WO2016147816A1 - 缶胴用アルミニウム合金板 - Google Patents
缶胴用アルミニウム合金板 Download PDFInfo
- Publication number
- WO2016147816A1 WO2016147816A1 PCT/JP2016/055291 JP2016055291W WO2016147816A1 WO 2016147816 A1 WO2016147816 A1 WO 2016147816A1 JP 2016055291 W JP2016055291 W JP 2016055291W WO 2016147816 A1 WO2016147816 A1 WO 2016147816A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- mass
- baking
- alloy plate
- dislocation density
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
Definitions
- the present invention relates to an aluminum alloy plate for can copper used for forming a can body of a two-piece can by performing DI (draw & ironing) forming.
- the aluminum can barrel material for beverages has been made thinner, and along with that, the wall of the can wall after DI molding has also been reduced (conventional can wall thickness: Thinned to about 95 to 100 ⁇ m compared to about 105 to 110 ⁇ m).
- Conventional can wall thickness Thinned to about 95 to 100 ⁇ m compared to about 105 to 110 ⁇ m.
- Patent Document 1 discloses a can body aluminum alloy plate that contains a predetermined amount of Si, Fe, Cu, Mn, and Mg, and the number density and area ratio of intermetallic compounds of a specific size on the plate surface are regulated within a predetermined range. Is described. According to the description of Patent Document 1, the can body obtained by DI molding of this aluminum alloy plate is excellent in pinhole resistance (puncture resistance). However, in the case of this aluminum alloy plate, the plate thickness of the can wall after DI molding is set to be thicker than 110 ⁇ m, which does not correspond to the aforementioned trend of thinning.
- Patent Document 2 aluminum for can bodies containing a predetermined amount of Si, Fe, Cu, Mn, and Mg, and the number density and area ratio of intermetallic compounds of a specific size on the plate surface and cross section are regulated within a predetermined range.
- An alloy plate is described.
- the can body obtained by DI molding of this aluminum alloy plate has a resistance to the wall even if the thickness of the can wall is as thin as about 90 to 95 ⁇ m (see the example of Patent Document 2).
- Excellent piercing property in the Example of Patent Document 2, a film is laminated on an aluminum alloy plate and DI molded, and a can body that is DI molded without film lamination is not considered.
- Most of aluminum cans currently on the market are formed by DI without film laminating. In that sense, it can be said that the aluminum alloy plate described in the example of Patent Document 2 lacks versatility.
- Patent Document 3 the average density of a specific atomic aggregate (atom cluster) containing a predetermined amount of Si, Fe, Cu, Mn, and Mg and containing a total of 5 or more Mg and / or Cu atoms is within a predetermined range.
- the aluminum alloy plate for can bodies regulated in the above is described. According to the description in Patent Document 3, the can body obtained by DI molding of this aluminum alloy plate is sub-grained in the can body structure after being subjected to paint baking after being made into an aluminum can body. This promotes the puncture resistance of the can body.
- Japanese Unexamined Patent Publication No. 2007-197815 Japanese Unexamined Patent Publication No. 2009-270192 Japanese Unexamined Patent Publication No. 2014-125679
- Patent Document 3 describes that excellent puncture resistance can be obtained in a DI can having a thin can wall.
- the aluminum alloy plate for can copper of DI does not crack (tear off) during DI processing, and wrinkles on the bottom of the DI can (from the bottom of the can bottom to the side wall) Characteristics such as no wrinkles occurring in the range are required.
- the can bottom wrinkles are likely to occur, and the DI can in which the can bottom wrinkles is a poor appearance product.
- the present invention provides excellent puncture resistance even with a DI can having a thin can wall, and excellent puncture resistance can be obtained even with a DI can that has been molded without film lamination.
- An object is to provide an aluminum alloy plate for a can body.
- the work hardening ability of the can wall after DI molding is improved, and the puncture resistance after DI molding is improved. I was able to. At the same time, it was possible to prevent the occurrence of wrinkles at the bottom after DI molding.
- the aluminum alloy plate for can bodies according to the present invention has Si: 0.1 to 0.5% by mass, Fe: 0.3 to 0.6% by mass, Cu: 0.1 to 0.35% by mass, Mn: It contains 0.5 to 1.2% by mass, Mg: 0.7 to 2.5% by mass, and the balance consists of Al and inevitable impurities.
- This aluminum alloy plate has a yield strength of 240 to 295 MPa after baking at 200 ° C. for 20 minutes, and measured by X-ray diffraction with the yield strength (unit: MPa) after baking of the aluminum alloy plate as the horizontal axis.
- yield strength 240 to 295 MPa after baking at 200 ° C. for 20 minutes, and measured by X-ray diffraction with the yield strength (unit: MPa) after baking of the aluminum alloy plate as the horizontal axis.
- This aluminum alloy plate contains one or more of Cr: 0.10% by mass or less, Zn: 0.40% by mass or less, and Ti: 0.10% by mass or less as necessary.
- the aluminum alloy plate for a can body according to the present invention is excellent in the can wall after DI molding and baking even when the can wall after DI molding is thinned without film lamination because the dislocation density is regulated within a predetermined range. Has puncture resistance. Thereby, when a protrusion contacts the can wall after filling, it is possible to prevent the can wall from being broken after filling to prevent the contents from leaking. Moreover, the aluminum alloy plate for can bodies which concerns on this invention can prevent that a wrinkle arises in the can bottom after DI shaping
- the aluminum alloy plate for can bodies according to the present invention can be subjected to DI molding after film lamination.
- FIG. 1 shows the relationship between the yield strength after baking of an aluminum alloy plate of an example and the dislocation density in the central portion of the plate thickness measured by X-ray diffraction.
- the aluminum alloy plate according to the present invention has points A to E. It is included in the range of the polygon surrounded by the line segment connecting.
- Fe 0.3-0.6% by mass If the Fe content is less than 0.3% by mass, unrecrystallized remains in the hot coil, so that the 45 ° ear becomes high at the time of DI molding, and the ear cut and the tear-off due to this tend to occur during ironing. On the other hand, if the Fe content exceeds 0.6% by mass, the amount of Al—Fe—Mn intermetallic compound increases, and tear-off is likely to occur during ironing. In addition, due to the increase in Al-Fe-Mn intermetallic compounds, when force is applied to the can wall and the can wall is deformed, void formation and crack propagation around the compound are promoted, and puncture resistance is reduced. To do.
- Cu 0.1 to 0.35 mass% If the Cu content is less than 0.1% by mass, the strength is insufficient, and the pressure resistance of the can is insufficient. On the other hand, if the Cu content exceeds 0.35% by mass, the strength becomes excessive, and tear-off is likely to occur during ironing.
- Mn 0.5 to 1.2% by mass
- the Mg content is less than 0.7% by mass, the strength is insufficient and the pressure resistance of the can is insufficient. Moreover, work hardening ability (uniform deformation ability) is insufficient, and when the force is applied to the can wall and the can wall is deformed, constriction is likely to occur, and the puncture resistance is lowered. On the other hand, if the Mg content exceeds 2.5% by mass, the strength becomes excessive and tear-off is likely to occur during ironing.
- the lower limit of the Mg content is preferably 1.0% by mass, and the upper limit is preferably 1.8% by mass.
- Cr 0.10 mass% or less
- Zn 0.40 mass% or less If the content of Zn is 0.40% by mass or less, it does not affect the material characteristics of the aluminum alloy plate and the can characteristics after DI molding. Zn is an unavoidable impurity, but in order to reduce costs, Zn can be positively added within the above range, for example, by increasing the mixing ratio of scrap (raw material clad scrap, etc.) into the raw material. .
- Ti 0.10% by mass or less
- Ti is added as necessary for the purpose of refining the ingot crystal grains. If the ingot structure is refined during casting, castability is improved and high-speed casting becomes possible. The effect is acquired by addition of 0.01 mass% or more.
- Ti is added in excess of 0.10% by mass, the filter is clogged quickly, and it becomes difficult for the molten metal to pass through the filter during casting, and eventually casting must be stopped. Therefore, the Ti content in the aluminum alloy is limited to the above range.
- an ingot refining agent Al-Ti-B having a mass ratio of Ti and B of 5: 1 is added to the melt before casting in the form of waffles or rods. B corresponding to the content ratio is inevitably added.
- Dislocation density at the center of the plate thickness Dislocation density at the center of the plate thickness
- Dislocation is a linear or streak defect introduced into an aluminum alloy plate for a can body by cold rolling. These dislocations can be identified as linear or streak by a transmission electron microscope with a magnification of 50,000 times. If the dislocation density is large, forest dislocations are formed due to dislocations, etc., which hinders the movement of other dislocations and increases the strength.
- FIG. 4 shows the relationship between the dislocation density at the center of the thickness of the aluminum alloy sheet according to the present invention and the yield strength after baking at 200 ° C. for 20 minutes.
- FIG. 4 shows the dislocation density (unit: ⁇ 10 14 / m 2 ) at the center of the thickness of the aluminum alloy plate measured by X-ray diffraction with the proof stress (unit: MPa) after baking of the aluminum alloy plate as the horizontal axis. Is a semilogarithmic graph with the vertical axis representing the natural logarithmic scale.
- the dislocation density and the yield strength value after baking of the aluminum alloy sheet according to the present invention are within a polygonal range surrounded by line segments connecting points A, B, C, D and E shown in FIG. (Including on the line segment).
- the coordinates (X, Y) of each point when the horizontal axis is the X axis and the vertical axis is the Y axis are (240, 1.0 ⁇ 10 14 ) for point A and (240, 8.. 0 ⁇ 10 14 ), the point C is (276, 8.0 ⁇ 10 14 ), the point D is (295, 14.2 ⁇ 10 14 ), and the point E is (295, 1.0 ⁇ 10 14 ).
- the dislocation density at the center of the thickness of the aluminum alloy plate is less than 1.0 ⁇ 10 14 / m 2 , work hardening during ironing increases and tear-off is likely to occur.
- the dislocation density exceeds 8.0 ⁇ 10 14 / m 2 the work hardening ability (uniform deformation ability) of the can wall after DI molding and baking is insufficient, and force is applied to the can wall, so When deformed, constriction is likely to occur, puncture resistance is reduced, and can bottom wrinkles are likely to occur.
- the proof stress of the aluminum alloy sheet after baking is in the range of 276 to 295 MPa, the dislocation density may exceed 8.0 ⁇ 10 14 / m 2 .
- the can wall can be provided with an appropriate work hardening ability, the puncture resistance is not lowered, and the occurrence of wrinkles on the bottom of the can can be prevented.
- the dislocation density at the center of the thickness of the aluminum alloy sheet and the value of the yield strength after baking within the above range, tear-off during ironing is prevented, and the pressure resistance of the can after DI forming and baking is ensured.
- excellent work hardening ability can be imparted to the can wall, and excellent stab resistance and can bottom wrinkle prevention effects can be obtained.
- the aluminum alloy sheet according to the present invention can be produced by each process of casting, homogenizing heat treatment, hot rolling, and cold rolling. Intermediate annealing after hot rolling (also called rough annealing), intermediate annealing during cold rolling, and finish annealing after cold rolling are not performed.
- the method for producing an aluminum alloy sheet according to the present invention preferably comprises performing cold rolling with a tandem rolling mill to increase the winding temperature, and to set a cooling rate in a predetermined temperature range in the cooling process after winding. Control low. Thereby, recovery of the material during cold rolling and after winding can be promoted, and the dislocation density of the aluminum alloy plate (product plate) can be controlled within the above range.
- an aluminum alloy is cast by a known semi-continuous casting method such as a DC casting method.
- homogenization heat processing is performed based on a conventional method.
- a two-stage homogenization heat treatment or a two-time homogenization heat treatment may be employed.
- the two-stage homogenization heat treatment here refers to holding the ingot at a high temperature for a predetermined time (first stage homogenization heat treatment), and then cooling to a temperature exceeding 200 ° C. without cooling to room temperature. This means holding for a predetermined time (second-stage homogenization heat treatment).
- the double homogenization heat treatment means that the ingot is kept at a high temperature for a predetermined time (first homogenization heat treatment), then cooled to a temperature of 200 ° C. or less including room temperature, and reheated to a predetermined homogenization. This means holding at the treatment temperature for a predetermined time (second homogenization heat treatment).
- second homogenization heat treatment After the homogenization heat treatment, the hot rolling is continued without cooling, and the hot rolling is preferably finished at 300 ° C. or higher.
- the produced hot rolled material has a recrystallized structure.
- the subsequent cold rolling is performed by one pass by a tandem rolling mill or, in the case of rolling by a single rolling mill, by a so-called continuous path in which the next pass is performed immediately after one pass.
- a tandem rolling mill By performing cold rolling in one pass of a tandem rolling mill or a continuous pass of a single rolling mill, heat generation during cold rolling increases, and dynamic recovery of the material and recovery after winding are promoted.
- rolling by a tandem rolling mill is preferable from the viewpoint of production efficiency.
- the total rolling rate of cold rolling is 80 to 90%. This rolling rate is achieved by one pass through a tandem rolling mill or multiple passes through a single rolling mill. If the total rolling ratio in cold rolling is less than 80%, the strength of the aluminum alloy sheet is insufficient, and the pressure resistance of the can after DI molding and baking is insufficient.
- the coiling temperature after cold rolling is preferably 150 ° C. or higher.
- the coiling temperature By raising the coiling temperature, the recovery of the material is promoted, the dislocation density of the aluminum alloy plate (product plate) falls within the above range, and the work hardening ability (uniform deformation ability) of the can wall after DI molding and baking. ), The occurrence of wrinkles on the bottom of the can is prevented, and the puncture resistance is improved.
- the coiling temperature exceeds 180 ° C., excessive recovery occurs, and the dislocation density further decreases from the above range. As a result, work hardening during ironing increases and tear-off tends to occur.
- the softening of the aluminum alloy plate due to processing heat generation is increased, and the plate is likely to be cut during rolling.
- the coiling temperature after cold rolling is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, and the upper limit is 180 ° C.
- the average cooling rate of the coil is set to 15 ° C./hr or lower.
- the cooling rate is as low as 15 ° C./hr or less, the recovery of the material is promoted, the dislocation density of the aluminum alloy plate (product plate) falls within the above range, and the work hardening of the can wall after DI forming and baking is performed. Performance (uniform deformability) is improved, generation of wrinkles at the bottom of the can is prevented, and puncture resistance is improved.
- Tables 1 and 2 show the types of rolling mills used in cold rolling, the total rolling rate of cold rolling, the winding temperature after cold rolling, and the average cooling rate of the coil after winding (from the winding temperature to 120 ° C). ), The presence / absence and conditions of finish annealing after cold rolling were described. In the case of cold rolling with a tandem rolling mill, the total rolling ratios listed in Tables 1 and 2 were achieved with one pass.
- Example No. manufactured 1 to 22 and Comparative Example No. The aluminum alloy plates 1 to 11 and 13 to 19 were used as test materials, and the post-baking proof stress and the dislocation density were measured as follows. The results are shown in Table 3. (Yield strength after baking aluminum alloy sheet) After the test material (aluminum alloy plate) was baked at 200 ° C. for 20 minutes, a JIS No. 5 test piece was taken in the rolling parallel direction and subjected to a tensile test according to the provisions of JIS Z2241, 0.2% Yield strength was measured. When the 0.2% proof stress was in the range of 240 to 295 MPa, it was evaluated as acceptable.
- the transition density was measured by X-ray diffraction.
- regions regions (cell walls and shear bands) in which linear and streak dislocations are dense are difficult to discriminate with a transmission electron microscope, and can cause measurement errors when determining the dislocation density ⁇ .
- the dislocation density ⁇ is calculated from the half-value width of the diffraction peak from each surface in the texture. There is.
- lattice distortion occurs mainly in the dislocations.
- small tilt grain boundaries, cell structures, and the like develop due to the dislocation arrangement.
- the X-ray diffraction test was performed using an X-ray diffractometer manufactured by Rigaku Corporation, using Cu as a target, a tube voltage of 45 kV, a tube current of 200 mA, and a scanning speed of 1 ° / min.
- the sampling width was 002 ° and the measurement range (2 ⁇ ) was 30 ° to 145 °.
- the lattice strain (crystal strain) ⁇ was obtained from the half-value width of the diffraction peak of each surface by the Williamson-Hall method, and the dislocation density ⁇ was calculated by the following equation.
- ⁇ 16.1 ⁇ ⁇ 2 / b 2
- the X-ray diffraction test was performed at any five locations (all in the center of the plate thickness) per specimen, and the average dislocation density was calculated from the obtained results.
- Example No. 1 to 22 and Comparative Example No. DI cans were produced using aluminum alloy plates 1 to 11 and 13 to 19.
- a blank having a diameter of 140 mm was first punched from an aluminum alloy plate, and the blank was drawn to produce a cup having a diameter of 90 mm.
- the obtained cup was subjected to DI molding (redrawing + ironing) with a general-purpose aluminum can body molding machine to produce a DI can.
- the prepared DI can has an outer diameter of 66.3 mm, a thickness of the thinnest wall portion of the can wall (height of 60 mm from the bottom of the can) is 90 ⁇ m, and a processing rate of the same portion is 66.7% (initial thickness: 270 ⁇ m). )Met.
- the pressure tester is arranged on a base plate 2 installed on a machine base 1, a cylindrical holder 3 installed on the base plate 2, and both sides of the holder 3.
- a pair of fixed members 4, 4 is provided.
- An O-ring 5 is installed at an intermediate position in the height direction of the holder 3.
- a rubber tube 6 is installed inside the holder 3. The rubber tube 6 extends downward through the base plate 2, is connected to a water conduit, and communicates with a water pressure pump through a water pressure gauge and a switching valve. (Neither shown).
- a hole 7 is formed in the base plate 2, and the hole 7 is connected to a vent pipe and communicates with a vacuum pump via a switching valve or the like (both not shown).
- the fixing members 4 and 4 are advanced and retracted by hydraulic cylinders (not shown).
- the pressure resistance test is performed as follows. (1) As shown in FIGS. 1A to 1C, after the can 8 is fitted into the holder 3 with the can bottom facing up, the fixing members 4 and 4 are advanced by a predetermined stroke. When the fixing members 4 and 4 reach a predetermined position (see FIG. 2A), the tips of the fixing members 4 and 4 hold the can wall of the can 8 from both sides at a position slightly below the O-ring 5 to hold the can 8 in the holder 3. Secure to. As a result, the inner wall of the can 8 is closely attached to the periphery of the O-ring 5, and the inside of the holder 3 (inside the can 8) is sealed except for the rubber tube 6 and the hole 7. (2) The vacuum pump is operated, the inside of the holder 3 (inside the can 8) is deaerated to 9.8 kPa (0.1 kgf / cm 2 ) or less through the hole 7, and then the vent line is closed.
- the water pressure pump is operated to supply water from the rubber tube 6 into the holder 3 (inside the can 8).
- the water pressure in the holder 3 (in the can 8) (measured by the water pressure gauge) rises almost in proportion to the elapsed time from the start of supply, and drops at the moment when buckling of the can bottom occurs.
- the maximum internal pressure when the can bottom buckling occurred was defined as the pressure resistance of the can.
- the state when the can bottom buckling occurs is shown in FIG. 2B.
- the opening of the prepared DI can was trimmed to a height of 100 mm and baked at 200 ° C. for 20 minutes, and then the opening of the can 11 was fixed to the holder 12 and sealed as shown in FIG. Subsequently, air is supplied into the can from the ventilation pipe 13, an internal pressure of 2 kgf / cm 2 is applied, and a steel piercing needle 14 whose tip is a hemispherical surface having a radius of 0.5 mm is perpendicular to the can wall. At a speed of 50 mm / min. Pierced with.
- the part where the piercing needle 14 was pierced was a part where the rolling direction of the aluminum alloy plate coincided with the can axis direction and the height L from the can bottom was 60 mm.
- the load until the piercing needle 14 penetrates the can wall was continuously measured, and the maximum load obtained was defined as the piercing strength.
- a piercing strength of 35N or more was accepted.
- Arbitrary 30 cans were selected from the DI cans produced by the can body molding machine, and the range from the ground contact portion to the side wall of the bottom portion of each can was visually observed. When no can bottom wrinkle has occurred in all 30 selected cans, it is evaluated as a pass ( ⁇ ), and even at least one of the selected 30 cans has wrinkles at the bottom. Was evaluated as rejected (x). In the can body forming machine, the redrawing was performed under the conditions of a wrinkle-reducing air pressure of 50 psi and a redrawing die R of 2.0 mm. Further, the diameter of the ground contact portion of the bottom of the manufactured DI can was ⁇ 48 mm.
- Example No. 1 to 22 have a thin can wall thickness of 90 ⁇ m and are not laminated in DI molding, but have excellent puncture resistance and can prevent wrinkle formation on the bottom of the can.
- Example No. Cans DI molded using 1 to 22 aluminum alloy plates can prevent the leakage of contents by preventing the can wall from breaking when the protrusion touches the can wall after filling. .
- any one of the composition of the aluminum alloy, the yield strength after baking and the dislocation density is outside the specified range of the present invention.
- the aluminum alloy plates 1 to 11 and 13 to 19 do not satisfy any of the criteria of the present invention in terms of ironing processability, can pressure resistance, piercing property and can bottom wrinkle evaluation.
- Comparative Example No. No. 1 is inferior in ironing processability due to insufficient Si content.
- Comparative Example No. No. 2 has an excessive Si content, so that ironing workability is inferior and puncture resistance is also inferior.
- Comparative Example No. No. 3 is inferior in ironing workability due to insufficient Fe content.
- Comparative Example No. No. 4 has an excessive Fe content, so that ironing workability is inferior and puncture resistance is also inferior.
- Comparative Example No. Nos. 5, 7, and 9 have insufficient Cu, Mn, and Mg contents, respectively, so that the yield strength after baking is insufficient and the pressure resistance of the can is inferior. Comparative Example No. No. 9 also has poor puncture resistance. Comparative Example No. Nos. 6 and 10 have excessive Cu and Mg contents, respectively, so that the proof stress of the aluminum alloy plate after baking is excessive and the ironing workability is inferior. Comparative Example No. Nos. 8 and 11 are inferior in ironing workability because of excessive Mn and Cr contents. Comparative Example No. No. 8 has poor puncture resistance. No. No. 12 could not be cast as described above because the Ti content was excessive.
- Comparative Example No. 13 since the total rolling rate of cold rolling was insufficient, the yield strength after baking was insufficient, and the pressure strength was inferior. Comparative Example No. In No. 14, the total rolling rate is excessive, so the proof stress of the aluminum alloy sheet is excessive and the ironing workability is inferior. Comparative Example No. No. 15 had a low winding temperature, insufficient dynamic recovery and recovery after winding, high dislocation density of the aluminum alloy plate, poor piercing resistance of the can, and generation of wrinkles at the bottom of the can. Comparative Example No. No. 16 has a high winding temperature, a dislocation density of the aluminum alloy plate is lowered, and ironing workability is inferior. In Comparative Example 17, the cooling rate in the temperature range from the coiling temperature to 120 ° C. is large, the recovery after winding is insufficient, the dislocation density of the aluminum alloy plate is high, the piercing resistance of the can is inferior, and the bottom of the can Wrinkles occurred.
- Comparative Example No. No. 18 since cold rolling was carried out with a single rolling mill and time was taken between passes, the winding temperature was low, the dynamic recovery and recovery after winding were insufficient, and the dislocation density of the aluminum alloy plate was low High, ironing processability and piercing resistance of the can were inferior and can bottom wrinkles were generated. Comparative Example No. No. 19, cold rolling was carried out with a single rolling mill and time was taken between passes, so the winding temperature was low, the dynamic recovery and recovery after winding were insufficient, and the effect of finish annealing was small, The dislocation density was high and the can's puncture resistance was poor, and wrinkles of the bottom of the can occurred.
- the aluminum alloy plate for can bodies of the present invention has excellent piercing resistance and prevents wrinkles from forming on the bottom of the can even in DI cans with thinned can walls and DI cans formed without film lamination. In particular, it is useful for a two-piece can body.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
Abstract
Si、Fe、Cu、Mn及びMgをそれぞれ特定量含有し、残部がAl及び不可避的不純物からなるアルミニウム合金板であり、200℃×20分のベーキング後の耐力が240~295MPa、板厚中心部の転位密度が、前記アルミニウム合金板のベーキング後の耐力(単位:MPa)をX軸とし、X線回折により測定された板厚中央部の転位密度(単位:×1014/m2)をY軸とするグラフにおいて、下記座標A、B、C、D、Eの各点を結ぶ線分で囲まれる多角形の範囲内にあることを特徴とする缶胴用アルミニウム合金板。 座標A(240、1.0×1014) 座標B(240、8.0×1014) 座標C(276、8.0×1014) 座標D(295、14.2×1014) 座標E(295、1.0×1014)
Description
本発明は、DI(draw&ironing)成形を行って2ピース缶の缶胴を成形するために用いられる缶銅用アルミニウム合金板に関する。
環境負荷低減及びコストダウンを目的として、飲料用アルミニウム缶胴用素材の薄肉化が進展しており、それに伴いDI成形後の缶壁の薄肉化も進んでいる(従来の缶壁の板厚:105~110μm程度に対し、95~100μm程度へと薄肉化)。
缶壁の板厚が薄くなると、缶壁の外面に突起物が接触して押し込まれた際に、突起物の先端が缶壁を貫通し、穴(ピンホール)が開いて内容物が漏れる不具合が生じやすくなる。内容物の漏洩は重大クレームであるため、薄肉化された缶壁においても、突起物が押し込まれた際に穴の開きにくい(耐突き刺し性が優れる)アルミニウム缶胴及びアルミニウム缶胴用素材が求められている。
缶壁の板厚が薄くなると、缶壁の外面に突起物が接触して押し込まれた際に、突起物の先端が缶壁を貫通し、穴(ピンホール)が開いて内容物が漏れる不具合が生じやすくなる。内容物の漏洩は重大クレームであるため、薄肉化された缶壁においても、突起物が押し込まれた際に穴の開きにくい(耐突き刺し性が優れる)アルミニウム缶胴及びアルミニウム缶胴用素材が求められている。
特許文献1には、Si,Fe,Cu,Mn,Mgを所定量含有し、板表面における特定サイズの金属間化合物の個数密度及び面積率が所定範囲内に規制された缶胴用アルミニウム合金板が記載されている。特許文献1の記載によれば、このアルミニウム合金板をDI成形して得られた缶胴は、耐ピンホール性(耐突き刺し性)が優れる。しかし、このアルミニウム合金板の場合、DI成形後の缶壁の板厚が110μm超と厚く設定され、前述の薄肉化動向に対応していない。
特許文献2には、Si,Fe,Cu,Mn,Mgを所定量含有し、板表面及び断面における特定サイズの金属間化合物の個数密度と面積率が所定範囲内に規制された缶胴用アルミニウム合金板が記載されている。特許文献2の記載によれば、このアルミニウム合金板をDI成形して得られた缶胴は、缶壁の板厚が90~95μm程度(特許文献2の実施例参照)と薄くても、耐突き刺し性が優れる。しかし、特許文献2の実施例では、アルミニウム合金板にフィルムラミネートしてDI成形しており、フィルムラミネートしないでDI成形するタイプの缶胴については考慮されていない。現在市場に流通しているアルミニウム缶の大半はフィルムラミネートしないでDI成形したものであり、その意味で特許文献2の実施例に記載されたアルミニウム合金板は、汎用性に欠けるといえる。
特許文献3には、Si,Fe,Cu,Mn,Mgを所定量含有し、Mg及び/又はCu原子を合計で5個以上含む特定の原子集合体(原子クラスタ)の平均密度が所定範囲内に規制された缶胴用アルミニウム合金板が記載されている。特許文献3の記載によれば、このアルミニウム合金板をDI成形して得られた缶胴は、アルミニウム缶胴に製缶された後に塗装焼付け処理を施した後の缶胴組織のサブグレイン化が促進され、缶胴の耐突き刺し性が向上する。
特許文献3には、缶壁を薄肉化したDI缶において優れた耐突き刺し性が得られることが記載されている。一方、DI缶の缶銅用アルミニウム合金板には、上記耐突き刺し性のほか、DI加工時に割れ(ティアオフ)が発生せず、DI缶の缶底にしわ(缶底の接地部から側壁にかけての範囲に生じるしわ)が発生しないなどの特性が求められる。しかし、素材を薄肉化したDI缶では前記缶底しわが発生しやすく、前記缶底しわが発生したDI缶は、外観不良品となる。
本発明は、缶壁を薄肉化したDI缶でも優れた耐突き刺し性が得られ、かつフィルムラミネートしないでDI成形したDI缶でも優れた耐突き刺し性が得られ、同時に缶底しわの発生がない缶胴用アルミニウム合金板を提供することを目的とする。
本発明は、缶壁を薄肉化したDI缶でも優れた耐突き刺し性が得られ、かつフィルムラミネートしないでDI成形したDI缶でも優れた耐突き刺し性が得られ、同時に缶底しわの発生がない缶胴用アルミニウム合金板を提供することを目的とする。
DI成形後の缶壁の加工硬化能(=均一変形能)を向上させると、缶壁の外面より突起物が押し込まれて缶壁が変形した際、缶壁の板厚減少(くびれ)が生じにくくなり、破断に至るまでの荷重(突き刺し強度)が向上する。本発明では、アルミニウム合金板の転位密度とベーキング後の耐力の関係を所定範囲に規制することにより、DI成形後の缶壁の加工硬化能を向上させ、DI成形後の耐突き刺し性を向上させることができた。同時に、これによりDI成形後の缶底しわの発生を防止することができた。
本発明に係る缶胴用アルミニウム合金板は、Si:0.1~0.5質量%、Fe:0.3 ~0.6質量%、Cu:0.1~0.35質量%、Mn:0.5~1.2質量%、Mg:0.7~2.5質量%を含有し、残部がAl及び不可避的不純物からなる。このアルミニウム合金板は、200℃×20分のベーキングを行った後の耐力が240~295MPaであり、前記アルミニウム合金板のベーキング後の耐力(単位:MPa)を横軸とし、X線回折により測定された板厚中央部の転位密度(単位:×1014/m2)を縦軸として示す図4において、前記ベーキング後の耐力とX線回折により測定された板厚中心部の転位密度が、点A(240、1.0×1014)、点B(240、8.0×1014)、点C(276、8.0×1014)、点D(295、14.2×1014)、点E(295、1.0×1014)の各点を結ぶ線分で囲まれる多角形の範囲内(線分上を含む)にある。このアルミニウム合金板は、必要に応じて、Cr:0.10質量%以下、Zn:0.40質量%以下、Ti:0.10質量%以下のうち1種以上を含有する。
本発明に係る缶胴用アルミニウム合金板は、Si:0.1~0.5質量%、Fe:0.3 ~0.6質量%、Cu:0.1~0.35質量%、Mn:0.5~1.2質量%、Mg:0.7~2.5質量%を含有し、残部がAl及び不可避的不純物からなる。このアルミニウム合金板は、200℃×20分のベーキングを行った後の耐力が240~295MPaであり、前記アルミニウム合金板のベーキング後の耐力(単位:MPa)を横軸とし、X線回折により測定された板厚中央部の転位密度(単位:×1014/m2)を縦軸として示す図4において、前記ベーキング後の耐力とX線回折により測定された板厚中心部の転位密度が、点A(240、1.0×1014)、点B(240、8.0×1014)、点C(276、8.0×1014)、点D(295、14.2×1014)、点E(295、1.0×1014)の各点を結ぶ線分で囲まれる多角形の範囲内(線分上を含む)にある。このアルミニウム合金板は、必要に応じて、Cr:0.10質量%以下、Zn:0.40質量%以下、Ti:0.10質量%以下のうち1種以上を含有する。
本発明に係る缶胴用アルミニウム合金板は、転位密度を所定範囲に規制したことで、フィルムラミネートしないでDI成形後の缶壁を薄肉化した場合でも、DI成形及びベーキング後の缶壁が優れた耐突き刺し性を有する。これにより、充填後の缶壁に突起物が接触したときなどに、充填後の缶壁の破断を防止して、内容物の漏れが生じるのを防止できる。また、本発明に係る缶胴用アルミニウム合金板は、転位密度を所定範囲に規制したことで、DI成形後の缶底にしわが生じるのが防止できる。さらに優れたしごき加工性を有し、DI成形及びベーキング後の缶は高い耐圧強度を有する。
本発明に係る缶胴用アルミニウム合金板は、フィルムラミネートしたうえでDI成形に供することもできる。
本発明に係る缶胴用アルミニウム合金板は、フィルムラミネートしたうえでDI成形に供することもできる。
以下、本発明に係る缶胴用アルミニウム合金板及びその製造方法について、詳細に説明する。
<アルミニウム合金の成分組成>
(Si:0.1~0.5質量%)
Si含有量が0.1質量%未満では、DI成形時において0-180°耳が高くなり、しごき加工時の耳切れ及びこれに起因するティアオフが生じやすい。一方、Si含有量が0.5質量%を超えると、ホットコイルに未再結晶粒が残存するため、DI成形時において45°耳が高くなり、しごき加工時の耳切れ及びこれに起因するティアオフが生じやすい。また、Si含有量が0.5質量%を超えると、Al-Fe-Mn-Si系金属間化合物やMg-Si系金属間化合物が多く形成され、これにより缶壁に力が加わって同缶壁が変形した際、化合物周囲のボイド形成及び亀裂の伝播を助長し、耐突き刺し性が低下する。
<アルミニウム合金の成分組成>
(Si:0.1~0.5質量%)
Si含有量が0.1質量%未満では、DI成形時において0-180°耳が高くなり、しごき加工時の耳切れ及びこれに起因するティアオフが生じやすい。一方、Si含有量が0.5質量%を超えると、ホットコイルに未再結晶粒が残存するため、DI成形時において45°耳が高くなり、しごき加工時の耳切れ及びこれに起因するティアオフが生じやすい。また、Si含有量が0.5質量%を超えると、Al-Fe-Mn-Si系金属間化合物やMg-Si系金属間化合物が多く形成され、これにより缶壁に力が加わって同缶壁が変形した際、化合物周囲のボイド形成及び亀裂の伝播を助長し、耐突き刺し性が低下する。
(Fe:0.3~0.6質量%)
Fe含有量が0.3質量%未満では、ホットコイルに未再結晶が残存するため、DI成形時において45°耳が高くなり、しごき加工時に耳切れ及びこれに起因するティアオフが生じやすい。一方、Fe含有量が0.6質量%を超えると、Al-Fe-Mn系金属間化合物が多くなり、しごき加工時にティアオフが生じやすい。また、Al-Fe-Mn系金属間化合物が多くなることにより、缶壁に力が加わって同缶壁が変形した際、化合物周囲のボイド形成及び亀裂の伝播を助長し、耐突き刺し性が低下する。
Fe含有量が0.3質量%未満では、ホットコイルに未再結晶が残存するため、DI成形時において45°耳が高くなり、しごき加工時に耳切れ及びこれに起因するティアオフが生じやすい。一方、Fe含有量が0.6質量%を超えると、Al-Fe-Mn系金属間化合物が多くなり、しごき加工時にティアオフが生じやすい。また、Al-Fe-Mn系金属間化合物が多くなることにより、缶壁に力が加わって同缶壁が変形した際、化合物周囲のボイド形成及び亀裂の伝播を助長し、耐突き刺し性が低下する。
(Cu:0.1~0.35質量%)
Cu含有量が0.1質量%未満では強度が不足し、缶の耐圧強度が不足する。一方、Cu含有量が0.35質量%を超えると強度が過大となり、しごき加工時にティアオフが生じやすい。
Cu含有量が0.1質量%未満では強度が不足し、缶の耐圧強度が不足する。一方、Cu含有量が0.35質量%を超えると強度が過大となり、しごき加工時にティアオフが生じやすい。
(Mn:0.5~1.2質量%)
Mn含有量が0.5質量%未満では強度が不足し、缶の耐圧強度が不足する。一方、Mn含有量が1.2質量%を超えると、Al-Fe-Mn系金属間化合物が多くなり、しごき加工時にティアオフが生じやすい。また、Al-Fe-Mn系金属間化合物が多くなることにより、缶壁に力が加わって同缶壁が変形した際、化合物周囲のボイド形成及び亀裂の伝播を助長し、耐突き刺し性が低下する。
Mn含有量が0.5質量%未満では強度が不足し、缶の耐圧強度が不足する。一方、Mn含有量が1.2質量%を超えると、Al-Fe-Mn系金属間化合物が多くなり、しごき加工時にティアオフが生じやすい。また、Al-Fe-Mn系金属間化合物が多くなることにより、缶壁に力が加わって同缶壁が変形した際、化合物周囲のボイド形成及び亀裂の伝播を助長し、耐突き刺し性が低下する。
(Mg:0.7~2.5質量%)
Mg含有量が0.7質量%未満では強度が不足し、缶の耐圧強度が不足する。また、加工硬化能(均一変形能)が不足し、缶壁に力が加わって同缶壁が変形した際にくびれが生じやすくなり、耐突き刺し性が低下する。一方、Mg含有量が2.5質量%を超えると強度が過大となり、しごき加工時にティアオフが生じやすい。しごき加工性及び缶の耐圧強度、耐突き刺し性に関して特に優れた特性を得るため、Mg含有量の下限は好ましくは1.0質量%、上限は好ましくは1.8質量%である。
Mg含有量が0.7質量%未満では強度が不足し、缶の耐圧強度が不足する。また、加工硬化能(均一変形能)が不足し、缶壁に力が加わって同缶壁が変形した際にくびれが生じやすくなり、耐突き刺し性が低下する。一方、Mg含有量が2.5質量%を超えると強度が過大となり、しごき加工時にティアオフが生じやすい。しごき加工性及び缶の耐圧強度、耐突き刺し性に関して特に優れた特性を得るため、Mg含有量の下限は好ましくは1.0質量%、上限は好ましくは1.8質量%である。
(Cr:0.10質量%以下)
Crは0.10質量%以下の含有量であれば、アルミニウム合金板の材料特性、DI成形後の缶特性に影響を及ぼさない。Crは不可避不純物であるが、コストダウンを図るため、例えば原料中へのスクラップ(Crを多く含有するスクラップ等)配合率を高くするなど、上記範囲内でCrを積極添加することもできる。しかし、Cr含有量が0.10質量%を超えると、ホットコイルに未再結晶が残存し、DI成形において45°耳が高くなり、しごき加工時に耳切れ及びこれに起因するティアオフが生じやすい。従って、アルミニウム合金中のCr含有量は上記範囲内に制限される。
Crは0.10質量%以下の含有量であれば、アルミニウム合金板の材料特性、DI成形後の缶特性に影響を及ぼさない。Crは不可避不純物であるが、コストダウンを図るため、例えば原料中へのスクラップ(Crを多く含有するスクラップ等)配合率を高くするなど、上記範囲内でCrを積極添加することもできる。しかし、Cr含有量が0.10質量%を超えると、ホットコイルに未再結晶が残存し、DI成形において45°耳が高くなり、しごき加工時に耳切れ及びこれに起因するティアオフが生じやすい。従って、アルミニウム合金中のCr含有量は上記範囲内に制限される。
(Zn:0.40質量%以下)
Znは0.40質量%以下の含有量であれば、アルミニウム合金板の材料特性、DI成形後の缶特性に影響を及ぼさない。Znは不可避不純物であるが、コストダウンを図るため、例えば原料中へのスクラップ(熱交換器用クラッド材のスクラップ等)の配合率を高くするなど、上記範囲内でZnを積極添加することもできる。
Znは0.40質量%以下の含有量であれば、アルミニウム合金板の材料特性、DI成形後の缶特性に影響を及ぼさない。Znは不可避不純物であるが、コストダウンを図るため、例えば原料中へのスクラップ(熱交換器用クラッド材のスクラップ等)の配合率を高くするなど、上記範囲内でZnを積極添加することもできる。
(Ti:0.10質量%以下)
Tiは鋳塊結晶粒の微細化を目的に、必要に応じて添加される。鋳造時に鋳塊組織を微細化すると、鋳造性が向上して高速鋳造が可能となる。その効果は0.01質量%以上の添加により得られる。一方、Tiを0.10質量%を超えて添加すると、フィルターの目詰まりが早く、鋳造中に次第に溶湯がフィルターを通過しにくくなり、ついには鋳造を中止せざるを得なくなる。従って、アルミニウム合金中のTi含有量は上記範囲内に制限される。なお、Tiを添加する場合には、TiとBの質量比を5:1とした鋳塊微細化剤(Al-Ti-B)を、ワッフルあるいはロッドの形態で鋳造前の溶湯に添加するため、含有割合に応じたBも必然的に添加される。
Tiは鋳塊結晶粒の微細化を目的に、必要に応じて添加される。鋳造時に鋳塊組織を微細化すると、鋳造性が向上して高速鋳造が可能となる。その効果は0.01質量%以上の添加により得られる。一方、Tiを0.10質量%を超えて添加すると、フィルターの目詰まりが早く、鋳造中に次第に溶湯がフィルターを通過しにくくなり、ついには鋳造を中止せざるを得なくなる。従って、アルミニウム合金中のTi含有量は上記範囲内に制限される。なお、Tiを添加する場合には、TiとBの質量比を5:1とした鋳塊微細化剤(Al-Ti-B)を、ワッフルあるいはロッドの形態で鋳造前の溶湯に添加するため、含有割合に応じたBも必然的に添加される。
(その他の不可避不純物)
上記元素以外の不可避不純物(V、Na、Zr、Ni、Caなど)について、各々0.05質量%以下、かつ合計で0.15質量%以下含まれていても、アルミニウム合金板の材料特性、DI成形後の缶特性に影響を及ぼさない。なお、これらの元素についても、前記含有量を超えなければ、不可避的不純物として含有される場合だけではなく、意図的にこれらの元素を含むスクラップの配合率を高めるなど、積極的に添加される場合であっても、本発明の効果を妨げない。
上記元素以外の不可避不純物(V、Na、Zr、Ni、Caなど)について、各々0.05質量%以下、かつ合計で0.15質量%以下含まれていても、アルミニウム合金板の材料特性、DI成形後の缶特性に影響を及ぼさない。なお、これらの元素についても、前記含有量を超えなければ、不可避的不純物として含有される場合だけではなく、意図的にこれらの元素を含むスクラップの配合率を高めるなど、積極的に添加される場合であっても、本発明の効果を妨げない。
<アルミニウム合金板の特性>
(ベーキング後の耐力:240~295MPa)
200℃×20分のベーキング後のアルミニウム合金板の耐力が240MPa未満では強度が不足し、DI成形及びベーキング後の缶の耐圧強度が不足する。一方、200℃×20分のベーキング後のアルミニウム合金板の耐力が295MPaを超えると強度が過大であり、しごき加工時にティアオフが生じやすく、生産性を低下させる。なお、ベーキング後の強度はベーキング前の強度と連動しており、ベーキング後の強度が大きいアルミニウム合金板は、ベーキング前(しごき加工時)の強度も大きい。ベーキング後の耐力は、好ましくは250MPa以上とする。
(ベーキング後の耐力:240~295MPa)
200℃×20分のベーキング後のアルミニウム合金板の耐力が240MPa未満では強度が不足し、DI成形及びベーキング後の缶の耐圧強度が不足する。一方、200℃×20分のベーキング後のアルミニウム合金板の耐力が295MPaを超えると強度が過大であり、しごき加工時にティアオフが生じやすく、生産性を低下させる。なお、ベーキング後の強度はベーキング前の強度と連動しており、ベーキング後の強度が大きいアルミニウム合金板は、ベーキング前(しごき加工時)の強度も大きい。ベーキング後の耐力は、好ましくは250MPa以上とする。
(板厚中央部の転位密度)
転位とは、冷延によって缶胴用アルミニウム合金板に導入された線状あるいは筋状の欠陥である。これらの転位は5万倍の倍率の透過型電子顕微鏡により、線状あるいは筋状として識別できる。転位密度が大きいと、転位の切り合いなどにより、林立転位が形成され、別の転位の移動の障害となり、強度が増加する。
転位とは、冷延によって缶胴用アルミニウム合金板に導入された線状あるいは筋状の欠陥である。これらの転位は5万倍の倍率の透過型電子顕微鏡により、線状あるいは筋状として識別できる。転位密度が大きいと、転位の切り合いなどにより、林立転位が形成され、別の転位の移動の障害となり、強度が増加する。
本発明に係るアルミニウム合金板における板厚中心部の転位密度と200℃×20分のベーキング後の耐力の関係が、図4に示されている。図4は、アルミニウム合金板のベーキング後の耐力(単位:MPa)を横軸とし、X線回折により測定されるアルミニウム合金板の板厚中央部の転位密度(単位:×1014/m2)を縦軸とし、縦軸が自然対数目盛りとなっている片対数グラフである。本発明に係るアルミニウム合金板の転位密度とベーキング後の耐力の値は、図4に示す点A、点B、点C、点D、点Eを結ぶ線分で囲まれる多角形の範囲内(線分上を含む)に限定される。なお、横軸をX軸、縦軸をY軸としたときの各点の座標(X,Y)は、点Aが(240、1.0×1014)、点Bが(240、8.0×1014)、点Cが(276、8.0×1014)、点Dが(295、14.2×1014)、点Eが(295、1.0×1014)である。
アルミニウム合金板の板厚中央部の転位密度が1.0×1014/m2未満では、しごき加工時の加工硬化が大きくなり、ティアオフが生じやすい。一方、転位密度が8.0×1014/m2を超えると、DI成形及びベーキング後の缶壁の加工硬化能(均一変形能)が不足し、缶壁に力が加わって同缶壁が変形した際にくびれが生じやすくなり、耐突き刺し性が低下し、缶底しわも発生しやすくなる。ただし、ベーキング後のアルミニウム合金板の耐力が276~295MPaの範囲のとき、転位密度は8.0×1014/m2を超えてもよい。より具体的には、図4に示す点C(276、8.0×1014)と点D(295、14.2×1014)を結ぶ線分の下の領域では、DI成形及びベーキング後の缶壁に適正な加工硬化能を付与することができ、耐突き刺し性が低下せず、缶底しわの発生も防止できる。
アルミニウム合金板の板厚中央部の転位密度とベーキング後の耐力の値を上記範囲内に制御することで、しごき加工時のティアオフを防止し、DI成形及びベーキング後の缶の耐圧強度を確保し、かつ缶壁に良好な加工硬化能を付与して優れた耐突き刺し性及び缶底しわの防止効果を得ることができる。
アルミニウム合金板の板厚中央部の転位密度とベーキング後の耐力の値を上記範囲内に制御することで、しごき加工時のティアオフを防止し、DI成形及びベーキング後の缶の耐圧強度を確保し、かつ缶壁に良好な加工硬化能を付与して優れた耐突き刺し性及び缶底しわの防止効果を得ることができる。
<アルミニウム合金板の製造方法>
本発明に係るアルミニウム合金板は、鋳造、均質化熱処理、熱間圧延、及び冷間圧延の各工程で製造することができる。熱間圧延後の中間焼鈍(荒焼鈍ともいわれる)及び冷間圧延途中の中間焼鈍、並びに冷間圧延後の仕上げ焼鈍は行わない。そして、本発明に係るアルミニウム合金板の製造方法は、好ましくは、タンデム圧延機で冷間圧延を行い、巻き取り温度を高くし、かつ巻き取り後の冷却過程において所定の温度域の冷却速度を低く制御する。これにより冷間圧延中及び巻き取り後の材料の回復を促進し、アルミニウム合金板(製品板)の転位密度を前記範囲内に制御することができる。
本発明に係るアルミニウム合金板は、鋳造、均質化熱処理、熱間圧延、及び冷間圧延の各工程で製造することができる。熱間圧延後の中間焼鈍(荒焼鈍ともいわれる)及び冷間圧延途中の中間焼鈍、並びに冷間圧延後の仕上げ焼鈍は行わない。そして、本発明に係るアルミニウム合金板の製造方法は、好ましくは、タンデム圧延機で冷間圧延を行い、巻き取り温度を高くし、かつ巻き取り後の冷却過程において所定の温度域の冷却速度を低く制御する。これにより冷間圧延中及び巻き取り後の材料の回復を促進し、アルミニウム合金板(製品板)の転位密度を前記範囲内に制御することができる。
以下、各工程について説明する。
まず、DC鋳造法等の公知の半連続鋳造法によりアルミニウム合金を鋳造する。
次に、鋳塊表層の不均一な組織となる領域を面削にて除去した後、常法に基づき均質化熱処理を施す。このとき2段均質化熱処理又は2回均質化熱処理を採用してもよい。ここでいう2段均質化熱処理とは、鋳塊を高温に所定時間保持(1段目の均質化熱処理)した後、室温まで冷却せず、200℃を超える温度で冷却を止め、その温度に所定時間保持(2段目の均質化熱処理)することを意味する。また、2回均質化熱処理とは、鋳塊を高温に所定時間保持(1回目の均質化熱処理)した後、室温を含む200℃以下の温度にいったん冷却し、再加熱して所定の均質化処理温度に所定時間保持(2回目の均質化熱処理)することを意味する。
均質化熱処理後、冷却することなく続けて熱間圧延を行い、好ましくは300℃以上で熱間圧延を終了する。作製された熱間圧延材は再結晶組織となる。
まず、DC鋳造法等の公知の半連続鋳造法によりアルミニウム合金を鋳造する。
次に、鋳塊表層の不均一な組織となる領域を面削にて除去した後、常法に基づき均質化熱処理を施す。このとき2段均質化熱処理又は2回均質化熱処理を採用してもよい。ここでいう2段均質化熱処理とは、鋳塊を高温に所定時間保持(1段目の均質化熱処理)した後、室温まで冷却せず、200℃を超える温度で冷却を止め、その温度に所定時間保持(2段目の均質化熱処理)することを意味する。また、2回均質化熱処理とは、鋳塊を高温に所定時間保持(1回目の均質化熱処理)した後、室温を含む200℃以下の温度にいったん冷却し、再加熱して所定の均質化処理温度に所定時間保持(2回目の均質化熱処理)することを意味する。
均質化熱処理後、冷却することなく続けて熱間圧延を行い、好ましくは300℃以上で熱間圧延を終了する。作製された熱間圧延材は再結晶組織となる。
続く冷間圧延は、タンデム圧延機による1パス、又は、シングル圧延機で圧延を行う場合は、1パス後に直ちに次のパスを行ういわゆる連続パスにより行う。タンデム圧延機1パス又はシングル圧延機の連続パスで冷間圧延を行うことで、冷間圧延中の加工発熱が大きくなり、材料の動的回復及び巻き取り後の回復が促進される。なお、生産効率の観点からはタンデム圧延機による圧延が好ましい。
冷間圧延の総圧延率は80~90%とする。この圧延率はタンデム圧延機による1回の通板、又はシングル圧延機の複数のパスの通板で達成される。冷間圧延での総圧延率が80%未満ではアルミニウム合金板の強度が不足し、DI成形及びベーキング後の缶の耐圧強度が不足する。一方、総圧延率が90%を超えると、強度が過大となり、かつ45°耳の増加を招き、しごき加工時に耳切れ発生及びこれに起因するティアオフを生じやすい。加工発熱を大きくして巻き取り温度を高め、かつ本発明で特定する範囲の転位密度にするためには、径の小さいワークロールで高圧下をかける必要がある。具体的には、直径650mm以下のワークロールで冷間圧延を行う必要があり、好ましくは直径450mm以下のワークロールで冷間圧延を行う。
冷間圧延の総圧延率は80~90%とする。この圧延率はタンデム圧延機による1回の通板、又はシングル圧延機の複数のパスの通板で達成される。冷間圧延での総圧延率が80%未満ではアルミニウム合金板の強度が不足し、DI成形及びベーキング後の缶の耐圧強度が不足する。一方、総圧延率が90%を超えると、強度が過大となり、かつ45°耳の増加を招き、しごき加工時に耳切れ発生及びこれに起因するティアオフを生じやすい。加工発熱を大きくして巻き取り温度を高め、かつ本発明で特定する範囲の転位密度にするためには、径の小さいワークロールで高圧下をかける必要がある。具体的には、直径650mm以下のワークロールで冷間圧延を行う必要があり、好ましくは直径450mm以下のワークロールで冷間圧延を行う。
冷間圧延後の巻き取り温度は150℃以上とすることが好ましい。巻き取り温度を高くすることにより、材料の回復が促進され、アルミニウム合金板(製品板)の転位密度が上記範囲内に低下し、DI成形及びベーキング後の缶壁の加工硬化能(均一変形能)が向上し、缶底しわの発生が防止され、かつ耐突き刺し性が向上する。一方、巻き取り温度が180℃を超えると、過度の回復が生じて転位密度が上記範囲内よりさらに低下する。その結果、しごき加工時の加工硬化が大きくなり、ティアオフが生じやすい。また、加工発熱によるアルミニウム合金板の軟化が大きくなり、圧延中に板切れが生じやすくなる。その結果、アルミニウム合金板の生産性を大きく低下するので実用上好ましくない。従って、冷間圧延後の巻き取り温度は、好ましくは150℃以上、より好ましくは160℃以上とし、上限値は180℃とする。
また、巻き取り温度から120℃までの温度域(120℃以上の温度域)において、コイルの平均冷却速度を15℃/hr以下とする。この冷却速度が15℃/hr以下と小さいことにより、材料の回復が促進され、アルミニウム合金板(製品板)の転位密度が上記範囲内に低下し、DI成形及びベーキング後の缶壁の加工硬化能(均一変形能)が向上し、缶底しわの発生が防止され、かつ耐突き刺し性が向上する。120℃以上の温度域での冷却速度が15℃/hを超える場合は、材料の回復が不十分であり、転位密度が十分低下せず、DI成形及びベーキング後の缶壁の加工硬化能が不足し、缶底しわが発生しやすくなり、耐突き刺し性が低下する。
以下、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。
表1,2に示す組成のアルミニウム合金を溶解し、半連続鋳造法を用いて厚さ600mmの鋳塊を作製した(比較例のNo.12を除く)。この鋳塊の表層を面削し、均質化熱処理を施した後、続けて熱間粗圧延及び熱間仕上げ圧延を行った。その後中間焼鈍を施すことなく、熱間圧延材に対し冷間圧延(タンデム圧延機又はシングル圧延機)を行い、板厚0.27mmのアルミニウム合金板(コイル)とし、巻き取った。冷間圧延後の仕上げ焼鈍は行わなかった(比較例のNo.19を除く)。なお、比較例のNo.12は、フィルターの目詰まりのため、鋳造ができなかった。
表1,2に冷間圧延で用いた圧延機の種類、冷間圧延の総圧延率、冷間圧延後の巻き取り温度、巻き取り後のコイルの平均冷却速度(巻き取り温度から120℃まで)、冷間圧延後の仕上げ焼鈍の有無及び条件を記載した。タンデム圧延機で冷間圧延したケースでは、表1,2に記載した総圧延率は、1回の通板で達成した。
表1,2に示す組成のアルミニウム合金を溶解し、半連続鋳造法を用いて厚さ600mmの鋳塊を作製した(比較例のNo.12を除く)。この鋳塊の表層を面削し、均質化熱処理を施した後、続けて熱間粗圧延及び熱間仕上げ圧延を行った。その後中間焼鈍を施すことなく、熱間圧延材に対し冷間圧延(タンデム圧延機又はシングル圧延機)を行い、板厚0.27mmのアルミニウム合金板(コイル)とし、巻き取った。冷間圧延後の仕上げ焼鈍は行わなかった(比較例のNo.19を除く)。なお、比較例のNo.12は、フィルターの目詰まりのため、鋳造ができなかった。
表1,2に冷間圧延で用いた圧延機の種類、冷間圧延の総圧延率、冷間圧延後の巻き取り温度、巻き取り後のコイルの平均冷却速度(巻き取り温度から120℃まで)、冷間圧延後の仕上げ焼鈍の有無及び条件を記載した。タンデム圧延機で冷間圧延したケースでは、表1,2に記載した総圧延率は、1回の通板で達成した。
製造した実施例No.1~22及び比較例No.1~11,13~19のアルミニウム合金板を供試材とし、ベーキング後耐力及び転位密度を、以下に示す要領で測定した。その結果を表3に示す。
(アルミニウム合金板のベーキング後耐力)
供試材(アルミニウム合金板)に対し200℃×20分のベーキングを実施した後、圧延平行方向にJIS5号試験片を採取して、JISZ2241の規定に準じて引張試験を行い、0.2%耐力を測定した。この0.2%耐力が240~295MPaの範囲内のとき、合格と評価した。
(アルミニウム合金板のベーキング後耐力)
供試材(アルミニウム合金板)に対し200℃×20分のベーキングを実施した後、圧延平行方向にJIS5号試験片を採取して、JISZ2241の規定に準じて引張試験を行い、0.2%耐力を測定した。この0.2%耐力が240~295MPaの範囲内のとき、合格と評価した。
(アルミニウム合金板の転位密度)
本発明では、転移密度をX線回折により測定した。転位のうち、線状、筋状の転位が密集した領域(セル壁やせん断帯)は、透過型電子顕微鏡では判別しにくく、転位密度ρを求める際の測定誤差となりうる。これに対して、X線回折では、後述する通り、集合組織における各面からの回折ピークの半価幅から転位密度ρを算出するため、このような林立転位であっても誤差が少なくなる利点がある。
冷延などの塑性変形を加えて転位を導入した組織では、転位を中心に格子歪みが生じる。また、転位の配列により小傾角粒界、セル構造などが発達する。このような転位やそれに伴うドメイン構造をX線回折パターンからとらえると、回折指数に応じた特徴的な拡がり、形状が回折ピークに現れる。この回折ピークの形状(ラインプロファイル)を解析(ラインプロファイル解析)して、転位密度を求めることができる。
本発明では、転移密度をX線回折により測定した。転位のうち、線状、筋状の転位が密集した領域(セル壁やせん断帯)は、透過型電子顕微鏡では判別しにくく、転位密度ρを求める際の測定誤差となりうる。これに対して、X線回折では、後述する通り、集合組織における各面からの回折ピークの半価幅から転位密度ρを算出するため、このような林立転位であっても誤差が少なくなる利点がある。
冷延などの塑性変形を加えて転位を導入した組織では、転位を中心に格子歪みが生じる。また、転位の配列により小傾角粒界、セル構造などが発達する。このような転位やそれに伴うドメイン構造をX線回折パターンからとらえると、回折指数に応じた特徴的な拡がり、形状が回折ピークに現れる。この回折ピークの形状(ラインプロファイル)を解析(ラインプロファイル解析)して、転位密度を求めることができる。
先ず、供試材(アルミニウム合金板)の板厚中心部のX線回折により、同板厚中心部の集合組織における主要な方位の各面(各方位面)からの回折ピークの半価幅を求めた。転位密度ρが高いほど、これら各面の回折ピークの半価幅は大きくなる。
なお、X線回折試験は、株式会社リガク製のX線回折装置を用い、ターゲットにCuを用い、管電圧45kV、管電流200mA、走査速度1°/min.、サンプリング幅002°、測定範囲(2θ)30°~145°の条件で実施した。
なお、X線回折試験は、株式会社リガク製のX線回折装置を用い、ターゲットにCuを用い、管電圧45kV、管電流200mA、走査速度1°/min.、サンプリング幅002°、測定範囲(2θ)30°~145°の条件で実施した。
次に、これらの各面の回折ピークの半価幅から、Williamson-Hall法により、格子ひずみ(結晶歪み)εを求めた上で、下記の式により転位密度ρを算出した。下記式において、bはバーガースベクトルの大きさであり、今回はb=2.8635×10-10mを用いた。
ρ=16.1×ε2/b2
X線回折試験は、1供試材あたり任意の5箇所(いずれも板厚中心部)で実施し、得られた結果から平均の転位密度を算出した。
ρ=16.1×ε2/b2
X線回折試験は、1供試材あたり任意の5箇所(いずれも板厚中心部)で実施し、得られた結果から平均の転位密度を算出した。
続いて、実施例No.1~22及び比較例No.1~11,13~19のアルミニウム合金板を用い、DI缶を作製した。作製方法として、まずアルミニウム合金板から直径140mmのブランクを打ち抜き、このブランクを絞り成形して直径90mmのカップを作製した。得られたカップに対し、汎用のアルミニウム缶胴成形機にてDI成形(再絞り+しごき加工)を行い、DI缶を作製した。
作製したDI缶は、外径が66.3mm、缶壁の最薄肉部(缶底から60mmの高さ)の肉厚が90μm、同部の加工率が66.7%(当初板厚:270μm)であった。
作製したDI缶は、外径が66.3mm、缶壁の最薄肉部(缶底から60mmの高さ)の肉厚が90μm、同部の加工率が66.7%(当初板厚:270μm)であった。
前記アルミニウム缶胴成型機により、各実施例及び比較例とも10000缶を連続成形し、以下に示す要領でしごき加工性(DI加工性)の評価を行った。引き続き、その成形した缶を用いて、耐圧強度及び突き刺し強度の測定、並びに缶底しわの評価を、以下に示す要領で行った。その結果を表3に示す。なお、比較例No.6,10,16では、前記アルミニウム缶胴成型機による連続成形において、ティアオフが多発したため、耐圧強度及び突き刺し強度の測定は行わなかった。
(しごき加工性)
連続成形した10000缶のうち、ティアオフ等の不具合が生じた缶が3缶以下のものを合格(○)、4缶以上のものを不合格(×)と評価した。
(缶の耐圧強度)
作製したDI缶(缶胴部)の開口部をトリミングして高さ100mmとし、200℃×20分のベーキングを実施した。次いで、水圧式の耐圧試験機(エーステック株式会社製の水圧式加減圧バックリングテスト装置、型式名WBT-500)を用いて、ベーキング後のDI缶に内圧を負荷し、缶底がバックリングしたときの最大内圧を測定した。
連続成形した10000缶のうち、ティアオフ等の不具合が生じた缶が3缶以下のものを合格(○)、4缶以上のものを不合格(×)と評価した。
(缶の耐圧強度)
作製したDI缶(缶胴部)の開口部をトリミングして高さ100mmとし、200℃×20分のベーキングを実施した。次いで、水圧式の耐圧試験機(エーステック株式会社製の水圧式加減圧バックリングテスト装置、型式名WBT-500)を用いて、ベーキング後のDI缶に内圧を負荷し、缶底がバックリングしたときの最大内圧を測定した。
図1B及び図1Cに示すように、耐圧試験機は、機台1上に設置されたベース板2と、ベース板2の上に設置された円筒状のホルダー3と、ホルダー3の両側に配置された一対の固定部材4,4を備える。ホルダー3の高さ方向中間位置にO-リング5が設置されている。ホルダー3の内部にゴムチューブ6が設置され、該ゴムチューブ6はベース板2を通って下に延び、通水管路に連結され、水圧計及び切換弁等を介して水圧ポンプに連通している(いずれも図示せず)。ベース板2に穴7が形成され、該穴7は通気管路に連結され、切換弁等を介して真空ポンプに連通している(いずれも図示せず)。固定部材4,4はそれぞれ図示しない油圧シリンダにより進退する。
耐圧試験は次のように行われる。
(1)図1A~図1Cに示すように、缶8を、缶底を上にしてホルダー3に嵌めた後、固定部材4,4を所定のストローク前進させる。固定部材4,4が所定位置に達すると(図2A参照)、固定部材4,4の先端が缶8の缶壁をO-リング5のやや下の位置で両側から押さえ、缶8をホルダー3に固定する。これにより、缶8の缶壁内面がO-リング5の周囲に密着し、ゴムチューブ6及び穴7の箇所を除き、ホルダー3内(缶8内)が密封される。
(2)前記真空ポンプを作動させ、穴7を通してホルダー3内(缶8内)を9.8kPa(0.1kgf/cm2)以下に脱気し、次いで前記通気管路を閉じる。
(1)図1A~図1Cに示すように、缶8を、缶底を上にしてホルダー3に嵌めた後、固定部材4,4を所定のストローク前進させる。固定部材4,4が所定位置に達すると(図2A参照)、固定部材4,4の先端が缶8の缶壁をO-リング5のやや下の位置で両側から押さえ、缶8をホルダー3に固定する。これにより、缶8の缶壁内面がO-リング5の周囲に密着し、ゴムチューブ6及び穴7の箇所を除き、ホルダー3内(缶8内)が密封される。
(2)前記真空ポンプを作動させ、穴7を通してホルダー3内(缶8内)を9.8kPa(0.1kgf/cm2)以下に脱気し、次いで前記通気管路を閉じる。
(3)前記水圧ポンプを作動させ、ゴムチューブ6からホルダー3内(缶8内)に水を供給する。ホルダー3内(缶8内)の水圧(前記水圧計で計測)は、供給開始からの経過時間にほぼ比例して上昇し、缶底のバックリングが発生した瞬間に低下する。缶底のバックリングが発生したときの最大内圧を、缶の耐圧強度とした。缶底のバックリングが発生したときの状態を図2Bに示す。
この耐圧強度が618kPa以上(6.3kgf/cm2以上)の場合を合格と評価した。
この耐圧強度が618kPa以上(6.3kgf/cm2以上)の場合を合格と評価した。
(突き刺し強度)
作製したDI缶の開口部をトリミングして高さ100mmとし、200℃×20分のベーキングを実施した後、図3に示すように、缶11の開口部をホルダー12に固定し、密封した。続いて通気管路13から缶内にエアーを供給して、内圧2kgf/cm2を負荷し、先端が半径0.5mmの半球面である鋼製の突き刺し針14を、缶壁に対して垂直に、速度50mm/min.で突き刺した。突き刺し針14を突き刺した部位は、アルミニウム合金板の圧延方向と缶軸方向が一致しかつ缶底からの高さLが60mmの部位とした。突き刺し針14が缶壁を貫通するまでの荷重を継続して測定し、得られた最大荷重を突き刺し強度とした。突き刺し強度が35N以上のものを合格とした。
作製したDI缶の開口部をトリミングして高さ100mmとし、200℃×20分のベーキングを実施した後、図3に示すように、缶11の開口部をホルダー12に固定し、密封した。続いて通気管路13から缶内にエアーを供給して、内圧2kgf/cm2を負荷し、先端が半径0.5mmの半球面である鋼製の突き刺し針14を、缶壁に対して垂直に、速度50mm/min.で突き刺した。突き刺し針14を突き刺した部位は、アルミニウム合金板の圧延方向と缶軸方向が一致しかつ缶底からの高さLが60mmの部位とした。突き刺し針14が缶壁を貫通するまでの荷重を継続して測定し、得られた最大荷重を突き刺し強度とした。突き刺し強度が35N以上のものを合格とした。
(缶底しわの評価)
前記缶胴成形機で作製したDI缶の中から任意の30缶を選択し、各缶について缶底部の接地部から側壁にかけての範囲を目視で観察した。選択した30缶全てに缶底しわが1本も発生していなかった場合を合格(○)と評価し、選択した30缶のどれか1つでも缶底しわが1本でも発生していた場合を不合格(×)と評価した。なお、上記缶胴成形機において、再絞りは、しわ抑えエアー圧力50psi、再絞りダイスR2.0mmの条件で行われた。また、作製されたDI缶の缶底の接地部径はφ48mmであった。
前記缶胴成形機で作製したDI缶の中から任意の30缶を選択し、各缶について缶底部の接地部から側壁にかけての範囲を目視で観察した。選択した30缶全てに缶底しわが1本も発生していなかった場合を合格(○)と評価し、選択した30缶のどれか1つでも缶底しわが1本でも発生していた場合を不合格(×)と評価した。なお、上記缶胴成形機において、再絞りは、しわ抑えエアー圧力50psi、再絞りダイスR2.0mmの条件で行われた。また、作製されたDI缶の缶底の接地部径はφ48mmであった。
表3に記載した転位密度とベーキング後の耐力の値を、グラフ化して図4に示す。
表1,3及び図4に示すように、アルミニウム合金の成分組成、ベーキング後の耐力及び転位密度が本発明の規定範囲内の実施例No.1~22のアルミニウム合金板は、しごき加工性が優れ、缶の耐圧強度及び突き刺し強度が大きく、缶底しわの発生もない。このように、実施例No.1~22は缶壁の板厚が90μmと薄く、DI成形においてフィルムラミネートをしていないが、優れた耐突き刺し性を有し、かつ缶底しわの発生を防止できる。実施例No.1~22はいずれも、先に記載した条件の範囲内で冷間圧延、巻き取り及び巻き取り後の冷却が行われている。
表1,3及び図4に示すように、アルミニウム合金の成分組成、ベーキング後の耐力及び転位密度が本発明の規定範囲内の実施例No.1~22のアルミニウム合金板は、しごき加工性が優れ、缶の耐圧強度及び突き刺し強度が大きく、缶底しわの発生もない。このように、実施例No.1~22は缶壁の板厚が90μmと薄く、DI成形においてフィルムラミネートをしていないが、優れた耐突き刺し性を有し、かつ缶底しわの発生を防止できる。実施例No.1~22はいずれも、先に記載した条件の範囲内で冷間圧延、巻き取り及び巻き取り後の冷却が行われている。
なお、実施例No.1~22のアルミニウム合金板が優れた耐突き刺し性を有するのは、缶壁の加工硬化能(=均一変形能)が向上し、突き刺し針14が押し込まれて缶壁が変形した際、缶壁の板厚減少(くびれ)が生じにくかったためと考えられる。実施例No.1~22のアルミニウム合金板を用いてDI成形した缶は、充填後の缶壁に突起物が接触したときなどに、缶壁の破断を防止して、内容物の漏れが生じるのを防止できる。また、実施例No.1~22のアルミニウム合金板で、缶底しわの発生が防止できたのは、材料の加工硬化能が向上したことで、缶胴成形機における再絞り加工の際に缶軸方向の成形力(張力)が増加し、その結果、缶周方向の座屈(=しわの発生)が抑制されたためと考えられる。
一方、表2,3及び図4に示すように、アルミニウム合金の成分組成、ベーキング後の耐力及び転位密度のいずれかが本発明の規定範囲外の比較例No.1~11,13~19のアルミニウム合金板は、しごき加工性、缶の耐圧強度、突き刺し性及び缶底しわの評価のいずれかが本発明の基準を満たさない。
比較例No.1は、Si含有量が不足するため、しごき加工性が劣る。比較例No.2は、Si含有量が過剰なため、しごき加工性が劣り、耐突き刺し性も劣る。
比較例No.3は、Fe含有量が不足するため、しごき加工性が劣る。比較例No.4は、Fe含有量が過剰なため、しごき加工性が劣り、耐突き刺し性も劣る。
比較例No.1は、Si含有量が不足するため、しごき加工性が劣る。比較例No.2は、Si含有量が過剰なため、しごき加工性が劣り、耐突き刺し性も劣る。
比較例No.3は、Fe含有量が不足するため、しごき加工性が劣る。比較例No.4は、Fe含有量が過剰なため、しごき加工性が劣り、耐突き刺し性も劣る。
比較例No.5,7,9は、それぞれCu,Mn,Mg含有量が不足するため、ベーキング後の耐力が不足し、缶の耐圧強度が劣る。比較例No.9は耐突き刺し性も劣る。比較例No.6,10は,それぞれCu,Mg含有量が過剰なため、ベーキング後のアルミニウム合金板の耐力が過大で、しごき加工性が劣る。比較例No.8,11は、それぞれMn,Cr含有量が過剰なため、しごき加工性が劣る。比較例No.8は耐突き刺し性も劣る。No.12はTi含有量が過剰なため、先に述べたとおり、鋳造ができなかった。
比較例No.13は冷間圧延の総圧延率が不足したため、ベーキング後の耐力が不足し、耐圧強度が劣る。比較例No.14は総圧延率が過大なため、アルミニウム合金板の耐力が過大となり、しごき加工性が劣る。
比較例No.15は巻き取り温度が低く、動的回復及び巻き取り後の回復が不十分で、アルミニウム合金板の転位密度が高く、缶の耐突き刺し性が劣り、缶底しわが発生した。比較例No.16は、巻き取り温度が高く、アルミニウム合金板の転位密度が低下して、しごき加工性が劣る。
比較例17は、巻き取り温度から120℃までの温度域の冷却速度が大きく、巻き取り後の回復が不十分で、アルミニウム合金板の転位密度が高く、缶の耐突き刺し性が劣り、缶底しわが発生した。
比較例No.15は巻き取り温度が低く、動的回復及び巻き取り後の回復が不十分で、アルミニウム合金板の転位密度が高く、缶の耐突き刺し性が劣り、缶底しわが発生した。比較例No.16は、巻き取り温度が高く、アルミニウム合金板の転位密度が低下して、しごき加工性が劣る。
比較例17は、巻き取り温度から120℃までの温度域の冷却速度が大きく、巻き取り後の回復が不十分で、アルミニウム合金板の転位密度が高く、缶の耐突き刺し性が劣り、缶底しわが発生した。
比較例No.18は、冷間圧延をシングル圧延機で実施し、かつパス間に時間を置いたため、巻き取り温度が低く、動的回復及び巻き取り後の回復が不十分で、アルミニウム合金板の転位密度が高く、しごき加工性及び缶の耐突き刺し性が劣り、缶底しわが発生した。比較例No.19は、冷間圧延をシングル圧延機で実施し、かつパス間に時間を置いたため、巻き取り温度が低く、動的回復及び巻き取り後の回復が不十分で、仕上げ焼鈍の効果も少なく、転位密度が高く缶の耐突き刺し性が劣り、缶底しわが発生した。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2015年3月19日出願の日本特許出願(特願2015-055910)、2015年12月17日出願の日本特許出願(特願2015-245939)に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2015年3月19日出願の日本特許出願(特願2015-055910)、2015年12月17日出願の日本特許出願(特願2015-245939)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の缶胴用アルミニウム合金板は、缶壁を薄肉化したDI缶、フィルムラミネートしないでDI成形したDI缶でも、優れた耐突き刺し性を有し、缶底にしわが生じるのを防止することができ、特に2ピース缶の缶胴用として有用である。
(耐圧強度試験)
2 ベース板
3 ホルダー
4 固定部材
5 O-リング
6 ゴムチューブ
8 缶
(突き刺し強度試験)
11 缶
12 ホルダー
14 突き刺し針
2 ベース板
3 ホルダー
4 固定部材
5 O-リング
6 ゴムチューブ
8 缶
(突き刺し強度試験)
11 缶
12 ホルダー
14 突き刺し針
Claims (3)
- Si:0.1~0.5質量%、Fe:0.3 ~0.6質量%、Cu:0.1~0.35質量%、Mn:0.5~1.2質量%、Mg:0.7~2.5質量%を含有し、残部がAl及び不可避的不純物からなり、200℃×20分のベーキングを行った後の耐力が240~295MPaであり、前記ベーキング後の耐力とX線回折により測定された板厚中心部の転位密度の関係が、前記アルミニウム合金板のベーキング後の耐力(単位:MPa)をX軸とし、X線回折により測定された板厚中央部の転位密度(単位:×1014/m2)をY軸とするグラフにおいて、下記座標A、B、C、D、Eの各点を結ぶ線分で囲まれる多角形の範囲内にあることを特徴とする缶胴用アルミニウム合金板。
座標A(240、1.0×1014)
座標B(240、8.0×1014)
座標C(276、8.0×1014)
座標D(295、14.2×1014)
座標E(295、1.0×1014) - Cr:0.10質量%以下、Zn:0.40質量%以下、Ti:0.10質量%以下のうち1種以上を含有することを特徴とする請求項1に記載された缶胴用アルミニウム合金板。
- 前記アルミニウム合金のMg含有量が1.0~1.8質量%であることを特徴とする請求項1又は請求項2に記載された缶胴用アルミニウム合金板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177025179A KR20170113659A (ko) | 2015-03-19 | 2016-02-23 | 캔 몸체용 알루미늄 합금판 |
CN201680014124.2A CN107406924A (zh) | 2015-03-19 | 2016-02-23 | 罐体用铝合金板 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-055910 | 2015-03-19 | ||
JP2015055910 | 2015-03-19 | ||
JP2015-245939 | 2015-12-17 | ||
JP2015245939A JP6000437B1 (ja) | 2015-03-19 | 2015-12-17 | 缶胴用アルミニウム合金板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147816A1 true WO2016147816A1 (ja) | 2016-09-22 |
Family
ID=56918695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/055291 WO2016147816A1 (ja) | 2015-03-19 | 2016-02-23 | 缶胴用アルミニウム合金板 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016147816A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249932A (ja) * | 1996-03-15 | 1997-09-22 | Furukawa Electric Co Ltd:The | 成形性に優れたDI缶胴用Al合金板とその製造方法 |
JP2004300537A (ja) * | 2003-03-31 | 2004-10-28 | Kobe Steel Ltd | 包装容器用アルミニウム合金板およびその製造方法 |
JP2006283113A (ja) * | 2005-03-31 | 2006-10-19 | Furukawa Sky Kk | 飲料缶胴用アルミニウム合金板およびその製造方法 |
JP2006291326A (ja) * | 2005-04-14 | 2006-10-26 | Furukawa Sky Kk | 飲料缶胴用アルミニウム合金板およびその製造方法 |
JP2014125677A (ja) * | 2012-12-27 | 2014-07-07 | Kobe Steel Ltd | Di缶胴用アルミニウム合金板 |
-
2016
- 2016-02-23 WO PCT/JP2016/055291 patent/WO2016147816A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249932A (ja) * | 1996-03-15 | 1997-09-22 | Furukawa Electric Co Ltd:The | 成形性に優れたDI缶胴用Al合金板とその製造方法 |
JP2004300537A (ja) * | 2003-03-31 | 2004-10-28 | Kobe Steel Ltd | 包装容器用アルミニウム合金板およびその製造方法 |
JP2006283113A (ja) * | 2005-03-31 | 2006-10-19 | Furukawa Sky Kk | 飲料缶胴用アルミニウム合金板およびその製造方法 |
JP2006291326A (ja) * | 2005-04-14 | 2006-10-26 | Furukawa Sky Kk | 飲料缶胴用アルミニウム合金板およびその製造方法 |
JP2014125677A (ja) * | 2012-12-27 | 2014-07-07 | Kobe Steel Ltd | Di缶胴用アルミニウム合金板 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3913260B1 (ja) | ネック部成形性に優れたボトル缶用アルミニウム合金冷延板 | |
US9574258B2 (en) | Aluminum-alloy sheet and method for producing the same | |
US11566311B2 (en) | Aluminum alloy foil, and method for producing aluminum alloy foil | |
JP6210896B2 (ja) | 缶蓋用アルミニウム合金板およびその製造方法 | |
JP5675447B2 (ja) | 樹脂被覆缶胴用アルミニウム合金板およびその製造方法 | |
US20120100035A1 (en) | Magnesium alloy sheet | |
US20120107171A1 (en) | Magnesium alloy sheet | |
JP5841646B1 (ja) | 缶胴用アルミニウム合金板 | |
WO2014129385A1 (ja) | 缶ボディ用アルミニウム合金板及びその製造方法 | |
JP6000437B1 (ja) | 缶胴用アルミニウム合金板 | |
JP2009270192A (ja) | 缶胴用アルミニウム合金板およびその製造方法 | |
JP4791072B2 (ja) | 飲料缶胴用アルミニウム合金板およびその製造方法 | |
US20100084053A1 (en) | Feedstock for metal foil product and method of making thereof | |
JP7202257B2 (ja) | 缶胴用アルミニウム合金板 | |
JP3748438B2 (ja) | 包装容器用アルミニウム合金板およびその製造方法 | |
JP2018123376A (ja) | アルミニウム合金板及びその製造方法 | |
WO2016002226A1 (ja) | 飲料缶胴用アルミニウム合金板及びその製造方法 | |
WO2016147816A1 (ja) | 缶胴用アルミニウム合金板 | |
JP4019084B2 (ja) | 高温特性に優れたボトル缶用アルミニウム合金冷延板 | |
JP2022114208A (ja) | 缶蓋用アルミニウム合金塗装板 | |
JP2007051307A (ja) | ボトムしわ性が良好なキャンボディ用アルミニウム合金板およびその製造方法 | |
JP7426243B2 (ja) | ボトル缶胴用アルミニウム合金板 | |
JP7235634B2 (ja) | 缶胴用アルミニウム合金板 | |
JP2023054623A (ja) | 缶胴用アルミニウム合金板 | |
JP2011080155A (ja) | ボトムしわ性が良好なキャンボディ用アルミニウム合金板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16764646 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177025179 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16764646 Country of ref document: EP Kind code of ref document: A1 |