WO2016148080A1 - ヒートポンプ - Google Patents

ヒートポンプ Download PDF

Info

Publication number
WO2016148080A1
WO2016148080A1 PCT/JP2016/057841 JP2016057841W WO2016148080A1 WO 2016148080 A1 WO2016148080 A1 WO 2016148080A1 JP 2016057841 W JP2016057841 W JP 2016057841W WO 2016148080 A1 WO2016148080 A1 WO 2016148080A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
compressor
accumulator
gaseous
Prior art date
Application number
PCT/JP2016/057841
Other languages
English (en)
French (fr)
Inventor
秀志 岡田
宏年 鬼原
定徳 保田
圭祐 大田
吉村 智也
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to US15/559,019 priority Critical patent/US10527327B2/en
Priority to KR1020177025642A priority patent/KR102017406B1/ko
Priority to CN201680009375.1A priority patent/CN109073287B/zh
Priority to EP16764910.2A priority patent/EP3273185B1/en
Publication of WO2016148080A1 publication Critical patent/WO2016148080A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to a heat pump.
  • a heat pump including an accumulator that is provided in the vicinity of a suction port of a compressor and through which a refrigerant returning to the compressor passes (for example, Patent Document 1).
  • the accumulator separates the liquid refrigerant from the gaseous refrigerant returning to the compressor, thereby suppressing the liquid refrigerant from flowing into the compressor.
  • the heat pump described in Patent Document 1 is configured to gasify the liquid refrigerant in the accumulator and return it to the compressor.
  • the heat pump has a refrigerant return channel that connects the refrigerant channel between the compressor and the accumulator and the bottom of the accumulator.
  • the refrigerant return flow path is provided with an expansion valve that depressurizes the liquid refrigerant and a heat exchanger that gasifies the liquid refrigerant depressurized by the expansion valve.
  • a heat exchanger gasifies the liquid refrigerant decompressed using the high-temperature cooling water of the engine which drives a compressor. Thereby, the liquid refrigerant in the accumulator is gasified, returned to the compressor, and used again.
  • the present invention provides a heat pump having an accumulator that separates liquid refrigerant from gaseous refrigerant that returns to the compressor without using a heat exchanger that exchanges heat between the liquid refrigerant in the accumulator and engine coolant. It is an object to gasify the liquid refrigerant and reuse the refrigerant.
  • a compressor that compresses and discharges the refrigerant;
  • An engine that drives the compressor; First and second heat exchangers through which refrigerant discharged from the compressor passes;
  • An accumulator for separating the liquid refrigerant from the gaseous refrigerant passing through the first and second heat exchangers and returning to the compressor;
  • a refrigerant suction passage connecting the compressor and the accumulator;
  • a refrigerant return channel for returning the liquid refrigerant stored at the bottom of the accumulator to the refrigerant suction channel;
  • a first valve which is provided in the refrigerant return flow path and is an on-off valve or an expansion valve whose opening degree can be adjusted;
  • a temperature sensor for detecting the temperature of the refrigerant in the refrigerant suction channel on the compressor side from the confluence of the refrigerant suction channel and the refrigerant return channel;
  • a second valve that is an expansion valve adjustable in opening and that decompresses part of the liquid
  • the liquid state in a heat pump having an accumulator that separates liquid refrigerant from refrigerant returning to the compressor, the liquid state can be obtained without using a heat exchanger that performs heat exchange between the liquid refrigerant in the accumulator and the engine coolant.
  • the refrigerant can be gasified and reused.
  • FIG. 1 is a circuit diagram showing a configuration of a heat pump according to an embodiment of the present invention.
  • a heat pump is a heat pump incorporated in the air conditioner.
  • a solid line indicates a refrigerant flow path (refrigerant pipe) through which the refrigerant flows.
  • components of the heat pump such as a filter are omitted in order to simplify the description.
  • the heat pump 10 includes an outdoor unit 12 that exchanges heat with outside air, and at least one indoor unit 14 that exchanges heat with indoor air.
  • the heat pump 10 has two indoor units 14.
  • the outdoor unit 12 includes a compressor 16 that compresses and discharges the refrigerant, a heat exchanger 18 that performs heat exchange between the refrigerant and the outside air, and a four-way valve 20.
  • the indoor unit 14 includes a heat exchanger 22 that performs heat exchange between the refrigerant and the room air.
  • Compressor 16 is driven by gas engine 24.
  • gas engine 24 In the case of the present embodiment, two compressors 16 and one gas engine 24 are mounted on the outdoor unit 12. Further, at least one of the compressors 16 is selectively driven by one gas engine 24.
  • the drive source for driving the compressor 16 is not limited to the gas engine 24 but may be a gasoline engine, for example.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the discharge port 16 a of the compressor 16 is directed to the heat exchanger 18 of the outdoor unit 12 or the heat exchanger 22 of the indoor unit 14 by the four-way valve 20.
  • the gaseous refrigerant discharged from the compressor 16 is sent to the heat exchanger 22 of the indoor unit 14.
  • the gaseous refrigerant is sent to the heat exchanger 18 of the outdoor unit 12.
  • An oil separator 30 that separates oil contained in the refrigerant is provided on the discharge path of the compressor 16, that is, on the refrigerant flow path between the discharge port 16 a of the compressor 16 and the four-way valve 20.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 16 and passing through the four-way valve 20 (solid line) is indoor air (temperature adjustment target) in the heat exchanger 22 of at least one indoor unit 14. And heat exchange. That is, heat is transferred from the refrigerant to the room air via the heat exchanger 22. As a result, the refrigerant is brought into a low-temperature and high-pressure liquid state.
  • Each indoor unit 14 includes an expansion valve 32 whose opening degree can be adjusted.
  • the expansion valve 32 is provided in the indoor unit 14 so as to be positioned between the heat exchanger 22 of the indoor unit 14 and the heat exchanger 18 of the outdoor unit 12 on the refrigerant flow path.
  • the expansion valve 32 is in the open state, the refrigerant can pass through the heat exchanger 22 of the indoor unit 14.
  • the expansion valve 32 is closed. Further, during the heating operation, the expansion valve 32 is fully open.
  • a receiver 34 is provided in the outdoor unit 12. During the heating operation, the receiver 34 is a buffer tank that temporarily stores low-temperature and high-pressure liquid refrigerant after heat exchange with room air by the heat exchanger 22 of the indoor unit 14. The liquid refrigerant flowing out of the heat exchanger 22 of the indoor unit 14 passes through the check valve 36 and flows into the receiver 34.
  • the low-temperature and high-pressure liquid refrigerant in the receiver 34 is sent to the heat exchanger 18 of the outdoor unit 12.
  • a check valve 38 and an expansion valve 40 are provided in the refrigerant flow path between the receiver 34 and the heat exchanger 18.
  • the expansion valve 40 is an expansion valve whose opening degree can be adjusted.
  • the opening degree of the expansion valve 40 is adjusted so that the refrigerant temperature detected by the temperature sensor 66 or the temperature sensor 88 is equal to or higher than a predetermined degree of superheat.
  • the low-temperature and high-pressure liquid refrigerant that has flowed out of the receiver 34 is expanded (depressurized) by the expansion valve 40 and is brought into a low-temperature and low-pressure liquid state (mist state).
  • the low-temperature and low-pressure liquid refrigerant that has passed through the expansion valve 40 exchanges heat with the outside air in the heat exchanger 18 of the outdoor unit 12. That is, heat is transferred from the outside air to the refrigerant through the heat exchanger 18. As a result, the refrigerant is brought into a low-temperature and low-pressure gas state.
  • the accumulator 42 is provided in the outdoor unit 12. During the heating operation, the accumulator 42 temporarily stores the low-temperature and low-pressure gaseous refrigerant after heat exchange with the outside air in the heat exchanger 18 of the outdoor unit 12. The accumulator 42 is provided in the refrigerant flow path between the suction port 16 b of the compressor 16 and the four-way valve 20.
  • the low-temperature and low-pressure gaseous refrigerant in the accumulator 42 is sucked into the compressor 16 and compressed. As a result, the refrigerant is brought into a high-temperature and high-pressure gas state, and is sent again toward the heat exchanger 22 of the indoor unit 14 during the heating operation.
  • a small amount of liquid refrigerant contained in the gaseous refrigerant is separated while the low-temperature and low-pressure gaseous refrigerant stays in the accumulator 42 temporarily. This liquid refrigerant is stored in the accumulator 42.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the discharge port 16a of the compressor 16 moves to the heat exchanger 18 of the outdoor unit 12 via the four-way valve 20 (two-dot chain line).
  • the refrigerant is brought into a low-temperature and high-pressure liquid state.
  • the refrigerant that has flowed out of the heat exchanger 18 passes through the on-off valve 50 and the check valve 52 and flows into the receiver 34.
  • the on-off valve 50 is closed during heating operation.
  • the refrigerant that has flowed out of the heat exchanger 18 passes only through the on-off valve 50 and the check valve 52, or in some cases, additionally via the expansion valve 40 and the check valve 54. It flows into the receiver 34.
  • the refrigerant flowing into the receiver 34 passes through the check valve 56 and passes through the expansion valve 32 of the indoor unit 14.
  • the refrigerant is decompressed to a cold / low pressure liquid state (mist state).
  • the refrigerant that has passed through the expansion valve 32 passes through the heat exchanger 22 of the indoor unit 14 where it exchanges heat with the indoor air. Thereby, the refrigerant takes heat from the room air (cools the room air). As a result, the refrigerant is brought into a low-temperature and low-pressure gas state.
  • the refrigerant flowing out of the heat exchanger 22 passes through the four-way valve 20 and the accumulator 42 and returns to the compressor 16.
  • the heat pump 10 is a cooling heat exchanger (corresponding to the “cooler” described in the claims) 58 for cooling the refrigerant from the receiver 34 toward the check valve 56.
  • the cooling heat exchanger 58 is configured so that heat exchange is performed between the liquid refrigerant and the mist refrigerant from the receiver 34 toward the check valve 56, that is, the liquid refrigerant is cooled with the mist refrigerant. Yes.
  • This atomized refrigerant is atomized by an expansion valve 60 (corresponding to the “third valve” in the claims) of a part of the liquid refrigerant from the cooling heat exchanger 58 toward the check valve 56. (Reduced pressure).
  • the expansion valve 60 is a valve whose opening degree can be adjusted in order to selectively cool the liquid refrigerant by the cooling heat exchanger 58.
  • the control device (not shown) of the heat pump 10 controls the expansion valve 60 so that the expansion valve 60 is at least partially opened, it passes through the cooling heat exchanger 58 and before the check valve 56. A part of the liquid refrigerant passes through the expansion valve 60 and is atomized (depressurized). The refrigerant atomized by the expansion valve 60 flows into the cooling heat exchanger 58, takes out heat from the liquid refrigerant before flowing out of the receiver 34 and passing through the check valve 56, and is thereby gasified. . As a result, a low-temperature liquid refrigerant flows into the heat exchanger 22 of the indoor unit 14 as compared with when the expansion valve 60 is closed.
  • the gaseous refrigerant which has flowed out of the receiver 34 and deprived of heat from the liquid refrigerant before passing through the check valve 56, is supplied from the cooling heat exchanger 58 to the gaseous refrigerant supply channel (" (Corresponding to the “second gaseous refrigerant supply flow path”) 72, and is returned to the refrigerant suction flow path 74 between the compressor 16 and the accumulator 42.
  • the gaseous refrigerant supply channel (Corresponding to the “second gaseous refrigerant supply flow path”) 72
  • the gaseous refrigerant from the cooling heat exchanger 58 is used to evaporate liquid refrigerant stored at the bottom of the accumulator 42.
  • a refrigerant return channel 76 that connects the refrigerant suction channel 74 and the bottom of the accumulator 42 is provided in order to return the liquid refrigerant stored at the bottom of the accumulator 42 to the compressor 16.
  • the refrigerant return passage 76 is provided with an on-off valve 62 (corresponding to “first valve” recited in the claims).
  • a gaseous refrigerant supply channel 72 through which the gaseous refrigerant from the cooling heat exchanger 58 flows is connected to the refrigerant return channel 76.
  • the on-off valve 62 when the on-off valve 62 is opened, the liquid refrigerant that flows out of the accumulator 42 and flows through the refrigerant return passage 76 returns from the cooling heat exchanger 58 to the compressor 16 through the gaseous refrigerant supply passage 72. It is mixed with the refrigerant and gasified and returned to the compressor 16.
  • the heat pump 10 corresponds to an evaporation auxiliary heat exchanger (the “refrigerant evaporator” described in the claims) for gasifying the liquid refrigerant contained in the gaseous refrigerant returning from the four-way valve 20 to the compressor 16. ) 64.
  • a temperature sensor that detects the temperature and pressure of the refrigerant in the refrigerant flow path between the four-way valve 20 and the accumulator 42 in order to determine whether or not the liquid refrigerant is included in the gaseous refrigerant returning to the compressor 16.
  • 66 and a pressure sensor 68 are provided.
  • the temperature sensor 66 and the pressure sensor 68 output a detection signal corresponding to the detection result to a control device (not shown) of the heat pump 10. Based on detection signals from the temperature sensor 66 and the pressure sensor 68, the control device determines whether or not the liquid refrigerant is included in the gaseous refrigerant that returns to the compressor 16.
  • the refrigerant saturated vapor temperature correlated with the refrigerant pressure detected by the pressure sensor 68 is calculated, and if the temperature detected by the temperature sensor 66 is equal to or higher than the saturated vapor temperature, the gaseous state returning to the compressor 16 is calculated. It is determined that the refrigerant contains almost no liquid refrigerant (the liquid refrigerant is substantially zero).
  • the evaporation assisting heat exchanger 64 has a refrigerant flow path through which the liquid refrigerant flows out of the receiver 34 and passes through the check valve 38 or 56 and a refrigerant flow path between the four-way valve 20 and the accumulator 42. It is provided in a gaseous refrigerant supply flow path 78 (corresponding to “first gaseous refrigerant supply flow path” in the claims) to be connected. In this gaseous refrigerant supply flow path 78, an expansion valve whose degree of opening can be adjusted (depressurized) to expand (depressurize) the liquid refrigerant before passing through the evaporation assisting heat exchanger 64 (“second” described in claims) 70 ”) is provided.
  • the control device (not shown) of the heat pump 10 determines that the liquid refrigerant contained in the gaseous refrigerant returning to the compressor 16 contains a predetermined amount or more, it controls the expansion valve 70. Thereby, the expansion valve 70 is at least partially opened.
  • the mist-like refrigerant that has passed through the expansion valve 70 is heated by, for example, the high-temperature exhaust gas or coolant of the gas engine 24 (that is, waste heat of the gas engine 24) in the evaporation assisting heat exchanger 64.
  • the mist-like refrigerant that has passed through the expansion valve 70 and has flowed into the evaporation assisting heat exchanger 64 is brought into a high-temperature and low-pressure gas state.
  • the high temperature gaseous refrigerant heated by the evaporation assisting heat exchanger 64 is introduced into the refrigerant flow path between the four-way valve 20 and the accumulator 42.
  • the liquid refrigerant contained in the gaseous refrigerant passing through the four-way valve 20 and returning to the compressor 16 is heated and evaporated (gasified) by the high-temperature gaseous refrigerant from the evaporation assisting heat exchanger 64. .
  • the refrigerant flowing into the accumulator 42 is almost in a gas state.
  • a temperature sensor 86 that is a refrigerant temperature after joining the gaseous refrigerant supply channel 78 as a temperature for determining whether or not the liquid refrigerant is included in the gaseous refrigerant returning to the compressor 16. Use the detected temperature.
  • the on-off valve 62 for returning the liquid refrigerant stored at the bottom of the accumulator 42 to the compressor 16 is normally kept open.
  • gaseous refrigerant is supplied from the cooling heat exchanger 58 to the refrigerant return flow path 76 via the gaseous refrigerant supply flow path 72, and from the evaporation auxiliary heat exchanger 64 to the gaseous refrigerant supply flow path 78.
  • the gaseous refrigerant is supplied to the accumulator 42 through the via.
  • the flow rate of the gaseous refrigerant supplied from the cooling heat exchanger 58 to the refrigerant return flow path 76 via the gaseous refrigerant supply flow path 72 is adjusted by the expansion valve 60, and the gaseous refrigerant is supplied from the evaporation assisting heat exchanger 64.
  • the flow rate of the gaseous refrigerant supplied to the accumulator 42 via the supply flow path 78 is adjusted by the expansion valve 70.
  • the opening degree of the expansion valves 60 and 70 is performed based on the detected temperature of the temperature sensor 80 that detects the temperature of the refrigerant in the refrigerant suction passage 74.
  • the temperature sensor 80 detects the temperature of the refrigerant in the refrigerant suction channel 74 on the compressor 16 side from the junction of the refrigerant suction channel 74 and the refrigerant return channel 76.
  • the control device of the heat pump 10 calculates the degree of superheat of the refrigerant sucked into the compressor 16 based on the temperature detected by the temperature sensor 80.
  • the degree of superheat of the refrigerant is calculated based on the detected pressure of the pressure sensor 68 that detects the pressure of the refrigerant between the four-way valve 20 and the accumulator 42.
  • the temperature difference between the saturated vapor temperature of the refrigerant correlated with the detected pressure (that is, the vapor pressure) of the pressure sensor 68 and the detected temperature of the temperature sensor 80 is the degree of superheat.
  • the control device of the heat pump 10 controls the opening degree of the expansion valves 60 and 70 so that the superheat degree of the refrigerant sucked into the compressor 16 is maintained exceeding a predetermined superheat degree (lower limit suction refrigerant superheat degree). . Thereby, the refrigerant flowing out of the accumulator 42 and flowing through the refrigerant return flow path 76 is maintained in a gas state. As a result, gaseous refrigerant is sucked into the compressor 16.
  • the on-off valve 62 is closed only when there is a possibility that liquid refrigerant may return from the accumulator 42 to the compressor 16 via the refrigerant return passage 76.
  • the on-off valve 62 is closed when the degree of superheat of the refrigerant in the refrigerant intake passage 74 calculated based on the temperature detected by the temperature sensor 80 does not exceed the lower limit intake refrigerant superheat degree.
  • the on-off valve 62 is closed.
  • the degree of superheat of the refrigerant discharged from the compressor 16 depends on the temperature sensor 82 that detects the temperature of the refrigerant in the refrigerant flow path between the compressor 16 and the oil separator 30 and the pressure sensor 84 that detects the pressure. Calculated based on the detection result.
  • the superheat degree of the refrigerant after the refrigerant heading from the four-way valve 20 toward the accumulator 42 and the refrigerant heading from the evaporation assisting heat exchanger 64 toward the accumulator 42 exceeds a predetermined superheat degree (lower limit combined refrigerant superheat degree). If not, the on-off valve 62 is closed.
  • the degree of superheat is determined by a temperature sensor 86 that detects the temperature of the refrigerant between the confluence of the refrigerant flow path between the four-way valve 20 and the accumulator 42 and the gaseous refrigerant supply flow path 78 and the accumulator 42, and It is calculated based on the detection result of the pressure sensor 68 that detects the pressure of the refrigerant between the junction and the four-way valve 20.
  • the compressor from the accumulator 42 is used.
  • the on-off valve 62 is closed. Thereby, inflow of the liquid refrigerant to the compressor 16 is suppressed.
  • the heat pump 10 gasifies the liquid refrigerant without using a heat exchanger that exchanges heat between the liquid refrigerant in the accumulator and the engine cooling water, Can be reused.
  • the opening / closing valve 62 is provided in the refrigerant return passage 76 for returning the liquid refrigerant stored in the bottom of the accumulator 42 to the compressor 16.
  • a simple expansion valve may be provided.
  • the liquid refrigerant that has flowed from the accumulator 42 into the refrigerant return passage 76 is decompressed by the expansion valve, and is supplied from the cooling heat exchanger 58 to the refrigerant return passage 76 via the gaseous refrigerant supply passage 72. It is further gasified by the gaseous refrigerant (compared to the on-off valve 62).
  • the supply of the gaseous refrigerant from the cooling heat exchanger 58 to the refrigerant return passage 76 and the supply of the gaseous refrigerant from the evaporation assisting heat exchanger 64 to the accumulator 42 are not necessarily performed simultaneously. That is, the expansion valves 60 and 70 do not necessarily have to be open at the same time. That is, if the degree of superheat of the refrigerant in the refrigerant suction passage 74 calculated based on the temperature detected by the temperature sensor 80 exceeds the lower limit suction refrigerant superheat degree, at least one of the expansion valves 60 and 70 is closed. Or both may be closed.
  • the heat pump 10 is an air conditioner that controls the temperature of room air as a temperature adjustment target, but the embodiment of the present invention is not limited thereto.
  • the heat pump according to the embodiment of the present invention may be, for example, a chiller that adjusts the temperature of water using a refrigerant. That is, in a broad sense, the heat pump according to the present invention includes a compressor that compresses and discharges a refrigerant, an engine that drives the compressor, and first and second heat exchanges through which the refrigerant discharged from the compressor passes.
  • An accumulator that separates the liquid refrigerant from the gaseous refrigerant that passes through the first and second heat exchangers and returns to the compressor, a refrigerant suction passage that connects the compressor and the accumulator, and a bottom of the accumulator
  • a refrigerant return passage for returning the stored liquid refrigerant to the refrigerant intake passage
  • a first valve that is provided in the refrigerant return passage and is an on-off valve or an expansion valve whose opening degree can be adjusted
  • a temperature sensor for detecting the temperature of the refrigerant in the refrigerant suction flow path on the compressor side from the junction with the return flow path, an expansion valve whose opening degree is adjustable, and the first and second heat exchangers A part of the liquid refrigerant flowing through the refrigerant flow path between A second valve that pressurizes, a refrigerant evaporator that gasifies part of the liquid refrigerant decompressed
  • the present invention can be applied to a heat pump having an accumulator that separates liquid refrigerant from refrigerant returning to the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 ヒートポンプは、圧縮機に戻るガス状冷媒から液状冷媒を分離するアキュムレータと、圧縮機とアキュムレータとを接続する冷媒吸入流路と、アキュムレータの液状冷媒を冷媒吸入流路に戻す冷媒戻し流路と、冷媒戻し流路に設けられた第1の弁と、冷媒吸入流路と冷媒戻し流路との合流点より圧縮機側で冷媒の温度を検出する温度センサと、第1および第2の熱交換器の間の冷媒流路を流れる液状冷媒の一部を減圧する第2の弁と、その減圧された液状冷媒をエンジンの廃熱を用いてガス化する冷媒蒸発器と、そのガス化された冷媒をアキュムレータに供給するガス状冷媒供給流路と、第1の弁が開いた状態とき、温度センサの検出温度に基づいて第2の弁の開度を制御する制御装置とを有する。

Description

ヒートポンプ
 本発明は、ヒートポンプに関する。
 従来より、圧縮機の吸入ポート近傍に設けられ、圧縮機に戻る冷媒が通過するアキュムレータを備えるヒートポンプが知られている(例えば、特許文献1)。アキュムレータは、圧縮機に戻るガス状冷媒から液状冷媒を分離し、それにより液状冷媒が圧縮機内に流入することが抑制される。
 また、特許文献1に記載されたヒートポンプは、アキュムレータ内の液状冷媒をガス化して圧縮機に戻すように構成されている。具体的には、ヒートポンプは、圧縮機とアキュムレータとの間の冷媒流路と該アキュムレータの底部とを接続する冷媒戻し流路を有する。その冷媒戻し流路には、液状冷媒を減圧する膨張弁と、膨張弁によって減圧された液状冷媒をガス化させる熱交換器とが設けられている。熱交換器は、圧縮機を駆動するエンジンの高温の冷却水を用いて減圧された液状冷媒をガス化する。これにより、アキュムレータ内の液状冷媒が、ガス化されて圧縮機に戻され、再び利用される。
特開2012-82993号公報
 ところが、特許文献1に記載されたヒートポンプの場合、アキュムレータ内の液状冷媒をガス化して再利用するために、その液状冷媒とエンジンの冷却水との間で熱交換を行う熱交換器が必要である。
 そこで、本発明は、圧縮機に戻るガス状冷媒から液状冷媒を分離するアキュムレータを有するヒートポンプにおいて、アキュムレータ内の液状冷媒とエンジンの冷却水との間で熱交換を行う熱交換器を用いることなくその液状冷媒をガス化し、その冷媒を再利用することを課題とする。
 上記技術的課題を解決するために、本発明の一態様によれば、
 冷媒を圧縮して吐出する圧縮機と、
 圧縮機を駆動するエンジンと、
 圧縮機から吐出された冷媒が通過する第1および第2の熱交換器と、
 第1および第2の熱交換器を通過して圧縮機に戻るガス状冷媒から液状冷媒を分離するアキュムレータと、
 圧縮機とアキュムレータとを接続する冷媒吸入流路と、
 アキュムレータの底部に貯まる液状冷媒を冷媒吸入流路に戻すための冷媒戻し流路と、
 冷媒戻し流路に設けられ、開閉弁または開度調節可能な膨張弁である第1の弁と、
 冷媒吸入流路と冷媒戻し流路との合流点より圧縮機側で、冷媒吸入流路内の冷媒の温度を検出する温度センサと、
 開度調節可能な膨張弁であって、且つ第1および第2の熱交換器の間の冷媒流路を流れる液状冷媒の一部を減圧する第2の弁と、
 第2の弁によって減圧された液状冷媒の一部をエンジンの廃熱を用いてガス化する冷媒蒸発器と、
 冷媒蒸発器によってガス化されたガス状冷媒をアキュムレータに供給するための第1のガス状冷媒供給流路と、
 第1の弁が開いた状態とき、温度センサの検出温度に基づいて圧縮機に吸入される冷媒の過熱度を算出し、その算出した吸入冷媒過熱度に基づいて第2の弁の開度を制御する制御装置と、を有するヒートポンプが提供される。
 本発明によれば、圧縮機に戻る冷媒から液状冷媒を分離するアキュムレータを有するヒートポンプにおいて、アキュムレータ内の液状冷媒とエンジンの冷却水との間で熱交換を行う熱交換器を用いることなくその液状冷媒をガス化し、その冷媒を再利用することができる。
本発明の一実施の形態に係るヒートポンプの構成を示す回路図
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 図1は、本発明の一実施の形態に係るヒートポンプの構成を示す回路図である。本実施の形態の場合、ヒートポンプは、空気調和機に組み込まれているヒートポンプである。図1において、実線は、冷媒が流れる冷媒流路(冷媒管)を示している。また、図1に示す回路図では、説明を簡略化するために、フィルタなどのヒートポンプの構成要素が省略されている。
 図1に示すように、ヒートポンプ10は、外気と熱交換を行う室外機12と、室内空気と熱交換を行う少なくとも一基の室内機14とを有する。なお、本実施の形態の場合、ヒートポンプ10は二基の室内機14を有する。
 室外機12は、冷媒を圧縮して吐出する圧縮機16と、冷媒と外気との熱交換を行う熱交換器18と、四方弁20とを有する。一方、室内機14は、冷媒と室内空気との熱交換を行う熱交換器22を有する。
 圧縮機16は、ガスエンジン24によって駆動される。本実施の形態の場合、二基の圧縮機16と一基のガスエンジン24とが室外機12に搭載されている。また、一基のガスエンジン24によって圧縮機16の少なくとも一方が選択的に駆動される。なお、圧縮機16を駆動する駆動源は、ガスエンジン24に限らず、例えばガソリンエンジンなどであってもよい。
 圧縮機16の吐出ポート16aから吐出された高温・高圧のガス状冷媒は、四方弁20によって室外機12の熱交換器18または室内機14の熱交換器22に向けられる。暖房運転の場合、圧縮機16から吐出されたガス状冷媒は、室内機14の熱交換器22に送られる。一方、冷房運転の場合、ガス状冷媒は室外機12の熱交換器18に送られる。
 圧縮機16の吐出経路上、すなわち圧縮機16の吐出ポート16aと四方弁20との間の冷媒流路上には、冷媒に含まれるオイルを分離するオイルセパレータ30が設けられている。
 暖房運転の場合、圧縮機16から吐出されて四方弁20(実線)を通過した高温・高圧のガス状冷媒は、少なくとも一基の室内機14の熱交換器22で室内空気(温度調節対象)と熱交換を行う。すなわち、熱交換器22を介して、冷媒から室内空気に熱が移動する。その結果、冷媒は、低温・高圧の液状態にされる。
 なお、室内機14それぞれは、開度調節可能な膨張弁32を備える。膨張弁32は、冷媒流路上において、室内機14の熱交換器22と室外機12の熱交換器18との間に位置するように、室内機14に設けられている。膨張弁32が開弁状態のとき、冷媒は室内機14の熱交換器22を通過することができる。室内機14が停止しているとき、膨張弁32は閉じている。また、暖房運転時には、膨張弁32は全開状態である。
 レシーバ34が室外機12に設けられている。暖房運転時、レシーバ34は、室内機14の熱交換器22で室内空気と熱交換を行った後の低温・高圧の液状冷媒を一時的に蓄えるバッファタンクである。室内機14の熱交換器22から流出した液状冷媒は、逆止弁36を通過してレシーバ34内に流入する。
 暖房運転時、レシーバ34内の低温・高圧の液状冷媒は、室外機12の熱交換器18に送られる。レシーバ34と熱交換器18との間の冷媒流路には、逆止弁38と膨張弁40とが設けられている。膨張弁40は、開度調節可能な膨張弁である。暖房運転時において、膨張弁40は温度センサ66または温度センサ88で検出する冷媒温度が所定の過熱度以上となるように開度調節される。レシーバ34から流出した低温・高圧の液状冷媒は、膨張弁40によって膨張され(減圧され)、低温・低圧の液状態(霧状態)にされる。
 暖房運転時、膨張弁40を通過した低温・低圧の液状冷媒は、室外機12の熱交換器18で外気と熱交換を行う。すなわち、熱交換器18を介して、外気から冷媒に熱が移動する。その結果、冷媒は、低温・低圧のガス状態にされる。
 アキュムレータ42が室外機12に設けられている。暖房運転時、アキュムレータ42は、室外機12の熱交換器18で外気と熱交換を行った後の低温・低圧のガス状冷媒を一時的に蓄える。アキュムレータ42は、圧縮機16の吸入ポート16bと四方弁20との間の冷媒流路に設けられている。
 アキュムレータ42内の低温・低圧のガス状冷媒は、圧縮機16内に吸入されて圧縮される。その結果、冷媒は、高温・高圧のガス状態にされ、暖房運転時には再び室内機14の熱交換器22に向かって送られる。
 なお、低温・低圧のガス状冷媒がアキュムレータ42に一時的に留まる間に、ガス状冷媒に含まれる少量の液状冷媒が分離する。この液状冷媒は、アキュムレータ42内に貯められる。
 一方、冷房運転の場合、圧縮機16の吐出ポート16aから吐出された高温・高圧のガス状冷媒は、四方弁20(二点鎖線)を介して、室外機12の熱交換器18に移動する。その熱交換器18で外気と熱交換することにより、冷媒は、低温・高圧の液状態にされる。
 熱交換器18から流出した冷媒は、開閉弁50および逆止弁52を通過してレシーバ34内に流入する。なお、この開閉弁50は、暖房運転時には閉じている。
 また、冷房運転時において、熱交換器18から流出した冷媒は、開閉弁50および逆止弁52のみを介して、あるいは、場合によっては、それに加えて膨張弁40および逆止弁54も介してレシーバ34内に流入する。
 冷房運転時、レシーバ34内に流入した冷媒は、逆止弁56を通過して室内機14の膨張弁32を通過する。膨張弁32を通過することにより、冷媒は、減圧されて冷温・低圧の液状態(霧状態)にされる。
 膨張弁32を通過した冷媒は、室内機14の熱交換器22を通過し、そこで室内空気と熱交換を行う。それにより、冷媒は、室内空気から熱を奪う(室内空気を冷却する)。その結果として、冷媒は、低温・低圧のガス状態にされる。そして、熱交換器22を流出した冷媒は、四方弁20、アキュムレータ42を通過して圧縮機16に戻る。
 また、冷房効率を向上させるために、ヒートポンプ10は、レシーバ34から逆止弁56に向かう冷媒を冷却するための冷却用熱交換器(特許請求の範囲に記載の「冷却器」に対応)58を有する。
 冷却用熱交換器58は、レシーバ34から逆止弁56に向かう液状冷媒と霧状冷媒との間で熱交換が行われるように、すなわち液状冷媒を霧状冷媒で冷却するように構成されている。この霧状冷媒は、冷却用熱交換器58から逆止弁56に向かう液状冷媒の一部を膨張弁(特許請求の範囲に記載の「第3の弁」に対応)60によって霧状にしたもの(減圧したもの)である。この膨張弁60は、冷却用熱交換器58による液状冷媒の冷却を選択的に行うために、開度調節可能な弁である。
 ヒートポンプ10の制御装置(図示せず)が膨張弁60を制御することによって該膨張弁60が少なくとも部分的に開くと、冷却用熱交換器58を通過して逆止弁56を通過する前の液状冷媒の一部が膨張弁60を通過して霧状にされる(減圧される)。膨張弁60によって霧状にされた冷媒は、冷却用熱交換器58内に流入し、レシーバ34から流出して逆止弁56を通過する前の液状冷媒から熱を奪い、それによりガス化する。その結果として、室内機14の熱交換器22に、膨張弁60が閉じた状態の時に比べて低温な液状冷媒が流入する。
 一方、レシーバ34から流出して逆止弁56を通過する前の液状冷媒から熱を奪ったガス状冷媒は、冷却用熱交換器58から、ガス状冷媒供給流路(特許請求の範囲の「第2のガス状冷媒供給流路」に対応)72を介して、圧縮機16とアキュムレータ42との間の冷媒吸入流路74に戻される。
 この冷却用熱交換器58からのガス状冷媒は、アキュムレータ42の底部に貯まる液状冷媒を蒸発させるために使用される。具体的には、アキュムレータ42の底部に貯まる液状冷媒を圧縮機16に戻すために、冷媒吸入流路74とアキュムレータ42の底部とを接続する冷媒戻し流路76が設けられている。この冷媒戻し流路76には、開閉弁(特許請求の範囲に記載の「第1の弁」に対応)62が設けられている。この冷媒戻し流路76に、冷却用熱交換器58からのガス状冷媒が流れるガス状冷媒供給流路72が接続されている。したがって、開閉弁62が開くことにより、アキュムレータ42から流出して冷媒戻し流路76を流れる液状冷媒が、冷却用熱交換器58からガス状冷媒供給流路72を介して圧縮機16に戻るガス状冷媒に混合されてガス化し、圧縮機16に戻される。
 さらに、ヒートポンプ10は、四方弁20から圧縮機16に戻るガス状冷媒に含まれる液状冷媒をガス化するための蒸発補助用熱交換器(特許請求の範囲に記載の「冷媒蒸発器」に対応)64を有する。
 圧縮機16に戻るガス状冷媒に液状冷媒が含まれるか否かを判定するために、四方弁20とアキュムレータ42との間の冷媒流路には、冷媒の温度と圧力とを検出する温度センサ66と圧力センサ68とが設けられている。温度センサ66と圧力センサ68は、検出結果に対応する検出信号をヒートポンプ10の制御装置(図示せず)に出力する。制御装置は、温度センサ66と圧力センサ68とからの検出信号に基づいて、圧縮機16に戻るガス状冷媒に液状冷媒が含まれるか否かを判定する。すなわち、圧力センサ68によって検出された冷媒の圧力と相関する冷媒の飽和蒸気温度を算出して、温度センサ66によって検出された温度が前記飽和蒸気温度以上であれば、圧縮機16に戻るガス状冷媒に液状冷媒がほとんど含まれていない(液状冷媒は実質的にゼロである)と判定する。
 蒸発補助用熱交換器64は、レシーバ34から流出して逆止弁38または56を通過する前の液状冷媒が流れる冷媒流路と、四方弁20とアキュムレータ42との間の冷媒流路とを接続するガス状冷媒供給流路(特許請求の範囲の「第1のガス状冷媒供給流路」に対応)78に設けられている。このガス状冷媒供給流路78には、蒸発補助用熱交換器64を通過する前の液状冷媒を膨張させる(減圧する)開度調節可能な膨張弁(特許請求の範囲に記載の「第2の弁」に対応)70が設けられている。
 ヒートポンプ10の制御装置(図示せず)は、圧縮機16に戻るガス状冷媒に液状冷媒が規定量以上含まれていると判定すると、膨張弁70を制御する。それにより、膨張弁70が少なくとも部分的に開く。
 膨張弁70が少なくとも部分的に開くと、レシーバ34から流出して逆止弁56を通過する前の低温・高圧の液状冷媒の一部が、膨張弁70を流れ、低温・低圧の霧状にされる(減圧される)。
 膨張弁70を通過した霧状の冷媒は、蒸発補助用熱交換器64で、例えばガスエンジン24の高温な排気ガスや冷却液など(すなわちガスエンジン24の廃熱)によって加熱される。それにより、膨張弁70を通過して蒸発補助用熱交換器64に流入した霧状の冷媒は、高温・低圧のガス状態にされる。この蒸発補助用熱交換器64で加熱された高温のガス状冷媒は、四方弁20とアキュムレータ42との間の冷媒流路に投入される。それにより、四方弁20を通過して圧縮機16に戻るガス状冷媒に含まれる液状冷媒が、蒸発補助用熱交換器64からの高温のガス状冷媒によって加熱されて蒸発する(ガス化する)。その結果として、アキュムレータ42に流入する冷媒は、ほぼガス状態にされる。なお、膨張弁70を開く場合は、圧縮機16に戻るガス状冷媒に液状冷媒が含まれるか否かを判定する温度としてガス状冷媒供給流路78の合流後の冷媒温度である温度センサ86の検出温度を使用する。
 これまでは、冷媒に関するヒートポンプ10の構成要素について概略的に説明してきた。ここからは、ヒートポンプ10の制御装置による開閉弁62の制御についてさらに説明する。
 アキュムレータ42の底部に貯まる液状冷媒を圧縮機16に戻すための開閉弁62は、通常、開いた状態で維持される。開閉弁62を開いた状態で維持するためには、冷媒戻し流路76を流れる冷媒を常にガス状態に維持する必要がある。そのために、冷却用熱交換器58からガス状冷媒供給流路72介して冷媒戻し流路76にガス状冷媒が供給されるとともに、蒸発補助用熱交換器64からガス状冷媒供給流路78を介してアキュムレータ42にガス状冷媒が供給される。
 冷却用熱交換器58からガス状冷媒供給流路72を介して冷媒戻し流路76に供給されるガス状冷媒の流量は膨張弁60によって調節され、蒸発補助用熱交換器64からガス状冷媒供給流路78を介してアキュムレータ42に供給されるガス状冷媒の流量は膨張弁70によって調節される。それらの膨張弁60、70の開度は、冷媒吸入流路74内の冷媒の温度を検出する温度センサ80の検出温度に基づいて行われる。
 具体的に説明すると、温度センサ80は、冷媒吸入流路74と冷媒戻し流路76との合流点より圧縮機16側で、冷媒吸入流路74内の冷媒の温度を検出する。ヒートポンプ10の制御装置は、温度センサ80の検出温度に基づいて、圧縮機16に吸入される冷媒の過熱度を算出する。冷媒の過熱度は、四方弁20とアキュムレータ42との間で冷媒の圧力を検出する圧力センサ68の検出圧力に基づいて算出される。具体的には、圧力センサ68の検出圧力(すなわち蒸気圧)と相関する冷媒の飽和蒸気温度と温度センサ80の検出温度との温度差が過熱度である。
 ヒートポンプ10の制御装置は、圧縮機16に吸入される冷媒の過熱度が所定の過熱度(下限吸入冷媒過熱度)を超えて維持されるように、膨張弁60、70の開度を制御する。それにより、アキュムレータ42から流出して冷媒戻し流路76を流れる冷媒は、ガス状態で維持される。その結果、圧縮機16にガス状の冷媒が吸入される。
 なお、開閉弁62は、アキュムレータ42から冷媒戻し流路76を介して圧縮機16に液状態の冷媒が戻る可能性がある場合にのみ閉じられる。例えば、上述したように温度センサ80の検出温度に基づいて算出される冷媒吸入流路74内の冷媒の過熱度が下限吸入冷媒過熱度を超えない場合、開閉弁62は閉じられる。
 また例えば、圧縮機16から吐出される冷媒の過熱度が所定の過熱度(下限吐出冷媒過熱度)を超えない場合、開閉弁62は閉じられる。なお、圧縮機16から吐出される冷媒の過熱度は、圧縮機16とオイルセパレータ30との間の冷媒流路で冷媒の温度を検出する温度センサ82とその圧力を検出する圧力センサ84との検出結果に基づいて算出される。
 さらに例えば、四方弁20からアキュムレータ42に向かう冷媒と蒸発補助用熱交換器64からアキュムレータ42に向かう冷媒とが合流した後の冷媒の過熱度が所定の過熱度(下限合流冷媒過熱度)を超えない場合、開閉弁62は閉じられる。なお、この過熱度は、四方弁20とアキュムレータ42の間の冷媒流路とガス状冷媒供給流路78との合流点とアキュムレータ42との間で冷媒の温度を検出する温度センサ86と、その合流点と四方弁20との間で冷媒の圧力を検出する圧力センサ68との検出結果に基づいて算出される。
 すなわち、冷却用熱交換器58から冷媒戻し流路76にガス状冷媒を供給しても、且つ蒸発補助用熱交換器64からアキュムレータ42にガス状冷媒を供給しても、アキュムレータ42から圧縮機16に液状冷媒が戻る可能性がある場合に、開閉弁62は閉じられる。これにより、圧縮機16への液状冷媒の流入が抑制される。
 このような本実施の形態によれば、ヒートポンプ10は、アキュムレータ内の液状冷媒とエンジンの冷却水との間で熱交換を行う熱交換器を用いることなくその液状冷媒をガス化し、その冷媒を再利用することができる。
 以上、上述の実施の形態を挙げて本発明を説明したが、本発明の実施の形態はこれに限らない。
 例えば、上述の実施の形態の場合、アキュムレータ42の底部に貯まる液状冷媒を圧縮機16に戻す冷媒戻し流路76に開閉弁62が設けられているが、この開閉弁に代わって開度調節可能な膨張弁が設けられてもよい。この場合、アキュムレータ42から冷媒戻し流路76に流入した液状冷媒は、膨張弁によって減圧され、冷却用熱交換器58からガス状冷媒供給流路72を介して冷媒戻し流路76に供給されたガス状冷媒によってよりガス化される(開閉弁62に比べて)。
 また例えば、冷却用熱交換器58から冷媒戻し流路76へのガス状冷媒の供給と蒸発補助用熱交換器64からアキュムレータ42へのガス状冷媒の供給は、必ずしも同時に行う必要はない。すなわち、膨張弁60、70は、必ずしも両方が同時に開いている必要はない。すなわち、温度センサ80の検出温度に基づいて算出される冷媒吸入流路74内の冷媒の過熱度が下限吸入冷媒過熱度を超えているのであれば、膨張弁60、70の少なくとも一方が閉じていてもよいし、あるいは両方が閉じていてもよい。
 また例えば、上述の実施の形態の場合、ヒートポンプ10は、温度調節対象として室内空気の温度制御を行う空気調和機であったが本発明の実施の形態はこれに限らない。本発明の実施の形態に係るヒートポンプは、例えば、冷媒によって水の温度調整を行うチラーであってもよい。すなわち、本発明に係るヒートポンプは、広義には、冷媒を圧縮して吐出する圧縮機と、圧縮機を駆動するエンジンと、圧縮機から吐出された冷媒が通過する第1および第2の熱交換器と、第1および第2の熱交換器を通過して圧縮機に戻るガス状冷媒から液状冷媒を分離するアキュムレータと、圧縮機とアキュムレータとを接続する冷媒吸入流路と、アキュムレータの底部に貯まる液状冷媒を冷媒吸入流路に戻すための冷媒戻し流路と、冷媒戻し流路に設けられ、開閉弁または開度調節可能な膨張弁である第1の弁と、冷媒吸入流路と冷媒戻し流路との合流点より圧縮機側で、冷媒吸入流路内の冷媒の温度を検出する温度センサと、開度調節可能な膨張弁であって、且つ第1および第2の熱交換器の間の冷媒流路を流れる液状冷媒の一部を減圧する第2の弁と、第2の弁によって減圧された液状冷媒の一部をエンジンの廃熱を用いてガス化する冷媒蒸発器と、冷媒蒸発器によってガス化されたガス状冷媒をアキュムレータに供給するための第1のガス状冷媒供給流路と、第1の弁が開いた状態とき、温度センサの検出温度に基づいて圧縮機に吸入される冷媒の過熱度を算出し、その算出した吸入冷媒過熱度に基づいて第2の弁の開度を制御する制御装置と、を有する。
 本発明は、圧縮機に戻る冷媒から液状冷媒を分離するアキュムレータを有するヒートポンプに適用可能である。
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2015年3月17日に出願された日本特許出願第2015-53179号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
   10  ヒートポンプ
   16  圧縮機
   18  熱交換器
   22  熱交換器
   24  エンジン(ガスエンジン)
   42  アキュムレータ
   58  冷却器(冷却用熱交換器)
   60  第3の弁(膨張弁)
   62  第1の弁(開閉弁)
   64  冷媒蒸発器(蒸発補助用熱交換器)
   70  第2の弁(膨張弁)
   72  第2のガス状冷媒供給流路(ガス状冷媒供給流路)
   74  冷媒吸入流路
   76  冷媒戻し流路
   78  第1のガス状冷媒供給流路(ガス状冷媒供給流路)
   80  温度センサ

Claims (2)

  1.  冷媒を圧縮して吐出する圧縮機と、
     圧縮機を駆動するエンジンと、
     圧縮機から吐出された冷媒が通過する第1および第2の熱交換器と、
     第1および第2の熱交換器を通過して圧縮機に戻るガス状冷媒から液状冷媒を分離するアキュムレータと、
     圧縮機とアキュムレータとを接続する冷媒吸入流路と、
     アキュムレータの底部に貯まる液状冷媒を冷媒吸入流路に戻すための冷媒戻し流路と、
     冷媒戻し流路に設けられ、開閉弁または開度調節可能な膨張弁である第1の弁と、
     冷媒吸入流路と冷媒戻し流路との合流点より圧縮機側で、冷媒吸入流路内の冷媒の温度を検出する温度センサと、
     開度調節可能な膨張弁であって、且つ第1および第2の熱交換器の間の冷媒流路を流れる液状冷媒の一部を減圧する第2の弁と、
     第2の弁によって減圧された液状冷媒の一部をエンジンの廃熱を用いてガス化する冷媒蒸発器と、
     冷媒蒸発器によってガス化されたガス状冷媒をアキュムレータに供給するための第1のガス状冷媒供給流路と、
     第1の弁が開いた状態とき、温度センサの検出温度に基づいて圧縮機に吸入される冷媒の過熱度を算出し、その算出した吸入冷媒過熱度に基づいて第2の弁の開度を制御する制御装置と、を有するヒートポンプ。
  2.  第2の弁と異なり、開度調節可能な膨張弁であって、且つ第1および第2の熱交換器の間の冷媒流路を流れる液状冷媒の一部を減圧する第3の弁と、
     第3の弁によって減圧された液状冷媒を、他の液状冷媒の冷却に使用することによってガス化する冷却器と、
     冷却器によってガス化されたガス状冷媒を、冷媒戻し流路に供給するための第2のガス状冷媒供給流路と、を有し、
     第1の弁が開いた状態のとき、制御装置は、吸入冷媒過熱度に基づいて第3の弁の開度を制御する、請求項1に記載のヒートポンプ。
PCT/JP2016/057841 2015-03-17 2016-03-11 ヒートポンプ WO2016148080A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/559,019 US10527327B2 (en) 2015-03-17 2016-03-11 Heat pump
KR1020177025642A KR102017406B1 (ko) 2015-03-17 2016-03-11 히트 펌프
CN201680009375.1A CN109073287B (zh) 2015-03-17 2016-03-11 热泵
EP16764910.2A EP3273185B1 (en) 2015-03-17 2016-03-11 Heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-053179 2015-03-17
JP2015053179A JP6335133B2 (ja) 2015-03-17 2015-03-17 ヒートポンプ

Publications (1)

Publication Number Publication Date
WO2016148080A1 true WO2016148080A1 (ja) 2016-09-22

Family

ID=56920114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057841 WO2016148080A1 (ja) 2015-03-17 2016-03-11 ヒートポンプ

Country Status (6)

Country Link
US (1) US10527327B2 (ja)
EP (1) EP3273185B1 (ja)
JP (1) JP6335133B2 (ja)
KR (1) KR102017406B1 (ja)
CN (1) CN109073287B (ja)
WO (1) WO2016148080A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835275B2 (en) 2019-08-09 2023-12-05 Carrier Corporation Cooling system and method of operating a cooling system
CN115151767A (zh) * 2020-02-20 2022-10-04 株式会社电装 制冷循环装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278045A (ja) * 1997-09-24 1999-10-12 Denso Corp 冷凍サイクル装置
JP2003106609A (ja) * 2001-09-28 2003-04-09 Daikin Ind Ltd 冷凍装置
JP2004245548A (ja) * 2003-02-17 2004-09-02 Toho Gas Co Ltd 空調室外機
JP2005147437A (ja) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0894651B1 (en) * 1997-07-31 2003-09-10 Denso Corporation Refrigeration cycle apparatus
JP2006343017A (ja) 2005-06-08 2006-12-21 Sanyo Electric Co Ltd 冷凍装置
JP5326488B2 (ja) * 2008-02-29 2013-10-30 ダイキン工業株式会社 空気調和装置
JP5200593B2 (ja) * 2008-03-13 2013-06-05 アイシン精機株式会社 空気調和装置
JP5149663B2 (ja) * 2008-03-24 2013-02-20 ヤンマー株式会社 エンジン駆動式ヒートポンプ
JP5631685B2 (ja) * 2010-10-07 2014-11-26 ヤンマー株式会社 エンジン駆動式空調機
CN103958986B (zh) 2011-11-29 2016-08-31 三菱电机株式会社 冷冻空调装置
WO2013160966A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 空気調和装置
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278045A (ja) * 1997-09-24 1999-10-12 Denso Corp 冷凍サイクル装置
JP2003106609A (ja) * 2001-09-28 2003-04-09 Daikin Ind Ltd 冷凍装置
JP2004245548A (ja) * 2003-02-17 2004-09-02 Toho Gas Co Ltd 空調室外機
JP2005147437A (ja) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273185A4 *

Also Published As

Publication number Publication date
US10527327B2 (en) 2020-01-07
US20180080690A1 (en) 2018-03-22
EP3273185B1 (en) 2020-02-26
JP6335133B2 (ja) 2018-05-30
CN109073287A (zh) 2018-12-21
JP2016173203A (ja) 2016-09-29
EP3273185A1 (en) 2018-01-24
EP3273185A4 (en) 2018-11-14
KR102017406B1 (ko) 2019-09-02
KR20170117501A (ko) 2017-10-23
CN109073287B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
US10544971B2 (en) Method for controlling a vapour compression system with an ejector
US20100180612A1 (en) Refrigeration device
WO2016148079A1 (ja) ヒートポンプ
JP2005069566A (ja) 冷凍装置
KR102165351B1 (ko) 히트펌프 시스템
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2007225141A (ja) ガスヒートポンプ式空気調和装置及びガスヒートポンプ式空気調和装置の起動方法
JP2007107859A (ja) ガスヒートポンプ式空気調和装置
JP2007255864A (ja) 二段圧縮式冷凍装置
WO2016148080A1 (ja) ヒートポンプ
JP6253370B2 (ja) 冷凍サイクル装置
KR102017405B1 (ko) 히트 펌프
JP6293646B2 (ja) ヒートポンプ
JP6398363B2 (ja) 冷凍装置
JP2006177598A (ja) 冷凍サイクル装置
JP2015132414A (ja) 冷凍装置
JP2006183877A (ja) 空気調和装置および空気調和装置の制御方法
JP2011149565A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764910

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20177025642

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016764910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15559019

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE