WO2016147609A1 - 非接触給電装置および非接触給電システム - Google Patents

非接触給電装置および非接触給電システム Download PDF

Info

Publication number
WO2016147609A1
WO2016147609A1 PCT/JP2016/001278 JP2016001278W WO2016147609A1 WO 2016147609 A1 WO2016147609 A1 WO 2016147609A1 JP 2016001278 W JP2016001278 W JP 2016001278W WO 2016147609 A1 WO2016147609 A1 WO 2016147609A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
voltage
power supply
unit
switching
Prior art date
Application number
PCT/JP2016/001278
Other languages
English (en)
French (fr)
Inventor
田村 秀樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017506069A priority Critical patent/JP6650626B2/ja
Publication of WO2016147609A1 publication Critical patent/WO2016147609A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention generally relates to a non-contact power supply apparatus and a non-contact power supply system, and more particularly to a non-contact power supply apparatus and a non-contact power supply system for supplying power to a power supply target in a non-contact manner.
  • Patent Document 1 a power transmission system that transmits power to a vehicle such as an electric vehicle or a hybrid electric vehicle in a contactless manner.
  • the power transmission system described in Patent Document 1 includes an inverter unit, a power transmission antenna, a power transmission control unit, and a power reception antenna.
  • the inverter unit includes four field effect transistors connected by a full bridge method.
  • Patent Document 1 describes that a power receiving antenna is disposed on the bottom surface of the vehicle.
  • Patent Document 1 describes that a power transmission antenna or the like is embedded in an underground portion of a space where the vehicle can be stopped.
  • Patent Document 1 describes that a vehicle charging facility includes an inverter unit, a power transmission antenna, and a power transmission control unit.
  • the vehicle charging facility calculates a coupling coefficient between the power transmitting antenna and the power receiving antenna, and appropriately grasps the positional deviation between the power transmitting antenna and the power receiving antenna based on the coupling coefficient.
  • the suitable frequency at the time of electric power transmission can be selected based on the said position shift, and it becomes possible to perform efficient electric power transmission.
  • the loss (switching loss) of four field effect transistors may increase. That is, in the said vehicle charging equipment, the loss of an inverter part may increase.
  • An object of the present invention is to provide a non-contact power feeding device and a non-contact power feeding system capable of suppressing an increase in loss of an inverter unit.
  • a contactless power supply device includes an inverter unit that includes a first switching element and a second switching element and converts a DC voltage into an AC voltage, a control unit that controls the inverter unit, and the AC And a power feeding unit that applies a voltage and supplies power in a non-contact manner.
  • the control unit controls the first switching element and the second switching element so that the first switching element and the second switching element are alternately turned on.
  • the control unit stops switching operations of the first switching element and the second switching element in the case of the first condition or the second condition.
  • the idle period is from the time when the first switching element is turned off to the time when the second switching element starts to change from the off state to the on state.
  • the first condition is a state where a voltage value of a voltage applied to at least one of the first switching element and the second switching element does not change to a first threshold value.
  • the second condition is a state in which the current value of the current flowing through the second switching element does not change to the second threshold value.
  • a non-contact power feeding system includes the non-contact power feeding device and a non-contact power receiving device that is fed in a non-contact manner from the non-contact power feeding device.
  • 1 is a schematic perspective view of a non-contact power feeding device according to Embodiment 1.
  • FIG. It is a timing chart explaining operation
  • 3 is a timing chart for explaining the operation of the non-contact power feeding apparatus according to the first embodiment.
  • movement of a non-contact electric power feeder same as the above. 6 is a graph showing an example of resonance characteristics in the non-contact power feeding devices of Embodiments 1 to 3.
  • the non-contact power feeding system 300 includes a non-contact power feeding device 100 and a non-contact power receiving device 200.
  • the non-contact power supply apparatus 100 is installed on the ground 800 of a space (parking space) where the vehicle 900 (see FIG. 2) can be parked, for example.
  • the vehicle 900 is, for example, an electric vehicle.
  • the ground 800 is, for example, concrete.
  • the vehicle 900 is not limited to an electric vehicle, and may be, for example, a hybrid electric vehicle.
  • the ground 800 is not limited to concrete, and may be asphalt, soil, or the like.
  • the contactless power supply device 100 is configured to be installed on the ground 800, but is not limited to this configuration.
  • the non-contact power supply apparatus 100 may be configured to be embedded and disposed in a hole (embedded hole) formed in the ground 800, for example.
  • the non-contact power receiving device 200 is configured to be fed in a non-contact manner from the non-contact power feeding device 100.
  • the non-contact power receiving apparatus 200 is attached to the bottom of the vehicle 900, for example.
  • the non-contact power receiving apparatus 200 includes, for example, a power receiving unit 20, a rectifying unit 21, a smoothing unit 22, and a pair of output terminals 2A and 2B as shown in FIG.
  • the power receiving unit 20 is configured to receive power supplied from the non-contact power supply apparatus 100 in a non-contact manner.
  • the power receiving unit 20 includes, for example, a power receiving coil 23 and two capacitors 24 and 25.
  • the power receiving coil 23 is, for example, a spiral coil.
  • the spiral coil means a coil (planar coil) in which a conducting wire is wound in a spiral shape in a plan view.
  • the rectifier 21 is configured to rectify the power received by the power receiver 20.
  • the rectifying unit 21 is, for example, a diode bridge.
  • the first input end of the pair of input ends of the rectifying unit 21 is electrically connected to the first end of the power receiving coil 23 via the capacitor 24.
  • the second input end of the pair of input ends of the rectifying unit 21 is electrically connected to the second end of the power receiving coil 23 via the capacitor 25.
  • a pair of output ends of the rectifying unit 21 is electrically connected to the smoothing unit 22.
  • the smoothing unit 22 is, for example, a capacitor (for example, an electrolytic capacitor).
  • the connecting end on the high potential side of the smoothing unit 22 is electrically connected to the first output end of the pair of output ends of the rectifying unit 21.
  • the connection terminal on the low potential side of the smoothing unit 22 is electrically connected to the second output terminal of the pair of output terminals of the rectification unit 21.
  • a load 90 of the vehicle 900 is electrically connected between the pair of output terminals 2A and 2B.
  • the load 90 includes, for example, a battery 91 (see FIG. 2) and a charging device 92 (see FIG. 2).
  • the charging device 92 is configured to charge the battery 91.
  • the power receiving unit 20 includes the capacitor 25, but may not include the capacitor 25.
  • the rectifying unit 21 is a diode bridge, but is not limited thereto.
  • the non-contact power receiving apparatus 200 includes the smoothing unit 22, but may not include the smoothing unit 22.
  • the non-contact power supply apparatus 100 includes, for example, a pair of input terminals 1A and 1B, an inverter unit 10, a control unit 11, a power supply unit 12, and a housing 30 (see FIGS. 2 and 3).
  • a DC power supply unit 400 is electrically connected between the pair of input terminals 1A and 1B.
  • the DC power supply unit 400 is configured to output a DC voltage.
  • the DC power supply unit 400 is, for example, a PFC (Power Factor Correction) circuit.
  • the non-contact power supply apparatus 100 does not include the DC power supply unit 400 as a component, but may include the DC power supply unit 400 as a component. Further, the DC power supply unit 400 is not limited to a PFC circuit, and may be, for example, an AC / DC converter or the like.
  • the inverter unit 10 is configured to convert a DC voltage into an AC voltage.
  • the inverter unit 10 is, for example, a full bridge circuit.
  • the inverter unit 10 includes four switching elements Q1 to Q4.
  • the switching element Q1 and the switching element Q4 correspond to a first switching element
  • the switching element Q2 and the switching element Q3 correspond to a second switching element.
  • the switching element Q1 includes a first terminal, a second terminal, and a control terminal.
  • the switching element Q1 is, for example, a normally-off type n-channel MOSFET.
  • the first terminal is the drain terminal
  • the second terminal is the source terminal
  • the control terminal is the gate terminal.
  • a diode indicated by a symbol in the switching element Q1 in FIG. 1 represents a built-in diode (body diode).
  • Each of the three switching elements Q2 to Q4 has the same configuration as the switching element Q1 except that the reference numeral is different from that of the switching element Q1, as shown in FIG. Therefore, detailed description of each of the three switching elements Q2 to Q4 is omitted.
  • the drain terminal of the switching element Q1 is electrically connected to the input terminal 1A.
  • the gate terminal of the switching element Q1 is electrically connected to the control unit 11.
  • the source terminal of the switching element Q1 is electrically connected to the power feeding unit 12.
  • the source terminal of the switching element Q1 is electrically connected to the drain terminal of the switching element Q2.
  • the gate terminal of the switching element Q2 is electrically connected to the control unit 11.
  • the source terminal of the switching element Q2 is electrically connected to the input terminal 1B. Further, the source terminal of the switching element Q2 is electrically connected to the ground of the non-contact power supply apparatus 100.
  • the electrical connection between the switching element Q3 and the switching element Q4 is the same as the electrical connection between the switching element Q1 and the switching element Q2, as shown in FIG. Therefore, the detailed description regarding each of the switching element Q3 and the switching element Q4 is abbreviate
  • the control unit 11 is configured to control the inverter unit 10.
  • the control unit 11 is, for example, a microcomputer.
  • the microcomputer includes a memory in which a program is stored. In this program, for example, an operation mode for operating the non-contact power feeding apparatus 100 is described.
  • the control unit 11 includes, for example, a control circuit 3 and a stop unit 4.
  • the control circuit 3 and the stop unit 4 are integrally configured.
  • the control circuit 3 is constituted by, for example, a CPU provided in the microcomputer.
  • the stop unit 4 is constituted by, for example, a peripheral circuit provided in the microcomputer.
  • control unit 11 is not limited to the microcomputer, and may be a microprocessor, a microcontroller, or the like, for example. Further, the control unit 11 is not limited to the microcomputer, and may be a control IC, for example.
  • the control circuit 3 is configured to control the four switching elements Q1 to Q4. In other words, the control circuit 3 is configured to output a control signal to each of the four switching elements Q1 to Q4.
  • Each of the four control signals is, for example, a PWM (Pulse Width Modulation) signal.
  • the control circuit 3 is configured to control the four switching elements Q1 to Q4 so that the two switching elements Q1 and Q4 and the two switching elements Q2 and Q3 are alternately turned on. Specifically, the control circuit 3 outputs a control signal (first control signal S1) to the two switching elements Q1, Q4. The control circuit 3 outputs a control signal (second control signal S2) to the two switching elements Q2 and Q3. Thereby, in the non-contact electric power feeder 100, the inverter part 10 can convert the direct current voltage from the direct-current power supply part 400 into a rectangular-wave-shaped alternating voltage.
  • the stop unit 4 is configured to be able to stop the switching operation of the four switching elements Q1 to Q4.
  • the stop unit 4 is electrically connected to the gate terminals of the four switching elements Q1 to Q4.
  • the stop unit 4 is electrically connected to the control circuit 3. Details of the stop unit 4 will be described later.
  • the power feeding unit 12 is configured to be applied with an AC voltage converted by the inverter unit 10.
  • the power supply unit 12 is configured to supply power to a power supply target (contactless power receiving device 200) in a contactless manner.
  • the power supply unit 12 includes, for example, a power supply coil 13 and two capacitors 14 and 15.
  • the feeding coil 13 is, for example, a spiral coil.
  • the feeding coil 13 is formed, for example, such that the outer periphery of the feeding coil 13 is rectangular in plan view (see FIG. 3).
  • the first end of the feeding coil 13 is electrically connected to the source terminal of the switching element Q1 via the capacitor.
  • the second end of the feeding coil 13 is electrically connected to the source terminal of the switching element Q3 via the capacitor 15.
  • the feed coil 13 is formed so that the outer periphery of the feed coil 13 is rectangular in plan view, the present invention is not limited thereto.
  • the feeding coil 13 may be formed, for example, such that the outer periphery of the feeding coil 13 is a square shape in plan view. Further, the feeding coil 13 may be formed, for example, such that the outer periphery of the feeding coil 13 is elliptical in plan view. Furthermore, the feeding coil 13 may be formed, for example, such that the outer periphery of the feeding coil 13 is circular in plan view.
  • Each of the capacitor 14 and the capacitor 15 is configured to form a resonance circuit together with the feeding coil 13. More specifically, the capacitances of the capacitor 14 and the capacitor 15 are set so that each of the capacitor 14 and the capacitor 15 forms the resonance circuit together with the feeding coil 13.
  • the power feeding unit 12 includes the capacitor 15, but may not include the capacitor 15.
  • the inverter unit 10, the control unit 11, and the power supply unit 12 are configured by, for example, a substrate (mounting substrate) on which a plurality of electronic components are mounted.
  • the housing 30 stores a mounting board.
  • the housing 30 houses the inverter unit 10, the control unit 11, and the power feeding unit 12.
  • the housing 30 includes a base 31 (see FIG. 3) and a cover 32 (see FIG. 3).
  • the base 31 is mounted with a mounting board.
  • the base 31 is formed in a plate shape (for example, a rectangular plate shape).
  • the base 31 is formed of a material having thermal conductivity.
  • the material having thermal conductivity is, for example, metal.
  • the metal is, for example, aluminum.
  • the mounting board is attached to the base 31 via an insulating member.
  • the insulating member is made of a material having electrical insulation and thermal conductivity.
  • the insulating member is, for example, a heat dissipation sheet.
  • the insulating member is not limited to a heat dissipation sheet, and may be heat dissipation grease, for example.
  • the cover 32 covers the mounting board.
  • the cover 32 is attached to the base 31.
  • the cover 32 is made of a non-metallic material.
  • Nonmetallic materials are synthetic resin etc., for example.
  • the synthetic resin is, for example, a fiber reinforced plastic.
  • the non-metallic material is not limited to a synthetic resin.
  • the non-metallic material may be any material that allows the magnetic field generated by the feeding coil 13 to pass through.
  • the inverter unit 10 when the two switching elements Q1, Q4 and the two switching elements Q2, Q3 are alternately turned on, the DC voltage from the DC power supply unit 400 is converted into an AC voltage. Thereby, in the non-contact electric power feeder 100, the alternating voltage converted by the inverter part 10 can be applied to the electric power feeding coil 13. FIG. At this time, the voltage applied to the feeding coil 13 is resonated by the resonance circuit of the two capacitors 14 and 15 and the feeding coil 13.
  • the non-contact power reception device 200 (specifically, the power reception unit 20) from the power supply coil 13 by electromagnetic induction caused by a magnetic field generated in the power supply coil 13. ) Can be fed in a non-contact manner.
  • the basic configuration of the contactless power supply device of the comparative example is the same as that of the contactless power supply device 100.
  • the non-contact electric power feeder of a comparative example differs from the non-contact electric power feeder 100 in the point which is not provided with the stop part 4 of the control part 11 in the non-contact electric power feeder 100.
  • a timing chart as shown in FIG. 4 is obtained. Note that t1 in FIG. 4 represents a point in time when the inverter unit 10 shifts from the slow phase mode to the fast phase mode.
  • Vg1 in FIG. 4 represents the gate voltage of the first switching elements (switching element Q1 and switching element Q4).
  • Vg2 in FIG. 4 represents the gate voltage of the second switching element (switching element Q2 and switching element Q3).
  • Vds1 in FIG. 4 represents the drain-source voltage of the first switching element.
  • Vds2 in FIG. 4 represents the drain-source voltage of the second switching element.
  • Id1 represents the drain current of the first switching element.
  • Id2 represents the drain current of the second switching element.
  • the voltage applied to the switching element Q2 (the drain-source voltage of the switching element Q2) in the idle period Td after the inverter unit 10 shifts from the slow phase mode to the fast phase mode.
  • the voltage value does not change.
  • the voltage value of the voltage applied to the switching element Q2 does not decrease during the idle period Td after the inverter unit 10 shifts from the slow phase mode to the fast phase mode.
  • the rest period Td is from the time when the two switching elements Q1 and Q4 are turned off to the time when the two switching elements Q2 and Q3 start to change from the off state to the on state. Note that the voltage value of the voltage applied to the switching element Q3 (the drain-source voltage of the switching element Q3) changes in the same manner as the voltage value of the voltage applied to the switching element Q2.
  • the voltage applied to the switching element Q1 (the drain-source voltage of the switching element Q1) during the idle period Td after the inverter unit 10 shifts from the slow phase mode to the fast phase mode. ) Voltage value does not change. Specifically, in the non-contact power feeding device of the comparative example, the voltage value of the voltage applied to the switching element Q1 does not increase during the idle period Td after the inverter unit 10 has shifted from the slow phase mode to the fast phase mode. . Note that the voltage value of the voltage applied to the switching element Q4 (the drain-source voltage of the switching element Q4) changes in the same manner as the voltage value of the voltage applied to the switching element Q1.
  • the stop unit 4 of the control unit 11 in the non-contact power supply apparatus 100 is configured to determine whether or not a first condition described later is satisfied during the suspension period Td. Further, the stop unit 4 is configured to be able to stop the switching operations of the four switching elements Q1 to Q4 separately when the first condition is satisfied during the suspension period Td.
  • the control circuit 3 is configured to stop the output of the first control signal S1 and the second control signal S2 when the stop unit 4 determines that the first condition is satisfied during the suspension period Td.
  • the control unit 11 is configured to stop the switching operations of the four switching elements Q1 to Q4 when the first condition is satisfied during the suspension period Td.
  • the first condition is, for example, a state in which the voltage value of the voltage applied to the switching element Q2 (the drain-source voltage of the switching element Q2) does not change until the first threshold value Vt1 (see FIG. 5).
  • the first condition is a state in which the voltage value of the voltage applied to the switching element Q2 does not decrease to the first threshold value Vt1.
  • the first condition is when the voltage value of the voltage applied to the switching element Q2 is larger than the first threshold value Vt1.
  • the first threshold value Vt1 is, for example, a value for detecting a change in the voltage value of the voltage applied to the switching element Q2.
  • the stop unit 4 includes, for example, a first stop circuit 5 and a second stop circuit 6 as shown in FIG.
  • the first stop circuit 5 includes a detection unit 7, a setting unit 8, a comparator 9, and a switching element Q5.
  • the detecting unit 7 is configured to detect a voltage applied to the switching element Q2, for example.
  • the detection unit 7 includes, for example, two resistors R1 and R2.
  • the first end of the resistor R1 is electrically connected to the drain terminal of the switching element Q2.
  • the second end of the resistor R1 is electrically connected to the first end of the resistor R2.
  • the first end of the resistor R2 is electrically connected to the non-inverting input terminal of the comparator 9.
  • the second end of the resistor R2 is electrically connected to the ground of the non-contact power feeding device 100.
  • the setting unit 8 is configured to set the first threshold value Vt1.
  • the setting unit 8 is electrically connected to the inverting input terminal of the comparator 9.
  • the output terminal of the comparator 9 is electrically connected to the switching element Q5.
  • the output terminal of the comparator 9 is electrically connected to the control circuit 3.
  • the switching element Q5 includes a first terminal, a second terminal, and a control terminal.
  • the switching element Q5 is, for example, a normally-on type n-channel MOSFET.
  • the first terminal is the drain terminal
  • the second terminal is the source terminal
  • the control terminal is the gate terminal.
  • a diode indicated by a symbol in the switching element Q5 in FIG. 1 represents a built-in diode.
  • the drain terminal of the switching element Q5 is electrically connected to the gate terminal of the switching element Q2.
  • the drain terminal of the switching element Q5 is electrically connected to the gate terminal of the switching element Q3.
  • the source terminal of the switching element Q5 is electrically connected to the ground of the contactless power supply device 100.
  • the gate terminal of the switching element Q5 is electrically connected to the output terminal of the comparator 9.
  • the second stop circuit 6 has the same configuration as the first stop circuit 5 except that the first stop circuit 5 has a different sign. Therefore, detailed description of the second stop circuit 6 will be omitted as appropriate.
  • the detecting unit 17 is configured to detect, for example, a voltage applied to the switching element Q4 (a drain-source voltage of the switching element Q4).
  • the first end of the resistor R3 is electrically connected to the drain terminal of the switching element Q4.
  • the switching element Q6 is, for example, a normally-off type n-channel MOSFET.
  • the first terminal is the drain terminal
  • the second terminal is the source terminal
  • the control terminal is the gate terminal.
  • a diode indicated by a symbol in the switching element Q6 in FIG. 1 represents a built-in diode.
  • the drain terminal of the switching element Q6 is electrically connected to the gate terminal of the switching element Q1.
  • the drain terminal of the switching element Q6 is electrically connected to the gate terminal of the switching element Q4.
  • the first stop circuit 5 is configured to determine whether or not the first condition is satisfied during the suspension period Td. Further, the first stop circuit 5 is configured to stop the switching operation of the two switching elements Q2 and Q3 when the first condition is satisfied during the suspension period Td.
  • the control circuit 3 is configured to stop the output of the first control signal S1 and the second control signal S2 when the first stop circuit 5 determines that the first condition is satisfied during the suspension period Td.
  • Vg1, Vg2, Vds1, Vds2, Id1, and Id2 in FIG. 5 are the same as Vg1, Vg2, Vds1, Vds2, Id1, and Id2 in FIG.
  • V1 in FIG. 5 represents the output voltage of the comparator 19.
  • V2 in FIG. 5 represents the output voltage of the comparator 9.
  • the first stop circuit 5 determines whether or not the first condition is satisfied during the suspension period Td. In short, the first stop circuit 5 determines whether or not the voltage value of the voltage applied to the switching element Q2 is larger than the first threshold value Vt1 during the pause period Td. Further, the first stop circuit 5 stops the switching operation of the two switching elements Q2 and Q3 when the first condition is satisfied during the suspension period Td (period t3 to t4 in FIG. 5).
  • the comparator 9 determines whether or not the drain-source voltage of the switching element Q2 detected by the detection unit 7 is larger than the first threshold value Vt1 set by the setting unit 8 during the pause period Td. Determine. When the drain-source voltage of the switching element Q2 is larger than the first threshold value Vt1, the comparator 9 turns on the switching element Q5 and stops the switching operation of the two switching elements Q2 and Q3.
  • the control circuit 3 stops outputting the first control signal S1 and the second control signal S2 (at time t5 in FIG. 5). ).
  • the control unit 11 stops the switching operation of the four switching elements Q1 to Q4 when the first condition is satisfied during the suspension period Td.
  • the gate voltages (gate-source voltages) of the four switching elements Q1 to Q4 can be fixed at a low level. Therefore, in the non-contact power feeding device 100, for example, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to a relative positional shift between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are Hard switching can be suppressed.
  • the loss (switching loss) of the four switching elements Q1 to Q4. Can be prevented from increasing. That is, in the non-contact power supply apparatus 100, it is possible to suppress an increase in the loss of the inverter unit 10 as compared with the conventional non-contact power supply apparatus.
  • the first condition is a state where the voltage value of the voltage applied to the switching element Q2 does not change up to the first threshold value Vt1, but is not limited thereto.
  • the first condition may be, for example, a state in which the voltage value of the voltage applied to the switching element Q3 (the drain-source voltage of the switching element Q3) does not change to the first threshold value Vt1.
  • the first condition is a state in which the voltage value of the voltage applied to the switching element Q2 does not change to the first threshold value Vt1, but is not limited to this, for example, the voltage value of the voltage applied to the switching element Q4 is The state may not be changed until the first threshold value Vt1.
  • the first condition is a state in which the voltage value of the voltage applied to the switching element Q4 does not increase to the first threshold value Vt1.
  • the first condition is, for example, when the voltage value of the voltage applied to the switching element Q4 is smaller than the first threshold value Vt1.
  • the second stop circuit 6 determines whether or not the first condition is satisfied during the suspension period Td.
  • the second stop circuit 6 stops the switching operation of the two switching elements Q1 and Q4 when the first condition is satisfied during the suspension period Td.
  • the control circuit 3 stops the output of the first control signal S1 and the second control signal S2 when the second stop circuit 6 determines that the first condition is satisfied during the suspension period Td.
  • the first condition is not limited to a state where the voltage value of the voltage applied to the switching element Q4 does not change to the first threshold value Vt1.
  • the first condition may be a state in which the voltage value of the voltage applied to the switching element Q1 (the drain-source voltage of the switching element Q1) does not change to the first threshold value Vt1.
  • the first condition is that the voltage value of the voltage applied to the switching element Q2 does not change to the first threshold value Vt1, and the voltage value of the voltage applied to the switching element Q4 does not change to the first threshold value Vt1. It is not limited to one of the states.
  • the first condition is that both the state where the voltage value of the voltage applied to the switching element Q2 does not change to the first threshold value Vt1 and the state where the voltage value of the voltage applied to the switching element Q4 does not change to the first threshold value Vt1. It may be in a state. Thereby, in the control part 11, it becomes possible to detect more accurately that the inverter part 10 transfers to a phase advance mode from a slow phase mode.
  • the non-contact power feeding device 100 it is possible to further suppress hard switching of the four switching elements Q1 to Q4 when the inverter unit 10 shifts from the slow phase mode to the fast phase mode.
  • the non-contact power supply apparatus 100 it is possible to further suppress an increase in loss (switching loss) of the four switching elements Q1 to Q4 as compared with the conventional non-contact power supply apparatus. That is, in the non-contact power supply apparatus 100, it is possible to further suppress an increase in the loss of the inverter unit 10 as compared with the conventional non-contact power supply apparatus.
  • the rest period Td is from the time when the two switching elements Q1 and Q4 are turned off to the time when the two switching elements Q2 and Q3 start to change from the off state to the on state.
  • the idle period Td may be from the time when the two switching elements Q2 and Q3 are turned off to the time when the two switching elements Q1 and Q4 start to change from the off state to the on state.
  • the idle period Td (first idle period) has two switching elements Q1, Q1. This is from the time when Q4 is turned off to the time when the two switching elements Q2 and Q3 start to change from the off state to the on state.
  • the idle period Td (second idle period) is two switching elements. This is from the time when the elements Q2 and Q3 are turned off to the time when the two switching elements Q1 and Q4 start to change from the off state to the on state.
  • the control unit 11 is configured to stop the switching operation of the four switching elements Q1 to Q4 when the first condition or the second condition is satisfied in one of the first and second periods. Not exclusively.
  • the control unit 11 is configured to stop the switching operation of the four switching elements Q1 to Q4 when the first condition or the second condition is satisfied during both the first and second periods. Also good.
  • the first threshold value Vt1 is preferably set to be less than 1 ⁇ 2 of the maximum voltage value Vmax applied to each of the four switching elements Q1 to Q4.
  • the time of starting means the time when the operation of the non-contact power feeding apparatus 100 starts.
  • control circuit 3 forcibly sets the output voltage of the comparator 19 to a low level when the wireless power supply device 100 is started. Thereby, in the non-contact electric power feeder 100, it becomes possible to input the 1st control signal S1 from the control circuit 3 to each gate terminal of two switching element Q1, Q4 at the time of starting.
  • control circuit 3 reduces the duty ratios of the first control signal S1 and the second control signal S2 so that the switching operation of the four switching elements Q1 to Q4 is soft-started when the wireless power supply device 100 is started. It is preferable to do. Also in this case, it is preferable that the control circuit 3 forcibly sets the output voltage of the comparator 19 to a low level when the wireless power supply device 100 is activated. Thereby, in the non-contact electric power feeder 100, it becomes possible to suppress that an inrush current flows into the electric power feeding part 12 at the time of starting.
  • the non-contact power supply apparatus 100 described above includes an inverter unit 10 that has a first switching element (switching elements Q1, Q4) and a second switching element (switching elements Q2, Q3) and converts a DC voltage into an AC voltage. ing.
  • the non-contact power supply apparatus 100 includes a control unit 11 that controls the inverter unit 10 and a power supply unit 12 that receives the AC voltage and supplies power in a non-contact manner.
  • the control unit 11 controls the first switching element and the second switching element so that the first switching element and the second switching element are alternately turned on.
  • the control unit 11 stops the switching operation of the first switching element and the second switching element when the first condition is satisfied during the suspension period Td.
  • the rest period Td is from the time when the first switching element is turned off to the time when the second switching element starts to change from the off state to the on state.
  • the first condition is a state in which the voltage value of the voltage applied to at least one of the first switching element and the second switching element does not change to the first threshold value Vt1.
  • the contactless power supply device 100 can suppress an increase in loss (switching loss) of the four switching elements Q1 to Q4 as compared to the conventional contactless power supply device. That is, in the non-contact power supply apparatus 100, it is possible to suppress an increase in the loss of the inverter unit 10 as compared with the conventional non-contact power supply apparatus.
  • the control unit 11 controls the first switching element and the second switching element so that the first switching element (switching elements Q1, Q4) and the second switching element (switching elements Q2, Q3) are alternately turned on.
  • a control circuit 3 is preferably provided.
  • the control part 11 is provided with the stop part 4 which can stop the switching operation of a 1st switching element and a 2nd switching element.
  • the stop unit 4 preferably stops the switching operation of the first switching element and the second switching element when the first condition is satisfied during the suspension period Td.
  • the first condition is preferably a state in which the voltage value of the first voltage, which is the voltage applied to the first switching elements (switching elements Q1, Q4), does not increase to the first threshold value Vt1. Also in this non-contact power feeding device 100, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are hard-switched. This can be suppressed.
  • the state in which the voltage value of the first voltage does not increase to the first threshold value Vt1 is preferably when the voltage value of the first voltage is smaller than the first threshold value Vt1. Also in this non-contact power feeding device 100, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are hard-switched. This can be suppressed.
  • the first condition is preferably a state in which the voltage value of the second voltage, which is the voltage applied to the second switching elements (switching elements Q2, Q3), does not decrease to the first threshold value Vt1. Also in this non-contact power feeding device 100, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are hard-switched. This can be suppressed.
  • the state in which the voltage value of the second voltage does not decrease to the first threshold value Vt1 is preferably when the voltage value of the second voltage is larger than the first threshold value Vt1. Also in this non-contact power feeding device 100, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are hard-switched. This can be suppressed.
  • the non-contact power feeding system 300 described above includes the non-contact power feeding device 100 and the non-contact power receiving device 200 that is fed from the non-contact power feeding device 100 in a non-contact manner. Thereby, in the non-contact electric power feeding system 300, the non-contact electric power feeding system 300 provided with the non-contact electric power feeder 100 which can suppress the loss of the inverter part 10 increasing can be provided.
  • the inverter unit 10 is not limited to a full bridge circuit, and may be a half bridge circuit including two switching elements, for example. In this case, one of the two switching elements corresponds to the first switching element, and the remaining switching element corresponds to the second switching element.
  • each of the power feeding coil 13 and the power receiving coil 23 is a spiral coil, but is not limited thereto, and may be a solenoid coil, for example.
  • the solenoid coil means a coil in which a conducting wire is spirally wound around an iron core (core).
  • the non-contact electric power feeder 110 of Embodiment 2 is demonstrated based on FIG.
  • the basic configuration of the contactless power supply apparatus 110 is the same as that of the contactless power supply apparatus 100 of the first embodiment. Further, as shown in FIG. 6, the non-contact power supply apparatus 110 is different from the non-contact power supply apparatus 100 in that it includes a control unit 41 having a configuration different from the control unit 11 in the non-contact power supply apparatus 100.
  • the same components as those in the non-contact power supply apparatus 100 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • the non-contact electric power feeder 110 may be applied to the non-contact electric power feeding system 300 of Embodiment 1, for example.
  • the control unit 41 includes a control circuit 3 and a stop unit 42.
  • the control circuit 3 and the stop unit 42 are integrally configured.
  • the current flowing in the switching element Q2 (The current value of the drain current of the switching element Q2 does not change.
  • the direction of the current flowing through the switching element Q2 does not reverse during the idle period Td after the inverter unit 10 shifts from the slow phase mode to the fast phase mode.
  • the current value of the current flowing through the switching element Q3 (the drain current of the switching element Q3) changes in the same way as the current value of the current flowing through the switching element Q2, as shown in FIG.
  • the stop unit 42 of the control unit 41 in the non-contact power feeding apparatus 110 is configured to determine whether or not a second condition described later is satisfied during the suspension period Td.
  • the stop unit 42 is configured to be able to stop the switching operations of the four switching elements Q1 to Q4 when the second condition is satisfied during the suspension period Td.
  • the control circuit 3 is configured to stop the output of the first control signal S1 and the second control signal S2 when the stop unit 42 determines that the second condition is satisfied during the suspension period Td.
  • the control unit 41 is configured to stop the switching operation of the four switching elements Q1 to Q4 when the second condition is satisfied during the suspension period Td.
  • the second condition is, for example, a state in which the current value of the current flowing through the switching element Q2 (drain current of the switching element Q2) does not change until the second threshold value Vt2 (see FIG. 5).
  • the second condition is, for example, a state where the direction of the current flowing through the switching element Q2 is not reversed. More specifically, the second condition is, for example, when the current value of the current flowing through the switching element Q2 is larger than the second threshold value Vt2.
  • the second threshold value Vt2 is a value for detecting a change in the current value of the current flowing through the switching element Q2.
  • the stop unit 42 includes, for example, a third stop circuit 43 and a fourth stop circuit 44 as shown in FIG.
  • the basic configuration of the third stop circuit 43 is the same as that of the first stop circuit 5 in the non-contact power supply apparatus 100. Therefore, in the 3rd stop circuit 43, the same code
  • the third stop circuit 43 includes a detection unit 45, a setting unit 46, a comparator 9, and a switching element Q5.
  • the detection unit 45 is configured to detect a current flowing through the switching element Q2, for example.
  • the detection unit 45 includes, for example, a resistor R5.
  • a first end of the resistor R5 is electrically connected to the source terminal of the switching element Q2.
  • the first end of the resistor R5 is electrically connected to the non-inverting input terminal of the comparator 9.
  • the second end of the resistor R5 is electrically connected to the ground of the non-contact power feeding device 110.
  • the setting unit 46 is configured to set the threshold value Vt2.
  • the setting unit 46 is electrically connected to the inverting input terminal of the comparator 9.
  • the fourth stop circuit 44 has the same configuration as that of the third stop circuit 43 except that the third stop circuit 43 has a different sign. Therefore, detailed description regarding the fourth stop circuit 44 is omitted as appropriate.
  • the detection unit 47 is configured to detect, for example, a current flowing through the switching element Q4 (drain current of the switching element Q4).
  • the first end of the resistor R6 is electrically connected to the source terminal of the switching element Q4.
  • the detection part 47 is comprised so that the electric current which flows into the switching element Q4 may be detected, you may be comprised so that the electric current (drain current of the switching element Q1) which flows into the switching element Q1 may be detected.
  • the third stop circuit 43 is configured to determine whether or not the second condition is satisfied during the suspension period Td.
  • the third stop circuit 43 is configured to stop the switching operations of the two switching elements Q2 and Q3 when the second condition is satisfied during the suspension period Td.
  • the control circuit 3 is configured to stop the output of the first control signal S1 and the second control signal S2 when the third stop circuit 43 determines that the second condition is satisfied during the suspension period Td.
  • the operation of the control unit 41 in the non-contact power supply apparatus 110 is the same as that of the control unit 11 in the non-contact power supply apparatus 100. Therefore, detailed description regarding the operation of the control unit 41 is omitted.
  • the control unit 41 stops the switching operation of the four switching elements Q1 to Q4 when the second condition is satisfied during the suspension period Td.
  • the gate voltages (gate-source voltages) of the four switching elements Q1 to Q4 can be fixed at a low level. Therefore, in the non-contact power feeding apparatus 110, for example, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to a relative positional shift between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 Hard switching can be suppressed.
  • the non-contact power feeding device 110 it is possible to suppress an increase in loss (switching loss) of the four switching elements Q1 to Q4 as compared with the conventional non-contact power feeding device. That is, even in the non-contact power supply apparatus 110, it is possible to suppress an increase in the loss of the inverter unit 10 as compared with the conventional non-contact power supply apparatus.
  • the second condition is a state where the current value of the current flowing through the switching element Q2 does not change to the second threshold value Vt2, but is not limited thereto.
  • the second condition may be, for example, a state where the current value of the current flowing through the switching element Q3 (the drain current of the switching element Q3) does not change to the second threshold value Vt2.
  • the detection unit 45 is configured to detect a current flowing through the switching element Q3.
  • the rest period Td is from the time when the two switching elements Q1 and Q4 are turned off to the time when the two switching elements Q2 and Q3 start to change from the off state to the on state.
  • the idle period Td may be from the time when the two switching elements Q2 and Q3 are turned off to the time when the two switching elements Q1 and Q4 start to change from the off state to the on state.
  • the second condition is a state in which the current value of the current flowing through the switching element Q1 or the switching element Q4 does not change to the second threshold value Vt2.
  • the fourth stop circuit 44 determines whether or not the second condition is satisfied during the suspension period Td.
  • the fourth stop circuit 44 stops the switching operation of the two switching elements Q1 and Q4 when the second condition is satisfied during the suspension period Td.
  • the control circuit 3 stops the output of the first control signal S1 and the second control signal S2.
  • the non-contact power feeding apparatus 110 described above includes an inverter unit 10, a control unit 41 that controls the inverter unit 10, and a power feeding unit 12.
  • the control unit 41 controls the first switching element and the second switching element so that the first switching element (switching elements Q1, Q4) and the second switching element (switching elements Q2, Q3) are alternately turned on. .
  • the controller 41 stops the switching operations of the first switching element and the second switching element when the second condition is satisfied during the suspension period Td.
  • the second condition is a state in which the current value of the current flowing through the second switching element does not change until the second threshold value Vt2.
  • the non-contact power feeding apparatus 110 when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to, for example, a relative positional shift between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are Hard switching can be suppressed.
  • the non-contact power supply apparatus 110 it is possible to suppress an increase in loss (switching loss) of the four switching elements Q1 to Q4 as compared with the conventional non-contact power supply apparatus. That is, in the non-contact power supply apparatus 110, it is possible to suppress an increase in the loss of the inverter unit 10 as compared with the conventional non-contact power supply apparatus.
  • the control unit 41 includes a control circuit 3 and a stop unit 42 capable of stopping the switching operation of the first switching elements (switching elements Q1, Q4) and the second switching elements (switching elements Q2, Q3). Preferably it is.
  • the stop unit 42 preferably stops the switching operations of the first switching element and the second switching element when the second condition is satisfied during the suspension period Td. Also in this non-contact power feeding device 110, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are hard-switched. This can be suppressed.
  • the second condition is preferably a state where the direction of the current flowing through the second switching elements (switching elements Q2, Q3) is not reversed. Also in this non-contact power feeding device 110, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are hard-switched. This can be suppressed.
  • the state where the direction of the current flowing through the second switching element (switching elements Q2, Q3) is not reversed is preferably when the current value of the current flowing through the second switching element is larger than the second threshold value Vt2. Also in this non-contact power feeding device 110, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are hard-switched. This can be suppressed.
  • the non-contact power supply apparatus 110 may further include the configuration of the stop unit 4 in the non-contact power supply apparatus 100 of the first embodiment. Thereby, in the control part 41, it becomes possible to detect more accurately that the inverter part 10 transfers to a phase advance mode from a slow phase mode. Therefore, in the non-contact power feeding apparatus 110, it is possible to further suppress hard switching of the four switching elements Q1 to Q4 when the inverter unit 10 shifts from the slow phase mode to the fast phase mode. As a result, in the non-contact power supply apparatus 110, it is possible to further suppress an increase in loss (switching loss) of the four switching elements Q1 to Q4 as compared with the conventional non-contact power supply apparatus. That is, in the non-contact power supply apparatus 110, it is possible to further suppress an increase in the loss of the inverter unit 10 as compared with the conventional non-contact power supply apparatus.
  • the non-contact electric power feeder 120 of Embodiment 3 is demonstrated based on FIG.
  • the basic configuration of the contactless power supply device 120 is the same as that of the contactless power supply device 100 of the first embodiment. Further, as shown in FIG. 7, the non-contact power supply apparatus 120 is different from the non-contact power supply apparatus 100 in that it includes a control unit 51 having a configuration different from the control unit 11 in the non-contact power supply apparatus 100.
  • the same components as those of the non-contact power supply device 100 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • the non-contact electric power feeder 120 may be applied to the non-contact electric power feeding system 300 of Embodiment 1, for example.
  • the control unit 51 includes a control circuit 52 and a stop unit 53.
  • the control circuit 52 and the stop unit 53 are configured separately.
  • the control circuit 52 is, for example, the microcomputer.
  • the basic configuration of the control circuit 52 is the same as that of the control circuit 3 in the non-contact power supply apparatus 100.
  • the control circuit 52 is not limited to the microcomputer, and may be a microprocessor, a microcontroller, or the like, for example. Further, the control circuit 52 is not limited to the microcomputer, and may be a control IC, for example.
  • the stop unit 53 is configured to determine whether or not the first condition is satisfied during the suspension period Td. Further, the stop unit 53 is configured to stop the switching operations of the four switching elements Q1 to Q4 when the first condition is satisfied during the suspension period Td.
  • the stop unit 53 includes, for example, a fifth stop circuit 54 and a sixth stop circuit 68.
  • the configuration of the fifth stop circuit 54 is the same as that of the first stop circuit 5 in the non-contact power supply apparatus 100, and therefore the same components are denoted by the same reference numerals and description thereof is omitted as appropriate.
  • the structure of the 6th stop circuit 68 is the same structure as the 2nd stop circuit 6 in the non-contact electric power feeder 100, the same code
  • the fifth stop circuit 54 includes a detection unit 7, a setting unit 8, a comparison unit 55, and three logic circuits 56 to 58.
  • the comparison unit 55 includes a comparator 59, two resistors R7 and R8, and a switching element Q7.
  • the switching element Q7 includes a first terminal, a second terminal, and a control terminal.
  • the switching element Q7 is, for example, a bipolar transistor. In this case, in the switching element Q7, the first terminal is a collector terminal, the second terminal is an emitter terminal, and the control terminal is a base terminal.
  • the inverting input terminal of the comparator 59 is electrically connected to the first end of the resistor R2 in the detection unit 7.
  • a non-inverting input terminal of the comparator 59 is electrically connected to the setting unit 8.
  • the output terminal of the comparator 59 is electrically connected to the base terminal of the switching element Q7 via the resistor R7.
  • the collector terminal of the switching element Q7 is pulled up by a resistor R8.
  • the collector terminal of the switching element Q7 is electrically connected to the three logic circuits 56-58.
  • the emitter terminal of the switching element Q7 is electrically connected to the ground of the non-contact power feeding device 120.
  • the logic circuit 56 includes two OR circuits 60 and 61 and a NOT circuit 62.
  • the first input terminal of the OR circuit 60 is electrically connected to the control circuit 52.
  • the second input terminal of the OR circuit 60 is electrically connected to the collector terminal of the switching element Q7.
  • the output terminal of the OR circuit 60 is electrically connected to the first input terminal of the OR circuit 61.
  • the second input terminal of the OR circuit 61 is electrically connected to the logic circuit 58.
  • the second input terminal of the OR circuit 61 is electrically connected to a logic circuit 72 described later.
  • the output terminal of the OR circuit 61 is electrically connected to the input terminal of the NOT circuit 62.
  • the output terminal of the NOT circuit 62 is electrically connected to the gate terminal of the switching element Q2.
  • the logic circuit 57 has the same configuration as the logic circuit 56 except that the logic circuit 57 has a different sign from the logic circuit 56. Therefore, detailed description of the logic circuit 57 is omitted as appropriate.
  • the output terminal of the NOT circuit 65 is electrically connected to the gate terminal of the switching element Q3.
  • the logic circuit 58 includes a flip-flop 66 and a latch circuit 67.
  • the flip-flop 66 is, for example, a D flip-flop.
  • a first input terminal (clock input terminal) of the flip-flop 66 is electrically connected to the control circuit 52.
  • the second input terminal (data input terminal) of the flip-flop 66 is electrically connected to the collector terminal of the switching element Q7.
  • the output terminal of the flip-flop 66 is electrically connected to the set terminal of the latch circuit 67.
  • the reset terminal of the latch circuit 67 is electrically connected to the grant of the non-contact power feeding device 120.
  • the output terminal of the latch circuit 67 is electrically connected to the second input terminal of the OR circuit 61 in the logic circuit 56.
  • the output terminal of the latch circuit 67 is electrically connected to the second input terminal of the OR circuit 75 in the logic circuit 70 described later.
  • the output terminal of the latch circuit 67 is electrically connected to the second input terminal of the OR circuit 64 in the logic circuit 57.
  • the output terminal of the latch circuit 67 is electrically connected to the second input terminal of the OR circuit 78 in the logic circuit 71 described later.
  • the sixth stop circuit 68 includes a detection unit 17, a setting unit 18, a comparison unit 69, and three logic circuits 70 to 72.
  • the comparison unit 69 has the same configuration as the comparison unit 55 except that the comparison unit 69 has a different reference numeral. Therefore, the detailed description regarding the comparison part 69 is abbreviate
  • Each of the two logic circuits 70 and 71 has the same configuration as that of the logic circuit 56 except that the logic circuit 56 has a different sign as shown in FIG. Therefore, detailed description of each of the two logic circuits 70 and 71 is omitted as appropriate.
  • the second input terminal of the OR circuit 74 in the logic circuit 70 is electrically connected to the collector terminal of the switching element Q8.
  • the output terminal of the NOT circuit 76 in the logic circuit 70 is electrically connected to the gate terminal of the switching element Q1.
  • the second input terminal of the OR circuit 77 in the logic circuit 71 is electrically connected to the collector terminal of the switching element Q8.
  • the output terminal of the NOT circuit 79 in the logic circuit 71 is electrically connected to the gate terminal of the switching element Q4.
  • the logic circuit 72 has the same configuration as the logic circuit 58 except that the logic circuit 72 has a different sign. Therefore, detailed description of the logic circuit 72 is omitted as appropriate.
  • the second input terminal (data input terminal) of the flip-flop 80 in the logic circuit 72 is electrically connected to the collector terminal of the switching element Q8.
  • the fifth stop circuit 54 is configured to determine whether or not the first condition is satisfied during the suspension period Td.
  • the fifth stop circuit 54 is configured to stop the switching operations of the four switching elements Q1 to Q4 when the first condition is satisfied during the suspension period Td.
  • t6 in FIG. 8 represents the time of the inverter part 10 shifting to the phase advance mode from the slow phase mode.
  • Vg1, Vg2, Vds1, and Vds2 in FIG. 8 are the same as Vg1, Vg2, Vds1, and Vds2 in FIG.
  • Vs1 in FIG. 8 represents the signal level of the first control signal S1.
  • Vs2 in FIG. 8 represents the signal level of the second control signal S2.
  • V3 in FIG. 8 represents the output voltage of the comparison unit 69.
  • V4 in FIG. 8 represents the output voltage of the comparison unit 55.
  • V6 in FIG. 8 represents the output voltage of the flip-flop 80.
  • V7 in FIG. 8 represents the output voltage of the latch circuit 67.
  • V8 in FIG. 8 represents the output voltage of the latch circuit 81.
  • the fifth stop circuit 54 determines whether or not the first condition is satisfied during the suspension period Td. Specifically, the fifth stop circuit 54 determines whether or not the voltage value of the voltage applied to the switching element Q2 is larger than the first threshold value Vt1 during the pause period Td.
  • the fifth stop circuit 54 stops the switching operation of the four switching elements Q1 to Q4 when the first condition is satisfied during the suspension period Td.
  • the stop unit 53 stops the switching operation of the four switching elements Q1 to Q4.
  • the gate voltages (gate-source voltages) of the four switching elements Q1 to Q4 can be fixed at a low level. Therefore, in the non-contact power feeding device 120, for example, when the inverter unit 10 shifts from the slow phase mode to the fast phase mode due to the relative displacement between the power feeding coil 13 and the power receiving coil 23, the four switching elements Q1 to Q4 are Hard switching can be suppressed.
  • the contactless power supply device 120 can suppress an increase in loss (switching loss) of the four switching elements Q1 to Q4 as compared to the conventional contactless power supply device. That is, in the non-contact power feeding device 120, it is possible to suppress an increase in the loss of the inverter unit 10 as compared with the conventional non-contact power feeding device.
  • the first condition is a state where the voltage value of the voltage applied to the switching element Q2 does not change to the first threshold value Vt1, but is not limited thereto.
  • the stop unit 53 is configured to determine whether or not the first condition is satisfied during the suspension period Td, but is not limited to this configuration.
  • the stop unit 53 may be configured to determine whether or not the second condition is satisfied during the suspension period Td. In this case, the stop unit 53 stops the switching operation of the four switching elements Q1 to Q4 when the second condition is satisfied during the suspension period Td.
  • the non-contact power feeding device 120 since each of the four switching elements Q1 to Q4 is in an off state at the time of startup, the voltage (drain-source voltage) applied to each of the switching element Q2 and the switching element Q4 increases. Thereby, in the non-contact power feeding device 120, at the time of start-up, each of the switching element Q7 and the switching element Q8 is turned off, so that the collector-emitter voltage of each of the switching element Q7 and the switching element Q8 becomes high level. In other words, in the non-contact power feeding device 120, the second input terminals of the four OR circuits 60, 63, 74, and 77 are at a high level when activated. As a result, in the non-contact power feeding device 120, the first control signal S1 and the second control signal S2 from the control circuit 52 may not be input to the gate terminals of the corresponding four switching elements Q1 to Q4.
  • control circuit 52 is electrically connected to the collector terminals of the switching element Q7 and the switching element Q8.
  • the control circuit 52 forcibly sets the collector-emitter voltages of the switching element Q7 and the switching element Q8 to a low level when the non-contact power feeding device 120 is activated. Thereby, in the non-contact power feeding device 120, at the time of start-up, the first control signal S1 and the second control signal S2 from the control circuit 52 can be input to the gate terminals of the corresponding four switching elements Q1 to Q4. It becomes.
  • control circuit 52 reduces the duty ratios of the first control signal S1 and the second control signal S2 so that the switching operation of the four switching elements Q1 to Q4 is soft-started when the non-contact power feeding device 120 is activated. It is preferable to do. Also in this case, it is preferable that the control circuit 52 forcibly sets the collector-emitter voltages of the switching element Q7 and the switching element Q8 to the low level when the contactless power feeding device 120 is started. Thereby, in the non-contact electric power feeder 120, it becomes possible to suppress that an inrush current flows into the electric power feeding part 12 at the time of starting.
  • the control circuit 52 and the stop unit 53 are configured separately. Thereby, in the non-contact power feeding apparatus 120, the stopping unit 53 can directly stop the switching operation of the four switching elements Q1 to Q4 without using the control circuit 52. Therefore, in the non-contact power feeding device 120, when the inverter unit 10 shifts from the slow phase mode to the advanced phase mode, the switching operation of the four switching elements Q1 to Q4 is faster than the non-contact power feeding device 100 and the non-contact power feeding device 110. Can be stopped.
  • the power feeding coil 13 and the power receiving coil 23 are spiral coils. Therefore, the non-contact power feeding apparatuses 100, 110, and 120 of the first to third embodiments have an advantage that unnecessary radiation noise is less likely to occur than when a solenoid coil is used as the power feeding coil 13. Further, the non-contact power feeding devices 100, 110, and 120 of the first to third embodiments have an advantage that the range of operating frequencies that can be used in the inverter unit 10 is expanded as a result of reducing unnecessary radiation noise. Hereinafter, this point will be described in detail.
  • the resonance characteristics of the non-contact power feeding system 300 change according to the coupling coefficient between the power feeding coil 13 and the power receiving coil 23, and under certain conditions, two maximum values are generated in the output as shown in FIG. Show properties.
  • this resonance characteristic (bimodal characteristic), as shown in FIG. 9, two “mountains” in which the output is maximized at each of the first frequency fr1 and the third frequency fr3 occur. Between these two “mountains”, a “valley” in which the output is minimized at the second frequency fr2 occurs.
  • the first frequency fr1, the second frequency fr2, and the third frequency fr3 are in a relationship of fr1 ⁇ fr2 ⁇ fr3.
  • a frequency region lower than the second frequency fr2 is referred to as a “low frequency region”
  • a frequency region higher than the second frequency fr2 is referred to as a “high frequency region”.
  • each of a “mountain” in the low-frequency region (a mountain that becomes maximum at the first frequency fr1) and a “mountain” in the high-frequency region (a mountain that becomes maximum at the third frequency fr3) there is a region where the inverter unit 10 operates in the slow phase mode (hereinafter referred to as “slow phase region”). Therefore, the inverter unit 10 can operate in the slow phase mode even when the operating frequency f1 is at any of the two “mountains”.
  • the case where the operating frequency f1 of the inverter unit 10 is in the “mountain” of the low frequency region and the case of being in the “mountain” of the high frequency region, the case where the operating frequency f1 is in the “mountain” of the low frequency region is better. Unnecessary radiation noise is reduced. That is, in the “mountain” of the high frequency region, the current flowing through the feeding coil 13 and the current flowing through the receiving coil 23 are in phase. On the other hand, in the “mountain” of the low frequency region, the current flowing through the feeding coil 13 and the current flowing through the receiving coil 23 are in opposite phases. Therefore, in the “mountain” of the low frequency region, the unnecessary radiation noise generated in the power feeding coil 13 and the unnecessary radiation noise generated in the power receiving coil 23 are canceled out from each other. Unwanted radiation noise is reduced.
  • the operating frequency f1 of the inverter unit 10 is a low-frequency region of a “mountain” slow phase region. If (fr1 to fr2), the inverter unit 10 operates in the slow phase mode, and unnecessary radiation noise is reduced.
  • the contactless power supply devices 100, 110, and 120 of the first to third embodiments when a solenoid coil is used as the power supply coil 13, the low-frequency region of the “mountain” low-frequency region is the power supply coil 13 and the power reception coil 23. Therefore, it is necessary to control the operating frequency f1 of the inverter unit 10 in such an uncertain slow phase region.
  • the spiral coil is used as the power supply coil 13, even if the operating frequency f1 of the inverter unit 10 is a “mountain” in the high frequency region. Even in the slow phase region (higher frequency than fr3), unnecessary radiation noise is greatly reduced as compared with the case where a solenoid coil is used as the feeding coil 13. That is, in the non-contact power feeding devices 100, 110, and 120 according to the first to third embodiments, the spiral coil is used as the power feeding coil 13, so that the operating frequency f1 of the inverter unit 10 is a “mountain” slow phase region in a low frequency region.
  • the range of the operating frequency f1 usable in the inverter unit 10 is expanded.
  • the slow phase region of the “mountain” in the high frequency region is an uncertain region, if the operating frequency f1 of the inverter unit 10 is swept from a sufficiently high frequency to a low frequency side, the operating frequency f1 is “ Since it passes through the lagging region of the mountain, complicated control is unnecessary.
  • Control circuit 4 Stop part 10 Inverter part 11 Control part 12 Electric power feeding part 41 Control part 42 Stop part 51 Control part 52 Control circuit 53 Stop part 100 Non-contact electric power feeder 110 Non-contact electric power feeder 120 Non-contact electric power feeder 200 Non-contact electric power receiver 300 Non-contact power supply system Q1 Switching element (first switching element) Q2 switching element (second switching element) Q3 Switching element (second switching element) Q4 Switching element (first switching element)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 本発明の課題は、インバータ部の損失が増加するのを抑制可能な非接触給電装置および非接触給電システムを提供することである。本発明に係る非接触給電装置(100)は、インバータ部(10)と、制御部(11)と、給電部(12)とを備える。制御部(11)は、休止期間に第1条件の場合、第1スイッチング素子(Q1,Q4)および第2スイッチング素子(Q2,Q3)のスイッチング動作を停止させる。休止期間は、第1スイッチング素子(Q1,Q4)がオン状態からオフ状態になった時点から第2スイッチング素子(Q2,Q3)がオフ状態からオン状態へ変化し始める時点までの間である。第1条件は、第1スイッチング素子(Q1,Q4)と第2スイッチング素子(Q2,Q3)との少なくとも一方に印加された電圧の電圧値が第1閾値まで変化しない状態である。

Description

非接触給電装置および非接触給電システム
 本発明は、一般に、非接触給電装置および非接触給電システムに関し、より詳細には、給電対象に非接触で給電する非接触給電装置および非接触給電システムに関する。
 近年、電気自動車やハイブリッド電気自動車等の車両に電力を非接触で伝送する電力伝送システムが提案されている(特許文献1)。
 特許文献1に記載された電力伝送システムは、インバータ部と、送電アンテナと、送電制御部と、受電アンテナとを備えている。インバータ部は、フルブリッジ方式で接続された4つの電界効果トランジスタを備えている。特許文献1には、上記車両の底面部に、受電アンテナが配置される旨が記載されている。また、特許文献1には、上記車両を停止させることが可能なスペースの地中部に、送電アンテナ等が埋設される旨が記載されている。また、特許文献1には、車両充電設備が、インバータ部と、送電アンテナと、送電制御部とを備える旨が記載されている。
 上記車両充電設備は、送電アンテナと受電アンテナとの間の結合係数を算出し、この結合係数によって送電アンテナと受電アンテナとの間の位置ずれを適切に把握する。これにより、上記車両充電設備では、上記位置ずれに基づいて電力伝送時の適切な周波数を選定することができ、効率的な電力伝送を実行することが可能となる。
 特許文献1に記載された電力伝送システムにおける車両充電設備では、例えば、上記車両に電力を非接触で伝送しているとき、地震等の振動に起因して送電アンテナ(給電部)と受電アンテナ(受電部)との相対的な位置ずれが生じる可能性がある。このとき、上記車両充電設備は、上記結合係数を算出し、上記位置ずれを適切に把握する。
 しかしながら、上記車両充電設備では、上記結合係数を算出しているときに、送電アンテナと受電アンテナとの相対的な位置ずれによって、インバータ部における4つの電界効果トランジスタがハードスイッチングする虞がある。これにより、上記車両充電設備では、4つの電界効果トランジスタの損失(スイッチング損失)が増加する可能性がある。つまり、上記車両充電設備では、インバータ部の損失が増加する可能性がある。
特開2013-211932号公報
 本発明の目的は、インバータ部の損失が増加するのを抑制可能な非接触給電装置および非接触給電システムを提供することである。
 本発明に係る一態様の非接触給電装置は、第1スイッチング素子および第2スイッチング素子を有して直流電圧を交流電圧に変換するインバータ部と、前記インバータ部を制御する制御部と、前記交流電圧が印加され非接触で給電する給電部とを備えている。前記制御部は、前記第1スイッチング素子と前記第2スイッチング素子とが交互にオン状態となるように、前記第1スイッチング素子および前記第2スイッチング素子を制御する。前記制御部は、第1条件あるいは第2条件の場合、前記第1スイッチング素子および前記第2スイッチング素子のスイッチング動作を停止させる。前記休止期間は、前記第1スイッチング素子がオン状態からオフ状態になった時点から前記第2スイッチング素子がオフ状態からオン状態へ変化し始める時点までの間である。前記第1条件は、前記第1スイッチング素子と前記第2スイッチング素子との少なくとも一方に印加された電圧の電圧値が第1閾値まで変化しない状態である。前記第2条件は、前記第2スイッチング素子に流れる電流の電流値が第2閾値まで変化しない状態である。
 本発明に係る一態様の非接触給電システムは、前記非接触給電装置と、前記非接触給電装置から非接触で給電される非接触受電装置とを備えている。
実施形態1の非接触給電装置を備えた非接触給電システムの回路図である。 同上の非接触給電システムの使用例を示す模式図である。 実施形態1の非接触給電装置の概略斜視図である。 比較例の非接触給電装置の動作を説明するタイミングチャートである。 実施形態1の非接触給電装置の動作を説明するタイミングチャートである。 実施形態2の非接触給電装置を備えた非接触給電システムの回路図である。 実施形態3の非接触給電装置を備えた非接触給電システムの回路図である。 同上の非接触給電装置の動作を説明するタイミングチャートである。 実施形態1~3の非接触給電装置における共振特性の一例を示すグラフである。
 (実施形態1)
 以下では、実施形態1の非接触給電装置100について、図1~図3を参照しながら説明する。なお、以下では、説明の便宜上、非接触給電装置100を備えた非接触給電システム300を説明した後に、非接触給電装置100を詳細に説明する。
 非接触給電システム300は、非接触給電装置100と、非接触受電装置200とを備えている。
 非接触給電装置100は、例えば、車両900(図2参照)を駐車させることが可能なスペース(駐車スペース)の地面800に設置される。車両900は、例えば、電気自動車である。地面800は、例えば、コンクリートである。なお、車両900は、電気自動車に限らず、例えば、ハイブリッド電気自動車等であってもよい。また、地面800は、コンクリートに限らず、例えば、アスファルト、土等であってもよい。
 非接触給電装置100は、地面800に設置されるように構成されているが、この構成に限らない。非接触給電装置100は、例えば、地面800に形成された穴(埋込穴)に埋め込み配置されるように構成されていてもよい。
 非接触受電装置200は、非接触給電装置100から非接触で給電されるように構成されている。非接触受電装置200は、例えば、車両900の底部に取り付けられる。
 非接触受電装置200は、例えば、図1に示すように、受電部20と、整流部21と、平滑部22と、一対の出力端子2A,2Bとを備えている。
 受電部20は、非接触給電装置100から非接触で供給された電力を受電するように構成されている。受電部20は、例えば、受電コイル23と、2つのコンデンサ24,25とを備えている。
 受電コイル23は、例えば、スパイラルコイルである。スパイラルコイルとは、平面視において導線が渦巻き状に巻かれたコイル(平面コイル)を意味する。
 整流部21は、受電部20で受電された電力を整流するように構成されている。整流部21は、例えば、ダイオードブリッジである。
 整流部21の一対の入力端のうち第1入力端は、コンデンサ24を介して、受電コイル23の第1端と電気的に接続されている。整流部21の一対の入力端のうち第2入力端は、コンデンサ25を介して、受電コイル23の第2端と電気的に接続されている。整流部21の一対の出力端は、平滑部22と電気的に接続されている。
 平滑部22は、例えば、コンデンサ(例えば、電解コンデンサ)である。平滑部22の高電位側の接続端は、整流部21の一対の出力端のうち第1出力端と電気的に接続されている。平滑部22の低電位側の接続端は、整流部21の一対の出力端のうち第2出力端と電気的に接続されている。
 一対の出力端子2A,2B間には、例えば、車両900の負荷90が電気的に接続される。負荷90は、例えば、バッテリ91(図2参照)と、充電装置92(図2参照)とを備える。充電装置92は、バッテリ91を充電するように構成されている。
 なお、受電部20は、コンデンサ25を備えているが、コンデンサ25を備えていなくてもよい。整流部21は、ダイオードブリッジであるが、これに限らない。非接触受電装置200は、平滑部22を備えているが、平滑部22を備えていなくてもよい。
 非接触給電装置100は、例えば、一対の入力端子1A,1Bと、インバータ部10と、制御部11と、給電部12と、筐体30(図2,3参照)とを備えている。
 一対の入力端子1A,1B間には、例えば、直流電源部400が電気的に接続される。直流電源部400は、直流電圧を出力するように構成されている。直流電源部400は、例えば、PFC(Power Factor Correction)回路である。なお、非接触給電装置100は、直流電源部400を構成要素として含まないが、直流電源部400を構成要素として含んでもよい。また、直流電源部400は、PFC回路に限らず、例えば、AC/DCコンバータ等であってもよい。
 インバータ部10は、直流電圧を交流電圧に変換するように構成されている。インバータ部10は、例えば、フルブリッジ回路である。インバータ部10は、4つのスイッチング素子Q1~Q4を備えている。非接触給電装置100では、例えば、スイッチング素子Q1とスイッチング素子Q4とが第1スイッチング素子に相当し、スイッチング素子Q2とスイッチング素子Q3とが第2スイッチング素子に相当する。
 スイッチング素子Q1は、第1端子と、第2端子と、制御端子とを備えている。スイッチング素子Q1は、例えば、ノーマリオフ型のnチャネルMOSFETである。この場合、スイッチング素子Q1では、第1端子がドレイン端子であり、第2端子がソース端子であり、制御端子がゲート端子である。なお、図1中のスイッチング素子Q1における図記号のダイオードは、内蔵ダイオード(ボディーダイオード)を表している。
 3つのスイッチング素子Q2~Q4の各々は、図1に示すように、スイッチング素子Q1と符号が異なる点を除いて、スイッチング素子Q1と同じ構成である。ゆえに、3つのスイッチング素子Q2~Q4の各々に関する詳細な説明は省略する。
 スイッチング素子Q1のドレイン端子は、入力端子1Aと電気的に接続されている。スイッチング素子Q1のゲート端子は、制御部11と電気的に接続されている。スイッチング素子Q1のソース端子は、給電部12と電気的に接続されている。また、スイッチング素子Q1のソース端子は、スイッチング素子Q2のドレイン端子と電気的に接続されている。スイッチング素子Q2のゲート端子は、制御部11と電気的に接続されている。スイッチング素子Q2のソース端子は、入力端子1Bと電気的に接続されている。また、スイッチング素子Q2のソース端子は、非接触給電装置100のグランドと電気的に接続されている。
 スイッチング素子Q3およびスイッチング素子Q4の電気的な接続は、図1に示すように、スイッチング素子Q1およびスイッチング素子Q2の電気的な接続と同じである。ゆえに、スイッチング素子Q3およびスイッチング素子Q4の各々に関する詳細な説明は省略する。
 制御部11は、インバータ部10を制御するように構成されている。制御部11は、例えば、マイクロコンピュータである。上記マイクロコンピュータは、プログラムが記憶されたメモリを備えている。このプログラムには、例えば、非接触給電装置100を動作させる動作モード等が記述されている。
 制御部11は、例えば、制御回路3と、停止部4とを備えている。非接触給電装置100では、制御回路3と停止部4とが一体に構成されている。制御回路3は、例えば、上記マイクロコンピュータに設けられたCPUにより構成されている。停止部4は、例えば、上記マイクロコンピュータに設けられた周辺回路により構成されている。
 なお、制御部11は、上記マイクロコンピュータに限らず、例えば、マイクロプロセッサ、マイクロコントローラ等であってもよい。また、制御部11は、上記マイクロコンピュータに限らず、例えば、制御用ICであってもよい。
 制御回路3は、4つのスイッチング素子Q1~Q4を制御するように構成されている。言い換えれば、制御回路3は、4つのスイッチング素子Q1~Q4それぞれに制御信号を出力するように構成されている。4つの制御信号の各々は、例えば、PWM(Pulse Width Modulation)信号である。
 制御回路3は、2つのスイッチング素子Q1,Q4と、2つのスイッチング素子Q2,Q3とが交互にオン状態となるように、4つのスイッチング素子Q1~Q4を制御するように構成されている。具体的には、制御回路3は、2つのスイッチング素子Q1,Q4に制御信号(第1制御信号S1)を出力する。また、制御回路3は、2つのスイッチング素子Q2,Q3に制御信号(第2制御信号S2)を出力する。これにより、非接触給電装置100では、インバータ部10が、直流電源部400からの直流電圧を、矩形波状の交流電圧に変換することが可能となる。
 停止部4は、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させることが可能に構成されている。停止部4は、4つスイッチング素子Q1~Q4それぞれのゲート端子と電気的に接続されている。また、停止部4は、制御回路3と電気的に接続されている。なお、停止部4の詳細については、後述する。
 給電部12は、インバータ部10により変換された交流電圧が印加されるように構成されている。また、給電部12は、給電対象(非接触受電装置200)に非接触で給電するように構成されている。給電部12は、例えば、給電コイル13と、2つのコンデンサ14,15とを備えている。
 給電コイル13は、例えば、スパイラルコイルである。給電コイル13は、例えば、平面視において給電コイル13の外周が長方形状になるように形成されている(図3参照)。
 給電コイル13の第1端は、コンデンサ14を介して、スイッチング素子Q1のソース端子と電気的に接続されている。給電コイル13の第2端は、コンデンサ15を介して、スイッチング素子Q3のソース端子と電気的に接続されている。
 なお、給電コイル13は、平面視において給電コイル13の外周が長方形状になるように形成されているが、これに限らない。給電コイル13は、例えば、平面視において給電コイル13の外周が正方形状になるように形成されていてもよい。また、給電コイル13は、例えば、平面視において給電コイル13の外周が楕円形状になるように形成されていてもよい。さらに、給電コイル13は、例えば、平面視において給電コイル13の外周が円形状になるように形成されていてもよい。
 コンデンサ14およびコンデンサ15の各々は、給電コイル13と共に共振回路を形成するように構成されている。具体的に説明すると、コンデンサ14およびコンデンサ15それぞれの静電容量は、コンデンサ14およびコンデンサ15の各々が給電コイル13と共に上記共振回路を形成するように、設定されている。なお、給電部12は、コンデンサ15を備えているが、コンデンサ15を備えていなくてもよい。
 非接触給電装置100では、インバータ部10、制御部11および給電部12が、例えば、複数の電子部品が実装された基板(実装基板)で構成されている。
 筐体30は、実装基板を収納する。言い換えれば、筐体30は、インバータ部10、制御部11および給電部12を収納する。筐体30は、ベース31(図3参照)と、カバー32(図3参照)とを備えている。
 ベース31は、実装基板が取り付けられる。ベース31は、板状(例えば、矩形板状)に形成されている。また、ベース31は、熱伝導性を有する材料により形成されている。熱伝導性を有する材料は、例えば、金属等である。金属は、例えば、アルミニウム等である。
 実装基板は、絶縁部材を介して、ベース31に取り付けられている。上記絶縁部材は、電気絶縁性および熱伝導性を有する材料により形成されている。上記絶縁部材は、例えば、放熱シートである。なお、上記絶縁部材は、放熱シートに限らず、例えば、放熱グリス等であってもよい。
 カバー32は、実装基板を覆う。また、カバー32は、ベース31に取り付けられる。
 カバー32は、非金属材料により形成されている。非金属材料は、例えば、合成樹脂等である。合成樹脂は、例えば、繊維強化プラスチック等である。なお、非金属材料は、合成樹脂に限らない。非金属材料は、給電コイル13で発生する磁界を通す材料であればよい。
 インバータ部10では、2つのスイッチング素子Q1,Q4と2つのスイッチング素子Q2,Q3とが交互にオン状態となるとき、直流電源部400からの直流電圧を交流電圧に変換する。これにより、非接触給電装置100では、インバータ部10により変換された交流電圧を給電コイル13に印加することが可能となる。このとき、給電コイル13に印加された電圧は、2つのコンデンサ14,15と給電コイル13との上記共振回路によって共振される。
 また、非接触給電装置100では、給電コイル13に交流電圧が印加されると、給電コイル13で発生する磁界による電磁誘導によって、給電コイル13から非接触受電装置200(詳細には、受電部20)に非接触で給電することが可能となる。
 次に、非接触給電装置100とは異なる比較例の非接触給電装置について説明する。
 比較例の非接触給電装置の基本構成は、非接触給電装置100と同じである。また、比較例の非接触給電装置は、非接触給電装置100における制御部11の停止部4を備えていない点が、非接触給電装置100と相違する。なお、比較例の非接触給電装置では、非接触給電装置100と同様の構成要素に同一の符号を付して説明および図示を適宜省略する。
 比較例の非接触給電装置では、図4に示すようなタイミングチャートが得られる。なお、図4中のt1は、インバータ部10が遅相モードから進相モードに移行した時点を表している。図4中のVg1は、第1スイッチング素子(スイッチング素子Q1およびスイッチング素子Q4)のゲート電圧を表している。図4中のVg2は、第2スイッチング素子(スイッチング素子Q2およびスイッチング素子Q3)のゲート電圧を表している。図4中のVds1は、第1スイッチング素子のドレイン-ソース間電圧を表している。図4中のVds2は、第2スイッチング素子のドレイン-ソース間電圧を表している。図4中のId1は、第1スイッチング素子のドレイン電流を表している。図4中のId2は、第2スイッチング素子のドレイン電流を表している。
 比較例の非接触給電装置では、インバータ部10が遅相モードから進相モードに移行した後、休止期間Tdに、スイッチング素子Q2に印加された電圧(スイッチング素子Q2のドレイン-ソース間電圧)の電圧値が変化しない。具体的に説明すると、比較例の非接触給電装置では、インバータ部10が遅相モードから進相モードに移行した後、休止期間Tdに、スイッチング素子Q2に印加された電圧の電圧値が減少しない。休止期間Tdは、2つのスイッチング素子Q1,Q4がオン状態からオフ状態になった時点から、2つのスイッチング素子Q2,Q3がオフ状態からオン状態へ変化し始める時点までの間である。なお、スイッチング素子Q3に印加された電圧(スイッチング素子Q3のドレイン-ソース間電圧)の電圧値は、スイッチング素子Q2に印加された電圧の電圧値と同じように変化をする。
 また、比較例の非接触給電装置では、インバータ部10が遅相モードから進相モードに移行した後、休止期間Tdに、スイッチング素子Q1に印加された電圧(スイッチング素子Q1のドレイン-ソース間電圧)の電圧値が変化しない。具体的に説明すると、比較例の非接触給電装置では、インバータ部10が遅相モードから進相モードに移行した後、休止期間Tdに、スイッチング素子Q1に印加された電圧の電圧値が増加しない。なお、スイッチング素子Q4に印加された電圧(スイッチング素子Q4のドレイン-ソース間電圧)の電圧値は、スイッチング素子Q1に印加された電圧の電圧値と同じように変化をする。
 ところで、非接触給電装置100における制御部11の停止部4は、休止期間Tdに、後述の第1条件であるか否かを判定するように構成されている。また、停止部4は、休止期間Tdに第1条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を各別に停止させることが可能に構成されている。制御回路3は、停止部4により休止期間Tdに第1条件であると判定されたとき、第1制御信号S1および第2制御信号S2の出力を停止するように構成されている。言い換えれば、制御部11は、休止期間Tdに第1条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させるように構成されている。
 第1条件は、例えば、スイッチング素子Q2に印加された電圧(スイッチング素子Q2のドレイン-ソース間電圧)の電圧値が第1閾値Vt1(図5参照)まで変化しない状態である。例えば、第1条件は、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1まで減少しない状態である。言い換えれば、第1条件は、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1よりも大きいときである。第1閾値Vt1は、例えば、スイッチング素子Q2に印加された電圧の電圧値の変化を検出するための値である。
 停止部4は、例えば、図1に示すように、第1停止回路5と、第2停止回路6とを備えている。
 第1停止回路5は、検出部7と、設定部8と、コンパレータ9と、スイッチング素子Q5とを備えている。
 検出部7は、例えば、スイッチング素子Q2に印加された電圧を検出するように構成されている。検出部7は、例えば、2つの抵抗R1,R2を備えている。抵抗R1の第1端は、スイッチング素子Q2のドレイン端子と電気的に接続されている。抵抗R1の第2端は、抵抗R2の第1端と電気的に接続されている。抵抗R2の第1端は、コンパレータ9の非反転入力端子と電気的に接続されている。抵抗R2の第2端は、非接触給電装置100のグランドと電気的に接続されている。
 設定部8は、第1閾値Vt1を設定するように構成されている。設定部8は、コンパレータ9の反転入力端子と電気的に接続されている。
 コンパレータ9の出力端子は、スイッチング素子Q5と電気的に接続されている。また、コンパレータ9の出力端子は、制御回路3と電気的に接続されている。
 スイッチング素子Q5は、第1端子と、第2端子と、制御端子とを備えている。スイッチング素子Q5は、例えば、ノーマリオン型のnチャネルMOSFETである。この場合、スイッチング素子Q5では、第1端子がドレイン端子であり、第2端子がソース端子であり、制御端子がゲート端子である。なお、図1中のスイッチング素子Q5における図記号のダイオードは、内蔵ダイオードを表している。
 スイッチング素子Q5のドレイン端子は、スイッチング素子Q2のゲート端子と電気的に接続されている。また、スイッチング素子Q5のドレイン端子は、スイッチング素子Q3のゲート端子と電気的に接続されている。スイッチング素子Q5のソース端子は、非接触給電装置100のグランドと電気的に接続されている。スイッチング素子Q5のゲート端子は、コンパレータ9の出力端子と電気的に接続されている。
 第2停止回路6は、図1に示すように、第1停止回路5と符号が異なる点を除いて、第1停止回路5と同様の構成である。ゆえに、第2停止回路6に関する詳細な説明は適宜省略する。
 検出部17は、例えば、スイッチング素子Q4に印加された電圧(スイッチング素子Q4のドレイン-ソース間電圧)を検出するように構成されている。抵抗R3の第1端は、スイッチング素子Q4のドレイン端子と電気的に接続されている。
 スイッチング素子Q6は、例えば、ノーマリオフ型のnチャネルMOSFETである。この場合、スイッチング素子Q6では、第1端子がドレイン端子であり、第2端子がソース端子であり、制御端子がゲート端子である。なお、図1中のスイッチング素子Q6における図記号のダイオードは、内蔵ダイオードを表している。
 スイッチング素子Q6のドレイン端子は、スイッチング素子Q1のゲート端子と電気的に接続されている。また、スイッチング素子Q6のドレイン端子は、スイッチング素子Q4のゲート端子と電気的に接続されている。
 非接触給電装置100では、第1停止回路5が、休止期間Tdに第1条件であるか否かを判定するように構成されている。また、第1停止回路5は、休止期間Tdに第1条件である場合、2つのスイッチング素子Q2,Q3のスイッチング動作を停止させるように構成されている。制御回路3は、第1停止回路5により休止期間Tdに第1条件であると判定されたとき、第1制御信号S1および第2制御信号S2の出力を停止するように構成されている。
 以下、非接触給電装置100における制御部11の動作について、図5に基づいて説明する。なお、図5中のt2は、インバータ部10が遅相モードから進相モードに移行した時点を表している。図5中のVg1,Vg2,Vds1,Vds2,Id1,Id2は、図4中のVg1,Vg2,Vds1,Vds2,Id1,Id2と同じである。図5中のV1は、コンパレータ19の出力電圧を表している。図5中のV2は、コンパレータ9の出力電圧を表している。
 第1停止回路5は、休止期間Tdに第1条件であるか否かを判定する。要するに、第1停止回路5は、休止期間Tdに、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1よりも大きいか否かを判定する。また、第1停止回路5は、休止期間Tdに第1条件である場合(図5中のt3~t4の期間)、2つのスイッチング素子Q2,Q3のスイッチング動作を停止させる。
 具体的に説明すると、コンパレータ9は、休止期間Tdに、検出部7により検出されたスイッチング素子Q2のドレイン-ソース間電圧が、設定部8により設定された第1閾値Vt1よりも大きいか否かを判定する。コンパレータ9は、スイッチング素子Q2のドレイン-ソース間電圧が第1閾値Vt1よりも大きい場合、スイッチング素子Q5をオン状態にして、2つのスイッチング素子Q2,Q3のスイッチング動作を停止させる。
 制御回路3は、第1停止回路5により休止期間Tdに第1条件であると判定されたとき、第1制御信号S1および第2制御信号S2の出力を停止する(図5中のt5の時点)。
 非接触給電装置100では、休止期間Tdに第1条件である場合、制御部11が4つのスイッチング素子Q1~Q4のスイッチング動作を停止させる。これにより、非接触給電装置100では、4つのスイッチング素子Q1~Q4それぞれのゲート電圧(ゲート-ソース間電圧)をローレベルに固定することが可能となる。よって、非接触給電装置100では、例えば、給電コイル13と受電コイル23との相対的な位置ずれによりインバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。その結果、非接触給電装置100では、特許文献1に記載された電力伝送システムにおける車両充電設備(従来例の非接触給電装置)に比べて、4つのスイッチング素子Q1~Q4の損失(スイッチング損失)が増加するのを抑制することが可能となる。すなわち、非接触給電装置100では、従来例の非接触給電装置に比べて、インバータ部10の損失が増加するのを抑制することが可能となる。
 第1条件は、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態であるが、これに限らない。第1条件は、例えば、スイッチング素子Q3に印加された電圧(スイッチング素子Q3のドレイン-ソース間電圧)の電圧値が第1閾値Vt1まで変化しない状態であってもよい。
 また、第1条件は、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態であるが、これに限らず、例えば、スイッチング素子Q4に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態であってもよい。この場合、第1条件は、スイッチング素子Q4に印加された電圧の電圧値が第1閾値Vt1まで増加しない状態である。具体的に説明すると、第1条件は、例えば、スイッチング素子Q4に印加された電圧の電圧値が第1閾値Vt1よりも小さいときである。また、この場合、第2停止回路6が、休止期間Tdに第1条件であるか否かを判定する。また、第2停止回路6は、休止期間Tdに第1条件である場合、2つのスイッチング素子Q1,Q4のスイッチング動作を停止させる。制御回路3は、第2停止回路6により休止期間Tdに第1条件であると判定されたとき、第1制御信号S1および第2制御信号S2の出力を停止する。なお、第1条件は、スイッチング素子Q4に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態に限らない。第1条件は、スイッチング素子Q1に印加された電圧(スイッチング素子Q1のドレイン-ソース間電圧)の電圧値が第1閾値Vt1まで変化しない状態であってもよい。
 また、第1条件は、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態と、スイッチング素子Q4に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態との一方の状態に限らない。第1条件は、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態とスイッチング素子Q4に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態との両方の状態であってもよい。これにより、制御部11では、インバータ部10が遅相モードから進相モードに移行するのを、より精度良く検出することが可能となる。よって、非接触給電装置100では、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを、より抑制することが可能となる。その結果、非接触給電装置100では、従来例の非接触給電装置に比べて、4つのスイッチング素子Q1~Q4の損失(スイッチング損失)が増加するのを、より抑制することが可能となる。すなわち、非接触給電装置100では、従来例の非接触給電装置に比べて、インバータ部10の損失が増加するのを、より抑制することが可能となる。
 休止期間Tdは、2つのスイッチング素子Q1,Q4がオン状態からオフ状態になった時点から、2つのスイッチング素子Q2,Q3がオフ状態からオン状態へ変化し始める時点までの間であるが、これに限らない。休止期間Tdは、2つのスイッチング素子Q2,Q3がオン状態からオフ状態になった時点から、2つのスイッチング素子Q1,Q4がオフ状態からオン状態へ変化し始める時点までの間であってもよい。2つのスイッチング素子Q1,Q4が第1スイッチング素子に相当し、2つのスイッチング素子Q2,Q3が第2スイッチング素子に相当する場合、休止期間Td(第1休止期間)は、2つのスイッチング素子Q1,Q4がオン状態からオフ状態になった時点から、2つのスイッチング素子Q2,Q3がオフ状態からオン状態へ変化し始める時点までの間である。また、2つのスイッチング素子Q2,Q3とが第1スイッチング素子に相当し、2つのスイッチング素子Q1,Q4が第2スイッチング素子に相当する場合、休止期間Td(第2休止期間)は、2つのスイッチング素子Q2,Q3がオン状態からオフ状態になった時点から、2つのスイッチング素子Q1,Q4がオフ状態からオン状態へ変化し始める時点までの間である。
 なお、制御部11は、第1休止期間と第2休止期間との一方の休止期間に、第1条件あるいは第2条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させる構成に限らない。制御部11は、第1休止期間と第2休止期間との両方の休止期間に、第1条件あるいは第2条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させる構成であってもよい。
 非接触給電装置100では、制御回路3が第1制御信号S1および第2制御信号S2の出力を停止すると(図5中のt5の時点)、スイッチング素子Q2およびスイッチング素子Q3それぞれに印加された電圧が自由振動する。そして、非接触給電装置100では、スイッチング素子Q2およびスイッチング素子Q3それぞれに印加された電圧が、スイッチング素子Q2およびスイッチング素子Q3それぞれに印加された電圧の最大値Vmaxの1/2に収束する。なお、スイッチング素子Q1およびスイッチング素子Q4それぞれに印加された電圧も、制御回路3が第1制御信号S1および第2制御信号S2の出力を停止すると、自由振動する。また、スイッチング素子Q1およびスイッチング素子Q4それぞれに印加された電圧も、スイッチング素子Q1およびスイッチング素子Q4それぞれに印加された電圧の最大値Vmaxの1/2に収束する。
 第1閾値Vt1は、4つのスイッチング素子Q1~Q4それぞれに印加された電圧の最大値Vmaxの1/2未満に設定されていることが好ましい。これにより、非接触給電装置100では、制御回路3が第1制御信号S1および第2制御信号S2の出力を停止させた後、停止部4により4つのスイッチング素子Q1~Q4それぞれに印加された電圧をローレベルに維持することが可能となる。その結果、非接触給電装置100では、仮に、制御回路3が第1制御信号S1および第2制御信号S2を、再び出力することがあったとしても、4つのスイッチング素子Q1~Q4それぞれに印加された電圧をローレベルに固定することが可能となる。よって、非接触給電装置100では、4つのスイッチング素子Q1~Q4がハードスイッチングするのを、より抑制することが可能となる。
 非接触給電装置100では、起動時、4つのスイッチング素子Q1~Q4の各々がオフ状態であるため、スイッチング素子Q2およびスイッチング素子Q4それぞれに印加された電圧(ドレイン-ソース間電圧)が高くなる。これにより、非接触給電装置100では、起動時に、スイッチング素子Q6がオン状態となる。その結果、非接触給電装置100では、制御回路3からの第1制御信号S1が、2つのスイッチング素子Q1,Q4それぞれのゲート端子に入力されない場合がある。なお、起動時とは、非接触給電装置100の動作が開始するときを意味する。
 そこで、制御回路3は、非接触給電装置100の起動時に、コンパレータ19の出力電圧を強制的にローレベルにする。これにより、非接触給電装置100では、起動時に、制御回路3からの第1制御信号S1を、2つのスイッチング素子Q1,Q4それぞれのゲート端子に入力させることが可能となる。
 また、制御回路3は、非接触給電装置100の起動時に、4つのスイッチング素子Q1~Q4のスイッチング動作がソフトスタートするように、第1制御信号S1および第2制御信号S2それぞれのデューティ比を小さくすることが好ましい。この場合も、制御回路3は、非接触給電装置100の起動時に、コンパレータ19の出力電圧を強制的にローレベルにすることが好ましい。これにより、非接触給電装置100では、起動時、給電部12に突入電流が流れるのを抑制することが可能となる。
 以上説明した非接触給電装置100は、第1スイッチング素子(スイッチング素子Q1,Q4)および第2スイッチング素子(スイッチング素子Q2,Q3)を有して直流電圧を交流電圧に変換するインバータ部10を備えている。また、非接触給電装置100は、インバータ部10を制御する制御部11と、上記交流電圧が印加され非接触で給電する給電部12とを備えている。制御部11は、第1スイッチング素子と第2スイッチング素子とが交互にオン状態となるように、第1スイッチング素子および第2スイッチング素子を制御する。制御部11は、休止期間Tdに第1条件である場合、第1スイッチング素子および第2スイッチング素子のスイッチング動作を停止させる。休止期間Tdは、第1スイッチング素子がオン状態からオフ状態になった時点から第2スイッチング素子がオフ状態からオン状態へ変化し始める時点までの間である。第1条件は、第1スイッチング素子と第2スイッチング素子との少なくとも一方に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態である。これにより、非接触給電装置100では、例えば給電コイル13と受電コイル23との相対的な位置ずれによりインバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。その結果、非接触給電装置100では、従来例の非接触給電装置に比べて、4つのスイッチング素子Q1~Q4の損失(スイッチング損失)が増加するのを抑制することが可能となる。すなわち、非接触給電装置100では、従来例の非接触給電装置に比べて、インバータ部10の損失が増加するのを抑制することが可能となる。
 制御部11は、第1スイッチング素子(スイッチング素子Q1,Q4)と第2スイッチング素子(スイッチング素子Q2,Q3)とが交互にオン状態となるように第1スイッチング素子および第2スイッチング素子を制御する制御回路3を備えていることが好ましい。また、制御部11は、第1スイッチング素子および第2スイッチング素子のスイッチング動作を停止させることが可能な停止部4を備えていることが好ましい。停止部4は、休止期間Tdに第1条件である場合、第1スイッチング素子および第2スイッチング素子のスイッチング動作を停止させることが好ましい。この非接触給電装置100でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 第1条件は、第1スイッチング素子(スイッチング素子Q1,Q4)に印加された電圧である第1電圧の電圧値が第1閾値Vt1まで増加しない状態であることが好ましい。この非接触給電装置100でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 上記第1電圧の電圧値が第1閾値Vt1まで増加しない状態は、上記第1電圧の電圧値が第1閾値Vt1よりも小さいときであることが好ましい。この非接触給電装置100でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 第1条件は、第2スイッチング素子(スイッチング素子Q2,Q3)に印加された電圧である第2電圧の電圧値が第1閾値Vt1まで減少しない状態であることが好ましい。この非接触給電装置100でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 上記第2電圧の電圧値が第1閾値Vt1まで減少しない状態は、上記第2電圧の電圧値が第1閾値Vt1よりも大きいときであることが好ましい。この非接触給電装置100でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 以上説明した非接触給電システム300は、非接触給電装置100と、非接触給電装置100から非接触で給電される非接触受電装置200とを備えている。これにより、非接触給電システム300では、インバータ部10の損失が増加するのを抑制可能な非接触給電装置100を備えた非接触給電システム300を提供することができる。
 なお、インバータ部10は、フルブリッジ回路に限らず、例えば、2つのスイッチング素子を備えたハーフブリッジ回路であってもよい。この場合、2つのスイッチング素子のうち一方のスイッチング素子が第1スイッチング素子に相当し、残りのスイッチング素子が第2スイッチング素子に相当する。
 また、給電コイル13および受電コイル23の各々は、スパイラルコイルであるが、これに限らず、例えば、ソレノイドコイル等であってもよい。ソレノイドコイルとは、鉄心(コア)に対して導線が螺旋状に巻き付けられたコイルを意味する。
 (実施形態2)
 以下では、実施形態2の非接触給電装置110について、図6に基づいて説明する。非接触給電装置110の基本構成は、実施形態1の非接触給電装置100と同じである。また、非接触給電装置110は、図6に示すように、非接触給電装置100における制御部11とは異なる構成の制御部41を備えている点等が、非接触給電装置100と相違する。なお、実施形態2の非接触給電装置110では、非接触給電装置100と同様の構成要素に同一の符号を付して説明を適宜省略する。また、非接触給電装置110は、例えば、実施形態1の非接触給電システム300に適用されてもよい。
 制御部41は、制御回路3と、停止部42とを備えている。非接触給電装置110では、制御回路3と停止部42とが一体に構成されている。
 ところで、上記比較例の非接触給電装置では、インバータ部10が遅相モードから進相モードに移行した後(図4中のt1以降)、休止期間Tdに、例えば、スイッチング素子Q2に流れる電流(スイッチング素子Q2のドレイン電流)の電流値が変化しない。具合的に説明すると、比較例の非接触給電装置では、インバータ部10が遅相モードから進相モードに移行した後、休止期間Tdに、スイッチング素子Q2に流れる電流の向きが逆向きにならない。なお、スイッチング素子Q3に流れる電流(スイッチング素子Q3のドレイン電流)の電流値は、図4に示すように、スイッチング素子Q2に流れる電流の電流値と同じように変化をする。
 非接触給電装置110における制御部41の停止部42は、休止期間Tdに、後述の第2条件であるか否かを判定するように構成されている。また、停止部42は、休止期間Tdに第2条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させることが可能に構成されている。制御回路3は、停止部42により休止期間Tdに第2条件であると判定されたとき、第1制御信号S1および第2制御信号S2の出力を停止するように構成されている。言い換えれば、制御部41は、休止期間Tdに第2条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させるように構成されている。
 第2条件は、例えば、スイッチング素子Q2に流れる電流(スイッチング素子Q2のドレイン電流)の電流値が第2閾値Vt2(図5参照)まで変化しない状態である。具体的に説明すると、第2条件は、例えば、スイッチング素子Q2に流れる電流の向きが逆向きにならない状態である。より詳細に説明すると、第2条件は、例えば、スイッチング素子Q2に流れる電流の電流値が第2閾値Vt2よりも大きいときである。第2閾値Vt2は、例えば、スイッチング素子Q2に流れる電流の電流値の変化を検出するための値である。
 停止部42は、例えば、図6に示すように、第3停止回路43と、第4停止回路44とを備えている。
 第3停止回路43の基本構成は、非接触給電装置100における第1停止回路5と同じである。ゆえに、第3停止回路43では、第1停止回路5と同様の構成要素に同一の符号を付して説明を適宜省略する。
 第3停止回路43は、検出部45と、設定部46と、コンパレータ9と、スイッチング素子Q5とを備えている。
 検出部45は、例えば、スイッチング素子Q2に流れる電流を検出するように構成されている。検出部45は、例えば、抵抗R5を備えている。抵抗R5の第1端は、スイッチング素子Q2のソース端子と電気的に接続されている。また、抵抗R5の第1端は、コンパレータ9の非反転入力端子と電気的に接続されている。抵抗R5の第2端は、非接触給電装置110のグランドと電気的に接続されている。
 設定部46は、閾値Vt2を設定するように構成されている。設定部46は、コンパレータ9の反転入力端子と電気的に接続されている。
 第4停止回路44は、図6に示すように、第3停止回路43と符号が異なる点を除いて、第3停止回路43と同じ構成である。ゆえに、第4停止回路44に関する詳細な説明は適宜省略する。
 検出部47は、例えば、スイッチング素子Q4に流れる電流(スイッチング素子Q4のドレイン電流)を検出するように構成されている。抵抗R6の第1端は、スイッチング素子Q4のソース端子と電気的に接続されている。なお、検出部47は、スイッチング素子Q4に流れる電流を検出するように構成されているが、スイッチング素子Q1に流れる電流(スイッチング素子Q1のドレイン電流)を検出するように構成されていてもよい。
 非接触給電装置110では、第3停止回路43が、休止期間Tdに第2条件であるか否かを判定するように構成されている。また、第3停止回路43は、休止期間Tdに第2条件である場合、2つのスイッチング素子Q2,Q3のスイッチング動作を停止させるように構成されている。制御回路3は、第3停止回路43により休止期間Tdに第2条件であると判定されたとき、第1制御信号S1および第2制御信号S2の出力を停止するように構成されている。なお、非接触給電装置110における制御部41の動作は、非接触給電装置100における制御部11と同様である。ゆえに、制御部41の動作に関する詳細な説明は省略する。
 非接触給電装置110では、制御部41が、休止期間Tdに第2条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させる。これにより、非接触給電装置110では、4つのスイッチング素子Q1~Q4それぞれのゲート電圧(ゲート-ソース間電圧)をローレベルに固定することが可能となる。よって、非接触給電装置110では、例えば、給電コイル13と受電コイル23との相対的な位置ずれによりインバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。その結果、非接触給電装置110でも、従来例の非接触給電装置に比べて、4つのスイッチング素子Q1~Q4の損失(スイッチング損失)が増加するのを抑制することが可能となる。すなわち、非接触給電装置110でも、従来例の非接触給電装置に比べて、インバータ部10の損失が増加するのを抑制することが可能となる。
 第2条件は、スイッチング素子Q2に流れる電流の電流値が第2閾値Vt2まで変化しない状態であるが、これに限らない。第2条件は、例えば、スイッチング素子Q3に流れる電流(スイッチング素子Q3のドレイン電流)の電流値が第2閾値Vt2まで変化しない状態であってもよい。この場合、検出部45は、スイッチング素子Q3に流れる電流を検出するように構成される。
 休止期間Tdは、2つのスイッチング素子Q1,Q4がオン状態からオフ状態になった時点から、2つのスイッチング素子Q2,Q3がオフ状態からオン状態へ変化し始める時点までの間であるが、これに限らない。休止期間Tdは、2つのスイッチング素子Q2,Q3がオン状態からオフ状態になった時点から、2つのスイッチング素子Q1,Q4がオフ状態からオン状態へ変化し始める時点までの間であってもよい。この場合、第2条件は、スイッチング素子Q1あるいはスイッチング素子Q4に流れる電流の電流値が第2閾値Vt2まで変化しない状態である。また、この場合、第4停止回路44が、休止期間Tdに第2条件であるか否かを判定する。また、第4停止回路44は、休止期間Tdに第2条件である場合、2つのスイッチング素子Q1,Q4のスイッチング動作を停止させる。制御回路3は、第4停止回路44により休止期間Tdに第2条件であると判定されたとき、第1制御信号S1および第2制御信号S2の出力を停止する。
 以上説明した非接触給電装置110は、インバータ部10と、インバータ部10を制御する制御部41と、給電部12とを備えている。制御部41は、第1スイッチング素子(スイッチング素子Q1,Q4)と第2スイッチング素子(スイッチング素子Q2,Q3)とが交互にオン状態となるように第1スイッチング素子および第2スイッチング素子を制御する。制御部41は、休止期間Tdに第2条件である場合、第1スイッチング素子および第2スイッチング素子のスイッチング動作を停止させる。第2条件は、第2スイッチング素子に流れる電流の電流値が第2閾値Vt2まで変化しない状態である。これにより、非接触給電装置110では、例えば給電コイル13と受電コイル23との相対的な位置ずれによりインバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。その結果、非接触給電装置110では、従来例の非接触給電装置に比べて、4つのスイッチング素子Q1~Q4の損失(スイッチング損失)が増加するのを抑制することが可能となる。すなわち、非接触給電装置110では、従来例の非接触給電装置に比べて、インバータ部10の損失が増加するのを抑制することが可能となる。
 制御部41は、制御回路3と、第1スイッチング素子(スイッチング素子Q1,Q4)および第2スイッチング素子(スイッチング素子Q2,Q3)のスイッチング動作を停止させることが可能な停止部42とを備えていることが好ましい。停止部42は、休止期間Tdに第2条件である場合、第1スイッチング素子および第2スイッチング素子のスイッチング動作を停止させることが好ましい。この非接触給電装置110でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 第2条件は、第2スイッチング素子(スイッチング素子Q2,Q3)に流れる電流の向きが逆向きにならない状態であることが好ましい。この非接触給電装置110でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 第2スイッチング素子(スイッチング素子Q2,Q3)に流れる電流の向きが逆向きにならない状態は、第2スイッチング素子に流れる電流の電流値が第2閾値Vt2よりも大きいときであることが好ましい。この非接触給電装置110でも、給電コイル13と受電コイル23との相対的な位置ずれによって、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。
 非接触給電装置110は、実施形態1の非接触給電装置100における停止部4の構成を更に備えていてもよい。これにより、制御部41では、インバータ部10が遅相モードから進相モードに移行するのを、より精度良く検出することが可能となる。よって、非接触給電装置110では、インバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを、より抑制することが可能となる。その結果、非接触給電装置110では、従来例の非接触給電装置に比べて、4つのスイッチング素子Q1~Q4の損失(スイッチング損失)が増加するのを、より抑制することが可能となる。すなわち、非接触給電装置110では、従来例の非接触給電装置に比べて、インバータ部10の損失が増加するのを、より抑制することが可能となる。
 (実施形態3)
 以下では、実施形態3の非接触給電装置120について、図7に基づいて説明する。非接触給電装置120の基本構成は、実施形態1の非接触給電装置100と同じである。また、非接触給電装置120は、図7に示すように、非接触給電装置100における制御部11とは異なる構成の制御部51を備えている点等が、非接触給電装置100と相違する。なお、実施形態3の非接触給電装置120では、非接触給電装置100と同様の構成要素に同一の符号を付して説明を適宜省略する。また、非接触給電装置120は、例えば、実施形態1の非接触給電システム300に適用されてもよい。
 制御部51は、制御回路52と、停止部53とを備えている。非接触給電装置120では、制御回路52と停止部53とが別体に構成されている。
 制御回路52は、例えば、上記マイクロコンピュータである。制御回路52の基本構成は、非接触給電装置100における制御回路3と同じである。なお、制御回路52は、上記マイクロコンピュータに限らず、例えば、マイクロプロセッサ、マイクロコントローラ等であってもよい。また、制御回路52は、上記マイクロコンピュータに限らず、例えば、制御用ICであってもよい。
 停止部53は、休止期間Tdに第1条件であるか否かを判定するように構成されている。また、停止部53は、休止期間Tdに第1条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させるように構成されている。
 停止部53は、例えば、第5停止回路54と、第6停止回路68とを備えている。なお、第5停止回路54の構成は、非接触給電装置100における第1停止回路5と同様の構成であるため、同様の構成要素に同一の符号を付して説明を適宜省略する。また、第6停止回路68の構成は、非接触給電装置100における第2停止回路6と同様の構成であるため、同様の構成要素に同一の符号を付して説明を適宜省略する。
 第5停止回路54は、検出部7と、設定部8と、比較部55と、3つの論理回路56~58とを備えている。
 比較部55は、コンパレータ59と、2つの抵抗R7,R8と、スイッチング素子Q7とを備えている。スイッチング素子Q7は、第1端子と、第2端子と、制御端子とを備えている。スイッチング素子Q7は、例えば、バイポーラトランジスタである。この場合、スイッチング素子Q7では、第1端子がコレクタ端子であり、第2端子がエミッタ端子であり、制御端子がベース端子である。
 コンパレータ59の反転入力端子は、検出部7における抵抗R2の第1端と電気的に接続されている。コンパレータ59の非反転入力端子は、設定部8と電気的に接続されている。コンパレータ59の出力端子は、抵抗R7を介して、スイッチング素子Q7のベース端子と電気的に接続されている。
 スイッチング素子Q7のコレクタ端子は、抵抗R8によりプルアップされている。また、スイッチング素子Q7のコレクタ端子は、3つの論理回路56~58と電気的に接続されている。スイッチング素子Q7のエミッタ端子は、非接触給電装置120のグランドと電気的に接続されている。
 論理回路56は、2つのOR回路60,61と、NOT回路62とを備えている。
 OR回路60の第1入力端子は、制御回路52と電気的に接続されている。OR回路60の第2入力端子は、スイッチング素子Q7のコレクタ端子と電気的に接続されている。OR回路60の出力端子は、OR回路61の第1入力端子と電気的に接続されている。
 OR回路61の第2入力端子は、論理回路58と電気的に接続されている。また、OR回路61の第2入力端子は、後述の論理回路72と電気的に接続されている。OR回路61の出力端子は、NOT回路62の入力端子と電気的に接続されている。NOT回路62の出力端子は、スイッチング素子Q2のゲート端子と電気的に接続されている。
 論理回路57は、図7に示すように、論理回路56と符号が異なる点を除いて、論理回路56と同じ構成である。ゆえに、論理回路57に関する詳細な説明は適宜省略する。
 NOT回路65の出力端子は、スイッチング素子Q3のゲート端子と電気的に接続されている。
 論理回路58は、フリップフロップ66と、ラッチ回路67とを備えている。
 フリップフロップ66は、例えば、Dフリップフロップである。フリップフロップ66の第1入力端子(クロック入力端子)は、制御回路52と電気的に接続されている。フリップフロップ66の第2入力端子(データ入力端子)は、スイッチング素子Q7のコレクタ端子と電気的に接続されている。フリップフロップ66の出力端子は、ラッチ回路67のセット端子と電気的に接続されている。
 ラッチ回路67のリセット端子は、非接触給電装置120のグラントと電気的に接続されている。ラッチ回路67の出力端子は、論理回路56におけるOR回路61の第2入力端子と電気的に接続されている。また、ラッチ回路67の出力端子は、後述の論理回路70におけるOR回路75の第2入力端子と電気的に接続されている。さらに、ラッチ回路67の出力端子は、論理回路57におけるOR回路64の第2入力端子と電気的に接続されている。また、ラッチ回路67の出力端子は、後述の論理回路71におけるOR回路78の第2入力端子と電気的に接続されている。
 第6停止回路68は、検出部17と、設定部18と、比較部69と、3つの論理回路70~72とを備えている。
 比較部69は、図7に示すように、比較部55と符号が異なる点を除いて、比較部55と同じ構成である。ゆえに、比較部69に関する詳細な説明は省略する。
 2つの論理回路70,71の各々は、図7に示すように、論理回路56と符号が異なる点を除いて、論理回路56と同じ構成である。ゆえに、2つの論理回路70,71の各々に関する詳細な説明は適宜省略する。
 論理回路70におけるOR回路74の第2入力端子は、スイッチング素子Q8のコレクタ端子と電気的に接続されている。論路回路70におけるNOT回路76の出力端子は、スイッチング素子Q1のゲート端子と電気的に接続されている。
 論理回路71におけるOR回路77の第2入力端子は、スイッチング素子Q8のコレクタ端子と電気的に接続されている。論理回路71におけるNOT回路79の出力端子は、スイッチング素子Q4のゲート端子と電気的に接続されている。
 論理回路72は、図7に示すように、論理回路58と符号が異なる点を除いて、論理回路58と同じ構成である。ゆえに、論理回路72に関する詳細な説明は適宜省略する。
 論理回路72におけるフリップフロップ80の第2入力端子(データ入力端子)は、スイッチング素子Q8のコレクタ端子と電気的に接続されている。
 非接触給電装置120では、第5停止回路54が、休止期間Tdに第1条件であるか否かを判定するように構成されている。また、第5停止回路54は、休止期間Tdに第1条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させるように構成されている。
 以下、非接触給電装置120における制御部51の停止部53の動作について、図8に基づいて説明する。なお、図8中のt6は、インバータ部10が遅相モードから進相モードに移行した時点を表している。図8中のVg1,Vg2,Vds1,Vds2は、図4中のVg1,Vg2,Vds1,Vds2と同じである。図8中のVs1は、第1制御信号S1の信号レベルを表している。図8中のVs2は、第2制御信号S2の信号レベルを表している。図8中のV3は、比較部69の出力電圧を表している。図8中のV4は、比較部55の出力電圧を表している。図8中のV5は、フリップフロップ66の出力電圧を表している。図8中のV6は、フリップフロップ80の出力電圧を表している。図8中のV7は、ラッチ回路67の出力電圧を表している。図8中のV8は、ラッチ回路81の出力電圧を表している。
 第5停止回路54は、休止期間Tdに第1条件であるか否かを判定する。具体的に説明すると、第5停止回路54は、休止期間Tdに、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1よりも大きいか否かを判定する。
 第5停止回路54は、休止期間Tdに第1条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させる。
 非接触給電装置120では、休止期間Tdに第1条件である場合、停止部53が4つのスイッチング素子Q1~Q4のスイッチング動作を停止させる。これにより、非接触給電装置120では、4つのスイッチング素子Q1~Q4それぞれのゲート電圧(ゲート-ソース間電圧)をローレベルに固定することが可能となる。よって、非接触給電装置120では、例えば、給電コイル13と受電コイル23との相対的な位置ずれによりインバータ部10が遅相モードから進相モードに移行したとき、4つのスイッチング素子Q1~Q4がハードスイッチングするのを抑制可能となる。その結果、非接触給電装置120では、従来例の非接触給電装置に比べて、4つのスイッチング素子Q1~Q4の損失(スイッチング損失)が増加するのを抑制することが可能となる。すなわち、非接触給電装置120では、従来例の非接触給電装置に比べて、インバータ部10の損失が増加するのを抑制することが可能となる。
 なお、第1条件は、スイッチング素子Q2に印加された電圧の電圧値が第1閾値Vt1まで変化しない状態であるが、これに限らない。
 停止部53は、休止期間Tdに第1条件であるか否かを判定するように構成されているが、この構成に限らない。停止部53は、休止期間Tdに第2条件であるか否かを判定するように構成されていてもよい。この場合、停止部53は、休止期間Tdに第2条件である場合、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させる。
 非接触給電装置120では、起動時、4つのスイッチング素子Q1~Q4の各々がオフ状態であるため、スイッチング素子Q2およびスイッチング素子Q4それぞれに印加された電圧(ドレイン-ソース間電圧)が高くなる。これにより、非接触給電装置120では、起動時に、スイッチング素子Q7およびスイッチング素子Q8の各々がオフ状態となるので、スイッチング素子Q7およびスイッチング素子Q8それぞれのコレクタ-エミッタ間電圧がハイレベルとなる。言い換えれば、非接触給電装置120では、起動時に、4つのOR回路60,63,74,77それぞれの第2入力端子がハイレベルとなる。その結果、非接触給電装置120では、制御回路52からの第1制御信号S1および第2制御信号S2が、対応する4つのスイッチング素子Q1~Q4それぞれのゲート端子に入力されない場合がある。
 そこで、制御回路52は、スイッチング素子Q7およびスイッチング素子Q8それぞれのコレクタ端子と電気的に接続されている。また、制御回路52は、非接触給電装置120の起動時に、スイッチング素子Q7およびスイッチング素子Q8それぞれのコレクタ-エミッタ間電圧を強制的にローレベルにする。これにより、非接触給電装置120では、起動時に、制御回路52からの第1制御信号S1および第2制御信号S2を、対応する4つのスイッチング素子Q1~Q4それぞれのゲート端子に入力させることが可能となる。
 また、制御回路52は、非接触給電装置120の起動時に、4つのスイッチング素子Q1~Q4のスイッチング動作がソフトスタートするように、第1制御信号S1および第2制御信号S2それぞれのデューティ比を小さくすることが好ましい。この場合も、制御回路52は、非接触給電装置120の起動時に、スイッチング素子Q7およびスイッチング素子Q8それぞれのコレクタ-エミッタ間電圧を強制的にローレベルにすることが好ましい。これにより、非接触給電装置120では、起動時、給電部12に突入電流が流れるのを抑制することが可能となる。
 以上説明した非接触給電装置120では、制御回路52と停止部53とが、別体に構成されている。これにより、非接触給電装置120では、停止部53が、制御回路52を介さずに、4つのスイッチング素子Q1~Q4のスイッチング動作を、直接、停止させることが可能となる。よって、非接触給電装置120では、インバータ部10が遅相モードから進相モードに移行したとき、非接触給電装置100および非接触給電装置110よりも早く、4つのスイッチング素子Q1~Q4のスイッチング動作を停止させることが可能となる。
 実施形態1~3における給電コイル13および受電コイル23は、スパイラルコイルである。そのため、実施形態1~3の非接触給電装置100,110,120では、給電コイル13としてソレノイドコイルを用いた場合に比べて、不要輻射ノイズが生じにくい、という利点がある。また、実施形態1~3の非接触給電装置100,110,120では、不要輻射ノイズが低減される結果、インバータ部10において使用可能な動作周波数の範囲が拡大される、という利点もある。以下、この点について詳述する。
 非接触給電システム300の共振特性は、給電コイル13と受電コイル23との結合係数に応じて変化し、ある条件下では、図9に示すように出力に2つの極大値が生じる、いわゆる双峰特性を示す。この共振特性(双峰特性)においては、図9に示すように、第1周波数fr1と第3周波数fr3とのそれぞれで出力が極大となる2つの“山”が生じる。これら2つの“山”の間には、第2周波数fr2で出力が極小となる“谷”が生じる。ここで、第1周波数fr1と第2周波数fr2と第3周波数fr3とは、fr1<fr2<fr3の関係にある。以下では、第2周波数fr2を基準に、第2周波数fr2より低い周波数領域を「低周波領域」といい、第2周波数fr2より高い周波数領域を「高周波領域」という。
 このような共振特性にあっては、低周波領域の“山”(第1周波数fr1で極大となる山)と、高周波領域の“山”(第3周波数fr3で極大となる山)とのそれぞれに、インバータ部10が遅相モードで動作する領域(以下、「遅相領域」という)が生じる。そのため、インバータ部10は、動作周波数f1が2つの“山”のいずれにある場合でも、遅相モードで動作可能である。
 ここで、インバータ部10の動作周波数f1が低周波領域の“山”にある場合と、高周波領域の“山”にある場合とを比較すると、低周波領域の“山”にある場合の方が、不要輻射ノイズは小さくなる。つまり、高周波領域の“山”においては、給電コイル13に流れる電流と、受電コイル23に流れる電流とが同位相になる。これに対して、低周波領域の“山”においては、給電コイル13に流れる電流と、受電コイル23に流れる電流とが逆位相になる。そのため、低周波領域の“山”においては、給電コイル13で生じる不要輻射ノイズと、受電コイル23で生じる不要輻射ノイズとが、互いに相殺されることになり、非接触給電システム300全体でみれば不要輻射ノイズは低減される。
 したがって、実施形態1~3の非接触給電装置100,110,120では、給電コイル13としてソレノイドコイルを用いた場合でも、インバータ部10の動作周波数f1が低周波領域の“山”の遅相領域(fr1~fr2)にあれば、インバータ部10が遅相モードで動作し、かつ不要輻射ノイズも低減される。しかし、実施形態1~3の非接触給電装置100,110,120において、給電コイル13としてソレノイドコイルを用いた場合、低周波領域の“山”の遅相領域は、給電コイル13と受電コイル23との結合係数に応じて変化するため、このような不確定な遅相領域にインバータ部10の動作周波数f1を収める制御が必要になる。
 これに対して、実施形態1~3の非接触給電装置100,110,120では、給電コイル13としてスパイラルコイルを用いているので、たとえインバータ部10の動作周波数f1が高周波領域の“山”の遅相領域(fr3より高周波側)にあっても、給電コイル13としてソレノイドコイルを用いた場合に比べて、不要輻射ノイズが大幅に低減される。つまり、実施形態1~3の非接触給電装置100,110,120では、給電コイル13としてスパイラルコイルが用いられることで、インバータ部10の動作周波数f1が低周波領域の“山”の遅相領域に制限されず、インバータ部10において使用可能な動作周波数f1の範囲が拡大されることになる。なお、高周波領域の“山”の遅相領域も不確定な領域ではあるが、インバータ部10の動作周波数f1を十分に高い周波数から低周波側にスイープさせれば動作周波数f1は高周波領域の“山”の遅相領域を通るので、複雑な制御は不要である。
 上記実施形態は本発明の一例に過ぎず、本発明は、上記実施形態に限定されることはなく、上記実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
 3 制御回路
 4 停止部
 10 インバータ部
 11 制御部
 12 給電部
 41 制御部
 42 停止部
 51 制御部
 52 制御回路
 53 停止部
 100 非接触給電装置
 110 非接触給電装置
 120 非接触給電装置
 200 非接触受電装置
 300 非接触給電システム
 Q1 スイッチング素子(第1スイッチング素子)
 Q2 スイッチング素子(第2スイッチング素子)
 Q3 スイッチング素子(第2スイッチング素子)
 Q4 スイッチング素子(第1スイッチング素子)

Claims (10)

  1.  第1スイッチング素子および第2スイッチング素子を有して直流電圧を交流電圧に変換するインバータ部と、前記インバータ部を制御する制御部と、前記交流電圧が印加され非接触で給電する給電部とを備え、
     前記制御部は、前記第1スイッチング素子と前記第2スイッチング素子とが交互にオン状態となるように前記第1スイッチング素子および前記第2スイッチング素子を制御し、
     前記制御部は、前記第1スイッチング素子がオン状態からオフ状態になった時点から前記第2スイッチング素子がオフ状態からオン状態へ変化し始める時点までの間である休止期間に、前記第1スイッチング素子と前記第2スイッチング素子との少なくとも一方に印加された電圧の電圧値が第1閾値まで変化しない状態である第1条件の場合、あるいは、前記第2スイッチング素子に流れる電流の電流値が第2閾値まで変化しない状態である第2条件の場合、前記第1スイッチング素子および前記第2スイッチング素子のスイッチング動作を停止させる
     ことを特徴とする非接触給電装置。
  2.  前記制御部は、前記第1スイッチング素子と前記第2スイッチング素子とが交互にオン状態となるように前記第1スイッチング素子および前記第2スイッチング素子を制御する制御回路と、前記第1スイッチング素子および前記第2スイッチング素子のスイッチング動作を停止させることが可能な停止部とを備え、
     前記停止部は、前記休止期間に、前記第1条件あるいは前記第2条件の場合、前記第1スイッチング素子および前記第2スイッチング素子のスイッチング動作を停止させる
     ことを特徴とする請求項1記載の非接触給電装置。
  3.  前記制御回路と前記停止部とは、別体に構成されている
     ことを特徴とする請求項2記載の非接触給電装置。
  4.  前記第1条件は、前記第1スイッチング素子に印加された電圧である第1電圧の電圧値が前記第1閾値まで増加しない状態である
     ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の非接触給電装置。
  5.  前記第1電圧の電圧値が前記第1閾値まで増加しない状態は、前記第1電圧の電圧値が前記第1閾値よりも小さいときである
     ことを特徴とする請求項4記載の非接触給電装置。
  6.  前記第1条件は、前記第2スイッチング素子に印加された電圧である第2電圧の電圧値が前記第1閾値まで減少しない状態である
     ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の非接触給電装置。
  7.  前記第2電圧の電圧値が前記第1閾値まで減少しない状態は、前記第2電圧の電圧値が前記第1閾値よりも大きいときである
     ことを特徴とする請求項6記載の非接触給電装置。
  8.  前記第2条件は、前記第2スイッチング素子に流れる電流の向きが逆向きにならない状態である
     ことを特徴とする請求項1ないし請求項7のいずれか1項に記載の非接触給電装置。
  9.  前記第2スイッチング素子に流れる電流の向きが逆向きにならない状態は、前記第2スイッチング素子に流れる電流の電流値が前記第2閾値よりも大きいときである
     ことを特徴とする請求項8記載の非接触給電装置。
  10.  請求項1ないし請求項9のいずれか1項に記載の非接触給電装置と、前記非接触給電装置から非接触で給電される非接触受電装置とを備えている
     ことを特徴とする非接触給電システム。
PCT/JP2016/001278 2015-03-13 2016-03-09 非接触給電装置および非接触給電システム WO2016147609A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506069A JP6650626B2 (ja) 2015-03-13 2016-03-09 非接触給電装置および非接触給電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015051098 2015-03-13
JP2015-051098 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147609A1 true WO2016147609A1 (ja) 2016-09-22

Family

ID=56918598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001278 WO2016147609A1 (ja) 2015-03-13 2016-03-09 非接触給電装置および非接触給電システム

Country Status (2)

Country Link
JP (1) JP6650626B2 (ja)
WO (1) WO2016147609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106371492A (zh) * 2016-11-17 2017-02-01 中惠创智无线供电技术有限公司 一种全桥保护方法、电路、控制器及无线供电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251083A (ja) * 1998-02-26 1999-09-17 Sanken Electric Co Ltd 放電灯点灯装置
JP2000134936A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Works Ltd 電源装置
JP2003224980A (ja) * 2002-01-28 2003-08-08 Matsushita Electric Works Ltd 電源装置
JP2005071841A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218364A (ja) * 1988-02-24 1989-08-31 Matsushita Electric Works Ltd インバータ装置
JP3087760B2 (ja) * 1989-04-04 2000-09-11 本田技研工業株式会社 モータ制御回路
JPH07274580A (ja) * 1994-03-30 1995-10-20 Toshiba Corp インバータ装置の異常検出装置及び保護装置並びにエアコンデショナ
JPH09320775A (ja) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd 照明装置
JP4168549B2 (ja) * 1999-10-05 2008-10-22 株式会社デンソー モータ制御装置
JP2003284352A (ja) * 2002-03-25 2003-10-03 Toyota Motor Corp インバータのデッドタイム最適化方法および装置
JP3854190B2 (ja) * 2002-04-26 2006-12-06 株式会社ジェイテクト モータ制御装置
JP4742989B2 (ja) * 2006-05-26 2011-08-10 株式会社日立製作所 モータ駆動用半導体装置とそれを有するモータ及びモータ駆動装置並びに空調機
JP5979086B2 (ja) * 2013-06-06 2016-08-24 株式会社デンソー 監視回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251083A (ja) * 1998-02-26 1999-09-17 Sanken Electric Co Ltd 放電灯点灯装置
JP2000134936A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Works Ltd 電源装置
JP2003224980A (ja) * 2002-01-28 2003-08-08 Matsushita Electric Works Ltd 電源装置
JP2005071841A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106371492A (zh) * 2016-11-17 2017-02-01 中惠创智无线供电技术有限公司 一种全桥保护方法、电路、控制器及无线供电系统

Also Published As

Publication number Publication date
JP6650626B2 (ja) 2020-02-19
JPWO2016147609A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6103061B2 (ja) 給電装置及び非接触給電システム
JP6395095B2 (ja) 非接触給電装置および非接触給電システム
US10439438B2 (en) Non-contact power supply apparatus, program, method for controlling non-contact power supply apparatus, and non-contact power transmission system
JP2004274262A (ja) 電気絶縁型スイッチング素子駆動回路
WO2014199691A1 (ja) 給電装置、および非接触給電システム
US10511194B2 (en) Wireless power transfer system
US10355530B2 (en) Non-contact power supply apparatus, program, method for controlling non-contact power supply apparatus, and non-contact power transmission system
JP6331902B2 (ja) 送電装置
WO2014125392A1 (en) Dynamic resonant matching circuit for wireless power receivers
KR20170109929A (ko) 무선 전력 제어 장치 및 그를 이용한 무선 전력 송신 장치
JP6454943B2 (ja) 非接触給電装置及びそれを用いた非接触給電システム
WO2016147609A1 (ja) 非接触給電装置および非接触給電システム
JP2019126202A (ja) Lc回路ユニット、ワイヤレス送電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
EP3257137B1 (en) Wireless power transmission device
JP6914595B2 (ja) 給電システム、及び給電方法
JP6501193B2 (ja) 非接触給電装置および非接触給電システム
JP6425183B2 (ja) 非接触給電装置および非接触給電システム
JP6369792B2 (ja) 非接触給電装置及び非接触給電システム
JP2009302158A (ja) 電圧変換装置
JP6569987B2 (ja) 非接触給電装置および非接触給電システム
JP2013021887A (ja) 電力伝送システム
KR102483566B1 (ko) 유무선 전력 공급 장치
Gu et al. Temperature-robust air-gapless EE-type transformer rails for sliding doors
JPWO2017126111A1 (ja) 電力伝送装置、高周波電源及び高周波整流回路
JP6963252B2 (ja) チョッパ型dc/dcコンバータおよび宇宙用チョッパ型dc/dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764442

Country of ref document: EP

Kind code of ref document: A1