WO2016149351A1 - Immunomodulators - Google Patents

Immunomodulators Download PDF

Info

Publication number
WO2016149351A1
WO2016149351A1 PCT/US2016/022619 US2016022619W WO2016149351A1 WO 2016149351 A1 WO2016149351 A1 WO 2016149351A1 US 2016022619 W US2016022619 W US 2016022619W WO 2016149351 A1 WO2016149351 A1 WO 2016149351A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
cancer
ring
group
optionally substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2016/022619
Other languages
English (en)
French (fr)
Inventor
Kenneth M. Boy
Li-Qiang Sun
Qian Zhao
Eric Mull
Eric P. Gillis
Paul Michael Scola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Bristol Myers Squibb Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017548856A priority Critical patent/JP6797130B2/ja
Priority to AU2016233292A priority patent/AU2016233292A1/en
Priority to KR1020177029432A priority patent/KR102628640B1/ko
Priority to CA2980147A priority patent/CA2980147A1/en
Priority to EA201791739A priority patent/EA033739B1/ru
Priority to BR112017019591A priority patent/BR112017019591A2/pt
Priority to MX2017011960A priority patent/MX2017011960A/es
Priority to CN201680016376.9A priority patent/CN107428804B/zh
Application filed by Bristol Myers Squibb Co filed Critical Bristol Myers Squibb Co
Priority to ES16713226T priority patent/ES2910657T3/es
Priority to EP16713226.5A priority patent/EP3271373B1/en
Priority to SG11201707479YA priority patent/SG11201707479YA/en
Publication of WO2016149351A1 publication Critical patent/WO2016149351A1/en
Priority to IL254423A priority patent/IL254423A0/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the macrocyclic peptides described herein are capable of inhibiting the interaction of PD-Ll with PD-1 and with CD80. These compounds have
  • R 16a is selected from hydrogen and Ci-C 6 alkyl
  • R d and R 4 together with the atoms to which they are attached, form a pyrollidine ring;
  • R and R 7 together with the atoms to which they are attached, form a pyrollidine ring, wherein said ring is optionally substituted with one hydroxy group;
  • R k is methyl
  • R 1 is phenylmethyl wherein the phenyl is substituted with hydroxy
  • the present disclosure provides a method blocking the interaction of PD-L1 with PD-1 and/or CD80 in a subject, said method comprising administering to the subject a therapeutically effective amount of at least one macrocyclic peptide described herein.
  • R 7 side chains are: glycine, 2,4-diaminobutane, serine, lysine, arginine, ornithine, histidine, asparagine, glutamine, alanine, and 2,4-diaminobutane (C(O)cyclobutane).
  • R 8 side chains are tryptophan and 1,2- benzisothiazolinylalanine.
  • R 11 side chains are: norleucine, leucine, asparagine, phenylalanine, methionine, ethoxymethane, alanine, tryptophan, isoleucine, phenylpropane, glutamic acid, hexane, and heptane.
  • R 12 side chains are: norleucine, alanine, ethoxymethane, methionine, serine, phenylalanine, methoxy ethane, leucine, tryptophan, isoleucine, glutamic acid, hexane, heptane, and glycine.
  • peptides that specifically bind to PD-L1 and are capable of inhibiting the interaction of PD-L1 with PD-1 and CD80. These macrocyclic peptides exhibit in vitro
  • binding refers to the interaction between a protein and a binding molecule, such as a compound or ligand.
  • the interaction is dependent upon the presence of a particular structure (i.e. , an enzyme binding site, an antigenic determinant or epitope) of the protein that is recognized by the binding molecule.
  • a particular structure i.e. , an enzyme binding site, an antigenic determinant or epitope
  • a compound has specific binding for protein binding site "A”
  • the presence of the compound in a reaction containing a protein including binding site A, and a labeled peptide that specifically binds to protein binding site A will reduce the amount of labeled peptide bound to the protein.
  • nonspecific binding of a compound to the protein does not result in a concentration-dependent displacement of the labeled peptide from the protein.
  • amino acid includes a compound represented by the general structure:
  • R and R' are as discussed herein.
  • amino acid as employed herein, alone or as part of another group, includes, without limitation, an amino group and a carboxyl group linked to the same carbon, referred to as "a" carbon, where R and/or R' can be a natural or an un-natural side chain, including hydrogen.
  • the absolute "S" configuration at the "a” carbon is commonly referred to as the “L” or “natural” configuration.
  • the amino acid is glycine and is not chiral.
  • naturally occurring amino acid side chain and “naturally occurring amino acid side chain,” as used herein, refer to side chain of any of the naturally occurring amino acids (i.e., alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine,-histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine) usually in the S -configuration (i.e., the L-amino acid).
  • the naturally occurring amino acids i.e., alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine,-histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, trypto
  • unnatural amino acid side chain and “non-naturally occurring amino acid side chain,” as used herein, refer to a side chain of any naturally occurring amino acid usually in the R-configuration (i.e., the D-amino acid) or to a group other than a naturally occurring amino acid side chain in R- or S -configuration (i.e., the D- or L-amino acid, respectively) selected from: C2-C7alkenyl, Ci-C3alkoxyCi-C3alkyl, Ci-C6alkoxycarbonylCi-C3alkyl, Ci- C7alkyl, Ci-C3alkylsulfanylCi-C3alkyl, amidoCi-C3alkyl, aminoCi-C3alkyl, azaindolylCi-C3alkyl, benzothiazolylCi-C3alkyl, benzothienylCi-C3alkyl, benzyloxyCi-
  • NR a R b (Ci-C7alkyl), wherein R a and R b are independently selected from hydrogen, C 2 -C4alkenyloxycarbonyl, Ci-C3alkyl, Ci-C3alkylcarbonyl, C3- C6cycloalkylcarbonyl, furanylcarbonyl, and phenylcarbonyl.
  • R a and R b are independently selected from hydrogen, C 2 -C4alkenyloxycarbonyl, Ci-C3alkyl, Ci-C3alkylcarbonyl, C3- C6cycloalkylcarbonyl, furanylcarbonyl, and phenylcarbonyl.
  • R a and R b are independently selected from hydrogen, C 2 -C4alkenyloxycarbonyl, Ci-C3alkyl, Ci-C3alkylcarbonyl, C3- C6cycloalkylcarbonyl, furanylcarbonyl, and phenylcarbonyl.
  • NR c R d carbonylCi-C3alkyl, wherein R c and R d are independently selected from hydrogen, Ci-C3alkyl, and triphenylmethyl;
  • phenylCi-C3alkyl wherein the phenyl part is optionally substituted with one, two, three, four, or five groups independently selected from Ci-C4alkoxy, Ci-C4alkyl, Ci-C3alkylsulfonylamino, amido, amino, aminoCi-C3alkyl, aminosulfonyl, carboxy, cyano, halo, haloCi-C3alkyl, hydroxy, -NC(NH 2 ) 2 , nitro, and -OP(0)(OH) 2 ; and phenoxyCi-C3alkyl wherein the phenyl is optionally substituted with a Ci- C3alkyl group.
  • C2-C4alkenyl refers to a straight or branched chain group of two to four carbon atoms containing at least one carbon-carbon double bond.
  • C2-C7alkenyl refers to a straight or branched chain group of two to seven carbon atoms containing at least one carbon-carbon double bond.
  • C2-C4alkenyloxy refers to a C2-C4alkenyl group attached to the parent molecular moiety through an oxygen atom.
  • Ci-C3alkoxy refers to aCi-C3alkyl group attached to the parent molecular moiety through an oxygen atom.
  • Ci-C4alkoxy refers to a Ci-C4alkyl group attached to the parent molecular moiety through an oxygen atom.
  • Ci-C6alkoxy refers to a Ci-C6alkyl group attached to the parent molecular moiety through an oxygen atom.
  • Ci-C3alkoxyCi-C3alkyl refers to a Ci-C3alkoxy group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • Ci-C6alkoxycarbonyl refers to a Ci-C6alkoxy group attached to the parent molecular moiety through a carbonyl group.
  • Ci-C6alkoxycarbonylCi-C3alkyl refers to a Ci- C6alkoxy carbonyl group attached to the parent molecular moiety through a Ci- C3alkyl group.
  • Ci-C3alkyl refers to a group derived from a straight or branched chain saturated hydrocarbon containing from one to three carbon atoms.
  • Ci-C4alkyl refers to a group derived from a straight or branched chain saturated hydrocarbon containing from one to four carbon atoms.
  • Ci-C6alkyl refers to a group derived from a straight or branched chain saturated hydrocarbon containing from one to six carbon atoms.
  • Ci-C3alkylcarbonyl refers to a Cl-C3alkyl group attached to the parent molecular moiety through a carbonyl group.
  • Ci-C3alkylsulfanyl refers to a Ci-C3alkyl group attached to the parent molecular moiety through a sulfur atom.
  • Ci-C3alkylsulfanylCi-C3alkyl refers to a Ci- C3alkylsulfanyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • Ci-C3alkylsulfonyl refers to a Ci-C3alkyl group attached to the parent molecular moiety through a sulfonyl group.
  • amidoCi-C3alkyl refers to an amido group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • amino refers to -NH 2 .
  • aminoCi-C3alkyl refers to an amino group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • azaindolylCi-C3alkyl refers to an azaindolyl group attached to the parent molecular through a Ci-C3alkyl group.
  • the azaindolyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • benzothiazolylCi-C3alkyl refers to an
  • benzothiazolyl group attached to the parent molecular through a Ci-C3alkyl group.
  • the benzothiazolyl group can be attached to the alkyl moiety through any
  • benzothienylCi-C3alkyl refers to a benzothienyl group attached to the parent molecular through a Ci-C3alkyl group.
  • the benzothienyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • benzyloxy refers to a benzyl group attached to the parent molecular moiety through an oxygen atom.
  • benzyloxyCi-C3alkyl refers to a benzyloxy group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • biphenylCi-C3alkyl refers to a biphenyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the biphenyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • carbonyl refers to -C(O)-.
  • carboxyCi-C3alkyl refers to a carboxy group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • cyano refers to -CN.
  • C3-Ci4cycloalkyl refers to a saturated monocyclic, bicyclic, or tricyclic hydrocarbon ring system having three to fourteen carbon atoms and zero heteroatoms.
  • the bicyclic and tricyclic rings may be fused, spirocyclic, or bridged.
  • Representative examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclopentyl, bicyclo[3.1.1]heptyl, and adamantyl.
  • C3-Ci4cycloalkylCi-C3alkyl refers to a C3- Ci4cycloalkyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • C3-Ci4cycloalkylcarbonyl refers to a C3-C 14 cycloalkyl group attached to the parent molecular moiety through a carbonyl group.
  • C3-C6cycloalkyl refers to a saturated monocyclic, hydrocarbon ring system having three to six carbon atoms and zero heteroatoms.
  • C3-C6cycloalkylCi-C3alkyl refers to a C3- C6cycloalkyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • C3-C6cycloalkylcarbonyl refers to a C3-C6 cycloalkyl group attached to the parent molecular moiety through a carbonyl group.
  • furanylCi-C3alkyl refers to a furanyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the furanyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • furanylcarbonyl refers to a furanyl group attached to the parent molecular moiety through a carbonyl group.
  • halo and halogen, as used herein, refer to F, CI, Br, or I.
  • haloCi-C3alkyl refers to a Ci-C3alkyl group substituted with one, two, or three halogen atoms.
  • halomethyl refers to a methyl group substituted with one, two, or three halogen atoms.
  • heterocyclyl refers to a five-, six-, or seven- membered ring containing one, two, or three heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • the five-membered ring has zero to two double bonds and the six- and seven-membered rings have zero to three double bonds.
  • heterocyclyl also includes bicyclic groups in which the heterocyclyl ring is fused to a four- to six-membered aromatic or non-aromatic carbocyclic ring or another monocyclic heterocyclyl group.
  • the heterocyclyl groups of the present disclosure are attached to the parent molecular moiety through a carbon atom in the group.
  • heterocyclyl groups include, but are not limited to, benzothienyl, furyl, imidazolyl, indolinyl, indolyl, isothiazolyl, isoxazolyl, morpholinyl, oxazolyl, piperazinyl, piperidinyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrrolopyridinyl, pyrrolyl, thiazolyl, thienyl, and thiomorpholinyl.
  • hydroxy refers to -OH.
  • imidazolylCi-C3alkyl refers to an imidazolyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the imidazolyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • indolylCi-C3alkyl refers to an indolyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the indolyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • naphthylCi-C3alkyl refers to a naphthyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the naphthyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • nitro refers to -NO2.
  • NR a R b refers to two groups, R a and R b , which are attached to the parent molecular moiety through a nitrogen atom.
  • R a and R b are independently selected from hydrogen, C2-C4alkenyloxycarbonyl, Ci- C3alkylcarbonyl, C3-C6cycloalkylcarbonyl, furanylcarbonyl, and phenylcarbonyl.
  • NR a R b (Ci-C3)alkyl refers to an NR a R b group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • NR c R d refers to two groups, R c and R d , which are attached to the parent molecular moiety through a nitrogen atom.
  • R c and R d are independently selected from hydrogen, Ci-C3alkyl, and triphenylmethyl.
  • NR c R d carbonyl refers to an NR c R d group attached to the parent molecular moiety through a carbonyl group.
  • NR c R d carbonylCi-C3alkyl refers to an
  • NR c R d carbonyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • phenoxy refers to a phenyl group attached to the parent molecular moiety through an oxygen atom.
  • phenoxyCi-C3alkyl refers to a phenoxy group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • phenylCi-C3alkyl refers to a phenyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • phenylcarbonyl refers to a phenyl group attached to the parent molecular moiety through a carbonyl group.
  • pyridinylCi-C3alkyl refers to a pyridinyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the pyridinyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • sulfonyl refers to -SO2-.
  • thiazolylCi-C3alkyl refers to a thiazolyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the thiazolyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • thienylCi-C3alkyl refers to a thienyl group attached to the parent molecular moiety through a Ci-C3alkyl group.
  • the thienyl group can be attached to the alkyl moiety through any substitutable atom in the group.
  • treating refers to: (i) preventing a disease, disorder, or condition from occurring in a patient that may be predisposed to the disease, disorder, and/or condition but has not yet been diagnosed as having it; (ii) inhibiting the disease, disorder, or condition, i.e., arresting its development; and (iii) relieving the disease, disorder, or condition, i.e., causing regression of the disease, disorder, and/or condition and/or symptoms associated with the disease, disorder, and/or condition.
  • Binding of the macrocyclic peptides to PD-L1 can be measured, for example, by methods such as homogeneous time-resolved fluorescence (HTRF), Surface Plasmon Resonance (SPR), isothermal titration calorimetry (ITC), nuclear magnetic resonance spectroscopy (NMR), and the like. Further, binding of the macrocyclic peptides to PD-L1 expressed on the surface of cells can be measured as described herein in cellular binding assays.
  • HTRF homogeneous time-resolved fluorescence
  • SPR Surface Plasmon Resonance
  • ITC isothermal titration calorimetry
  • NMR nuclear magnetic resonance spectroscopy
  • Administration of a therapeutic agent described herein includes, without limitation, administration of a therapeutically effective amount of therapeutic agent.
  • therapeutically effective amount refers, without limitation, to an amount of a therapeutic agent to treat or prevent a condition treatable by administration of a composition of the PD-1/PD-L1 binding inhibitors described herein. That amount is the amount sufficient to exhibit a detectable therapeutic or preventative or ameliorative effect. The effect may include, for example and without limitation, treatment or prevention of the conditions listed herein.
  • the precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition being treated, recommendations of the treating physician, and therapeutics or combination of therapeutics selected for
  • the disclosure pertains to methods of inhibiting growth of tumor cells in a subject using the macrocyclic peptides of the present disclosure.
  • the macrocyclic peptides of the present disclosure are capable of binding to PD-Ll, disrupting the interaction between PD-Ll and PD-1, competing with the binding of PD-Ll with anti-PD-1 monoclonal antibodies that are known to block the interaction with PD-1, enhancing CMV-specific T cell IFNy secretion, and enhancement of HIV-specific T cell IFNg secretion.
  • the macrocyclic peptides of the present disclosure are useful for modifying an immune response, treating diseases such as cancer or infectious disease, stimulating a protective autoimmune response or to stimulate antigen-specific immune responses (e.g. , by coadministration of PD-Ll blocking peptides with an antigen of interest).
  • cytotoxic T lymphocyte-associated antigen-4 "CTLA-4", “CTLA4", “CTLA-4 antigen” and "CD152”
  • CTLA-4 cytotoxic T lymphocyte-associated antigen-4
  • CTLA-4 CTL-4
  • CTLA4 CTL-4 antigen
  • CD152 CD152
  • immune response refers to the action of, for example, lymphocytes, antigen presenting cells, phagocytic cells, granulocytes, and soluble macromolecules produced by the above cells or the liver (including macrocyclic peptides, cytokines, and complement) that results in selective damage to, destruction of, or elimination from the human body of invading pathogens, cells or tissues infected with pathogens, cancerous cells, or, in cases of autoimmunity or pathological inflammation, normal human cells or tissues.
  • an "adverse event” as used herein is any unfavorable and generally unintended, even undesirable, sign (including an abnormal laboratory finding), symptom, or disease associated with the use of a medical treatment.
  • an adverse event may be associated with activation of the immune system or expansion of immune system cells (e.g., T cells) in response to a treatment.
  • a medical treatment may have one or more associated AEs and each AE may have the same or different level of severity.
  • Reference to methods capable of "altering adverse events” means a treatment regime that decreases the incidence and/or severity of one or more AEs associated with the use of a different treatment regime.
  • hyperproliferative disease refers to conditions wherein cell growth is increased over normal levels.
  • hyperproliferative diseases or disorders include malignant diseases (e.g., esophageal cancer, colon cancer, biliary cancer) and non-malignant diseases (e.g. , atherosclerosis, benign hyperplasia, and benign prostatic hypertrophy).
  • any concentration range, percentage range, ratio range or integer range is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer), unless otherwise indicated.
  • the present disclosure is also directed to macrocyclic peptides that are capable of competing with the binding of a reference anti -PD-Ll antibody (MDX- 1105) by at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, and at least about 100%.
  • Such macrocyclic peptides may share structural homology with one or more macrocyclic peptides disclosed herein, including mutant, conservative substitution, functional substitution, and deletion forms, provided they specific bind to PD-Ll .
  • a macrocyclic peptide binds substantially to the same region of PD-Ll as a reference anti-PD-Ll antibody
  • the macrocyclic peptide should bind to an epitope of PD-Ll that at least overlaps with the PD-Ll epitope that the anti-PD-Ll monoclonal antibody binds to.
  • the overlapping region can range from one amino acid residue to several hundred amino acid residues.
  • the macrocyclic peptide should then compete with and/or block the binding of the anti- PD-Ll monoclonal antibody to PD-Ll and thereby decrease the binding of the anti- PD-Ll monoclonal antibody to PD-Ll, preferably by at least about 50% in a competition assay.
  • Anti-PD-Ll antibodies that may be used as reference antibodies for competition assay purposes are known in the art.
  • the following representative anti-PD-Ll antibodies may be used: MDX-1105 (BMS); L01X-C (Serono), L1X3 (Serono), MSB-0010718C (Serono), and PD-Ll Probody (CytomX), and the PD-Ll antibodies disclosed in co-owned WO 2007/005874.
  • Anti-PD-1 antibodies that may be used as reference antibodies for competition assay purposes are known in the art.
  • the following representative anti-PD-1 antibodies may be used: nivolumab (BMS); 17D8, 2D3, 4H1, 4A11, 7D3 and 5F4 each disclosed in co-owned U.S. Patent No. 8,008,449 (BMS), MK-3475 (Merck, disclosed in U.S. Patent No. 8,168,757), and the antibodies disclosed in U.S. Patent No. 7,488,802.
  • the present disclosure provides a composition, e.g. , a pharmaceutical composition, containing one or a combination of macrocyclic peptides of the present disclosure, formulated together with a pharmaceutically acceptable carrier.
  • a pharmaceutical composition of the disclosure can comprise a combination of macrocyclic peptides (or
  • immunoconjugates or bispecifics that bind to different epitopes on the target antigen or that have complementary activities.
  • compositions of the disclosure also can be administered in combination therapy, i.e., combined with other agents.
  • the combination therapy can include a macrocyclic peptide combined with at least one other antiinflammatory or immunosuppressant agent. Examples of therapeutic agents that can be used in combination therapy are described in greater detail below in the section on uses of the macrocyclic peptides of the disclosure.
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
  • the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g. , by injection or infusion).
  • the active compound i.e. , a macrocyclic peptide, immunoconjugate, or bispecific molecule
  • the active compound may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
  • the pharmaceutical compounds of the disclosure may include one or more pharmaceutically acceptable salts.
  • terapéuticaally acceptable salt refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g. , Berge, S.M. et al., J. Pharm. Sci. , 66: 1-19 (1977)).
  • Examples of such salts include acid addition salts and base addition salts.
  • Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl- substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
  • nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like
  • nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl- substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
  • Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as ⁇ , ⁇ '-dibenzylethylenediamine, N- methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
  • a pharmaceutical composition of the disclosure also may include a pharmaceutically acceptable anti-oxidant.
  • pharmaceutically acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabi sulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxy toluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabi sulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, but
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin. Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for
  • compositions of the disclosure are known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the disclosure is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • compositions typically must be sterile and stable under the conditions of manufacture and storage.
  • the composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
  • Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration.
  • dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the subject being treated, and the particular mode of administration.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the composition which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.01 percent to about ninety -nine percent of active ingredient, preferably from about 0.1 percent to about 70 percent, most preferably from about 1 percent to about 30 percent of active ingredient in combination with a pharmaceutically acceptable carrier.
  • Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
  • Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the disclosure are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
  • the dosage ranges from about 0.0001 to 100 mg/kg, and more usually 0.01 to 5 mg/kg, of the host body weight.
  • dosages can be 0.3 mg/kg body weight, 1 mg/kg body weight, 3 mg/kg body weight, 5 mg/kg body weight or 10 mg/kg body weight or within the range of 1- 10 mg/kg.
  • An exemplary treatment regime entails administration once per day, twice per day, bi-weekly, tri-weekly, weekly, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months.
  • Preferred dosage regimens for a macrocyclic peptide of the disclosure include 1 mg/kg body weight or 3 mg/kg body weight via intravenous administration, with the macrocycle being given using one of the following dosing schedules: (i) every four weeks for six dosages, then every three months; (ii) every three weeks; (iii) 3 mg/kg body weight once followed by 1 mg/kg body weight every three weeks.
  • two or more macrocyclic peptides with different binding specificities are administered simultaneously, in which case the dosage of each compound administered falls within the ranges indicated.
  • the compounds are usually administered on multiple occasions. Intervals between single dosages can be, for example, weekly, monthly, every three months or yearly. Intervals can also be irregular as indicated by measuring blood levels of macrocyclic peptide to the target antigen in the patient.
  • dosage is adjusted to achieve a plasma concentration of about 1-1000 .mu.g/ml and in some methods about 25-300 .mu.g/ml.
  • the macrocyclic peptide can be administered as a sustained release formulation, in which case less frequent administration is required.
  • the dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably until the patient shows partial or complete amelioration of symptoms of disease.
  • the patient can be administered a prophylactic regime.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present disclosure may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present disclosure employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • a “therapeutically effective dosage” of a macrocyclic peptide of the disclosure preferably results in a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction.
  • a "therapeutically effective dosage” preferably inhibits cell growth or tumor growth by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects.
  • the ability of a compound to inhibit tumor growth and/or HIV can be evaluated in an animal model system predictive of efficacy in human tumors or viral efficacy.
  • this property of a composition can be evaluated by examining the ability of the compound to inhibit, such inhibition in vitro by assays known to the skilled practitioner.
  • a therapeutically effective amount of a therapeutic compound can decrease tumor size, decrease viral load, or otherwise ameliorate symptoms in a subject.
  • One of ordinary skill in the art would be able to determine such amounts based on such factors as the subject's size, the severity of the subject's symptoms, and the particular composition or route of administration selected.
  • the instant disclosure provides a pharmaceutical kit of parts comprising a macrocyclic peptide and an another immumodulator, as described herein.
  • the kit may also further comprise instructions for use in the treatment of a hyperproliferative disease (such as cancer as described herein) and/or anti-viral disease.
  • a macrocyclic peptide of the disclosure can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of
  • administration for example, intranasally, orally, vaginally, rectally, sublingually or topically.
  • the active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems.
  • compositions can be administered with medical devices known in the art.
  • a therapeutic composition of the disclosure can be administered with a needleless hypodermic injection device, such as the devices disclosed in U.S. Patent Nos. 5,399,163, 5,383,851, 5,312,335, 5,064,413, 4,941,880, 4,790,824, or 4,596,556.
  • a needleless hypodermic injection device such as the devices disclosed in U.S. Patent Nos. 5,399,163, 5,383,851, 5,312,335, 5,064,413, 4,941,880, 4,790,824, or 4,596,556.
  • Examples of well-known implants and modules useful in the present disclosure include: U.S. Patent No. 4,487,603, which discloses an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Patent No. 4,486,194, which discloses a therapeutic device for administering medication through the skin; U.S. Patent No.
  • the blood-brain barrier excludes many highly hydrophilic compounds.
  • therapeutic compounds of the disclosure cross the BBB (if desired)
  • they can be formulated, for example, in liposomes.
  • liposomes For methods of manufacturing liposomes, see, e.g. , U.S.
  • Immune suppression can be reversed by inhibiting the local interaction of PD-1 to PD-Ll and the effect is additive when the interaction of PD-1 to PD-L2 is blocked as well (Iwai et al, Proc. Natl. Acad. ScL, 99: 12293-12297 (2002); Brown et al., J. Immunol, 170: 1257-1266 (2003)).
  • Such therapeutic agents include, among others, anti-neoplastic agents such as doxorubicin (adriamycin), cisplatin bleomycin sulfate, carmustine, chlorambucil, decarbazine and cyclophosphamide hydroxyurea which, by themselves, are only effective at levels which are toxic or subtoxic to a patient.
  • Cisplatin is intravenously administered as a 100 mg/dose once every four weeks and adriamycin is intravenously administered as a 60-75 mg/ml dose once every 21 days.
  • Co-administration of the macrocyclic peptides of the present disclosure with chemotherapeutic agents provides two anti-cancer agents which operate via different mechanisms which yield a cytotoxic effect to human tumor cells. Such co-administration can solve problems due to development of resistance to drugs or a change in the antigenicity of the tumor cells which would render them unreactive with the peptides.
  • administration may be sequential with the macrocyclic peptide first and second immunomodulator second, etc.
  • Another representative dosing scheme may involve a first administration that is sequential with the macrocyclic peptide first and the second immunomodulator second, and subsequent administrations may be concurrent.
  • a vaccine is prepared using autologous or allogeneic tumor cells. These cellular vaccines have been shown to be most effective when the tumor cells are transduced to express GM-CSF. GM-CSF has been shown to be a potent activator of antigen presentation for tumor vaccination (Dranoff et al, Proc. Natl. Acad. Sci. USA, 90:3539-3543 (1993)).
  • DC Dendritic cells
  • DCs are potent antigen presenting cells that can be used to prime antigen-specific responses.
  • DCs can be produced ex vivo and loaded with various protein and peptide antigens as well as tumor cell extracts (Nestle et al., Nat. Med , 4:328-332 (1998)).
  • DCs may also be transduced by genetic means to express these tumor antigens as well.
  • DCs have also been fused directly to tumor cells for the purposes of immunization (Kugler et al, Nat. Med. , 6:332-336 (2000)).
  • DC immunization may be effectively further combined with a combined anti-PD-Ll macrocyclic peptide and a second immunomodulator to activate more potent anti -tumor responses.
  • chemotherapeutic reagent administered with the combination of the instant disclosure is a combination of a macrocyclic peptide and a second
  • immunomodulator further in combination with decarbazine for the treatment of melanoma.
  • Another example is a combination of a macrocyclic peptide and a second immunomodulatory agent further in combination with interleukin-2 (IL-2) for the treatment of melanoma.
  • IL-2 interleukin-2
  • the scientific rationale behind the combined use of PD-Ll macrocyclic peptide and another immunomodulator with chemotherapy is that cell death, which is a consequence of the cytotoxic action of most chemotherapeutic compounds, should result in increased levels of tumor antigen in the antigen presentation pathway.
  • Other combination therapies that may result in synergy with a combined anti-PD-Ll macrocyclic peptide and additional immunomodulator through cell death include radiation, surgery, or hormone deprivation.
  • Angiogenesis inhibitors may also be combined with a combined PD-Ll and second immunomodulator. Inhibition of angiogenesis leads to tumor cell death, which may also be a source of tumor antigen to be fed into host antigen presentation pathways.
  • Bispecific macrocyclic peptides can be used to target two separate antigens.
  • anti-Fc receptor/anti tumor antigen e.g., Her-2/neu
  • bispecific macrocyclic peptides have been used to target macrophages to sites of tumor. This targeting may more effectively activate tumor specific responses.
  • the T cell arm of these responses would be augmented by the use of a combined PD-Ll and a second immunomodulator.
  • antigen may be delivered directly to DCs by the use of bispecific macrocyclic peptides which bind to tumor antigen and a dendritic cell specific cell surface marker.
  • a treatment of a hyperproliferative disease may include an anti-cancer antibody in combination with a macrocyclic peptide and a second immunomodulator concurrently or sequentially or any combination thereof, which may potentiate an anti-tumor immune responses by the host.
  • Tumors evade host immune surveillance by a large variety of mechanisms. Many of these mechanisms may be overcome by the inactivation of proteins, which are expressed by the tumors and which are immunosuppressive. These include, among others, TGF-.beta. (Kehrl, J. et al., J. Exp. Med. , 163: 1037-1050 (1986)), IL-10 (Howard, M. et al, Immunology Today, 13: 198-200 (1992)), and Fas ligand (Hahne, M. et al, Science, 274: 1363-1365 (1996)). In another example, antibodies to each of these entities may be further combined with a macrocyclic peptide and another immunomodulator to counteract the effects of immunosuppressive agents and favor anti-tumor immune responses by the host.
  • Bone marrow transplantation is currently being used to treat a variety of tumors of hematopoietic origin. While graft versus host disease is a consequence of this treatment, therapeutic benefit may be obtained from graft vs. tumor responses.
  • a macrocyclic peptide of the present disclosure can be used to increase the effectiveness of the donor engrafted tumor specific T cells.
  • the present disclosure provides a method for altering an adverse event associated with treatment of a hyperproliferative disease with an immunostimulatory agent, comprising administering a macrocyclic peptide of the present disclosure in combination with a subtherapeutic dose of another
  • the methods of the present disclosure provide for a method of reducing the incidence of immunostimulatory therapeutic antibody-induced colitis or diarrhea by administering a non-absorbable steroid to the patient. Because any patient who will receive an immunostimulatory therapeutic antibody is at risk for developing colitis or diarrhea induced by such treatment, this entire patient population is suitable for therapy according to the methods of the present disclosure.
  • steroids have been administered to treat inflammatory bowel disease (IBD) and prevent exacerbations of IBD, they have not been used to prevent (decrease the incidence of) IBD in patients who have not been diagnosed with IBD. The significant side effects associated with steroids, even non-absorbable steroids, have discouraged prophylactic use.
  • a macrocyclic peptide of the present disclosure can be further combined with the use of any non-absorbable steroid.
  • a "non- absorbable steroid” is a glucocorticoid that exhibits extensive first pass metabolism such that, following metabolism in the liver, the bioavailability of the steroid is low, i.e. , less than about 20%.
  • the non-absorbable steroid is budesonide.
  • Budesonide is a locally-acting glucocorticosteroid, which is extensively metabolized, primarily by the liver, following oral administration.
  • hypothalamic-pituitary suppression than systemically -acting corticosteroids.
  • ENTOCORT® EC chronic administration of ENTOCORT® EC can result in systemic glucocorticoid effects such as hypercorticism and adrenal suppression.
  • a suitable peptide of Formula I can be administered to patients to treat diabetes and other related diseases as the compound alone and or mixed with an acceptable carrier in the form of pharmaceutical formulations.
  • Those skilled in the art of treating diabetes can easily determine the dosage and route of administration of the compound to mammals, including humans, in need of such treatment.
  • the route of administration may include but is not limited to oral, intraoral, rectal, transdermal, buccal, intranasal, pulmonary, subcutaneous, intramuscular, intradermal, sublingual, intracolonic, intraoccular, intravenous, or intestinal administration.
  • the compound is formulated according to the route of administration based on acceptable pharmacy practice
  • the daily oral dosage of the active ingredient when used for the indicated effects, will range between about 0.001 to 1000 mg/kg of body weight, preferably between about 0.01 to 100 mg/kg of body weight per day, and most preferably between about 0.6 to 20 mg/kg/day.
  • the daily dosage of the active ingredient when used for the indicated effects will range between O.OOlng to 100.0 ng per min/per Kg of body weight during a constant rate infusion.
  • Such constant intravenous infusion can be preferably administered at a rate of 0.01 ng to 50 ng per min per Kg body weight and most preferably at 0.01 ng to 10.0 mg per min per Kg body weight.
  • compositions described herein may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.
  • the compositions described herein may also be administered by a depot formulation that will allow sustained release of the drug over a period of days/weeks/months as desired.
  • compositions described herein can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using transdermal skin patches.
  • suitable intranasal vehicles or via transdermal routes, using transdermal skin patches.
  • the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
  • compositions are typically administered in a mixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as pharmaceutical carriers) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, aerosol sprays generated with or without propellant and syrups, and consistent with conventional pharmaceutical practices.
  • suitable pharmaceutical diluents, excipients, or carriers suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, aerosol sprays generated with or without propellant and syrups, and consistent with conventional pharmaceutical practices.
  • the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as but not limited to, lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, and sorbitol;
  • an oral, non-toxic, pharmaceutically acceptable, inert carrier such as but not limited to, lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, and sorbitol
  • the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as, but not limited to, ethanol, glycerol, and water.
  • suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture.
  • Suitable binders include, but not limited to, starch, gelatin, natural sugars such as, but not limited to, glucose or beta- lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, and waxes.
  • Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, and sodium chloride.
  • Disintegrants include, but are not limited to, starch, methyl cellulose, agar, bentonite, and xanthan gum.
  • compositions described herein may also be administered in the form of mixed micellar or liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles.
  • Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or
  • Permeation enhancers may be added to enhance drug absorption.
  • prodrugs are known to enhance numerous desirable qualities of pharmaceuticals (i.e. , solubility, bioavailability, manufacturing, etc.) the compounds described herein may be delivered in prodrug form.
  • the subject matter described herein is intended to cover prodrugs of the presently claimed compounds, methods of delivering the same, and compositions containing the same.
  • compositions described herein may also be coupled with soluble polymers as targetable drug carriers.
  • soluble polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropyl- methacrylamide-phenol, polyhydroxy ethylaspartamidephenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues.
  • Dosage forms suitable for administration may contain from about 0.01 milligram to about 500 milligrams of active ingredient per dosage unit.
  • the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.
  • Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivative, magnesium stearate, and stearic acid. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.
  • powdered carriers such as lactose, starch, cellulose derivative, magnesium stearate, and stearic acid. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.
  • Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.
  • solution for parenteral administration preferably contains a water-soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances.
  • suitable stabilizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents.
  • citric acid and its salts and sodium EDTA are suitable stabilizing agents.
  • parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.
  • a large number of unit capsules can be prepared by filling standard two-piece hard gelatin capsules with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate.
  • a mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil may be prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient.
  • the capsules should be washed and dried. Tablets
  • Tablets may be prepared by conventional procedures so that the dosage unit, for example is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.
  • An injectable formulation of a peptide composition described herein may or may not require the use of excipients such as those that have been approved by regulatory bodies. These excipients include, but are not limited to, solvents and co- solvents, solubilizing, emulsifying or thickening agents, chelating agents, antioxidants and reducing agents, antimicrobial preservatives, buffers and pH adjusting agents, bulking agents, protectants and tonicity adjustors and special additives.
  • An injectable formulation has to be sterile, pyrogen free and, in the case of solutions, free of particulate matter.
  • An aqueous suspension can be prepared for oral and/or parenteral administration so that, for example, each 5 mL contains 100 mg of finely divided active ingredient, 20 mg of sodium carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S. P., and 0.025 mL of vanillin or other palatable flavoring.
  • a sustained-release parenteral composition suitable for administration by injection may be prepared, for example, by dissolving a suitable biodegradable polymer in a solvent, adding to the polymer solution the active agent to be incorporated, and removing the solvent from the matrix thereby forming the matrix of the polymer with the active agent distributed throughout the matrix.
  • HOBt for hydroxybenzotriazole
  • HO At for l-hydroxy-7-azabenzotriazole
  • DIC for ⁇ , ⁇ '-diisopropylcarbodiimide
  • BOP for benzotriazol-l-yloxy tris(dimethylamino)phosphonium hexafluorophosphate
  • PyBOP for benzotriazol-l-yl-oxytripyrrolidinophosphonium hexafluorophosphate
  • HCTU for lH-benzotriazolium l-[bis(dimethylamino)methylene]-5chloro-,hexafluorophosphate (l-),3-oxide
  • HATU for l-[Bis(dimethylamino)methylene]-lH-l,2,3-tria
  • Chemical synthesis of a macrocyclic peptide of the present disclosure can be carried out using a variety of art recognized methods, including stepwise solid phase synthesis, semi-synthesis through the conformationally-assisted re-ligation of peptide fragments, enzymatic ligation of cloned or synthetic peptide segments, and chemical ligation.
  • a preferred method to synthesize the macrocyclic peptides and analogs thereof described herein is chemical synthesis using various solid-phase techniques such as those described in Chan, W.C. et al., eds., Fmoc Solid Phase Synthesis,
  • the preferred strategy is based on the Fmoc (9-Fluorenylmethyl methyl- oxycarbonyl) group for temporary protection of the a-amino group, in combination with the fert-butyl group for temporary protection of the amino acid side chains (see for example Atherton, E. et al, "The Fluorenylmethoxycarbonyl Amino Protecting Group", in The Peptides: Analysis, Synthesis, Biology, Vol. 9: “Special Methods in Peptide Synthesis, Part C", pp. 1-38, Undenfriend, S. et al, eds., Academic Press, San Diego (1987).
  • the peptides can be synthesized in a stepwise manner on an insoluble polymer support (also referred to as "resin") starting from the C-terminus of the peptide.
  • a synthesis is begun by appending the C-terminal amino acid of the peptide to the resin through formation of an amide or ester linkage. This allows the eventual release of the resulting peptide as a C-terminal amide or carboxylic acid, respectively.
  • the C-terminal amino acid and all other amino acids used in the synthesis are required to have their a-amino groups and side chain functionalities (if present) differentially protected such that the a-amino protecting group may be selectively removed during the synthesis.
  • the coupling of an amino acid is performed by activation of its carboxyl group as an active ester and reaction thereof with the unblocked a-amino group of the N-terminal amino acid appended to the resin.
  • the sequence of a-amino group deprotection and coupling is repeated until the entire peptide sequence is assembled.
  • the peptide is then released from the resin with concomitant deprotection of the side chain functionalities, usually in the presence of appropriate scavengers to limit side reactions.
  • the resulting peptide is finally purified by reverse phase HPLC.
  • peptidyl-resins required as precursors to the final peptides utilizes commercially available cross-linked polystyrene polymer resins (Novabiochem, San Diego, CA; Applied Biosystems, Foster City, CA).
  • Preferred solid supports are: 4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetyl-p- methyl benzhydrylamine resin (Rink amide MBHA resin); 9-Fmoc-amino-xanthen-3- yloxy-Merrifield resin (Sieber amide resin); 4-(9-Fmoc)aminomethyl-3,5- dimethoxyphenoxy)valeryl-aminomethyl-Merrifield resin (PAL resin), for C-terminal carboxamides. Coupling of first and subsequent amino acids can be accomplished using HOBt, 6-Cl-HOBt or HO At active esters produced from DIC/HOBt,
  • Preferred solid supports are: 2-Chlorotrityl chloride resin and 9-Fmoc- amino-xanthen-3-yloxy-Merrifield resin (Sieber amide resin) for protected peptide fragments. Loading of the first amino acid onto the 2-chlorotrityl chloride resin is best achieved by reacting the Fmoc-protected amino acid with the resin in dichloromethane and DIEA. If necessary, a small amount of DMF may be added to facilitate dissolution of the amino acid.
  • the syntheses of the peptide analogs described herein can be carried out by using a single or multi-channel peptide synthesizer, such as an CEM Liberty
  • Microwave synthesizer or a Protein Technologies, Inc. Prelude (6 channels) or Symphony (12 channels) synthesizer.
  • the peptidyl-resin precursors for their respective peptides may be cleaved and deprotected using any standard procedure (see, for example, King, D.S. et al., Int. J. Peptide Protein Res. , 36:255-266 (1990)).
  • a desired method is the use of TFA in the presence of water and TIS as scavengers.
  • the peptidyl-resin is stirred in TFA/water/TIS (94:3:3, v:v:v; 1 mL/100 mg of peptidyl resin) for 2-6 hrs at room temperature.
  • the spent resin is then filtered off and the TFA solution is concentrated or dried under reduced pressure.
  • the resulting crude peptide is either precipitated and washed with Et ⁇ O or is redissolved directly into DMSO or 50% aqueous acetic acid for purification by preparative HPLC.
  • Peptides with the desired purity can be obtained by purification using preparative HPLC, for example, on a Waters Model 4000 or a Shimadzu Model LC- 8 A liquid chromatograph.
  • the solution of crude peptide is injected into a YMC S5 ODS (20X 100 mm) column and eluted with a linear gradient of MeCN in water, both buffered with 0.1% TFA, using a flow rate of 14-20 mL/min with effluent monitoring by UV absorbance at 220 nm.
  • the structures of the purified peptides can be confirmed by electro-spray MS analysis.
  • Mass Spectrometry "ESI-MS(+)” signifies electrospray ionization mass spectrometry performed in positive ion mode; "ESI-MS(-)” signifies electrospray ionization mass spectrometry performed in negative ion mode; "ESI-HRMS(+)” signifies high-resolution electrospray ionization mass spectrometry performed in positive ion mode; “ESI-HRMS(-)” signifies high-resolution electrospray ionization mass spectrometry performed in negative ion mode.
  • the detected masses are reported following the "m/z" unit designation. Compounds with exact masses greater than 1000 were often detected as double-charged or triple-charged ions.
  • acetonitrile water with trifluoroacetic acid; Temperature: 70 °C; Gradient: 0%B, 0- 100% B over 3 minutes, then a 2.0-minute hold at 100% B; Flow: 0.75 mL/min; Detection: UV at 220 nm.
  • Rink (2,4-dimethoxyphenyl)(4-alkoxyphenyl)methanamine, where "4-alkoxy” describes the position and type of connectivity to the polystyrene resin.
  • the resin used is Merrifield polymer (polystyrene) with a Rink linker (Fmoc- protected at nitrogen); 100-200 mesh, 1% DVB, 0.56 mmol/g loading. Common amino acids used are listed below with side-chain protecting groups indicated inside parenthesis.
  • the mixture was periodically agitated for 10 minutes, then the solution was drained through the frit.
  • the resin was washed successively four times as follows: for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and the resulting mixture was periodically agitated for 90 seconds before the solution was drained through the frit. The resulting resin was used directly in the next step.
  • the coupling was performed as above, only a 30 min agitation time was used.
  • the mixture was periodically agitated for 10 minutes, then the solution was drained through the frit.
  • the resin was washed successively four times as follows: for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and the resulting mixture was periodically agitated for 90 seconds before the solution was drained through the frit. The resulting resin was used directly in the next step.
  • the resin was washed successively four times as follows: for each wash, CH2CI2 (2.0 mL) was added to top of the vessel (not through the bottom frit) and the resulting mixture was periodically agitated for 90 seconds before the solution was drained through the frit. The resulting resin was placed under a N2 stream for 15 minutes upon which the resin became rigid and easily handled.
  • CH2CI2 2.0 mL
  • the procedures describe an experiment performed on a 0.100 mmol scale, where the scale is determined by the amount of 2- chlorotrityl linker bound to the resin.
  • Commercial Fmoc-Gly-2-chlorotrityl resin was used, usually as a 0.92 meq/g loading.
  • This scale corresponds to approximately 109 mg of the Fmoc-Gly-2-chlorotrityl resin described above.
  • Resin-swelling procedure Coupling of amino acids to a primary amine N-terminus used the "Single-coupling procedure” described below.
  • Coupling of amino acids to a secondary amine N-terminus used the "Double- coupling procedure” described below.
  • Coupling of chloroacetylchloride to the N- terminus of the peptide is described by the "Chloroacetyl chloride coupling procedure" detailed below.
  • the resin was washed successively four times as follows: for each wash, CH2CI2 (2.0 mL) was added to top of the vessel (not through the bottom frit) and the resulting mixture was periodically agitated for 90 seconds before the solution was drained through the frit. The resulting resin was placed under a N2 stream for 15 minutes upon which the resin became rigid and easily handled.
  • CH2CI2 2.0 mL
  • a "deprotection solution” was prepared by combining in a 40 mL glass vial trifluoroacetic acid (22 mL), phenol (1.325 g), water (1.25 mL) and triisopropylsilane (0.5 mL). The resin was removed from the reaction vessel and transferred to a 4 mL glass vial. To the vial was added the "deprotection solution” (2.0 mL). The mixture was vigorously mixed in a shaker (1000 RPM for 1 minute, then 500 RPM for 1.5h). The mixture was filtered through a 0.2 micron syringe filter into a 18X150 mm test tube, and the solids were extracted with a second portion of the "deprotection solution" (1.0 mL).
  • the mixture was centrifuged for 2 minutes, then the solution was decanted.
  • the solids were suspended in Et ⁇ O (20 mL); the mixture was centrifuged for 5 minutes; and the solution was decanted.
  • the solids were suspended in Et ⁇ O (20 mL); the mixture was centrifuged for 5 minutes; and the solution was decanted.
  • the compound was purified as follows: The crude material was purified via preparative LC/MS with the following conditions: Column: waters CSH c-18, 19 x 200 mm, 5- ⁇ m particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 40-80% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 29.3 mg, and its estimated purity by LCMS analysis was 97%.
  • Step 1 To a solution of Intermediate 1300Z (61.8 mg, 0.021 mmol) in DMF (537 ⁇ ) was added HATU (12.25 mg, 0.032 mmol), followed by Hunig'sBase (11.25 ⁇ , 0.064 mmol). Finally, BENZYL AMINE (3.52 ⁇ , 0.032 mmol) was added, and the resulting solution allowed to stir at rt. Within 3 h, the product had formed as shown by LC/MS.
  • Step 2 To solid tert-butyl 3-((7R,10S,13S,16S,19S,22S,25S)-25-((2S,4R)-4- (tert-butoxy )- 1 -((S)-2-((S)-2-((S)- 1 -((S)-2-((S)-2-((S)-3 -(4-(tert-butoxy )pheny l)-2-(2- chloroacetamido)-N-methylpropanamido)propanamido)-4-oxo-4- (tritylamino)butanoyl)pyrrolidine-2-carboxamido)-3-((tert- butoxycarbonyl)aniino)propananiido)-4-methylpentanoyl)pyrrolidine-2- carboxanudo)-19-((l-(2-(tert-butoxy)-2-oxoethyl)-lH-indol-3-
  • HATU (5.72 mg, 0.015 mmol), then a mixture of Hunig'sBase (8.08 ⁇ , 0.046 mmol) and 5-azidopentan-l-amine (14.82 mg, 0.116 mmol) in DMF. The mixture was stirred at rt. After ⁇ 1 h, the product was seen in small amount, with the vast majority of SM remaining. After an additional hour, LC/MS did not change much. More HATU and amine mixture was sequentially added, and the yellow solution stirred at rt overnight. LC/MS showed the consumption of starting material and the formation of the desired material.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge C18, 19 x mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 3.4 mg, and its estimated purity by LCMS analysis was 96%.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 2.9 mg, and its estimated purity by LCMS analysis was 100%.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 2.2 mg, and its estimated purity by LCMS analysis was 96%.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 2.9 mg, and its estimated purity by LCMS analysis was 100%.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 5.3 mg, and its estimated purity by LCMS analysis was 95%.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge C18, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 55-95% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 3.1 mg, and its estimated purity by LCMS analysis was 100%.
  • the synthesis was conducted by the attached general method on a 0.20 mmol scale (2 X 0.1 mmol). Double-coupling (procedure B) was used when a secondary amine at the N-terminus was encountered (denoted with an underlined residue). The sequence was: ClAc-Tyr-mAla-Asn-Pro-Dap-Leu-Hyp-T -Gly-T -m le-rnNle- Leu-Cys-Sarc. The peptide was cleaved from the Rink resin following the
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation.
  • the yield of the product was 36.4 mg, and its estimated purity by LCMS analysis was 95%.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 15-55% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation.
  • the material was further purified via preparative LC/MS with the following conditions: Column: XBridge C18, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 20-60% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 0.2 mg, and its estimated purity by LCMS analysis was 94%.
  • Example 13101 The crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 15-55% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 1.1 mg, and its estimated purity by LCMS analysis was 92%. Purification of Example 13101:
  • Example 13102 The crude material was purified via preparative LC/MS with the following conditions: Column: XBridge C18, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 15-55% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 2.0 mg, and its estimated purity by LCMS analysis was 100%. Purification of Example 13102:
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 15-55% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation.
  • the material was further purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 0.1 mg, and its estimated purity by LCMS analysis was 94%.
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation.
  • the material was further purified via preparative LC/MS with the following conditions: Column: Waters CSH CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 10-50% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 1.1 mg, and its estimated purity by LCMS analysis was 100%. Purification of Example 13104:
  • Example 13105 The crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 20-60% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 1.4 mg, and its estimated purity by LCMS analysis was 100%. Purification of Example 13105:
  • Example 13106 The crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 1.9 mg, and its estimated purity by LCMS analysis was 92%. Purification of Example 13106:
  • Example 13109 The crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 25-65% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 1.9 mg, and its estimated purity by LCMS analysis was 92%. Purification of Example 13109:
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 20-60% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 4.3 mg, and its estimated purity by LCMS analysis was 100%.
  • the synthesis was conducted by the attached general method using .2 mmol Rink resin. Double-coupling (procedure B) was used when a secondary amine at the N-terminus was encountered (denoted with an underlined residue). The sequence was: ClAc-Tyr-mAla-Asn-Pro-Dap-Leu-Hyp-T -Gly-T -m le-rnNle-Leu-Cys- Sar. The peptide was cleaved from the resin following the
  • the crude material was purified via preparative LC/MS with the following conditions: Column: XBridge CI 8, 19 x 200 mm, 5- ⁇ particles; Mobile Phase A: 5:95 methanol: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 methanol: water with 10-mM ammonium acetate; Gradient: 50-90% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation. The yield of the product was 36.4 mg, and its estimated purity by LCMS analysis was 95%.
  • PD-L1 was investigated using a PD-l/PD-Ll Homogenous Time-Resolved
  • HTRF Fluorescence
  • HTRF Homogenous Time-Resolved Fluorescence Assays of Binding of Soluble PD-1 to Soluble PD-L1.
  • Soluble PD-1 and soluble PD-L1 refers to proteins with carboxyl-end truncations that remove the transmembrane-spanning regions and are fused to heterologous sequences, specifically the Fc portion of the human immunoglobuling G sequence (Ig) or the hexahistidine epitope tag (His). All binding studies were performed in an HTRF assay buffer consisting of dPBS supplemented with 0.1% (w/v) bovine serum albumin and 0.05% (v/v) Tween-20.
  • PD-1- Ig/PD-Ll-His binding assay inhibitors were pre-incubated with PD-Ll-His (10 nM final) for 15m in 4 ⁇ of assay buffer, followed by addition of PD-1 -Ig (20 nM final) in 1 ⁇ of assay buffer and further incubation for 15m.
  • PD-L1 fusion proteins from either human, cynomologous macaques, mouse, or other species were used.
  • HTRF detection was achieved using europium crypate-labeled anti-Ig monoclonal antibody (1 nM final) and allophycocyanin (APC) labeled anti-His monoclonal antibody (20 nM final).
  • Antibodies were diluted in HTRF detection buffer and 5 ⁇ was dispensed on top of binding reaction. The reaction was allowed to equilibrate for 30 minutes and signal (665nm/620nm ratio) was obtained using an En Vision fluorometer.
  • Binding/competition studies between biotinylated Compound No. 71 and human PD-Ll-His were performed as follows. Macrocyclic peptide inhibitors were pre-incubated with PD-Ll-His (10 nM final) for 60 minutes in 4 ⁇ of assay buffer followed by addition of biotinylated Compound No. 71 (0.5 nM final) in 1 ⁇ of assay buffer.
  • Binding was allowed to equilibrate for 30 minutes followed by addition of europium crypated labeled Streptavidin (2.5 pM final) and APC-labeled anti-His (20 nM final) in 5 ⁇ of HTRF buffer. The reaction was allowed to equilibrate for 30m and signal (665nm/620nm ratio) was obtained using an EnVision fluorometer.
  • Carboxyl-truncated human PD-1 (amino acids 25- 167) with a C-terminal human Ig epitope tag [hPD-1 (25-167)-3S-IG] and human PD-L1 (amino acids 18-239) with a C-terminal His epitope tag [hPD-Ll(19-239)- tobacco vein mottling virus protease cleavage site (TVMV)-His] were expressed in HEK293T cells and purified sequentially by recombinant Protein A affinity chromatography and size exclusion chromatography. Human PD-L2-His (Sino Biologicals), CD80-His (Sino Biologicals), CTLA4-Ig (RnD Systems) were all obtained through commercial sources.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Diabetes (AREA)
  • Pulmonology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
PCT/US2016/022619 2015-03-18 2016-03-16 Immunomodulators Ceased WO2016149351A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
MX2017011960A MX2017011960A (es) 2015-03-18 2016-03-16 Inmunomoduladores.
KR1020177029432A KR102628640B1 (ko) 2015-03-18 2016-03-16 면역조정제
CA2980147A CA2980147A1 (en) 2015-03-18 2016-03-16 Immunomodulators
EA201791739A EA033739B1 (ru) 2015-03-18 2016-03-16 Иммуномодуляторы
BR112017019591A BR112017019591A2 (pt) 2015-03-18 2016-03-16 imunomodulares
CN201680016376.9A CN107428804B (zh) 2015-03-18 2016-03-16 免疫调节剂
ES16713226T ES2910657T3 (es) 2015-03-18 2016-03-16 Inmunomoduladores
JP2017548856A JP6797130B2 (ja) 2015-03-18 2016-03-16 免疫修飾因子
AU2016233292A AU2016233292A1 (en) 2015-03-18 2016-03-16 Immunomodulators
EP16713226.5A EP3271373B1 (en) 2015-03-18 2016-03-16 Immunomodulators
SG11201707479YA SG11201707479YA (en) 2015-03-18 2016-03-16 Immunomodulators
IL254423A IL254423A0 (en) 2015-03-18 2017-09-11 immunomodulators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562134686P 2015-03-18 2015-03-18
US62/134,686 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016149351A1 true WO2016149351A1 (en) 2016-09-22

Family

ID=55642894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/022619 Ceased WO2016149351A1 (en) 2015-03-18 2016-03-16 Immunomodulators

Country Status (16)

Country Link
US (1) US9809625B2 (enExample)
EP (1) EP3271373B1 (enExample)
JP (1) JP6797130B2 (enExample)
KR (1) KR102628640B1 (enExample)
CN (1) CN107428804B (enExample)
AR (1) AR103969A1 (enExample)
AU (1) AU2016233292A1 (enExample)
BR (1) BR112017019591A2 (enExample)
CA (1) CA2980147A1 (enExample)
EA (1) EA033739B1 (enExample)
ES (1) ES2910657T3 (enExample)
IL (1) IL254423A0 (enExample)
MX (1) MX2017011960A (enExample)
SG (1) SG11201707479YA (enExample)
TW (1) TW201702259A (enExample)
WO (1) WO2016149351A1 (enExample)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085750A3 (en) * 2016-11-07 2018-06-14 Bristol-Myers Squibb Company Immunomodulators
WO2019060820A1 (en) 2017-09-25 2019-03-28 Chemocentryx, Inc. POLYTHERAPY USING A CHEMOKINE RECEPTOR 2 (CCR2) ANTAGONIST AND A PD-1 / PD-L1 INHIBITOR
WO2019165374A1 (en) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds as hbv replication inhibitors
WO2019193542A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides
WO2019193543A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides
WO2019193533A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'2'-cyclic dinucleotides
WO2019195181A1 (en) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
WO2019200247A1 (en) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
WO2019230919A1 (ja) 2018-05-31 2019-12-05 小野薬品工業株式会社 免疫チェックポイント阻害薬の有効性判定バイオマーカー
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
US10568870B2 (en) 2016-04-07 2020-02-25 Chemocentryx, Inc. Reducing tumor burden by administering CCR1 antagonists in combination with PD-1 inhibitors or PD-L1 inhibitors
WO2020075790A1 (ja) 2018-10-11 2020-04-16 小野薬品工業株式会社 Sting作動化合物
WO2020092621A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
WO2020092528A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
US10662416B2 (en) 2016-10-14 2020-05-26 Precision Biosciences, Inc. Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome
US10744118B2 (en) 2012-12-07 2020-08-18 Chemocentryx, Inc. Diazole lactams
WO2020178768A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020178770A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
WO2020178769A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
WO2020198672A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020198676A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020214663A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020214652A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020237025A1 (en) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors
WO2020237081A1 (en) * 2019-05-21 2020-11-26 Bristol-Myers Squibb Company Immunomodulators
WO2020243563A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Multi-tumor gene signatures for suitability to immuno-oncology therapy
WO2020243570A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Cell localization signature and combination therapy
WO2020243568A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
WO2021025031A1 (ja) 2019-08-05 2021-02-11 小野薬品工業株式会社 免疫チェックポイント阻害薬の有効性判定バイオマーカー
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
WO2021055994A1 (en) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Quantitative spatial profiling for lag-3 antagonist therapy
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2021067181A1 (en) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Hbv vaccines and methods treating hbv
WO2021092380A1 (en) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Lag-3 antagonist therapy for melanoma
WO2021113765A1 (en) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2021141684A1 (en) * 2020-01-06 2021-07-15 Bristol-Myers Squibb Company Immunomodulators
US11066445B2 (en) 2017-06-23 2021-07-20 Bristol-Myers Squibb Company Immunomodulators acting as antagonists of PD-1
WO2021188480A1 (en) * 2020-03-16 2021-09-23 Bristol-Myers Squibb Company Immunomodulators
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
WO2021205631A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 Sting作動化合物
WO2021206158A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 がん治療方法
US11154556B2 (en) 2018-01-08 2021-10-26 Chemocentryx, Inc. Methods of treating solid tumors with CCR2 antagonists
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2022047412A1 (en) 2020-08-31 2022-03-03 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
WO2022047189A1 (en) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
WO2022066635A1 (en) 2020-09-22 2022-03-31 Avidea Technologies, Inc. Compositions and methods of manufacturing amphiphilic block copolymers that form nanoparticles in situ
WO2022087402A1 (en) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
US11358988B2 (en) 2014-11-14 2022-06-14 Bristol-Myers Squibb Company Immunomodulators
WO2022212400A1 (en) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
US11492375B2 (en) 2017-10-03 2022-11-08 Bristol-Myers Squibb Company Cyclic peptide immunomodulators
WO2022241134A1 (en) 2021-05-13 2022-11-17 Gilead Sciences, Inc. COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS
WO2022261301A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-cancer agents
WO2022261310A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-body drug conjugates
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
WO2023196964A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
WO2024043227A1 (ja) 2022-08-23 2024-02-29 小野薬品工業株式会社 二重特異性抗体
US11986466B2 (en) 2018-01-08 2024-05-21 Chemocentryx, Inc. Methods of treating solid tumors with CCR2 antagonists
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer
US12054484B2 (en) 2015-05-21 2024-08-06 Chemocentryx, Inc. Substituted tetrahydropyrans as CCR2 modulators
WO2024196952A1 (en) 2023-03-20 2024-09-26 Bristol-Myers Squibb Company Tumor subtype assessment for cancer therapy
US12421278B2 (en) 2020-03-30 2025-09-23 Bristol-Myers Squibb Company Immunomodulators
WO2025240243A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies with bulevirtide and an inhibitory nucleic acid targeting hepatitis b virus
WO2025240244A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies comprising bulevirtide and lonafarnib for use in the treatment of hepatitis d virus infection
WO2025240246A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies with ribavirin
WO2025240242A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies with ribavirin
WO2025245489A1 (en) 2024-05-24 2025-11-27 Bristol-Myers Squibb Company Treatment of tumors in subjects having fgl-1 positive samples

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017003718B1 (pt) 2014-09-11 2023-04-11 Bristol-Myers Squibb Company Inibidores macrocíclicos das interações de proteína/proteína de pd- 1/pd-l1 e cd80(b7-1)/pd-l1
US9732119B2 (en) 2014-10-10 2017-08-15 Bristol-Myers Squibb Company Immunomodulators
US9861680B2 (en) 2014-12-18 2018-01-09 Bristol-Myers Squibb Company Immunomodulators
US9944678B2 (en) 2014-12-19 2018-04-17 Bristol-Myers Squibb Company Immunomodulators
US20160222060A1 (en) 2015-02-04 2016-08-04 Bristol-Myers Squibb Company Immunomodulators
US9809625B2 (en) 2015-03-18 2017-11-07 Bristol-Myers Squibb Company Immunomodulators
US10143746B2 (en) 2016-03-04 2018-12-04 Bristol-Myers Squibb Company Immunomodulators
US10358463B2 (en) 2016-04-05 2019-07-23 Bristol-Myers Squibb Company Immunomodulators
TWI794171B (zh) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Hdac抑制劑與pd-l1抑制劑之組合治療
TWI808055B (zh) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Hdac 抑制劑與 pd-1 抑制劑之組合治療
SMT202100238T1 (it) 2016-05-19 2021-05-07 Bristol Myers Squibb Co Immunomodulatori per l'indagine per immagini mediante pet
CN108997478B (zh) * 2018-08-06 2021-09-21 中国药科大学 一种具有免疫检查点拮抗活性的多肽及其应用
CN114641480A (zh) * 2019-11-19 2022-06-17 百时美施贵宝公司 作为pd-l1抑制剂和免疫调节剂用于治疗癌症和感染性疾病的大环肽

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4475196A (en) 1981-03-06 1984-10-02 Zor Clair G Instrument for locating faults in aircraft passenger reading light and attendant call control system
US4486194A (en) 1983-06-08 1984-12-04 James Ferrara Therapeutic device for administering medicaments through the skin
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5399331A (en) 1985-06-26 1995-03-21 The Liposome Company, Inc. Method for protein-liposome coupling
US5416016A (en) 1989-04-03 1995-05-16 Purdue Research Foundation Method for enhancing transmembrane transport of exogenous molecules
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5837243A (en) 1995-06-07 1998-11-17 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
WO2007005874A2 (en) 2005-07-01 2007-01-11 Medarex, Inc. Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
US7488802B2 (en) 2002-12-23 2009-02-10 Wyeth Antibodies against PD-1
US8008449B2 (en) 2005-05-09 2011-08-30 Medarex, Inc. Human monoclonal antibodies to programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
US8168757B2 (en) 2008-03-12 2012-05-01 Merck Sharp & Dohme Corp. PD-1 binding proteins
WO2014151634A1 (en) * 2013-03-15 2014-09-25 Bristol-Myers Squibb Company Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869451A (en) 1995-06-07 1999-02-09 Glaxo Group Limited Peptides and compounds that bind to a receptor
US6277818B1 (en) 1998-10-29 2001-08-21 Angstrom Pharmaceuticals, Inc. Cyclic peptide ligands that target urokinase plasminogen activator receptor
WO2008117833A1 (ja) 2007-03-26 2008-10-02 The University Of Tokyo 環状ペプチド化合物の合成方法
CN102203125A (zh) 2008-08-25 2011-09-28 安普利穆尼股份有限公司 Pd-1拮抗剂及其使用方法
US8907053B2 (en) 2010-06-25 2014-12-09 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
JP5818237B2 (ja) 2010-09-09 2015-11-18 国立大学法人 東京大学 N−メチルアミノ酸およびその他の特殊アミノ酸を含む特殊ペプチド化合物ライブラリーの翻訳構築と活性種探索法
EP2647720B1 (en) 2010-12-03 2019-06-19 The University of Tokyo Peptide library production method, peptide library, and screening method
CN103732238A (zh) 2011-06-08 2014-04-16 奥瑞基尼探索技术有限公司 用于免疫调节的治疗性化合物
CN114634572A (zh) * 2011-10-10 2022-06-17 希望之城公司 中间位和中间位结合抗体及其用途
EP2831108A1 (en) 2012-03-29 2015-02-04 Aurigene Discovery Technologies Limited Immunomodulating cyclic compounds from the bc loop of human pd1
IN2014KN02752A (enExample) 2012-06-06 2015-05-08 Polyphor Ag
JP2013253842A (ja) 2012-06-06 2013-12-19 Univ Of Tokyo pH依存的に標的分子に結合するペプチドのスクリーニング方法
SG10201701380TA (en) 2013-03-15 2017-04-27 Genentech Inc Biomarkers and methods of treating pd-1 and pd-l1 related conditions
PL3041468T3 (pl) 2013-09-06 2018-12-31 Aurigene Discovery Technologies Limited Pierścieniowe związki peptydomimetyczne jako immunomodulatory
WO2015044900A1 (en) 2013-09-27 2015-04-02 Aurigene Discovery Technologies Limited Therapeutic immunomodulating compounds
BR112017003718B1 (pt) 2014-09-11 2023-04-11 Bristol-Myers Squibb Company Inibidores macrocíclicos das interações de proteína/proteína de pd- 1/pd-l1 e cd80(b7-1)/pd-l1
US9732119B2 (en) 2014-10-10 2017-08-15 Bristol-Myers Squibb Company Immunomodulators
US9856292B2 (en) 2014-11-14 2018-01-02 Bristol-Myers Squibb Company Immunomodulators
US9861680B2 (en) 2014-12-18 2018-01-09 Bristol-Myers Squibb Company Immunomodulators
US9944678B2 (en) 2014-12-19 2018-04-17 Bristol-Myers Squibb Company Immunomodulators
US20160222060A1 (en) 2015-02-04 2016-08-04 Bristol-Myers Squibb Company Immunomodulators
US9809625B2 (en) 2015-03-18 2017-11-07 Bristol-Myers Squibb Company Immunomodulators

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475196A (en) 1981-03-06 1984-10-02 Zor Clair G Instrument for locating faults in aircraft passenger reading light and attendant call control system
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
US4486194A (en) 1983-06-08 1984-12-04 James Ferrara Therapeutic device for administering medicaments through the skin
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
US5399331A (en) 1985-06-26 1995-03-21 The Liposome Company, Inc. Method for protein-liposome coupling
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US5416016A (en) 1989-04-03 1995-05-16 Purdue Research Foundation Method for enhancing transmembrane transport of exogenous molecules
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5399163A (en) 1992-07-24 1995-03-21 Bioject Inc. Needleless hypodermic injection methods and device
US5837243A (en) 1995-06-07 1998-11-17 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
US7488802B2 (en) 2002-12-23 2009-02-10 Wyeth Antibodies against PD-1
US8008449B2 (en) 2005-05-09 2011-08-30 Medarex, Inc. Human monoclonal antibodies to programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
WO2007005874A2 (en) 2005-07-01 2007-01-11 Medarex, Inc. Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
US8168757B2 (en) 2008-03-12 2012-05-01 Merck Sharp & Dohme Corp. PD-1 binding proteins
WO2014151634A1 (en) * 2013-03-15 2014-09-25 Bristol-Myers Squibb Company Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions

Non-Patent Citations (115)

* Cited by examiner, † Cited by third party
Title
"Cancer: Principles and Practice of Oncology", 1997
"Fmoc Solid Phase Synthesis", 2000, OXFORD UNIVERSITY PRESS
"Physicians' Desk Reference Supplement", 2004, pages: 608 - 610
"Remington: The Science and Practice of Pharmacy", 1995, MACK PUBLISHING COMPANY
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING CO.
"Sustained and Controlled Release Drug Delivery Systems", 1978, MARCEL DEKKER, INC.
AGATA ET AL., INT. IMMUNOL., vol. 8, 1996, pages 765 - 772
ATHERTON, E. ET AL.: "The Peptides: Analysis, Synthesis, Biology", vol. 9, 1987, ACADEMIC PRESS, article "The Fluorenylmethoxycarbonyl Amino Protecting Group", pages: 1 - 38
BALZANO, INT. J. CANCER SUPPL., vol. 7, 1992, pages 28 - 32
BARANY, G. ET AL.: "Special Methods in Peptide Synthesis, Part A", vol. 2, 1980, ACADEMIC PRESS, article "The Peptides: Analysis, Synthesis, Biology", pages: 3 - 284
BARBER, D.L. ET AL.: "Restoring function in exhausted CD8 T cells during chronic viral infection", NATURE, vol. 439, no. 7077, 2006, pages 682 - 687
BENNETT ET AL., J. IMMUNOL., vol. 170, 2003, pages 711 - 718
BERGE, S.M. ET AL., J. PHARM. SCI., vol. 66, 1977, pages 1 - 19
BLANK ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 54, 2005, pages 307 - 314
BLOEMAN, P.G. ET AL., FEBS LETT., vol. 357, 1995, pages 140
BONI ET AL., GASTRO, 2012
BONI, J. VIROL., 2007
BRAHMER ET AL., NEW ENGL. J. MED., 2012
BRISCOE ET AL., AM. J. PHYSIOL., vol. 1233, 1995, pages 134
BROWN ET AL., J. IMMUNOL., vol. 170, 2003, pages 1257 - 1266
BUTLER, N.S. ET AL., NATURE IMMUNOLOGY, vol. 13, 2012, pages 188 - 195
BUTTE MJ ET AL., IMMUNITY, vol. 27, 2007, pages 111 - 122
CARTER ET AL., EUR. J. IMMUNOL., vol. 32, 2002, pages 634 - 643
DAY, NATURE, 2006
DONG ET AL., J. MOL. MED., vol. 81, 2003, pages 281 - 287
DONG ET AL., NAT. MED., vol. 8, 2002, pages 787 - 789
DONG, H. ET AL.: "B7-H1 pathway and its role in the evasion of tumor immunity", J. MOL. MED., vol. 81, no. 5, 2003, pages 281 - 287
DONG, H. ET AL.: "Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion", NAT. MED., vol. 8, no. 8, 2002, pages 793 - 800
DRANOFF ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 3539 - 3543
D'SOUZA, J IMMUNOL., 2007
FINGL ET AL.: "The Pharmacological Basis of Therapeutics", 1975
FINNEFROCK, A.C. ET AL.: "PD-1 blockade in rhesus macaques: impact on chronic infection and prophylactic vaccination", J. IMMUNOL., vol. 182, no. 2, 2009, pages 980 - 987
FISICARO ET AL., GASTROENTEROLOGY, 2012
FISICARO, GASTRO, 2010
FOON, K.: "ASCO Educational Book Spring", 2000, pages: 730 - 738
FREEMAN ET AL., J. EXP. MED., vol. 192, 2000, pages 1027 - 1034
GOLDEN-MASON, J. VIROL., 2007
GREENBERG, R. ET AL., SCIENCE, vol. 285, 1999, pages 546 - 551
GUIGNANT ET AL., CRIT. CARE, 2011
HA, S.J. ET AL.: "Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection", J. EXP. MED., vol. 205, no. 3, 2008, pages 543 - 555
HAFALLA, J.C.R. ET AL., PLOSPATHOGENS, 2 February 2012 (2012-02-02)
HAHNE, M. ET AL., SCIENCE, vol. 274, 1996, pages 1363 - 1365
HE ET AL., J. IMMUNOL., vol. 173, 2004, pages 4919 - 4928
HOLLIGER, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HOTCHKISS ET AL., NAT REV IMMUNOL, 2013
HOWARD, M. ET AL., IMMUNOLOGY TODAY, vol. 13, 1992, pages 198 - 200
HUTLOFF, A. ET AL., NATURE, vol. 397, 1999, pages 262 - 266
ITO, N. ET AL., IMMUNOBIOLOGY, vol. 201, no. 5, 2000, pages 527 - 540
IWAI ET AL., INT. IMMUNOL., vol. 17, 2005, pages 133 - 144
IWAI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 12293 - 12297
IWAI ET AL., PROC. NATL. ACAD. SCI., vol. 99, 2002, pages 12293 - 12297
JEUNG, J. LEUK. BIOL., 2007
KASU, J. IMMUNOL., 2010
KAUFMANN, NATURE IMM., 2007
KEHRL, J. ET AL., /, EXP. MED., vol. 163, 1986, pages 1037 - 1050
KEHRL, J. ET AL., EXP. MED., vol. 163, 1986, pages 1037 - 1050
KEINANEN, K. ET AL., FEBS LETT., vol. 346, 1994, pages 123
KEIR, M.E. ET AL., ANNU. REV. IMMUNOL., vol. 26, 2008
KHAYAT, D.: "ASCO Educational Book Spring", 2000, pages: 414 - 428
KILLION, J.J. ET AL., IMMUNOMETHODS, 1994, pages 273
KIM ET AL., CURR. OPIN. IMM., 2010
KIM ET AL., SCIENCE, vol. 266, 1994, pages 2011 - 2013
KIM, N ET AL., SCIENCE, vol. 266, 1994, pages 2011 - 2013
KING, D.S. ET AL., INT. J. PEPTIDE PROTEIN RES., vol. 36, 1990, pages 255 - 266
KONISHI ET AL., CLIN. CANCER RES., vol. 10, 2004, pages 5094 - 5100
KUGLER ET AL., NAT. MED., vol. 6, 2000, pages 332 - 336
KUGLER, A. ET AL., NAT. MED.,, vol. 6, 2000, pages 332 - 336
LATCHMAN ET AL., NAT. IMMUNOL., vol. 2, 2001, pages 261 - 268
LIANG, WORLD J. GASTRO., 2010
LOGOTHETIS, C.: "ASCO Educational Book Spring", 2000, pages: 300 - 302
MELERO, I. ET AL., NAT. MED., vol. 3, 1997, pages 682 - 685
MOKYR ET AL., CANCER RES., vol. 58, 1998, pages 5301 - 5304
MOKYR, M. ET AL., CANCER RES., vol. 58, 1998, pages 5301 - 5304
MURATA, AM. J. PATHOL., vol. 155, 1999, pages 453 - 460
NAKAMOTO, GASTROENTEROLOGY, 2008
NAKAMOTO, PLOSPATH, 2009
NESTLE ET AL., NAT. MED., vol. 4, 1998, pages 328 - 332
NESTLE, F. ET AL., NAT. MED., vol. 4, 1998, pages 328 - 332
OKAZAKI ET AL., CURR. OPIN. IMMUNOL., vol. 14, 2002, pages 779 - 782
OVERWIJK, W. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 2982 - 2987
OWAIS, M. ET AL., ANTIMICROB. AGENTS CHEMOTHER., vol. 39, 1995, pages 180
PALMER ET AL., J. IMMUNOL., 2013
PATERSON AM ET AL., J IMMUNOL., vol. 187, 2011, pages 1097 - 1105
PENNA ET AL., J. HEP., 2012
PETROVAS, J. EXP. MED., 2006
POLJAK, STRUCTURE, vol. 2, 1994, pages 1121 - 1123
PORICHIS, BLOOD, 2011
RANADE, V.V., J. CLIN. PHARMACOL., vol. 29, 1989, pages 685
RAZIORROUGH, HEPATOLOGY, 2009
RESTIFO ET AL.: "Cancer: Principles and Practice of Oncology", 1997, article "Cancer Vaccines", pages: 3023 - 3043
RESTIFO, N. ET AL.: "Cancer Vaccines", pages: 3023 - 3043
RIDGE, J. ET AL., NATURE, vol. 393, 1998, pages 474 - 478
ROSENBERG, IMMUNITY, vol. 10, 1999, pages 281 - 287
ROSENBERG, S.: "ASCO Educational Book Spring", 2000, article "Development of Cancer Vaccines", pages: 60 - 62
ROSENBERG, S.A. ET AL., J. IMMUNOTHER. EMPHASIS TUMOR IMMUNOL., vol. 19, no. 1, 1996, pages 81 - 84
ROSENBERG, S.A., IMMUNITY, vol. 10, 1999, pages 281 - 287
SCHENK ET AL., NATURE, vol. 400, 1999, pages 173 - 177
SCHREIER ET AL., J. BIOL. CHEM., vol. 269, 1994, pages 9090
SONG, M.-Y. ET AL.: "Enhancement of vaccine-induced primary and memory CD8+ t-cell responses by soluble PD-1", J. IMMUNOTHER, vol. 34, no. 3, 2011, pages 297 - 306
STEWART, J.M. ET AL.: "Solid-Phase Peptide Synthesis", 1984, PIERCE CHEMICAL CO.
SUOT ET AL., SCIENCE, vol. 269, 1995, pages 1585 - 1588
SUOT, R. ET AL., SCIENCE, vol. 269, 1995, pages 1585 - 1588
TAMURA ET AL., SCIENCE, vol. 278, 1997, pages 117 - 120
TAMURA, Y. ET AL., SCIENCE, vol. 278, 1997, pages 117 - 120
THOMAS, M.L., J. EXP. MED., vol. 181, 1995, pages 1953 - 1956
TRAUTMAN, NATURE MED., 2006
UMEZAWA ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 153, 1988, pages 1038
URBANI, J. HEPATOL., 2008
VIVIER, E. ET AL., IMMUNOL. TODAY, vol. 18, 1997, pages 286 - 291
WEINBERG, A. ET AL., IMMUNOL., vol. 164, 2000, pages 2160 - 2169
YANG J ET AL., J IMMUNOL., vol. 187, no. 3, 1 August 2011 (2011-08-01), pages 1113 - 9
YANG J. ET AL., J IMMUNOL., vol. 187, no. 3, 1 August 2011 (2011-08-01), pages 1113 - 9
ZHANG ET AL., CRIT. CARE, 2011
ZHANG, BLOOD, 2007
ZHANG, GASTRO, 2008

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11759454B2 (en) 2012-12-07 2023-09-19 Chemocentryx, Inc. Diazole lactams
US10744118B2 (en) 2012-12-07 2020-08-18 Chemocentryx, Inc. Diazole lactams
US11952434B2 (en) 2014-11-14 2024-04-09 Bristol-Myers Squibb Company Immunomodulators
US11358988B2 (en) 2014-11-14 2022-06-14 Bristol-Myers Squibb Company Immunomodulators
US12054484B2 (en) 2015-05-21 2024-08-06 Chemocentryx, Inc. Substituted tetrahydropyrans as CCR2 modulators
US10568870B2 (en) 2016-04-07 2020-02-25 Chemocentryx, Inc. Reducing tumor burden by administering CCR1 antagonists in combination with PD-1 inhibitors or PD-L1 inhibitors
US11744822B2 (en) 2016-04-07 2023-09-05 Chemocentryx, Inc. Reducing tumor burden by administering CCR1 antagonists in combination with PD-1 inhibitors or PD-L1 inhibitors
US10662416B2 (en) 2016-10-14 2020-05-26 Precision Biosciences, Inc. Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome
US11274285B2 (en) 2016-10-14 2022-03-15 Precision Biosciences, Inc. Engineered meganucleases specific for recognition sequences in the Hepatitis B virus genome
WO2018085750A3 (en) * 2016-11-07 2018-06-14 Bristol-Myers Squibb Company Immunomodulators
US10988507B2 (en) 2016-11-07 2021-04-27 Bristol-Myers Squibb Company Immunomodulators
US11066445B2 (en) 2017-06-23 2021-07-20 Bristol-Myers Squibb Company Immunomodulators acting as antagonists of PD-1
US11304952B2 (en) 2017-09-25 2022-04-19 Chemocentryx, Inc. Combination therapy using a chemokine receptor 2 (CCR2) antagonist and a PD-1/PD-L1 inhibitor
WO2019060820A1 (en) 2017-09-25 2019-03-28 Chemocentryx, Inc. POLYTHERAPY USING A CHEMOKINE RECEPTOR 2 (CCR2) ANTAGONIST AND A PD-1 / PD-L1 INHIBITOR
US11492375B2 (en) 2017-10-03 2022-11-08 Bristol-Myers Squibb Company Cyclic peptide immunomodulators
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
US11986466B2 (en) 2018-01-08 2024-05-21 Chemocentryx, Inc. Methods of treating solid tumors with CCR2 antagonists
US11154556B2 (en) 2018-01-08 2021-10-26 Chemocentryx, Inc. Methods of treating solid tumors with CCR2 antagonists
WO2019165374A1 (en) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds as hbv replication inhibitors
WO2019195181A1 (en) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
US11149052B2 (en) 2018-04-06 2021-10-19 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′-cyclic dinucleotides
WO2019193543A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides
WO2019193542A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides
US11292812B2 (en) 2018-04-06 2022-04-05 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotides
WO2019193533A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'2'-cyclic dinucleotides
US11142750B2 (en) 2018-04-12 2021-10-12 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome
US11788077B2 (en) 2018-04-12 2023-10-17 Precision Biosciences, Inc. Polynucleotides encoding optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome
WO2019200247A1 (en) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
WO2019230919A1 (ja) 2018-05-31 2019-12-05 小野薬品工業株式会社 免疫チェックポイント阻害薬の有効性判定バイオマーカー
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
WO2020075790A1 (ja) 2018-10-11 2020-04-16 小野薬品工業株式会社 Sting作動化合物
US11071730B2 (en) 2018-10-31 2021-07-27 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
EP4371987A1 (en) 2018-10-31 2024-05-22 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
US11925631B2 (en) 2018-10-31 2024-03-12 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
US11897878B2 (en) 2018-10-31 2024-02-13 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
WO2020092621A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
US12258346B2 (en) 2018-10-31 2025-03-25 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
WO2020092528A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
US11203591B2 (en) 2018-10-31 2021-12-21 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds
WO2020178769A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
US11766447B2 (en) 2019-03-07 2023-09-26 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020178770A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
WO2020178768A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
US12318403B2 (en) 2019-03-07 2025-06-03 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′-cyclic dinucleotides and prodrugs thereof
WO2020198676A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020198672A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020214652A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020214663A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
EP4458416A2 (en) 2019-04-17 2024-11-06 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020237081A1 (en) * 2019-05-21 2020-11-26 Bristol-Myers Squibb Company Immunomodulators
WO2020237025A1 (en) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors
US12037342B2 (en) 2019-05-23 2024-07-16 Gilead Sciences, Inc. Substituted eneoxindoles and uses thereof
US11453681B2 (en) 2019-05-23 2022-09-27 Gilead Sciences, Inc. Substituted eneoxindoles and uses thereof
WO2020243563A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Multi-tumor gene signatures for suitability to immuno-oncology therapy
WO2020243568A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
WO2020243570A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Cell localization signature and combination therapy
WO2021025031A1 (ja) 2019-08-05 2021-02-11 小野薬品工業株式会社 免疫チェックポイント阻害薬の有効性判定バイオマーカー
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
WO2021055994A1 (en) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Quantitative spatial profiling for lag-3 antagonist therapy
WO2021067181A1 (en) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Hbv vaccines and methods treating hbv
EP4458975A2 (en) 2019-09-30 2024-11-06 Gilead Sciences, Inc. Hbv vaccines and methods treating hbv
WO2021092380A1 (en) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Lag-3 antagonist therapy for melanoma
US12410418B2 (en) 2019-12-06 2025-09-09 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome
EP4567109A2 (en) 2019-12-06 2025-06-11 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2021113765A1 (en) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
US12403174B2 (en) 2020-01-06 2025-09-02 Bristol-Myers Squibb Company Immunomodulators
WO2021141684A1 (en) * 2020-01-06 2021-07-15 Bristol-Myers Squibb Company Immunomodulators
WO2021188480A1 (en) * 2020-03-16 2021-09-23 Bristol-Myers Squibb Company Immunomodulators
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
US12421278B2 (en) 2020-03-30 2025-09-23 Bristol-Myers Squibb Company Immunomodulators
WO2021205631A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 Sting作動化合物
WO2021206158A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 がん治療方法
WO2022047189A1 (en) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
WO2022047412A1 (en) 2020-08-31 2022-03-03 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
WO2022066635A1 (en) 2020-09-22 2022-03-31 Avidea Technologies, Inc. Compositions and methods of manufacturing amphiphilic block copolymers that form nanoparticles in situ
WO2022087402A1 (en) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
WO2022212400A1 (en) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
WO2022241134A1 (en) 2021-05-13 2022-11-17 Gilead Sciences, Inc. COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS
US11957693B2 (en) 2021-06-11 2024-04-16 Gilead Sciences, Inc. Combination MCL-1 inhibitors with anti-cancer agents
US11931424B2 (en) 2021-06-11 2024-03-19 Gilead Sciences, Inc. Combination MCL-1 inhibitors with anti-body drug conjugates
WO2022261301A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-cancer agents
WO2022261310A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-body drug conjugates
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
WO2023196964A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
WO2024043227A1 (ja) 2022-08-23 2024-02-29 小野薬品工業株式会社 二重特異性抗体
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer
WO2024196952A1 (en) 2023-03-20 2024-09-26 Bristol-Myers Squibb Company Tumor subtype assessment for cancer therapy
WO2025240243A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies with bulevirtide and an inhibitory nucleic acid targeting hepatitis b virus
WO2025240244A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies comprising bulevirtide and lonafarnib for use in the treatment of hepatitis d virus infection
WO2025240246A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies with ribavirin
WO2025240242A1 (en) 2024-05-13 2025-11-20 Gilead Sciences, Inc. Combination therapies with ribavirin
WO2025245489A1 (en) 2024-05-24 2025-11-27 Bristol-Myers Squibb Company Treatment of tumors in subjects having fgl-1 positive samples

Also Published As

Publication number Publication date
EP3271373B1 (en) 2022-03-16
CA2980147A1 (en) 2016-09-22
TW201702259A (zh) 2017-01-16
AU2016233292A1 (en) 2017-11-09
US9809625B2 (en) 2017-11-07
JP2018511590A (ja) 2018-04-26
KR102628640B1 (ko) 2024-01-25
EA201791739A1 (ru) 2018-01-31
CN107428804B (zh) 2022-06-28
SG11201707479YA (en) 2017-10-30
MX2017011960A (es) 2018-02-09
IL254423A0 (en) 2017-11-30
JP6797130B2 (ja) 2020-12-09
ES2910657T3 (es) 2022-05-13
EA033739B1 (ru) 2019-11-21
BR112017019591A2 (pt) 2018-05-02
EP3271373A1 (en) 2018-01-24
US20160272680A1 (en) 2016-09-22
AR103969A1 (es) 2017-06-14
KR20170128489A (ko) 2017-11-22
CN107428804A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
EP3271373B1 (en) Immunomodulators
US11492375B2 (en) Cyclic peptide immunomodulators
EP3535280B1 (en) Immunomodulators
EP3233887B1 (en) Immunomodulators
US11066445B2 (en) Immunomodulators acting as antagonists of PD-1
US9861680B2 (en) Immunomodulators
EP3204403B1 (en) Immunomodulators
IL261408A (en) Immunomodulators
WO2016126646A1 (en) Immunomodulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16713226

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016713226

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201791739

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 254423

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11201707479Y

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017548856

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2980147

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/011960

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017019591

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177029432

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016233292

Country of ref document: AU

Date of ref document: 20160316

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017019591

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170914