WO2016148285A1 - 水晶発振器及びその製造方法 - Google Patents

水晶発振器及びその製造方法 Download PDF

Info

Publication number
WO2016148285A1
WO2016148285A1 PCT/JP2016/058758 JP2016058758W WO2016148285A1 WO 2016148285 A1 WO2016148285 A1 WO 2016148285A1 JP 2016058758 W JP2016058758 W JP 2016058758W WO 2016148285 A1 WO2016148285 A1 WO 2016148285A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
substrate
crystal
film
thermistor film
Prior art date
Application number
PCT/JP2016/058758
Other languages
English (en)
French (fr)
Inventor
嘉之 高野
和哉 横川
Original Assignee
株式会社立山科学デバイステクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社立山科学デバイステクノロジー filed Critical 株式会社立山科学デバイステクノロジー
Publication of WO2016148285A1 publication Critical patent/WO2016148285A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/20Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device gaseous at the normal operating temperature of the device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • the present invention relates to a crystal oscillator including a crystal resonator, and more particularly to a thermistor built-in type crystal oscillator.
  • Patent Documents 1 and 2 In recent years, in order to prevent a decrease in the accuracy of the vibration frequency, a temperature detection element is provided near the crystal resonator, and the temperature is compensated according to the ambient temperature of the crystal resonator detected by the temperature detection element. (For example, Patent Documents 1 and 2).
  • JP 2008-205938 A Japanese Patent No. 5101651
  • the crystal resonator described in Patent Document 1 contains a crystal piece and a thermistor that detects the temperature of the crystal piece in one recess of the container body. And in patent document 1, it is supposed that the temperature measurement accuracy of a thermistor can be improved by accommodating a crystal piece and a thermistor in the same space and sealing the space. However, when the thermistor and the crystal piece are arranged in the same space as in Patent Document 1 and the space is sealed, the thermistor deteriorates due to the gas generated from the conductive bonding material for bonding the thermistor to the container body. There was a fear.
  • the device of Patent Document 2 has an H-shaped side cross-sectional shape, and accommodates a crystal piece on one main surface side of the container to form a sealing space. Then, a space for accommodating the thermistor is formed on the other main surface side, and the thermistor and the crystal piece are arranged separately.
  • An object of the present invention is to provide a crystal oscillator that can be used, and a method of manufacturing the same.
  • the present invention provides a crystal oscillator including a crystal resonator, which is provided on a plate-shaped substrate and one main surface side of the plate-shaped substrate, and the crystal resonator And a thermistor film formed on the other main surface of the plate-like substrate.
  • the crystal resonator can be enclosed in the encapsulating portion on one main surface side of the substrate, and the thermistor film can be disposed on the other main surface side.
  • a substrate can be interposed between the crystal resonator and the thermistor film. Accordingly, since the thermistor film is not enclosed in the same space as the crystal resonator, it is possible to prevent the thermistor film from being deteriorated by the gas. Further, by using a thermistor film thinner than a so-called bulk type thermistor as the temperature detection element, the thickness of the temperature detection element itself can be reduced, and thereby the thickness of the entire crystal oscillator can be reduced. Further, by reducing the thickness of the thermistor film as the temperature detection element, the response speed of the change in resistance value with respect to the temperature change of the thermistor film can be increased.
  • the thermistor film is formed on the other main surface of the substrate by printing means.
  • the thermistor film can be formed directly on the other main surface of the substrate. This eliminates the need to provide an adhesive layer for attaching the thermistor film to the main surface of the substrate. Therefore, the thickness of the crystal oscillator can be further reduced. In addition, with such a configuration, it is not necessary to use a conductive bonding material that generates gas in order to bond the thermistor film to the substrate, so that the thermistor film can be further prevented from deteriorating.
  • the paste for forming the thermistor film contains glass.
  • the glass when the thermistor film is printed, the glass is included in the paste so that the glass serves as a bond between the paste fine particles, and the film thickness and temperature characteristics are uniform. It can be formed as a thermistor film.
  • an inert gas (a gas inert to the crystal resonator) that is injected when the atmosphere is removed from the periphery of the crystal resonator when the crystal resonator is sealed. )
  • the thermistor film can be prevented from deteriorating.
  • heat is applied to the substrate.
  • the thermistor film is printed on the substrate, and then It is necessary to enclose a crystal resonator.
  • the thermistor film contains glass. Therefore, even if the thermistor film
  • the thermistor film is covered with a glass film.
  • the water resistance of the thermistor film can be improved.
  • the present invention provides a method for manufacturing a crystal oscillator including a crystal resonator, wherein a thermistor is formed using a paste containing glass on one main surface of a plate-like substrate.
  • the crystal resonator is enclosed in the enclosing portion on one main surface side of the substrate, the thermistor film is disposed on the other main surface side, and the crystal resonator and the thermistor are arranged.
  • a crystal oscillator in which a substrate is interposed between the film and the film can be manufactured. In the crystal oscillator thus obtained, since the thermistor film is not enclosed in the same space as the crystal oscillator, it is possible to prevent the thermistor film from being deteriorated by gas.
  • the thickness of the temperature detection element itself can be reduced, and thereby the thickness of the entire crystal oscillator can be reduced. Further, by reducing the thickness of the thermistor film as the temperature detection element, the response speed of the change in resistance value with respect to the temperature change of the thermistor film can be increased.
  • membrane can be performed before the process of enclosing a crystal oscillator by making glass contain in a thermistor film
  • an inert gas with respect to the crystal resonator is injected into the enclosing portion, and then the crystal resonator is encapsulated.
  • the present invention configured as described above, it is possible to prevent the thermistor film from being deteriorated by the inert gas injected when the atmosphere is removed from the periphery of the crystal unit when the crystal unit is sealed. .
  • the present invention it is possible to reduce the thickness of the entire device while preventing thermistor from being deteriorated by not accommodating the thermistor and the crystal piece in the same space.
  • FIG. 1 is a side sectional view showing a crystal oscillator according to an embodiment of the present invention. It is a figure which shows the manufacturing process of the crystal oscillator by embodiment of this invention.
  • FIG. 1 is a side sectional view showing a crystal oscillator according to an embodiment.
  • the crystal oscillator 1 includes a plate-like substrate 3, a crystal resonator 5 and a thermistor film 7 attached to the substrate 3.
  • the substrate 3 is formed of a member having high thermal conductivity such as ceramic, for example, and includes an enclosing portion 9 for enclosing the crystal unit 5 on one main surface.
  • the enclosing portion 9 is constituted by a recess formed on the main surface of the substrate 3, and is formed by, for example, attaching a frame material 3 b on the main body 3 a of the substrate 3.
  • Such an enclosing portion 9 has a size capable of holding the crystal unit 7 in a suspended state.
  • the enclosing portion 9 is hermetically sealed by covering the frame material 3 b with the cover 11, and forms a space for sealing the crystal resonator 5 together with the cover 11, the frame material 3 b, and the main body 3 a of the substrate 3.
  • the inside of the enclosure 9 is kept in a vacuum state or filled with a gas that is inert to the crystal unit.
  • the inert gas includes, for example, nitrogen, but any gas may be used as long as it does not deteriorate
  • the other main surface of the substrate 3 is formed flat, and the thermistor film 7 is printed on the other main surface.
  • the substrate 3 plays a role as a printed substrate when forming the thermistor film 7 in addition to a role as a container for enclosing the crystal resonator 5.
  • the crystal resonator 5 is a piezoelectric element that is suspended and supported by a support structure (not shown) in the enclosing portion 9.
  • the crystal unit 5 is connected to an external terminal through a pair of electrodes (not shown).
  • the thermistor film 7 is for detecting the temperature around the crystal unit 5 through the substrate 3 and is formed on the flat surface of the substrate 3 using a technique such as thick film printing or vacuum deposition.
  • the thermistor film 7 is preferably formed by thick film printing from the viewpoint of productivity. In the case where the thermistor film 7 is printed on the substrate 3, the printing paste for forming the thermistor film 7 is applied on the substrate 3 with a certain thickness and then fired at a predetermined temperature. Yes.
  • the printing paste used for forming the thermistor film 7 preferably contains glass.
  • the glass serves as a connection between the paste fine particles and can be formed as a thermistor film having a uniform film thickness and temperature characteristics.
  • deterioration of the thermistor film 7 can be suppressed when the thermistor film 7 is exposed to a gas filled in the encapsulating portion 9 in a manufacturing process described later. .
  • a pair of electrodes 13 that are electrically connected to the thermistor film 7 are formed on both sides of the thermistor film 7.
  • the electrode 13 is connected to an external terminal (not shown), and is used to supply the temperature and temperature change detected by the thermistor film 7 to the external terminal.
  • the thermistor film 7 is covered with a protective glass 15 formed by printing. Thereby, the water resistance of the thermistor film 7 can be improved.
  • the substrate 3 is interposed between the crystal resonator 5 and the thermistor film 7, and the thermistor film 7 is enclosed in the same enclosure 9 as the crystal resonator 5. It has not been. Since the thermistor film 7 is printed on the flat surface of the substrate 3, it is not necessary to interpose an adhesive when attaching the thermistor film 7 to the substrate 3. By adopting such an arrangement of the thermistor film 7, it is possible to suppress deterioration of the thermistor caused by enclosing the thermistor and the crystal resonator in the same room.
  • the thickness of the temperature detection element can be reduced. Further, by forming the thermistor film 7 by thick film printing or vacuum deposition, it is not necessary to provide an adhesive layer for bonding the thermistor film 7 to the substrate 3. Thereby, the thickness of the crystal oscillator 1 can be further reduced.
  • the main body 3a of the substrate 3 serves as a base material when the thermistor film 7 is printed on the substrate 3, and the thickness of the main body 3a of the substrate 3 is the basis when the thermistor film 7 is printed.
  • a minimum thickness is sufficient to play a role as a material. Therefore, the thickness of the crystal oscillator 1 is the sum of the thickness of the cover 11, the thickness of the frame member 3b, the thickness of the main body 3a, the thickness of the thermistor film 7, and the thickness of the protective glass 15.
  • the crystal oscillator 1 according to the present embodiment is thinner than the conventional device by at least the difference between the thickness of the frame material for forming the space for accommodating the thermistor and the thickness of the thermistor film. I understand that.
  • the conventional device uses a bulk type thermistor, it is extremely difficult to make the thermistor constant in thickness. For this reason, the thermistor is surrounded by a frame material thicker than the thermistor for the purpose of preventing the thickness of the device from changing due to an error in the thermistor thickness, and this changes the thickness of the entire device depending on the thickness of the thermistor. Was preventing.
  • the thermistor film 7 formed by printing in particular has a substantially constant thickness. Therefore, in the crystal oscillator 1 according to the present embodiment, it is not necessary to surround the thermistor with the frame material and adjust the thickness of the crystal oscillator 1.
  • the thermistor film 7 directly on the substrate 3, it is not necessary to prepare a member different from the substrate 3 in order to form the thermistor film 7, and the number of parts can be reduced.
  • FIG. 2 is a diagram showing a manufacturing process of the crystal oscillator.
  • FIG. 2 (a) in the manufacturing process of the crystal oscillator 1, first, a large-sized ceramic plate serving as an original plate of the substrate 3 is prepared, and an electrode 13 having a predetermined pattern is printed on one main surface thereof. Next, as shown in FIG. 2B, the thermistor film 7 is printed using a printing paste containing glass so as to overlap the electrode 13, and then, as shown in FIG. The protective glass 15 is printed on the surface. 2B and 2C are enlarged views of a part of FIG. 2A for convenience of explanation. Next, as shown in FIGS. 2 (d) and 2 (e), primary division and secondary division are performed to divide the large ceramic plate into the size of the substrate 3. After that, as shown in FIG.
  • the frame material 3 b is attached to the main surface of the substrate 3 on the side where the thermistor film 7 is not formed, and the crystal resonator 5 is disposed inside.
  • the vibrator 5 is enclosed in the enclosure 9.
  • the inside of the enclosure 9 is evacuated using a vacuum pump, or the atmosphere is expelled from the enclosure 9 by filling the enclosure 9 with nitrogen gas. be able to.
  • the thermistor film 7 When the thermistor film 7 is printed, it is necessary to place the substrate 3 at a high temperature at the time of firing, and thus the thermistor film 7 cannot be printed while the crystal unit 5 is housed in the enclosing portion 9. On the other hand, if the thermistor film 7 is printed at the time of enclosing the crystal unit 5, the thermistor film 7 may be deteriorated by the gas used at the time of enclosing. On the other hand, in the present embodiment, by adding glass to the thermistor film 7, the thermistor film 7 is hardly deteriorated even if it is exposed to gas at the time of sealing, and after the thermistor film 7 is printed, the crystal resonator 5 Can be sealed.
  • the thermistor film 7 and the crystal resonator 5 are not accommodated in the same space, thereby preventing the thermistor film 7 from being deteriorated and reducing the thickness of the entire crystal oscillator 1. Can be thinned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

 サーミスタと、水晶片とを同一の空間に収容しないことによりサーミスタの劣化を防止しつつ、デバイス全体の厚みを薄くすることができる水晶発振器、及びその製造方法を提供する。 水晶振動子5を備えた水晶発振器1は、さらに、板状の基板3と、この板状の基板3の一方の主面側に設けられ、水晶振動子5を封入するための封入部9と、板状の基板3の他方の主面上に形成されたサーミスタ膜7と、を備える。

Description

水晶発振器及びその製造方法
 本発明は、水晶振動子を備えた水晶発振器に関し、特に、サーミスタ内蔵型の水晶発振器に関する。
 従来から、各種電子機器において規則的な基準信号を得るために、水晶振動子の圧電効果によって得られる振動周波数を用いることが知られている。水晶振動子を用いて得られる振動周波数は、非常に精度が高いものであるが、水晶振動子が発生させる振動周波数は、周辺温度の影響を受けやすく、水晶振動子を内蔵した水晶発信器の使用環境によっては、振動周波数の精度が低下してしまうことがある。
 近年では、振動周波数の精度低下を防止するために、水晶振動子付近に温度検知素子を設け、温度検知素子で検知された水晶振動子の周囲温度に応じて温度を補償することが行われている(例えば、特許文献1及び2)。
特開2008-205938号公報 特許第5101651号公報
 特許文献1に記載された水晶振動子は、容器本体の一つの凹所内に水晶片、及び水晶片の温度を検知するサーミスタを収容している。そして、特許文献1では、水晶片及びサーミスタを同一の空間に収容し、空間を封止することにより、サーミスタの温度測定精度を向上させることができる、としている。しかしながら、特許文献1のようにサーミスタと水晶片とを同一の空間内に配置し、空間を封止した場合、サーミスタを容器本体に接合するための導電性接合材から発生したガスによってサーミスタが劣化する恐れがあった。
 このようなサーミスタの劣化を防止するために、特許文献2のデバイスは、H型側断面形状を有しており、容器の一方の主面側に水晶片を収容し、封止する空間を形成し、他方の主面側にサーミスタを収容する空間を形成し、サーミスタと水晶片とを分離して配置している。
 しかしながら、特許文献2に記載されたデバイスでは、水晶片と、サーミスタとを、容器の異なる面に設けることによってサーミスタの劣化を防止することができるものの、デバイス全体の厚みが増してしまう、という問題があった。即ち、容器の一方の主面に、水晶片を封入する空間を確保するために容器の主面に一定の厚さの枠を設け、さらに、他方の主面にもサーミスタを収容する空間を確保するために一定の厚さの枠を設けることが必要となり、この枠を設けることによって、デバイスの厚さが増加してしまう。
 そこで本発明は、上述した問題点を解決するためになされたものであり、サーミスタと、水晶片とを同一の空間に収容しないことによりサーミスタの劣化を防止しつつ、デバイス全体の厚みを薄くすることができる水晶発振器、及びその製造方法を提供することを目的とする。
 上述した課題を解決するために、本発明は、水晶振動子を備えた水晶発振器であって、板状の基板と、この板状の基板の一方の主面側に設けられ、前記水晶振動子を封入するための封入部と、前記板状の基板の他方の主面上に形成されたサーミスタ膜と、を備えることを特徴とする。
 このように構成された本発明によれば、水晶振動子を、基板の一方の主面側の封入部に封入し、サーミスタ膜を、他方の主面側に配置することができ、これにより、水晶振動子と、サーミスタ膜との間に基板を介在させることができる。従って、サーミスタ膜が、水晶振動子と同じ空間内に封入されないので、サーミスタ膜が、ガスによって劣化するのを防止することができる。また、温度検出素子として、所謂バルク型のサーミスタよりも薄いサーミスタ膜を用いることにより、温度検出素子自体の厚みを薄くし、これにより、水晶発振器全体の厚みを薄くすることができる。また、温度検出素子としてのサーミスタ膜を薄くすることにより、サーミスタ膜の温度変化に対する抵抗値の変化の応答速度を高めることができる。
 また、本発明において、好ましくは、前記サーミスタ膜は、印刷手段により前記基板の他方の主面に形成されている。
 このように構成された本発明によれば、サーミスタ膜を、直接、基板の他方の主面に形成することができる。これにより、サーミスタ膜を基板の主面に貼り付けるための接着材層を設ける必要がなくなる。従って、水晶発振器の厚みを更に薄くすることができる。また、このような構成により、サーミスタ膜を基板に接合するために、ガスを発生させる導電性接合材を用いる必要がないため、サーミスタ膜の劣化を更に抑制することができる。
 また、本発明において、好ましくは、前記サーミスタ膜を形成するためのペーストは、ガラスを含有する。
 このように構成された本発明によれば、サーミスタ膜を印刷する際に、ガラスをペースト中に含有させることにより、ガラスがペースト微粒子同士のつなぎの役割を果たし、膜厚および温度特性の均一なサーミスタ膜として形成することができる。
 さらに、このように構成された本発明によれば、水晶振動子を封入する際に、水晶振動子の周囲から大気を取り除く際に注入する不活性ガス(水晶振動子に対して不活性なガス)に曝されたとしても、サーミスタ膜が劣化するのを抑制することができる。一般的に、サーミスタ膜の印刷時には、基板に熱が加わってしまう。そして、一枚の基板にサーミスタ膜及び水晶振動子の封入部を備える水晶発振器において、熱の影響で水晶振動子が損傷しないようにするためには、まず、サーミスタ膜を基板に印刷し、その後、水晶振動子を封入する必要がある。従って、サーミスタ膜が、不活性ガスによって劣化しないようにするために、サーミスタ膜にガラスを含有させることが好ましい。これにより、サーミスタ膜が、ガスに曝されたとしても、劣化するのを抑制することができる。
 また、本発明において、好ましくは、前記サーミスタ膜は、ガラス膜によって覆われている。
 このように構成された本発明によれば、サーミスタ膜の耐水性を向上させることができる。
 また、上述した課題を解決するために、本発明は、水晶振動子を備えた水晶発振器の製造方法であって、板状の基板の一方の主面に、ガラスを含有するペーストを用いてサーミスタ膜を印刷する工程と、前記板状の基板の他方の主面に設けられた封入部に、前記水晶振動子を封入する工程と、を備えることを特徴とする。
 このように構成された本発明によれば、水晶振動子を、基板の一方の主面側の封入部に封入し、サーミスタ膜を、他方の主面側に配置し、水晶振動子と、サーミスタ膜との間に基板を介在させた水晶発振器を製造することができる。そして、このように得られた水晶発振器では、サーミスタ膜が、水晶振動子と同じ空間内に封入されないので、サーミスタ膜が、ガスによって劣化するのを防止することができる。また、温度検出素子として、所謂バルク型のサーミスタよりも薄いサーミスタ膜を用いることにより、温度検出素子自体の厚みを薄くし、これにより、水晶発振器全体の厚みを薄くすることができる。また、温度検出素子としてのサーミスタ膜を薄くすることにより、サーミスタ膜の温度変化に対する抵抗値の変化の応答速度を高めることができる。
 さらに、上記発明によれば、サーミスタ膜にガラスを含有させることにより、水晶振動子を封入する工程の前に、サーミスタ膜を印刷する工程を行うことができる。これにより、一つの基板にサーミスタ膜及び封入部を備える水晶発信器を製造するときに、印刷時の熱によって水晶振動子が劣化するのを防止することができる。
 また、本発明において、好ましくは、前記水晶振動子を封入する工程では、前記封入部に、前記水晶振動子に対して不活性なガスを注入してから前記水晶振動子を封入する。
 このように構成された本発明によれば、水晶振動子を封入する際に、水晶振動子の周囲から大気を取り除く際に注入する不活性ガスによってサーミスタ膜が劣化するのを防止することができる。
 以上のように、本発明によれば、サーミスタと、水晶片とを同一の空間に収容しないことによりサーミスタの劣化を防止しつつ、デバイス全体の厚みを薄くすることができる。
本発明の実施形態による水晶発振器を示す側断面図である。 本発明の実施形態による水晶発振器の製造工程を示す図である。
 以下、図面を参照して、本発明の実施形態による水晶発振器及びその製造方法について説明する。
 図1は、実施形態による水晶発振器を示す側断面図である。図1に示すように、水晶発振器1は、板状の基板3と、基板3に取り付けられた水晶振動子5及びサーミスタ膜7と、を備える。
 基板3は、例えばセラミック等の熱導電性の高い部材で形成されており、一方の主面に、水晶振動子5を封入するための封入部9を備えている。封入部9は、基板3の主面に形成された凹部によって構成されており、例えば、基板3の本体3a上に枠材3bを貼り付けることで形成されている。このような、封入部9は、内部に水晶振動子7を懸架状態で保持できる大きさを有している。そして、封入部9は、枠材3b上にカバー11を被せることによって密閉され、カバー11、枠材3b、及び基板3の本体3aと共に、水晶振動子5を封止する空間をなしている。封入部9内は、真空状態に保たれるか、又は水晶振動子に対して不活性なガスが充填されている。不活性ガスとしては、例えば窒素があるが、水晶振動子を劣化させないガスであれば、どのようなガスを用いても良い。
 基板3の他方の主面は、平坦に形成されており、他方の主面上には、サーミスタ膜7が印刷されている。そして、基板3は、水晶振動子5を封入する容器としての役割に加え、サーミスタ膜7を形成する際の印刷基板としての役割をも果たしている。
 水晶振動子5は、封入部9内において、図示せぬ支持構造によって懸架支持されている、圧電素子である。そして、水晶振動子5は、図示せぬ一対の電極を通して、外部端子に接続されている。
 サーミスタ膜7は、基板3を通して水晶振動子5の周囲の温度を検知するためのものであり、厚膜印刷、真空蒸着等の手法を用いて、基板3の平坦面に形成されている。サーミスタ膜7は、生産性の面から、厚膜印刷によって形成することが好ましい。サーミスタ膜7を基板3上に印刷する場合には、サーミスタ膜7を形成するための印刷ペーストを、一定の厚さで基板3上に塗り、その後、所定の温度で焼成することで形成されている。
 サーミスタ膜7を形成するために用いられる印刷ペーストは、ガラスを含んでいることが好ましい。印刷ペースト中にガラスを含有させることにより、ガラスがペースト微粒子同士のつなぎの役割を果たし、膜厚及び温度特性の均一なサーミスタ膜として形成することができる。また、印刷ペースト中にガラスを含有させることにより、後述する製造工程において、サーミスタ膜7が、封入部9に充填されるガスに曝されたときに、サーミスタ膜7の劣化を抑制することができる。
 サーミスタ膜7の両側には、サーミスタ膜7に電気的に接続された一対の電極13が形成されている。電極13は、図示せぬ外部端子と接続されており、サーミスタ膜7で検出された温度及び温度の変化を、当該外部端子に供給するために用いられる。
 さらに、サーミスタ膜7は、印刷によって形成された保護ガラス15によって覆われている。これにより、サーミスタ膜7の耐水性を向上させることができる。
 このような構造を有する水晶発振器1では、水晶振動子5と、サーミスタ膜7との間に基板3が介在しており、サーミスタ膜7が、水晶振動子5と同一の封入部9内に封入されていない。そして、サーミスタ膜7は、基板3の平坦面に印刷されたものであるので、サーミスタ膜7を基板3に取り付けるときに、接着材を介在させる必要がなくなる。このようなサーミスタ膜7の配置を採用することにより、サーミスタと、水晶振動子とを同一の部屋に封入することによって生じるサーミスタの劣化を抑制することができる。
 また、上述した水晶発振器1によれば、温度検知素子として、サーミスタ膜7を採用しているので、温度検知素子の厚みを薄くすることができる。また、サーミスタ膜7を厚膜印刷又は真空蒸着によって形成することにより、サーミスタ膜7を、基板3に接着するための接着材層を設ける必要がなくなる。これにより、水晶発振器1の厚みを更に薄くすることができる。
 また、基板3の本体3aは、基板3上にサーミスタ膜7を印刷する際の基材としての役割を有しており、基板3の本体3aの厚みは、サーミスタ膜7の印刷の際の基材としての役割を果たすために最低限の厚みを有していれば足りる。従って、水晶発振器1の厚みは、カバー11の厚み、枠材3bの厚み、本体3aの厚み、サーミスタ膜7の厚み、及び保護ガラス15の厚みの合計となる。
 これに対して、特許文献2に記載されたような、H型側断面形状を有するデバイスでは、水晶振動子、及びサーミスタを収容するために、基材の両方の主面に枠材を形成する必要がある。従って、本実施形態による水晶発信器1は、従来のデバイスと比べて、少なくとも、サーミスタを収容する空間を形成するための枠材の厚さと、サーミスタ膜の厚さの差分だけ、薄くなっていることが分かる。
 また、従来のデバイスでは、バルク型のサーミスタを使用していたため、サーミスタの厚みを一定にすることが極めて困難であった。このため、サーミスタの厚みの誤差によってデバイスの厚みが変わるのを防止することを目的として、サーミスタよりも厚い枠材によってサーミスタを囲み、これにより、サーミスタの厚さによってデバイス全体の厚さが変わるのを防止していた。これに対して、本実施形態のように、特に印刷によって形成されたサーミスタ膜7は、厚みがほぼ一定である。従って、本実施形態による水晶発振器1では、枠材によってサーミスタを囲み、水晶発振器1の厚みを調整する必要がない。
 また、基板3上に、直接、サーミスタ膜7を形成することにより、サーミスタ膜7を形成するために、基板3とは別の部材を準備する必要がなくなり、部品点数を削減することができる。
 次に、水晶発振器1の製造工程について詳述する。図2は、水晶発振器の製造工程を示す図である。
 図2(a)に示すように、水晶発振器1の製造工程では、まず、基板3の原板となる大判のセラミック板を準備し、その一方の主面に所定パターンの電極13を印刷する。次いで、図2(b)に示すように、電極13に重なるように、ガラスを含む印刷ペーストを用いてサーミスタ膜7を印刷し、その後、図2(c)に示すように、サーミスタ膜7上に保護ガラス15を印刷する。なお、図2(b)及び図2(c)は、説明の便宜上、図2(a)の一部を拡大して示しているものである。次いで、図2(d)及び図2(e)に示すように、一次分割及び二次分割を行い、大判のセラミック板を、基板3の大きさに分割する。その後、図2(f)に示すように、基板3におけるサーミスタ膜7が形成されていない側の主面に、枠材3bを貼り付け、内部に水晶振動子5を配置し、カバー11によって水晶振動子5を封入部9内に封入する。水晶振動子5を封入する際には、真空ポンプを用いて封入部9内を真空状態にするか、または、窒素ガスを封入部9内に充填することにより封入部9内から大気を追放することができる。
 サーミスタ膜7を印刷する場合、焼成時に基板3を高温下に置く必要があるため、水晶振動子5を封入部9に収容したままサーミスタ膜7の印刷を行うことができない。一方で、水晶振動子5の封入時に、サーミスタ膜7が印刷されていると、サーミスタ膜7が、封入時に使用するガスによって劣化する恐れがある。これに対して、本実施形態では、サーミスタ膜7にガラスを含有させることにより、サーミスタ膜7が封入時にガスに曝されても劣化し難くし、サーミスタ膜7を印刷した後に、水晶振動子5の封入を行えるようになっている。
 以上のように、本発明の実施形態によれば、サーミスタ膜7と、水晶振動子5とを同一の空間に収容しないことによりサーミスタ膜7の劣化を防止しつつ、水晶発振器1全体の厚みを薄くすることができる。
1  水晶発振器
3  基板
5  水晶振動子
7  サーミスタ膜
9  封入部

Claims (6)

  1.  水晶振動子を備えた水晶発振器であって、
     板状の基板と、
     この板状の基板の一方の主面側に設けられ、前記水晶振動子を封入するための封入部と、
     前記板状の基板の他方の主面上に形成されたサーミスタ膜と、を備えることを特徴とする、水晶発振器。
  2.  前記サーミスタ膜は、印刷手段により前記基板の他方の主面に形成されている、請求項1に記載の水晶発振器。
  3.  前記サーミスタ膜を形成するためのペーストは、ガラスを含有する、請求項2に記載の水晶発振器。
  4.  前記サーミスタ膜は、ガラス膜によって覆われている、請求項1乃至3の何れか1項に記載の水晶発振器。
  5.  水晶振動子を備えた水晶発振器の製造方法であって、
     板状の基板の一方の主面に、ガラスを含有するペーストを用いてサーミスタ膜を印刷する工程と、
     前記板状の基板の他方の主面に設けられた封入部に、前記水晶振動子を封入する工程と、を備えることを特徴とする、水晶発振器の製造方法。
  6.  前記水晶振動子を封入する工程では、前記封入部に、前記水晶振動子に対して不活性なガスを注入してから前記水晶振動子を封入する、請求項5に記載の水晶発振器の製造方法。
PCT/JP2016/058758 2015-03-19 2016-03-18 水晶発振器及びその製造方法 WO2016148285A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056360 2015-03-19
JP2015056360A JP2016178437A (ja) 2015-03-19 2015-03-19 水晶発振器及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016148285A1 true WO2016148285A1 (ja) 2016-09-22

Family

ID=56919743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058758 WO2016148285A1 (ja) 2015-03-19 2016-03-18 水晶発振器及びその製造方法

Country Status (2)

Country Link
JP (1) JP2016178437A (ja)
WO (1) WO2016148285A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077627A (ja) * 1999-09-02 2001-03-23 Toyo Commun Equip Co Ltd 温度補償圧電発振器
JP2001127579A (ja) * 1999-10-25 2001-05-11 Toyo Commun Equip Co Ltd 圧電振動子及び、これを用いた圧電発振器
JP2004320417A (ja) * 2003-04-16 2004-11-11 Toyo Commun Equip Co Ltd 温度補償圧電発振器
JP2006129417A (ja) * 2004-09-29 2006-05-18 Kyocera Corp 圧電発振器
JP2006332192A (ja) * 2005-05-24 2006-12-07 Tateyama Kagaku Kogyo Kk 厚膜サーミスタ組成物とその製造方法並びに厚膜サーミスタ素子
JP2009302701A (ja) * 2008-06-11 2009-12-24 Nippon Dempa Kogyo Co Ltd 恒温型の水晶デバイス
JP2012079977A (ja) * 2010-10-04 2012-04-19 Semitec Corp 電子素子の保護膜およびその製造方法
JP2014222812A (ja) * 2013-05-13 2014-11-27 株式会社村田製作所 発振デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717054B2 (ja) * 1993-09-28 1998-02-18 コーア株式会社 厚膜サーミスタおよび厚膜サーミスタ用の組成物
JP4042003B2 (ja) * 1997-10-31 2008-02-06 株式会社大泉製作所 サンドウィッチ型厚膜サーミスタ
JP2001118706A (ja) * 1999-10-21 2001-04-27 Murata Mfg Co Ltd 負特性サーミスタペースト、負特性サーミスタ膜および負特性サーミスタ部品
CN1771664B (zh) * 2003-04-11 2011-09-28 Nxp股份有限公司 用于检测振荡器晶体的温度的装置
JP5668392B2 (ja) * 2010-09-28 2015-02-12 セイコーエプソン株式会社 圧電振動素子、圧電振動子及び圧電発振器
JP5898931B2 (ja) * 2011-11-29 2016-04-06 日本電波工業株式会社 圧電発振器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077627A (ja) * 1999-09-02 2001-03-23 Toyo Commun Equip Co Ltd 温度補償圧電発振器
JP2001127579A (ja) * 1999-10-25 2001-05-11 Toyo Commun Equip Co Ltd 圧電振動子及び、これを用いた圧電発振器
JP2004320417A (ja) * 2003-04-16 2004-11-11 Toyo Commun Equip Co Ltd 温度補償圧電発振器
JP2006129417A (ja) * 2004-09-29 2006-05-18 Kyocera Corp 圧電発振器
JP2006332192A (ja) * 2005-05-24 2006-12-07 Tateyama Kagaku Kogyo Kk 厚膜サーミスタ組成物とその製造方法並びに厚膜サーミスタ素子
JP2009302701A (ja) * 2008-06-11 2009-12-24 Nippon Dempa Kogyo Co Ltd 恒温型の水晶デバイス
JP2012079977A (ja) * 2010-10-04 2012-04-19 Semitec Corp 電子素子の保護膜およびその製造方法
JP2014222812A (ja) * 2013-05-13 2014-11-27 株式会社村田製作所 発振デバイス

Also Published As

Publication number Publication date
JP2016178437A (ja) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6083214B2 (ja) 発振器、電子機器、及び移動体
US10749467B2 (en) Piezoelectric resonator unit and temperature control method therefor, and piezoelectric oscillator
US20130257555A1 (en) Piezoelectric device and electronic apparatus
JP5624864B2 (ja) 温度制御型水晶振動子及び水晶発振器
US11342899B2 (en) Crystal resonator device
US9391586B2 (en) Resonator device, electronic device, and moving object
JP2013055573A (ja) 圧電デバイス、及び電子機器
JP2007157784A (ja) 電子部品
JP2014053663A (ja) 電子デバイス、電子機器、及び移動体
JP2013055572A (ja) 圧電デバイス、及び電子機器
WO2016148285A1 (ja) 水晶発振器及びその製造方法
JP2010278712A (ja) 圧電発振器
JP2008263564A (ja) 温度補償型圧電発振器
JP2008252836A (ja) 圧電発振器
JP2008028860A (ja) 圧電発振器
JP2014086842A (ja) 圧電振動デバイス
JP5838694B2 (ja) 物理量検出器、物理量検出デバイス及び電子機器
JP2007124513A (ja) 温度補償型圧電発振器
JP2006129303A (ja) 圧電発振器の製造方法
JP2020068511A (ja) 圧電デバイス
JP2013062707A (ja) 圧電デバイス、及び電子機器
JP4855805B2 (ja) 圧電発振器
JP5451266B2 (ja) 電子デバイス
JP2007158455A (ja) 圧電発振器及びその製造方法
JP4524659B2 (ja) 表面実装型圧電モジュール用パッケージ、及び表面実装型圧電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765114

Country of ref document: EP

Kind code of ref document: A1