WO2016144133A1 - 광학 필름용 조성물 및 이를 포함하는 광학 필름 - Google Patents
광학 필름용 조성물 및 이를 포함하는 광학 필름 Download PDFInfo
- Publication number
- WO2016144133A1 WO2016144133A1 PCT/KR2016/002454 KR2016002454W WO2016144133A1 WO 2016144133 A1 WO2016144133 A1 WO 2016144133A1 KR 2016002454 W KR2016002454 W KR 2016002454W WO 2016144133 A1 WO2016144133 A1 WO 2016144133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- formula
- optical film
- wavelength conversion
- Prior art date
Links
- 0 C*(*)COC(C)(C)NO Chemical compound C*(*)COC(C)(C)NO 0.000 description 2
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
- C08F222/102—Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
- C08L23/22—Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V14/00—Controlling the distribution of the light emitted by adjustment of elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/40—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3008—Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/50—Protective arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
Definitions
- the present application relates to a composition for an optical film, an optical film comprising the same, a manufacturing method of the optical film, a lighting apparatus and a display device including the optical film.
- Lighting devices are used for a variety of applications.
- the lighting device is, for example, a BLU of a display such as a liquid crystal display (LCD), a TV, a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device or a digital camera.
- LCD liquid crystal display
- PDA personal digital assistant
- the lighting device may be used for indoor or outdoor lighting, stage lighting, decorative lighting, accent lighting or museum lighting, and the like, and may also be used for special wavelength lighting required in horticulture or biology.
- a typical lighting device for example, a device that emits white light by combining a blue LED (Light Emitting Diode) and a phosphor such as YAG (Yttrium aluminum garnet), which is used as a BLU of an LCD.
- a blue LED Light Emitting Diode
- a phosphor such as YAG (Yttrium aluminum garnet)
- Patent Document 1 Korean Patent Publication No. 2011-0048397
- Patent Document 2 Korean Patent Publication No. 2011-0038191
- the present application provides a composition for an optical film, an optical film including the same, and a method for manufacturing the optical film that can achieve high wavelength conversion efficiency by minimizing a reduction in wavelength conversion efficiency of wavelength conversion particles due to oxygen or the like.
- the present application also provides an illumination device and a display device having excellent optical properties including the optical film.
- the present application has been made to solve the above problems, a hydrophilic polymerizable compound; A hydrophobic polymerizable compound phase-separated from the hydrophilic polymerizable compound after polymerization; Wavelength converting particles; And a polybutadiene compound.
- the polybutadiene compound may be a homopolymer or copolymer of butadiene monomers.
- the copolymer may be, for example, (meth) acryloyl functionalized polybutadiene or epoxy functionalized polybutadiene.
- the polybutadiene compound may have a solubility parameter of less than 10 (cal / cm 3 ) 1/2 .
- the present application also relates to a continuous merchant matrix; And a wavelength conversion layer including an emulsion region dispersed in the matrix, which is the continuous phase, and including a wavelength converting particle and a polybutadiene compound present in the continuous phase or emulsion region of the wavelength conversion layer.
- the continuous phase matrix is a hydrophilic region relatively to the emulsion region, and may include wavelength converting particles, and the continuous phase matrix may be included in the continuous phase matrix based on the weight of all wavelength converting particles included in the wavelength converting layer.
- the weight ratio of the wavelength conversion particles included may be 10% or less.
- the emulsion region may be a relatively hydrophobic region compared to the matrix of the continuous phase, and may include wavelength converting particles, and may be included in the emulsion region based on the weight of all wavelength converting particles included in the wavelength converting layer.
- the weight ratio of the wavelength conversion particles may be 90% or more.
- the emulsion region may comprise, for example, an A region comprising first wavelength converting particles capable of absorbing light in the range of 420 nm to 490 nm and emitting light in the range of 490 nm to 580 nm and / or light in the range of 420 nm to 490 nm. It may include a B region including the second wavelength conversion particles that can absorb and emit light in the range of 580nm to 780nm.
- the present application also relates to a method for manufacturing an optical film comprising mixing a wavelength converting particle and a polybutadiene compound with a hydrophilic polymerizable compound and a hydrophobic polymerizable compound phase-separated from the hydrophilic polymerizable compound after polymerization.
- the present application also relates to a lighting device and a display device including the optical film as described above.
- the present application prevents oxidation of wavelength converting particles that can be induced by heat or light, and ultimately prevents reduction in wavelength conversion efficiency of wavelength converting particles, thereby forming an optical film having improved durability or optical properties.
- a composition for use can be provided.
- the present application may also provide an optical film having excellent physical properties suitable for the film, for example, adhesion with other layers, durability or optical properties, etc., through the phase separation structure of the wavelength conversion layer formed from the composition for an optical film.
- 1 is a schematic diagram schematically illustrating the inside of a wavelength conversion layer.
- FIG. 2 is a schematic diagram of an exemplary optical film.
- 3 and 4 are schematic diagrams of exemplary lighting devices.
- Figure 5 shows the results of evaluating the relative wavelength conversion efficiency of the optical film according to the present application.
- the present application is a hydrophilic polymerizable compound; A hydrophobic polymerizable compound phase-separated from the hydrophilic polymerizable compound after polymerization; Wavelength converting particles; And a polybutadiene compound.
- optical film in the present application may mean a film used in an optical device for various uses.
- the optical film may mean a film formed to absorb light having a predetermined wavelength and emit light having the same or different wavelength as the absorbed light.
- composition for an optical film of the present application includes a hydrophilic polymerizable compound and a hydrophobic polymerizable compound phase-separated from the hydrophilic polymerizable compound after polymerization to form a hydrophilic region and a hydrophobic region phase-separated from the hydrophilic region after polymerization.
- a hydrophilic polymerizable compound and a hydrophobic polymerizable compound phase-separated from the hydrophilic polymerizable compound after polymerization to form a hydrophilic region and a hydrophobic region phase-separated from the hydrophilic region after polymerization.
- the composition for an optical film of the present application comprises a hydrophilic polymerizable compound and a hydrophobic polymerizable compound which is phase-separated from the hydrophilic polymerizable compound after polymerization, and the wavelength conversion particles are formed by polymerizing the hydrophilic polymerizable compound or the hydrophobic polymerization.
- the optical film having excellent durability can be formed more effectively by controlling other factors that may adversely affect the physical properties of the wavelength conversion particles such as an initiator or a crosslinking agent in the region where the wavelength conversion particles are present. can do.
- the present application composition for the optical film includes a polybutadiene compound, so that the polybutadiene compound may be included in the same region as the wavelength conversion particles of the regions formed by phase separation after the polymerization, the wavelength conversion by heat and light The oxidation of the particles can be prevented and ultimately an optical film having excellent wavelength conversion efficiency can be formed.
- composition for an optical film of the present application includes a hydrophilic polymerizable compound and a hydrophobic polymerizable compound phase-separated from the hydrophilic polymerizable compound after polymerization.
- the criteria for distinguishing hydrophilicity and hydrophobicity between the hydrophilic polymerizable compound and the hydrophobic polymerizable compound may be, for example, to form regions that are phase-separated when both compounds are relatively hydrophilic or hydrophobic and mixed with each other. It is not particularly limited as long as it can.
- the separation of hydrophilicity and hydrophobicity may be performed by so-called solubility parameters.
- the solubility parameter in the present application means a solubility parameter of a homopolymer formed by polymerization of the hydrophilic or hydrophobic polymerizable compound, and through this, the degree of hydrophilicity and hydrophobicity of the compound can be determined.
- the manner of obtaining the solubility parameter is not particularly limited and may be in accordance with methods known in the art.
- the parameter may be calculated or obtained according to a method known in the art as a so-called Hansen solubility parameter (HSP).
- the hydrophilic polymerizable compound may be a radical polymerizable compound having a solubility parameter of 10 (cal / cm 3 ) 1/2 or more.
- the solubility parameter of the hydrophilic polymerizable compound is, in another example, about 11 (cal / cm 3 ) 1/2 or more, 12 (cal / cm 3 ) 1/2 or more, 13 (cal / cm 3 ) 1/2 or more, 14 (cal / cm 3 ) 1/2 or more, or 15 (cal / cm 3 ) 1/2 or more.
- the solubility parameter of the hydrophilic polymerizable compound is, in another example, about 40 (cal / cm 3 ) 1/2 or less, about 35 (cal / cm 3 ) 1/2 or less or about 30 (cal / cm 3 ) 1/2 or less. Can be.
- the hydrophilic polymerizable compound may include a compound of Formula 1; A compound of Formula 2; A compound of formula 3; A compound of formula 4; Nitrogen-containing radically polymerizable compounds; And it may be any one selected from the group consisting of (meth) acrylic acid or a radical polymerizable compound comprising a salt thereof.
- each Q is independently hydrogen or an alkyl group
- each U is independently an alkylene group
- each independently is an alkylene group which may be substituted with a hydroxy group
- Z is hydrogen, an alkoxy group, an epoxy group or a monovalent group.
- a hydrocarbon group, X is a hydroxy group or a cyano group, and m and n are any number.
- alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
- the alkyl group may be linear, branched or cyclic.
- the alkyl group may be optionally substituted with one or more substituents.
- alkylene group may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
- the alkylene group may be linear, branched or cyclic.
- the alkylene group may be optionally substituted with one or more substituents.
- epoxy group may mean a cyclic ether having three ring constituent atoms or a compound containing the cyclic ether or a monovalent moiety derived therefrom.
- examples of the epoxy group include glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group.
- the alicyclic epoxy group may mean a monovalent moiety derived from a compound containing an aliphatic hydrocarbon ring structure, wherein the two carbon atoms forming the aliphatic hydrocarbon ring also include an epoxy group.
- an alicyclic epoxy group having 6 to 12 carbon atoms can be exemplified, for example, a 3,4-epoxycyclohexylethyl group or the like can be exemplified.
- alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
- the alkoxy group may be linear, branched or cyclic.
- the alkoxy group may be optionally substituted with one or more substituents.
- the term "monovalent hydrocarbon group" in the present application may refer to a compound consisting of carbon and hydrogen or a monovalent moiety derived from a derivative of such a compound, unless otherwise specified.
- the monovalent hydrocarbon group may contain 1 to 25 carbon atoms.
- an alkyl group, an alkenyl group, an alkynyl group, an aryl group, etc. can be illustrated.
- the substituent which may be optionally substituted with the alkyl group, alkoxy group, alkylene group, epoxy group or monovalent hydrocarbon group includes a hydroxy group; Halogen such as chlorine or fluorine; Epoxy groups such as glycidyl groups, epoxyalkyl groups, glycidoxyalkyl groups or alicyclic epoxy groups; Acryloyl group; Methacryloyl group; Isocyanate group; Thiol group; Aryloxy group; Or a monovalent hydrocarbon group may be exemplified, but is not limited thereto.
- m and n may be any numbers, and for example, may be independently 1 to 20, 1 to 16, or 1 to 12, respectively.
- an amide group-containing radically polymerizable compound for example, an amide group-containing radically polymerizable compound, an amino group-containing radically polymerizable compound, an imide group-containing radically polymerizable compound, or a cyano group-containing radically polymerizable compound Etc.
- said amide group-containing radically polymerizable compound it is (meth) acrylamide or N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth), for example.
- Acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam or (meth) acryloyl morpholine and the like can be exemplified, and examples of the amino group-containing radically polymerizable compound include aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, etc.
- N-isopropyl maleimide, N-cyclo Hexylmaleimide or itacone can be illustrated, and a cyano group-containing radical polymerizable, but as the compound, can be a nitrile such as acrylonitrile or methacrylonitrile, exemplified by acrylonitrile, but is not limited thereto.
- salts of (meth) acrylic acid for example, salts of (meth) acrylic acid with alkali metals including lithium, sodium, and potassium or salts with alkaline earth metals including magnesium, calcium, strontium and barium Etc. may be exemplified, but is not limited thereto.
- the hydrophilic polymerizable compound may form, for example, a matrix that is a continuous phase in the wavelength conversion layer after polymerization.
- the hydrophobic polymerizable compound included in the composition for an optical film is phase-separated from the hydrophilic polymerizable compound after polymerization, and for example, the solubility parameter may be less than 10 (cal / cm 3 ) 1/2 .
- the solubility parameter of the hydrophobic polymerizable compound is, in another example, for example 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more or about 5 (cal / cm 3 ) May be 1/2 or more.
- the difference in solubility parameters of the hydrophilic polymerizable compound and the hydrophobic polymerizable compound can be controlled to realize the proper phase separation structure of the optical film.
- the difference between the solubility parameters of the hydrophilic polymerizable compound and the hydrophobic polymerizable compound is 5 (cal / cm 3 ) 1/2 or more, 6 (cal / cm 3 ) 1/2 or more, 7 (cal / cm 3 ) 1/2 or more or about 8 (cal / cm 3 ) 1/2 or more.
- the difference is the value of the solubility parameter minus the small value.
- the upper limit of the difference is not particularly limited. The greater the difference in solubility parameters, the more suitable phase separation structures can be formed. The upper limit of the difference may be, for example, 30 (cal / cm 3 ) 1/2 or less, 25 (cal / cm 3 ) 1/2 or less, or about 20 (cal / cm 3 ) 1/2 or less.
- the hydrophobic polymerizable compound may satisfy any of the above-described solubility parameter ranges and may be, for example, any one selected from the group consisting of a compound represented by Formula 5, a compound represented by Formula 6, and a compound represented by Formula 7.
- each Q is independently hydrogen or an alkyl group
- U is each independently an alkylene group, an alkenylene group or an alkynylene group or an arylene group
- B is a straight or branched chain alkyl group having 5 or more carbon atoms or an alicyclic hydrocarbon group
- Y is an oxygen atom or a sulfur atom
- X is an oxygen atom
- Ar is an aryl group
- n is any number.
- alkenylene group or alkynylene group means an alkenylene group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. Or an alkynylene group.
- the alkenylene group or alkynylene group may be linear, branched or cyclic.
- the alkenylene group or alkynylene group may be optionally substituted with one or more substituents.
- arylene group in the present application may refer to a divalent moiety derived from a compound or a derivative thereof including a structure in which benzene or two or more benzenes are condensed or bonded, unless otherwise specified.
- the arylene group may have a structure containing, for example, benzene, naphthalene or fluorene.
- aryl group in the present application may refer to a monovalent moiety derived from a compound or a derivative thereof including a structure in which a benzene ring or a structure in which two or more benzene rings are condensed or bonded, unless otherwise specified.
- the range of the aryl group may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
- the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
- aryl group examples include phenyl group, phenoxy group, phenoxyphenyl group, phenoxybenzyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group or naphthyl group. Can be.
- the aryl group may be optionally substituted with one or more substituents.
- a halogen, alkyl group or aryloxy group such as hydroxy group, chlorine or fluorine may be exemplified, but It is not limited.
- Q of Formula 5 is hydrogen or an alkyl group
- B may be a straight or branched chain alkyl group or alicyclic hydrocarbon group having 5 or more carbon atoms.
- B may be a straight or branched chain alkyl group having 5 or more carbon atoms, 7 or more carbon atoms, or 9 or more carbon atoms.
- a compound containing a relatively long chain alkyl group is known as a relatively nonpolar compound.
- the upper limit of the carbon number of the linear or branched alkyl group is not particularly limited.
- the alkyl group may be an alkyl group having 20 or less carbon atoms.
- B may be, in another example, an alicyclic hydrocarbon group, for example, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, 3 to 16 carbon atoms, or 6 to 12 carbon atoms, and examples of such hydrocarbon group include cyclohexyl group or iso Bornyl group and the like can be exemplified.
- the compound which has alicyclic hydrocarbon group is known as a relatively nonpolar compound.
- Q in Formula 6 is hydrogen or an alkyl group
- U may be an alkenylene group, an alkynylene group or an arylene group.
- Q in formula 7 is hydrogen or an alkyl group
- U is an alkylene group
- Y is a carbon atom, an oxygen atom or a sulfur atom
- X is an oxygen atom, a sulfur atom or an alkylene group
- Ar is an aryl group
- n can be any number, for example a positive integer in the range of 1 to 20, 1 to 16 or 1 to 12.
- the hydrophobic polymerizable compound may form, for example, an emulsion region in the wavelength conversion layer after polymerization.
- the wavelength converting layer formed from the composition may be phase separated after polymerization to form respective regions, and the wavelength converting particles may be hydrophilic polymerized. Located in the area
- the ratio of the hydrophilic polymerizable compound and the hydrophobic polymerizable compound is not particularly limited.
- composition for an optical film may include 10 parts by weight to 100 parts by weight of the hydrophobic polymerizable compound relative to 100 parts by weight of the hydrophilic polymerizable compound.
- the composition for an optical film includes 50 to 95 parts by weight of the hydrophilic polymerizable compound and 5 to 50 parts by weight of the hydrophobic polymerizable compound, or 50 to 95 parts by weight of the hydrophobic polymerizable compound and 5 to 50 parts by weight of the hydrophilic polymerizable compound. It may include wealth.
- weight part in the present application means a weight ratio between components, unless otherwise specified.
- composition for an optical film of the present application may further include a radical initiator for polymerization of the hydrophilic compound and the hydrophobic compound.
- the kind of radical initiator contained in the composition for optical films of this application is not specifically limited.
- the initiator a radical thermal initiator or a photoinitiator capable of generating a radical so as to induce a polymerization reaction by application of heat or irradiation of light can be used.
- thermal initiator for example, 2,2-azobis-2,4-dimethylvaleronitrile (V-65, Wako), 2,2-azobisisobutyronitrile (V-60, Azo initiators such as Wako (manufactured) or 2,2-azobis-2-methylbutyronitrile (V-59, made by Wako); Dipropyl peroxydicarbonate (Peroyl NPP, NOF (manufactured)), Diisopropyl peroxy dicarbonate (Peroyl IPP, NOF (manufactured)), Bis-4-butylcyclohexyl peroxy dicarbonate (Peroyl TCP, NOF (manufactured) )), Diethoxyethyl peroxy dicarbonate (Peroyl EEP, NOF (product)), diethoxyhexyl peroxy dicarbonate (Peroyl OPP, NOF agent), hexyl peroxy dicarbonate (Perhexyl ND, NOF agent
- a benzoin-based, hydroxy ketone-based, amino ketone-based or phosphine oxide-based photoinitiator may be used.
- composition for optical films of this application can use suitably selecting what shows high solubility to a hydrophilic or hydrophobic component in the said initiator.
- the content of the initiator in the composition for an optical film of the present application is not particularly limited, for example, the initiator may be included in the composition for an optical film in the range of 0.1% to 15% by weight relative to the total weight of the composition for the optical film, but is not limited thereto. It doesn't happen.
- composition for an optical film of this application contains a wavelength conversion particle.
- wavelength converting particle in the present application means a nanoparticle formed to absorb light of any wavelength and emit light of the same or different wavelengths.
- nanoparticle is a particle having a nano-level dimension, for example, an average particle diameter of about 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, It may mean particles that are 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or about 15 nm or less.
- the shape of the nanoparticles is not particularly limited, and may be spherical, ellipsoidal, polygonal or amorphous.
- the wavelength conversion particle may be a particle capable of absorbing light of a predetermined wavelength and emitting light of the same or different wavelength.
- the wavelength converting particles are first wavelength converting particles (hereinafter referred to as green particles) that absorb light of any wavelength within the range of 420 to 490 nm and emit light of any wavelength within the range of 490 to 580 nm.
- a second wavelength converting particle (hereinafter referred to as a red particle) that absorbs light of any wavelength within the range of 420 to 490 nm and emits light of any wavelength within the range of 580 to 780 nm. Can be.)
- the red particles and / or the green particles may be included in the composition together in an appropriate ratio to obtain an optical film having a wavelength conversion layer capable of emitting white light.
- any one that exhibits such a function can be used without particular limitation.
- Representative examples of such particles include, but are not limited to, a nanostructure called a quantum dot.
- the wavelength converting particles may be in the form of particles, for example, nanowires, nanorods, nanotubes, branched nanostructures, nanonotetrapods, and tripods. ) Or bipods, and the like, which may also be included in the wavelength conversion particles defined in the present application.
- the term "nanostructure” includes at least one area or characteristic dimension having a dimension of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. Branches may include similar structures. In general, area or characteristic dimensions may exist along the smallest axis of the structure, but are not limited thereto.
- the nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline or amorphous, or combinations of the above.
- Quantum dots or other nanoparticles that may be used in the present application may be formed using any suitable material, for example, an inorganic conductive or semiconducting material, as an inorganic material.
- suitable semiconductor materials can be exemplified by Group II-VI, III-V, IV-VI, I-III-VI and Group IV semiconductors.
- Si, Ge, Sn, Se, Te, B, C including diamonds
- the semiconductor nanocrystal or other nanostructure may include a dopant, such as a p-type dopant or an n-type dopant.
- Nanoparticles that may be used in the present application may also include II-VI or III-V semiconductors.
- II-VI or III-V semiconductor nanocrystals and nanostructures include any combination of periodic table group elements, such as Zn, Cd, and Hg, with periodic table group VI elements, such as S, Se, Te, Po, and the like; And any combination of group III elements, such as B, Al, Ga, In, and Tl, and group V elements, such as N, P, As, Sb, Bi, and the like, but is not limited thereto.
- suitable inorganic nanostructures include metal nanostructures, and suitable metals include Ru, Pd, Pt, Ni, W, Ta, Co, Mo, Ir, Re, Rh, Hf, Nb, Au, Ag, Ti , Sn, Zn, Fe or FePt and the like can be exemplified, but is not limited thereto.
- Wavelength converting particles may have a core-shell structure.
- Exemplary materials capable of forming core-cell structured wavelength converting particles include Si, Ge, Sn, Se, Te, B, C (including diamond), P, Co, Au, BN, BP, BAs, AlN, AlP , AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn , CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, P
- Exemplary core-cell wavelength converting particles (core / cell) applicable in the present application include, but are not limited to, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, or CdTe / ZnS, etc. It is not.
- the wavelength conversion particle may be a polymer particle made of an organic material.
- the type and size of the polymer particles made of the organic material may be used without limitation, for example, those of which the Republic of Korea Patent Publication No. 2014-0137676 is disclosed.
- the wavelength converting particles can be prepared in any known manner.
- a method of forming a quantum dot or the like is known from Patent No. 7,374,807 or US Pat. No. 6,861,155, and various other known methods may be applied to the present application.
- the specific kind of the wavelength conversion particle is not particularly limited and may be appropriately selected in consideration of desired light emission characteristics.
- the wavelength converting particle may be one whose surface is modified to include one or more ligands or barriers.
- the ligand or barrier may be advantageous for improving the stability of the wavelength converting particles and protecting the wavelength converting particles from harmful external conditions including high temperature, high intensity, external gas or moisture, and the like. It can play a role in assigning characteristics.
- the wavelength conversion particle may be a surface modified with a ligand.
- the ligand formed through the surface modification of the wavelength converting particles serves to exhibit suitable properties on the surface of the wavelength converting particles, for example, hydrophilic or hydrophobic properties or binding properties with scattering agents described below.
- the formation method thereof is known, and such a method may be applied without limitation in the present application.
- Such materials or methods are described, for example, in US Patent Publication No. 2008-0281010, US Publication No. 2008-0237540, US Publication No. 2010-0110728, US Publication No. 2008-0118755, US Patent No. 7,645,397 US Pat. No. 7,374,807, US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No.
- the ligand may be a molecule having an amine group (oleylamine, triethylamine, hexylamine, naphtylamine, etc.) or a polymer, a molecule having a carboxyl group (oleic acid, etc.) or a polymer, a molecule having a thiol group (butanethiol, hexanethiol, dodecanethiol, etc.) or Polymer, molecule having pyridine group (pyridine etc.) or polymer, molecule having phosphine group (triphenylphosphine etc.), molecule having phosphine group (trioctylphosphine oxide etc.), molecule having carbonyl group (alkyl ketone etc.), benzene ring It may be formed of a molecule (benzene, styrene, etc.) or a polymer, a molecule having a carboxyl group (oleic acid, etc
- the wavelength conversion particle may be included in a hydrophilic region or a hydrophobic region formed by polymerization of the composition for an optical film of the present application.
- the wavelength conversion particles are included in the hydrophobic region formed by polymerization of the composition for an optical film of the present application, and may not be substantially included in the hydrophilic region.
- the fact that the wavelength conversion particles are not substantially included in the present application means that, for example, the weight ratio of the wavelength conversion particles included in the corresponding region is 10% based on the total weight of the wavelength conversion particles included in the composition for the optical film. Or less than 9%, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, 0.5% or less, or 0.1% or less. have.
- grains is not specifically limited, For example, it can select from a suitable range in consideration of desired optical characteristics.
- the wavelength conversion particles may be included in the composition, for example, but not limited to, in a ratio of 0.05 to 20% by weight, 0.05 to 15% by weight, 0.1 to 15% by weight, or 0.5 to 15% by weight relative to the total solids of the composition. .
- composition for optical films of this application contains a polybutadiene compound.
- polybutadiene compound may mean an oligomer, homopolymer or copolymer formed by polymerization from a mixture containing a butadiene monomer.
- the polybutadiene compound may be a homopolymer or copolymer of butadiene monomers.
- the polybutadiene compound is included in a region in which the wavelength conversion particles exist in the wavelength conversion layer, and serves to prevent oxidation of the wavelength conversion particles, thereby preventing physical properties of the region including the wavelength conversion particles, for example, hydrophobic characteristics. It can be with you.
- the polybutadiene compound may be a polybutadiene homopolymer formed by Ziegler-Natta polymerization of butadiene monomers.
- the polybutadiene compound may be an alternating, random, block or graft copolymer formed by the polymerization of butadiene monomer or polybutadiene homopolymer with a monomer having a reactive functional group.
- the polybutadiene compound may be, but is not limited to, (meth) acryloyl functionalized polybutadiene or epoxy functionalized polybutadiene, which is a copolymer of a butadiene monomer and a monomer having an (meth) acryloyl group or an epoxy group. .
- the (meth) acryloyl functionalized polybutadiene may be illustrated by the following Chemical Formula 8, but is not limited thereto.
- R 1 and R 2 are each independently an alkyl group, a (meth) acryloyl group or a (meth) acryloyloxy group, and at least one of R 1 and R 2 is a (meth) acryloyl group or a (meth) acryl Is an oxy group, and n is any number, for example a positive integer.
- the epoxy functionalized polybutadiene may be, for example, the following Chemical Formula 9, but is not limited thereto.
- R 3 and R 4 are each independently an alkyl group, an epoxy group, or a glycidyl group, at least one of R 3 and R 4 is an epoxy group or a glycidyl group, and n is any number, for example, a positive amount Is an integer.
- the polybutadiene compound plays a role to prevent a reduction in wavelength conversion efficiency due to oxidation of the wavelength conversion particle
- the polybutadiene compound may be included in a region in which the wavelength conversion particle is included.
- the polybutadiene compound is included in the hydrophobic region of the wavelength conversion layer formed by polymerization of the composition for an optical film, and may not be substantially included in the hydrophilic region. It is not substantially included that the weight ratio of the polybutadiene compound included in the corresponding area to the total polybutadiene compound contained in the composition for an optical film is 10% or less, 9% or less, 8% or less, 7% or less, 6 It may mean a case of% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, 0.5% or less, or 0.1% or less.
- the polybutadiene compound may have physical properties suitable for being included in any one of a hydrophilic region or a hydrophobic region of the wavelength conversion layer.
- the polybutadiene compound may be one having a solubility parameter of less than 10 (cal / cm 3 ) 1/2 that may be measured by the manner described above. Within the range of the solubility parameter, the polybutadiene compound may be included in the hydrophobic region of the wavelength conversion layer together with the wavelength conversion particles, and may prevent oxidation of the wavelength conversion particles.
- the solubility parameter of the polybutadiene compound is, for example, 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more or about 5 (cal / cm 3 ) 1/2 It may be abnormal.
- the polybutadiene compound may be included in the composition for an optical film at a rate such that the optical property of the optical film having a wavelength conversion layer formed by polymerization of the composition for the optical film is maintained by maintaining the desired oxygen. have.
- the polybutadiene compound may be included in the composition in the range of 1% by weight to 70% by weight based on the total weight of solids of the composition for an optical film. In the weight ratio range as described above, it is possible to prevent the oxidation of the desired wavelength conversion particles, and ultimately increase the wavelength conversion efficiency of the composition for an optical film.
- the polybutadiene compound may be included in the composition in the range of 5 wt% to 50 wt%, 10 wt% to 40 wt%, or 15 wt% to 35 wt%, based on the total weight of solids of the composition.
- composition for an optical film of the present application may further include a crosslinking agent, if necessary, in consideration of filming properties and the like.
- a crosslinking agent the compound which has two or more radically polymerizable groups can be used, for example.
- polyfunctional acrylate As a compound which can be used as a crosslinking agent, polyfunctional acrylate can be illustrated.
- the multifunctional acrylate may mean a compound including two or more acryloyl groups or methacryloyl groups.
- crosslinking agent a component capable of implementing a crosslinking structure by a radical reaction such as the polyfunctional acrylate, as well as, if necessary, crosslinking by a thermosetting reaction such as a known isocyanate crosslinking agent, epoxy crosslinking agent, aziridine crosslinking agent or metal chelate crosslinking agent Components that can implement the structure can also be used.
- the crosslinking agent may be included in the composition for an optical film, for example, in a range of 10% by weight to 50% by weight relative to the total weight of solids of the composition for an optical film of the present application, but is not limited thereto. The range can be changed.
- composition for an optical film of the present application may further include other components in addition to the aforementioned components.
- composition for an optical film of the present application may further include an antioxidant, an amphipathic nanoparticle or scattering particles, but is not limited thereto.
- the composition for an optical film of the present application may include amphiphilic nanoparticles.
- amphiphilic nanoparticles may refer to particles of nano dimensions that include both hydrophilic and hydrophobic properties, and may refer to, for example, what are called surfactants in the industry. have.
- Amphiphilic nanoparticles are located at the interface between the hydrophilic region and the hydrophobic region formed by polymerization of the composition for an optical film, and may serve to increase the stability of each region.
- Amphiphilic nanoparticles can have different refractive indices than the hydrophilic and hydrophobic regions described above. Thus, by the scattering or diffusion of light by the amphiphilic nanoparticles, for example, the efficiency of generating white light can be further increased.
- the amphiphilic nanoparticles may include a cell core including a nanocore portion and an amphiphilic compound surrounding the core portion.
- Amphiphilic compound is a compound containing both a hydrophilic site and a hydrophobic site simultaneously.
- the hydrophobic portion of the cell portion of the amphiphilic nanoparticles may face the core, and the hydrophilic portion may be disposed outward so that the amphiphilic nanoparticles may be formed as a whole.
- the hydrophobic portion may be disposed outside to form the amphiphilic nanoparticles as a whole.
- the core portion may have an average particle diameter in the range of, for example, about 10 nm to 1,000 nm, but this is not particularly limited as it may be changed according to the purpose.
- the core portion include metal particles such as Au, Ag, Cu, Pt, Pd, Ni, Mn, or Zn, SiO 2 , Al 2 O 3 , TiO 2 , ZnO, NiO, CuO, MnO 2 , MgO, Oxide particles such as SrO or CaO or particles made of a polymer such as PMMA (polymethacrylate) or PS (polystyrene) can be used.
- Triton X-114 (CAS No .: 9036-19-5), Triton X-100 (CAS No.:92046-34-9), Brij-58 (CAS No. : 9004-95-9), octyl glucoside (CAS No .: 29836-26-8), octylthio glucoside (CAS No .: 85618-21-9), decaethylene glycol monodecyl ether ( decaethylene glycol monododecyl ether, CAS No .: 9002-92-0), N-decanoyl-N-methylglucamine, CAS No .: 85261-20-7, decyl maltopyrano Decyl maltopyranoside (CAS No .: 82494-09-5), N-dodecyl maltoside (CAS No .: 69227-93-6), nonnaethylene glycol monododecyl ether , CAS No .: 3055
- the ratio of the amphiphilic nanoparticles in the composition for an optical film of the present application may be, for example, in the range of 1% by weight to 10% by weight based on the total weight of the composition solid content for the optical film, but is not limited thereto.
- the range may be appropriately modified in view of the improvement of the wavelength conversion efficiency.
- composition for an optical film of this application may also contain scattering particle.
- Scattering particles contained in the composition for an optical film of the present application may play a role of further improving the optical properties of the optical film by controlling the probability of light being introduced into the wavelength conversion particles.
- the term “scattering particles” has a refractive index different from that of the hydrophilic region and the hydrophobic region of the wavelength conversion layer formed by polymerization of the surrounding medium, for example, the composition for an optical film, and has an appropriate size and is incident. It can mean any kind of particles that can scatter, refract or diffuse light.
- the scattering particles may have a lower or higher refractive index than the surrounding medium, eg, hydrophilic and / or hydrophobic regions, and the absolute value of the difference in refractive index between the hydrophilic and / or hydrophobic regions is 0.2. Or more than 0.4 particles.
- the upper limit of the absolute value of the difference in refractive index is not particularly limited and may be, for example, about 0.8 or less or about 0.7 or less.
- the scattering particles may, for example, have an average particle diameter of at least 100 nm, more than 100 nm, 100 nm to 20,000 nm, 100 nm to 15,000 nm, 100 nm to 10,000 nm, 100 nm to 5,000 nm, 100 nm to 1,000 nm or 100 nm to 500 nm.
- the scattering particles may have a shape such as spherical, elliptical, polyhedron or amorphous, but the shape is not particularly limited.
- the scattering particles for example, organic materials such as polystyrene or derivatives thereof, acrylic resins or derivatives thereof, silicone resins or derivatives thereof, or novolak resins or derivatives thereof, or silica, alumina, titanium oxide or zirconium oxide Particles comprising an inorganic material can be exemplified.
- the scattering particles may be formed of only one of the above materials or two or more of the above materials.
- hollow particles such as hollow silica or core-cell structure particles may be used as scattering particles.
- grains is not restrict
- the scattering particles may include any of the above hydrophilic or hydrophobic regions formed by polymerization of the composition for an optical film.
- composition for an optical film of the present application may further include an additive such as antioxidant particles in a required amount, in addition to the above-described components.
- the present application also relates to an optical film.
- the optical film of the present application has a wavelength conversion layer comprising two regions that are phase separated from each other.
- phase-separated regions for example, relatively hydrophobic regions and relatively hydrophilic regions, such as a region formed by two regions that do not mix with each other, it can be seen that separated from each other It means the regions formed in the state.
- the wavelength conversion layer of the optical film of the present application has a phase separation structure including a hydrophilic region and a hydrophobic region, and includes the wavelength conversion particles and the polybutadiene compound in the hydrophilic region or the hydrophobic region.
- the wavelength conversion particles and the polybutadiene compound included in the wavelength conversion layer may be mainly located in any one of the aforementioned first and second regions, for example, the second region.
- the wavelength conversion layer 100 of the optical film includes a first region 200 and a second region 300 which is phase-separated from the first region 200.
- the wavelength conversion particle 301 and the polybutadiene compound 302 may be included in the second region 300.
- a first region of the first region and the second region of the wavelength conversion layer may be a hydrophilic region, and the second region may be a hydrophobic region.
- hydrophilicity and hydrophobicity distinguishing the first and second regions are relative to each other, and an absolute criterion for hydrophilicity and hydrophobicity is that the two regions are separated from each other in the wavelength conversion layer. It is not particularly limited.
- the first region and the second region may be randomly distributed and form a cluster enough to confirm that the two regions are divided in the wavelength conversion layer.
- the wavelength conversion layer included in the optical film of the present application may be an emulsion type layer.
- the term “layer in emulsion form” means that any one of two or more phases (eg, the first and second regions) that are not mixed with each other is a continuous phase in the layer. ) And the other region may refer to a layer having a form dispersed in the continuous phase to form a dispersed phase.
- the continuous phase and the dispersed phase may be solid, semi-solid or liquid phase, respectively, and may be the same phase or different phases.
- emulsion is a term mainly used for two or more liquid phases which are not mixed with each other, but the term emulsion in the present application does not necessarily mean an emulsion formed by two or more liquid phases.
- the optical film of the present application has a wavelength conversion layer comprising a matrix in a continuous phase and an emulsion region in a dispersed phase dispersed in the continuous phase matrix, wherein the wavelength conversion layer Wavelength converting particles and polarbutadiene compounds present in a matrix or emulsion region that is a continuous phase of.
- the optical film of the present application may maximize wavelength conversion efficiency of the wavelength conversion layer by placing the wavelength conversion particles and the polybutadiene compound in the matrix or emulsion region of the wavelength conversion layer.
- the wavelength conversion particles may be included in the emulsion region in the wavelength conversion layer of the optical film.
- the wavelength conversion particles contained in the emulsion region are, for example, 90% by weight, 91% by weight, 92% by weight, 93% by weight, 94% by weight with respect to the total weight of the wavelength conversion particles contained in the wavelength conversion layer. At least 95 wt%, at least 96 wt%, at least 97 wt%, at least 98 wt%, at least 99 wt%, at least 99.5 wt% or at least 99.9 wt%.
- the polybutadiene compound may be included in the emulsion region in the wavelength conversion layer of the optical film.
- the polybutadiene compound included in the emulsion region is, for example, 90% by weight, 91% by weight, 92% by weight, 93% by weight, 94% by weight relative to the total weight of the polybutadiene compound included in the wavelength conversion layer. At least 95 wt%, at least 96 wt%, at least 97 wt%, at least 98 wt%, at least 99 wt%, at least 99.5 wt% or at least 99.9 wt%.
- the wavelength conversion particles can be effectively protected from external factors that can reduce the wavelength conversion efficiency of the wavelength conversion particles such as oxygen.
- the matrix or emulsion region included in the wavelength conversion layer of the optical film may be formed by the polymerization of the aforementioned hydrophilic polymerizable compound or hydrophobic polymerizable compound.
- any one of the matrix and emulsion region included in the wavelength conversion layer may include polymerized units of hydrophilic polymerizable compounds, and the other may include polymerized units of hydrophobic polymerizable compounds.
- the matrix contained in the wavelength conversion layer of the optical film may be a continuous phase, for example, formed by polymerization of a hydrophilic polymerizable compound.
- the matrix included in the wavelength conversion layer is a compound of Formula 1; A compound of Formula 2; A compound of formula 3; A compound of formula 4; Nitrogen-containing radically polymerizable compounds; And (meth) acrylic acid or a polymerizable unit of any one compound selected from the group consisting of a radically polymerizable compound including a salt thereof.
- each Q is independently hydrogen or an alkyl group
- each U is independently an alkylene group
- each independently is an alkylene group which may be substituted with a hydroxy group
- Z is hydrogen, an alkoxy group, an epoxy group or a monovalent group.
- a hydrocarbon group, X is a hydroxy group or a cyano group, and m and n are any number.
- the emulsion region included in the wavelength conversion layer of the optical film is dispersed in a continuous matrix, and may be, for example, in the form of particles.
- the emulsion region may be in the form of particles having an average diameter in the range of 1 ⁇ m to 200 ⁇ m. In another example, the emulsion region may be in the form of particles having an average diameter in the range of about 1 ⁇ m to 50 ⁇ m or in the range of about 50 ⁇ m to 200 ⁇ m.
- the size of the particle form may be controlled by adjusting the proportion of the material forming the matrix and the emulsion region, or by using a surfactant or the like.
- Such an emulsion region may be formed by, for example, polymerization of the hydrophobic polymerizable compound described above.
- the emulsion region may include a polymerization unit of any one compound selected from the group consisting of a compound of Formula 5, a compound of Formula 6, and a compound of Formula 7.
- each Q is independently hydrogen or an alkyl group
- each U is independently an alkylene group, an alkenylene group or an alkynylene group or an arylene group
- B is a straight or branched chain alkyl group having 5 or more carbon atoms or an alicyclic hydrocarbon.
- Y is an oxygen atom or a sulfur atom
- X is an oxygen atom, a sulfur atom or an alkylene group
- Ar is an aryl group
- n is any number.
- the emulsion region may include, for example, wavelength converting particles, wherein the wavelength converting particles included in the emulsion region may be the green particles and / or the red particles described above.
- the wavelength converting particles in the emulsion region may comprise green particles and red particles at the same time, where each particle may be located in a different region from each other in the emulsion region.
- the emulsion region absorbs light in the range of 420 nm to 490 nm and absorbs light in the A region and / or light in the range of 420 nm to 490 nm including the first wavelength converting particles capable of emitting light in the range of 490 nm to 580 nm. It may include a region B including the second wavelength conversion particles capable of emitting light in the range of 580nm to 780nm.
- the ratio of matrix and emulsion regions in the wavelength conversion layer is For example, the ratio of the wavelength conversion particles to be included in the wavelength conversion layer, the adhesion with other layers such as a barrier layer, the production efficiency of the emulsion structure which is a phase-separated structure, or the physical properties required for film formation are selected. Can be.
- the wavelength conversion layer may include 5 to 40 parts by weight of the emulsion region relative to 100 parts by weight of the matrix.
- the proportion of the emulsion region may be at least 10 parts by weight or at least 15 parts by weight with respect to 100 parts by weight of the matrix.
- the ratio of the emulsion region may be 35 parts by weight or less with respect to 100 parts by weight of the matrix.
- the ratio of the weight of the matrix and the emulsion region is the ratio of the weight of each region itself, or the sum of the weights of all the components included in the region or the ratio of the main components or the weight of the material used to form the respective regions. It can mean a ratio.
- the matrix and emulsion regions may include polymerized units of hydrophilic and hydrophobic polymerizable compounds, and the weight ratio may be a ratio between the polymerized units.
- the optical film of the present application may further include a barrier layer on the wavelength conversion layer.
- the optical film may include a barrier layer on one or both sides of the wavelength conversion layer.
- Such a barrier layer can protect the wavelength conversion layer from a high temperature condition or a condition in which harmful external factors such as oxygen and moisture exist.
- the barrier layer may be formed of a material having good stability, which is hydrophobic and does not cause yellowing even when exposed to light.
- the barrier layer may be selected to have a refractive index in a range similar to that of the wavelength conversion layer in order to reduce loss of light at an interface between the wavelength conversion layer and the barrier layer.
- the barrier layer may be, for example, a solid material, or a cured liquid, gel, or polymer, and may be selected from flexible or inflexible materials, depending on the application.
- the kind of material for forming the barrier layer is not particularly limited and may be selected from known materials including glass, polymers, oxides or nitrides and the like.
- the barrier layer is, for example, glass; Polymers such as poly (ethylene terephtalate) (PET); Or an oxide or nitride such as silicon, titanium or aluminum, or a combination of two or more of the above, but is not limited thereto.
- the barrier layer may be present on both surfaces of the wavelength conversion layer, or only on one surface, as exemplarily shown in FIG. 2.
- the optical film may have a structure in which barrier layers exist on both surfaces as well as on the side surfaces thereof, and the wavelength conversion layer is entirely sealed by the barrier layer.
- the present application also relates to a method for producing an optical film.
- the present application relates to a method for producing an optical film comprising mixing a wavelength conversion particle and a polybutadiene compound with a hydrophilic polymerizable compound and a hydrophobic polymerizable compound phase-separated from the hydrophilic polymerizable compound after polymerization.
- the method of mixing the wavelength conversion particle and the polybutadiene compound with a hydrophilic polymerizable compound and a hydrophobic polymerizable compound includes, for example, a method of mixing a wavelength conversion particle, a polybutadiene compound, a hydrophilic polymerizable compound and a hydrophobic polymerizable compound; Or a hydrophilic polymerizable composition comprising a hydrophilic polymerizable compound, an initiator, and the like, and a hydrophobic polymerizable composition containing a hydrophobic polymerizable compound, a wavelength converting particle, a polybutadiene compound, an initiator, and the like are separately prepared, followed by a method of mixing the two. May be exemplified.
- phase separation may occur during a curing process, specifically, polymerization, and a wavelength conversion layer including a matrix, which is a phase-separated continuous phase of the above-described type, and an emulsion region dispersed in the matrix may be formed.
- the wavelength conversion particle polybutadiene compound is included in any one of the above two regions of the wavelength conversion layer, specifically, the emulsion region, and the wavelength conversion efficiency of the wavelength conversion particles is lowered by external factors such as an initiator or oxygen. Etc. can be prevented.
- the method of forming the wavelength conversion layer may include, for example, coating the mixed material on a suitable substrate by a known coating method to form a layer.
- the method of curing the layer formed in the above manner is not particularly limited, for example, may be performed by applying an appropriate range of heat to the extent that the initiator can be activated, or by applying electromagnetic waves such as ultraviolet rays. have.
- a barrier layer may be additionally formed, or the polymerization process may be performed in a state adjacent to the barrier layer.
- An exemplary lighting device may include a light source and the optical film.
- the light source and the optical film in the lighting device may be arranged to allow the light irradiated from the light source to enter the optical film.
- the light irradiated from the light source When the light irradiated from the light source is incident on the optical film, some of the incident light is not absorbed by the wavelength converting particles in the optical film and is emitted as it is, and another part is absorbed by the wavelength converting particles and then converted into light having a different wavelength. Can be released. Accordingly, by adjusting the wavelength of the light emitted from the light source and the wavelength of the light emitted by the wavelength conversion particles, it is possible to adjust the color purity or color of the light emitted from the optical film, it is possible to provide an optical film with improved luminous efficiency. .
- white light may be emitted from the optical film when the wavelength conversion layer contains the appropriate amounts of the above-mentioned red and green particles and the light source is adjusted to emit blue light.
- the kind of the light source included in the lighting device of the present application is not particularly limited, and an appropriate kind may be selected in consideration of the kind of the desired light.
- the light source may be a blue light source, for example, a light source capable of emitting light having a wavelength within a range of 420 to 490 nm.
- 3 and 4 exemplarily show a lighting device including a light source and an optical film as described above.
- the light source and the optical film in the lighting apparatus may be arranged to allow light emitted from the light source to be incident on the optical film.
- the light source 600 is disposed below the optical film 400, and thus light emitted from the light source 600 in the upward direction may be incident to the optical film 400.
- the light source 600 is disposed on the side surface of the optical film 400.
- the light from the light source 600 such as the light guiding plate 700 or the reflecting plate 800, is more Other means may be included that allow for efficient incidence on the optical film 400.
- 3 and 4 is one example of the lighting device of the present application, in addition to the lighting device may have a variety of known forms, for this purpose may further include a variety of known configurations.
- the lighting device of the present application as described above can be used for various applications.
- a representative use of the lighting device of the present application is a display device.
- the lighting device may be used as a backlight unit (BLU) of a display device such as a liquid crystal display (LCD).
- BLU backlight unit
- LCD liquid crystal display
- the lighting device may be a backlight unit (BLU) of a display device such as a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device, or a digital camera, indoor or outdoor lighting. It may be used for stage lighting, decorative lighting, accent lighting, or museum lighting, and the like, but may also be used for horticulture or special wavelength lighting required in biology, but the use of the lighting apparatus is not limited thereto.
- BLU backlight unit
- a display device such as a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device, or a digital camera, indoor or outdoor lighting. It may be used for stage lighting, decorative lighting, accent lighting, or museum lighting, and the like, but may also be used for horticulture or special wavelength lighting required in biology, but the use of the lighting apparatus is not limited thereto.
- PEG poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156-97- 0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 8 to 9 (cal / cmcm 3 ) 1/2 ), green particles (Quantum Dot particles), surfactants (polyvinylpyrrolidone), SiO 2 nanoparticles and polybutadiene compounds with a solubility parameter of 8.3 (cal / cm 3 ) 1/2 (polydutadiene, CAS No.:31567-90-5) of 9: 1: 1: 0.1: 0.05: 0.05: 0.2 (PEGDA: LA: BD:
- the optical film composition (A1) is positioned to a thickness of about 50 ⁇ m between two barrier films (i-components) spaced at regular intervals, and phase-separated by irradiation with ultraviolet rays to induce radical polymerization.
- An optical film was prepared comprising the areas.
- An optical film was prepared in the same manner as in Example 1 except that the composition for optical films (B1) not containing a polybutadiene compound was used.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Filters (AREA)
- Dispersion Chemistry (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polymerisation Methods In General (AREA)
Abstract
본 출원은 광학 필름, 그 제조 방법, 조명 장치 및 디스플레이 장치에 대한 것이다. 본 출원은, 우수한 색순도와 효율을 가지고, 칼라 특성이 뛰어난 조명 장치를 제공할 수 있는 광학 필름을 제공할 수 있다. 본 출원의 광학 필름은 상기와 같은 우수한 특성이 장기간 안정적으로 유지될 수 있다. 본 출원의 광학 필름은, 다양한 조명 장치는 물론 광전지 애플리케이션, 광 필터 또는 광 변환기 등을 포함하는 다양한 용도에 사용될 수 있다.
Description
본 출원은 광학 필름용 조성물, 이를 포함하는 광학 필름, 광학 필름의 제조 방법, 광학 필름을 포함하는 조명장치 및 디스플레이 장치에 관한 것이다.
본 출원은 2015년 3월 12일자 출원된 대한민국 특허 출원 10- 2015-0034557 호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
조명 장치는 다양한 용도에 사용되고 있다. 조명 장치는, 예를 들면, LCD(Liquid Crystal Display), TV, 컴퓨터, 모바일폰, 스마트폰, 개인 휴대정보 단말기(PDA), 게이밍 장치, 전자 리딩 (reading) 장치 또는 디지털 카메라 등과 같은 디스플레이의 BLU(Backlight Unit)로 사용될 수 있다. 조명 장치는 그 외에도, 실내 또는 실외 조명, 무대 조명, 장식 조명, 액센트 조명 또는 박물관 조명 등에 사용될 수 있고, 이 외에도 원예학이나, 생물학에서 필요한 특별한 파장 조명 등에 사용될 수 있다.
대표적인 조명 장치로는, 예를 들면, LCD의 BLU 등으로 사용되는 것으로서 청색 LED(Light Emitting Diode)와 YAG(Yttrium aluminium garnet)와 같은 형광체를 조합시켜 백색광을 내는 장치가 있다.
또한, 최근에는 입자의 크기에 따라 방출하는 빛의 색상이 달라지는 파장 변환 입자, 예컨대 양자점(Quantum-dot)을 이용하여, 백색광을 내는 조명장치에 관련된 연구가 꾸준히 진행되고 있다.
특히 양자점이 산소 등의 기체에 노출됨에 따른 효율 감소 문제 또는 양자점 자체의 파장 변환 효율을 증대시키기 위한 연구 등이 활발히 수행되고 있다.
(특허문헌 1) 한국공개특허공보 제2011-0048397호
(특허문헌 2) 한국공개특허공보 제2011-0038191호
본 출원은 산소 등에 의한 파장 변환 입자의 파장 변환 효율 감소를 최소화함으로써, 높은 파장 변환 효율을 달성할 수 있는 광학 필름용 조성물, 이를 포함하는 광학 필름, 광학 필름의 제조방법을 제공한다.
본 출원은 또한, 상기 광학 필름을 포함하여 광 특성이 우수한 조명 장치 및 디스플레이 장치를 제공한다.
본 출원은 상기 과제를 해결 하기 위해 안출된 것으로써, 친수성 중합성 화합물; 중합 후 상기 친수성 중합성 화합물과 상 분리되는 소수성 중합성 화합물; 파장 변환 입자; 및 폴리부타디엔 화합물을 포함하는 광학 필름용 조성물에 관한 것이다.
하나의 예시에서, 폴리부타디엔 화합물은 부타디엔 단량체의 단독 중합체 또는 공중합체일 수 있다. 상기 공중합체는, 예를 들면 (메타)아크릴로일 관능화 폴리부타디엔 또는 에폭시 관능화 폴리부타디엔 일 수 있다.
하나의 예시에서, 폴리부타디엔 화합물은 용해도 파라미터가 10 (cal/cm3)1/2 미만일 수 있다.
본 출원은 또한, 연속 상인 매트릭스; 및 상기 연속 상인 매트릭스 내에 분산되어 있는 에멀젼 영역을 포함하는 파장 변환층을 가지고, 상기 파장 변환층의 연속 상 또는 에멀젼 영역에 존재하는 파장 변환 입자 및 폴리부타디엔 화합물을 포함하는 광학 필름에 관한 것이다.
하나의 예시에서, 상기 연속 상인 매트릭스는 에멀젼 영역 대비 상대적으로 친수성인 영역으로써, 파장 변환 입자를 포함할 수 있으며, 상기 파장 변환층에 포함되는 전체 파장 변환 입자의 중량을 기준으로 상기 연속 상인 매트릭스에 포함되어 있는 파장 변환 입자의 중량 비율은 10%이하일 수 있다.
다른 예시에서, 상기 에멀젼 영역은 연속 상인 매트릭스 대비 상대적으로 소수성인 영역으로써, 파장 변환 입자를 포함할 수 있으며, 상기 파장 변환층에 포함되는 전체 파장 변환 입자의 중량을 기준으로 상기 에멀젼 영역에 포함되는 파장 변환 입자의 중량 비율은 90% 이상일 수 있다.
상기 에멀젼 영역은, 예를 들면 420nm 내지 490nm의 범위 내의 광을 흡수하여 490nm 내지 580nm의 범위 내의 광을 방출할 수 있는 제 1 파장 변환 입자를 포함하는 A 영역 및/또는 420nm 내지 490nm 범위 내의 광을 흡수하여 580nm 내지 780nm의 범위 내의 광을 방출할 수 있는 제 2 파장 변환 입자를 포함하는 B영역을 포함할 수 있다.
본 출원은 또한, 파장 변환 입자와 폴리부타디엔 화합물을 친수성 중합성 화합물 및 중합 후 상기 친수성 중합성 화합물과 상 분리 되는 소수성 중합성 화합물과 혼합하는 단계를 포함하는 광학 필름의 제조방법에 관한 것이다.
본 출원은 또한, 상기와 같은 광학 필름을 포함하는 조명장치 및 디스플레이 장치에 관한 것이다.
본 출원은 열 또는 빛에 의해 유도될 수 있는 파장 변환 입자의 산화를 방지하며, 궁극적으로 파장 변환 입자의 파장 변환 효율 감소를 방지하여, 내구성 또는 광 특성이 향상된 광학 필름을 형성할 수 있는 광학 필름용 조성물을 제공할 수 있다.
본 출원은 또한, 광학 필름용 조성물로부터 형성된 파장 변환층의 상 분리 구조를 통해 필름에 적합한 물성, 예를 들면 다른 층과의 밀착성, 내구성 또는 광 특성 등이 우수한 광학 필름을 제공할 수 있다.
도 1은 파장 변환층의 내부를 간략히 표현한 모식도이다.
도 2는 예시적인 광학 필름의 모식도이다.
도 3 및 4는 예시적인 조명 장치의 모식도이다.
도 5는 본 출원에 따른 광학 필름의 상대 파장 변환 효율을 평가한 결과를 도시한 것이다.
이하 본 출원에 대해서 실시예 및 도면을 통해 보다 상세히 설명하겠지만, 본 출원의 요지에 국한된 실시예에 지나지 않는다. 한편 본 출원은 이하의 실시예에서 제시하는 공정조건에 제한되는 것이 아니며, 본 출원의 목적을 달성하기에 필요한 조건의 범위 안에서 임의로 선택 할 수 있음은 이 기술분야의 통상의 지식을 가진 자에게 자명하다.
본 출원은 친수성 중합성 화합물; 중합 후 상기 친수성 중합성 화합물과 상 분리되는 소수성 중합성 화합물; 파장 변환 입자; 및 폴리부타디엔 화합물을 포함하는 광학 필름용 조성물에 관한 것이다.
본 출원의 용어 「광학 필름」은 다양한 용도로 광학 장치에 사용되는 필름을 의미할 수 있다. 예를 들면 상기 광학 필름은, 소정 파장의 광을 흡수하여 상기 흡수한 광과 동일하거나 상이한 파장의 광을 방출할 수 있도록 형성된 필름을 의미할 수 있다.
본 출원의 광학 필름용 조성물은, 친수성 중합성 화합물 및 중합 후에 상기 친수성 중합성 화합물과 상 분리되는 소수성 중합성 화합물을 포함하여, 중합 후에 친수성 영역 및 상기 친수성 영역과 상 분리되는 소수성 영역을 형성할 수 있다.
본 출원의 광학 필름용 조성물은 친수성 중합성 화합물 및 중합 후 상기 친수성 중합성 화합물과 상 분리 되는 소수성 중합성 화합물을 포함하고, 파장 변환 입자를 상기 친수성 중합성 화합물이 중합되어 형성된 영역 또는 상기 소수성 중합성 화합물이 중합되어 형성된 영역에 위치시킴으로써, 파장 변환 입자가 존재하는 영역에 개시제나 가교제 등과 같은 상기 파장 변환 입자의 물성에 악영향을 미칠 수 있는 다른 요인들을 보다 효과적으로 제어하여 내구성이 우수한 광학 필름을 형성할 수 있다.
또한, 본 출원은 광학 필름용 조성물은 폴리부타디엔 화합물을 포함하되, 상기 폴리부타디엔 화합물을 중합 후 상 분리되어 형성된 영역들 중 파장 변환 입자와 동일한 영역에 포함될 수 있도록 하여, 열 및 빛에 의한 파장 변환 입자의 산화를 방지할 수 있고, 궁극적으로 파장 변환 효율이 우수한 광학 필름을 형성할 수 있다.
본 출원의 광학 필름용 조성물은 친수성 중합성 화합물 및 중합 후 상기 친수성 중합성 화합물과 상 분리되는 소수성 중합성 화합물을 포함한다.
본 출원에서 상기 친수성 중합성 화합물과 소수성 중합성 화합물의 친수성 및 소수성의 구분의 기준은, 예를 들면, 상기 양 화합물이 서로 상대적으로 친수성 또는 소수성이면서 서로 혼합되었을 때에 상 분리 되어 있는 영역을 형성할 수 있을 정도라면 특별히 제한되지 않는다. 하나의 예시에서 상기 친수성과 소수성의 구분은 소위 용해도 파라미터(solubility parameter)에 의해 수행될 수 있다.
본 출원에서 용해도 파라미터는 해당 친수성 또는 소수성 중합성 화합물의 중합에 의해 형성되는 단독 폴리머(homopolymer)의 용해도 파라미터를 의미하고, 이를 통해 해당 화합물의 친수성 및 소수성의 정도를 파악할 수 있다. 용해도 파라미터를 구하는 방식은 특별히 제한되지 않고, 이 분야에서 공지된 방식에 따를 수 있다. 예를 들면, 상기 파라미터는 당업계에서 소위 HSP (Hansen solubility parameter)로 공지된 방식에 따라서 계산하거나 구해질 수 있다.
하나의 예시에서, 상기 친수성 중합성 화합물은 용해도 파라미터가 10 (cal/cm3)1/2 이상인 라디칼 중합성 화합물일 수 있다. 상기 친수성 중합성 화합물의 용해도 파라미터는 다른 예시에서 약 11 (cal/cm3)1/2 이상, 12 (cal/cm3)1/2 이상, 13 (cal/cm3)1/2 이상, 14 (cal/cm3)1/2 이상 또는 15 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 중합성 화합물의 용해도 파라미터는 다른 예시에서 약 40 (cal/cm3)1/2 이하, 약 35 (cal/cm3)1/2 이하 또는 약 30 (cal/cm3)1/2 이하일 수 있다.
하나의 예시에서 상기 친수성 중합성 화합물은 하기 화학식 1의 화합물; 하기 화학식 2의 화합물; 하기 화학식 3의 화합물; 하기 화학식 4의 화합물; 질소 함유 라디칼 중합성 화합물; 및 (메타)아크릴산 또는 그의 염을 포함하는 라디칼 중합성 화합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
[화학식 1]
[화학식 2]
[화학식 3]
[화학식 4]
화학식 1 내지 4에서 Q는 각각 독립적으로 수소 또는 알킬기이고, U는 각각 독립적으로 알킬렌기이며, A는 각각 독립적으로 히드록시기가 치환될 수 있는 알킬렌기이고, Z는 수소, 알콕시기, 에폭시기 또는 1가의 탄화수소기이며, X는 히드록시기 또는 시아노기이고, m 및 n은 임의의 수이다.
본 출원에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「알킬렌기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「에폭시기」는, 특별히 달리 규정하지 않는 한, 3개의 고리 구성 원자를 가지는 고리형 에테르(cyclic ether) 또는 상기 고리형 에테르를 포함하는 화합물 또는 그로부터 유도된 1가 잔기를 의미할 수 있다. 에폭시기로는 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등이 예시될 수 있다. 상기에서 지환식 에폭시기는, 지방족 탄화수소 고리 구조를 포함하고, 상기 지방족 탄화수소 고리를 형성하고 있는 2개의 탄소 원자가 또한 에폭시기를 형성하고 있는 구조를 포함하는 화합물로부터 유래되는 1가 잔기를 의미할 수 있다. 지환식 에폭시기로는, 6개 내지 12개의 탄소 원자를 가지는 지환식 에폭시기가 예시될 수 있고, 예를 들면, 3,4-에폭시시클로헥실에틸기 등이 예시될 수 있다.
본 출원에서 용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알콕시기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「1가의 탄화수소기」는, 특별히 달리 규정하지 않는 한, 탄소와 수소로 이루어진 화합물 또는 그러한 화합물의 유도체로부터 유도되는 1가 잔기를 의미할 수 있다. 예를 들면, 1가 탄화수소기는, 1개 내지 25개의 탄소 원자를 포함할 수 있다. 1가 탄화수소기로는, 알킬기, 알케닐기, 알키닐기 또는 아릴기 등이 예시될 수 있다.
본 출원에서 상기 알킬기, 알콕시기, 알킬렌기, 에폭시기 또는 1가의 탄화수소기에 임의적으로 치환되어 있을 수 있는 치환기로는, 히드록시기; 염소 또는 불소 등의 할로겐; 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기; 아크릴로일기; 메타크릴로일기; 이소시아네이트기; 티올기; 아릴옥시기; 또는 1가 탄화수소기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식 1, 2 및 4에서 m 및 n은 임의의 수이며, 예를 들면, 각각 독립적으로 1 내지 20, 1 내지 16 또는 1 내지 12의 범위 내의 수일 수 있다.
상기에서 질소 함유 라디칼 중합성 화합물로는, 예를 들면, 아미드기-함유 라디칼 중합성 화합물, 아미노기-함유 라디칼 중합성 화합물, 이미드기-함유 라디칼 중합성 화합물 또는 사이아노기-함유 라디칼 중합성 화합물 등을 사용할 수 있다. 상기에서 아미드기-함유 라디칼 중합성 화합물로서는, 예를 들면 (메타)아크릴아미드 또는 N,N-디메틸 (메타)아크릴아미드, N,N-디에틸 (메타)아크릴아미드, N-아이소프로필 (메타)아크릴아미드, N-메틸올 (메타)아크릴아미드, 다이아세톤 (메타)아크릴아미드, N-비닐아세토아미드, N,N'-메틸렌비스(메타)아크릴아미드, N,N-디메틸아미노프로필(메타)아크릴아미드, N-비닐피롤리돈, N-비닐카프로락탐 또는 (메트)아크릴로일모폴린 등이 예시될 수 있고, 아미노기-함유 라디칼 중합성 화합물로서는, 아미노에틸(메트)아크릴레이트, N,N-디메틸아미노에틸(메트)아크릴레이트 또는 N,N-디메틸아미노프로필(메트)아크릴레이트 등이 예시될 수 있으며, 이미드기-함유 라디칼 중합성 화합물로서는, N-아이소프로필말레이미드, N-사이클로헥실말레이미드 또는 이타콘이미드 등이 예시될 수 있고, 사이아노기-함유 라디칼 중합성 화합물로서는, 아크릴로나이트릴 또는 메타크릴로나이트릴 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
또한, (메타)아크릴 산의 염(salt)으로서, 예를 들면 (메타)아크릴산과 리튬, 나트륨, 및 칼륨을 비롯한 알칼리 금속과의 염 또는 마그네슘, 칼슘, 스트론튬 및 바륨을 비롯한 알칼리 토금속과의 염 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
상기 친수성 중합성 화합물은 중합 후, 예를 들면 파장 변환층 내 연속 상인 매트릭스를 형성할 수 있다.
광학 필름용 조성물에 포함되는 소수성 중합성 화합물은 중합 후 상기 친수성 중합성 화합물과 상 분리되는 것으로써, 예를 들면 용해도 파라미터가 10 (cal/cm3)1/2 미만일 수 있다. 다른 예시에서, 소수성 중합성 화합물의 용해도 파라미터는 다른 예시에서, 예를 들면 3 (cal/cm3)1/2 이상, 4 (cal/cm3)1/2 이상 또는 약 5 (cal/cm3)1/2 이상일 수 있다.
광학 필름의 적절한 상 분리 구조의 구현을 위해 친수성 중합성 화합물 및 소수성 중합성 화합물의 용해도 파라미터 차이는 제어될 수 있다.
하나의 예시에서 상기 친수성 중합성 화합물 및 소수성 중합성 화합물의 용해도 파라미터의 차이는 5 (cal/cm3)1/2 이상, 6 (cal/cm3)1/2 이상, 7 (cal/cm3)1/2 이상 또는 약 8 (cal/cm3)1/2 이상일 수 있다. 상기 차이는 용해도 파라미터 중 큰 값에서 작은 값을 뺀 수치이다. 상기 차이의 상한은 특별히 제한되지 않는다. 용해도 파라미터의 차이가 클수록 보다 적절한 상분리 구조가 형성될 수 있다. 상기 차이의 상한은, 예를 들면, 30 (cal/cm3)1/2 이하, 25 (cal/cm3)1/2 이하 또는 약 20 (cal/cm3)1/2 이하일 수 있다.
소수성 중합성 화합물은, 전술한 용해도 파라미터 범위를 만족하는 것으로써, 예를 들면 하기 화학식 5의 화합물, 하기 화학식 6의 화합물 및 하기 화학식 7의 화합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
[화학식 5]
[화학식 6]
[화학식 7]
화학식 5 내지 7에서, Q는 각각 독립적으로 수소 또는 알킬기이고,
U는 각각 독립적으로 알킬렌기, 알케닐렌기 또는 알키닐렌기 또는 아릴렌기이며, B는 탄소수 5 이상의 직쇄 또는 분지쇄 알킬기 또는 지환식 탄화수소기이고, Y는 산소 원자 또는 황 원자이며, X는 산소 원자, 황 원자 또는 알킬렌기이고, Ar은 아릴기이며, n은 임의의 수이다.
본 출원에서 용어 「알케닐렌기 또는 알키닐렌기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐렌기 또는 알키닐렌기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알케닐렌기 또는 알키닐렌기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「아릴렌기」는, 특별히 달리 규정하지 않는 한, 벤젠 또는 2개 이상의 벤젠이 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 2가 잔기를 의미할 수 있다. 아릴렌기는, 예를 들면, 벤젠, 나프탈렌 또는 플루오렌(fluorene) 등을 포함하는 구조를 가질 수 있다.
본 출원에서 용어 「아릴기」는, 특별히 달리 규정하지 않는 한, 벤젠 고리 또는 2개 이상의 벤젠 고리가 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 아릴기의 범위에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 아릴기로는, 페닐기, 페녹시기, 페녹시페닐기, 페녹시벤질기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있다. 또한, 상기 아릴기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 상기 알케닐렌기, 알키닐렌기, 아릴렌기 또는 아릴기에 임의적으로 치환되어 있을 수 있는 치환기로는, 히드록시기, 염소 또는 불소 등의 할로겐, 알킬기 또는 아릴옥시기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
하나의 예시에서, 화학식 5의 Q는 수소 또는 알킬기이고, B는 탄소수 5 이상의 직쇄 또는 분지쇄의 알킬기 또는 지환식 탄화수소기일 수 있다.
상기, 화학식 5에서 B는 탄소수 5 이상, 탄소수 7 이상 또는 탄소수 9 이상의 직쇄 또는 분지쇄 알킬기일 수 있다. 이와 같이 상대적으로 장쇄의 알킬기를 포함하는 화합물은 상대적으로 비극성의 화합물로 알려져 있다. 상기 직쇄 또는 분지쇄 알킬기의 탄소수의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 알킬기는, 탄소수 20 이하의 알킬기일 수 있다.
화학식 5에서 B는 다른 예시에서, 지환식 탄화수소기 예를 들면, 탄소수 3 내지 20, 탄소수 3 내지 16 또는 탄소수 6 내지 12의 지환식 탄화수소기일 수 있고, 그러한 탄화수소기의 예로는 사이클로헥실기 또는 이소보르닐기 등이 예시될 수 있다. 이와 같이 지환식 탄화수소기를 가지는 화합물은, 상대적으로 비극성의 화합물로 알려져 있다.
하나의 예시에서, 화학식 6의 Q는 수소 또는 알킬기이고, U는 알케닐렌기, 알키닐렌기 또는 아릴렌기 일 수 있다.
하나의 예시에서, 화학식 7에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, Y는 탄소 원자, 산소 원자 또는 황 원자이며, X는 산소 원자, 황 원자 또는 알킬렌기이고, Ar은 아릴기이며, n은 임의의 수, 예를 들면 1 내지 20, 1 내지 16 또는 1 내지 12의 범위 내의 양의 정수일 수 있다.
상기 소수성 중합성 화합물은 중합 후, 예를 들면 파장 변환층 내 에멀젼 영역을 형성할 수 있다.
상기 소수성 중합성 화합물과 친수성 중합성 화합물을 파장 변환 입자와 함께 조성물에 포함시킬 경우, 이러한 조성물로부터 형성된 파장 변환층은 중합 후 상 분리 되어 각자의 영역을 형성할 수 있고, 파장 변환 입자는 친수성 중합성 화합물에 의해 형성된 영역 또는 소수성 중합성 화합물에 의해 형성된 영역에 위치하여, 파장 변환 입자의 목적하는 분산성 및 안정성을 도모할 수 있다.
친수성 중합성 화합물 및 소수성 중합성 화합물의 비율은, 특별히 제한되는 것은 아니다.
예를 들면, 광학 필름용 조성물은 친수성 중합성 화합물 100 중량부 대비 10 중량부 내지 100 중량부의 소수성 중합성 화합물을 포함할 수 있다.
다른 예시에서, 광학 필름용 조성물은 친수성 중합성 화합물 50 내지 95 중량부 및 소수성 중합성 화합물 5 내지 50 중량부를 포함하거나, 또는 소수성 중합성 화합물 50 내지 95 중량부 및 친수성 중합성 화합물 5 내지 50 중량부를 포함할 수 있다. 본 출원에서 용어 중량부는, 특별히 달리 규정하지 않는 한, 성분간의 중량 비율을 의미한다.
본 출원의 광학 필름용 조성물은 친수성 화합물 및 소수성 화합물의 중합을 위해 라디칼 개시제를 추가로 포함할 수 있다.
본 출원의 광학 필름용 조성물에 포함되는 라디칼 개시제의 종류는 특별히 제한되지 않는다. 개시제로는, 열의 인가 또는 광의 조사에 의해 중합 반응을 유도할 수 있도록 라디칼을 생성할 수 있는 라디칼 열 개시제 또는 광 개시제를 이용할 수 있다.
열개시제로는, 예를 들면, 2,2-아조비스-2,4-디메틸발레로니트릴(V-65, Wako(제)), 2,2-아조비스이소부티로니트릴(V-60, Wako(제)) 또는 2,2-아조비스-2-메틸부티로니트릴(V-59, Wako(제))와 같은 아조계 개시제; 디프로필 퍼옥시디카보네이트(Peroyl NPP, NOF(제)), 디이소프로필 퍼옥시 디카보네이트(Peroyl IPP, NOF(제)), 비스-4-부틸시클로헥실 퍼옥시 디카보네이트(Peroyl TCP, NOF(제)), 디에톡시에틸 퍼옥시 디카보네이트(Peroyl EEP, NOF(제)), 디에톡시헥실 퍼옥시 디카보네이트(Peroyl OPP, NOF(제)), 헥실 퍼옥시 디카보네이트(Perhexyl ND, NOF(제)), 디메톡시부틸 퍼옥시 디카보네이트(Peroyl MBP, NOF(제)), 비스(3-메톡시-3-메톡시부틸)퍼옥시 디카보네이트(Peroyl SOP, NOF(제)), 헥실 퍼옥시 피발레이트(Perhexyl PV, NOF(제)), 아밀 퍼옥시 피발레이트(Luperox 546M75, Atofina(제)), 부틸 퍼옥시 피발레이트(Perbutyl, NOF(제)) 또는 트리메틸헥사노일 퍼옥사이드(Peroyl 355, NOF(제))와 같은 퍼옥시에스테르 화합물; 디메틸 하이드록시부틸 퍼옥사네오데카노에이트(Luperox 610M75, Atofina(제)), 아밀 퍼옥시 네오데카노에이트(Luperox 546M75, Atofina(제)) 또는 부틸 퍼옥시 네오데카노에이트(Luperox 10M75, Atofina(제))와 같은 퍼옥시 디카보네이트 화합물; 3,5,5-트리메틸헥사노일 퍼옥시드 또는 디벤조일 퍼옥시드와 같은 아실 퍼옥시드; 케톤 퍼옥시드; 디알킬 퍼옥시드; 퍼옥시 케탈; 또는 하이드로퍼옥시드 등과 같은 퍼옥시드 개시제 등의 일종 또는 이종 이상을 사용할 수 있다.
광개시제로는, 벤조인계, 히드록시 케톤계, 아미노케톤계 또는 포스핀 옥시드계 광개시제 등이 사용될 수 있다. 구체적으로는, 벤조인, 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 이소프로필에테르, 벤조인 n-부틸에테르, 벤조인 이소부틸에테르, 아세토페논, 디메틸아미노 아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2,2-디에톡시-2-페닐아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1-온, 1-히드록시시클로헥실페닐케톤, 2-메틸-1-[4-(메틸티오)페닐]-2-몰포리노-프로판-1-온, 4-(2-히드록시에톡시)페닐-2-(히드록시-2-프로필)케톤, 벤조페논, p-페닐벤조페논, 4,4’-디에틸아미노벤조페논, 디클로로벤조페논, 2-메틸안트라퀴논, 2-에틸안트라퀴논, 2-t-부틸안트라퀴논, 2-아미노안트라퀴논, 2-메틸티오잔톤(thioxanthone), 2-에틸티오잔톤, 2-클로로티오잔톤, 2,4-디메틸티오잔톤, 2,4-디에틸티오잔톤, 벤질디메틸케탈, 아세토페논 디메틸케탈, p-디메틸아미노 안식향산 에스테르, 올리고[2-히드록시-2-메틸-1-[4-(1-메틸비닐)페닐]프로판논] 및 2,4,6-트리메틸벤조일-디페닐-포스핀옥시드 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 광학 필름용 조성물은 상기 개시제 중에 친수성 또는 소수성 성분에 높은 용해도를 나타내는 것을 적절히 선택하여 사용할 수 있다.
본 출원의 광학 필름용 조성물 내 개시제의 함량은 특별히 제한되는 것은 아니며, 예를 들면 개시제는 광학 필름용 조성물 전체 중량 대비 0.1 중량% 내지 15 중량%의 범위로 광학 필름용 조성물에 포함될 수 있으나 이에 제한되는 것은 아니다.
본 출원의 광학 필름용 조성물은 파장 변환 입자를 포함한다.
본 출원에서 용어 「파장 변환 입자」는, 어느 한 파장의 광을 흡수하여, 동일하거나 상이한 파장의 광을 방출할 수 있도록 형성된 나노 입자를 의미한다.
본 출원에서 용어「나노 입자」는, 나노 수준의 치수(dimension)를 가지는 입자로서, 예를 들면, 평균 입경이 약 100 nm 이하, 90 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하, 50 nm 이하, 40 nm 이하, 30 nm 이하, 20 nm 이하 또는 약 15 nm 이하인 입자를 의미할 수 있다. 상기 나노 입자의 형태는 특별히 제한되지 않으며, 구상이거나, 타원체, 다각형 또는 무정형 등을 포함할 수 있다.
파장 변환 입자는, 소정 파장의 광을 흡수하여 그와 동일하거나 다른 파장의 광을 방출할 수 있는 입자일 수 있다.
하나의 예시에서, 파장 변환 입자는 420 내지 490 nm의 범위 내의 어느 한 파장의 광을 흡수하여 490 내지 580 nm 범위 내의 어느 한 파장의 광을 방출하는 제 1 파장 변환 입자(이하, 녹색 입자라 칭할 수 있다.) 이거나, 또는 420 내지 490 nm의 범위 내의 어느 한 파장의 광을 흡수하여 580 내지 780 nm 범위 내의 어느 한 파장의 광을 방출하는 제 2 파장 변환 입자(이하, 적색 입자라 칭할 수 있다.)일 수 있다.
예를 들어, 백색광을 방출할 수 있는 파장 변환층을 가지는 광학 필름을 얻기 위하여 상기 적색 입자 및/또는 녹색 입자가 적정 비율로 함께 조성물에 포함되어 있을 수 있다.
파장 변환 입자로는 이러한 작용을 나타내는 것이라면 특별한 제한 없이 사용할 수 있다. 이러한 입자의 대표적인 예로는, 소위 양자점(Quantum Dot)으로 호칭되는 나노 구조물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
본 출원에서는 편의상 파장 변환 입자로 호칭하나, 상기 파장 변환 입자는 입자 형태일 수도 있고, 예를 들면, 나노와이어, 나노로드, 나노튜브, 분기된 나노구조, 나노테트라포드(nanotetrapods), 트라이포드(tripods) 또는 바이포드(bipods) 등의 형태일 수 있으며, 이러한 형태도 본 출원에서 규정하는 파장 변환 입자에 포함될 수 있다. 본 출원에서 용어 「나노 구조물」에는 약 500 nm 미만, 약 200 nm 미만, 약 100 nm 미만, 약 50 nm 미만, 약 20 nm 미만 또는 약 10 nm 미만의 치수를 가지는 적어도 하나의 영역 또는 특성 치수를 가지는 유사한 구조들을 포함할 수 있다. 일반적으로, 영역 또는 특성 치수들은 그 구조의 가장 작은 축을 따라서 존재할 수 있으나, 이에 제한되는 것은 아니다. 상기 나노 구조물은, 예를 들면, 실질적으로 결정질이거나, 실질적으로 단결정질, 다결정질 또는 비정질이거나, 상기의 조합일 수 있다.
본 출원에서 사용될 수 있는 양자점 또는 다른 나노입자들은 임의의 적합한 재료, 예를 들면, 무기 재료로서, 무기 전도 또는 반전도 재료를 사용하여 형성될 수 있다. 적합한 반도체 재료로는 II-VI족, III-V족, IV-VI족, I-III-VI족 및 IV족 반도체들이 예시될 수 있다. 구체적으로는, Si, Ge, Sn, Se, Te, B, C(다이아몬드 포함), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4, Al2O3, (Al, Ga, In)2 (S, Se, Te)3, Al2CO, CuInS2, CuInSe2, CuInSxSe2
-x 및 2개 이상의 상기 반도체들의 적합한 조합들이 예시될 수 있지만, 이에 한정되지 않는다.
하나의 예시에서 반도체 나노결정 또는 다른 나노구조는 p-형 도펀트 또는 n-형 도펀트 등과 같은 도펀트를 포함할 수도 있다. 본 출원에서 사용될 수 있는 나노입자는 또한 II-VI 또는 III-V 반도체들을 포함할 수 있다. II-VI 또는 III-V 반도체 나노결정들 및 나노구조들의 예로는, Zn, Cd 및 Hg 등과 같은 주기율표 II족 원소와 S, Se, Te, Po 등과 같은 주기표 VI족 원소와의 임의의 조합; 및 B, Al, Ga, In, 및 Tl 등과 같은 III족 원소와 N, P, As, Sb 및 Bi 등과 같은 V족 원소와의 임의의 조합이 있지만, 이에 제한되는 것은 아니다. 다른 예시에서 적합한 무기 나노구조들은 금속 나노구조들을 포함하고, 적합한 금속으로는 Ru, Pd, Pt, Ni, W, Ta, Co, Mo, Ir, Re, Rh, Hf, Nb, Au, Ag, Ti, Sn, Zn, Fe 또는 FePt 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
파장 변환 입자, 예를 들면, 양자점은 코어-셀 구조(core-shell structure)를 가질 수 있다. 코어-셀 구조의 파장 변환 입자를 형성할 수 있는 예시적인 재료에는 Si, Ge, Sn, Se, Te, B, C (다이아몬드 포함), P, Co, Au, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4, Al2O3, (Al, Ga, In)2 (S, Se, Te)3, Al2CO 및 2개 이상의 이런 재료들의 임의의 조합들이 포함되지만, 이에 제한되는 것은 아니다.
본 출원에서 적용 가능한 예시적인 코어-셀 파장 변환 입자(코어/셀)에는 CdSe/ZnS, InP/ZnS, PbSe/PbS, CdSe/CdS, CdTe/CdS 또는 CdTe/ZnS 등이 포함되지만, 이에 제한되는 것은 아니다.
또한, 파장 변환입자는 유기소재로 이루어진 고분자 입자일 수 있다. 상기 유기소재로 이루어진 고분자 입자의 종류 및 크기 등은 예를 들면 대한민국 공개특허공보 2014-0137676호 등이 개시되어 있는 공지의 것이 제한 없이 이용될 수 있다.
파장 변환 입자는 공지된 임의의 방식으로 제조할 수 있다. 예를 들어, 미국특허 제6,225,198호, 미국공개특허 제2002-0066401호, 미국 특허 제6,207,229호, 미국특허 제6,322,901호, 미국특허 제6,949,206호, 미국특허 제7,572,393호, 미국특허 제7,267,865호, 미국특허 제7,374,807호 또는 미국특허 제6,861,155호 등에 양자점 등의 형성 방법이 공지되어 있으며, 상기 외에도 다양한 공지의 방식들이 본 출원에 적용될 수 있다.
파장 변환 입자의 구체적인 종류는 특별히 제한되지 않고, 목적하는 광 방출 특성을 고려하여 적절하게 선택될 수 있다.
파장 변환 입자는 하나 이상의 리간드 또는 배리어를 포함할 수 있도록 표면이 개질 된 것 일 수 있다. 상기 리간드 또는 배리어는, 파장 변환 입자의 안정성을 향상시키고, 고온, 고강도, 외부 가스 또는 수분 등을 포함하는 유해한 외부 조건들로부터 파장 변환 입자를 보호하는 것에 유리할 수 있으며, 파장 변환 입자의 친수성 또는 소수성 특성을 부여하는 역할을 할 수 있다.
하나의 예시에서, 파장 변환 입자는 리간드로 표면이 개질 된 것일 수 있다.
전술한 바와 같이, 파장 변환 입자의 표면 개질을 통해 형성된 리간드는 파장 변환 입자의 표면에 적합한 특성, 예를 들면 친수성 또는 소수성 특성이나 후술하는 산란제와 결합 특성을 나타낼 수 있게 하는 역할을 하는 것으로써, 그 형성 방법은 공지이며, 이와 같은 방식은 본 출원에서 제한 없이 적용될 수 있다. 이러한 재료 내지는 방법들은, 예를 들면, 미국공개특허 제2008-0281010호, 미국공개특허 제2008-0237540호, 미국공개특허 제2010-0110728호, 미국공개특허 제2008-0118755호, 미국특허 제7,645,397호, 미국특허 제7,374,807호, 미국특허 제6,949,206호, 미국특허 제7,572,393호 또는 미국특허 제7,267,875호 등에 개시되어 있으나, 이에 제한되는 것은 아니다. 하나의 예시에서 상기 리간드는, 아민기를 갖는 분자(oleylamine, triethylamine, hexylamine, naphtylamine 등) 혹은 고분자, 카복실기를 갖는 분자(oleic acid 등) 혹은 고분자, 티올기를 갖는 분자(butanethiol, hexanethiol, dodecanethiol 등) 혹은 고분자, 피리딘기를 갖는 분자(pyridine 등) 혹은 고분자, 포스핀기를 갖는 분자(triphenylphosphine 등), 산화포스핀기를 갖는 분자(trioctylphosphine oxide 등), 카보닐기를 갖는 분자(alkyl ketone 등), 벤젠고리를 갖는 분자(benzene, styrene 등) 혹은 고분자, 히드록시기를 갖는 분자(butanol, hexanol 등) 혹은 고분자 또는 설폰기를 갖는 분자(Sulfonic acid 등) 혹은 고분자 등에 의해 형성될 수 있다.
파장 변환 입자는 본 출원의 광학 필름용 조성물이 중합되어 형성된 친수성 영역 또는 소수성 영역에 포함될 수 있다.
하나의 예시에서, 파장 변환 입자는 본 출원의 광학 필름용 조성물이 중합되어 형성된 소수성 영역에 포함되고, 친수성 영역에는 실질적으로 포함되지 않을 수 있다.
본 출원에서 파장 변환 입자가 실질적으로 포함되어 있지 않다는 것은, 예를 들면, 광학 필름용 조성물에 포함되는 파장 변환 입자의 전체 중량을 기준으로 해당 영역에 포함되어 있는 파장 변환 입자의 중량 비율이 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하, 1% 이하, 0.5% 이하 또는 0.1% 이하인 경우를 의미할 수 있다.
이와 같이 상 분리된 2 개의 영역을 형성하고, 파장 변환 입자를 상기 2개의 영역 중에서 어느 한 영역, 예를 들면 소수성 영역에만 포함시키는 경우, 상기 광학 필름용 조성물로부터 형성된 필름화에 적합한 물성을 확보할 수 있고, 후술하는 광학 필름의 배리어층과 같은 다른 층과의 밀착성 확보가 유리하며, 광학 필름의 형성 시에 파장 변환 입자가 존재하는 영역에 개시제나 가교제 등과 같은 상기 파장 변환 입자의 물성에 악영향을 미칠 수 있는 다른 요인들을 보다 효과적으로 제어하여 내구성이 우수한 필름을 형성할 수 있다.
파장 변환 입자의 광학 필름용 조성물 내 비율은 특별히 제한되지 않으며, 예를 들면 목적하는 광 특성 등을 고려하여 적정 범위로 선택될 수 있다.
파장 변환 입자는, 예를 들면 조성물의 총 고형분 대비 0.05 내지 20 중량%, 0.05 내지 15 중량%, 0.1 내지 15 중량% 또는 0.5 내지 15 중량%의 비율로 조성물에 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 광학 필름용 조성물은 폴리부타디엔 화합물을 포함한다.
본 출원에서 용어 「폴리부타디엔 화합물」은, 부타디엔 단량체를 포함하는 혼합물로부터 중합되어 형성된 올리고머, 단독 중합체 또는 공중합체를 의미할 수 있다.
하나의 예시에서, 폴리부타디엔 화합물은 부타디엔 단량체의 단독 중합체 또는 공중합체 일 수 있다.
폴리부타디엔 화합물은, 파장 변환층 내에 파장 변환 입자가 존재하는 영역에 포함되어 파장 변환 입자의 산화를 방지하는 역할을 수행하는 것으로써, 파장 변환 입자가 포함되는 영역의 물성, 예를 들면 소수성 특성을 지니는 것일 수 있다.
하나의 예시에서, 폴리부타디엔 화합물은 부타디엔 단량체의 지글러-나타 중합에 의해 형성되는 폴리부타디엔 단독 중합체 일 수 있다.
다른 예시에서, 폴리부타디엔 화합물은 부타디엔 단량체 또는 폴리부타디엔 단독 중합체와 반응성 관능기를 가지는 단량체의 중합에 의해 형성되는 교호, 랜덤, 블록 또는 그래프트 공중합체 일 수 있다.
구체적으로, 폴리부타디엔 화합물은, 부타디엔 단량체와 (메타)아크릴로일기 또는 에폭시기를 가지는 단량체의 공중합체인 (메타)아크릴로일 관능화 폴리부타디엔 또는 에폭시 관능화 폴리 부타디엔 등 일 수 있으나 이에 제한되는 것은 아니다.
하나의 예시에서, 상기 (메타)아크릴로일 관능화 폴리부타디엔은 하기 화학식 8 이 예시될 수 있으나 이에 제한되는 것은 아니다.
[화학식 8]
상기 R1 및 R2는 각각 독립적으로, 알킬기, (메타)아크릴로일기 또는 (메타)아크릴로일옥시기이며, R1 및 R2 중 적어도 하나는 (메타)아크릴로일기 또는 (메타)아크릴로일옥시기이고, n은 임의의 수, 예를 들면 양의 정수이다.
상기 에폭시 관능화 폴리 부타디엔은, 예를 들면 하기 화학식 9 등이 예시될 수 있으나 이에 제한되는 것은 아니다.
[화학식 9]
상기 화학식 2에서, R3 및 R4는 각각 독립적으로 알킬기, 에폭시기 또는 글리시딜기이며, R3 및 R4 중 적어도 하나는 에폭시기 또는 글리시딜기이고, n은 임의의 수, 예를 들면 양의 정수이다.
폴리부타디엔 화합물은 파장 변환 입자의 산화에 의한 파장 변환 효율 감소를 방지하기 위한 역할을 수행하는 것이므로, 파장 변환 입자가 포함되어 있는 영역에 포함될 수 있다.
하나의 예시에서, 폴리부타디엔 화합물은 광학 필름용 조성물의 중합에 의해 형성된 파장 변환층의 소수성 영역에 포함되고, 친수성 영역에는 실질적으로 포함되지 않을 수 있다. 상기 실질적으로 포함되지 않는다는 것은 광학 필름용 조성물에 포함되어 있는 전체 폴리부타디엔 화합물 대비 해당 영역에 포함되어 있는 폴리부타디엔 화합물의 중량 비율이 10% 이하, 9% 이하, 8% 이하, 7 % 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하 1% 이하, 0.5% 이하 또는 0.1% 이하인 경우를 의미할 수 있다.
폴리부타디엔 화합물은, 전술한 바와 같이 파장 변환층의 친수성 영역 또는 소수성 영역 중 어느 한 영역에 포함되기에 적합한 물성을 가질 수 있다.
하나의 예시에서, 폴리부타디엔 화합물은 전술한 방식에 의해 측정될 수 있는 용해도 파라미터가 10 (cal/cm3)1/2 미만인 것일 수 있다. 상기 용해도 파라미터의 범위 내에서, 폴리부타디엔 화합물은 파장 변환 입자와 함께 파장 변환층의 소수성 영역에 포함될 수 있으며, 파장 변환 입자의 산화를 방지할 수 있다. 다른 예시에서, 폴리 부타디엔 화합물의 용해도 파라미터는, 예를 들면 3 (cal/cm3)1/2 이상, 4 (cal/cm3)1/2 이상 또는 약 5 (cal/cm3)1/2 이상일 수 있다.
폴리부타디엔 화합물은, 상기 목적하는 산소와의 반응성을 유지하고 광학 필름용 조성물의 중합에 의해 형성된 파장 변환층을 가지는 광학 필름의 광 특성을 향상 시킬 수 있을 정도의 비율로 광학 필름용 조성물 내에 포함될 수 있다.
예를 들면, 폴리부타디엔 화합물은 광학 필름용 조성물의 고형분 전체 중량 대비 1 중량% 내지 70 중량%의 범위 내로 조성물에 포함될 수 있다. 상기와 같은 중량 비율 범위에서, 목적하는 파장 변환 입자의 산화를 방지하고, 궁극적으로 광학 필름용 조성물의 파장 변환 효율을 증대시킬 수 있다. 다른 예시에서, 폴리부타디엔 화합물은 조성물의 고형분 전체 중량 대비 5 중량% 내지 50 중량%, 10 중량% 내지 40 중량% 또는 15 중량% 내지 35 중량%의 범위 내로 조성물에 포함될 수 있다.
본 출원의 광학 필름용 조성물은, 또한 필름화 물성 등을 고려하여, 필요하다면 가교제를 추가로 포함할 수 있다. 가교제로는, 예를 들면, 라디칼 중합성기를 2개 이상 가지는 화합물을 사용할 수 있다.
가교제로 사용될 수 있는 화합물로는, 다관능성 아크릴레이트가 예시될 수 있다. 상기 다관능성 아크릴레이트는, 아크릴로일기 또는 메타크릴로일기를 2개 이상 포함하는 화합물을 의미할 수 있다.
가교제로는, 상기 다관능성 아크릴레이트와 같이 라디칼 반응에 의해 가교 구조를 구현할 수 있는 성분은 물론 필요하다면, 공지의 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제 또는 금속 킬레이트 가교제 등과 같이 열경화 반응에 의해 가교 구조를 구현할 수 있는 성분도 사용할 수 있다.
가교제는 예를 들면, 본 출원의 광학 필름용 조성물의 고형분 전체 중량 대비 10 중량% 내지 50 중량%의 범위로 광학 필름용 조성물에 포함될 수 있으나, 이에 제한되는 것은 아니며 필름의 물성 등을 고려하여 상기 범위는 변경될 수 있다.
본 출원의 광학 필름용 조성물은 전술한 성분 이외에 추가적으로 다른 성분을 포함할 수 있다.
예를 들면, 본 출원의 광학 필름용 조성물은 산화 방지제(antioxidant), 양친매성 나노입자 또는 산란 입자 등을 추가로 포함할 수 있지만, 이에 제한되는 것은 아니다.
하나의 예시에서, 본 출원의 광학 필름용 조성물은 양친매성 나노입자를 포함할 수 있다. 본 출원에서 용어 「양친매성 나노입자」는, 친수성 및 소수성의 성질을 모두 포함하고 있는 나노 디멘젼(dimension)의 입자를 의미할 수 있으며, 예를 들면, 소위 업계에서 계면 활성제로 칭하는 것들을 의미할 수 있다.
양친매성 나노 입자는 광학 필름용 조성물의 중합에 의해 형성되는 친수성 영역 및 소수성 영역의 계면에 위치하여, 각 영역의 안정성을 증대시키는 역할을 할 수 있다.
양친매성 나노입자는 전술한 친수성 영역 및 소수성 영역과 상이한 굴절률을 가질 수 있다. 따라서, 상기 양친매성 나노입자에 의한 광의 산란 또는 확산에 의해, 예를 들면, 백색광의 생성 효율이 보다 증가될 수 있다.
하나의 예시에서 양친매성 나노입자는, 나노 코어부 및 상기 코어부를 둘러싸고 있는 양친매성 화합물을 포함하는 셀부를 포함할 수 있다. 상기에서 양친매성 화합물이란, 친수성 부위와 소수성 부위를 동시에 포함하는 화합물이다. 예를 들어, 코어부가 소수성을 띄는 경우에 상기 양친매성 나노입자의 셀부의 소수 부위는 코어를 향하고, 친수 부위는 외부로 배치되어 전체적으로 양친매성 나노입자가 형성될 수 있으며, 반대로 코어부가 친수성인 경우에는 양친매성 나노입자의 셀부의 친수 부위는 코어를 향하고, 소수 부위는 외부로 배치되어 전체적으로 양친매성 나노입자가 형성될 수 있다.
상기에서 코어부는, 예를 들면, 약 10 nm 내지 1,000 nm 범위 내의 평균 입경을 가질 수 있으나, 이는 목적에 따라서 변경될 수 있는 것으로 특별히 제한되지 않는다. 코어부로는, 예를 들면, Au, Ag, Cu, Pt, Pd, Ni, Mn 또는 Zn 등의 금속 입자, SiO2, Al2O3, TiO2, ZnO, NiO, CuO, MnO2 ,MgO, SrO 또는 CaO 등의 산화물 입자 또는 PMMA(polymethacrylate) 또는 PS(polystyrene) 등의 고분자로 되는 입자를 사용할 수 있다.
또한, 상기 셀부의 양친매성 화합물로는, Triton X-114(CAS No.: 9036-19-5), Triton X-100(CAS No.: 92046-34-9), Brij-58(CAS No.: 9004-95-9), 옥틸 글루코사이드(octyl glucoside, CAS No.: 29836-26-8), 옥틸티오글루코사이드(octylthio glucoside, CAS No.: 85618-21-9), 데카에틸렌글리콜 모노데실 에테르(decaethylene glycol monododecyl ether, CAS No.: 9002-92-0), N-데카노일-N-메틸글루카민(N-decanoyl-N-methylglucamine, CAS No.: 85261-20-7), 데실 말토피라노사이드(decyl maltopyranoside, CAS No.: 82494-09-5), N-도데실 말토사이드(N-dodecyl maltoside, CAS No.: 69227-93-6), 노나에틸렌글리콜 모노데실 에테르(nonaethylene glycol monododecyl ether, CAS No.: 3055-99-0), N-노나노일-N-메틸글루카민(N-nonanoyl-N-methylglucamine, CAS No.: 85261-19-4), 옥타에틸렌글리콜 모노도데실 에테르(octaethylene glycol monododecyl ether, CAS No.: 3055-98-9), 스판20(Span20, CAS No.: 1338-39-2), 폴리비닐피롤리돈(polyvinylpyrrolidone, CAS No.: 9003-39-8) 또는 Synperonic F108(PEO-b-PPO-b-PEO, CAS No.: 9003-11-06) 등을 사용할 수 있지만 이에 제한되는 것은 아니다.
본 출원의 광학 필름용 조성물 내에 양친매성 나노입자의 비율은, 예를 들면 광학 필름용 조성물 고형분 전체 중량 대비 1 중량% 내지 10 중량%의 범위일 수 있으나 이에 제한되는 것은 아니며, 상분리 구조의 안정성 및 파장 변환 효율의 향상 측면을 고려하여 상기 범위는 적절히 수정될 수 있다.
본 출원의 광학 필름용 조성물은, 또한 산란 입자를 포함할 수 있다.
본 출원의 광학 필름용 조성물에 포함되는 산란 입자는, 상기 파장 변환 입자로 광이 도입될 확률을 조절하여 광학 필름의 광 특성을 보다 개선하는 역할을 할 수 있다.
본 출원에서 용어 「산란 입자」는, 주변 매질, 예를 들면, 상기 광학 필름용 조성물의 중합에 의해 형성된 파장 변환층의 친수성 영역 및 소수성 영역과는 상이한 굴절률을 가지고, 또한 적절한 크기를 가져서 입사되는 광을 산란, 굴절 또는 확산시킬 수 있는 모든 종류의 입자를 의미할 수 있다.
예를 들면, 산란 입자는, 주변 매질, 예를 들면, 친수성 영역 및/또는 소수성 영역 비해 낮거나 높은 굴절률을 가질 수 있고, 상기 친수성 영역 및/또는 소수성 영역과의 굴절률의 차이의 절대값이 0.2 이상 또는 0.4 이상인 입자일 수 있다. 상기 굴절률의 차이의 절대값의 상한은 특별히 제한되지 않고, 예를 들면, 약 0.8 이하 또는 약 0.7 이하일 수 있다.
산란 입자는, 예를 들면, 평균 입경이 100 nm 이상, 100 nm 초과, 100 nm 내지 20,000 nm, 100 nm 내지 15,000 nm, 100 nm 내지 10,000 nm, 100 nm 내지 5,000 nm, 100 nm 내지 1,000 nm 또는 100 nm 내지 500 nm 정도일 수 있다.
산란 입자는, 구형, 타원형, 다면체 또는 무정형과 같은 형상을 가질 수 있으나, 상기 형태는 특별히 제한되는 것은 아니다.
산란 입자로는, 예를 들면, 폴리스티렌 또는 그 유도체, 아크릴 수지 또는 그 유도체, 실리콘 수지 또는 그 유도체, 또는 노볼락 수지 또는 그 유도체 등과 같은 유기 재료, 또는 실리카, 알루미나, 산화 티탄 또는 산화 지르코늄과 같은 무기 재료를 포함하는 입자가 예시될 수 있다. 산란 입자는, 상기 재료 중에 어느 하나의 재료만을 포함하거나, 상기 중 2종 이상의 재료를 포함하여 형성될 수 있다. 예를 들면, 산란 입자로 중공 실리카(hollow silica) 등과 같은 중공 입자 또는 코어-셀 구조의 입자도 사용할 수 있다.
이러한 산란 입자의 광학 필름용 조성물 내에서의 비율은 특별히 제한되지 않고, 예를 들면, 광학 필름용 조성물의 중합으로 형성된 파장 변환층을 가지는 광학 필름의 광 특성을 향상시킬 수 있을 정도의 양으로 광학 필름용 조성물에 포함될 수 있다.
산란 입자는, 예를 들면 광학 필름용 조성물의 중합에 의해 형성된 상기 친수성 영역 또는 소수성 영역 중 어느 한 영역이 포함될 수 있다.
본 출원의 광학 필름용 조성물은, 전술한 성분 외에도 항산화성 입자 등과 같은 첨가제를 필요한 양으로 추가로 포함할 수도 있다.
본 출원은, 또한 광학 필름에 관한 것이다. 본 출원의 광학 필름은 서로 상 분리되어 있는 두 영역을 포함하는 파장 변환층을 가진다.
본 출원에서 용어 「상분리 되어 있는 영역」들은, 예를 들면 상대적으로 소수성인 영역과 상대적으로 친수성인 영역과 같이, 서로 섞이지 않는 2개의 영역들에 의해 형성된 영역으로서 서로 분리되어 있다는 점을 확인할 수 있는 상태로 형성되어 있는 영역들을 의미한다.
본 출원의 광학 필름의 파장 변환층은 친수성 영역 및 소수성 영역을 포함하는 상 분리 구조를 가지고, 상기 친수성 영역 또는 소수성 영역에 파장 변환 입자 및 폴리부타디엔 화합물을 포함한다.
하나의 예시에서, 파장 변환층에 포함되어 있는 파장 변환 입자 및 폴리부타디엔 화합물은, 전술한 제 1 영역 및 제 2 영역 중 어느 한 영역, 예를 들면 제 2 영역에 주로 위치할 수 있다.
예를 들면, 도 1에 도시된 바와 같이 광학 필름의 파장 변환층(100)은 제 1 영역(200) 및 제 1 영역(200)과 상 분리 되어 있는 제 2 영역(300)을 포함하고, 상기 제 2 영역(300) 내에 파장 변환 입자(301) 및 폴리부타디엔 화합물(302)를 포함할 수 있다.
하나의 예시에서, 파장 변환층의 상기 제 1 영역과 제 2 영역 중에서 제 1 영역은 친수성 영역이고, 제 2 영역은 소수성 영역일 수 있다. 본 출원에서 제 1 및 제 2 영역을 구분하는 친수성과 소수성은 서로 상대적인 개념이고, 친수성과 소수성의 절대적인 기준은 상기 파장 변환층 내에서 상기 두 개의 영역이 서로 구분되어 있는 것이 확인될 수 있을 정도이면 특별히 제한되는 것은 아니다.
상기 제 1 영역과 제 2 영역은 파장 변환층 내에 두 개의 영역이 구분되어 있는 것을 확인할 수 있을 정도의 군집을 형성하며 무작위적으로 분포되어 있을 수 있다.
하나의 예시에서, 본 출원의 광학 필름에 포함되는 파장 변환층은 에멀젼 형태의 층일 수 있다.
본 출원에서 용어 「에멀젼 형태의 층」은, 서로 섞이지 않는 2개 이상의 상(phase)(예를 들면, 상기 제 1 및 제 2 영역) 중 어느 한 영역은, 층 내에서 연속적인 상(continuous phase)을 형성하고 있고, 다른 하나의 영역은 상기 연속적인 상 내에 분산되어 분산상(dispersed phase)을 이루고 있는 형태의 층을 의미할 수 있다. 상기에서 연속상(continuous phase) 및 분산상(dispersed phase)은, 각각 고상, 반고상 또는 액상일 수 있고, 서로 동일한 상이거나, 다른 상일 수 있다. 통상적으로 에멀젼은 서로 섞이지 않는 2개 이상의 액상에 대하여 주로 사용되는 용어이지만, 본 출원에서의 용어 에멀젼은 반드시 2개 이상의 액상에 의해서 형성된 에멀젼만 의미하는 것은 아니다.
하나의 예시에서, 본 출원의 광학 필름은 연속 상(continuous phase)인 매트릭스 및 상기 연속 상인 매트릭스 내에 분산되어 있는 분산 상(dispersed phase)인 에멀젼 영역을 포함하는 파장 변환층을 가지고, 상기 파장 변환층의 연속 상인 매트릭스 또는 에멀젼 영역에 존재하는 파장 변환 입자 및 폴라부타디엔 화합물을 포함할 수 있다.
본 출원의 광학 필름은 파장 변환 입자 및 폴리부타디엔 화합물을 상기 파장 변환층의 매트릭스 또는 에멀젼 영역에 위치시킴으로써, 파장 변환층의 파장 변환 효율 향상을 극대화할 수 있다.
하나의 예시에서, 상기 파장 변환 입자는 광학 필름의 파장 변환층 내 에멀젼 영역에 포함될 수 있다.
상기 에멀젼 영역에 포함되는 파장 변환 입자는, 예를 들면 파장 변환층에 포함되는 파장 변환 입자의 전체 중량 대비 90중량% 이상, 91 중량% 이상, 92 중량% 이상, 93 중량% 이상, 94 중량% 이상, 95 중량% 이상, 96 중량% 이상, 97 중량% 이상, 98 중량% 이상, 99 중량% 이상, 99.5 중량% 이상 또는 99.9 중량% 이상일 수 있다.
파장 변환층 내에서 상 분리된 2개의 영역을 형성하고, 상기 2개의 영역 중에서 어느 한 영역, 구체적으로 에멀젼 영역에만 상기 파장 변환 입자를 실질적으로 위치시키면, 필름화에 적합한 물성을 확보할 수 있고, 후술하는 배리어층과 같은 다른 층과 상기 파장 변환층 간의 밀착성의 확보가 유리하며, 광학 필름의 형성 시에 파장 변환 입자가 존재하는 영역에 개시제나 가교제 등과 같이 파장 변환 입자의 물성에 악영향을 미칠 수 있는 다른 요인들을 보다 효과적으로 제어하여 내구성이 우수한 필름을 형성할 수 있다.
하나의 예시에서, 상기 폴리부타디엔 화합물은 광학 필름의 파장 변환층 내 에멀젼 영역에 포함될 수 있다.
상기 에멀젼 영역에 포함되는 폴리부타디엔 화합물은, 예를 들면 파장 변환층에 포함되는 폴리부타디엔 화합물의 전체 중량 대비 90중량% 이상, 91 중량% 이상, 92 중량% 이상, 93 중량% 이상, 94 중량% 이상, 95 중량% 이상, 96 중량% 이상, 97 중량% 이상, 98 중량% 이상, 99 중량% 이상, 99.5 중량% 이상 또는 99.9 중량% 이상일 수 있다.
상기와 같은 비율로 에멀젼 영역에 폴리부타디엔 화합물을 포함시키는 경우, 산소 등 파장 변환 입자의 파장 변환 효율을 감소시킬 수 있는 외부 요인으로부터, 파장 변환 입자를 효과적으로 보호할 수 있다.
광학 필름의 파장 변환층에 포함되는 매트릭스 또는 에멀젼 영역은 전술한 친수성 중합성 화합물 또는 소수성 중합성 화합물의 중합에 의해 형성된 것일 수 있다.
하나의 예시에서, 파장 변환층에 포함되는 매트릭스 및 에멀젼 영역 중 어느 하나는 친수성 중합성 화합물의 중합 단위를 포함하고, 다른 하나는 소수성 중합성 화합물의 중합 단위를 포함할 수 있다.
광학 필름의 파장 변환층에 포함되는 매트릭스는 연속 상으로써, 예를 들면 친수성 중합성 화합물의 중합에 의해 형성된 것일 수 있다.
하나의 예시에서, 파장 변환층에 포함되는 매트릭스는 하기 화학식 1의 화합물; 하기 화학식 2의 화합물; 하기 화학식 3의 화합물; 하기 화학식 4의 화합물; 질소 함유 라디칼 중합성 화합물; 및 (메타)아크릴산 또는 그의 염을 포함하는 라디칼 중합성 화합물로 이루어진 그룹으로부터 선택되는 어느 한 화합물의 중합 단위를 포함할 수 있다.
[화학식 1]
[화학식 2]
[화학식 3]
[화학식 4]
화학식 1 내지 4에서 Q는 각각 독립적으로 수소 또는 알킬기이고, U는 각각 독립적으로 알킬렌기이며, A는 각각 독립적으로 히드록시기가 치환될 수 있는 알킬렌기이고, Z는 수소, 알콕시기, 에폭시기 또는 1가의 탄화수소기이며, X는 히드록시기 또는 시아노기이고, m 및 n은 임의의 수이다.
광학 필름의 파장 변환층에 포함되는 에멀젼 영역은, 연속상인 매트릭스 내에 분산되어 있는 것으로써, 예를 들면 입자 형태일 수 있다.
하나의 예시에서, 에멀젼 영역은 평균 직경이 1 ㎛ 내지 200㎛ 범위 내에 있는 입자 형태일 수 있다. 다른 예시에서, 에멀젼 영역은 평균직경이 약 1㎛ 내지 50㎛의 범위 내 또는 약 50㎛ 내지 200㎛의 범위 내에 있는 입자 형태일 수 있다. 상기 입자 형태의 크기는, 상기 매트릭스 및 에멀젼 영역을 형성하는 재료의 비율을 조절하거나, 혹은 계면 활성제 등의 사용을 통해 제어할 수 있다.
이러한 에멀젼 영역은, 예를 들면 전술한 소수성 중합성 화합물의 중합에 의해 형성된 것일 수 있다.
구체적으로, 에멀젼 영역은 하기 화학식 5의 화합물, 하기 화학식 6의 화합물 및 하기 화학식 7의 화합물로 이루어진 군에서 선택되는 어느 한 화합물의 중합 단위를 포함할 수 있다.
[화학식 5]
[화학식 6]
[화학식 7]
화학식 5 내지 7에서, Q는 각각 독립적으로 수소 또는 알킬기이고, U는 각각 독립적으로 알킬렌기, 알케닐렌기 또는 알키닐렌기 또는 아릴렌기이며, B는 탄소수 5 이상의 직쇄 또는 분지쇄 알킬기 또는 지환식 탄화수소기이고, Y는 산소 원자 또는 황 원자이며, X는 산소 원자, 황 원자 또는 알킬렌기이고, Ar은 아릴기이며, n은 임의의 수이다.
에멀젼 영역은, 예를 들면 파장 변환 입자를 포함할 수 있는데, 상기 에멀젼 영역 내에 포함되는 파장 변환 입자는 전술한 녹색 입자 및/또는 적색 입자일 수 있다.
하나의 예시에서, 에멀젼 영역 내 파장 변환 입자는 녹색 입자 및 적색 입자를 동시에 포함할 수 있는데, 이 경우 각 입자들은 에멀젼 영역 내의 서로 상이한 영역에 위치할 수 있다.
구체적으로, 에멀젼 영역은 420nm 내지 490nm의 범위 내의 광을 흡수하여 490nm 내지 580nm의 범위 내의 광을 방출할 수 있는 제 1 파장 변환 입자를 포함하는 A 영역 및/또는 420nm 내지 490nm 범위 내의 광을 흡수하여 580nm 내지 780nm의 범위 내의 광을 방출할 수 있는 제 2 파장 변환 입자를 포함하는 B 영역을 포함할 수 있다.
이와 같이, 에멀젼 영역 내에 녹색 입자 및 적색 입자와 같이 2종의 파장 변환 입자가 포함되는 경우, 각 입자가 위치하는 영역을 조절함으로써, 각 입자 사이에 발생할 수 있는 상호 작용을 최소화하여, 색 순도 등을 높일 수 있다.
파장 변환층 내에서 매트릭스 및 에멀젼 영역의 비율은. 예를 들면, 파장 변환층에 포함시키고자 하는 파장 변환 입자의 비율, 배리어층 등의 다른 층과의 부착성, 상분리 구조인 에멀젼 구조의 생성 효율 또는 필름화를 위해 요구되는 물성 등을 고려하여 선택할 수 있다.
예를 들면, 파장 변환층은, 매트릭스 100 중량부 대비 5 내지 40 중량부의 에멀젼 영역을 포함할 수 있다. 상기 에멀젼 영역의 비율은 매트릭스 100 중량부 대비 10 중량부 이상 또는 15 중량부 이상일 수 있다. 상기 에멀젼 영역의 비율은 상기 매트릭스 100 중량부 대비 35 중량부 이하일 수 있다. 상기에서 매트릭스 및 에멀젼 영역의 중량의 비율은, 각 영역 자체의 중량의 비율이거나, 그 영역에 포함되는 모든 성분의 중량의 합계 또는 주성분의 비율 또는 상기 각 영역을 형성하기 위하여 사용하는 재료의 중량의 비율을 의미할 수 있다. 예를 들면, 상기 매트릭스 및 에멀젼 영역은, 친수성 및 소수성 중합성 화합물의 중합 단위를 포함할 수 있는데, 상기 중량의 비율은 상기 중합 단위간의 비율일 수 있다.
본 출원의 광학 필름은, 상기 파장 변환층 상에 배리어 층을 추가로 포함할 수 있다. 하나의 예시에서, 광학 필름은 파장 변환층의 일면 또는 양면에 배리어 층을 포함할 수 있다.
이러한 배리어층은, 고온 조건이나 산소 및 수분 등과 같은 유해한 외부 요인이 존재하는 조건으로부터 파장 변환층을 보호할 수 있다.
도 2는, 하나의 예시적인 광학 필름(400)으로서, 파장 변환층(100)과 그 양측에 배치된 배리어층(500)을 포함하는 구조를 나타내고 있다. 배리어층은, 예를 들면 소수성이면서 광에 노출되어도 황변 등이 유발되지 않는 안정성이 좋은 소재로 형성될 수 있다.
하나의 예시에서, 파장 변환층과 상기 배리어층과의 계면에서의 광의 손실 등을 줄이기 위하여 상기 배리어층은 상기 파장 변환층과 전체적으로 유사한 범위의 굴절률을 가질 수 있도록 선택될 수 있다.
배리어층은, 예를 들면, 고체의 재료이거나, 혹은 경화된 액체, 겔, 또는 폴리머일 수 있고, 용도에 따라서 가요성이거나 비가요성의 재료로부터 선택될 수 있다. 배리어층을 형성하는 재료의 종류는 특별히 제한되지 않고, 유리, 폴리머, 산화물 또는 질화물 등을 포함하는 공지의 재료로부터 선택될 수 있다. 배리어층은, 예를 들면, 유리; PET(poly(ethylene terephtalate)) 등과 같은 폴리머; 또는 실리콘, 티타늄 또는 알루미늄 등의 산화물이나 질화물 등이나 상기 중 2종 이상의 조합을 포함할 수 있지만, 이에 제한되는 것은 아니다.
배리어층은, 도 2에 예시적으로 나타낸 바와 같이 파장 변환층의 양 표면에 존재하거나, 혹은 그 어느 한 표면에만 존재할 수 있다. 또한, 광학 필름은, 양 표면은 물론 측면에도 배리어층이 존재하여, 파장 변환층이 전체적으로 배리어층에 의해 밀봉되어 있는 구조를 가질 수 있다.
본 출원은 또한, 광학 필름의 제조방법에 관한 것이다.
하나의 예시에서, 본 출원은 파장 변환 입자와 폴리부타디엔 화합물을 친수성 중합성 화합물 및 중합 후 상기 친수성 중합성 화합물과 상 분리 되는 소수성 중합성 화합물과 혼합하는 단계를 포함하는 광학 필름의 제조방법에 관한 것이다.
상기 파장 변환 입자와 폴리부타디엔 화합물을 친수성 중합성 화합물 및 소수성 중합성 화합물과 혼합하는 방법은, 예를 들면 파장 변환 입자, 폴리부타디엔 화합물, 친수성 중합성 화합물 및 소수성 중합성 화합물을 혼합하는 방법; 또는 친수성 중합성 화합물 및 개시제 등을 포함하는 친수성 중합성 조성물과 소수성 중합성 화합물, 파장 변환 입자, 폴리부타디엔 화합물 및 개시제 등을 포함하는 소수성 중합성 조성물을 별도로 제조 후, 양자를 혼합하는 방법 등이 예시될 수 있다.
상기와 같은 방법에 의하면은 경화 과정, 구체적으로 중합하는 과정에서 상 분리가 일어나고, 전술한 형태의 상 분리된 연속상인 매트릭스 및 상기 매트릭스 내에 분산되어 있는 에멀젼 영역을 포함하는 파장 변환층이 형성될 수 있다. 또한, 파장 변환층의 상기 두 영역 중 어느 한 영역, 구체적으로 에멀젼 영역에 파장 변환 입자 폴리부타디엔 화합물을 포함시키게 되어, 개시제나 산소 등의 외부 요인에 의해 파장 변환 입자의 파장 변환 효율이 저하되는 문제 등을 예방할 수 있다.
상기 파장 변환층을 형성하는 방법은 예를 들면, 상기 혼합된 물질을 공지의 코팅 방식으로 적절한 기재 상에 코팅하여 층을 형성하는 것을 포함할 수 있다.
상기와 같은 방식으로 형성된 층을 경화시키는 방식도 특별히 제한되지 않으며, 예를 들면, 개시제가 활성화 될 수 있을 정도의 적정 범위의 열을 인가하거나, 혹은 자외선 등과 같은 전자기파를 인가하는 방식으로 수행할 수 있다.
본 출원의 광학 필름의 제조방법은 필요하다면, 상기 단계를 통해 파장 변환층을 형성한 후에 배리어층을 형성하는 단계를 추가로 수행하거나, 혹은 상기 중합 공정을 배리어층에 인접한 상태로 수행할 수도 있다.
본 출원은 또한 조명 장치에 대한 것이다. 예시적인 조명 장치는, 광원과 상기 광학 필름을 포함할 수 있다.
하나의 예시에서 상기 조명 장치에서의 광원과 광학 필름은, 상기 광원에서 조사된 광이 상기 광학 필름으로 입사할 수 있도록 배치될 수 있다. 광원으로부터 조사된 광이 상기 광학 필름으로 입사하면, 입사된 광 중에서 일부는 상기 광학 필름 내의 파장 변환 입자에 흡수되지 않고 그대로 방출되고, 다른 일부는 상기 파장 변환 입자에 흡수된 후에 다른 파장의 광으로 방출될 수 있다. 이에 따라 상기 광원에서 방출되는 광의 파장과 상기 파장 변환 입자가 방출하는 광의 파장을 조절하여 광학 필름으로부터 방출되는 광의 색 순도 또는 칼라 등을 조절할 수 있고, 발광 효율이 증대된 광학 필름을 제공할 수 있다.
하나의 예시에서, 파장 변환층에 전술한 적색 및 녹색 입자를 적정량 포함시키고, 광원이 청색광을 방출하도록 조절하면, 광학 필름에서는 백색광이 방출될 수 있다.
본 출원의 조명 장치에 포함되는 광원의 종류는 특별히 제한되지 않으며, 목적하는 광의 종류를 고려하여 적절한 종류가 선택될 수 있다. 하나의 예시에서 상기 광원은 청색 광원이고, 예를 들면, 420 내지 490 nm의 범위 내의 파장의 광을 방출할 수 있는 광원일 수 있다.
도 3 및 4는, 상기와 같이 광원과 광학 필름을 포함하는 조명 장치를 예시적으로 보여주는 도면이다.
도 3 및 4에 나타난 바와 같이 조명 장치에서 광원과 광학 필름은 상기 광원에서 조사된 광이 상기 광학 필름으로 입사될 수 있도록 배치될 수 있다.
도 3에서는 광원(600)이 광학 필름(400)의 하부에 배치되어 있고, 이에 따라 상부 방향으로 광원(600)으로부터 조사된 광은 상기 광학 필름(400)으로 입사될 수 있다.
도 4는, 광원(600)이 광학 필름(400)의 측면에 배치된 경우이다. 필수적인 것은 아니지만, 상기와 같이 광원(600)이 광학 필름(400)의 측면에 배치되는 경우에는, 도광판(Light Guiding Plate)(700)이나 반사판(800)과 같이 광원(600)으로부터의 광이 보다 효율적으로 광학 필름(400)에 입사될 수 있도록 하는 다른 수단이 포함될 수도 있다.
도 3 및 4에 나타난 예시는 본 출원의 조명 장치의 하나의 예시이며, 이 외에도 조명 장치는 공지된 다양한 형태를 가질 수 있고, 이를 위해 공지의 다양한 구성을 추가로 포함할 수 있다.
상기와 같은 본 출원의 조명 장치는 다양한 용도에 사용될 수 있다. 본 출원의 조명 장치가 적용될 수 있는 대표적인 용도에는 디스플레이 장치가 있다. 예를 들면, 상기 조명 장치는 LCD(Liquid Crystal Display) 등과 같은 디스플레이 장치의 BLU(Backlight Unit)로서 사용될 수 있다.
이 외에도 상기 조명 장치는, 컴퓨터, 모바일폰, 스마트폰, 개인 휴대정보 단말기(PDA), 게이밍 장치, 전자 리딩 (reading) 장치 또는 디지털 카메라 등과 같은 디스플레이 장치의 BLU(Backlight Unit), 실내 또는 실외 조명, 무대 조명, 장식 조명, 액센트 조명 또는 박물관 조명 등에 사용될 수 있고, 이 외에도 원예학이나, 생물학에서 필요한 특별한 파장 조명 등에 사용될 수 있으나, 상기 조명 장치가 적용될 수 있는 용도가 상기에 제한되는 것은 아니다.
이하, 실시예 및 비교예를 통하여 본 출원의 광학 필름 등을 구체적으로 설명하지만, 상기 광학 필름 등의 범위가 하기 실시예에 제한되는 것은 아니다.
실시예
1.
광학 필름용 조성물(A1)의 제조
PEGDA(poly(ethyleneglycol) diacrylate, CAS No.: 26570-48-9, 용해도 파라미터(HSP): 약 18 (cal/cm3)1/2), LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 8 내지 9 (cal/cmcm3)1/2), 녹색 입자(Quantum Dot 입자), 계면활성제(polyvinylpyrrolidone), SiO2 나노 입자 및 용해도 파라미터가 8.3(cal/cm3)1/2 인 폴리부타디엔 화합물(polydutadiene, CAS No.:31567-90-5)을 9:1:1:0.1:0.05:0.05:0.2(PEGDA: LA:BD:녹색입자:계면활성제:SiO2 나노입자:폴리부타디엔 화합물)의 중량 비율로 혼합하였다. 이어서 라디칼 개시제로서 Irgacure2959와 Irgacure907를 각각 농도가 약 1중량%가 되도록 혼합하고, 6시간 정도 교반하여 광학 필름용 조성물(A1)을 제조하였다.
광학 필름의 제조
일정 간격으로 이격 배치된 2장의 배리어 필름(i-component)의 사이에 상기 광학 필름용 조성물(A1)을 약 50 ㎛의 두께로 위치시키고, 자외선을 조사하여 라디칼 중합을 유도하여 경화시켜 상 분리된 영역들을 포함하는 광학 필름을 제조하였다.
비교예
1
폴리부타디엔 화합물을 포함하지 않는 광학 필름용 조성물(B1)을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 광학 필름을 제조하였다.
실험예
- 시간에 따른 상대 파장 변환 효율 평가
실시예 1 및 비교예 1의 광학 필름에 대하여, 60℃ 오븐 조건 하에서 시간에 따른 상대 파장 변환 효율을 평가 하였다.
평가 결과 도 5에 도시된 것처럼, 광학 필름용 조성물에 폴리부타디엔을 소정 함량으로 포함하는 경우, 시간에 따른 파장 변환 효율의 감소 정도가 폴리부타디엔을 포함하지 않는 비교예에 비하여, 낮은 것으로 나타났다.
즉, 폴리부타디엔을 포함하는 광학 필름용 조성물을 이용하여 광학 필름을 형성하는 경우, 산소 등에 의한 파장 변환 입자의 산화를 방지하여, 시간에 따른 파장 변환 효율의 저하를 방지할 수 있음을 확인할 수 있었다.
[부호의 설명]
100: 파장 변환층
200 : 제 1 영역
300 : 제 2 영역
301 : 파장 변환 입자
302 : 폴리부타디엔 화합물
400 : 광학 필름
500 : 배리어층
600 : 광원
700 : 도광판
800 : 반사층
Claims (22)
- 친수성 중합성 화합물;중합 후 상기 친수성 중합성 화합물과 상 분리되는 소수성 중합성 화합물;파장 변환 입자; 및폴리부타디엔 화합물을 포함하는 광학 필름용 조성물.
- 제 1항에 있어서,폴리부타디엔 화합물은, 부타디엔 단량체의 단독 중합체 또는 공중합체인 광학 필름용 조성물.
- 제 2항에 있어서,부타디엔의 공중합체는 (메타)아크릴로일 관능화 폴리부타디엔 또는 에폭시 관능화 폴리부타디엔인 광학 필름용 조성물.
- 제 1항에 있어서,폴리부타디엔 화합물은 용해도 파라미터가 10 (cal/cm3)1/2 미만인 광학 필름용 조성물.
- 제 1항에 있어서,폴리부타디엔 화합물은 조성물의 고형분 전체 중량 대비 1 중량% 내지 70 중량%의 범위 내로 포함되는 광학 필름용 조성물.
- 제 1항에 있어서,친수성 중합성 화합물 100 중량부 및 소수성 중합성 화합물 10 내지 100 중량부를 포함하는 광학 필름용 조성물.
- 제 1항에 있어서,친수성 중합성 화합물은 하기 화학식 1의 화합물; 하기 화학식 2의 화합물; 하기 화학식 3의 화합물; 하기 화학식 4의 화합물; 질소 함유 라디칼 중합성 화합물; 및 (메타)아크릴산 또는 그의 염을 포함하는 라디칼 중합성 화합물로 이루어진 그룹으로부터 선택되는 어느 하나인 광학 필름용 조성물:[화학식 1][화학식 2][화학식 3][화학식 4]화학식 1 내지 4에서 Q는 각각 독립적으로 수소 또는 알킬기이고,U는 각각 독립적으로 알킬렌기이며,A는 각각 독립적으로 히드록시기가 치환될 수 있는 알킬렌기이고,Z는 수소, 알콕시기, 에폭시기 또는 1가의 탄화수소기이며,X는 히드록시기 또는 시아노기이고,m 및 n은 임의의 수이다.
- 제 1항에 있어서,소수성 중합성 화합물은 하기 화학식 5의 화합물, 하기 화학식 6의 화합물 및 하기 화학식 7의 화합물로 이루어진 그룹 중에서 선택되는 어느 하나인 광학 필름용 조성물:[화학식 5][화학식 6][화학식 7]화학식 5 내지 7에서,Q는 각각 독립적으로 수소 또는 알킬기이고,U는 각각 독립적으로 알킬렌기, 알케닐렌기 또는 알키닐렌기 또는 아릴렌기이며,B는 탄소수 5 이상의 직쇄 또는 분지쇄 알킬기 또는 지환식 탄화수소기이고,Y는 산소 원자 또는 황 원자이며,X는 산소 원자, 황 원자 또는 알킬렌기이고,Ar은 아릴기이며,n은 임의의 수이다.
- 제 1항에 있어서,파장 변환 입자는 양자점 또는 고분자 입자인 광학 필름.
- 제 1항에 있어서,파장 변환 입자는 420nm 내지 490nm의 범위 내의 광을 흡수하여 490nm 내지 580nm의 범위 내의 광을 방출할 수 있는 제 1 파장 변환 입자 또는 420nm 내지 490nm 범위 내의 광을 흡수하여 580nm 내지 780nm의 범위 내의 광을 방출할 수 있는 제 2 파장 변환 입자인 광학 필름용 조성물.
- 연속 상인 매트릭스; 및상기 연속 상인 매트릭스 내에 분산되어 있는 에멀젼 영역을 포함하는 파장 변환층을 가지고,상기 파장 변환층의 연속 상 또는 에멀젼 영역에 존재하는 파장 변환 입자 및 폴리부타디엔 화합물을 포함하는 광학 필름.
- 제 11항에 있어서,파장 변환층에 포함되어 있는 파장 변환 입자의 전체 중량을 기준으로 에멀젼 영역에 포함되어 있는 파장 변환 입자의 중량 비율이 90% 이상인 광학 필름.
- 제 11항에 있어서,파장 변환층에 포함되어 있는 폴리부타디엔 화합물의 전체 중량을 기준으로 에멀젼 영역에 포함되어 있는 폴리부타디엔 화합물의 중량 비율이 90% 이상인 광학 필름.
- 제 11항에 있어서,에멀젼 영역은 평균 직경이 1 ㎛내지 200㎛ 범위 내에 있는 입자 형태인 광학 필름.
- 제 11항에 있어서,연속 상인 매트릭스 및 에멀젼 영역 중 어느 하나는 친수성 중합성 화합물의 중합 단위를 포함하고, 다른 하나는 소수성 중합성 화합물의 중합 단위를 포함하는 광학 필름.
- 제 11항에 있어서,매트릭스는 하기 화학식 1의 화합물; 하기 화학식 2의 화합물; 하기 화학식 3의 화합물; 하기 화학식 4의 화합물; 질소 함유 라디칼 중합성 화합물; 및 (메타)아크릴산 또는 그의 염을 포함하는 라디칼 중합성 화합물로 이루어진 그룹으로부터 선택되는 어느 한 화합물의 중합 단위를 포함하는 광학 필름:[화학식 1][화학식 2][화학식 3][화학식 4]화학식 1 내지 4에서 Q는 각각 독립적으로 수소 또는 알킬기이고,U는 각각 독립적으로 알킬렌기이며,A는 각각 독립적으로 히드록시기가 치환될 수 있는 알킬렌기이고,Z는 수소, 알콕시기, 에폭시기 또는 1가의 탄화수소기이며,X는 히드록시기 또는 시아노기이고,m 및 n은 임의의 수이다.
- 제 11항에 있어서,에멀젼 영역은 하기 화학식 5의 화합물, 하기 화학식 6의 화합물 및 하기 화학식 7의 화합물로 이루어진 그룹 중에서 선택되는 어느 한 화합물의 중합 단위를 포함하는 광학 필름:[화학식 5][화학식 6][화학식 7]화학식 5 내지 7에서,Q는 각각 독립적으로 수소 또는 알킬기이고,U는 각각 독립적으로 알킬렌기, 알케닐렌기 또는 알키닐렌기 또는 아릴렌기이며,B는 탄소수 5 이상의 직쇄 또는 분지쇄 알킬기 또는 지환식 탄화수소기이고,Y는 산소 원자 또는 황 원자이며,X는 산소 원자, 황 원자 또는 알킬렌기이고,Ar은 아릴기이며,n은 임의의 수이다.
- 제 11항에 있어서,에멀젼 영역은 420nm 내지 490nm의 범위 내의 광을 흡수하여 490nm 내지 580nm의 범위 내의 광을 방출할 수 있는 제 1 파장 변환 입자를 포함하는 A 영역 및/또는 420nm 내지 490nm 범위 내의 광을 흡수하여 580nm 내지 780nm의 범위 내의 광을 방출할 수 있는 제 2 파장 변환 입자를 포함하는 B영역을 포함하는 광학필름.
- 제 11항에 있어서,파장 변환층 상에 배리어 층을 추가로 포함하는 광학 필름.
- 파장 변환 입자와 폴리부타디엔 화합물을 친수성 중합성 화합물 및 중합 후 상기 친수성 중합성 화합물과 상 분리되는 소수성 중합성 화합물과 혼합하는 단계를 포함하는 제 11항의 광학 필름의 제조방법.
- 광원 및 제 11 항의 광학 필름을 포함하고, 상기 광원과 광학 필름은, 상기 광원으로부터의 광이 상기 광학 필름으로 입사될 수 있도록 배치되어 있는 조명 장치.
- 제 21항의 조명 장치를 포함하는 디스플레이 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/552,757 US10703870B2 (en) | 2015-03-12 | 2016-03-11 | Composition for optical film, and optical film comprising same |
CN201680014680.XA CN107406602B (zh) | 2015-03-12 | 2016-03-11 | 用于光学膜的组合物和包含其的光学膜 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150034557 | 2015-03-12 | ||
KR10-2015-0034557 | 2015-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016144133A1 true WO2016144133A1 (ko) | 2016-09-15 |
Family
ID=56880362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/002454 WO2016144133A1 (ko) | 2015-03-12 | 2016-03-11 | 광학 필름용 조성물 및 이를 포함하는 광학 필름 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10703870B2 (ko) |
KR (1) | KR101798755B1 (ko) |
CN (1) | CN107406602B (ko) |
WO (1) | WO2016144133A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102241335B1 (ko) * | 2018-01-30 | 2021-04-16 | 주식회사 엘지화학 | 코팅 조성물 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040110516A (ko) * | 2003-06-19 | 2004-12-31 | 주식회사 디피아이 솔루션스 | 내후성이 우수한 디스플레이 광학 필터의 필름형성 조성물및 이 조성물을 이용한 디스플레이용 광학 필터의 제조방법 |
KR20120074114A (ko) * | 2010-12-27 | 2012-07-05 | 제일모직주식회사 | 광학 필름 및 이를 이용한 디스플레이 필터 |
KR20130009027A (ko) * | 2011-07-14 | 2013-01-23 | 엘지이노텍 주식회사 | 광학 부재, 이를 포함하는 표시장치 및 이의 제조방법 |
KR20130036059A (ko) * | 2010-07-29 | 2013-04-09 | 미쓰이 가가쿠 가부시키가이샤 | 단층막 및 이것으로 이루어지는 친수성 재료 |
KR20130050819A (ko) * | 2011-11-08 | 2013-05-16 | 주식회사 나노스퀘어 | 양자점을 포함하는 발광 장치 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322901B1 (en) | 1997-11-13 | 2001-11-27 | Massachusetts Institute Of Technology | Highly luminescent color-selective nano-crystalline materials |
US6607829B1 (en) | 1997-11-13 | 2003-08-19 | Massachusetts Institute Of Technology | Tellurium-containing nanocrystalline materials |
US6225198B1 (en) | 2000-02-04 | 2001-05-01 | The Regents Of The University Of California | Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process |
WO2002029140A1 (en) | 2000-10-04 | 2002-04-11 | The Board Of Trustees Of The University Of Arkansas | Synthesis of colloidal nanocrystals |
EP1537187B1 (en) | 2002-09-05 | 2012-08-15 | Nanosys, Inc. | Organic species that facilitate charge transfer to or from nanostructures |
US7572393B2 (en) | 2002-09-05 | 2009-08-11 | Nanosys Inc. | Organic species that facilitate charge transfer to or from nanostructures |
US7645397B2 (en) | 2004-01-15 | 2010-01-12 | Nanosys, Inc. | Nanocrystal doped matrixes |
JP4789809B2 (ja) | 2004-01-15 | 2011-10-12 | サムスン エレクトロニクス カンパニー リミテッド | ナノ結晶をドーピングしたマトリックス |
US7267865B2 (en) | 2004-02-20 | 2007-09-11 | Saint-Gobain Performance Plastics Corporation | Draw resonant resistant multilayer films |
US8563133B2 (en) | 2004-06-08 | 2013-10-22 | Sandisk Corporation | Compositions and methods for modulation of nanostructure energy levels |
WO2007137292A2 (en) * | 2006-05-23 | 2007-11-29 | Evident Technologies, Inc. | Quantum dot fluorescent inks |
US20100110728A1 (en) | 2007-03-19 | 2010-05-06 | Nanosys, Inc. | Light-emitting diode (led) devices comprising nanocrystals |
US20080237540A1 (en) | 2007-03-19 | 2008-10-02 | Nanosys, Inc. | Methods for encapsulating nanocrystals |
CA2684054A1 (en) | 2007-04-11 | 2008-10-23 | Ingenia Polymers Inc. | Fine cell foamed polyolefin film or sheet |
KR20110038191A (ko) | 2009-10-07 | 2011-04-14 | 엘지디스플레이 주식회사 | 엘이디 백라이트 유닛 및 이를 이용한 액정표시장치 |
KR20110048397A (ko) | 2009-11-02 | 2011-05-11 | 엘지이노텍 주식회사 | 발광다이오드패키지 및 이를 이용한 백라이트유닛 |
WO2014126698A1 (en) * | 2013-02-13 | 2014-08-21 | Polyone Corporation | Inkjet ink containers having oxygen scavenging properties |
KR20140137676A (ko) | 2013-05-23 | 2014-12-03 | 도레이케미칼 주식회사 | 광학필름용 폴리머닷 및 이를 포함하는 광학필름 |
KR102086712B1 (ko) | 2013-08-14 | 2020-05-15 | 나노코 테크놀로지스 리미티드 | 다상의 수지를 이용한 양자점 막 |
-
2016
- 2016-03-11 CN CN201680014680.XA patent/CN107406602B/zh active Active
- 2016-03-11 US US15/552,757 patent/US10703870B2/en active Active
- 2016-03-11 WO PCT/KR2016/002454 patent/WO2016144133A1/ko active Application Filing
- 2016-03-11 KR KR1020160029318A patent/KR101798755B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040110516A (ko) * | 2003-06-19 | 2004-12-31 | 주식회사 디피아이 솔루션스 | 내후성이 우수한 디스플레이 광학 필터의 필름형성 조성물및 이 조성물을 이용한 디스플레이용 광학 필터의 제조방법 |
KR20130036059A (ko) * | 2010-07-29 | 2013-04-09 | 미쓰이 가가쿠 가부시키가이샤 | 단층막 및 이것으로 이루어지는 친수성 재료 |
KR20120074114A (ko) * | 2010-12-27 | 2012-07-05 | 제일모직주식회사 | 광학 필름 및 이를 이용한 디스플레이 필터 |
KR20130009027A (ko) * | 2011-07-14 | 2013-01-23 | 엘지이노텍 주식회사 | 광학 부재, 이를 포함하는 표시장치 및 이의 제조방법 |
KR20130050819A (ko) * | 2011-11-08 | 2013-05-16 | 주식회사 나노스퀘어 | 양자점을 포함하는 발광 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN107406602A (zh) | 2017-11-28 |
KR101798755B1 (ko) | 2017-11-16 |
US20180051144A1 (en) | 2018-02-22 |
KR20160110237A (ko) | 2016-09-21 |
US10703870B2 (en) | 2020-07-07 |
CN107406602B (zh) | 2020-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020004927A1 (ko) | 양자점 필름의 제조방법, 이로써 제조된 양자점 필름, 및 이를 포함하는 파장변환 시트 및 디스플레이 | |
WO2016159608A1 (ko) | 발광 필름 | |
WO2021034104A1 (ko) | 양자점 복합체를 포함하는 양자점 필름, 및 디스플레이용 파장변환 시트 | |
WO2019098601A1 (ko) | 양자점 필름의 제조방법, 이로써 제조된 양자점 필름, 및 이를 포함하는 파장변환 시트 및 디스플레이 | |
KR102034463B1 (ko) | 파장 변환 입자 복합체 및 이를 포함하는 광학 필름 | |
WO2012002780A2 (en) | Composition for light-emitting particle-polymer composite, light-emitting particle-polymer composite, and device including the light-emitting particle-polymer composite | |
WO2018080008A1 (ko) | 자발광 감광성 수지 조성물, 이를 이용하여 제조된 컬러필터 및 화상 표시 장치 | |
WO2018151457A1 (ko) | 컬러필터 및 화상표시장치 | |
WO2022163950A1 (ko) | 무용매형 양자점 조성물, 그 제조방법, 및 이를 포함하는 경화막, 컬러필터 및 디스플레이 장치 | |
US20170191638A1 (en) | Light-emitting film | |
KR102006378B1 (ko) | 광학 필름용 조성물 및 이를 포함하는 광학 필름 | |
US9761771B2 (en) | Light-emitting film | |
WO2016024827A1 (ko) | 발광 필름 | |
WO2016144133A1 (ko) | 광학 필름용 조성물 및 이를 포함하는 광학 필름 | |
KR101815344B1 (ko) | 발광 필름 | |
KR102078399B1 (ko) | 광학 필름 | |
WO2016024828A1 (ko) | 발광 필름 | |
WO2018093021A1 (ko) | 황색 경화성 수지 조성물, 이를 포함하는 컬러필터 및 화상표시장치 | |
KR101719033B1 (ko) | 발광 필름 | |
WO2024106775A1 (ko) | 양자점, 양자점의 제조방법 및 전자장치 | |
WO2021194305A1 (ko) | 광학 부재 및 이를 포함하는 광학표시장치 | |
WO2024111896A1 (ko) | 양자점, 양자점의 제조방법, 감광성 수지 조성물, 광학필름, 전기발광다이오드 및 전자장치 | |
WO2024106776A1 (ko) | 양자점, 양자점의 제조방법 및 전자장치 | |
KR20170004429A (ko) | 발광 필름 | |
WO2023068664A1 (ko) | 양자점 복합체를 포함하는 양자점 필름, 및 디스플레이용 파장변환 시트 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16762020 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15552757 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16762020 Country of ref document: EP Kind code of ref document: A1 |