WO2016151804A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016151804A1
WO2016151804A1 PCT/JP2015/059167 JP2015059167W WO2016151804A1 WO 2016151804 A1 WO2016151804 A1 WO 2016151804A1 JP 2015059167 W JP2015059167 W JP 2015059167W WO 2016151804 A1 WO2016151804 A1 WO 2016151804A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling unit
cooling
outer box
refrigerant inlet
Prior art date
Application number
PCT/JP2015/059167
Other languages
English (en)
French (fr)
Inventor
健 篠▲崎▼
一法師 茂俊
浩之 東野
勇吾 浅井
裕幸 矢野
松尾 治之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015551291A priority Critical patent/JP5976235B1/ja
Priority to PCT/JP2015/059167 priority patent/WO2016151804A1/ja
Priority to US15/549,821 priority patent/US10383262B2/en
Priority to DE112015006352.8T priority patent/DE112015006352T5/de
Priority to CN201580078007.8A priority patent/CN107517596B/zh
Publication of WO2016151804A1 publication Critical patent/WO2016151804A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure

Definitions

  • the present invention relates to a power conversion device that converts power.
  • Conventional power conversion devices include, for example, an inverter device and a DC-DC converter device integrated in an in-vehicle electric vehicle or a hybrid vehicle.
  • the inverter device or DC-DC converter device usually needs to be cooled. Therefore, in many cases, a refrigerant flow path through which a cooling refrigerant flows is formed in a case where the inverter device or the DC-DC converter device is disposed.
  • a cooling structure in which a refrigerant flow path is provided in a U-shape in a case, and an inductor element, a power semiconductor module, and the like having a relatively large calorific value are arranged in the vicinity of the refrigerant flow path to improve cooling efficiency. (For example, refer to Patent Document 1).
  • JP 2013-94022 A (paragraphs 0015 to 0017, paragraphs 0090 to 0091, FIG. 11) JP 2011-109740 A (paragraph 0073, FIG. 5)
  • the cooling unit since a plurality of electronic devices that generate heat are arranged side by side on a single plane, the cooling unit has a flat structure. Therefore, there is a problem that an area required for installing the power conversion device including the cooling unit is increased.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power conversion device that can reduce the required installation area and simplify the handling of the cooling flow path.
  • the power conversion device is a cooling section in which the inside having a refrigerant inlet section and a refrigerant outlet section is a hollow prism, and the refrigerant flow path through which the refrigerant flows from the refrigerant inlet section toward the refrigerant outlet section And on the three or more surfaces outside the side surface of the cooling unit excluding the refrigerant inlet surface where the refrigerant inlet portion is arranged and the refrigerant outlet surface where the refrigerant outlet portion is arranged.
  • the power conversion device of the present invention it is possible to obtain a power conversion device that can reduce the required installation area and that can simplify the handling of the cooling flow path.
  • Embodiment 1 of this invention It is a disassembled perspective view of the power converter device which concerns on Embodiment 1 of this invention. It is the top view and AA sectional drawing of the power converter device which concerns on Embodiment 1 of this invention. It is a modification of the cooling part shape which concerns on Embodiment 1 of this invention. It is a block diagram which shows the example of arrangement
  • FIG. 1 A power conversion apparatus 1 according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification.
  • FIG. 1 is an exploded perspective view of a power conversion device 1 according to Embodiment 1 of the present invention.
  • 2 is a top view and AA cross-sectional view of the power conversion apparatus 1 according to Embodiment 1 of the present invention
  • FIG. 2 (a) is a top view of the power conversion apparatus 1 and FIG. 2 (b).
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • the power conversion device 1 mainly includes an outer box 4, a cooling unit 2, and a plurality of electronic devices 3 that generate heat.
  • the cooling unit 2 is illustrated as a quadrangular prism having a hollow interior in FIG. 1, and includes a cooling unit side surface 2a, a refrigerant inlet surface 2b, a refrigerant inlet portion 2c, a refrigerant outlet surface 2d, a refrigerant outlet portion 2e, and a refrigerant flow path 2f. Have.
  • One face of the opposite end faces of the cooling unit 2 is the refrigerant inlet face 2b, and the other face is the refrigerant outlet face 2d.
  • a refrigerant inlet portion 2c through which the refrigerant flows into the refrigerant inlet surface 2b is disposed, and a refrigerant outlet portion 2e through which the refrigerant flows out is disposed at the refrigerant outlet surface 2d.
  • the refrigerant inlet portion 2c and the refrigerant outlet portion 2e are joints for refrigerant piping.
  • the cooling unit side surface 2a is composed of, for example, a quadrangular prism plane that is perpendicular to the refrigerant inlet surface 2b and the refrigerant outlet surface 2d in FIG. That is, the cooling unit side surface 2a is a surface of the cooling unit 2 excluding the refrigerant inlet surface 2b where the refrigerant inlet portion 2c is disposed and the refrigerant outlet surface 2d where the refrigerant outlet portion 2e is disposed.
  • the upper surface in the vertical direction of the cooling unit side surface 2a is the upper surface and the lower surface is the lower surface.
  • the refrigerant flow path 2f is a quadrangular hollow space surrounded by the refrigerant inlet face 2b, the refrigerant outlet face 2d, and the cooling part side face 2a, and communicates with the joint of the refrigerant inlet part 2c and the refrigerant outlet part 2e. . Therefore, the refrigerant flow path 2 f is a flow path having a shape along the outer shape of the cooling unit 2.
  • the cooling unit side surface 2a and the refrigerant inlet surface 2b, or the cooling unit side surface 2a and the refrigerant outlet surface 2d are joined via a seal member such as an O-ring.
  • a refrigerant pipe 40 such as a radiator hose is attached to a joint between the refrigerant inlet 2c and the refrigerant outlet 2e, and the refrigerant circulates through the refrigerant flow path 2f via the water pump 32 or the radiator 31.
  • water LCC (an antifreeze solution obtained by diluting ethylene glycol as a main component with water), oil, or the like is used.
  • a control circuit 3a, a drive circuit 3b, a capacitor 3c, a power module 3d, a step-down converter 3e, or the like is disposed as an electronic device 3 that generates heat.
  • the electronic device 3 is connected to a load device such as a motor 33 or a power supply device such as a battery 34 by a harness 41, for example.
  • the cooling unit 2 is formed of a thin metal plate such as aluminum, an aluminum alloy, or stainless steel.
  • the electronic device 3 is not necessarily disposed only on the cooling unit side surface 2a, and may be disposed on the refrigerant inlet surface 2b or the refrigerant outlet surface 2d as long as there is enough space.
  • the cooling part side surface 2a is produced by the die-cast manufacturing method shown below as an example.
  • molds of a fixed mold and a movable mold are prepared and attached to a fixed plate and a movable plate of a die casting machine, respectively.
  • the movable die of the die casting machine moves and is tightened in combination with the fixed die.
  • the molten metal is press-fitted into the mold, and when solidification is completed, the movable mold moves to open the mold, and the cooling unit side surface 2a is molded.
  • the cooling portion side surface 2a can be formed by extrusion molding.
  • the cooling part side surface 2a is obtained by putting a raw material into a pressure-resistant mold, extruding from a slight gap having a constant cross-sectional shape by applying a high pressure, and processing into a desired shape.
  • the cooling part side surface 2a can also be shape
  • the positions of the refrigerant inlet surface 2b and the refrigerant outlet surface 2d are not limited to the both end faces of the cooling unit 2 that is a quadrangular prism, and may be arranged at arbitrary positions on the surface constituting the cooling unit 2. .
  • the electronic device 3 that generates heat may be disposed on at least three or more of the cooling unit side surface 2a.
  • the outer box 4 is hollow so as to cover the electronic device 3.
  • the outer box 4 in Embodiment 1 is attached so that the outer box upper part 4a and the outer box lower part 4b are formed as separate bodies and sandwich the cooling unit 2 in which the electronic device 3 is disposed from above and below.
  • the refrigerant inlet surface 2b and the refrigerant outlet surface 2d are not covered with the outer box 4, but form a smooth surface with the surface of the outer box 4, and are exposed to the outside. Therefore, according to the shape of the refrigerant inlet surface 2b or the refrigerant outlet surface 2d, the outer box upper part 4a and the outer box lower part 4b are respectively U-shaped.
  • the outer box 4 is joined at the contact surface between the outer box upper part 4a and the outer box lower part 4b, and the outer box 4 and the cooling part 2 are joined at the contact surface between the outer box upper part 4a and the outer box lower part 4b and the cooling part 2. By being joined, the inside is sealed.
  • the outer box 4 is formed of a thin metal plate such as aluminum, aluminum alloy or stainless steel.
  • the electronic device 3 attached to the cooling unit 2 is arranged so as not to contact the outer box 4.
  • the refrigerant inlet surface 2b and the refrigerant outlet surface 2d do not necessarily need to form a smooth surface with the surface of the outer box 4.
  • At least one of the refrigerant inlet surface 2b and the refrigerant outlet surface 2d may be located inside the surface of the outer box 4, and the shape of the outer box 4 is changed as appropriate, and the cooling unit side surface 2a provided with the electronic device 3 What is necessary is just to be able to seal the inside of the outer box 4 so as to cover.
  • the air between the outer box 4 and the cooling unit 2 is confined in a sealed space.
  • the temperature of the sealed air rises due to the heat generated by the electronic device 3.
  • the outer box 4 is made of metal, and the air in the sealed space can be cooled by exchanging heat with the outside air on the outer surface of the outer box 4. Further, the air in the sealed space can be cooled by exchanging heat on the surface of the cooling unit 2 that is not covered with the electronic device 3.
  • Concavities and convexities or fins may be provided on the outer surface of the outer box 4 to promote heat exchange between the outside air and the outer box 4.
  • the power conversion device 1 has a cooling channel 2f cross-sectional shape in the cooling section 2, that is, cooling parallel to the refrigerant inlet surface 2b or the refrigerant outlet surface 2d.
  • the electronic device 3 that generates heat may be fixed to three or more surfaces outside the cooling unit side surface 2a, and the cross-sectional shape may be rectangular or trapezoidal.
  • the distance between the outer box 4 and the cooling unit 2 is substantially the same in any direction except for the four corners. However, it is only necessary that the outer shape of the outer box 4 be easy to handle on installation, and it is not always necessary to maintain the same distance.
  • FIG. 3 is a modification of the shape of the cooling unit 2 according to Embodiment 1 of the present invention.
  • 3 (a) and 3 (b) are both cross-sectional views at a position corresponding to the position AA in FIG. 2 (a).
  • the cross-sectional shape of the cooling unit 2 is a pentagon, and the electronic device 3 is provided outside the cooling unit side surface 2a.
  • the cooling unit 2 has a hexagonal cross-sectional shape, and an electronic device 3 that generates heat is provided outside the cooling unit side surface 2a.
  • the cross-sectional shape of the cooling unit 2 at the AA position is a quadrangle, but as shown in FIG. 3, the cross-sectional shape of the cooling unit 2 at the AA position is pentagonal or hexagonal. It may be a square or a prism made up of a triangle or more.
  • FIG. 4 is a block diagram showing an arrangement example of the power conversion device 1 according to the first embodiment of the present invention.
  • the power conversion device 1 is connected to the water pump 32 and the motor 33 through the refrigerant pipe 40.
  • the motor 33 is connected to the engine 30, the engine 30 is connected to the radiator 31, and the radiator 31 is connected to the water pump 32 via the refrigerant pipe 40.
  • the power conversion device 1 is connected to the battery 34 and the motor 33 by a harness 41.
  • FIG. 4 shows an example of the arrangement of the power conversion apparatus 1, but each device may be freely combined and is not limited to the arrangement shown in FIG. 4.
  • each electronic device 3 such as a control circuit 3a, a drive circuit 3b, a capacitor 3c, a power module 3d, or a step-down converter 3e provided in the cooling unit 2 operates. These electronic devices 3 generate heat according to the driving state.
  • the electronic device 3 that generates heat disposed outside the cooling unit 2 can heat the refrigerant through the cooling unit side surface 2a and boil the refrigerant. Due to the heating, boiling accompanied with bubbles 24 is generated from the cooling unit side surface 2a provided with the heat generating electronic device 3, and the latent heat due to the phase change of the refrigerant and the refrigerant in the vicinity of the cooling unit side surface 2a provided with the heat generating electronic device 3 are generated. Heat transfer coefficient increases due to turbulence of the flow. And the electronic device 3 is cooled and becomes below specified temperature.
  • the refrigerant boils is generally transmitted from the heat transfer surface of the cooling unit 2 (the inner surface of the cooler side surface 2a on which the heat generating electronic device 3 is provided) to the refrigerant per unit time.
  • the amount of heat per unit area (heat flux) is important, and the higher the heat generation density of the electronic device 3, the greater the heat flux and the more likely boiling occurs.
  • the bubbles 24 generated by boiling can be condensed by exchanging heat with a relatively low-temperature refrigerant separated from the lower surface of the cooling unit 2.
  • the refrigerant rises in temperature by receiving heat from the electronic device 3, flows through the refrigerant pipe 40 such as the radiator hose from the refrigerant outlet 2 e, and is sent out to the radiator 31.
  • the refrigerant is cooled by exchanging heat with the outside air, and the cooled refrigerant flows again into the refrigerant inlet 2 c to cool the electronic device 3.
  • the interior having the refrigerant inlet portion 2c and the refrigerant outlet portion 2e is a hollow prism, and the refrigerant inlet portion 2c faces the refrigerant outlet portion 2e.
  • the cooling unit 2 except the cooling unit 2 having a refrigerant flow path 2f through which the refrigerant flows, the refrigerant inlet surface 2b in which the refrigerant inlet unit 2c is disposed, and the refrigerant outlet surface 2d in which the refrigerant outlet unit 2e is disposed.
  • the electronic device 3 is provided on each of three or more outer sides of the side surface and is cooled by boiling the refrigerant, and a hollow outer box 4 that covers the electronic device 3.
  • the power conversion device 1 can be made compact by disposing at least three or more electronic devices 3 that generate heat on the cooling unit side surface 2a. Moreover, the power converter device 1 can be further reduced in size by being disposed on the entire surface. Since the three-dimensional arrangement of the heat generating electronic device 3 is possible, the cooling surface of the cooling unit 2 can be effectively used as compared with the flat structure, and the cooling efficiency is improved. Therefore, an effect that a required installation area can be reduced can be obtained by making the power conversion device 1 including the cooling unit 2 compact.
  • the installation area is smaller than that of the cooling unit 2 having the conventional flat structure, it is possible to obtain an effect that interference with other devices hardly occurs during installation.
  • the space for installing the device is limited. Therefore, by mounting the power conversion device 1 according to Embodiment 1 of the present invention on a vehicle, The effect that the space for mounting the equipment can be secured is obtained.
  • the cooling refrigerant flows in the refrigerant flow path 2f inside the cooling unit 2 and the electronic device 3 that generates heat is attached to the outside thereof, the electronic device can be obtained without complicated handling of the refrigerant flow channel 2f. 3 cooling is possible. Therefore, the cooling unit 2 having a simple refrigerant flow path 2f can be obtained.
  • the electronic device 3 having the highest heat generation density among the electronic devices 3 may be arranged outside the lower surface of the side surfaces of the cooling unit 2. Further, the electronic device 3 having the largest calorific value among the electronic devices 3 may be arranged outside the lower surface of the side surfaces of the cooling unit 2.
  • FIG. 5 is a diagram showing the flow of the refrigerant in the cooling unit 2 when the electronic device 3 having the highest heat generation density is disposed outside the lower surface of the cooling unit 2 in Embodiment 1 of the present invention.
  • a power module 3 d is disposed as the electronic device 3 having the highest heat generation density among the electronic devices 3 that generate heat, outside the lower surface of the cooling unit side surface 2 a.
  • FIG. 5 is a view basically corresponding to FIG. 2 (b), but a flow arrow 25 schematically showing the flow of the refrigerant in the cooling unit 2 due to boiling is described in addition to FIG. 5 (b). ing.
  • the inside of the cooling unit 2 is preferably in a low flow rate state.
  • the electronic device 20 having the largest heat generation density outside the lower surface of the cooling unit 2 a large amount of heat is transmitted to the refrigerant in the refrigerant flow path 2f near the lower surface of the cooling unit 2,
  • the refrigerant can be boiled in the vicinity of the lower surface.
  • bubbles generated by boiling rise due to buoyancy and induce a secondary flow as shown by an arrow 25 in the flow of FIG. Therefore, also in the cooling part side surface 2a excluding the lower surface, the heat transfer coefficient is increased by the secondary flow, and the cooling efficiency of the electronic device 3 is improved.
  • the bubbles 24 generated by the boiling of the refrigerant can be condensed by exchanging heat with a relatively low-temperature refrigerant separated from the lower surface of the cooling unit 2.
  • the electronic device 3 having the smallest heat generation density among the electronic devices 3 may be arranged outside the upper surface of the side surfaces of the cooling unit 2.
  • the electronic device 3 that generates the smallest amount of heat among the electronic devices 3 may be arranged outside the upper surface of the side surfaces of the cooling unit 2.
  • the electronic device 21 having the smallest heat generation density is provided on the upper surface of the cooling unit 2, so that Temperature rise can be reduced. Further, the electronic device 21 having the smallest heat generation density can be prevented from receiving heat from the electronic device 20 having the largest heat generation density. Therefore, the electronic device 3 can be efficiently cooled, and adverse effects due to heat can be suppressed.
  • FIG. 6 is an exploded perspective view of the cooling unit 2 according to Embodiment 2 of the present invention.
  • 7A is a top view of the cooling unit 2
  • FIG. 7B is a sectional view of the cooling unit 2 taken along line BB in FIG. 7A
  • FIG. 8 is a front view of the cooling unit 2. is there.
  • the structure of the cooling part 2 integrally molded was demonstrated as a basic structure of the power converter device 1.
  • FIG. In the second embodiment of the present invention a modified example of the structure of the cooling unit 2 of the power conversion device 1 will be described. The following description will focus on differences from the first embodiment, and description of the same or corresponding parts will be omitted.
  • the cooling unit 2 in the second embodiment includes a lid 2g and a U-shaped cooling unit 2h.
  • the lid portion 2g is a plate-like member that constitutes the cooling portion 2 excluding the refrigerant inlet surface 2b, which is the surface on which the refrigerant inlet portion 2c is disposed, and the refrigerant outlet surface 2d, which is the surface on which the refrigerant outlet portion 2e is disposed.
  • the U-shaped cooling part 2h is formed separately from the cover part 2g except for the cover part 2g from the cooling part 2.
  • the power conversion device 1 according to the second embodiment has a cooling unit 2 in which a lid 2g and a U-shaped cooling unit 2h are joined.
  • the U-shaped cooling part 2h is integrally formed from a cooling part side face 2a, a refrigerant inlet face 2b, a refrigerant inlet part 2c, a refrigerant outlet face 2d, and a refrigerant outlet part 2e.
  • the lid portion 2g and the U-shaped cooling portion 2h are joined with a seal member such as an O-ring interposed therebetween to form the cooling portion 2.
  • the refrigerant flows in from the refrigerant inlet portion 2c, passes through the refrigerant flow path 2f formed in the cooling portion 2, and flows to the refrigerant outlet portion 2e.
  • a sealing groove 6 for arranging a sealing member such as an O-ring is provided in the upper part of the U-shaped cooling unit 2h.
  • a sealing member such as an O-ring is disposed in the sealing groove 6, and both are joined.
  • the lid 2g covers the upper part of the cooling unit 2, and the cooling channel 2f is sealed.
  • the cooling unit 2 has one of the side surfaces excluding the refrigerant inlet surface 2b and the refrigerant outlet surface 2d as a plate-like lid portion 2g.
  • the cooling part 2 excluding the lid part 2g is formed separately from the lid part 2g, and the cooling part 2 except the lid part 2g and the cooling part 2 of the cooling part 2 is joined and formed.
  • the U-shaped cooling part 2h is integrally formed, the cooling part side surface 2a, the refrigerant inlet surface 2b, and the refrigerant outlet surface 2d are joined via the seal members, respectively. Rather than doing so, the number of joints can be reduced. Therefore, the sealing property can be improved, the waterproofing property against water immersion from the outside is improved, and the effect of preventing the entry of dust and the like can be obtained.
  • the lid 2g is not necessarily limited to the upper surface of the cooling unit side surface 2a, and may be another surface.
  • Embodiment 3 The configuration of power converter 1 according to Embodiment 3 of the present invention will be described with reference to FIGS.
  • the third embodiment of the present invention is different from the second embodiment in that the cooling part 2 and the intermediate part 4c of the outer box are integrally molded, and the different parts will be described, and the same or corresponding parts will be described. Description is omitted.
  • FIG. 9 is an exploded perspective view of the cooling unit 2 and the intermediate part 4c of the outer box
  • FIG. 10A is an upper surface of the power conversion device 1 including the cooling part 2 of FIG. 9 and the intermediate part 4c of the outer case
  • FIG. 10B is a cross-sectional view taken along the line CC in FIG. 10A of the power conversion device 1.
  • the outer box 4 is joined to the intermediate part 4c formed integrally with the cooling part 2, the outer case upper part 4a joined to the upper part of the intermediate part 4c, and the lower part of the intermediate part 4c. And an outer box lower portion 4b.
  • Two opposite side surfaces of the intermediate portion 4c of the outer box 4 are configured to be the same as the refrigerant inlet surface 2b or the refrigerant outlet surface 2d of the cooling unit 2, respectively.
  • the refrigerant inlet face 2 b and the refrigerant outlet face 2 d on both end faces of the cooling unit 2 extend in the horizontal direction while maintaining the same height, and the outer box 4 Is in communication with the intermediate portion 4c.
  • the height of two opposing side surfaces perpendicular to the refrigerant inlet surface 2b and the refrigerant outlet surface 2d of the intermediate portion 4c of the outer box 4 is the side surface perpendicular to the refrigerant inlet surface 2b and the refrigerant outlet surface 2d of the cooling unit 2. Is the same height.
  • a side surface that is the same surface as the refrigerant inlet surface 2b, a side surface that is the same as the refrigerant outlet surface 2d, and two opposite side surfaces that are perpendicular to the refrigerant inlet surface 2b and the refrigerant outlet surface 2d Are formed integrally with the refrigerant inlet surface 2b and the refrigerant outlet surface 2d of the cooling unit 2 and the side surfaces perpendicular to the refrigerant inlet surface 2b and the refrigerant outlet surface 2d of the cooling unit 2.
  • the lid 2g is joined to the U-shaped cooling part 2h, and the gap between the cooling part 2 and the outer box 4 is wide enough to allow the electronic device 3 to be disposed.
  • the shapes of the outer box upper part 4a and the outer box lower part 4b constituting the outer box 4 are different between the third embodiment and the second embodiment.
  • the outer box upper part 4 a and the outer box lower part 4 b are sandwiched and attached so as to cover the electronic device 3.
  • the cooling unit 2 and the middle part 4c of the outer box are at the same height
  • the outer box upper part 4a and the outer box lower part 4b are attached to the cooling part 2 and the middle part 4c of the outer box.
  • the joint surfaces are on the same plane.
  • the joint surface when the outer box upper part 4a and the outer box lower part 4b shown in FIG. 1 or FIG. 2 (b) are sandwiched and attached does not have the intermediate part 4c of the outer box.
  • a part of the box lower part 4 b is recessed according to the shape of the cooling part 2. Therefore, the joint surfaces of the outer box upper part 4a and the outer box lower part 4b are not on the same plane.
  • FIG. 11 and FIG. 12 are modifications of the cooling unit 2 and the middle part 4c of the outer box shown in FIG. 9 and FIG.
  • FIG. 11 is an exploded perspective view of the outer box 4 and the cooling unit 2
  • FIG. 12 is a front view of the outer box 4 and the cooling unit 2.
  • the height h2 of the side surface perpendicular to the refrigerant inlet surface 2b and the cooling outlet surface 2d of the intermediate portion 4c of the outer box is made smaller than the height h1 of the U-shaped cooling portion 2h, and the refrigerant inlet
  • the surfaces of the refrigerant inlet surface 2b and the refrigerant outlet surface 2d extending in the horizontal direction from the upper and lower ends of the surface 2b and the refrigerant outlet surface 2d to the upper and lower ends of the intermediate portion 4c of the outer box are linear or curved in the height direction. You may take a structure that narrows while drawing.
  • the U-shaped cooling part 2h and the lid part 2g constituting the cooling part 2 may be combined to form a shape with rounded corners (rounded shape).
  • the outer box 4 may have a shape in which the corners of the four corners of the outer box 4 constituting the power converter 1 are chamfered (rounded shape).
  • the outer box 4 has the opposite side surface and the refrigerant inlet that are the same surface as the refrigerant inlet surface 2b or the refrigerant outlet surface 2d of the cooling unit 2, respectively.
  • An intermediate portion 4c having opposite side surfaces perpendicular to the surface 2b and the refrigerant outlet surface 2d and having a height equal to or lower than the side surfaces perpendicular to the refrigerant inlet surface 2b and the refrigerant outlet surface 2d of the cooling unit 2; It has an outer box upper part 4a joined to the upper part and an outer box lower part 4b joined to the lower part of the intermediate part 4c.
  • the intermediate part 4c includes the refrigerant inlet face 2b, the refrigerant outlet face 2d, and the cooling part 2 of the cooling part 2. It is characterized by being formed integrally with a side surface perpendicular to the refrigerant inlet surface 2b and the refrigerant outlet surface 2d of the part 2.
  • the outer box upper part 4a and the outer box lower part 4b cover the cooling part 2 in which the electronic device 3 is disposed.
  • the joint surfaces are on the same plane. Therefore, since the concave shape according to the shape of the cooling part 2 is not formed in the outer box upper part 4a and the outer box lower part 4b, the seal member can be reduced and can be easily installed. Thereby, workability
  • the contact thermal resistance at the joint surface is large.
  • the cooling unit 2 and the middle part 4c of the outer box are integrally molded, heat can be easily transferred from the cooling unit 2 to the outer box 4 by heat conduction.
  • the heat is The electronic device 3 can be cooled by dissipating heat to the outside.
  • the surface extending in the horizontal direction from the upper and lower ends of the refrigerant inlet surface 2b and the refrigerant outlet surface 2d to the upper and lower ends of the middle portion 4c of the outer box is narrowed while the height direction is linear or curved. Therefore, the volume of the power converter 1 can be reduced. Therefore, the weight can be reduced. Furthermore, by making the outer box 4 into a shape with rounded corners (rounded shape) in the same manner, the power conversion device 1 can be further reduced in weight and compact.
  • the surface extending in the horizontal direction from the upper and lower ends of the refrigerant inlet surface 2b and the refrigerant outlet surface 2d to the upper and lower ends of the intermediate portion 4c of the outer box 4 has a structure in which the height direction narrows linearly or while drawing a curved surface. Therefore, since it is not a stepped step, the sealing member can be easily installed, and not only the workability is improved, but also the risk of intrusion of water from the outside can be reduced.
  • the lid 2g and the outer box 4 are not shown, but are fixed by brazing, welding, bolts, screws, rivets, or the like.
  • FIG. 13 is a top view of the cooling section 2 and the intermediate section 4c according to the fourth embodiment of the present invention, and a sectional view taken along DD.
  • the cooling unit 2 and the middle part 4c of the outer box are integrally molded, and the outer box upper part 4a and the outer box lower part 4b are sandwiched from above and below the cooling part 2.
  • the structure of the upper part of the integrally molded cooling portion 2 shown in the third embodiment, the middle portion 4c of the outer box, and the U-shaped cooling portion 2h is different. The description will focus on the points that are the same as those in the third embodiment and that have the same functions.
  • FIG. 13A shows a top view of the cooling part 2 and the intermediate part 4 c of the outer box 4.
  • 13B is a cross-sectional view taken along the line DD in FIG. 13A of the cooling unit 2 and the intermediate part 4c of the outer box 4.
  • FIG. 13B there is a stepped portion 10 that is partially recessed inward at the top of the U-shaped cooling portion 2h.
  • the friction stir welding means that a cylindrical tool (connecting tool) is inserted into the joint portion of the member while rotating, and the member is softened by frictional heat generated by moving the tool along the joint portion.
  • the lid portion 2g and the U-shaped cooling portion 2h that is the cooling portion 2 excluding the lid portion 2g are joined by friction stir welding. Formed. Then, it is not necessary to join the lid part 2g and the U-shaped cooling part 2h via the seal member. Therefore, since the sealing groove 6 for a sealing member such as an O-ring and a bolt fastening hole are not required, the plate thickness can be reduced.
  • the power conversion device 1 can be reduced in size and weight, and the number of parts such as a seal member can be reduced.
  • Friction stir welding is a bonding method using metal bonding, and can reduce the risk of water leakage due to deterioration like a seal member.
  • FIG. 14 is a top view of the power conversion device 1 and a cross-sectional view taken along the line EE.
  • the fifth embodiment of the present invention is a modification in which the plate thickness of the lower surface of the cooling unit 2 of the power conversion device 1 is reduced. The following description will focus on differences from the first embodiment, and description of the same or corresponding parts will be omitted.
  • FIG. 14A is a top view of the power conversion device 1.
  • FIG. 14B is a cross-sectional view taken along line EE in FIG.
  • the electronic device 20 having the largest heat generation density among the plurality of electronic devices 3 arranged in the power conversion device 1. Is disposed outside the lower surface of the cooling unit 2, and among the side surfaces of the cooling unit 2, the thickness of the lower surface is thinner than the other surfaces.
  • the cooling unit 2 is characterized in that the thickness of the lower surface of the side surfaces is thinner than the other side surfaces.
  • the thickness of the lower surface of the side surface is thinner than that of the other side surface, so that the electronic device mounted outside the lower surface of cooling unit 2 3 is easily transferred to the refrigerant in the refrigerant flow path 2f in the vicinity of the lower surface of the cooling unit 2, and the boiling of the refrigerant can be promoted.
  • FIG. 15 is a top view of the power conversion device 1 and a cross-sectional view taken along the line FF.
  • the sixth embodiment of the present invention is different from the first embodiment of the present invention in that the cooling fins 26 are provided. The following description will focus on differences from the first embodiment, and description of the same or corresponding parts will be omitted.
  • FIG. 15A is a top view of the power conversion device 1.
  • FIG. 15B is a cross-sectional view of the power converter 1 taken along line FF in FIG.
  • the cooling fins 26 are provided inside the upper surface of the cooling unit 2.
  • the cooling unit 2 is characterized in that the fins 26 are provided inside the upper surface of the side surfaces.
  • the cooling fins 26 may be provided. Further, the number of cooling fins 26 may be one or plural. What is necessary is just to change suitably the number of the fins 26 for cooling according to a required heat dissipation characteristic. Furthermore, the cooling fins 26 are not limited to comb-shaped fins arranged parallel to the flow, and may be cylindrical pin fins, prismatic pin fins, offset fins, corrugated fins, or the like.
  • FIG. 16 is a top view and a GG sectional view of the power conversion device 1.
  • the seventh embodiment of the present invention is different in that the conductor rod 11 is provided in the first embodiment of the present invention. The following description will focus on differences from the first embodiment, and description of the same or corresponding parts will be omitted.
  • FIG. 16A is a top view of the power conversion device 1.
  • FIG. 16B is a cross-sectional view taken along the line GG in FIG.
  • the power conversion device 1 according to the seventh embodiment of the present invention includes a conductor rod 11 that connects at least two electronic devices 3, and a gap between the conductor rod 11 and the cooling unit 2. And an insulating member 12 provided on the surface. The insulating member 12 prevents a short circuit between the conductor rod 11 and the cooling unit 2.
  • the conductor rod 11 is made of copper or aluminum.
  • the insulating member 12 is disposed in the gap between the conductor rod 11 and the cooling unit 2, the heat generation from the conductor rod 11 to the cooling unit 2 compared to the case without the insulating member 12 is achieved. Good transmission of heat. This is because even if the insulating member 12 is, for example, plastic or silicon rubber, it is much larger than the thermal conductivity of air. Therefore, the high temperature of the conductor rod 11 itself can be prevented, and the conductor rod 11 can be efficiently cooled.
  • FIG. 17 is a top view and HH cross-sectional view of the power conversion device 1.
  • the eighth embodiment of the present invention is different in that the protrusion 13 is integrally formed with the cooling unit 2 of the first embodiment of the present invention. The following description will focus on differences from the first embodiment, and description of the same or corresponding parts will be omitted.
  • FIG. 17A is a top view of the power conversion device 1.
  • FIG. 17B is a cross-sectional view taken along the line HH in FIG.
  • the cooling unit 2 according to the eighth embodiment of the present invention has protrusions 13 for fitting the electronic device 3 on two surfaces of the cooling unit side surface 2a that are opposed to each other in the horizontal direction.
  • the cooling unit side surface 2a is provided by integral molding on two outer lower surfaces.
  • a recess for fitting with the electronic device 3 is provided on the top of the protrusion 13.
  • the electronic device 3 is provided with a bulge for fitting with the recess.
  • the cooling part 2 should just have the permite
  • the cooling unit 2 is characterized in that the protrusion 13 for fitting the electronic device 3 is provided on the outside of at least one side surface.
  • the protrusion 13 supports the electronic device 3, so that the electronic device 3 can be easily bolted. Etc., and can be fastened to the cooling unit 2. Thereby, workability at the time of assembly is improved. Moreover, the number of parts can be reduced by integrally molding the cooling part 2 and the protrusion 13.
  • FIG. 18 is a front view and a cross-sectional view taken along the line II of the cooling unit 2 according to the ninth embodiment of the present invention.
  • a partition 14 is disposed inside the cooling unit 2, and the refrigerant inlet 2c and the refrigerant outlet 2e are arranged on the same surface of the cooling unit 2. It is different by having been established. The following description will focus on differences from the first embodiment, and description of the same or corresponding parts will be omitted.
  • FIG. 18A is a front view of the cooling unit 2 and shows a cross-sectional position II.
  • FIG. 18B is a cross-sectional view taken along the line II in FIG. 18A of the cooling unit 2.
  • the refrigerant inlet 2c and the refrigerant outlet 2e are disposed on the same surface constituting the cooling unit 2.
  • FIG. 18B in order to divide the refrigerant flow path 2f into two in the vertical direction of the first area and the second area, a first area in contact with the refrigerant inlet portion 2c, and a refrigerant outlet
  • connects the part 2e is provided.
  • the partition 14 three sides of the four sides constituting the partition 14 are attached to the surface constituting the cooling unit 2, and the remaining one side is a gap through which the refrigerant can pass between the surface constituting the cooling unit 2. 15 is formed.
  • the refrigerant inlet 2c and the refrigerant outlet 2e are provided on the same surface. That is, the surface facing the surface of the cooling unit 2 in which the refrigerant inlet portion 2 c and the refrigerant outlet portion 2 e are disposed is not in contact with the partition 14, and there is a gap 15 between the surface and the partition 14.
  • the partition 14 is attached to the other surface of the cooling unit 2 except for the gap 15.
  • the refrigerant that has flowed from the refrigerant inlet portion 2c into the refrigerant flow path 2f in the cooling portion 2 passes through the gap 15 and is discharged from the refrigerant outlet portion 2e while drawing a U-shaped locus.
  • the gap 15 is formed on the side opposite to the surface of the cooling unit 2 in which the refrigerant inlet 2c and the refrigerant outlet 2e are disposed, a short circuit from the refrigerant inlet 2c to the refrigerant outlet 2e. Can be prevented.
  • the cooling unit 2 includes the refrigerant inlet 2c and the refrigerant outlet 2e provided on the same surface, and is in contact with the refrigerant inlet 2c. And a second region in contact with the refrigerant outlet portion 2e are provided with a partition 14 that divides the refrigerant flow path, and the partition 14 forms a gap through which the refrigerant passes between the same surface and the surface of the cooling unit 2 that faces the same surface. It is characterized by doing.
  • the radiator hose can be easily connected.
  • operativity improves, for example, when mounting the power converter device 1 in a small space, such as an engine room of a vehicle.
  • the partition 14 may be installed in the vertical direction and divided into two areas on the left and right, the partition 14 may be installed in the horizontal direction and divided into two areas on the upper and lower sides.
  • the refrigerant may flow from either the upper or lower refrigerant pipe, but it is preferable to flow the refrigerant from the bottom to the top.
  • the partition 14 may be joined to the cooling unit 2 with screws or the like, or may be integrally formed.
  • the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

発熱する複数の電子機器が配設された冷却部を有する電力変換装置であって、必要な設置面積を小さくでき、冷却流路の取り回しが簡略化できる電力変換装置を提供する。本発明に係る電力変換装置(1)は、冷媒入口部(2c)および冷媒出口部(2e)を有する内部が中空の角柱であって、冷媒入口部(2c)から冷媒出口部(2e)に向かって、冷媒が流れる冷媒流路(2f)を内部に有する冷却部(2)と、冷媒入口部(2c)が配設された冷媒入口面(2b)および冷媒出口部(2e)が配設された冷媒出口面(2d)を除く冷却部(2)の側面の外側の3面以上にそれぞれ配設され、冷媒が沸騰することで冷却される電子機器(3)と、電子機器(3)を覆う中空の外箱(4)とを備えたものである。

Description

電力変換装置
 本発明は、電力を変換する電力変換装置に関するものである。
 従来の電力変換装置は、例えば車載用の電気自動車またはハイブリッド自動車などに搭載された、インバータ装置とDC-DCコンバータ装置を一体化したものなどがある。
 インバータ装置またはDC-DCコンバータ装置は、通常冷却される必要がある。そこで、インバータ装置またはDC-DCコンバータ装置が配設されるケース内に、冷却のための冷媒が流れる冷媒流路を形成する場合が多い。冷媒流路をケース内にコの字形状に設け、比較的発熱量の大きいイダクタ素子、パワー半導体モジュールなどを冷媒流路の近傍に配置して冷却効率を高めた冷却構造が開示されている。(例えば、特許文献1参照)。
 一方、半導体モジュール両面の放熱面に沿って流路を設け、冷却水を流路に供給することで冷却効率を高めた構造も開示されている(例えば、特許文献2参照)。
特開2013-94022号公報(段落0015~0017、段落0090~0091、図11) 特開2011-109740号公報(段落0073、図5)
 このような電力変換装置にあっては、発熱する複数の電子機器が一つの平面上に並べて配設されているため、偏平構造の冷却部となっていた。それゆえ、冷却部を備えた電力変換装置を設置する際に必要な面積が大きくなるという問題点があった。
 また、電子機器の両面に冷媒流路を設けて冷却を行う場合には、冷媒流路の取り回しが複雑となる。よって、それぞれの電子機器について冷媒流路の取り回しを行うと、冷媒流路が著しく複雑な構造となってしまう問題があった。
 本発明は、上述のような問題を解決するためになされたもので、必要な設置面積を小さくでき、冷却流路の取り回しが簡略化できる電力変換装置を提供することを目的とする。
 本発明に係る電力変換装置は、冷媒入口部および冷媒出口部を有する内部が中空の角柱であって、冷媒入口部から冷媒出口部に向かって、冷媒が流れる冷媒流路を内部に有する冷却部と、冷媒入口部が配設された冷媒入口面および冷媒出口部が配設された冷媒出口面を除く冷却部の側面の外側の3面以上にそれぞれ配設され、冷媒が沸騰することで冷却される電子機器と、電子機器を覆う中空の外箱とを備えたものである。
 本発明に係る電力変換装置によれば、必要な設置面積を小さくでき、冷却流路の取り回しが簡略化できる電力変換装置を得ることができる。
本発明の実施の形態1に係る電力変換装置の分解斜視図である。 本発明の実施の形態1に係る電力変換装置の上面図およびA-A断面図である。 本発明の実施の形態1に係る冷却部形状の変形例である。 本発明の実施の形態1に係る電力変換装置の配置例を示すブロック図である。 本発明の実施の形態1において最も発熱量の大きい電子機器を冷却部の下面の外側に配設した場合の冷却器内の冷媒の流れを示す図である。 本発明の実施の形態2に係る冷却部の分解斜視図である。 本発明の実施の形態2に係る冷却部の上面図およびB-B断面図である。 本発明の実施の形態2に係る冷却部の正面図である。 本発明の実施の形態3に係る冷却部と中間部との分解斜視図である。 本発明の実施の形態3に係る電力変換装置の上面図およびC-C断面図である。 本発明の実施の形態3に係る冷却部と中間部との分解斜視図である。 本発明の実施の形態3に係る冷却部と中間部との正面図である。 本発明の実施の形態4に係る電力変換装置の上面図およびD-D断面図である。 本発明の実施の形態5に係る電力変換装置の上面図およびE-E断面図である。 本発明の実施の形態6に係る電力変換装置の上面図およびF-F断面図である。 本発明の実施の形態7に係る電力変換装置の上面図およびG-G断面図である。 本発明の実施の形態8に係る電力変換装置の上面図およびH-H断面図である。 本発明の実施の形態9に係る電力変換装置の上面図およびI-I断面図である。
実施の形態1.
 本発明の実施の形態1に係る電力変換装置1を図1~5により説明する。図において、同一の符号を付したものは、同一または対応するものであり、このことは、明細書の全文において共通することである。
 図1は、本発明の実施の形態1に係る電力変換装置1の分解斜視図である。また、図2は本発明の実施の形態1に係る電力変換装置1の上面図およびA-A断面図であり、図2(a)は電力変換装置1の上面図、および図2(b)は電力変換装置1の図2(a)におけるA-Aでの断面図である。
 本実施の形態1に係る電力変換装置1は、主に外箱4と冷却部2と発熱する複数の電子機器3とを有する。冷却部2は、図1において内部が中空の4角柱を例示しており、冷却部側面2a、冷媒入口面2b、冷媒入口部2c、冷媒出口面2d、冷媒出口部2eおよび冷媒流路2fを有する。冷却部2の向かい合う両端面の一方の面が冷媒入口面2bであり、もう一方の面が冷媒出口面2dである。また、冷媒入口面2bに冷媒が流入する冷媒入口部2cが配設され、冷媒出口面2dに冷媒が流出する冷媒出口部2eが配設されている。冷媒入口部2cおよび冷媒出口部2eは、冷媒配管用の継手である。
 冷却部側面2aは、例えば図1において冷媒入口面2bおよび冷媒出口面2dと垂直に接する4角柱の平面から構成されている。つまり、冷却部側面2aは、冷媒入口部2cが配設された冷媒入口面2bおよび冷媒出口部2eが配設された冷媒出口面2dを除く冷却部2の面である。
 また、電力変換装置1を車両等に設置する場合において、冷却部側面2aのうち鉛直方向の上部の面を上面、下部の面を下面とする。冷媒流路2fは、冷媒入口面2b、冷媒出口面2d、および冷却部側面2aで囲まれた4角柱の中空の空間であり、冷媒入口部2cおよび冷媒出口部2eの継手と連通している。よって、冷媒流路2fは冷却部2の外形に沿った形状の流路となっている。
 冷却部側面2aと冷媒入口面2b、または冷却部側面2aと冷媒出口面2dは、Oリングなどのシール部材を介在して接合される。ここで、冷媒入口部2cおよび冷媒出口部2eの継ぎ手には、例えばラジエータホースなどの冷媒配管40が取り付けられており、ウォーターポンプ32またはラジエータ31を介して冷媒流路2f内を通り冷媒が循環する。冷媒は、水、LCC(主成分であるエチレングリコールを水で薄めた不凍液)またはオイルなどが用いられる。
 冷却部側面2aの外側には、発熱する電子機器3として、制御回路3a、駆動回路3b、コンデンサ3c、パワーモジュール3dまたはステップダウンコンバータ3e等が配設されている。電子機器3は例えばハーネス41によって、モーター33などの負荷機器またはバッテリー34などの電力供給機器に接続されている。ここで、冷却部2はアルミニウム、アルミニウム合金またはステンレスなどの金属の薄板で形成される。なお、電子機器3は、必ずしも冷却部側面2aのみに配設される必要はなく、スペースに余裕があれば、冷媒入口面2bまたは冷媒出口面2dにも配設されてもよい。
 ここで、冷却部側面2aの製造方法について例示する。冷却部側面2aは、一例として、以下に示すダイカスト製法で作製される。冷却部側面2aを成形するため、固定型と可動型のそれぞれの金型を作成し、ダイカストマシンの固定盤および可動盤にそれぞれ取り付ける。次に、ダイカストマシンの可動型が動き、固定型と組み合わされて締め付けられる。さらに、溶融金属が金型に圧入され、凝固が完了すると可動型が動いて型が開き、冷却部側面2aが成形される。一方、押し出し成形でも冷却部側面2aを成形することができる。例えば、耐圧性の型枠に素材を入れ、高い圧力を加えることで一定断面形状のわずかな隙間から押出し、求める形状に加工することで、冷却部側面2aが得られる。また、冷却部側面2aは、板を溶接すること、またはシールしボルトで締結することでも成形することができる。
 なお、冷媒入口面2bと冷媒出口面2dの位置は、4角柱である冷却部2の両端面に限定されるものではなく、冷却部2を構成する面の任意の位置に配置してもよい。さらに、発熱する電子機器3は冷却部側面2aの少なくとも3面以上に配設されていればよい。
 外箱4は、内部が中空であって、電子機器3を覆うように設けられている。本実施の形態1における外箱4は、外箱上部4aと外箱下部4bが別体で形成され、電子機器3が配設された冷却部2を上下から挟み込むようにして取り付けられ、内部を保護する。外箱4の外形は、概ね4角柱であるため設置の際に取り扱いがし易い。
 また、本実施の形態1では、冷媒入口面2bと冷媒出口面2dは外箱4に覆われておらず、外箱4の面と平滑面を形成しており、外部に露出している。それゆえ、冷媒入口面2bまたは冷媒出口面2dの形状に合わせ、外箱上部4aおよび外箱下部4bは、それぞれコの字型の形状となっている。外箱4は、外箱上部4aと外箱下部4bとの接触面で接合され、さらに外箱4と冷却部2は、外箱上部4aおよび外箱下部4bと冷却部2との接触面で接合されることで、内部が密閉される。
 外箱4はアルミニウム、アルミニウム合金またはステンレスなどの金属の薄板で形成される。外箱4を介して電子機器3間の短絡を防ぐため、冷却部2に取り付けられた電子機器3は外箱4に接触しないように配置されている。また、冷媒入口面2bと冷媒出口面2dは、外箱4の面と平滑面を形成する必要は必ずしもない。冷媒入口面2bおよび冷媒出口面2dの少なくとも一方が、外箱4の面の内側に位置していてもよく、外箱4の形状を適宜変更し、電子機器3が設けられた冷却部側面2aを覆うように外箱4の内部を密閉できればよい。
 外箱4と冷却部2との間の空気は密閉空間に閉じ込められている。電子機器3の発熱により、密閉された空気の温度は上昇する。外箱4は金属製であり、外箱4の外表面で外気と熱交換することで、密閉空間の空気を冷却することができる。また、電子機器3に覆われていない冷却部2の表面で熱交換して密閉空間の空気を冷却することもできる。外箱4の外表面に凹凸またはフィンを設け、外気と外箱4との熱交換を促進してもよい。
 本実施の形態1に係る電力変換装置1は、図2(b)に示すように、冷却部2における冷媒流路2f断面の形状、すなわち、冷媒入口面2bまたは冷媒出口面2dに平行な冷却部2の断面形状(A-A断面の形状)が正方形の場合を例示している。発熱する電子機器3を冷却部側面2aの外側の3面以上に固定できればよく、断面形状が長方形または台形となってもよい。なお、本実施の形態1では、外箱4と冷却部2の間の距離が四隅を除き概ねいずれの方向においても同一の距離である。しかし、外箱4の外形が設置上取り扱いし易ければよく、必ずしも同一の距離を保つ必要はない。
 さらに、図3は本発明の実施の形態1に係る冷却部2の形状の変形例である。図3(a)および図3(b)は、いずれも図2(a)のA-A位置に相当する位置での断面図である。図3(a)は、冷却部2の断面形状が五角形であり、冷却部側面2aの外側に電子機器3が設けられている。図3(b)は、冷却部2の断面形状が六角形であり、冷却部側面2aの外側に発熱する電子機器3が設けられている。図2(b)でA-A位置での冷却部2の断面形状が四角形のものを示したが、図3に示すように、A-A位置での冷却部2の断面形状が五角形または六角形でもよく、三角形以上の多角形で構成された角柱であってもよい。
 ここで、図4は本発明の実施の形態1に係る電力変換装置1の配置例を示すブロック図である。図4より、電力変換装置1は、ウォーターポンプ32とモーター33に冷媒配管40で接続されている。モーター33はエンジン30と、エンジン30はラジエータ31と、ラジエータ31はウォーターポンプ32と、それぞれ冷媒配管40で接続された配置となっている。さらに、電力変換装置1はハーネス41でバッテリー34およびモーター33と接続されている。図4に電力変換装置1の配置例として一例を示したが、各機器を自由に組み合わせてよく、図4の配置に限定されるわけではない。
 次に、本発明の実施の形態1における電力変換装置1の動作について説明する。モーター33等を駆動するため、冷却部2に設けられた制御回路3a、駆動回路3b、コンデンサ3c、パワーモジュール3dまたはステップダウンコンバータ3e等の各電子機器3が動作する。これらの電子機器3は駆動状態に応じて発熱する。
 冷却部2の外側に配設された発熱する電子機器3は、冷却部側面2aを通じて冷媒を加熱し、冷媒を沸騰させることができる。加熱により、発熱する電子機器3が設けられた冷却部側面2aから気泡24を伴う沸騰が生じ、冷媒の相変化による潜熱および発熱する電子機器3が設けられた冷却部側面2a近傍での冷媒の流れの乱れなどにより熱伝達率が上昇する。そして、電子機器3が冷却され、規定の温度以下となる。なお、冷媒が沸騰するか否かは、一般的に冷却部2の伝熱面(冷却器側面2aのうち発熱する電子機器3が設けられた面の内側面)から冷媒へ単位時間に伝えられる単位面積あたりの熱の量(熱流束)が重要であり、電子機器3の発熱密度が高い方が熱流束も大きくなり、沸騰が生じ易くなる。
 沸騰により発生した気泡24は、冷却部2の下面から離れた比較的低温の冷媒と熱交換することで凝縮させることができる。冷媒は、電子機器3から受熱することで温度上昇し、冷媒出口部2eからラジエータホースなどの冷媒配管40内を流れてラジエータ31へ送り出される。ラジエータ31において、冷媒は外気と熱交換することで冷却され、冷却された冷媒は再び冷媒入口部2cに流れ込み、電子機器3を冷却する。
 以上のとおり、本発明の実施の形態1における電力変換装置1では、冷媒入口部2cおよび冷媒出口部2eを有する内部が中空の角柱であって、冷媒入口部2cから冷媒出口部2eに向かって、冷媒が流れる冷媒流路2fを内部に有する冷却部2と、冷媒入口部2cが配設された冷媒入口面2bおよび冷媒出口部2eが配設された冷媒出口面2dを除く冷却部2の側面の外側の3面以上にそれぞれ配設され、冷媒が沸騰することで冷却される電子機器3と、電子機器3を覆う中空の外箱4とを備えることを特徴としている。
 このような構成によれば、冷却部側面2aに発熱する電子機器3を少なくとも3面以上に配設することにより電力変換装置1をコンパクト化することができる。また、全面に配設することでさらに電力変換装置1をコンパクト化できる。発熱する電子機器3の立体的な配置が可能となるため、偏平構造に比べ冷却部2の冷却面を有効活用でき、冷却効率が向上する。それゆえ、冷却部2を備える電力変換装置1のコンパクト化により、必要な設置面積が小さく済む効果が得られる。
 また、従来の偏平構造の冷却部2と比べ設置面積が小さく済むため、設置の際に他の機器との干渉が起きにくい効果を得ることができる。特に、インバータなどを搭載する電気自動車またはハイブリッド自動車などの車両においては、機器を搭載するスペースが限られるため、本発明の実施の形態1に係る電力変換装置1を車両に搭載することにより、他の機器を搭載するスペースを確保できるという効果が得られる。
 さらに、冷却部2内部の冷媒流路2fには冷却用の冷媒が流れており、その外側に発熱する電子機器3を取り付けているため、冷媒流路2fの複雑な取り回しをしなくとも電子機器3の冷却が可能である。それゆえ、シンプルな冷媒流路2fを有する冷却部2を得ることができる。
 発熱する電子機器3を外箱4で覆うことにより、外部からの浸水に対する防水性、飛来物または埃・塵の侵入を防ぐ密閉性を確保することもできる。また、冷却部2を立体形状とすることで、偏平構造に比べ電子機器3を外箱4で覆った場合の、冷却部2と外箱4の接触面積が小さくなり、シール部分が少なくなる。よって、密閉性を向上させることができる。
 また、本発明の実施の形態1における電力変換装置1では、電子機器3のうち最も発熱密度の大きい電子機器3を冷却部2の側面のうち下面の外側に配設された構成としてもよい。また、電子機器3のうち最も発熱量の大きい電子機器3を冷却部2の側面のうち下面の外側に配設された構成としてもよい。
 図5は、本発明の実施の形態1において最も発熱密度の大きい電子機器3を冷却部2の下面の外側に配設した場合の冷却部2内の冷媒の流れを示す図である。図5における冷却部2では、冷却部側面2aのうち下面の外側に、発熱する電子機器3のうち最も発熱密度の大きい電子機器3としてパワーモジュール3dを配設している。図5は基本的に図2(b)と対応する図であるが、沸騰による冷却部2内の冷媒の流れを模式的に表した流れの矢印25を図5(b)に加えて記載している。なお、冷却部2の下面近傍の沸騰を促進させるため、冷却部2内は低流速状態であることが好ましい。
 このような構成によれば、最も発熱密度の大きい電子機器20を冷却部2の下面の外側に搭載することで、多量の熱を冷却部2下面近傍の冷媒流路2f内の冷媒に伝え、下面近傍で冷媒を沸騰させることができる。この場合、沸騰により生じた気泡は、浮力により上昇し、図5の流れの矢印25に示すような二次流れを誘起する。それゆえ、下面を除く冷却部側面2aにおいても二次流れにより熱伝達率が高くなり、電子機器3の冷却効率が向上する。なお、冷媒の沸騰により生じた気泡24は、冷却部2の下面から離れた比較的低温の冷媒と熱交換することで凝縮させることができる。
 また、本発明の実施の形態1における電力変換装置1では、電子機器3のうち最も発熱密度が小さい電子機器3を冷却部2の側面のうち上面の外側に配設された構成としてもよい。また、電子機器3のうち最も発熱量が小さい電子機器3を冷却部2の側面のうち上面の外側に配設された構成としてもよい。
 このような構成によれば、電力変換装置1と冷却部2との間に密閉された空気について、最も発熱密度の小さい電子機器21を冷却部2の上面に設けることで、冷却部2上方の温度上昇を小さくできる。また、最も発熱密度の小さい電子機器21について、最も発熱密度の大きい電子機器20による熱の煽りを受けることを抑制できる。よって、電子機器3を効率よく冷却することが可能となり、熱による悪影響を抑制することができる。
実施の形態2.
 本発明の実施の形態2に係る電力変換装置1の構成を図6~8により説明する。図6は本発明の実施の形態2に係る冷却部2の分解斜視図である。また、図7(a)は冷却部2の上面図、および図7(b)は冷却部2の図7(a)におけるB-Bでの断面図、図8は冷却部2の正面図である。なお、実施の形態1に係る電力変換装置1においては、電力変換装置1の基本構造として、一体成型された冷却部2の構造を説明した。本発明の実施の形態2では、電力変換装置1の冷却部2の構造の変形例について説明する。以下に実施の形態1と異なる点を中心に説明し、同一または対応する部分についての説明は省略する。
 図6に示すように、本実施の形態2における冷却部2は、蓋部2gとコの字型冷却部2hとで構成される。蓋部2gは、冷媒入口部2cが配設された面である冷媒入口面2b、および冷媒出口部2eが配設された面である冷媒出口面2dを除く冷却部2を構成する板状の1面である。コの字型冷却部2hは、冷却部2から蓋部2gを除き、蓋部2gと別体で形成されたものである。本実施の形態2における電力変換装置1は、蓋部2gとコの字型冷却部2hを接合した冷却部2を有している。
 コの字型冷却部2hは、冷却部側面2a、冷媒入口面2b、冷媒入口部2c、冷媒出口面2dおよび冷媒出口部2eから一体成型で形成されている。この蓋部2gとコの字型冷却部2hは、Oリングなどのシール部材を介在して接合され、冷却部2を形成する。
 図7に示すように、冷媒は、冷媒入口部2cから流入し、冷却部2内部に形成された冷媒流路2fを通り、冷媒出口部2eへと流れる。この冷媒が冷却部2外部に漏れださないため、コの字型冷却部2hの上部に、Oリングなどのシール部材を配設するためのシール用溝6が設けられている。コの字型冷却部2hに蓋部2gを接合する際には、シール用溝6にOリングなどのシール部材が配設され、両者は接合される。図8に示すように、冷却部2の上部に蓋部2gが覆い被さり、冷却流路2fは密閉されている。
 以上のとおり、本発明の実施の形態2に係る電力変換装置1によると、冷却部2は、冷媒入口面2bおよび冷媒出口面2dを除く側面のうち1面を板状の蓋部2gとし、蓋部2gを除く冷却部2を蓋部2gと別体で形成し、蓋部2gと冷却部2の蓋部2gを除く冷却部2とを接合して形成されることを特徴としている。
 このような構成によれば、コの字型冷却部2hは一体成型して形成されているため、冷却部側面2a、冷媒入口面2bおよび冷媒出口面2dについて、それぞれシール部材を介在して接合するよりも、接合箇所を減らすことができる。よって、密閉性を向上させることができ、外部からの浸水に対する防水性を向上させ、埃塵などの侵入を防ぐ効果が得られる。
 また、コの字型冷却部2hと蓋部2gに分割することで、電子機器3を取り付けることが容易になり、作業性が向上するという効果も得られる。なお、蓋部2gは、冷却部側面2aの上面に限られる必要はなく、その他の面でもよい。
実施の形態3.
 本発明の実施の形態3に係る電力変換装置1の構成を図9~図12により説明する。本発明の実施の形態3では、冷却部2と外箱の中間部4cとが一体成型されている点で実施の形態2と相違し、相違する部分について説明し、同一または対応する部分についての説明は省略する。
 図9は冷却部2と外箱の中間部4cとの分解斜視図であり、図10(a)は図9の冷却部2と外箱の中間部4cとを備えた電力変換装置1の上面図であり、図10(b)は電力変換装置1の図10(a)におけるC-Cでの断面図である。本発明の実施の形態3では、外箱4は、冷却部2と一体で成形される中間部4cと中間部4cの上部に接合される外箱上部4aと中間部4cの下部に接合される外箱下部4bとを有する。外箱4の中間部4cの対向する2つの側面は、冷却部2の冷媒入口面2bまたは冷媒出口面2dとそれぞれ同一面で構成されている。具体的には、図9に示すように、冷却部2の両端面の冷媒入口面2bおよび冷媒出口面2dは、同一高さを保ったまま水平方向にそれぞれの面が延伸し、外箱4の中間部4cと連絡している。
 また、冷媒入口面2bおよび冷媒出口面2dに垂直な、外箱4の中間部4cの対向する2つの側面の高さは、冷却部2の冷媒入口面2bおよび冷媒出口面2dに垂直な側面の高さと同一である。さらに、外箱4の中間部4cにおいて、冷媒入口面2bと同一面である側面、冷媒出口面2dと同一である側面、および冷媒入口面2bおよび冷媒出口面2dに垂直な対向する2つの側面が、冷却部2の冷媒入口面2b、冷媒出口面2d、および冷却部2の冷媒入口面2bおよび冷媒出口面2dに垂直な側面と一体で形成される。
 図10(b)に示すように、コの字型冷却部2hに蓋部2gが接合され、冷却部2と外箱4の間隙は、電子機器3を配設できるだけの十分な広さがある。また、蓋部2gが接合されたコの字型冷却部2hの冷却部2の水平方向に対向する面の高さh1と、冷媒入口面2b、冷媒出口面2dおよび外箱4の中間部4cの高さh2とは同一である。
 よって、外箱4を構成する外箱上部4aおよび外箱下部4bの形状は、本実施の形態3と実施の形態2とで異なる。外箱上部4aおよび外箱下部4bを、電子機器3を覆うように上下から挟み込み取り付ける。すると、本実施の形態3では、冷却部2と外箱の中間部4cが同一高さにあるため、外箱上部4aおよび外箱下部4bを冷却部2と外箱の中間部4cに取り付けた際の接合面は、それぞれ同一平面上にある。
 一方で、図1または図2(b)に示す外箱上部4aと外箱下部4bを挟み込み取り付けた際の接合面は、外箱の中間部4cを設けていないため、外箱上部4aおよび外箱下部4bの一部が冷却部2の形状に従って窪む。それゆえ、外箱上部4aと外箱下部4bの接合面は、それぞれ同一平面上にない。
 図11および図12は、図9および図10に示した冷却部2と外箱の中間部4cの変形例である。図11は、外箱4および冷却部2の分解斜視図であり、図12は、外箱4および冷却部2の正面図である。図11および図12より、外箱の中間部4cの冷媒入口面2bおよび冷却出口面2dに垂直な側面の高さh2を、コの字型冷却部2hの高さh1より小さくし、冷媒入口面2bと冷媒出口面2dの上下端から、外箱の中間部4cの上下端にかけて、水平方向に延伸した冷媒入口面2bと冷媒出口面2dの面は高さ方向が直線的にまたは曲面を描きながら狭まっていく構造を取ってもよい。つまり、冷却部2を構成するコの字型冷却部2hと蓋部2gを組み合わせ、四隅の角が面取りされた形状(丸まった形状)となってもよい。なお、外箱4も同様に、電力変換装置1を構成する外箱4の四隅の角が面取りされた形状(丸まった形状)となるようにしても良い。
 以上のとおり、本発明の実施の形態3に係る電力変換装置1によると、外箱4は、冷却部2の冷媒入口面2bまたは冷媒出口面2dとそれぞれ同一面である対向する側面および冷媒入口面2bおよび冷媒出口面2dに垂直であって、高さが冷却部2の冷媒入口面2bおよび冷媒出口面2dに垂直な側面以下である対向する側面を有する中間部4cと、中間部4cの上部に接合される外箱上部4aと、中間部4cの下部に接合される外箱下部4bとを有し、中間部4cが、冷却部2の冷媒入口面2b、冷媒出口面2d、および冷却部2の冷媒入口面2bおよび冷媒出口面2dに垂直な側面と一体で形成されることを特徴としている。
 このような構成によれば、冷却部2と外箱の中間部4cを一体成型しているため、外箱上部4aと外箱下部4bを、電子機器3が配設された冷却部2を覆うように上下から挟み込み取り付けた場合、接合面はそれぞれ同一平面上にある。それゆえ、外箱上部4aと外箱下部4bに冷却部2の形状に従って窪む形状が形成されないため、シール部材を少なくすることができ、容易に設置することができる。これにより、作業性が向上する。また、窪みが無いことから密閉性も向上し、外部からの水の浸入に対するリスクを軽減できる。
 ここで、冷却部2と外箱の中間部4cを一体成型せずに、外箱4と冷却部2を取り付けた場合は、接合面での接触熱抵抗が大きい。しかし、冷却部2と外箱の中間部4cを一体成型した場合には冷却部2から外箱4へ熱伝導で熱を伝え易くなり、外気温度が冷却部2の温度より低い場合、熱を外に放熱して電子機器3を冷却できる。
 また、冷媒入口面2bと冷媒出口面2dの上下端から、外箱の中間部4cの上下端にかけて、水平方向に延伸した面は高さ方向が直線的にまたは曲面を描きながら狭まっていく構造を取っているため、電力変換装置1の体積を小さくできる。それゆえ、軽量化することが可能となる。さらに、外箱4を同様に四隅の角を面取りした形状(丸めた形状)とすることで、電力変換装置1のさらなる軽量化ができ、コンパクト化にもなる。
 冷媒入口面2bと冷媒出口面2dの上下端から、外箱4の中間部4cの上下端にかけて、水平方向に延伸した面は高さ方向が直線的にまたは曲面を描きながら狭まっていく構造であるため、階段状の段差ではないことから、シール部材を容易に設置することができ、作業性が向上するだけでなく、外部からの水の浸入に対するリスクを軽減できる。例えば、蓋部2gと外箱4は図示していないが、ロウ付け、溶接、ボルト、ネジ、またはリベットなどで固定する。
実施の形態4.
 本発明の実施の形態4に係る電力変換装置1の構成を図13により説明する。図13は本発明の実施の形態4に係る冷却部2と中間部4cの上面図およびD-Dでの断面図である。実施の形態3に係る電力変換装置1は、冷却部2と外箱の中間部4cを一体成型し、外箱上部4aおよび外箱下部4bを冷却部2の上下から挟んでいた。本発明の実施の形態4では、実施の形態3で示した一体成型した冷却部2と外箱の中間部4cと、コの字型冷却部2hの上部の構造が異なっており、その他の構成および機能は同一であって、実施の形態3と異なる点を中心に説明する。
 実施の形態4におけるコの字型冷却部2hの上部4辺は、蓋部2gと接合するため段差状の加工を施した段差部10を設けている。図13(a)は、冷却部2と外箱4の中間部4cの上面図を示す。また、図13(b)は、冷却部2と外箱4の中間部4cの図13(a)におけるD-Dでの断面図である。図13(b)に示すように、コの字型冷却部2hの上部に一部が内側に窪んでいる段差部10がある。コの字型冷却部2hの段差部10に蓋部2gを嵌め込んだ後に、コの字型冷却部2hと蓋部2gの接合箇所に摩擦攪拌接合を施し、両者を接合する。
 ここで、摩擦攪拌接合とは、部材の接合部に円柱状の工具(接続工具)を回転させながら挿入し、工具を接合部に沿って移動させることで発生した摩擦熱で部材を軟化させ、部材を固体のまま攪拌・接合する技術である。
 以上のとおり、本発明の実施の形態4に係る電力変換装置1によれば、蓋部2gと蓋部2gを除く冷却部2であるコの字型冷却部2hとは、摩擦撹拌接合で接合して形成される。すると、蓋部2gとコの字型冷却部2hとをシール部材を介して接合する必要がない。よって、Oリングなどのシール部材用のシール用溝6や、ボルト締結用の穴が不要となるため、板厚を薄くすることができる。
 このような構成によれば、電力変換装置1を小型・軽量化することができ、さらにシール部材などの部品点数を削減することができる。また、摩擦攪拌接合は金属結合を利用した結合方法であり、シール部材のように劣化による水漏れなどのリスクを軽減することができる。
実施の形態5.
 本発明の実施の形態5に係る電力変換装置1の構成を図14により説明する。図14は電力変換装置1の上面図およびE-E断面図である。なお、本発明の実施の形態5では、電力変換装置1の冷却部2の下面の板厚を薄くした変形例である。以下に実施の形態1と異なる点を中心に説明し、同一または対応する部分についての説明は省略する。
 図14(a)は電力変換装置1の上面図である。図14(b)は、電力変換装置1の図14(a)におけるE-Eでの断面図である。図14(b)に示すように、本発明の実施の形態5に係る電力変換装置1によると、電力変換装置1に配設された複数の電子機器3のうち最も発熱密度の大きい電子機器20を冷却部2の下面の外側に配設し、さらに、冷却部2の側面のうち下面の板厚が他の面より薄い。
 以上のとおり、本発明の実施の形態5における電力変換装置1では、冷却部2は側面のうち下面の板厚が他の側面より薄いことを特徴としている。
 このような構成によれば、本発明の実施の形態5における電力変換装置1では、側面のうち下面の板厚が他の側面より薄いため、冷却部2の下面の外側に搭載された電子機器3の熱が冷却部2下面近傍の冷媒流路2f内の冷媒に伝わり易く、冷媒の沸騰を促進させることができる。
実施の形態6.
 本発明の実施の形態6に係る電力変換装置1の構成を図15により説明する。図15は電力変換装置1の上面図およびF-F断面図である。なお、本発明の実施の形態6では、本発明の実施の形態1に冷却用のフィン26が設けられている点で相違する。以下に実施の形態1と異なる点を中心に説明し、同一または対応する部分についての説明は省略する。
 図15(a)は電力変換装置1の上面図である。図15(b)は、電力変換装置1の図15(a)におけるF-F断面図である。図15(b)に示すように、本発明の実施の形態6に係る電力変換装置1によると、冷却部2の上面の内側に冷却用のフィン26が設けられている。
 以上のとおり、本発明の実施の形態6における電力変換装置1では、冷却部2は側面のうち上面の内側に、フィン26が設けられていることを特徴としている。
 このような構成によれば、冷却部2の上面の放熱特性が高くなるため、冷却部2の上面に配設した電子機器21が規定の温度以上になることを防ぐことができる。なお、同様に残りの面に配設した電子機器3のうち規定の温度以上になるものがある場合には、規定の温度以上となる電子機器3が設けられた冷却部2の面の内側に、冷却用のフィン26を設けてもよい。さらに、冷却用のフィン26の枚数は1枚でもよく、複数枚でもよい。冷却用のフィン26の枚数は、必要な放熱特性に応じて適宜変更すればよい。さらにまた、冷却用のフィン26は流れに平行に配設したクシ型フィンに限るものではなく、円柱ピンフィンや角柱ピンフィン、オフセットフィン、コルゲートフィンなどでもよい。
実施の形態7.
 本発明の実施の形態7に係る電力変換装置1の構成を図16により説明する。図16は電力変換装置1の上面図およびG-G断面図である。なお、本発明の実施の形態7では、本発明の実施の形態1に導体棒11が設けられている点で相違する。以下に実施の形態1と異なる点を中心に説明し、同一または対応する部分についての説明は省略する。
 図16(a)は電力変換装置1の上面図である。図16(b)は、電力変換装置1の図16(a)におけるG-Gでの断面図である。図16(b)に示すように、本発明の実施の形態7に係る電力変換装置1は、少なくとも2つの電子機器3同士を接続する導体棒11と、導体棒11と冷却部2との間隙に設けられた絶縁部材12とを備えることを特徴としている。絶縁部材12は、導体棒11と冷却部2との短絡を防止する。また、導体棒11は、銅またはアルミなどが用いられる。
 このような構成によれば、導体棒11と冷却部2の間隙に絶縁部材12が配設されていることで、絶縁部材12が無い場合と比べて発熱する導体棒11から冷却部2への熱の伝わりが良い。これは、絶縁部材12が例えばプラスチックまたはシリコンゴムなどであったとしても、空気の熱伝導率より非常に大きいためである。よって、導体棒11自身の高温化を防止することができ、導体棒11を効率的に冷却できる。
実施の形態8.
 本発明の実施の形態8に係る電力変換装置1の構成を図17により説明する。図17は電力変換装置1の上面図およびH-H断面図である。なお、本発明の実施の形態8では、本発明の実施の形態1の冷却部2に突起13が一体成型されている点で相違する。以下に実施の形態1と異なる点を中心に説明し、同一または対応する部分についての説明は省略する。
 図17(a)は電力変換装置1の上面図である。図17(b)は、電力変換装置1の図17(a)におけるH-Hでの断面図である。図17(b)に示すように、本発明の実施の形態8に係る冷却部2は、冷却部側面2aの水平方向に対向する2面において、電子機器3を嵌合するための突起13を冷却部側面2aの外側下部2面に一体成型で設けている。この突起13の上部には、電子機器3と嵌合するための窪みが設けられている。一方で、電子機器3には窪みと嵌合するための膨らみが設けられている。なお、冷却部2は、冷却部側面2aの水平方向に対向する2面において、少なくとも1つの側面の外側に突起13を有していればよい。
 以上のとおり、冷却部2は、電子機器3を嵌合する突起13を少なくとも1つの側面の外側に有することを特徴としている。
 このような構成によれば、冷却部側面2aの外側下部に設けられた突起13に電子機器3を嵌め込む作業を行うと、突起13が電子機器3を支えるため、電子機器3を簡単にボルトなどで冷却部2に締結することができる。これにより、組立時の作業性が向上する。また、冷却部2と突起13を一体成型することで、部品点数の削減ができる。
実施の形態9.
 本発明の実施の形態9に係る電力変換装置1の構成を図18により説明する。図18は本発明の実施の形態9に係る冷却部2の正面図およびI-I断面図である。本発明の実施の形態9では、本発明の実施の形態1に対し、冷却部2の内部に仕切り14が配設され、冷媒入口部2cおよび冷媒出口部2eが冷却部2の同一面に配設されたことで相違する。以下に実施の形態1と異なる点を中心に説明し、同一または対応する部分についての説明は省略する。
 図18(a)は冷却部2の正面図であり、断面位置I-Iを示す。図18(b)は、冷却部2の図18(a)におけるI-Iでの断面図である。図18(a)に示すように、冷却部2を構成する面の同一面に、冷媒入口部2cおよび冷媒出口部2eが配設されている。また、図18(b)に示すように、冷媒流路2fを第1の領域と第2の領域の鉛直方向に二つに分けるため、冷媒入口部2cと接する第1の領域と、冷媒出口部2eと接する第2の領域に分割する仕切り14を備えている。
 仕切り14は、仕切り14を構成する4辺のうち3辺が、冷却部2を構成する面に取付けられ、残りの1辺は、冷却部2を構成する面との間に冷媒が通過できる間隙15を形成している。冷却部2を構成する面であって、仕切り14に取り付けられていない面と対向する面では、冷媒入口部2cおよび冷媒出口部2eが同一面に設けられている。つまり、冷媒入口部2cおよび冷媒出口部2eが配設された冷却部2の面と対向する面は、仕切り14と接しておらず、面と仕切り14との間に間隙15がある。仕切り14は、間隙15を除き、冷却部2のその他の面とは取り付けられている。
 冷媒入口部2cから冷却部2内の冷媒流路2fに流入した冷媒は、間隙15を通りU字状の軌跡を描きながら冷媒出口部2eより排出される。ここで、間隙15は、冷媒入口部2cおよび冷媒出口部2eが配設された冷却部2の面と対向面側に形成されているため、冷媒入口部2cから冷媒出口部2eへのショートサーキットを防止することができる。
 以上のとおり、本発明の実施の形態9による電力変換装置1によれば、冷却部2は、冷媒入口部2cおよび前記冷媒出口部2eが同一面に設けられ、冷媒入口部2cと接する第1の領域と冷媒出口部2eと接する第2の領域に冷媒流路を分割する仕切り14を備え、仕切り14は、同一面と対向する冷却部2の面との間において冷媒が通過する間隙を形成することを特徴とする。
 このような構成によれば、冷媒入口部2cと冷媒出口部2eが冷却部2の同一面に配設されることで、容易にラジエータホースを接続できる。これにより、例えば車両のエンジンルームなど小さなスペースへ、電力変換装置1を搭載する場合に作業性が向上する。
 また、仕切り14を鉛直方向に設置し、左右二つの領域に分けているが、仕切り14を水平方向に設置し、上下二つの領域に分けてもよい。上下二つの領域に分けた場合には、上下どちらの冷媒配管から冷媒を流してもよいが、下から上に冷媒を流した方が好ましい。さらに、仕切り14は冷却部2とネジなどで接合させてもよいし、一体成型してもよい
 なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
 1 電力変換装置、2 冷却部、2b 冷媒入口面、2c 冷媒入口部、2d 冷媒出口面、2e 冷媒出口部、2f 冷媒流路、2g 蓋部、3 電子機器、4 外箱、4c 中間部、11 導体棒、12 絶縁部材、13 突起、14 仕切り、15 間隙、20 最も発熱密度の大きい電子機器、21 最も発熱密度の小さい電子機器

Claims (7)

  1.  冷媒入口部および冷媒出口部を有する内部が中空の角柱であって、前記冷媒入口部から前記冷媒出口部に向かって、冷媒が流れる冷媒流路を前記内部に有する冷却部と、
     前記冷媒入口部が配設された冷媒入口面および前記冷媒出口部が配設された冷媒出口面を除く前記冷却部の側面の外側の3面以上にそれぞれ配設され、前記冷媒が沸騰することで冷却される電子機器と、
     前記電子機器を覆う中空の外箱と
     を備える電力変換装置。
  2.  前記電子機器のうち最も発熱密度の大きい電子機器を前記冷却部の前記側面のうち下面の外側に配設されたこと
     を特徴とする請求項1に記載の電力変換装置。
  3.  前記冷却部は、前記側面のうち前記下面の板厚が他の側面より薄いこと
     を特徴とする請求項2に記載の電力変換装置。
  4.  前記電子機器のうち最も発熱密度が小さい電子機器を前記冷却部の前記側面のうち上面の外側に配設されたこと
     を特徴とする請求項2または請求項3に記載の電力変換装置。
  5.  前記冷却部は、前記冷媒入口面および前記冷媒出口面を除く前記側面のうち1面を板状の蓋部とし、前記蓋部を除く冷却部を前記蓋部と別体で形成し、前記蓋部と前記蓋部を除く冷却部とを接合して形成されること
     を特徴とする請求項1~4のいずれか一項に記載の電力変換装置。
  6.  前記冷却部は、前記側面のうち上面の内側に、フィンが設けられていること
     を特徴とする請求項1~5のいずれか一項に記載の電力変換装置。
  7.  前記冷却部は、前記冷媒入口部および前記冷媒出口部が同一面に設けられ、前記冷媒入口部と接する第1の領域と前記冷媒出口部と接する第2の領域に前記冷媒流路を分割する仕切りを備え、
     前記仕切りは、前記同一面と対向する前記冷却部の面との間において前記冷媒が通過する間隙を形成すること
     を特徴とする請求項1~6のいずれか一項に記載の電力変換装置。
PCT/JP2015/059167 2015-03-25 2015-03-25 電力変換装置 WO2016151804A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015551291A JP5976235B1 (ja) 2015-03-25 2015-03-25 電力変換装置
PCT/JP2015/059167 WO2016151804A1 (ja) 2015-03-25 2015-03-25 電力変換装置
US15/549,821 US10383262B2 (en) 2015-03-25 2015-03-25 Power conversion device
DE112015006352.8T DE112015006352T5 (de) 2015-03-25 2015-03-25 Energiewandlereinrichtung
CN201580078007.8A CN107517596B (zh) 2015-03-25 2015-03-25 电力转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059167 WO2016151804A1 (ja) 2015-03-25 2015-03-25 電力変換装置

Publications (1)

Publication Number Publication Date
WO2016151804A1 true WO2016151804A1 (ja) 2016-09-29

Family

ID=56708905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059167 WO2016151804A1 (ja) 2015-03-25 2015-03-25 電力変換装置

Country Status (5)

Country Link
US (1) US10383262B2 (ja)
JP (1) JP5976235B1 (ja)
CN (1) CN107517596B (ja)
DE (1) DE112015006352T5 (ja)
WO (1) WO2016151804A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070282A1 (ja) * 2020-09-29 2022-04-07 住友電気工業株式会社 回路構造体
WO2022070283A1 (ja) * 2020-09-29 2022-04-07 住友電気工業株式会社 発熱構造体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2569306A (en) * 2017-12-12 2019-06-19 Rolls Royce Plc Thermal management device
DE102020126957A1 (de) 2020-10-14 2022-04-14 Bayerische Motoren Werke Aktiengesellschaft Elektrische Einrichtung mit Kühlkörper und Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294196A (ja) * 2007-05-24 2008-12-04 Mitsubishi Materials Corp 冷却器
JP2011029480A (ja) * 2009-07-28 2011-02-10 Denso Corp 電源装置
JP2012239255A (ja) * 2011-05-10 2012-12-06 Denso Corp 電力変換装置
JP2013094022A (ja) * 2011-10-27 2013-05-16 Hitachi Automotive Systems Ltd 電力変換装置
JP2013179104A (ja) * 2012-02-28 2013-09-09 Hitachi Automotive Systems Ltd 電力変換装置
JP2014230458A (ja) * 2013-05-27 2014-12-08 株式会社デンソー 電力変換装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377198A (en) * 1980-10-14 1983-03-22 Motorola Inc. Passive, recyclable cooling system for missile electronics
US4581695A (en) * 1984-12-12 1986-04-08 Sundstrand Corporation Rectifier assembly
US4990948A (en) * 1986-12-27 1991-02-05 Canon Kabushiki Kaisha Flexible printed circuit board
JP2605785B2 (ja) 1988-03-09 1997-04-30 日本電気株式会社 多層配線基板の冷却構造
JPH03153095A (ja) * 1989-11-10 1991-07-01 Hitachi Ltd 電子機器の放熱構造
US6002183A (en) * 1995-05-04 1999-12-14 Iversen; Arthur H. Power semiconductor packaging
GB9301049D0 (en) * 1993-01-20 1993-03-10 The Technology Partnership Plc Mounting assembly
DE19846156C1 (de) * 1998-10-07 2000-07-27 Bosch Gmbh Robert Anordnung eines mehrphasigen Umrichters
US7059137B2 (en) * 2004-09-07 2006-06-13 Childress William H Portable thermoelectric cooling and heating device
DE102004048908A1 (de) * 2004-10-06 2006-04-20 Daimlerchrysler Ag Antriebsstrang für ein Fahrzeug mit elektrischer Maschine
US7539016B2 (en) * 2005-12-30 2009-05-26 Intel Corporation Electromagnetically-actuated micropump for liquid metal alloy enclosed in cavity with flexible sidewalls
JP4931458B2 (ja) * 2006-04-06 2012-05-16 日立オートモティブシステムズ株式会社 電力変換装置
JP5024600B2 (ja) * 2007-01-11 2012-09-12 アイシン・エィ・ダブリュ株式会社 発熱体冷却構造及びその構造を備えた駆動装置
US7796388B2 (en) * 2008-03-17 2010-09-14 Ut-Battelle, Llc Direct cooled power electronics substrate
CN101262755B (zh) * 2008-04-10 2010-11-03 无锡开普动力有限公司 一种动力装置电器单元的冷却方法
US7646606B2 (en) * 2008-05-13 2010-01-12 Honeywell International Inc. IGBT packaging and cooling using PCM and liquid
US20120273164A1 (en) * 2008-10-28 2012-11-01 Jan Vetrovec Thermal management for solid state high-power electronics
FI122215B (fi) * 2009-03-13 2011-10-14 Abb Oy Järjestely moottoriohjainta varten
JP5241688B2 (ja) 2009-11-13 2013-07-17 日立オートモティブシステムズ株式会社 電力変換装置
JP5686606B2 (ja) * 2010-01-12 2015-03-18 日本軽金属株式会社 フィン一体型基板の製造方法およびフィン一体型基板
JP5702988B2 (ja) * 2010-01-29 2015-04-15 株式会社 日立パワーデバイス 半導体パワーモジュール及びそれが搭載される電力変換装置並びに半導体パワーモジュール搭載用水路形成体の製造方法
JP5406349B1 (ja) * 2012-08-30 2014-02-05 三菱電機株式会社 スイッチング電源装置
JP5694278B2 (ja) * 2012-11-21 2015-04-01 三菱電機株式会社 電力変換装置
JP5523542B1 (ja) * 2012-12-07 2014-06-18 三菱電機株式会社 冷却装置
JP6016685B2 (ja) * 2013-03-26 2016-10-26 株式会社クボタ 複合型インバータ装置
EP2804306A1 (de) * 2013-05-15 2014-11-19 Siemens Aktiengesellschaft Stromrichteranordnung und Verfahren zur Herstellung einer Stromrichteranordnung
CN204209317U (zh) * 2014-09-04 2015-03-18 上海三菱电机·上菱空调机电器有限公司 一种治具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294196A (ja) * 2007-05-24 2008-12-04 Mitsubishi Materials Corp 冷却器
JP2011029480A (ja) * 2009-07-28 2011-02-10 Denso Corp 電源装置
JP2012239255A (ja) * 2011-05-10 2012-12-06 Denso Corp 電力変換装置
JP2013094022A (ja) * 2011-10-27 2013-05-16 Hitachi Automotive Systems Ltd 電力変換装置
JP2013179104A (ja) * 2012-02-28 2013-09-09 Hitachi Automotive Systems Ltd 電力変換装置
JP2014230458A (ja) * 2013-05-27 2014-12-08 株式会社デンソー 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070282A1 (ja) * 2020-09-29 2022-04-07 住友電気工業株式会社 回路構造体
WO2022070283A1 (ja) * 2020-09-29 2022-04-07 住友電気工業株式会社 発熱構造体

Also Published As

Publication number Publication date
JPWO2016151804A1 (ja) 2017-04-27
JP5976235B1 (ja) 2016-08-23
US20180027704A1 (en) 2018-01-25
CN107517596B (zh) 2019-11-26
CN107517596A (zh) 2017-12-26
DE112015006352T5 (de) 2017-11-30
US10383262B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
US9986665B2 (en) Power conversion apparatus
WO2015079643A1 (ja) 半導体モジュール用冷却器の製造方法、半導体モジュール用冷却器、半導体モジュール及び電気駆動車両
JP5252781B2 (ja) コンデンサ冷却構造及び電力変換装置
US10847441B2 (en) Cooling system
JP5976235B1 (ja) 電力変換装置
JP6181212B2 (ja) パワーモジュール及びその製造方法
US20160073556A1 (en) Electric Power Convertor
US9279625B2 (en) Heat sink device for power modules of power converter assembly
WO2018055668A1 (ja) 電力変換装置
US8707715B2 (en) Thermoelectric conversion unit
JP5664472B2 (ja) 電力変換装置
US20120247526A1 (en) Thermoelectric conversion unit and method of manufacturing
JP2013254787A (ja) 熱交換器及びその製造方法
JP2013138113A (ja) 冷却構造
JP2013098468A (ja) パワー半導体モジュール冷却装置
JP2010103235A (ja) 熱交換器
JP5267238B2 (ja) 半導体装置及び半導体装置の製造方法
JP2008221951A (ja) 自動車用電子部品の冷却装置
JP2017153339A (ja) 機器ユニット
JP5701335B2 (ja) 電力変換装置
JP2023053944A (ja) 電力変換装置
JP5321526B2 (ja) 半導体モジュール冷却装置
CN210157552U (zh) 液冷集中散热模块
JP5949602B2 (ja) 電力変換装置
CN216123372U (zh) 散热装置和电控设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015551291

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549821

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006352

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886357

Country of ref document: EP

Kind code of ref document: A1