとも一部に、上記下部絶縁膜よりも比誘電率が小さい上部絶縁膜が形成されている
ことを特徴としている。
 また、一実施の形態の窒化物半導体装置では、
 上記下部絶縁膜は、上記ソース電極と上記第1ゲート電極との間、および、上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層の表面にも形成されている。
 また、一実施の形態の窒化物半導体装置では、
 上記下部絶縁膜は、シリコン窒化膜である。
 また、一実施の形態の窒化物半導体装置では、
 上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜を備え、
 上記ゲート電極間絶縁膜は、シリコン酸化膜である。
 また、この発明の窒化物半導体装置は、
 ヘテロ接合を含む窒化物半導体層と、
 上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
 上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
 上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
 上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と、
 上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
 上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜と、
 少なくとも上記第2ゲート電極上を覆うように形成された上部絶縁膜と
を備え、
 上記下部絶縁膜は、シリコン窒化膜であり、
 上記ゲート電極間絶縁膜は、シリコン酸化膜であり、
 上記上部絶縁膜は、シリコン窒化膜である
ことを特徴としている。
 以上より明らかなように、第1の発明の窒化物半導体装置は、同一窒化物半導体層上に形成された第1トランジスタ素子と第2トランジスタ素子とをカスコード接続すると共に、上記ノーマリーオン素子の第2ゲート電極とドレイン電極との間における窒化物半導体層の表面に下部絶縁膜を形成している。したがって、上記下部絶縁膜の比誘電率を6.5~9.0(望ましくは7.5~8.5)の範囲内に設定すれば、上記下部絶縁膜によって、電流コラプス現象を抑制することができる。
 さらに、上記第1トランジスタ素子の第1ゲート電極と上記第2トランジスタの第2ゲート電極との間の少なくとも一部を、上記下部絶縁膜よりも比誘電率が小さい上部絶縁膜で覆っているので、両ゲート電極間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。したがって、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極が、ノーマリーオフで動作する上記第1ゲート電極に入力されたゲート信号の影響を受けて、上記ノーマリーオン素子の動作が不安定になることを抑制することが可能になる。
 また、第2の発明の窒化物半導体装置は、同一窒化物半導体層上に形成された第1トランジスタ素子と第2トランジスタ素子とをカスコード接続すると共に、上記第2トランジスタの第2ゲート電極とドレイン電極との間における窒化物半導体層の表面に、比誘電率の高いシリコン窒化膜でなる下部絶縁膜を形成している。したがって、上記下部絶縁膜の比誘電率を6.5~9.0(望ましくは7.5~8.5)の範囲内に設定することができ、上記下部絶縁膜によって、電流コラプス現象を抑制することができる。
 さらに、上記第1トランジスタの第1ゲート電極と上記第2トランジスタの第2ゲート電極との間における上記窒化物半導体層上に、シリコン窒化膜よりも比誘電率が小さいシリコン酸化膜でなるゲート電極間絶縁膜を形成している。したがって、上記両ゲート電極間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。そのために、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極が、ノーマリーオフで動作する上記第1ゲート電極に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定になることを抑制することが可能になる。
 さらに、少なくとも上記第2ゲート電極上を覆うように、比誘電率の高いシリコン窒化膜でなる上部絶縁膜を形成している。したがって、上記第2ゲート電極の周辺の電界強度を低減することができ、耐圧を向上することができる。
この発明の窒化物半導体装置の第1実施の形態における断面模式図である。 第2実施の形態における断面模式図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。
 以下、この発明を図示の実施の形態により詳細に説明する。
 ・第1実施の形態
 図1は、本実施の形態の窒化物半導体装置におけるソース電極5,第1ゲート電極7,第2ゲート電極8およびドレイン電極6を通る断面模式図である。
 上記窒化物半導体装置は、図1に示すように、上記第1トランジスタ素子としてのノーマリーオフ型トランジスタ101と、上記第2トランジスタ素子としてのノーマリーオン型トランジスタ型トランジスタ102とを備えている。この窒化物半導体装置では、Si基板1上に、バッファ層2を介して、アンドープGaN層3とアンドープAlGaN層4とを順に形成している。アンドープGaN層3とアンドープAlGaN層4との界面に、2DEG(two dimensional electron gas:2次元電子ガス)が発生する。ここで、アンドープGaN層3とアンドープAlGaN層4とは、窒化物半導体層9を構成し、上記窒化物半導体層の一例である。
 また、本実施の形態においては、一例としてアンドープAlGaN層4の膜厚を30nmとしている。しかしながら、アンドープAlGaN層4の膜厚は、アンドープGaN層3とアンドープAlGaN層4との界面に上記2DEGが発生するように設定すればよく、数nm~50nmの範囲で形成することが可能である。
 尚、上記基板1は、Si基板に限らず、サファイア基板やSiC基板を用いてもよく、サファイア基板やSiC基板上に窒化物半導体層を成長させてもよい。または、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。
 また、上記アンドープGaN層3とアンドープAlGaN層4との間に、層厚1nm程度のAlN層をヘテロ改善層として形成してもよい。また、AlGaN層4上にGaNキャップ層を形成してもよい。
 上記アンドープAlGaN層4を貫通してアンドープGaN層3内に達する二つのリセスが、予め定められた間隔を開けて形成され、この二つのリセスにソース電極5とドレイン電極6とが形成されている。また、ソース電極5とドレイン電極6との間には、ノーマリーオフ型トランジスタ101の第1ゲート電極7を形成している。また、第1ゲート電極7とドレイン電極6との間には、ノーマリーオン型トランジスタ型トランジスタ102の第2ゲート電極8を形成している。より詳しくは、ノーマリーオフ型トランジスタ101は、ソース電極5および第1ゲート電極7の下側に設けられた窒化物半導体層9を有している。また、ノーマリーオン型トランジスタ102は、ドレイン電極6および第2ゲート電極8の下側に設けられた窒化物半導体層9を有する。そして、第1ゲート電極7と第2ゲート電極8の間の下側に設けられた窒化物半導体層9は、ノーマリーオフ型トランジスタ101とノーマリーオン型トランジスタ102の共有部となる。
 尚、上記リセスを形成せずに、アンドープAlGaN層4上にソース電極5とドレイン電極6を形成してもよい。その場合には、アンドープAlGaN層4の厚さを例えば20nmとして、ソース電極5とドレイン電極6とをアニールすることによってオーミックコンタクトが可能になる。また、アンドープAlGaN層4の厚さを例えば30nmとして、アンドープAlGaN層4のオーミックコンタクト部分に予めSiドープをしてn型化させることによって、ソース電極とドレイン電極とのオーミックコンタクトを可能にしてもよい。
 上記ドレイン電極6と第2ゲート電極8との間における窒化物半導体層9の表面に接するように、上記下部絶縁膜のとしての第1絶縁膜10aが形成されている。第1絶縁膜10aは、電流コラプス抑制のために用いられ、シリコン窒化膜で形成している。ここで、電流コラプス現象とは、印加電圧の増加に伴って、オン抵抗が増加し、飽和電流が減少してしまう現象のことである。この電流コラプス現象は、GaN系パワーデバイスにおいて課題となっている。
 尚、本実施の形態においては、一例として、上記第1絶縁膜10aを膜厚50nmで形成したが、膜厚は5nm~100nmの範囲内であれば差し支えない。また、第1絶縁膜10aの比誘電率は7.5で形成したが、6.5~9.0の範囲内であればよく、7.5~8.5がより望ましい。上記比誘電率は、小さ過ぎると上記コラプス抑制効果が低減し、大き過ぎると窒化物半導体層9との界面でリークしてしまうからである。尚、本実施の形態においては、第1絶縁膜10aとしてシリコン窒化膜を用いているが、シリコン酸窒化膜を用いてもよい。
 上記電流コラプス現象は、ゲート電極とドレイン電極間で発生する電子のトラップが支配的と言われている。そのために、本実施の形態においては、ノーマリーオンで動作する第2ゲート電極8とドレイン電極6との間における窒化物半導体層9の表面に第1絶縁膜10aを形成することによって、コラプス抑制効果を得ている。さらに、ソース電極5と第1ゲート電極7との間の窒化物半導体層9の表面に接するように上記下部絶縁膜としての第1絶縁膜10bを形成し、第1ゲート電極7と第2ゲート電極8との間の窒化物半導体層9の表面に接するように上記下部絶縁膜としての第1絶縁膜10cを形成している。こうすることによって、デバイス作製プロセス中に窒化物半導体層9の表面が剥き出しになることを抑制でき、窒化物半導体層9の表面が安定化し、素子の特性を安定化できるという利点が生ずる。以下、第1絶縁膜10a,第1絶縁膜10bおよび第1絶縁膜10cを総称して、第1絶縁膜10と言う。
 尚、上記第1絶縁膜10aは、必ずしも第2ゲート電極8とドレイン電極6との間の窒化物半導体層9の表面を隙間なく埋めている必要はない。プロセス時のサイドエッチ等によって、電極6,8の近傍で第1絶縁膜10aが窒化物半導体層9の表面に接していなくとも、第2ゲート電極8とドレイン電極6との間の窒化物半導体層9の表面の大部分(例えば、80%以上)が第1絶縁膜10aと接していれば、コラプス抑制効果に大きな低減は見られない。
 上記第1絶縁膜10上には、耐圧確保のため、シリコン窒化膜からなる第2絶縁膜11を形成している。ここで、第2絶縁膜11となるシリコン窒化膜は、一例として150nmの膜厚で形成しているが、膜厚は50nm~300nmであればよい。また、第2絶縁膜11aと、第2絶縁膜11bと、ゲート電極間絶縁膜としての第2絶縁膜11cとを総称して、第2絶縁膜11と言っている。
 上記第2絶縁膜11aは、第1絶縁膜10aの表面に接するように形成されて、第2ゲート電極8とドレイン電極6との間における窒化物半導体層9上に位置する。
 上記第2絶縁膜11bは、第1絶縁膜10b上に形成されて、ソース電極5と第1ゲート電極7との間における窒化物半導体層9上に位置する。
 上記第2絶縁膜11cは、第1絶縁膜10c上に形成されて、第1ゲート電極7と第2ゲート電極8との間の窒化物半導体層9上に位置する。
 上記第1ゲート電極7および第2ゲート電極8は、一例として、NiとAuとがこの順序で積層されたNi/Auを用いて形成している。しかしながら、この発明は、これに限定されるものではなく、トランジスタのゲートとして機能するものであれば如何様な材料でも構わない。例えば、W,Ti,Ni,Al,Pd,Pt,Au等の金属、WN,TiN等の窒化物、それらの合金、および、それらの積層構造を用いることができる。
 また、上記ソース電極5およびドレイン電極6は、一例として、TiとAlとがこの順序で積層されたTi/Alを用いて形成している。しかしながら、この発明は、これに限定されるものではなく、電気伝導性があって、上記2DEGとオーミックコンタクトが可能であれば如何様な材料でも構わない。例えば、Ti,AlおよびTiNがこの順序で積層されたTi/Al/TiNを用いて形成してもよい。または、AlSi,AlCuおよびAuを、上記Alの代わりに用いてもよいし、上記Alの上に積層させてもよい。また、Hf/Al上にHf/Auを積層したHf/Al/Hf/Auで形成してもよい
 上記第1ゲート電極7の下部は、ノーマリーオフで動作させるために、アンドープAlGaN層4の一部が窪んだリセス形状となっている。そして、第1ゲート電極7の底面に接して、絶縁のために第3絶縁膜12を形成している。第3絶縁膜12は、一例としてシリコン窒化膜で形成しているが、シリコン酸化膜等の他の絶縁膜で形成してもよい。
 上記第2ゲート電極8の下部は、ノーマリーオンで動作させるために、第1ゲート電極7の場合とは異なり、アンドープAlGaN層4にリセス形状が形成されてはいない。第2ゲート電極8の底面に接して、絶縁のためにシリコン窒化膜でなる第4絶縁膜13を形成している。第4絶縁膜13は、一例としてシリコン窒化膜で形成しているが、シリコン酸化膜や他の絶縁膜で形成してもよい。また、ショットキー接合のために、第4絶縁膜13を形成しなくても差し支えない。
 上記上部絶縁膜としての第5絶縁膜14は、上記第1ゲート電極7の表面、第2ゲート電極8の表面、および、第1ゲート電極7と第2ゲート電極8との間を覆うように、シリコン酸化膜で形成している。ここで、第5絶縁膜14となるシリコン酸化膜は、一例として300nmの膜厚で形成している。但し、この膜厚は、第1ゲート電極7と第2ゲート電極8との間をカバレージ良く覆っていればよいので、第1ゲート電極7および第2ゲート電極8の電極厚さと電極端部の形状とを鑑みて適宜設定すればよい。
 また、上記第5絶縁膜14の比誘電率は、一例として3.9で形成しているが、第1絶縁膜10の比誘電率よりも小さい比誘電率であればよい。
 このように、第1絶縁膜10よりも比誘電率εrの小さい第5絶縁膜14を第1ゲート電極7と第2ゲート電極8との間に形成することによって、上記式(1)および式(2)から解るように、ノーマリーオフで動作する第1ゲート電極7とノーマリーオンで動作する第2ゲート電極8との間の寄生容量Cを小さく(つまり、インピーダンス|Z|を大きく)することが可能になる。
 したがって、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8がノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
 尚、上記第5絶縁膜14は、一例としてシリコン酸化膜を用いて形成されているが、上述した理由により、比誘電率が第1絶縁膜10よりも小さい絶縁膜であればよく、例えばSiOF,SiOC等を用いることが可能である。
 また、本実施の形態においては、上記第5絶縁膜14を、第1ゲート電極7と第2ゲート電極8との間の全体を覆うように形成しているが、この発明では必ずしもその必要はない。要は、第1ゲート電極7と第2ゲート電極8との間の寄生容量Cを、所定の容量値まで低減できる程度の範囲で形成されていればよいのである。
 その後、上述のようにして形成された窒化物半導体素子に対して、適宜に層間絶縁膜工程や配線工程(配線図は、図2に簡略化して示す)を行い、ソース電極5と第2ゲート電極8とを接続してカスコード接続を形成することによって、ノーマリーオンで動作し、高周波動作時にも動作が安定した窒化物半導体装置を1チップで構成可能となる。すなわち、チップコストの低減およびパッケージサイズの縮小も同時に実現できるのである。
 以上のごとく、上記実施の形態によれば、Si基板1上に、アンドープGaN層3とアンドープAlGaN層4とを順に形成してなる窒化物半導体層9が形成されている。そして、窒化物半導体層9上に、または、窒化物半導体層9内に少なくとも下部が挿入されて、互いに間隔をおいてソース電極5およびドレイン電極6が形成されている。さらに、ソース電極5とドレイン電極6との間における窒化物半導体層9上にノーマリーオフで動作する第1ゲート電極7が形成されている。また、第1ゲート電極7とドレイン電極6との間における窒化物半導体層9上に、ノーマリーオンで動作する第2ゲート電極8が形成されている。
 そして、上記第2ゲート電極8と上記ドレイン電極6の間における窒化物半導体層9上に、電流コラプス現象抑制用の第1絶縁膜10aが形成されている。また、第1ゲート電極7と第2ゲート電極8との間の少なくとも一部に、第1絶縁膜10aよりも比誘電率が小さい第5絶縁膜14を形成している。
 そして、上記ソース電極5と第2ゲート電極8とを接続して、ノーマリーオフで動作するトランジスタとノーマリーオンで動作するトランジスタをカスコード接続している。
 したがって、上記第2ゲート電極8とドレイン電極6の間における窒化物半導体層9上に形成された第1絶縁膜10aによって、電流コラプス現象を抑制することができる。
 さらに、上記第1ゲート電極7と第2ゲート電極8との間に第1絶縁膜10aよりも比誘電率が小さい第5絶縁膜14を形成することによって、両ゲート電極7,8間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。その結果、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8がノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
 すなわち、上記実施の形態によれば、上記電流コラプス現象を抑制すると共に、高周波動作時に、ノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定になるのを防止することができるのである。
 ・第2実施の形態
 図2は、本実施の形態の窒化物半導体装置におけるソース電極5,第1ゲート電極7,第2ゲート電極8およびドレイン電極6を通る断面模式図である。
 尚、本実施の形態における基本構成は、上記第1実施の形態の構成と同様である。そこで、本実施の形態においては、上記第1実施の形態に対応する部材には同じ番号を付して詳細な説明は省略する。以下、上記第1実施の形態とは異なる点について説明する。
 上記第1実施の形態においては第2絶縁膜11をシリコン窒化膜で形成しているが、本実施の形態においてはシリコン窒化膜よりも比誘電率が低いシリコン酸化膜で形成している。尚、第2絶縁膜11の膜厚は150nmとしているが、膜厚50nm~300nmであればよい。また、第2絶縁膜11の比誘電率は3.9としているが、第1絶縁膜10の比誘電率より小さければ差し支えない。
 以上のように、上記第1絶縁膜10よりも比誘電率εrの小さい絶縁膜を第1ゲート電極7と第2ゲート電極8との間に形成することによって、上記式(1)および上記式(2)から解るように、第1ゲート電極7と第2ゲート電極8との間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することが可能となり、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8がノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、素子の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
 尚、上記第2絶縁膜11は、一例としてシリコン酸化膜を用いて形成されているが、上述した理由により、比誘電率が第1絶縁膜10よりも小さい絶縁膜であればよく、例えばSiOF,SiOC等を用いることが可能である。
 第5絶縁膜14は、上記第1ゲート電極7の表面、第2ゲート電極8の表面、および、第1ゲート電極7と第2ゲート電極8との間を覆うように、シリコン酸化膜で形成している。ここで、第5絶縁膜14となるシリコン酸化膜は、一例として300nmの膜厚で形成している。但し、この膜厚は、第1ゲート電極7と第2ゲート電極8との間をカバレージ良く覆っていればよいので、第1ゲート電極7および第2ゲート電極8の電極厚さと電極端部の形状とを鑑みて適宜設定すればよい。
 その後、上述のようにして形成された窒化物半導体素子に対して、適宜に層間絶縁膜工程や配線工程を行う。配線工程においては、図2に示すように、ソース電極5とソース端子15とをソース配線16で接続し、ソース配線16と第2ゲート電極8とをカスコード配線17で接続する。また、第1ゲート電極7と第1ゲート端子18とをゲート配線19で接続する。さらに、ドレイン電極6とドレイン端子20とをドレイン配線21で接続する。
 こうして、上記ソース電極5と第2ゲート電極8とを接続してカスコード接続を形成することによって、ノーマリーオンで動作し、高周波動作時にも動作が安定した窒化物半導体装置を1チップで構成可能となる。すなわち、チップコストの低減およびパッケージサイズの縮小も同時に実現できるのである。
 以上のごとく、本実施の形態においては、上記第5絶縁膜14に加えて、第2絶縁膜11においても比誘電率の小さな膜を形成するようにしている。したがって、第1ゲート電極7と第2ゲート電極8との間の寄生容量Cを上記第1実施の形態の場合よりもさらに小さく(インピーダンス|Z|をさらに大きく)することが可能になる。
 すなわち、本実施の形態によれば、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8が、ノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定(電流値の変動など)になることを上記第1実施の形態の場合よりもさらに抑制することが可能になる。
 ・第3実施の形態
 本実施の形態における基本構成は、上記第2実施の形態の構成と同様である。そこで、本実施の形態においては、上記第2実施の形態に対応する部材には同じ番号を付して詳細な説明は省略する。以下、図2に従って、上記第2実施の形態とは異なる点について説明する。
 上記第2実施の形態においては第5絶縁膜14をシリコン酸化膜で形成しているが、本実施の形態においてはシリコン酸化膜よりも比誘電率の高いシリコン窒化膜で形成している。そして、上記第2実施の形態においては3.9であった比誘電率を、本実施の形態においては第1絶縁膜10と同じ7.5で形成している。しかしながら、第5絶縁膜14の比誘電率は、7.5に限定されるものではない。6.5~9.0の範囲内であればよく、7.5~8.5が望ましい。その理由は、第5絶縁膜14をシリコン窒化膜として第2ゲート電極8を比誘電率の高い膜で覆うことにより、第2ゲート電極8の周辺の電界強度を低減することができ、耐圧を向上することができる。その一方で、比誘電率が高くなり過ぎると膜中および膜界面でリークが生ずるためである。
 尚、本実施の形態においては、上記第5絶縁膜14を、シリコン窒化膜で形成しているが、シリコン酸窒化膜やアルミナ等で形成してもよい。
 その後、上述のようにして形成された窒化物半導体素子に対して、適宜に層間絶縁膜工程や配線工程(配線図を、図2に簡略化して示す)を行い、ソース電極5と第2ゲート電極8とを接続してカスコード接続を形成することによって、ノーマリーオンで動作し、高周波動作時にも動作が安定した窒化物半導体装置を1チップで構成可能となる。すなわち、チップコストの低減およびパッケージサイズの縮小も同時に実現できるのである。
 この発明は、上記ノーマリーオンで動作する窒化物半導体素子とノーマリーオフで動作する窒化物半導体素子とをカスコード接続してなる窒化物半導体装置において、両素子のゲート電極間の寄生容量を低下させることによって、高周波動作時の当該窒化物半導体装置の動作の安定性確保に関するものである。そのために、上記各実施の形態のように、第1ゲート電極7について、ノーマリーオフで動作させるために、第1ゲート電極7下部の窒化物半導体層9には上記リセスを形成し、このリセス内に第3絶縁膜12を形成している。しかしながら、上述の構造は、飽くまでも一例であって、ノーマリーオフ動作することが可能な構造であれば如何様な構造であってもよい。
 例えば、上記第3絶縁膜12としてシリコン酸化膜を用いているが、シリコン窒化膜やアルミナ等の絶縁性を有する物質であれば差し支えない。
 また、上記アンドープAlGaN層4上にp型半導体を形成して、第1ゲート電極7下のポテンシャルを持ち上げることによって、ノーマリーオフ動作を実現する構造でも構わない。
 また、ノーマリーオン構造部分の形成方法やその構造、各電極の材料や形成方法、窒化物半導体層の材料、膜構成、形成方法等において、何ら限定を加えるものではない。
 以上を纏めると、この発明の窒化物半導体装置は、
 ヘテロ接合を含む窒化物半導体層9と、
 上記窒化物半導体層9上に、または、上記窒化物半導体層9内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極5およびドレイン電極6と、
 上記ソース電極5と上記ドレイン電極6との間における上記窒化物半導体層9上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子101の第1ゲート電極7と、
 上記第1ゲート電極7と上記ドレイン電極6の間における上記窒化物半導体層9上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子102の第2ゲート電極8と、
 上記第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に形成された下部絶縁膜10と
を備え、
 上記第1トランジスタ素子101と上記第2トランジスタ素子102とはカスコード接続されており、
 上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14が形成されている
ことを特徴としている。
 ここで、「上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14が形成されている」とは、上記第1ゲート電極7と上記第2ゲート電極8との間の一部、または、上記第1ゲート電極7と上記第2ゲート電極8との間の全部に、上部絶縁膜14が形成されていることを意味する。例えば図3~図6のいずれか一つの状態が、「上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14が形成されている」状態に相当する。
 上記構成によれば、同一窒化物半導体層9上に形成された上記第1トランジスタ素子101と上記第2トランジスタ素子102とをカスコード接続すると共に、上記第2トランジスタ素子102の上記第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に下部絶縁膜10を形成している。したがって、上記下部絶縁膜10の比誘電率を6.5~9.0(望ましくは7.5~8.5)の範囲内に設定すれば、上記下部絶縁膜10によって、電流コラプス現象を抑制することができる。
 さらに、上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14を形成しているので、両ゲート電極7,8間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。したがって、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極8が、ノーマリーオフで動作する上記第1ゲート電極7に入力されたゲート信号の影響を受けて、上記ノーマリーオン素子102の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
 また、一実施の形態の窒化物半導体装置では、
 上記下部絶縁膜10は、上記ソース電極5と上記第1ゲート電極7との間、および、上記第1ゲート電極7と上記第2ゲート電極8との間における上記窒化物半導体層9の表面にも形成されている。
 この実施の形態によれば、上記ソース電極5と上記第1ゲート電極7との間、および、上記第1ゲート電極7と上記第2ゲート電極8との間、における上記窒化物半導体層9の表面に形成された上記下部絶縁膜10は、デバイス作製プロセス中に上記窒化物半導体層9の表面が露出するのを防止することができる。したがって、上記窒化物半導体層9の表面を安定化させ、素子の特性を安定化させることができる。
 また、一実施の形態の窒化物半導体装置では、
 上記下部絶縁膜10は、シリコン窒化膜である。
 この実施の形態によれば、上記下部絶縁膜10を比誘電率が大きいシリコン窒化膜で形成している。したがって、上記下部絶縁膜10の比誘電率を6.5~9.0(望ましくは7.5~8.5)の範囲内に容易に設定することができ、上記下部絶縁膜10によって、電流コラプス現象を抑制することができる。
 また、一実施の形態の窒化物半導体装置では、
 上記第1ゲート電極7と上記第2ゲート電極8の間における上記窒化物半導体層9上に形成されたゲート電極間絶縁膜11cを備え、
 上記ゲート電極間絶縁膜11cは、シリコン酸化膜である。
 この実施の形態によれば、上記ゲート電極間絶縁膜11cをシリコン窒化膜よりも比誘電率が低いシリコン酸化膜で形成している。したがって、上記上部絶縁膜14に加えて比誘電率の小さい絶縁膜を上記第1ゲート電極7と上記第2ゲート電極8との間に追加形成することにより、両ゲート電極7,8間の寄生容量Cをさらに小さく(インピーダンス|Z|をさらに大きく)することができる。したがって、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極8が、ノーマリーオフで動作する上記第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子102の動作が不安定(電流値の変動など)になることをより効果的に抑制することが可能になる。
 なお、上記ゲート電極間絶縁膜11cは、上記第1ゲート電極7と上記第2ゲート電極8の間における上記窒化物半導体層9の表面に接するように形成してもよいし、その表面上に他の層を介して形成してもよい。
 また、この発明の窒化物半導体装置は、
 ヘテロ接合を含む窒化物半導体層9と、
 上記窒化物半導体層9上に、または、上記窒化物半導体層9内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極5およびドレイン電極6と、
 上記ソース電極5と上記ドレイン電極6との間における上記窒化物半導体層9上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子101の第1ゲート電極7と、
 上記第1ゲート電極7と上記ドレイン電極6の間における上記窒化物半導体層9上に配置されると共に、ノーマリーオンで動作するノーマリーオン素子102の第2ゲート電極8と、
 上記第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に形成された下部絶縁膜10と、
 上記第1トランジスタ素子101と上記ノーマリーオン素子102とはカスコード接続されており、
 上記第1ゲート電極7と上記第2ゲート電極8との間における上記窒化物半導体層9上に形成されたゲート電極間絶縁膜11cと、
 少なくとも上記第2ゲート電極8上を覆うように形成された上部絶縁膜14と
を備え、
 上記下部絶縁膜10は、シリコン窒化膜であり、
 上記ゲート電極間絶縁膜11cは、シリコン酸化膜であり、
 上記上部絶縁膜14は、シリコン窒化膜である
ことを特徴としている。
 上記構成によれば、同一窒化物半導体層9上に形成された上記第1トランジスタ素子101と上記第2トランジスタ素子102とをカスコード接続すると共に、上記ノーマリーオン素子102の第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に、比誘電率の高いシリコン窒化膜でなる上記下部絶縁膜10を形成している。したがって、上記下部絶縁膜10の比誘電率を6.5~9.0(望ましくは7.5~8.5)の範囲内に設定することができ、上記下部絶縁膜10によって、電流コラプス現象を抑制することができる。
 さらに、上記第1ゲート電極7と上記第2ゲート電極8との間における上記窒化物半導体層9上に、シリコン窒化膜よりも比誘電率の低いシリコン酸化膜でなる上記ゲート電極間絶縁膜11cを形成している。したがって、上記両ゲート電極7,8間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。そのために、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極8が、ノーマリーオフで動作する上記第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子102の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
 さらに、少なくとも上記第2ゲート電極8上を覆うように、比誘電率の高いシリコン窒化膜でなる上記上部絶縁膜14を形成している。したがって、上記第2ゲート電極8の周辺の電界強度を低減することができ、耐圧を向上することができる。
 なお、上記ゲート電極間絶縁膜11cは、上記第1ゲート電極7と上記第2ゲート電極8の間における上記窒化物半導体層9の表面に接するように形成してもよいし、その表面上に他の層を介して形成してもよい。
 1…Si基板
 2…バッファ層
 3…アンドープGaN層
 4…アンドープAlGaN層
 5…ソース電極
 6…ドレイン電極
 7…第1ゲート電極
 8…第2ゲート電極
 9…窒化物半導体層
10(10a,10b,10c)…第1絶縁膜
11(11a,11b,11c)…第2絶縁膜
12…第3絶縁膜
13…第4絶縁膜
14…第5絶縁膜
15…ソース端子
16…ソース配線
17…カスコード配線
18…第1ゲート端子
19…ゲート配線
20…ドレイン端子
21…ドレイン配線
101…ノーマリーオフ型トランジスタ
102…ノーマリーオン型トランジスタ

Claims (5)

  1.  ヘテロ接合を含む窒化物半導体層と、
     上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
     上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
     上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
     上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と
    を備え、
     上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
     上記第1ゲート電極と上記第2ゲート電極との間の少なくとも一部に、上記下部絶縁膜よりも比誘電率が小さい上部絶縁膜が形成されている
    ことを特徴とする窒化物半導体装置。
  2.  請求項1に記載の窒化物半導体装置において、
     上記下部絶縁膜は、上記ソース電極と上記第1ゲート電極との間、および、上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層の表面にも形成されている
    ことを特徴とする窒化物半導体装置。
  3.  請求項1または請求項2に記載の窒化物半導体装置において、
     上記下部絶縁膜は、シリコン窒化膜である
    ことを特徴とする窒化物半導体装置。
  4.  請求項1から請求項3までの何れか一つに記載の窒化物半導体装置において、
     上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜を備え、
     上記ゲート電極間絶縁膜は、シリコン酸化膜である
    ことを特徴とする窒化物半導体装置。
  5.  ヘテロ接合を含む窒化物半導体層と、
     上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
     上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
     上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
     上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と、
     上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
     上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜と、
     少なくとも上記第2ゲート電極上を覆うように形成された上部絶縁膜と
    を備え、
     上記下部絶縁膜は、シリコン窒化膜であり、
     上記ゲート電極間絶縁膜は、シリコン酸化膜であり、
     上記上部絶縁膜は、シリコン窒化膜である
    ことを特徴とする窒化物半導体装置。
PCT/JP2015/078762 2015-03-25 2015-10-09 窒化物半導体装置 WO2016151905A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-062597 2015-03-25
JP2015062597A JP2018081943A (ja) 2015-03-25 2015-03-25 窒化物半導体装置

Publications (1)

Publication Number Publication Date
WO2016151905A1 true WO2016151905A1 (ja) 2016-09-29

Family

ID=56978776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078762 WO2016151905A1 (ja) 2015-03-25 2015-10-09 窒化物半導体装置

Country Status (2)

Country Link
JP (1) JP2018081943A (ja)
WO (1) WO2016151905A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271283B2 (ja) * 2019-04-16 2023-05-11 株式会社日本マイクロニクス 検査用接続装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007589A1 (ja) * 2005-07-08 2007-01-18 Nec Corporation 電界効果トランジスタおよびその製造方法
JP2011204993A (ja) * 2010-03-26 2011-10-13 Panasonic Corp 双方向スイッチ素子及びそれを用いた双方向スイッチ回路
JP2013062494A (ja) * 2011-08-24 2013-04-04 Sanken Electric Co Ltd 窒化物半導体装置
JP2013069785A (ja) * 2011-09-21 2013-04-18 Toshiba Corp 窒化物半導体装置
JP2013211461A (ja) * 2012-03-30 2013-10-10 Sumitomo Electric Device Innovations Inc 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007589A1 (ja) * 2005-07-08 2007-01-18 Nec Corporation 電界効果トランジスタおよびその製造方法
JP2011204993A (ja) * 2010-03-26 2011-10-13 Panasonic Corp 双方向スイッチ素子及びそれを用いた双方向スイッチ回路
JP2013062494A (ja) * 2011-08-24 2013-04-04 Sanken Electric Co Ltd 窒化物半導体装置
JP2013069785A (ja) * 2011-09-21 2013-04-18 Toshiba Corp 窒化物半導体装置
JP2013211461A (ja) * 2012-03-30 2013-10-10 Sumitomo Electric Device Innovations Inc 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2018081943A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
US9082691B2 (en) Nitride semiconductor device
US9911843B2 (en) Semiconductor device
US9406792B2 (en) Semiconductor device having GaN-based layer
US9431391B2 (en) Gallium nitride hemt device with a mosfet in series coupled to diodes for protection of high-voltage
US9754932B2 (en) Semiconductor device
US20160351676A1 (en) Semiconductor device
US20170352753A1 (en) Field-effect transistor
US20170345920A1 (en) Field-effect transistor
KR101636134B1 (ko) 반도체 장치
JP2006073802A (ja) 窒化物含有半導体装置
JP2007180143A (ja) 窒化物半導体素子
US9178059B2 (en) Semiconductor device
TW201421648A (zh) 半導體裝置
KR102100928B1 (ko) 고전자 이동도 트랜지스터
WO2019003746A1 (ja) 半導体装置
TWI626742B (zh) 半導體裝置
US20110204380A1 (en) Nitride-based fet
JP2015220430A (ja) 電界効果トランジスタ
CN110911483A (zh) 半导体装置
WO2012144100A1 (ja) 窒化物系半導体装置
TW201909279A (zh) 氮化物半導體元件
CN106373996B (zh) 半导体装置
JP6552925B2 (ja) 半導体装置
WO2016151905A1 (ja) 窒化物半導体装置
JP6261291B2 (ja) GaN系電界効果トランジスタおよび窒化物半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15886457

Country of ref document: EP

Kind code of ref document: A1