JP2018081943A - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
JP2018081943A
JP2018081943A JP2015062597A JP2015062597A JP2018081943A JP 2018081943 A JP2018081943 A JP 2018081943A JP 2015062597 A JP2015062597 A JP 2015062597A JP 2015062597 A JP2015062597 A JP 2015062597A JP 2018081943 A JP2018081943 A JP 2018081943A
Authority
JP
Japan
Prior art keywords
gate electrode
nitride semiconductor
insulating film
electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015062597A
Other languages
English (en)
Inventor
大佑 栗田
Daisuke Kurita
大佑 栗田
福見 公孝
Kimitaka Fukumi
公孝 福見
哲三 永久
Tetsuzo Nagahisa
哲三 永久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015062597A priority Critical patent/JP2018081943A/ja
Priority to PCT/JP2015/078762 priority patent/WO2016151905A1/ja
Publication of JP2018081943A publication Critical patent/JP2018081943A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8236Combination of enhancement and depletion transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/095Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】高周波動作時にノーマリーオフ側のゲート電極にゲート信号を入力した際に、ノーマリーオン側のゲート電極の動作が不安定になることを抑制する。【解決手段】窒化物半導体装置は、ソース電極(5)およびドレイン電極(6)と、第1トランジスタ素子(101)の第1ゲート電極(7)と、第2トランジスタ素子(102)の第2ゲート電極(8)と、上記第2ゲート電極(8)と上記ドレイン電極(6)との間における上記窒化物半導体層(9)の表面に形成された下部絶縁膜(10)とを備え、上記第1トランジスタ素子(101)と上記第2トランジスタ素子(102)とはカスコード接続されており、上記第1ゲート電極(7)と上記第2ゲート電極(8)との間の少なくとも一部を覆うと共に、上記下部絶縁膜(10)よりも比誘電率が小さい上部絶縁膜(14)が形成されている。【選択図】図1

Description

この発明は、HFET(heterostructure field-effect transistor:ヘテロ構造電界効果トランジスタ)構造を有する窒化物半導体装置に関する。
現在、上記HFET構造を有する窒化物半導体装置においては、実用レベルではノーマリーオン(ゲート電圧0Vでオン状態となる)動作を行うようになっているのが一般的である。しかしながら、ゲート電圧の制御が異常になった場合でも電流が流れず、安全に動作させることが可能なノーマリーオフ(ゲート電圧0Vでオフ状態となる)動作が強く望まれている。
ところが、上記ノーマリーオフ動作を実現できたとしてもゲート耐圧は数十Vと低い。そのために、パワーデバイス分野においては数百V以上のゲート耐圧が求められるのに対して、十分なゲート耐圧を実現するのが非常に困難である。
そこで、上記ノーマリーオン動作の窒化物半導体素子と、ノーマリーオフ動作のMOS(Metal-Oxide-Semiconductor:金属酸化膜半導体)素子との二つのチップを用い、樹脂パッケージ内で上記二つのチップをカスコード接続とする方法や、特許第5548909号(特許文献1),特開2002‐016245号公報(特許文献2)および特開2013‐69785号公報(特許文献3)に開示された半導体装置のように、高耐圧且つノーマリーオン動作のゲート部と低耐圧且つノーマリーオフ動作のゲート部とを用いて、窒化物半導体単体とその配線とでカスコード接続を構成することにより、ノーマリーオフ動作を実現する方法が提案されている。
例えば、上記特許文献1に開示された窒化物系半導体装置においては、ドレイン電極とゲート電極(ノーマリーオフ動作のゲート電極に相当)の間に設けられたSBD(Schottky Barrier Diode:ショットキーバリアダイオード)金属電極(キャリア輸送電極)(ノーマリーオン動作のゲート電極に相当)とソース電極とが接続されている。そして、上記ソース電極から上記ゲート電極下に位置するリセス部の下部領域に到るまでのゲート絶縁膜の下部領域には、上記ソース電極に接続されたnAlGaN層およびnGaN層(第1のn層)が形成される一方、上記リセス部の下部領域から上記SBD金属電極の手前に到るまでの上記ゲート絶縁膜の下部領域には、上記SBD金属電極に接続されていないnAlGaN層およびnGaN層(第2のn層)が形成されている。
このように、上記ゲート絶縁膜の下部領域にn領域が設けられていることによって、上記ゲート絶縁膜の側壁部分(上記リセス部の側壁部)がチャネル領域となっている。そのために、当該側壁部分を伝わって流れる抵抗成分を除去することができ、MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させることができる。
また、上記特許文献2に開示された半導体装置では、GaN層でなる動作層とAlGaN層でなる電子供給層とのヘテロ接合面に、AlGaN層のAl組成を変えることによって二次元電子ガス層の電子濃度が相対的に濃く調整された第1のヘテロ接合面と相対的に薄く調整された第2のヘテロ接合面との2つのヘテロ接合面が設けられている。
そして、上記電子濃度が相対的に薄く調整された第2のヘテロ接合面上には、ゲート電極が形成されている。さらに、電子濃度が相対的に濃く調整されて上記第2のヘテロ接合面の両側に位置する第1のヘテロ接合面上には、ソース電極およびドレイン電極が形成されている。
このように、上記ゲート電極下のチャネル濃度を下げてゲート‐ドレイン耐圧の向上を図り、上記ドレイン電極と上記ソース電極との間の距離を長く確保して高い耐圧を得ながら、オン抵抗の増大の抑制している。こうして、ノーマリーオフで動作すると共に、高い耐圧と低いオン抵抗とを備えた半導体装置を実現している。
また、上記特許文献3に開示された窒化物半導体装置では、基板上に形成されたGaN電子走行層およびAlGaN電子供給層で成る窒化物半導体層上に、ソース電極,第1のゲート電極,ショットキー電極,第2のゲート電極およびドレイン電極が形成されている。そして、上記第1のゲート電極は、ノーマリーオフ型FETのゲート電極であり、上記ソース電極と上記ドレイン電極との間に設けられている。また、上記ショットキー電極は、上記第1のゲート電極と上記ドレイン電極との間に設けられている。また、上記第2のゲート電極は、ノーマリーオン型FETのゲート電極であり、上記ショットキー電極と上記ドレイン電極との間に設けられている。
上記構造を取ることによって、上記ショットキー電極をアノードとし、上記AlGaN電子供給層をカソードとするショットキーバリアダイオードでなる還流ダイオードの順方向電圧を低くでき、高耐圧で低オン抵抗のノーマリーオフ型半導体装置を実現することができる。
特許第5548909号 特開2002‐016245号公報 特開2013‐69785号公報
しかしながら、上記従来の特許文献1〜特許文献3に開示された半導体装置には、以下のような問題がある。
すなわち、ノーマリーオン動作のゲート部とノーマリーオフ動作のゲート部とを用いたHFETからなるカスコード接続においては、高周波動作をさせるためにノーマリーオフで動作するゲート電極にゲート信号を入力した際に、上記ノーマリーオフで動作するゲート電極と上記ノーマリーオンで動作するゲート電極との間の寄生容量Cが大きい(インピーダンス|Z|が小さい)場合には、ノーマリーオン側のゲート電極がノーマリーオフ側の上記ゲート信号の影響を受けて、素子の動作が不安定(電流値の変動など)になってしまうという新たな問題が生ずる。
この問題は、ノーマリーオン動作の窒化物半導体素子とノーマリーオフ動作のMOSの素子との二つのチップを用いて上記両チップ間でカスコード接続した場合には、上記両素子における各ゲート電極間の距離が十分離れているために、生ずることにはならない。
ところが、上記特許文献1〜特許文献3に開示された従来の半導体装置のごとく、同一の窒化物半導体上にノーマリーオフのトランジスタ素子とノーマリーオンのトランジスタ素子とを形成し、同一のチップ内でカスコード接続を行う場合には、ノーマリーオフで動作するゲート電極とノーマリーオンで動作するゲート電極が近接する。
上記ノーマリーオフで動作するゲート電極と上記ノーマリーオンで動作するゲート電極との間のインピーダンス|Z|と寄生容量Cとの関係を、次式(1)に示す。また、上記寄生容量Cと上記両ゲート電極間の距離dとの関係を、次式(2)に示す。
|Z|=1/(ωC)=1/(2πfC) …(1)
C=(εrε0S)/d …(2)
ここで、Z : インピーダンス
ω : 角周波数
f : 周波数
C : 静電容量(寄生容量)
εr : 比誘電率
ε0 : 真空の誘電率
S : 面積
d : 間隔(距離)
上記式(2)から分かるように、上記両ゲート電極間の距離dが小さい場合には上記両ゲート電極間の寄生容量Cが大きくなる。そうすると、上記式(1)から分かるように、ゲート電極との間のインピーダンス|Z|が小さくなる。そのために、上記特許文献1〜特許文献3に開示された従来の半導体装置のごとく、同一の窒化物半導体上にノーマリーオフのトランジスタ素子とノーマリーオンのトランジスタ素子とを形成し、同一のチップ内でカスコード接続を行う場合のように、ノーマリーオフで動作するゲート電極とノーマリーオンで動作するゲート電極が近接する場合には、ノーマリーオン側のゲート電極がノーマリーオフ側の上記ゲート信号の影響を受けて、素子の動作が不安定(電流値の変動など)になってしまうのである。
しかしながら、上記特許文献1および上記特許文献2に開示された半導体装置においては、ノーマリーオフ側のゲート電極とノーマリーオン側のゲート電極との間には、特に素子の動作を安定化させる対策は、実施されていない。
また、上記特許文献3に開示された半導体装置においては、ノーマリーオフ側のゲート電極とノーマリーオン側のゲート電極間に存在する層間絶縁膜が、シリコン酸化膜,シリコン窒化膜,シリコン酸窒化膜,アルミナ等の絶縁体の膜でなるとの記述があるのみで、詳細な記述はない。さらに、比誘電率がシリコン窒化膜よりも高いアルミナでもよいとの記載があることから、上記寄生容量Cを小さくするという上記問題に対する具体的な対策とはなっていない。
そこで、この発明の課題は、同一の窒化物半導体にノーマリーオフの第1トランジスタ素子とノーマリーオンの第2トランジスタ素子とが形成されると共に、チップ内でカスコード接続が行われる窒化物半導体装置であって、高周波動作時にノーマリーオフ側のゲート電極にゲート信号を入力した際に、ノーマリーオン側のゲート電極の動作が不安定(電流値の変動など)になることを抑制できる窒化物半導体装置を提供することにある。
上記課題を解決するため、この発明の窒化物半導体装置は、
ヘテロ接合を含む窒化物半導体層と、
上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と
を備え、
上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
上記第1ゲート電極と上記第2ゲート電極との間の少なくとも一部に、上記下部絶縁膜よりも比誘電率が小さい上部絶縁膜が形成されている
ことを特徴としている。
また、一実施の形態の窒化物半導体装置では、
上記下部絶縁膜は、上記ソース電極と上記第1ゲート電極との間、および、上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層の表面にも形成されている。
また、一実施の形態の窒化物半導体装置では、
上記下部絶縁膜は、シリコン窒化膜である。
また、一実施の形態の窒化物半導体装置では、
上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜を備え、
上記ゲート電極間絶縁膜は、シリコン酸化膜である。
また、この発明の窒化物半導体装置は、
ヘテロ接合を含む窒化物半導体層と、
上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と、
上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜と、
少なくとも上記第2ゲート電極上を覆うように形成された上部絶縁膜と
を備え、
上記下部絶縁膜は、シリコン窒化膜であり、
上記ゲート電極間絶縁膜は、シリコン酸化膜であり、
上記上部絶縁膜は、シリコン窒化膜である
ことを特徴としている。
以上より明らかなように、第1の発明の窒化物半導体装置は、同一窒化物半導体層上に形成された第1トランジスタ素子と第2トランジスタ素子とをカスコード接続すると共に、上記ノーマリーオン素子の第2ゲート電極とドレイン電極との間における窒化物半導体層の表面に下部絶縁膜を形成している。したがって、上記下部絶縁膜の比誘電率を6.5〜9.0(望ましくは7.5〜8.5)の範囲内に設定すれば、上記下部絶縁膜によって、電流コラプス現象を抑制することができる。
さらに、上記第1トランジスタ素子の第1ゲート電極と上記第2トランジスタの第2ゲート電極との間の少なくとも一部を、上記下部絶縁膜よりも比誘電率が小さい上部絶縁膜で覆っているので、両ゲート電極間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。したがって、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極が、ノーマリーオフで動作する上記第1ゲート電極に入力されたゲート信号の影響を受けて、上記ノーマリーオン素子の動作が不安定になることを抑制することが可能になる。
また、第2の発明の窒化物半導体装置は、同一窒化物半導体層上に形成された第1トランジスタ素子と第2トランジスタ素子とをカスコード接続すると共に、上記第2トランジスタの第2ゲート電極とドレイン電極との間における窒化物半導体層の表面に、比誘電率の高いシリコン窒化膜でなる下部絶縁膜を形成している。したがって、上記下部絶縁膜の比誘電率を6.5〜9.0(望ましくは7.5〜8.5)の範囲内に設定することができ、上記下部絶縁膜によって、電流コラプス現象を抑制することができる。
さらに、上記第1トランジスタの第1ゲート電極と上記第2トランジスタの第2ゲート電極との間における上記窒化物半導体層上に、シリコン窒化膜よりも比誘電率が小さいシリコン酸化膜でなるゲート電極間絶縁膜を形成している。したがって、上記両ゲート電極間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。そのために、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極が、ノーマリーオフで動作する上記第1ゲート電極に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定になることを抑制することが可能になる。
さらに、少なくとも上記第2ゲート電極上を覆うように、比誘電率の高いシリコン窒化膜でなる上部絶縁膜を形成している。したがって、上記第2ゲート電極の周辺の電界強度を低減することができ、耐圧を向上することができる。
この発明の窒化物半導体装置の第1実施の形態における断面模式図である。 第2実施の形態における断面模式図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。 この発明の上部絶縁膜の形成箇所の一例を説明するための模式断面図である。
以下、この発明を図示の実施の形態により詳細に説明する。
・第1実施の形態
図1は、本実施の形態の窒化物半導体装置におけるソース電極5,第1ゲート電極7,第2ゲート電極8およびドレイン電極6を通る断面模式図である。
上記窒化物半導体装置は、図1に示すように、上記第1トランジスタ素子としてのノーマリーオフ型トランジスタ101と、上記第2トランジスタ素子としてのノーマリーオン型トランジスタ型トランジスタ102とを備えている。この窒化物半導体装置では、Si基板1上に、バッファ層2を介して、アンドープGaN層3とアンドープAlGaN層4とを順に形成している。アンドープGaN層3とアンドープAlGaN層4との界面に、2DEG(two dimensional electron gas:2次元電子ガス)が発生する。ここで、アンドープGaN層3とアンドープAlGaN層4とは、窒化物半導体層9を構成し、上記窒化物半導体層の一例である。
また、本実施の形態においては、一例としてアンドープAlGaN層4の膜厚を30nmとしている。しかしながら、アンドープAlGaN層4の膜厚は、アンドープGaN層3とアンドープAlGaN層4との界面に上記2DEGが発生するように設定すればよく、数nm〜50nmの範囲で形成することが可能である。
尚、上記基板1は、Si基板に限らず、サファイア基板やSiC基板を用いてもよく、サファイア基板やSiC基板上に窒化物半導体層を成長させてもよい。または、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。
また、上記アンドープGaN層3とアンドープAlGaN層4との間に、層厚1nm程度のAlN層をヘテロ改善層として形成してもよい。また、AlGaN層4上にGaNキャップ層を形成してもよい。
上記アンドープAlGaN層4を貫通してアンドープGaN層3内に達する二つのリセスが、予め定められた間隔を開けて形成され、この二つのリセスにソース電極5とドレイン電極6とが形成されている。また、ソース電極5とドレイン電極6との間には、ノーマリーオフ型トランジスタ101の第1ゲート電極7を形成している。また、第1ゲート電極7とドレイン電極6との間には、ノーマリーオン型トランジスタ型トランジスタ102の第2ゲート電極8を形成している。より詳しくは、ノーマリーオフ型トランジスタ101は、ソース電極7および第1ゲート電極7の下側に設けられた窒化物半導体層9を有している。また、ノーマリーオン型トランジスタ102は、ドレイン電極6および第2ゲート電極8の下側に設けられた窒化物半導体層9を有する。そして、第1ゲート電極7と第2ゲート電極7の間の下側に設けられた窒化物半導体層9は、ノーマリーオフ型トランジスタ101とノーマリーオン型トランジスタ102の共有部となる。
尚、上記リセスを形成せずに、アンドープAlGaN層4上にソース電極5とドレイン電極6を形成してもよい。その場合には、アンドープAlGaN層4の厚さを例えば20nmとして、ソース電極5とドレイン電極6とをアニールすることによってオーミックコンタクトが可能になる。また、アンドープAlGaN層4の厚さを例えば30nmとして、アンドープAlGaN層4のオーミックコンタクト部分に予めSiドープをしてn型化させることによって、ソース電極とドレイン電極とのオーミックコンタクトを可能にしてもよい。
上記ドレイン電極6と第2ゲート電極8との間における窒化物半導体層9の表面に接するように、上記下部絶縁膜のとしての第1絶縁膜10aが形成されている。第1絶縁膜10aは、電流コラプス抑制のために用いられ、シリコン窒化膜で形成している。ここで、電流コラプス現象とは、印加電圧の増加に伴って、オン抵抗が増加し、飽和電流が減少してしまう現象のことである。この電流コラプス現象は、GaN系パワーデバイスにおいて課題となっている。
尚、本実施の形態においては、一例として、上記第1絶縁膜10aを膜厚50nmで形成したが、膜厚は5nm〜100nmの範囲内であれば差し支えない。また、第1絶縁膜10aの比誘電率は7.5で形成したが、6.5〜9.0の範囲内であればよく、7.5〜8.5がより望ましい。上記比誘電率は、小さ過ぎると上記コラプス抑制効果が低減し、大き過ぎると窒化物半導体層9との界面でリークしてしまうからである。尚、本実施の形態においては、第1絶縁膜10aとしてシリコン窒化膜を用いているが、シリコン酸窒化膜を用いてもよい。
上記電流コラプス現象は、ゲート電極とドレイン電極間で発生する電子のトラップが支配的と言われている。そのために、本実施の形態においては、ノーマリーオンで動作する第2ゲート電極8とドレイン電極6との間における窒化物半導体層9の表面に第1絶縁膜10aを形成することによって、コラプス抑制効果を得ている。さらに、ソース電極5と第1ゲート電極7との間の窒化物半導体層9の表面に接するように上記下部絶縁膜としての第1絶縁膜10bを形成し、第1ゲート電極7と第2ゲート電極8との間の窒化物半導体層9の表面に接するように上記下部絶縁膜としての第1絶縁膜10cを形成している。こうすることによって、デバイス作製プロセス中に窒化物半導体層9の表面が剥き出しになることを抑制でき、窒化物半導体層9の表面が安定化し、素子の特性を安定化できるという利点が生ずる。以下、第1絶縁膜10a,第1絶縁膜10bおよび第1絶縁膜10cを総称して、第1絶縁膜10と言う。
尚、上記第1絶縁膜10aは、必ずしも第2ゲート電極8とドレイン電極6との間の窒化物半導体層9の表面を隙間なく埋めている必要はない。プロセス時のサイドエッチ等によって、電極6,8の近傍で第1絶縁膜10aが窒化物半導体層9の表面に接していなくとも、第2ゲート電極8とドレイン電極6との間の窒化物半導体層9の表面の大部分(例えば、80%以上)が第1絶縁膜10aと接していれば、コラプス抑制効果に大きな低減は見られない。
上記第1絶縁膜10上には、耐圧確保のため、シリコン窒化膜からなる第2絶縁膜11を形成している。ここで、第2絶縁膜11となるシリコン窒化膜は、一例として150nmの膜厚で形成しているが、膜厚は50nm〜300nmであればよい。また、第2絶縁膜11aと、第2絶縁膜11bと、ゲート電極間絶縁膜としての第2絶縁膜11cとを総称して、第2絶縁膜11と言っている。
上記第2絶縁膜11aは、第1絶縁膜10aの表面に接するように形成されて、第2ゲート電極8とドレイン電極6との間における窒化物半導体層9上に位置する。
上記第2絶縁膜11bは、第1絶縁膜10b上に形成されて、ソース電極5と第1ゲート電極7との間における窒化物半導体層9上に位置する。
上記第2絶縁膜11cは、第1絶縁膜10c上に形成されて、第1ゲート電極7と第2ゲート電極8との間の窒化物半導体層9上に位置する。
上記第1ゲート電極7および第2ゲート電極8は、一例として、NiとAuとがこの順序で積層されたNi/Auを用いて形成している。しかしながら、この発明は、これに限定されるものではなく、トランジスタのゲートとして機能するものであれば如何様な材料でも構わない。例えば、W,Ti,Ni,Al,Pd,Pt,Au等の金属、WN,TiN等の窒化物、それらの合金、および、それらの積層構造を用いることができる。
また、上記ソース電極5およびドレイン電極6は、一例として、TiとAlとがこの順序で積層されたTi/Alを用いて形成している。しかしながら、この発明は、これに限定されるものではなく、電気伝導性があって、上記2DEGとオーミックコンタクトが可能であれば如何様な材料でも構わない。例えば、Ti,AlおよびTiNがこの順序で積層されたTi/Al/TiNを用いて形成してもよい。または、AlSi,AlCuおよびAuを、上記Alの代わりに用いてもよいし、上記Alの上に積層させてもよい。また、Hf/Al上にHf/Auを積層したHf/Al/Hf/Auで形成してもよい
上記第1ゲート電極7の下部は、ノーマリーオフで動作させるために、アンドープAlGaN層4の一部が窪んだリセス形状となっている。そして、第1ゲート電極7の底面に接して、絶縁のために第3絶縁膜12を形成している。第3絶縁膜12は、一例としてシリコン窒化膜で形成しているが、シリコン酸化膜等の他の絶縁膜で形成してもよい。
上記第2ゲート電極8の下部は、ノーマリーオンで動作させるために、第1ゲート電極7の場合とは異なり、アンドープAlGaN層4にリセス形状が形成されてはいない。第2ゲート電極8の底面に接して、絶縁のためにシリコン窒化膜でなる第4絶縁膜13を形成している。第4絶縁膜13は、一例としてシリコン窒化膜で形成しているが、シリコン酸化膜や他の絶縁膜で形成してもよい。また、ショットキー接合のために、第4絶縁膜13を形成しなくても差し支えない。
上記上部絶縁膜としての第5絶縁膜14は、上記第1ゲート電極7の表面、第2ゲート電極8の表面、および、第1ゲート電極7と第2ゲート電極8との間を覆うように、シリコン酸化膜で形成している。ここで、第5絶縁膜14となるシリコン酸化膜は、一例として300nmの膜厚で形成している。但し、この膜厚は、第1ゲート電極7と第2ゲート電極8との間をカバレージ良く覆っていればよいので、第1ゲート電極7および第2ゲート電極8の電極厚さと電極端部の形状とを鑑みて適宜設定すればよい。
また、上記第5絶縁膜14の比誘電率は、一例として3.9で形成しているが、第1絶縁膜10の比誘電率よりも小さい比誘電率であればよい。
このように、第1絶縁膜10よりも比誘電率εrの小さい第5絶縁膜14を第1ゲート電極7と第2ゲート電極8との間に形成することによって、上記式(1)および式(2)から解るように、ノーマリーオフで動作する第1ゲート電極7とノーマリーオンで動作する第2ゲート電極8との間の寄生容量Cを小さく(つまり、インピーダンス|Z|を大きく)することが可能になる。
したがって、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8がノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
尚、上記第5絶縁膜14は、一例としてシリコン酸化膜を用いて形成されているが、上述した理由により、比誘電率が第1絶縁膜10よりも小さい絶縁膜であればよく、例えばSiOF,SiOC等を用いることが可能である。
また、本実施の形態においては、上記第5絶縁膜14を、第1ゲート電極7と第2ゲート電極8との間の全体を覆うように形成しているが、この発明では必ずしもその必要はない。要は、第1ゲート電極7と第2ゲート電極8との間の寄生容量Cを、所定の容量値まで低減できる程度の範囲で形成されていればよいのである。
その後、上述のようにして形成された窒化物半導体素子に対して、適宜に層間絶縁膜工程や配線工程(配線図は、図2に簡略化して示す)を行い、ソース電極5と第2ゲート電極8とを接続してカスコード接続を形成することによって、ノーマリーオンで動作し、高周波動作時にも動作が安定した窒化物半導体装置を1チップで構成可能となる。すなわち、チップコストの低減およびパッケージサイズの縮小も同時に実現できるのである。
以上のごとく、上記実施の形態によれば、Si基板1上に、アンドープGaN層3とアンドープAlGaN層4とを順に形成してなる窒化物半導体層9が形成されている。そして、窒化物半導体層9上に、または、窒化物半導体層9内に少なくとも下部が挿入されて、互いに間隔をおいてソース電極5およびドレイン電極6が形成されている。さらに、ソース電極5とドレイン電極6との間における窒化物半導体層9上にノーマリーオフで動作する第1ゲート電極7が形成されている。また、第1ゲート電極7とドレイン電極6との間における窒化物半導体層9上に、ノーマリーオンで動作する第2ゲート電極8が形成されている。
そして、上記第2ゲート電極8と上記ドレイン電極6の間における窒化物半導体層9上に、電流コラプス現象抑制用の第1絶縁膜10aが形成されている。また、第1ゲート電極7と第2ゲート電極8との間の少なくとも一部に、第1絶縁膜10aよりも比誘電率が小さい第5絶縁膜14を形成している。
そして、上記ソース電極5と第2ゲート電極8とを接続して、ノーマリーオフで動作するトランジスタとノーマリーオンで動作するトランジスタをカスコード接続している。
したがって、上記第2ゲート電極8とドレイン電極6の間における窒化物半導体層9上に形成された第1絶縁膜10aによって、電流コラプス現象を抑制することができる。
さらに、上記第1ゲート電極7と第2ゲート電極8との間に第1絶縁膜10aよりも比誘電率が小さい第5絶縁膜14を形成することによって、両ゲート電極7,8間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。その結果、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8がノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
すなわち、上記実施の形態によれば、上記電流コラプス現象を抑制すると共に、高周波動作時に、ノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定になるのを防止することができるのである。
・第2実施の形態
図2は、本実施の形態の窒化物半導体装置におけるソース電極5,第1ゲート電極7,第2ゲート電極8およびドレイン電極6を通る断面模式図である。
尚、本実施の形態における基本構成は、上記第1実施の形態の構成と同様である。そこで、本実施の形態においては、上記第1実施の形態に対応する部材には同じ番号を付して詳細な説明は省略する。以下、上記第1実施の形態とは異なる点について説明する。
上記第1実施の形態においては第2絶縁膜11をシリコン窒化膜で形成しているが、本実施の形態においてはシリコン窒化膜よりも比誘電率が低いシリコン酸化膜で形成している。尚、第2絶縁膜11の膜厚は150nmとしているが、膜厚50nm〜300nmであればよい。また、第2絶縁膜11の比誘電率は3.9としているが、第1絶縁膜10の比誘電率より小さければ差し支えない。
以上のように、上記第1絶縁膜10よりも比誘電率εrの小さい絶縁膜を第1ゲート電極7と第2ゲート電極8との間に形成することによって、上記式(1)および上記式(2)から解るように、第1ゲート電極7と第2ゲート電極8との間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することが可能となり、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8がノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、素子の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
尚、上記第2絶縁膜11は、一例としてシリコン酸化膜を用いて形成されているが、上述した理由により、比誘電率が第1絶縁膜10よりも小さい絶縁膜であればよく、例えばSiOF,SiOC等を用いることが可能である。
第5絶縁膜14は、上記第1ゲート電極7の表面、第2ゲート電極8の表面、および、第1ゲート電極7と第2ゲート電極8との間を覆うように、シリコン酸化膜で形成している。ここで、第5絶縁膜14となるシリコン酸化膜は、一例として300nmの膜厚で形成している。但し、この膜厚は、第1ゲート電極7と第2ゲート電極8との間をカバレージ良く覆っていればよいので、第1ゲート電極7および第2ゲート電極8の電極厚さと電極端部の形状とを鑑みて適宜設定すればよい。
その後、上述のようにして形成された窒化物半導体素子に対して、適宜に層間絶縁膜工程や配線工程を行う。配線工程においては、図2に示すように、ソース電極5とソース端子15とをソース配線16で接続し、ソース配線16と第2ゲート電極8とをカスコード配線17で接続する。また、第1ゲート電極7と第1ゲート端子18とをゲート配線19で接続する。さらに、ドレイン電極6とドレイン端子20とをドレイン配線21で接続する。
こうして、上記ソース電極5と第2ゲート電極8とを接続してカスコード接続を形成することによって、ノーマリーオンで動作し、高周波動作時にも動作が安定した窒化物半導体装置を1チップで構成可能となる。すなわち、チップコストの低減およびパッケージサイズの縮小も同時に実現できるのである。
以上のごとく、本実施の形態においては、上記第5絶縁膜14に加えて、第2絶縁膜11においても比誘電率の小さな膜を形成するようにしている。したがって、第1ゲート電極7と第2ゲート電極8との間の寄生容量Cを上記第1実施の形態の場合よりもさらに小さく(インピーダンス|Z|をさらに大きく)することが可能になる。
すなわち、本実施の形態によれば、高周波動作時に、ノーマリーオンで動作する第2ゲート電極8が、ノーマリーオフで動作する第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子の動作が不安定(電流値の変動など)になることを上記第1実施の形態の場合よりもさらに抑制することが可能になる。
・第3実施の形態
本実施の形態における基本構成は、上記第2実施の形態の構成と同様である。そこで、本実施の形態においては、上記第2実施の形態に対応する部材には同じ番号を付して詳細な説明は省略する。以下、図2に従って、上記第2実施の形態とは異なる点について説明する。
上記第2実施の形態においては第5絶縁膜14をシリコン酸化膜で形成しているが、本実施の形態においてはシリコン酸化膜よりも比誘電率の高いシリコン窒化膜で形成している。そして、上記第2実施の形態においては3.9であった比誘電率を、本実施の形態においては第1絶縁膜10と同じ7.5で形成している。しかしながら、第5絶縁膜14の比誘電率は、7.5に限定されるものではない。6.5〜9.0の範囲内であればよく、7.5〜8.5が望ましい。その理由は、第5絶縁膜14をシリコン窒化膜として第2ゲート電極8を比誘電率の高い膜で覆うことにより、第2ゲート電極8の周辺の電界強度を低減することができ、耐圧を向上することができる。その一方で、比誘電率が高くなり過ぎると膜中および膜界面でリークが生ずるためである。
尚、本実施の形態においては、上記第5絶縁膜14を、シリコン窒化膜で形成しているが、シリコン酸窒化膜やアルミナ等で形成してもよい。
その後、上述のようにして形成された窒化物半導体素子に対して、適宜に層間絶縁膜工程や配線工程(配線図を、図2に簡略化して示す)を行い、ソース電極5と第2ゲート電極8とを接続してカスコード接続を形成することによって、ノーマリーオンで動作し、高周波動作時にも動作が安定した窒化物半導体装置を1チップで構成可能となる。すなわち、チップコストの低減およびパッケージサイズの縮小も同時に実現できるのである。
この発明は、上記ノーマリーオンで動作する窒化物半導体素子とノーマリーオフで動作する窒化物半導体素子とをカスコード接続してなる窒化物半導体装置において、両素子のゲート電極間の寄生容量を低下させることによって、高周波動作時の当該窒化物半導体装置の動作の安定性確保に関するものである。そのために、上記各実施の形態のように、第1ゲート電極7について、ノーマリーオフで動作させるために、第1ゲート電極7下部の窒化物半導体層9には上記リセスを形成し、このリセス内に第3絶縁膜12を形成している。しかしながら、上述の構造は、飽くまでも一例であって、ノーマリーオフ動作することが可能な構造であれば如何様な構造であってもよい。
例えば、上記第3絶縁膜12としてシリコン酸化膜を用いているが、シリコン窒化膜やアルミナ等の絶縁性を有する物質であれば差し支えない。
また、上記アンドープAlGaN層4上にp型半導体を形成して、第1ゲート電極7下のポテンシャルを持ち上げることによって、ノーマリーオフ動作を実現する構造でも構わない。
また、ノーマリーオン構造部分の形成方法やその構造、各電極の材料や形成方法、窒化物半導体層の材料、膜構成、形成方法等において、何ら限定を加えるものではない。
以上を纏めると、この発明の窒化物半導体装置は、
ヘテロ接合を含む窒化物半導体層9と、
上記窒化物半導体層9上に、または、上記窒化物半導体層9内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極5およびドレイン電極6と、
上記ソース電極5と上記ドレイン電極6との間における上記窒化物半導体層9上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子101の第1ゲート電極7と、
上記第1ゲート電極7と上記ドレイン電極6の間における上記窒化物半導体層9上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子102の第2ゲート電極8と、
上記第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に形成された下部絶縁膜10と
を備え、
上記第1トランジスタ素子101と上記第2トランジスタ素子102とはカスコード接続されており、
上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14が形成されている
ことを特徴としている。
ここで、「上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14が形成されている」とは、上記第1ゲート電極7と上記第2ゲート電極8との間の一部、または、上記第1ゲート電極7と上記第2ゲート電極8との間の全部に、上部絶縁膜14が形成されていることを意味する。例えば図3〜図6のいずれか一つの状態が、「上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14が形成されている」状態に相当する。
上記構成によれば、同一窒化物半導体層9上に形成された上記第1トランジスタ素子101と上記第2トランジスタ素子102とをカスコード接続すると共に、上記第2トランジスタ素子102の上記第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に下部絶縁膜10を形成している。したがって、上記下部絶縁膜10の比誘電率を6.5〜9.0(望ましくは7.5〜8.5)の範囲内に設定すれば、上記下部絶縁膜10によって、電流コラプス現象を抑制することができる。
さらに、上記第1ゲート電極7と上記第2ゲート電極8との間の少なくとも一部に、上記下部絶縁膜10よりも比誘電率が小さい上部絶縁膜14を形成しているので、両ゲート電極7,8間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。したがって、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極8が、ノーマリーオフで動作する上記第1ゲート電極7に入力されたゲート信号の影響を受けて、上記ノーマリーオン素子102の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
また、一実施の形態の窒化物半導体装置では、
上記下部絶縁膜10は、上記ソース電極5と上記第1ゲート電極7との間、および、上記第1ゲート電極7と上記第2ゲート電極8との間における上記窒化物半導体層9の表面にも形成されている。
この実施の形態によれば、上記ソース電極5と上記第1ゲート電極7との間、および、上記第1ゲート電極7と上記第2ゲート電極8との間、における上記窒化物半導体層9の表面に形成された上記下部絶縁膜10は、デバイス作製プロセス中に上記窒化物半導体層9の表面が露出するのを防止することができる。したがって、上記窒化物半導体層9の表面を安定化させ、素子の特性を安定化させることができる。
また、一実施の形態の窒化物半導体装置では、
上記下部絶縁膜10は、シリコン窒化膜である。
この実施の形態によれば、上記下部絶縁膜10を比誘電率が大きいシリコン窒化膜で形成している。したがって、上記下部絶縁膜10の比誘電率を6.5〜9.0(望ましくは7.5〜8.5)の範囲内に容易に設定することができ、上記下部絶縁膜10によって、電流コラプス現象を抑制することができる。
また、一実施の形態の窒化物半導体装置では、
上記第1ゲート電極7と上記第2ゲート電極8の間における上記窒化物半導体層9上に形成されたゲート電極間絶縁膜11cを備え、
上記ゲート電極間絶縁膜11cは、シリコン酸化膜である。
この実施の形態によれば、上記ゲート電極間絶縁膜11cをシリコン窒化膜よりも比誘電率が低いシリコン酸化膜で形成している。したがって、上記上部絶縁膜14に加えて比誘電率の小さい絶縁膜を上記第1ゲート電極7と上記第2ゲート電極8との間に追加形成することにより、両ゲート電極7,8間の寄生容量Cをさらに小さく(インピーダンス|Z|をさらに大きく)することができる。したがって、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極8が、ノーマリーオフで動作する上記第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子102の動作が不安定(電流値の変動など)になることをより効果的に抑制することが可能になる。
なお、上記ゲート電極間絶縁膜11cは、上記第1ゲート電極7と上記第2ゲート電極8の間における上記窒化物半導体層9の表面に接するように形成してもよいし、その表面上に他の層を介して形成してもよい。
また、この発明の窒化物半導体装置は、
ヘテロ接合を含む窒化物半導体層9と、
上記窒化物半導体層9上に、または、上記窒化物半導体層9内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極5およびドレイン電極6と、
上記ソース電極5と上記ドレイン電極6との間における上記窒化物半導体層9上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子101の第1ゲート電極7と、
上記第1ゲート電極7と上記ドレイン電極6の間における上記窒化物半導体層9上に配置されると共に、ノーマリーオンで動作するノーマリーオン素子102の第2ゲート電極8と、
上記第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に形成された下部絶縁膜10と、
上記第1トランジスタ素子101と上記ノーマリーオン素子102とはカスコード接続されており、
上記第1ゲート電極7と上記第2ゲート電極8との間における上記窒化物半導体層9上に形成されたゲート電極間絶縁膜11cと、
少なくとも上記第2ゲート電極8上を覆うように形成された上部絶縁膜14と
を備え、
上記下部絶縁膜10は、シリコン窒化膜であり、
上記ゲート電極間絶縁膜11cは、シリコン酸化膜であり、
上記上部絶縁膜14は、シリコン窒化膜である
ことを特徴としている。
上記構成によれば、同一窒化物半導体層9上に形成された上記第1トランジスタ素子101と上記第2トランジスタ素子102とをカスコード接続すると共に、上記ノーマリーオン素子102の第2ゲート電極8と上記ドレイン電極6との間における上記窒化物半導体層9の表面に、比誘電率の高いシリコン窒化膜でなる上記下部絶縁膜10を形成している。したがって、上記下部絶縁膜10の比誘電率を6.5〜9.0(望ましくは7.5〜8.5)の範囲内に設定することができ、上記下部絶縁膜10によって、電流コラプス現象を抑制することができる。
さらに、上記第1ゲート電極7と上記第2ゲート電極8との間における上記窒化物半導体層9上に、シリコン窒化膜よりも比誘電率の低いシリコン酸化膜でなる上記ゲート電極間絶縁膜11cを形成している。したがって、上記両ゲート電極7,8間の寄生容量Cを小さく(インピーダンス|Z|を大きく)することができる。そのために、高周波動作時に、ノーマリーオンで動作する上記第2ゲート電極8が、ノーマリーオフで動作する上記第1ゲート電極7に入力されたゲート信号の影響を受けて、ノーマリーオン素子102の動作が不安定(電流値の変動など)になることを抑制することが可能になる。
さらに、少なくとも上記第2ゲート電極8上を覆うように、比誘電率の高いシリコン窒化膜でなる上記上部絶縁膜14を形成している。したがって、上記第2ゲート電極8の周辺の電界強度を低減することができ、耐圧を向上することができる。
なお、上記ゲート電極間絶縁膜11cは、上記第1ゲート電極7と上記第2ゲート電極8の間における上記窒化物半導体層9の表面に接するように形成してもよいし、その表面上に他の層を介して形成してもよい。
1…Si基板
2…バッファ層
3…アンドープGaN層
4…アンドープAlGaN層
5…ソース電極
6…ドレイン電極
7…第1ゲート電極
8…第2ゲート電極
9…窒化物半導体層
10(10a,10b,10c)…第1絶縁膜
11(11a,11b,11c)…第2絶縁膜
12…第3絶縁膜
13…第4絶縁膜
14…第5絶縁膜
15…ソース端子
16…ソース配線
17…カスコード配線
18…第1ゲート端子
19…ゲート配線
20…ドレイン端子
21…ドレイン配線
101…ノーマリーオフ型トランジスタ
102…ノーマリーオン型トランジスタ

Claims (5)

  1. ヘテロ接合を含む窒化物半導体層と、
    上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
    上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
    上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
    上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と
    を備え、
    上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
    上記第1ゲート電極と上記第2ゲート電極との間の少なくとも一部に、上記下部絶縁膜よりも比誘電率が小さい上部絶縁膜が形成されている
    ことを特徴とする窒化物半導体装置。
  2. 請求項1に記載の窒化物半導体装置において、
    上記下部絶縁膜は、上記ソース電極と上記第1ゲート電極との間、および、上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層の表面にも形成されている
    ことを特徴とする窒化物半導体装置。
  3. 請求項1または請求項2に記載の窒化物半導体装置において、
    上記下部絶縁膜は、シリコン窒化膜である
    ことを特徴とする窒化物半導体装置。
  4. 請求項1から請求項3までの何れか一つに記載の窒化物半導体装置において、
    上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜を備え、
    上記ゲート電極間絶縁膜は、シリコン酸化膜である
    ことを特徴とする窒化物半導体装置。
  5. ヘテロ接合を含む窒化物半導体層と、
    上記窒化物半導体層上に、または、上記窒化物半導体層内に下部が挿入されて形成されると共に、互いに間隔をおいて配置されたソース電極およびドレイン電極と、
    上記ソース電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオフで動作する第1トランジスタ素子の第1ゲート電極と、
    上記第1ゲート電極と上記ドレイン電極との間における上記窒化物半導体層上に配置されると共に、ノーマリーオンで動作する第2トランジスタ素子の第2ゲート電極と、
    上記第2ゲート電極と上記ドレイン電極との間における上記窒化物半導体層の表面に形成された下部絶縁膜と、
    上記第1トランジスタ素子と上記第2トランジスタ素子とはカスコード接続されており、
    上記第1ゲート電極と上記第2ゲート電極との間における上記窒化物半導体層上に形成されたゲート電極間絶縁膜と、
    少なくとも上記第2ゲート電極上を覆うように形成された上部絶縁膜と
    を備え、
    上記下部絶縁膜は、シリコン窒化膜であり、
    上記ゲート電極間絶縁膜は、シリコン酸化膜であり、
    上記上部絶縁膜は、シリコン窒化膜である
    ことを特徴とする窒化物半導体装置。
JP2015062597A 2015-03-25 2015-03-25 窒化物半導体装置 Pending JP2018081943A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015062597A JP2018081943A (ja) 2015-03-25 2015-03-25 窒化物半導体装置
PCT/JP2015/078762 WO2016151905A1 (ja) 2015-03-25 2015-10-09 窒化物半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015062597A JP2018081943A (ja) 2015-03-25 2015-03-25 窒化物半導体装置

Publications (1)

Publication Number Publication Date
JP2018081943A true JP2018081943A (ja) 2018-05-24

Family

ID=56978776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015062597A Pending JP2018081943A (ja) 2015-03-25 2015-03-25 窒化物半導体装置

Country Status (2)

Country Link
JP (1) JP2018081943A (ja)
WO (1) WO2016151905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138048A (ko) * 2019-04-16 2021-11-18 가부시키가이샤 니혼 마이크로닉스 검사용 접속 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007007589A1 (ja) * 2005-07-08 2009-01-29 日本電気株式会社 電界効果トランジスタおよびその製造方法
JP5666157B2 (ja) * 2010-03-26 2015-02-12 パナソニック株式会社 双方向スイッチ素子及びそれを用いた双方向スイッチ回路
JP2013062494A (ja) * 2011-08-24 2013-04-04 Sanken Electric Co Ltd 窒化物半導体装置
JP5591776B2 (ja) * 2011-09-21 2014-09-17 株式会社東芝 窒化物半導体装置およびそれを用いた回路
JP6025242B2 (ja) * 2012-03-30 2016-11-16 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138048A (ko) * 2019-04-16 2021-11-18 가부시키가이샤 니혼 마이크로닉스 검사용 접속 장치
KR102654216B1 (ko) 2019-04-16 2024-04-04 가부시키가이샤 니혼 마이크로닉스 검사용 접속 장치

Also Published As

Publication number Publication date
WO2016151905A1 (ja) 2016-09-29

Similar Documents

Publication Publication Date Title
US9082691B2 (en) Nitride semiconductor device
US9431391B2 (en) Gallium nitride hemt device with a mosfet in series coupled to diodes for protection of high-voltage
US9911843B2 (en) Semiconductor device
US9406792B2 (en) Semiconductor device having GaN-based layer
US20160351676A1 (en) Semiconductor device
US9754932B2 (en) Semiconductor device
JP6143598B2 (ja) 半導体装置
US20170352753A1 (en) Field-effect transistor
US20170345920A1 (en) Field-effect transistor
KR101636134B1 (ko) 반도체 장치
JP2007180143A (ja) 窒化物半導体素子
US9178059B2 (en) Semiconductor device
TW201421648A (zh) 半導體裝置
WO2019003746A1 (ja) 半導体装置
KR102100928B1 (ko) 고전자 이동도 트랜지스터
US20130026485A1 (en) Power semiconductor device
TWI626742B (zh) 半導體裝置
JP2015220430A (ja) 電界効果トランジスタ
WO2012144100A1 (ja) 窒化物系半導体装置
TW201909279A (zh) 氮化物半導體元件
CN106373996B (zh) 半导体装置
JP6552925B2 (ja) 半導体装置
WO2016151905A1 (ja) 窒化物半導体装置
US20160079403A1 (en) Field effect transistor
JP6261291B2 (ja) GaN系電界効果トランジスタおよび窒化物半導体装置