WO2016024828A1 - 발광 필름 - Google Patents

발광 필름 Download PDF

Info

Publication number
WO2016024828A1
WO2016024828A1 PCT/KR2015/008493 KR2015008493W WO2016024828A1 WO 2016024828 A1 WO2016024828 A1 WO 2016024828A1 KR 2015008493 W KR2015008493 W KR 2015008493W WO 2016024828 A1 WO2016024828 A1 WO 2016024828A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
particles
nanoparticles
group
emitting film
Prior art date
Application number
PCT/KR2015/008493
Other languages
English (en)
French (fr)
Inventor
권태균
박문수
유수영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/314,460 priority Critical patent/US10359175B2/en
Priority to CN201580038226.3A priority patent/CN106663726B/zh
Priority claimed from KR1020150114366A external-priority patent/KR101959487B1/ko
Publication of WO2016024828A1 publication Critical patent/WO2016024828A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • Lighting devices are used for a variety of applications.
  • the lighting device is, for example, a BLU of a display such as a liquid crystal display (LCD), a TV, a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device or a digital camera.
  • LCD liquid crystal display
  • PDA personal digital assistant
  • the lighting device may be used for indoor or outdoor lighting, stage lighting, decorative lighting, accent lighting or museum lighting, and the like, and may also be used for special wavelength lighting required in horticulture or biology.
  • a lighting device for example, a device used for a BLU of an LCD, and a device that emits white light by combining a blue LED (Light Emitting Diode) and a phosphor such as YAG (Yttrium aluminum garnet).
  • a blue LED Light Emitting Diode
  • a phosphor such as YAG (Yttrium aluminum garnet).
  • Patent Document 1 Korean Patent Publication No. 2011-0048397
  • Patent Document 2 Korean Patent Publication No. 2011-0038191
  • the present application provides a light emitting film, a method of manufacturing a light emitting film, a lighting device and a display device.
  • the present application relates to a light emitting film.
  • the term luminescent film means a film formed to emit light.
  • the light emitting film may be a film formed to absorb light of a predetermined wavelength and emit light of the same or different wavelength.
  • the light emitting film may include a light emitting layer.
  • the light emitting layer may include two regions separated from each other.
  • the regions which are separated from each other in the term are regions formed by two regions which are not mixed with each other, for example, a relatively hydrophobic region and a relatively hydrophilic region, and can be confirmed that they are separated from each other.
  • the regions may be formed as.
  • one of the two regions separated from the phase of the light emitting layer may be referred to as a first region, and the other region may be referred to as a second region.
  • the emission layer is in the form of an emulsion described below, one of the first and second regions may be a continuous phase, and the other region may be a dispersed phase.
  • the first region may be a hydrophilic region and the second region may be a hydrophobic region among the first region and the second region.
  • the hydrophilicity and hydrophobicity that distinguish the first and second regions are relative concepts, and the absolute criteria of hydrophilicity and hydrophobicity are particularly limited as long as it can be confirmed that the two regions are separated from each other in the light emitting layer. It doesn't happen.
  • the ratio of the hydrophilic first region and the hydrophobic second region in the light emitting layer is, for example, the ratio of the light emitting nanoparticles to be included in the light emitting layer, the adhesion with other layers such as a barrier layer, and the efficiency of generating a phase separation structure. Or it may be selected in consideration of the physical properties required for filming.
  • the light emitting layer may include 10 parts by weight to 100 parts by weight of the second area relative to 100 parts by weight of the first area.
  • the emission layer may include 50 to 95 parts by weight of the first region and 5 to 50 parts by weight of the second region.
  • the light emitting layer may include 50 to 95 parts by weight of the second region and 5 to 50 parts by weight of the first region.
  • the term weight part in the present application means a weight ratio between components, unless otherwise specified.
  • the ratio of the weight of the first and second regions is the ratio of the weight of each region itself;
  • the light emitting layer may be formed by mixing and polymerizing a hydrophilic polymerizable composition and a relatively hydrophobic polymerizable composition as described below.
  • the ratio of the weight of each of the regions is determined by It may mean the ratio of the weight of the composition or the ratio of the weight between the hydrophilic polymerizable compound and the hydrophobic polymerizable compound which is the main component included in each composition.
  • the hydrophilic polymerizable composition may mean a composition including a hydrophilic polymerizable compound as a main component
  • the hydrophobic polymerizable composition may mean a composition including a hydrophobic polymerizable compound as a main component.
  • the kind of the polymerizable compound in the above is not particularly limited, and may be, for example, a radical polymerizable compound.
  • the ratio of the weight of the component included as the main component based on the total weight is at least 55% by weight, at least 60% by weight, at least 65% by weight, at least 70% by weight, at least 75% by weight, 80 It may mean when the weight percent or more, 85 weight% or more, or 95 weight% or more.
  • the criteria for distinguishing hydrophilicity and hydrophobicity between the hydrophilic polymerizable compound and the hydrophobic polymerizable compound form, for example, the aforementioned phase-separated regions when the two compounds are relatively hydrophilic or hydrophobic and mixed with each other. It is not particularly limited as long as it can be done.
  • the separation of hydrophilicity and hydrophobicity may be performed by so-called solubility parameters.
  • the solubility parameter in the present application means a solubility parameter of a homopolymer formed by polymerization of the polymerizable compound, and through this, the degree of hydrophilicity and hydrophobicity of the compound can be determined.
  • the manner of obtaining the solubility parameter is not particularly limited and may be in accordance with methods known in the art.
  • the parameter may be calculated or obtained according to a method known in the art as a so-called Hansen solubility parameter (HSP).
  • HSP Hansen solubility parameter
  • the hydrophobic polymerizable compound may mean a polymerizable compound capable of forming a polymer having a solubility parameter of less than about 10 (cal / cm 3 ) 1/2 by polymerization, and may be hydrophilic.
  • the polymerizable compound may mean a polymerizable compound capable of forming a polymer having the above parameter by about 10 (cal / cm 3 ) 1/2 or more by polymerization.
  • the solubility parameter of the polymer formed by the hydrophobic polymerizable compound is, in another example, 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more or about 5 (cal / cm 3 ) 1 / It may be two or more.
  • the solubility parameter of the polymer formed by the hydrophilic polymerizable compound is, in another example, about 11 (cal / cm 3 ) 1/2 or more, 12 (cal / cm 3 ) 1/2 or more, 13 (cal / cm 3 ) 1 / 2 or more, 14 (cal / cm 3 ) 1/2 or more, or 15 (cal / cm 3 ) 1/2 or more.
  • the solubility parameter of the polymer formed by the hydrophilic polymerizable compound is, in another example, about 40 (cal / cm 3 ) 1/2 or less, about 35 (cal / cm 3 ) 1/2 or less or about 30 (cal / cm 3 ). It may be 1/2 or less.
  • Differences in the solubility parameters of the hydrophobic and hydrophilic compounds can be controlled to achieve proper phase separation or emulsion structures.
  • the difference in solubility parameters of the hydrophilic and hydrophobic polymerizable compounds or the polymer formed by each of them may be 5 (cal / cm 3 ) 1/2 or more, 6 (cal / cm 3 ) 1/2 or more, 7 (cal / cm 3 ) 1/2 or more, or about 8 (cal / cm 3 ) 1/2 or more.
  • the difference is the value of the solubility parameter minus the small value.
  • the upper limit of the difference is not particularly limited. The greater the difference in solubility parameters, the more suitable phase separation or emulsion structures can be formed.
  • the upper limit of the difference may be, for example, 30 (cal / cm 3 ) 1/2 or less, 25 (cal / cm 3 ) 1/2 or less, or about 20 (cal / cm 3 ) 1/2 or less.
  • the physical property may mean physical properties at room temperature.
  • room temperature is a natural temperature that is not heated or reduced, and may mean, for example, any temperature in the range of about 10 ° C to 30 ° C, about 23 ° C, or about 25 ° C.
  • the light emitting layer may be an emulsion type layer.
  • a layer in the form of an emulsion is any one of two or more phases (for example, the first and second regions) which are not mixed with each other, and a continuous phase in the layer. )
  • the other region may refer to a layer having a form dispersed in the continuous phase to form a dispersed phase.
  • the continuous phase and the dispersed phase may be solid, semi-solid or liquid phase, respectively, and may be the same phase or different phases.
  • emulsion is a term mainly used for two or more liquid phases which are not mixed with each other, but the term emulsion in the present application does not necessarily mean an emulsion formed by two or more liquid phases.
  • the light emitting layer may include a matrix forming the continuous phase, and may include an emulsion region that is a dispersed phase dispersed in the matrix.
  • the matrix is any one of the above-described first and second regions (eg, the first region), and the emulsion region, which is a dispersed phase, is the other of the first and second regions (eg, the second region). Area).
  • the emulsion region may be in the form of particles. That is, the emulsion region may be dispersed in the matrix in the form of particles.
  • the particle shape of the emulsion region is not particularly limited and may be approximately spherical, ellipsoidal, polygonal or amorphous.
  • the average diameter of the particle form may be in the range of about 1 ⁇ m to 200 ⁇ m, in the range of about 1 ⁇ m to 50 ⁇ m or in the range of about 50 ⁇ m to 200 ⁇ m.
  • the size of the particle form can be controlled by adjusting the proportion of materials forming the matrix and emulsion regions, or by using a surfactant or the like.
  • the ratio of matrix and emulsion regions in the emissive layer is for example, the ratio may be selected in consideration of the ratio of luminescent nanoparticles to be included in the light emitting layer, adhesion with other layers such as a barrier layer, generation efficiency of an emulsion structure that is a phase separation structure, or physical properties required for film formation.
  • the light emitting layer may include 5 to 40 parts by weight of the emulsion region relative to 100 parts by weight of the matrix.
  • the proportion of the emulsion region may be at least 10 parts by weight or at least 15 parts by weight with respect to 100 parts by weight of the matrix.
  • the ratio of the emulsion region may be 35 parts by weight or less with respect to 100 parts by weight of the matrix.
  • the ratio of the weight of the matrix and the emulsion region is the ratio of the weight of each region itself, or the sum of the weights of all the components included in the region or the ratio of the main components or the weight of the material used to form the respective regions. It can mean a ratio.
  • the matrix and the emulsion region may each include polymerized units of hydrophilic and hydrophobic polymerizable compounds, and the weight ratio may be a ratio between the polymerized units.
  • the light emitting layer may include light emitting nanoparticles.
  • the term light emitting nanoparticles may refer to nanoparticles that can emit light.
  • the light emitting nanoparticles may refer to nanoparticles formed to absorb light having a predetermined wavelength and emit light having the same or different wavelength as the absorbed light.
  • the term nanoparticle is a particle having a dimension of a nano scale, for example, an average particle diameter of about 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm or less , 40 nm or less, 30 nm or less, 20 nm or less, or about 15 nm or less.
  • the shape of the nanoparticles is not particularly limited, and may be spherical, ellipsoidal, polygonal or amorphous.
  • the light emitting nanoparticles may be included in the matrix or emulsion region.
  • the light emitting nanoparticles may be included in only one of the matrix and emulsion regions, and may not be substantially included in the other regions.
  • the fact that the light emitting nanoparticles are not substantially included in any region is, for example, based on the total weight of the light emitting nanoparticles included in the light emitting layer, the weight ratio of the light emitting nanoparticles included in the region is 10.
  • the light emitting nanoparticles may be included in the emulsion region substantially among the matrix and emulsion regions.
  • the matrix may be substantially free of light emitting nanoparticles. Therefore, in the above case, the ratio of the light emitting nanoparticles included in the emulsion region is 90% by weight, 91% by weight, 92% by weight, 93% by weight based on the total weight of the light emitting nanoparticles included in the light emitting layer. Or at least 94% by weight, at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight or at least 99.9% by weight.
  • any one of the matrix and emulsion regions may comprise a hydrophilic polymer and the other region may comprise a hydrophobic polymer.
  • the hydrophilic polymer refers to a polymer having a HSP (Hansen solubility parameter) of 10 (cal / cm 3 ) 1/2 or more
  • the hydrophobic polymer refers to a polymer having an HSP of less than 10 (cal / cm 3 ) 1/2 .
  • the solubility parameter of the hydrophobic polymer may be 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more, or about 5 (cal / cm 3 ) 1/2 or more.
  • the solubility parameter of the hydrophilic polymer is, in another example, about 11 (cal / cm 3 ) 1/2 or more, 12 (cal / cm 3 ) 1/2 or more, 13 (cal / cm 3 ) 1/2 or more, 14 (cal / cm 3 ) 1/2 or more or 15 (cal / cm 3 ) 1/2 or more.
  • the solubility parameter of the hydrophilic polymer may be about 40 (cal / cm 3 ) 1/2 or less, about 35 (cal / cm 3 ) 1/2 or less, or about 30 (cal / cm 3 ) 1/2 or less. . Differences in the solubility parameters of the hydrophobic and hydrophilic polymers can be controlled to implement an appropriate phase separation structure or emulsion structure.
  • the difference between the solubility parameters of the hydrophilic and hydrophobic polymer is 5 (cal / cm 3 ) 1/2 or more, 6 (cal / cm 3 ) 1/2 or more, 7 (cal / cm 3 ) 1/2 or more Or about 8 (cal / cm 3 ) 1/2 or more.
  • the difference is the value of the solubility parameter minus the small value.
  • the upper limit of the difference is not particularly limited. The greater the difference in solubility parameters, the more suitable phase separation or emulsion structures can be formed. The upper limit of the difference may be, for example, 30 (cal / cm 3 ) 1/2 or less, 25 (cal / cm 3 ) 1/2 or less, or about 20 (cal / cm 3 ) 1/2 or less.
  • the matrix may comprise a hydrophilic polymer
  • the emulsion region may comprise a hydrophobic polymer.
  • the matrix can be formed by polymerizing the hydrophilic polymerizable compound, for example, a hydrophilic radical polymerizable compound.
  • the matrix comprises a compound of formula 1, a compound of formula 2, a compound of formula 3, a compound of formula 4, a nitrogen containing radically polymerizable compound, an acrylic acid, methacrylic acid or a salt site
  • the polymerization unit of the radically polymerizable compound may be included.
  • the term polymerized unit of a predetermined compound may mean a unit formed by polymerization of the predetermined compound.
  • Q is hydrogen or an alkyl group
  • U is an alkylene group
  • Z is a hydrogen, alkoxy group, an epoxy group or a monovalent hydrocarbon group
  • m is any number.
  • Q is hydrogen or an alkyl group
  • U is an alkylene group
  • m is any number.
  • Q is hydrogen or an alkyl group
  • A is an alkylene group which may be substituted with a hydroxy group
  • U is an alkylene group.
  • Q is hydrogen or an alkyl group
  • a and U are each independently an alkylene group
  • X is a hydroxy group or cyano group.
  • alkylene group may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkylene group may be linear, branched or cyclic.
  • the alkylene group may be optionally substituted with one or more substituents.
  • epoxy group may mean a cyclic ether having three ring constituent atoms or a compound containing the cyclic ether or a monovalent moiety derived therefrom.
  • examples of the epoxy group include glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group.
  • the alicyclic epoxy group may mean a monovalent moiety derived from a compound containing an aliphatic hydrocarbon ring structure, wherein the two carbon atoms forming the aliphatic hydrocarbon ring also include an epoxy group.
  • an alicyclic epoxy group having 6 to 12 carbon atoms can be exemplified, for example, a 3,4-epoxycyclohexylethyl group or the like can be exemplified.
  • alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic.
  • the alkoxy group may be optionally substituted with one or more substituents.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be optionally substituted with one or more substituents.
  • the term "monovalent hydrocarbon group” may refer to a compound consisting of carbon and hydrogen or a monovalent moiety derived from a derivative of such a compound, unless otherwise specified.
  • the monovalent hydrocarbon group may contain 1 to 25 carbon atoms.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, etc. can be illustrated.
  • alkenyl group in the present application may mean an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • the alkenyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • alkynyl group may mean an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • the alkynyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • aryl group in the present application may refer to a monovalent moiety derived from a compound or a derivative thereof including a structure in which a benzene ring or a structure in which two or more benzene rings are condensed or bonded, unless otherwise specified.
  • the range of the aryl group may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • aryl group examples include phenyl group, phenoxy group, phenoxyphenyl group, phenoxybenzyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group or naphthyl group. Can be.
  • substituent which may be optionally substituted in the alkoxy group, alkylene group, epoxy group or monovalent hydrocarbon group in the present application, halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group such as chlorine or fluorine, etc.
  • Epoxy group, acryloyl group, methacryloyl group, isocyanate group, thiol group or monovalent hydrocarbon group and the like can be exemplified, but is not limited thereto.
  • M and n in the formulas (1), (2) and (4) are any numbers, for example, each independently may be a number in the range of 1-20, 1-16, or 1-12.
  • an amide group containing radically polymerizable compound for example, an amide group containing radically polymerizable compound, an amino group containing radically polymerizable compound, an imide group containing radically polymerizable compound, a cyano group containing radically polymerizable compound, etc.
  • said amide group-containing radically polymerizable compound it is (meth) acrylamide or N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth), for example.
  • Acrylamide, N, N-dimethylaminopropylmethacrylamide, N-vinylpyrrolidone, N-vinylcaprolactam or (meth) acryloyl morpholine and the like can be exemplified, and examples of the amino group-containing radically polymerizable compound include , Aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like can be exemplified, and examples of the imide group-containing radically polymerizable compound , N-isopropylmaleimide
  • a salt of acrylic acid or methacrylic acid for example, a salt of the above-described alkali metals including lithium, sodium, and potassium, or Salts with alkaline earth metals, including magnesium, calcium, strontium and barium, and the like can be exemplified, but are not limited thereto.
  • the matrix containing the above-mentioned polymer unit can be formed by polymerizing a hydrophilic polymerizable composition containing a hydrophilic polymerizable compound, for example, a radical polymerizable compound and a radical initiator, for example.
  • a hydrophilic polymerizable composition containing a hydrophilic polymerizable compound, for example, a radical polymerizable compound and a radical initiator, for example.
  • the matrix may be a polymer of the hydrophilic polymerizable composition.
  • hydrophilic radically polymerizable compound is not particularly limited, and for example, the compounds described above can be used.
  • the kind of radical initiator contained in a hydrophilic polymerizable composition is not specifically limited.
  • the initiator a radical thermal initiator or a photoinitiator capable of generating a radical capable of initiating a polymerization reaction by application of heat or irradiation of light can be used.
  • thermal initiator for example, 2,2-azobis-2,4-dimethylvaleronitrile (V-65, Wako), 2,2-azobisisobutyronitrile (V-60, Azo initiators such as Wako (manufactured) or 2,2-azobis-2-methylbutyronitrile (V-59, made by Wako); Dipropyl peroxydicarbonate (Peroyl NPP, NOF (manufactured)), Diisopropyl peroxy dicarbonate (Peroyl IPP, NOF (manufactured)), Bis-4-butylcyclohexyl peroxy dicarbonate (Peroyl TCP, NOF (manufactured) )), Diethoxyethyl peroxy dicarbonate (Peroyl EEP, NOF (product)), diethoxyhexyl peroxy dicarbonate (Peroyl OPP, NOF agent), hexyl peroxy dicarbonate (Perhexyl ND, NOF agent
  • a benzoin-based, hydroxy-ketone-based, amino-ketone-based or phosphine oxide-based photoinitiator may be used.
  • the initiator may be selected to use a high solubility in the hydrophilic component, for example, a hydroxy ketone compound, a water dispersion hydroxy ketone compound or an amino ketone compound or a water dispersion amino ketone compound may be used, but is limited thereto. It doesn't happen.
  • the hydrophilic polymerizable composition may include, for example, a radical initiator at a concentration of about 0.1 wt% to about 10 wt%. Such a ratio can be changed in consideration of, for example, physical properties of the film, polymerization efficiency and the like.
  • the hydrophilic polymerizable composition may further include a crosslinking agent.
  • a crosslinking agent the compound which has two or more radically polymerizable groups can be used, for example.
  • polyfunctional acrylate As a compound which can be used as a crosslinking agent, polyfunctional acrylate can be illustrated.
  • the multifunctional acrylate may mean a compound including two or more acryloyl groups or methacryloyl groups.
  • polyfunctional acrylate examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and polyethylene glycol di ( Meta) acrylate, neopentylglycol adipate di (meth) acrylate, hydroxyl promisvalic acid neopentylglycol di (meth) acrylate, dicyclopentanyl di (meth) Acrylate, caprolactone modified dicyclopentenyl di (meth) acrylate, ethylene oxide modified di (meth) acrylate, di (meth) acryloxy ethyl isocyanurate, allylated cyclohexyl di (meth) ) Acrylate, tricyclodecane dimethanol (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, ethylene oxide
  • a polyfunctional acrylate it is a compound called what is called photocurable oligomer in the industry, urethane acrylate, epoxy acrylate, polyester acrylate, or polyether. Acrylate etc. can also be used An appropriate kind can be selected from the above-mentioned compounds, and can be used, selecting one or more types.
  • crosslinking agent a component capable of implementing a crosslinking structure by a radical reaction such as the polyfunctional acrylate, as well as, if necessary, crosslinking by a thermosetting reaction such as a known isocyanate crosslinking agent, epoxy crosslinking agent, aziridine crosslinking agent or metal chelate crosslinking agent Components that can implement the structure can also be used.
  • the crosslinking agent may be included, for example, in a hydrophilic polymerizable composition at a concentration of up to 50 wt% or from 10 wt% to 50 wt%.
  • the ratio of the crosslinking agent may be changed in consideration of, for example, the physical properties of the film.
  • the hydrophilic polymerizable composition may further include other necessary components in addition to the components described above.
  • region using a hydrophilic polymeric composition is mentioned later.
  • the emulsion region can also be formed by polymerizing a polymerizable compound, for example, a radical polymerizable compound.
  • a polymerizable compound for example, a radical polymerizable compound.
  • an emulsion region can be formed by superposing
  • the emulsion region may include a polymer unit of a compound represented by one of Chemical Formulas 5 to 7 below.
  • Q is hydrogen or an alkyl group
  • B is a straight or branched chain alkyl group having 5 or more carbon atoms or an alicyclic hydrocarbon group.
  • Q is hydrogen or an alkyl group
  • U is an alkylene, alkenylene or alkynylene or arylene group.
  • Q is hydrogen or alkyl group
  • U is alkylene group
  • Y is carbon atom
  • X is oxygen atom, sulfur atom or alkylene group
  • Ar is aryl group
  • n is any It is a number.
  • alkenylene group or alkynylene group is an alkenylene group or alkynylene having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. Can mean a group.
  • the alkenylene group or alkynylene group may be linear, branched or cyclic.
  • the alkenylene group or alkynylene group may be optionally substituted with one or more substituents.
  • arylene group in the present application may refer to a divalent moiety derived from a compound or a derivative thereof including a structure in which benzene or two or more benzenes are condensed or bonded, unless otherwise specified.
  • the arylene group may have a structure containing, for example, benzene, naphthalene or fluorene.
  • B may be a straight or branched chain alkyl group having 5 or more carbon atoms, 7 or more carbon atoms, or 9 or more carbon atoms.
  • a compound containing a relatively long chain alkyl group is known as a relatively nonpolar compound.
  • the upper limit of the carbon number of the linear or branched alkyl group is not particularly limited.
  • the alkyl group may be an alkyl group having 20 or less carbon atoms.
  • B may be, in another example, an alicyclic hydrocarbon group, for example, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, 3 to 16 carbon atoms, or 6 to 12 carbon atoms, and examples of such hydrocarbon group include cyclohexyl group or iso Bornyl group and the like can be exemplified.
  • the compound which has alicyclic hydrocarbon group is known as a relatively nonpolar compound.
  • N in the formula (7) is any number, for example, each independently may be a number in the range of 1 to 20, 1 to 16 or 1 to 12.
  • the second region may be formed by polymerizing a hydrophobic polymerizable composition containing a hydrophobic radical polymerizable compound and a radical initiator.
  • the second region may be a polymer of the hydrophobic polymerizable composition.
  • the kind of hydrophobic radically polymerizable compound contained in the hydrophobic polymerizable composition is not particularly limited, and a compound known in the art as a so-called nonpolar monomer can be used.
  • a compound known in the art as a so-called nonpolar monomer can be used.
  • the compound described above may be used as the compound.
  • the kind of radical initiator contained in a hydrophobic polymerizable composition is not specifically limited.
  • an appropriate kind can be selected and used from the initiator described in the item of the hydrophilic polymeric compound mentioned above.
  • the hydrophobic polymerizable composition may include, for example, a radical initiator at a concentration of 5% by weight or less. Such concentration can be changed in consideration of, for example, physical properties of the film, polymerization efficiency, and the like.
  • the hydrophobic polymerizable composition may further include a crosslinking agent.
  • a crosslinking agent without particular limitation, for example, an appropriate component may be selected and used from the components described in the hydrophilic polymerizable composition section.
  • the crosslinking agent may be included, for example, in a hydrophobic polymerizable composition at a concentration of up to 50 wt%, or from 10 to 50 wt%.
  • concentration of the crosslinking agent may be changed in consideration of, for example, the physical properties of the film, the influence on other components included in the polymerizable compound, and the like.
  • the hydrophobic polymerizable composition may further include other components if necessary.
  • the method of forming an emulsion region using the said hydrophobic polymerizable composition is mentioned later.
  • the light emitting layer contains light emitting nanoparticles.
  • the light emitting nanoparticles may be particles that can absorb light of a predetermined wavelength and emit light of the same or different wavelengths.
  • the light emitting nanoparticles may be referred to as nanoparticles (hereinafter, referred to as green particles) capable of absorbing light of any wavelength within a range of 420 to 490 nm to emit light of any wavelength within a range of 490 to 580 nm. .) And / or nanoparticles (hereinafter referred to as red particles) capable of absorbing light of any wavelength within the range of 450-490 nm to emit light of any wavelength within the range of 580-780 nm. Can be.
  • the red particles and the green particles may be included in the light emitting layer together at an appropriate ratio.
  • the light emitting layer of the light emitting film capable of emitting white light may include 300 to 1500 parts by weight of green particles relative to 100 parts by weight of the red particles.
  • the light emitting nanoparticles can be used without any particular limitation as long as they exhibit such a function. As a representative example of such nanoparticles, a nanostructure called a quantum dot may be exemplified.
  • the nanostructures may be in the form of particles, for example, nanowires, nanorods, nanotubes, branched nanostructures, nanonotetrapods, tripods. Or bipods, and the like, and these forms may also be included in the nanoparticles defined in the present application.
  • the term nanostructures includes similar structures having at least one area or characteristic dimension having dimensions of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm or less than about 10 nm. It may include structures. In general, area or characteristic dimensions may exist along the smallest axis of the structure, but are not limited thereto.
  • the nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline or amorphous, or combinations of the above.
  • Quantum dots that can be used as luminescent nanoparticles can be prepared in any known manner.
  • suitable methods for forming quantum dots are described in US Pat. No. 6,225,198, US Patent Publication 2002-0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901, US Pat. No. 6,949,206, US Pat. No. 7,572,393.
  • US Pat. No. 7,267,865, US Pat. No. 7,374,807 or US Pat. No. 6,861,155, and the like, and various other known methods may be applied to the present application.
  • Quantum dots or other nanoparticles may be formed using any suitable material, for example, an inorganic conductive or semiconducting material, as an inorganic material.
  • suitable semiconductor materials can be exemplified by Group II-VI, III-V, IV-VI and Group IV semiconductors.
  • Si, Ge, Sn, Se, Te, B, C including diamond
  • the semiconductor nanocrystal or other nanostructure may include a dopant, such as a p-type dopant or an n-type dopant.
  • Nanoparticles that may be used in the present application may also include II-VI or III-V semiconductors.
  • II-VI or III-V semiconductor nanocrystals and nanostructures include any combination of periodic table group elements, such as Zn, Cd, and Hg, with periodic table group VI elements, such as S, Se, Te, Po, and the like; And any combination of group III elements, such as B, Al, Ga, In, and Tl, and group V elements, such as N, P, As, Sb, Bi, and the like, but is not limited thereto.
  • suitable inorganic nanostructures include metal nanostructures, and suitable metals include Ru, Pd, Pt, Ni, W, Ta, Co, Mo, Ir, Re, Rh, Hf, Nb, Au, Ag, Ti , Sn, Zn, Fe or FePt and the like can be exemplified, but is not limited thereto.
  • the light emitting nanoparticles may have a core-shell structure.
  • Exemplary materials capable of forming core-cell structured luminescent nanoparticles include Si, Ge, Sn, Se, Te, B, C (including diamond), P, Co, Au, BN, BP, BAs, AlN, AlP , AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn , CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, Pb
  • Exemplary core-cell luminescent nanoparticles (core / cell) applicable in this application include, but are not limited to, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS or CdTe / ZnS, etc. It is not.
  • the specific kind of light emitting nanoparticles is not particularly limited and may be appropriately selected in consideration of desired light emission characteristics.
  • luminescent nanoparticles such as quantum dots
  • the ligand or barrier may be advantageous for improving the stability of the light emitting nanoparticles such as quantum dots and protecting the light emitting nanoparticles from harmful external conditions including high temperature, high intensity, external gas or moisture, and the like.
  • the light emitting nanoparticles may exist only in any one of the matrix and emulsion regions, and in order to obtain such a light emitting layer, the characteristics of the ligand or barrier are compatible only with any one of the matrix and emulsion regions. It may be selected to have.
  • luminescent nanoparticles such as quantum dots
  • Ligands and methods for forming the same are known in the art that can exhibit suitable properties on the surface of light emitting nanoparticles, such as quantum dots, and such methods can be applied without limitation in the present application.
  • Such materials or methods are described, for example, in US Patent Publication No. 2008-0281010, US Publication No. 2008-0237540, US Publication No. 2010-0110728, US Publication No. 2008-0118755, US Patent No. 7,645,397 US Pat. No. 7,374,807, US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No.
  • the ligand is a molecule having an amine group (oleylamine, triethylamine, hexylamine, naphtylamine, etc.) or a polymer, a molecule having a carboxyl group (oleic acid, etc.) or a polymer, a molecule having a thiol group (butanethiol, hexanethiol, dodecanethiol, etc.) Polymer, molecule having pyridine group (pyridine etc.) or polymer, molecule having phosphine group (triphenylphosphine etc.), molecule having phosphine group (trioctylphosphine oxide etc.), molecule having carbonyl group (alkyl ketone etc.), benzene ring It may be formed by a molecule (benzene, styrene, etc.) or a polymer,
  • the light emitting nanoparticles are included in the light emitting layer, and may be included in, for example, the matrix or emulsion region. In one example, the light emitting nanoparticles may be included in only one of the matrix and emulsion regions and may not be present in the other regions. As described above, the region where the light emitting nanoparticles do not exist may mean a region that does not substantially include the light emitting nanoparticles as described above.
  • the ratio of the light emitting nanoparticles in the light emitting layer is not particularly limited.
  • the light emitting nanoparticles may be selected in an appropriate range in consideration of desired optical properties.
  • the light emitting nanoparticles in the light emitting layer may be present in a concentration of about 0.05 to 20% by weight, 0.05 to 15% by weight, 0.1 to 15% by weight or 0.5 to 15% by weight, but is not limited thereto.
  • the light emitting layer may include other components in addition to the above components.
  • the other components include, but are not limited to, known surfactants, amphiphilic nanoparticles, antioxidants, or scattering particles described below.
  • the emissive layer may comprise amphipathic nanoparticles, which may be present, for example, in one or more of the matrix or emulsion regions, and may suitably be at the boundaries of the matrix and emulsion regions.
  • Amphiphilic nanoparticles can enhance the stability of the matrix and emulsion regions that are phase separated in the light emitting layer.
  • the amphipathic nanoparticles may include a core part including the nanoparticles and a cell part including an amphiphilic compound surrounding the nanoparticles.
  • Amphiphilic compounds are compounds containing both hydrophilic and hydrophobic moieties at the same time, and some compounds are known in the art as so-called surfactants.
  • the hydrophilic portion of the amphiphilic nanoparticles of the cell portion may face the core, and the hydrophobic portion may be disposed to the outside to form amphipathic nanoparticles as a whole.
  • the nanoparticles are hydrophilic
  • a minority portion of the amphiphilic nanoparticles of the cell portion may face the core, and the hydrophilic portion may be disposed outside to form amphipathic nanoparticles as a whole.
  • the nanoparticles of the core portion may have, for example, an average particle diameter in the range of about 10 nm to 1000 nm, but this is not particularly limited as may be changed according to the purpose.
  • nanoparticles of the core portion for example, metal particles such as gold, silver, copper, platinum, palladium, nickel, manganese or zinc, SiO 2 , Al 2 O 3 , TiO 2 , ZnO, NiO, CuO, MnO 2 Oxide particles such as MgO, SrO or CaO or particles made of a polymer such as PMMA (polymethacrylate) or PS (polystyrene) may be used.
  • metal particles such as gold, silver, copper, platinum, palladium, nickel, manganese or zinc, SiO 2 , Al 2 O 3 , TiO 2 , ZnO, NiO, CuO, MnO 2 Oxide particles such as MgO, SrO or CaO or particles made of a polymer such as PMMA (polymethacrylate) or PS (polystyrene) may be used.
  • PMMA polymethacrylate
  • PS polystyrene
  • Triton X-114 (CAS No .: 9036-19-5), Triton X-100 (CAS No.:92046-34-9), Brij-58 (CAS No. : 9004-95-9), octyl glucoside (CAS No .: 29836-26-8), octylthio glucoside (CAS No .: 85618-21-9), decaethylene glycol monodecyl ether ( decaethylene glycol monododecyl ether, CAS No .: 9002-92-0), N-decanoyl-N-methylglucamine, CAS No .: 85261-20-7, decyl maltopyrano Decyl maltopyranoside (CAS No .: 82494-09-5), N-dodecyl maltoside (CAS No .: 69227-93-6), nonnaethylene glycol monododecyl ether , CAS No .: 3055
  • Amphiphilic nanoparticles may include the amphiphilic compound in a range capable of securing the stability of the matrix and the emulsion region.
  • the ratio of the amphiphilic compound in the amphipathic nanoparticles may be about 5% to 30% by weight, but the range may be changed as long as the stability between the matrix and the emulsion region can be properly secured.
  • the method of including the amphiphilic nanoparticles in the light emitting layer for example, the method of placing the amphiphilic nanoparticles at the boundary between the matrix and the emulsion region is not particularly limited.
  • the method of compounding the particles can be used.
  • the amphiphilic nanoparticles may have a refractive index different from that of the matrix and emulsion regions.
  • white light may be more efficiently generated by scattering or diffusing light by the nanoparticles.
  • the degree of difference in the refractive index of the nanoparticles and the matrix and the emulsion region in the above may be set in an appropriate range in consideration of the scattering or diffusing effect of the desired light, the specific range is not particularly limited.
  • the absolute value of the difference in refractive index between the nanoparticles and the matrix and the absolute value of the difference in refractive index between the nanoparticles and the emulsion region may be in the range of 0.05 to 0.5, respectively.
  • the refractive index of the nanoparticles is not particularly limited as long as it satisfies the above range, and may be, for example, in the range of 1.0 to 2.0.
  • the term refractive index is a value measured for light having a wavelength of about 550 nm, unless otherwise specified.
  • the proportion of the amphiphilic nanoparticles in the light emitting layer can be selected in consideration of the stability of the matrix and the emulsion region, for example.
  • the amphiphilic nanoparticles may be present in a concentration of 1% by weight to 10% by weight based on the total weight of the matrix and the emulsion region or the light emitting layer.
  • Amphiphilic nanoparticles are those sold under the product name MX 80H by Soken, XX-43BQ, XX-128BQ, XX-130 BQ, XX-50 BQ, XX-131 BQ, MBX-2H, and MBX from Sekisui.
  • MIBK-SD-L, MIBK-SD, MIBK sold by Nissan under the product names such as -30, SSX-104, XXS-105, SSX-108, SSX-110, XX-129BQ or XX-99BQ.
  • What is marketed under product names, such as -ST-L, MIBK-ST, or TOL-ST, can also be applied.
  • the luminescent layer may also comprise an antioxidant, which component may be particularly useful when applying quantum dots as the luminescent nanoparticles.
  • the quantum dot is deteriorated when exposed to oxygen, and has a property of lowering luminescence ability.
  • the above-described antioxidant is included in the light emitting layer, the light emitting nanoparticles may be protected.
  • the antioxidant for example, oxidizing metals, phenolic antioxidants, thioether antioxidants, phosphate antioxidants or amine antioxidants such as hindered amines may be used.
  • the antioxidant may be contained in any of the aforementioned matrix or emulsion regions.
  • the light emitting layer may include an oxidative metal particle or an oxide of the metal particle.
  • An oxidizing metal particle means a metal capable of reacting with oxygen to form an oxide, and an alkali metal, an alkaline earth metal, a transition metal, or the like may also be applied when oxidative.
  • the metal may protect the light emitting nanoparticles by reacting with oxygen in the light emitting layer to form an oxide.
  • the oxidizing metal which can be used is not particularly limited as long as it can react with oxygen to form an oxide. Examples of the oxidizing metal include, but are not limited to, Pt, Au, Ag, or Ce.
  • the size of the metal particles can be adjusted in consideration of the reactivity with oxygen, and can generally have an average particle diameter in the range of about 10 nm to 10,000 nm.
  • the ratio of the oxidizing metal particles or oxides thereof in the light emitting layer may be selected in consideration of, for example, reactivity with oxygen, curability of the light emitting layer material, or light emission characteristics of the light emitting layer.
  • the oxidizing metal particles may be present in a ratio of about 0.01% to 1% by weight in the light emitting layer. If necessary, known dispersants for the dispersion of the oxidizing metal particles can be used together.
  • the light emitting layer may also include, as antioxidants, amine antioxidants such as phenolic antioxidants, thioether antioxidants, phosphate antioxidants or hindered amines.
  • amine antioxidants such as phenolic antioxidants, thioether antioxidants, phosphate antioxidants or hindered amines.
  • the specific kind of each antioxidant is not particularly limited, and known materials may be applied.
  • the ratio of the antioxidant in the light emitting layer may also be selected in consideration of the reactivity with oxygen, the curability of the light emitting layer material, or the light emitting properties of the light emitting layer.
  • the antioxidant may be present in a ratio of about 0.01% to 1% by weight in the light emitting layer.
  • the light emitting layer may also contain scattering particles.
  • the scattering particles included in the light emitting layer may further improve the optical characteristics of the light emitting layer by controlling the probability that light incident on the light emitting layer is introduced into the light emitting nanoparticles.
  • the term scattering particle means any kind of particle that has a different refractive index than the surrounding medium, for example the matrix or emulsion region, and also has a suitable size to scatter, refract or diffuse incident light. can do.
  • the scattering particles may have a low or high refractive index compared to the surrounding medium, for example the matrix and / or emulsion region, and the absolute value of the difference in the refractive index with the matrix and / or emulsion region is 0.2 or more.
  • the upper limit of the absolute value of the difference in refractive index is not particularly limited and may be, for example, about 0.8 or less or about 0.7 or less.
  • the scattering particles have, for example, an average particle diameter of 10 nm or more, 100 nm or more, more than 100 nm, 100 nm to 20000 nm, 100 nm to 15000 nm, 100 nm to 10000 nm, 100 nm to 5000 nm, 100 nm to 1000 nm or 100 nm to 500 nm.
  • the scattering particles may have a shape such as spherical, elliptical, polyhedron or amorphous, but the shape is not particularly limited.
  • the scattering particles for example, organic materials such as polystyrene or derivatives thereof, acrylic resins or derivatives thereof, silicone resins or derivatives thereof, or novolak resins or derivatives thereof, or silica, alumina, titanium oxide or zirconium oxide Particles comprising an inorganic material can be exemplified.
  • the scattering particles may be formed of only one of the above materials or two or more of the above materials.
  • hollow particles such as hollow silica or core / cell structure particles may be used as scattering particles.
  • the ratio of the scattering particles in the light emitting layer is not particularly limited and, for example, may be selected at an appropriate ratio in consideration of the path of light incident on the light emitting layer.
  • Scattering particles can be included, for example, in the matrix or emulsion region.
  • the scattering particles may be included in only one of the matrix and emulsion regions and may not be present in the other regions.
  • the region in which the scattering particles do not exist is a region substantially free of the particles as described above, and based on the total weight of the region, the weight ratio of the scattering particles in the region is 10% or less, 8 It may mean a case of% or less, 6% or less, 4% or less, 2% or less, 1% or less, or 0.5% or less.
  • the scattering particles may be present only in the region where the light emitting nanoparticles are not included.
  • Scattering particles may be included in the light emitting layer in a ratio of 10 to 100 parts by weight relative to 100 parts by weight of the total weight of the matrix or emulsion region, it is possible to ensure appropriate scattering properties within this ratio.
  • the light emitting layer may further include additives such as an oxygen scavenger or a radical scavenger in a required amount, in addition to the aforementioned components.
  • the thickness of the light emitting layer is not particularly limited and may be selected in an appropriate range in consideration of the intended use and optical characteristics.
  • the light emitting layer may have a thickness in the range of 10 to 500 ⁇ m, 10 to 400 ⁇ m, 10 to 300 ⁇ m, or 10 to 200 ⁇ m, but is not limited thereto.
  • the light emitting film may further include a barrier layer disposed on one or both surfaces of the light emitting layer.
  • a barrier layer can protect the light emitting layer from a high temperature condition or a condition in which harmful external factors such as oxygen and moisture exist.
  • FIG. 1 shows a structure including a light emitting layer 101 and barrier layers 102a and 102b disposed on both sides thereof as one exemplary light emitting film.
  • the barrier layer may be formed of a material having good stability, which is hydrophobic and does not cause yellowing even when exposed to light.
  • the barrier layer may be selected to have a refractive index in a range similar to that of the light emitting layer in order to reduce the loss of light at the interface between the light emitting layer and the barrier layer.
  • the barrier layer may be, for example, a solid material, or a cured liquid, gel, or polymer, and may be selected from flexible or inflexible materials, depending on the application.
  • the kind of material for forming the barrier layer is not particularly limited and may be selected from known materials including glass, polymers, oxides or nitrides and the like.
  • the barrier layer is, for example, glass; Polymers such as poly (ethylene terephtalate) (PET); Or an oxide or nitride such as silicon, titanium or aluminum, or a combination of two or more of the above, but is not limited thereto.
  • the barrier layer may be present on both surfaces of the light emitting layer as illustrated in FIG. 1 or may exist only on one surface thereof.
  • the light emitting film may have a structure in which barrier layers exist on both surfaces as well as on the side surfaces thereof, and the light emitting layer is entirely sealed by the barrier layer.
  • the present application also relates to a method for producing a light emitting film, for example the aforementioned light emitting film.
  • the method may include, for example, polymerizing a layer comprising a mixture of a hydrophilic polymerizable compound, a hydrophobic polymerizable compound, and an amphiphilic nanoparticle.
  • the hydrophilic polymerizable compound is a compound capable of forming a polymer having a solubility parameter of 10 (cal / cm 3) 1/2 or more, and the hydrophobic polymerizable compound has a solubility parameter of less than 10 (cal / cm 3) 1/2. It is a compound capable of forming a polymer.
  • Each compound may be, for example, a radically polymerizable compound.
  • the mixture may further include necessary additives, for example, light emitting nanoparticles and the like.
  • the mixture as described above may be prepared by simply mixing the above components, or may be prepared by mixing the hydrophobic polymerizable composition and the hydrophilic polymerizable composition, respectively, and then mixing them again.
  • the hydrophilic and hydrophobic polymerizable composition for example, the composition described above, that is, a composition containing a hydrophilic or hydrophobic polymerizable compound, an initiator, and the like can be used.
  • the mixture may be prepared by separately preparing each of the hydrophilic and hydrophobic polymerizable compositions, or may be prepared by mixing the components of the hydrophilic and hydrophobic polymerizable composition at once.
  • phase separation may occur during the polymerization process, and a light emitting layer having the above-described type may be formed.
  • the manner of forming the layer comprising the mixture is not particularly limited.
  • the obtained mixture can be formed by coating onto a suitable substrate by a known coating method.
  • the method of curing the layer formed in the above manner is not particularly limited, for example, applying an appropriate range of heat such that the initiator included in each composition can be activated, or applying electromagnetic waves such as ultraviolet rays. It can be done in a way that is applied.
  • the above-described light emitting layer may be formed through the above steps. If necessary, after the light emitting layer is formed through the above step, the step of forming a barrier layer may be further performed, or the polymerization process may be performed in a state adjacent to the barrier layer.
  • An exemplary lighting device may include a light source and the light emitting film.
  • the light source and the light emitting film in the lighting device may be arranged to allow light emitted from the light source to enter the light emitting film.
  • some of the incident light is emitted as it is not absorbed by the light emitting nanoparticles in the light emitting film, and the other part is absorbed by the light emitting nanoparticles, and then is converted into light having a different wavelength Can be released.
  • the wavelength of the light emitted from the light source and the wavelength of the light emitted by the light emitting nanoparticles it is possible to adjust the color purity or color of the light emitted from the light emitting film. For example, when the red and green particles are included in the light emitting layer in an appropriate amount, and the light source is adjusted to emit blue light, white light may be emitted from the light emitting film.
  • the kind of the light source included in the lighting device of the present application is not particularly limited, and an appropriate kind may be selected in consideration of the kind of the desired light.
  • the light source is a blue light source, for example, may be a light source capable of emitting light having a wavelength in the range of 450 to 490 nm.
  • FIGS. 2 and 3 are views showing an exemplary lighting device including a light source and a light emitting film as described above.
  • the light source and the light emitting film in the lighting apparatus may be arranged to allow light emitted from the light source to be incident on the light emitting film.
  • the light source 201 is disposed under the light emitting film 101, and thus light irradiated from the light source 201 in the upward direction may be incident to the light emitting film 101.
  • the light source 201 is disposed on the side surface of the light emitting film 101.
  • the light from the light source 201 like the light guiding plate 301 or the reflecting plate 302, is more Other means may be included to efficiently enter the light emitting film 101.
  • 2 and 3 is an example of the lighting device of the present application, in addition to the lighting device may have a variety of known forms, for this purpose may further include a variety of known configurations.
  • the lighting device of the present application can be used for various purposes.
  • a representative use of the lighting device of the present application is a display device.
  • the lighting device may be used as a backlight unit (BLU) of a display device such as a liquid crystal display (LCD).
  • BLU backlight unit
  • LCD liquid crystal display
  • the lighting device may be a backlight unit (BLU) of a display device such as a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device, or a digital camera, indoor or outdoor lighting. It may be used for stage lighting, decorative lighting, accent lighting, or museum lighting, and the like, but may also be used for horticulture or special wavelength lighting required in biology, but the use of the lighting apparatus is not limited thereto.
  • BLU backlight unit
  • a display device such as a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device, or a digital camera, indoor or outdoor lighting. It may be used for stage lighting, decorative lighting, accent lighting, or museum lighting, and the like, but may also be used for horticulture or special wavelength lighting required in biology, but the use of the lighting apparatus is not limited thereto.
  • the present application can provide a light emitting film having an excellent color purity and efficiency, and can provide a lighting device excellent in color characteristics.
  • the light emitting film of the present application can be stably maintained for such a long time excellent properties.
  • the light emitting film of the present application can be used in various lighting devices as well as in various applications including photovoltaic applications, light filters or light converters and the like.
  • FIG. 1 is a cross-sectional view of an exemplary light emitting film.
  • FIGS. 2 and 3 are schematic diagrams of exemplary lighting devices.
  • PEG poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156-97- 0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 9 (cal / cm 3 ) 1/2 ), green quantum dots (Quantum Dot, luminescent nanoparticles), amphiphilic nanoparticles (MX 80-H, manufactured by Soken), and SiO 2 nanoparticles as 9: 1: 1: 0.2: The weight ratio was 0.05: 0.05 (PEGDA: LA: BD: green particles: amphiphilic nanoparticles: SiO 2 nanoparticles).
  • Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare Mixture A.
  • PEGDA poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9
  • solubility parameter (HSP) about 18 (cal / cm 3 ) 1/2
  • LA laauryl acrylate, CAS No .: 2156 -97-0
  • solubility parameter (HSP) about 8 (cal / cm 3 ) 1/2 )
  • bisfluorene diacrylate BD, bisfluorene diacrylate, CAS No .: 161182-73-6
  • red quantum dots Quantantum Dot, light emitting nanoparticles
  • amphipathic nanoparticles MX 80-H, manufactured by Soken
  • Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare Mixture B.
  • Mixture B Mixing A and B in the same weight ratio to prepare a coating solution, the coating solution is placed between the two barrier films (i-component) spaced at regular intervals to a thickness of about 100 ⁇ m, and irradiated with ultraviolet light Radical polymerization was induced to cure to form a light emitting layer.
  • 4 and 5 are micrographs confirmed with respect to the embodiment, it can be seen that the amphiphilic nanoparticles are located at the boundary of the phase-separated region.
  • PEG poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156-97- 0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 9 (cal / cm 3 ) 1/2 ), green particles (Quantum Dot particles), amphiphilic nanoparticles (MX 80-H, manufactured by Soken), and SiO 2 nanoparticles as 9: 1: 1: 0.1: 0.05: 0.05 (PEGDA: LA: BD: green particles: amphiphilic nanoparticles: SiO 2 nanoparticles) in a weight ratio.
  • HSP solubility parameter
  • LA laauryl acrylate, CAS No
  • Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare a mixture.
  • the mixture was placed at a thickness of about 100 ⁇ m between two barrier films (i-component) spaced at regular intervals, and irradiated with ultraviolet rays to induce radical polymerization to form a light emitting layer.
  • 6 is a photograph of a light emitting layer formed in the above manner. In the figure it can be seen that the emulsion region in which the green particles are present is dispersed in the matrix.
  • Mixtures A and B were prepared in the same manner as in Example 1, except that a light emitting layer was formed in the same manner as in Example 1 except that an equal amount of a surfactant (polyvinylpyrrolidone) was added to each of the mixtures instead of amphiphilic nanoparticles.
  • 7 is a micrograph of the light emitting layer manufactured in the above manner, and phase-separated regions are not properly formed, and red and green particles that are combined are also mixed to obtain proper light emission characteristics.
  • LA laauryl acrylate, CAS No .: 2156-97-0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 9 (cal / cm 3 ) 1/2 ), trimethylolpropane triacylate (CAS No .: 15625-89-5), green particles (Quantum Dot particles and SiO 2 nanos)
  • a light emitting layer was manufactured in the same manner as in Example, except that the mixture prepared by mixing the particles in a weight ratio of 10: 1: 0.1: 0.05: 0.05 (LA: BD: TMPTA: Green Particles: SiO2 Nanoparticles) was used.
  • a light emitting film was prepared.
  • Example 2 The light emitting film prepared in Example 2 or Comparative Example 2 was placed on the light emitting side of the light source emitting light in the blue region at room temperature, and the light emitted from the light source was incident for about 24 hours. Then, the area

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 출원은 발광 필름, 그 제조 방법, 조명 장치 및 디스플레이 장치에 대한 것이다. 본 출원은, 우수한 색순도와 효율을 가지고, 칼라 특성이 뛰어난 조명 장치를 제공할 수 있는 발광 필름을 제공할 수 있다. 본 출원의 발광 필름은 상기와 같은 우수한 특성이 장기간 안정적으로 유지될 수 있다. 본 출원의 발광 필름은, 다양한 조명 장치는 물론 광전지 애플리케이션, 광 필터 또는 광 변환기 등을 포함하는 다양한 용도에 사용될 수 있다.

Description

발광 필름
본 출원은 2014년 8월 14일자 제출된 대한민국 특허출원 제2014-0106260호 및 2015년 8월 13일 대한민국 특허출원 제2015-0114366호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 출원은 발광 필름, 그 제조 방법, 조명 장치 및 디스플레이 장치에 대한 것이다.
조명 장치는 다양한 용도에 사용되고 있다. 조명 장치는, 예를 들면, LCD(Liquid Crystal Display), TV, 컴퓨터, 모바일폰, 스마트폰, 개인 휴대정보 단말기(PDA), 게이밍 장치, 전자 리딩 (reading) 장치 또는 디지털 카메라 등과 같은 디스플레이의 BLU(Backlight Unit)로 사용될 수 있다. 조명 장치는 그 외에도, 실내 또는 실외 조명, 무대 조명, 장식 조명, 액센트 조명 또는 박물관 조명 등에 사용될 수 있고, 이 외에도 원예학이나, 생물학에서 필요한 특별한 파장 조명 등에 사용될 수 있다.
조명 장치로는, 예를 들면, LCD의 BLU 등으로 사용되는 것으로서 청색 LED(Light Emitting Diode)와 YAG(Yttrium aluminium garnet)와 같은 형광체를 조합시켜 백색광을 내는 장치가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국공개특허공보 제2011-0048397호
(특허문헌 2) 한국공개특허공보 제2011-0038191호
본 출원은 발광 필름, 발광 필름의 제조 방법, 조명 장치 및 디스플레이 장치를 제공한다.
본 출원은 발광 필름에 대한 것이다. 용어 발광 필름은 광을 낼 수 있도록 형성된 필름을 의미한다. 예를 들면, 상기 발광 필름은, 소정 파장의 광을 흡수하여 흡수한 광과 동일하거나 다른 파장의 광을 방출할 수 있도록 형성된 필름일 수 있다.
발광 필름은 발광층을 포함할 수 있다. 하나의 예시에서 상기 발광층은 서로 상분리되어 있는 2개의 영역을 포함할 수 있다. 본 출원에서 용어 상분리되어 있는 영역들은, 예를 들면, 상대적으로 소수성인 영역 및 상대적으로 친수성인 영역과 같이 서로 섞이지 않는 2개의 영역들에 의해 형성된 영역으로서, 서로 분리되어 있다는 점을 확인할 수 있는 상태로 형성되어 있는 영역들을 의미할 수 있다. 이하, 설명의 편의를 위하여 발광층의 상분리되어 있는 2개의 영역 중에서 어느 한 영역을 제 1 영역으로 호칭하고, 다른 영역을 제 2 영역으로 호칭할 수 있다. 발광층이 후술하는 에멀젼 형태인 경우에 상기 제 1 및 제 2 영역 중 어느 하나의 영역은 연속상(continuous phase)이고, 다른 하나의 영역은 분산상(dispersed phase)일 수 있다.
상기 제 1 영역과 제 2 영역 중에서 제 1 영역은 친수성 영역이고, 제 2 영역은 소수성 영역일 수 있다. 본 출원에서 제 1 및 제 2 영역을 구분하는 친수성과 소수성은 서로 상대적인 개념이고, 친수성과 소수성의 절대적인 기준은 상기 발광층 내에서 상기 두 개의 영역이 서로 구분되어 있는 것이 확인될 수 있을 정도이면 특별히 제한되는 것은 아니다.
발광층 내에서 친수성인 제 1 영역과 소수성인 제 2 영역의 비율은, 예를 들면, 발광층에 포함시키고자 하는 발광 나노입자의 비율, 배리어층 등의 다른 층과의 부착성, 상분리 구조의 생성 효율 또는 필름화를 위해 요구되는 물성 등을 고려하여 선택할 수 있다. 예를 들면, 발광층은, 상기 제 1 영역 100 중량부 대비 10 중량부 내지 100 중량부의 제 2 영역을 포함할 수 있다. 다른 예시에서 발광층은, 제 1 영역 50 내지 95 중량부 및 제 2 영역 5 내지 50 중량부를 포함할 수 있다. 또는 반대로 발광층은, 제 2 영역 50 내지 95 중량부 및 제 1 영역 5 내지 50 중량부를 포함할 수 있다. 본 출원에서 용어 중량부는, 특별히 달리 규정하지 않는 한, 성분간의 중량 비율을 의미한다. 또한, 상기에서 제 1 및 제 2 영역의 중량의 비율은, 각 영역 자체의 중량의 비율; 각 영역에 포함되는 모든 성분의 중량의 합계의 비율; 각 영역의 주성분으로 포함되는 성분간의 중량의 비율 또는 상기 각 영역을 형성하기 위하여 사용하는 재료의 중량의 비율을 의미할 수 있다. 예를 들면, 상기 발광층은, 후술하는 바와 같이 친수성 중합성 조성물과 상대적으로 소수성인 중합성 조성물을 혼합하고, 중합시켜서 형성할 수 있는데, 이러한 경우에 상기 각 영역의 중량의 비율은 상기 각 중합성 조성물의 중량의 비율을 의미하거나, 혹은 상기 각 조성물에 포함되는 주성분인 친수성 중합성 화합물과 소수성 중합성 화합물간의 중량의 비율을 의미할 수 있다. 상기에서 친수성 중합성 조성물은 친수성 중합성 화합물을 주성분으로 포함하는 조성물을 의미하고, 소수성 중합성 조성물은 소수성 중합성 화합물을 주성분으로 포함하는 조성물을 의미할 수 있다. 상기에서 중합성 화합물의 종류는 특별히 제한되지 않으며, 예를 들면, 라디칼 중합성 화합물일 수 있다. 본 출원에서 주성분으로 포함된다는 것은, 전체 중량을 기준으로 주성분으로 포함되는 성분의 중량의 비율이 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 95 중량% 이상인 경우를 의미할 수 있다. 본 출원에서 상기 친수성 중합성 화합물과 소수성 중합성 화합물의 친수성 및 소수성의 구분의 기준은, 예를 들면, 상기 양 화합물이 서로 상대적으로 친수성 또는 소수성이면서 서로 혼합되었을 때에 전술한 상분리되어 있는 영역을 형성할 수 있을 정도라면 특별히 제한되지 않는다. 하나의 예시에서 상기 친수성과 소수성의 구분은 소위 용해도 파라미터(solubility parameter)에 의해 수행될 수 있다. 본 출원에서 용해도 파라미터는 해당 중합성 화합물의 중합에 의해 형성되는 단독 폴리머(homopolymer)의 용해도 파라미터를 의미하고, 이를 통해 해당 화합물의 친수성 및 소수성의 정도를 파악할 수 있다. 용해도 파라미터를 구하는 방식은 특별히 제한되지 않고, 이 분야에서 공지된 방식에 따를 수 있다. 예를 들면, 상기 파라미터는 당업계에서 소위 HSP(Hansen solubility parameter)로 공지된 방식에 따라서 계산하거나 구해질 수 있다. 특별히 제한되는 것은 아니지만, 본 출원에서 소수성 중합성 화합물은, 중합에 의해서 상기 용해도 파라미터가 약 10 (cal/cm3)1/2 미만인 고분자를 형성할 수 있는 중합성의 화합물을 의미할 수 있고, 친수성 중합성 화합물은 중합에 의해서 상기 파라미터가 약 10 (cal/cm3)1/2 이상인 고분자를 형성할 수 있는 중합성의 화합물을 의미할 수 있다. 상기 소수성 중합성 화합물이 형성하는 고분자의 용해도 파라미터는 다른 예시에서 3 (cal/cm3)1/2 이상, 4 (cal/cm3)1/2 이상 또는 약 5 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 중합성 화합물이 형성하는 고분자의 용해도 파라미터는 다른 예시에서 약 11 (cal/cm3)1/2 이상, 12 (cal/cm3)1/2 이상, 13 (cal/cm3)1/2 이상, 14 (cal/cm3)1/2 이상 또는 15 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 중합성 화합물이 형성하는 고분자의 용해도 파라미터는 다른 예시에서 약 40 (cal/cm3)1/2 이하, 약 35 (cal/cm3)1/2 이하 또는 약 30 (cal/cm3)1/2 이하일 수 있다. 적절한 상분리 구조 혹은 에멀젼 구조의 구현을 위해서 상기 소수성 및 친수성 화합물의 용해도 파라미터의 차이가 제어될 수 있다. 하나의 예시에서 상기 친수성 및 소수성 중합성 화합물 또는 그 각각에 의해 형성되는 고분자의 용해도 파라미터의 차이는 5 (cal/cm3)1/2 이상, 6 (cal/cm3)1/2 이상, 7 (cal/cm3)1/2 이상 또는 약 8 (cal/cm3)1/2 이상일 수 있다. 상기 차이는 용해도 파라미터 중 큰 값에서 작은 값을 뺀 수치이다. 상기 차이의 상한은 특별히 제한되지 않는다. 용해도 파라미터의 차이가 클수록 보다 적절한 상분리 구조 내지는 에멀젼 구조가 형성될 수 있다. 상기 차이의 상한은, 예를 들면, 30 (cal/cm3)1/2 이하, 25 (cal/cm3)1/2 이하 또는 약 20 (cal/cm3)1/2 이하일 수 있다. 본 명세서에서 기재하는 어떤 물성이 온도에 따라서 변화하는 물성인 경우에, 상기 물성은 상온에서의 물성을 의미할 수 있다. 본 명세서에서 용어 상온은, 가온되거나, 감온되지 않은 자연 그대로의 온도이고, 예를 들면, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 약 23℃ 또는 약 25℃ 정도를 의미할 수 있다.
하나의 예시에서 상기 발광층은, 에멀젼 형태의 층일 수 있다. 한편, 본 출원에서 용어 에멀젼 형태의 층은, 서로 섞이지 않는 2개 이상의 상(phase)(예를 들면, 상기 제 1 및 제 2 영역) 중 어느 한 영역은, 층 내에서 연속적인 상(continuous phase)을 형성하고 있고, 다른 하나의 영역은 상기 연속적인 상 내에 분산되어 분산상(dispersed phase)을 이루고 있는 형태의 층을 의미할 수 있다. 상기에서 연속상(continuous phase) 및 분산상(dispersed phase)은, 각각 고상, 반고상 또는 액상일 수 있고, 서로 동일한 상이거나, 다른 상일 수 있다. 통상적으로 에멀젼은 서로 섞이지 않는 2개 이상의 액상에 대하여 주로 사용되는 용어이지만, 본 출원에서의 용어 에멀젼은 반드시 2개 이상의 액상에 의해서 형성된 에멀젼만 의미하는 것은 아니다.
하나의 예시에서 상기 발광층은 상기 연속상(continuous phase)을 형성하고 있는 매트릭스를 포함하고, 상기 매트릭스 내에 분산되어 있는 분산상(dispersed phase)인 에멀젼 영역을 포함할 수 있다. 상기에서 매트릭스는 전술한 제 1 및 제 2 영역 중 어느 한 영역(예를 들면, 제 1 영역)이고, 분산상인 에멀젼 영역은 제 1 및 제 2 영역 중 다른 하나의 영역(예를 들면, 제 2 영역)일 수 있다.
에멀젼 영역은 입자 형태일 수 있다. 즉 에멀젼 영역은 입자 형태를 이루면서 매트릭스 내에 분산되어 있을 수 있다. 이러한 경우에 상기 에멀젼 영역의 입자 형태는, 특별히 제한되지 않으며, 대략적으로 구상이거나, 타원체형, 다각형 또는 무정형 등일 수 있다. 상기 입자 형태의 평균 직경은 약 1 μm 내지 200 μm의 범위 내, 약 1 μm 내지 50 μm의 범위 내 또는 약 50 μm 내지 200 μm의 범위 내일 수 있다. 입자 형태의 크기는, 상기 매트릭스 및 에멀젼 영역을 형성하는 재료의 비율을 조절하거나, 혹은 계면 활성제 등의 사용을 통해 제어할 수 있다.
발광층 내에서 매트릭스 및 에멀젼 영역의 비율은. 예를 들면, 발광층에 포함시키고자 하는 발광 나노입자의 비율, 배리어층 등의 다른 층과의 부착성, 상분리 구조인 에멀젼 구조의 생성 효율 또는 필름화를 위해 요구되는 물성 등을 고려하여 선택할 수 있다. 예를 들면, 발광층은, 매트릭스 100 중량부 대비 5 내지 40 중량부의 에멀젼 영역을 포함할 수 있다. 상기 에멀젼 영역의 비율은 매트릭스 100 중량부 대비 10 중량부 이상 또는 15 중량부 이상일 수 있다. 상기 에멀젼 영역의 비율은 상기 매트릭스 100 중량부 대비 35 중량부 이하일 수 있다. 상기에서 매트릭스 및 에멀젼 영역의 중량의 비율은, 각 영역 자체의 중량의 비율이거나, 그 영역에 포함되는 모든 성분의 중량의 합계 또는 주성분의 비율 또는 상기 각 영역을 형성하기 위하여 사용하는 재료의 중량의 비율을 의미할 수 있다. 예를 들면, 상기 매트릭스 및 에멀젼 영역은, 각각 후술하는 친수성 및 소수성 중합성 화합물의 중합 단위를 포함할 수 있는데, 상기 중량의 비율은 상기 중합 단위간의 비율일 수 있다.
발광층은 발광 나노입자를 포함할 수 있다. 용어 발광 나노입자는, 발광할 수 있는 나노입자를 의미할 수 있다. 예를 들면, 상기 발광 나노입자는, 소정 파장의 광을 흡수하여 상기 흡수한 광과 동일하거나 다른 파장의 광을 방출할 수 있도록 형성된 나노입자를 의미할 수 있다. 본 출원에서 용어 나노입자는 나노 스케일의 디멘젼(dimension)을 가지는 입자로서, 예를 들면, 평균 입경이 약 100 nm 이하, 90 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하, 50 nm 이하, 40 nm 이하, 30 nm 이하, 20 nm 이하 또는 약 15 nm 이하인 입자를 의미할 수 있다. 나노입자의 형태는 특별히 제한되지 않으며, 구상이거나, 타원체, 다각형 또는 무정형 등을 포함할 수 있다.
발광 나노입자는 상기 매트릭스 또는 에멀젼 영역에 포함되어 있을 수 있다. 하나의 예시에서 상기 발광 나노입자는 상기 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 포함되고, 다른 영역에는 실질적으로 포함되어 있지 않을 수 있다. 본 출원에서 발광 나노입자가 어느 영역에 실질적으로 포함되어 있지 않다는 것은, 예를 들면, 발광층에 포함되어 있는 발광 나노입자의 전체 중량을 기준으로 해당 영역에 포함되어 있는 발광 나노입자의 중량 비율이 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하, 1% 이하, 0.5% 이하 또는 0.1% 이하인 경우를 의미할 수 있다.
하나의 예시에서 발광 나노입자는, 상기 매트릭스 및 에멀젼 영역 중에서 실질적으로 에멀젼 영역에 포함되어 있을 수 있다. 이러한 경우에 매트릭스에는 발광 나노입자는 실질적으로 포함되어 있지 않을 수 있다. 따라서, 상기와 같은 경우 에멀젼 영역 내에 포함되어 있는 발광 나노입자의 비율은, 발광층에 포함되어 있는 전체 발광 나노입자의 중량을 기준으로 90 중량% 이상, 91 중량% 이상, 92 중량% 이상, 93 중량% 이상, 94 중량% 이상, 95 중량% 이상, 96 중량% 이상, 97 중량% 이상, 98 중량% 이상, 99 중량% 이상, 99.5 중량% 이상 또는 99.9 중량% 이상일 수 있다.
발광층 내에서 상분리된 2개의 영역을 형성하고, 발광 나노입자를 상기 2개의 영역 중에서 어느 한 영역에만 실질적으로 위치시키면, 필름화에 적합한 물성을 확보할 수 있고, 후술하는 배리어층과 같은 다른 층과 상기 발광층간의 밀착성의 확보가 유리하며, 발광 필름의 형성 시에 발광 나노입자가 존재하는 영역에 개시제나 가교제 등과 같은 상기 나노입자의 물성에 악영향을 미칠 수 있는 다른 요인들을 보다 효과적으로 제어하여 내구성이 우수한 필름을 형성할 수 있다.
매트릭스 및 에멀젼 영역 중 어느 한 영역은 친수성 고분자를 포함할 수 있고, 다른 한 영역은 소수성 고분자를 포함할 수 있다. 상기에서 친수성 고분자는 전술한 바와 같이 HSP(Hansen solubility parameter)가 10 (cal/cm3)1/2 이상인 고분자를 의미하고, 소수성 고분자는 HSP가 10 (cal/cm3)1/2 미만인 고분자를 의미할 수 있다. 상기 소수성 고분자의 용해도 파라미터는 다른 예시에서 3 (cal/cm3)1/2 이상, 4 (cal/cm3)1/2 이상 또는 약 5 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 고분자의 용해도 파라미터는 다른 예시에서 약 11 (cal/cm3)1/2 이상, 12 (cal/cm3)1/2 이상, 13 (cal/cm3)1/2 이상, 14 (cal/cm3)1/2 이상 또는 15 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 고분자의 용해도 파라미터는 다른 예시에서 약 40 (cal/cm3)1/2 이하, 약 35 (cal/cm3)1/2 이하 또는 약 30 (cal/cm3)1/2 이하일 수 있다. 적절한 상분리 구조 혹은 에멀젼 구조의 구현을 위해서 상기 소수성 및 친수성 고분자의 용해도 파라미터의 차이가 제어될 수 있다. 하나의 예시에서 상기 친수성 및 소수성 고분자의 용해도 파라미터의 차이는 5 (cal/cm3)1/2 이상, 6 (cal/cm3)1/2 이상, 7 (cal/cm3)1/2 이상 또는 약 8 (cal/cm3)1/2 이상일 수 있다. 상기 차이는 용해도 파라미터 중 큰 값에서 작은 값을 뺀 수치이다. 상기 차이의 상한은 특별히 제한되지 않는다. 용해도 파라미터의 차이가 클수록 보다 적절한 상분리 구조 내지는 에멀젼 구조가 형성될 수 있다. 상기 차이의 상한은, 예를 들면, 30 (cal/cm3)1/2 이하, 25 (cal/cm3)1/2 이하 또는 약 20 (cal/cm3)1/2 이하일 수 있다. 하나의 예시에서 상기 매트릭스가 친수성 고분자를 포함할 수 있고, 에멀젼 영역이 소수성 고분자를 포함할 수 있다.
매트릭스는, 상기 친수성 중합성 화합물, 예를 들면, 친수성 라디칼 중합성 화합물을 중합시켜서 형성할 수 있다. 이러한 경우에 상기 매트릭스는 하기 화학식 1의 화합물, 하기 화학식 2의 화합물, 하기 화학식 3의 화합물, 하기 화학식 4의 화합물, 질소 함유 라디칼 중합성 화합물, 아크릴산, 메타크릴산 또는 염(salt) 부위를 포함하는 라디칼 중합성 화합물의 중합 단위를 포함할 수 있다. 본 출원에서 용어 소정 화합물의 중합 단위는, 상기 소정의 화합물이 중합되어 형성되는 단위를 의미할 수 있다.
[화학식 1]
Figure PCTKR2015008493-appb-I000001
화학식 1에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, Z는 수소, 알콕시기, 에폭시기 또는 1가 탄화수소기이고, m은 임의의 수이다.
[화학식 2]
Figure PCTKR2015008493-appb-I000002
화학식 2에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, m은 임의의 수이다.
[화학식 3]
Figure PCTKR2015008493-appb-I000003
화학식 3에서 Q는 수소 또는 알킬기이고, A는 히드록시기가 치환되어 있을 수 있는 알킬렌기이며, U는 알킬렌기이다.
[화학식 4]
Figure PCTKR2015008493-appb-I000004
화학식 4에서 Q는 수소 또는 알킬기이고, A 및 U는 각각 독립적으로 알킬렌기이며, X는 히드록시기 또는 시아노기이다.
본 출원에서 용어 「알킬렌기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「에폭시기」는, 특별히 달리 규정하지 않는 한, 3개의 고리 구성 원자를 가지는 고리형 에테르(cyclic ether) 또는 상기 고리형 에테르를 포함하는 화합물 또는 그로부터 유도된 1가 잔기를 의미할 수 있다. 에폭시기로는 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등이 예시될 수 있다. 상기에서 지환식 에폭시기는, 지방족 탄화수소 고리 구조를 포함하고, 상기 지방족 탄화수소 고리를 형성하고 있는 2개의 탄소 원자가 또한 에폭시기를 형성하고 있는 구조를 포함하는 화합물로부터 유래되는 1가 잔기를 의미할 수 있다. 지환식 에폭시기로는, 6개 내지 12개의 탄소 원자를 가지는 지환식 에폭시기가 예시될 수 있고, 예를 들면, 3,4-에폭시시클로헥실에틸기 등이 예시될 수 있다.
본 출원에서 용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알콕시기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「1가 탄화수소기」는, 특별히 달리 규정하지 않는 한, 탄소와 수소로 이루어진 화합물 또는 그러한 화합물의 유도체로부터 유도되는 1가 잔기를 의미할 수 있다. 예를 들면, 1가 탄화수소기는, 1개 내지 25개의 탄소 원자를 포함할 수 있다. 1가 탄화수소기로는, 알킬기, 알케닐기, 알키닐기 또는 아릴기 등이 예시될 수 있다.
본 출원에서 용어 「알케닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「알키닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알키닐기를 의미할 수 있다. 상기 알키닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「아릴기」는, 특별히 달리 규정하지 않는 한, 벤젠 고리 또는 2개 이상의 벤젠 고리가 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 아릴기의 범위에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 아릴기로는, 페닐기, 페녹시기, 페녹시페닐기, 페녹시벤질기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있다.
본 출원에서 상기 알콕시기, 알킬렌기, 에폭시기 또는 1가 탄화수소기에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기 또는 1가 탄화수소기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
화학식 1, 2 및 4에서 m 및 n은 임의의 수이며, 예를 들면, 각각 독립적으로 1 내지 20, 1 내지 16 또는 1 내지 12의 범위 내의 수일 수 있다.
상기 질소 함유 라디칼 중합성 화합물로는, 예를 들면, 아미드기-함유 라디칼 중합성 화합물, 아미노기-함유 라디칼 중합성 화합물, 이미드기-함유 라디칼 중합성 화합물 또는 사이아노기-함유 라디칼 중합성 화합물 등을 사용할 수 있다. 상기에서 아미드기-함유 라디칼 중합성 화합물로서는, 예를 들면 (메타)아크릴아미드 또는 N,N-디메틸 (메타)아크릴아미드, N,N-디에틸 (메타)아크릴아미드, N-아이소프로필 (메타)아크릴아미드, N-메틸올 (메타)아크릴아미드, 다이아세톤 (메타)아크릴아미드, N-비닐아세토아미드, N,N’-메틸렌비스(메타)아크릴아미드, N,N-디메틸아미노프로필(메타)아크릴아미드, N,N-디메틸아미노프로필메타크릴아미드, N-비닐피롤리돈, N-비닐카프로락탐 또는 (메트)아크릴로일모폴린 등이 예시될 수 있고, 아미노기-함유 라디칼 중합성 화합물로서는, 아미노에틸(메트)아크릴레이트, N,N-디메틸아미노에틸(메트)아크릴레이트 또는 N,N-디메틸아미노프로필(메트)아크릴레이트 등이 예시될 수 있으며, 이미드기-함유 라디칼 중합성 화합물로서는, N-아이소프로필말레이미드, N-사이클로헥실말레이미드 또는 이타콘이미드 등이 예시될 수 있고, 사이아노기-함유 라디칼 중합성 화합물로서는, 아크릴로나이트릴 또는 메타크릴로나이트릴 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
또한, 상기에서 염(salt) 부위를 포함하는 라디칼 중합성 화합물로는, 아크릴산 또는 메타크릴산의 염(salt)으로서, 예를 들면 상기와 리튬, 나트륨, 및 칼륨을 비롯한 알칼리 금속과의 염 또는 마그네슘, 칼슘, 스트론튬 및 바륨을 비롯한 알칼리 토금속과의 염 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
상기와 같은 중합 단위를 포함하는 매트릭스는, 예를 들면, 친수성 중합성 화합물, 예를 들면, 라디칼 중합성 화합물 및 라디칼 개시제를 포함하는 친수성 중합성 조성물을 중합시켜 형성할 수 있다. 따라서, 상기 매트릭스는 상기 친수성 중합성 조성물의 중합물일 수 있다.
친수성 라디칼 중합성 화합물의 종류는 특별히 제한되지 않고, 예를 들면, 상기 기술한 화합물을 사용할 수 있다.
친수성 중합성 조성물에 포함되는 라디칼 개시제의 종류는 특별히 제한되지 않는다. 개시제로는, 열의 인가 또는 광의 조사에 의해 중합 반응을 개시시킬 수 있는 라디칼을 생성할 수 있는 라디칼 열개시제 또는 광개시제를 사용할 수 있다.
열개시제로는, 예를 들면, 2,2-아조비스-2,4-디메틸발레로니트릴(V-65, Wako(제)), 2,2-아조비스이소부티로니트릴(V-60, Wako(제)) 또는 2,2-아조비스-2-메틸부티로니트릴(V-59, Wako(제))와 같은 아조계 개시제; 디프로필 퍼옥시디카보네이트(Peroyl NPP, NOF(제)), 디이소프로필 퍼옥시 디카보네이트(Peroyl IPP, NOF(제)), 비스-4-부틸시클로헥실 퍼옥시 디카보네이트(Peroyl TCP, NOF(제)), 디에톡시에틸 퍼옥시 디카보네이트(Peroyl EEP, NOF(제)), 디에톡시헥실 퍼옥시 디카보네이트(Peroyl OPP, NOF(제)), 헥실 퍼옥시 디카보네이트(Perhexyl ND, NOF(제)), 디메톡시부틸 퍼옥시 디카보네이트(Peroyl MBP, NOF(제)), 비스(3-메톡시-3-메톡시부틸)퍼옥시 디카보네이트(Peroyl SOP, NOF(제)), 헥실 퍼옥시 피발레이트(Perhexyl PV, NOF(제)), 아밀 퍼옥시 피발레이트(Luperox 546M75, Atofina(제)), 부틸 퍼옥시 피발레이트(Perbutyl, NOF(제)) 또는 트리메틸헥사노일 퍼옥사이드(Peroyl 355, NOF(제))와 같은 퍼옥시에스테르 화합물; 디메틸 하이드록시부틸 퍼옥사네오데카노에이트(Luperox 610M75, Atofina(제)), 아밀 퍼옥시 네오데카노에이트(Luperox 546M75, Atofina(제)) 또는 부틸 퍼옥시 네오데카노에이트(Luperox 10M75, Atofina(제))와 같은 퍼옥시 디카보네이트 화합물; 3,5,5-트리메틸헥사노일 퍼옥사이드, 라우릴 퍼옥사이드 또는 디벤조일 퍼옥사이드와 같은 아실 퍼옥사이드; 케톤 퍼옥시드; 디알킬 퍼옥시드; 퍼옥시 케탈; 또는 히드로퍼옥시드 등과 같은 퍼옥시드 개시제 등의 일종 또는 이종 이상을 사용할 수 있고, 광개시제로는, 벤조인계, 히드록시 케톤계, 아미노케톤계 또는 포스핀 옥시드계 광개시제 등이 사용될 수 있고, 구체적으로는, 벤조인, 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 이소프로필에테르, 벤조인 n-부틸에테르, 벤조인 이소부틸에테르, 아세토페논, 디메틸아니노 아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2,2-디에톡시-2-페닐아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1온, 1-히드록시시클로헥실페닐케톤, 2-메틸-1-[4-(메틸티오)페닐]-2-몰포리노-프로판-1-온, 4-(2-히드록시에톡시)페닐-2-(히드록시-2-프로필)케톤, 벤조페논, p-페닐벤조페논, 4,4’-디에틸아미노벤조페논, 디클로로벤조페논, 2-메틸안트라퀴논, 2-에틸안트라퀴논, 2-t-부틸안트라퀴논, 2-아미노안트라퀴논, 2-메틸티오잔톤(thioxanthone), 2-에틸티오잔톤, 2-클로로티오잔톤, 2,4-디메틸티오잔톤, 2,4-디에틸티오잔톤, 벤질디메틸케탈, 아세토페논 디메틸케탈, p-디메틸아미노 안식향산 에스테르, 올리고[2-히드록시-2-메틸-1-[4-(1-메틸비닐)페닐]프로판논] 및 2,4,6-트리메틸벤조일-디페닐-포스핀옥시드 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
개시제로는 친수성 성분에 높은 용해도를 나타내는 것을 선택하여 사용할 수 있고, 예를 들면, 히드록시케톤 화합물, 수분산 히드록시케톤 화합물 또는 아미노케톤 화합물 또는 수분산 아미노케톤 화합물 등이 사용될 수 있지만, 이에 제한되는 것은 아니다.
친수성 중합성 조성물은, 예를 들면, 라디칼 개시제를, 0.1 중량% 내지 10 중량% 정도의 농도로 포함할 수 있다. 이러한 비율은, 예를 들면, 필름의 물성이나 중합 효율 등을 고려하여 변경할 수 있다.
예를 들면, 필름화 물성 등을 고려하여, 필요하다면 친수성 중합성 조성물은, 가교제를 추가로 포함할 수 있다. 가교제로는, 예를 들면, 라디칼 중합성기를 2개 이상 가지는 화합물을 사용할 수 있다.
가교제로 사용될 수 있는 화합물로는, 다관능성 아크릴레이트가 예시될 수 있다. 상기 다관능성 아크릴레이트는, 아크릴로일기 또는 메타크릴로일기를 2개 이상 포함하는 화합물을 의미할 수 있다.
다관능성 아크릴레이트로는, 예를 들면, 1,4-부탄디올 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 네오펜틸글리콜 디(메타)아크릴레이트, 폴리에틸렌글리콜 디(메타)아크릴레이트, 네오펜틸글리콜아디페이트(neopentylglycol adipate) 디(메타)아크릴레이트, 히드록시피발산(hydroxyl puivalic acid) 네오펜틸글리콜 디(메타)아크릴레이트, 디시클로펜타닐(dicyclopentanyl) 디(메타)아크릴레이트, 카프로락톤 변성 디시클로펜테닐 디(메타)아크릴레이트, 에틸렌옥시드 변성 디(메타)아크릴레이트, 디(메타)아크릴록시 에틸 이소시아누레이트, 알릴(allyl)화 시클로헥실 디(메타)아크릴레이트, 트리시클로데칸디메탄올(메타)아크릴레이트, 디메틸롤 디시클로펜탄 디(메타)아크릴레이트, 에틸렌옥시드 변성 헥사히드로프탈산 디(메타)아크릴레이트, 트리시클로데칸 디메탄올(메타)아크릴레이트, 네오펜틸글리콜 변성 트리메틸프로판 디(메타)아크릴레이트, 아다만탄(adamantane) 디(메타)아크릴레이트 또는 9,9-비스[4-(2-아크릴로일옥시에톡시)페닐]플루오렌(fluorine) 등과 같은 2관능성 아크릴레이트; 트리메틸롤프로판 트리(메타)아크릴레이트, 디펜타에리쓰리톨 트리(메타)아크릴레이트, 프로피온산 변성 디펜타에리쓰리톨 트리(메타)아크릴레이트, 펜타에리쓰리톨 트리(메타)아크릴레이트, 프로필렌옥시드 변성 트리메틸롤프로판 트리(메타)아크릴레이트, 3 관능형 우레탄 (메타)아크릴레이트 또는 트리스(메타)아크릴록시에틸이소시아누레이트 등의 3관능형 아크릴레이트; 디글리세린 테트라(메타)아크릴레이트 또는 펜타에리쓰리톨 테트라(메타)아크릴레이트 등의 4관능형 아크릴레이트; 프로피온산 변성 디펜타에리쓰리톨 펜타(메타)아크릴레이트 등의 5관능형 아크릴레이트; 및 디펜타에리쓰리톨 헥사(메타)아크릴레이트, 카프로락톤 변성 디펜타에리쓰리톨 헥사(메타)아크릴레이트 또는 우레탄 (메타)아크릴레이트(ex. 이소시아네이트 단량체 및 트리메틸롤프로판 트리(메타)아크릴레이트의 반응물 등의 6관능형 아크릴레이트 등을 사용할 수 있다. 또한, 다관능성 아크릴레이트로는, 업계에서 소위 광경화성 올리고머로 호칭되는 화합물로서, 우레탄 아크릴레이트, 에폭시 아크릴레이트, 폴리에스테르 아크릴레이트 또는 폴리에테르 아크릴레이트 등도 사용할 수 있다. 상기와 같은 화합물 중에서 적절한 종류를 일종 또는 이종 이상 선택하여 사용할 수 있다.
가교제로는, 상기 다관능성 아크릴레이트와 같이 라디칼 반응에 의해 가교 구조를 구현할 수 있는 성분은 물론 필요하다면, 공지의 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제 또는 금속 킬레이트 가교제 등과 같이 열경화 반응에 의해 가교 구조를 구현할 수 있는 성분도 사용할 수 있다.
가교제는, 예를 들면, 친수성 중합성 조성물에 50 중량% 이하 또는 10 중량% 내지 50 중량%의 농도로 포함될 수 있다. 가교제의 비율은, 예를 들면, 필름의 물성 등을 고려하여 변경될 수 있다.
친수성 중합성 조성물은, 상기 기술한 성분 외에도 필요한 다른 성분을 추가로 포함할 수 있다. 또한, 친수성 중합성 조성물을 사용하여 제 1 영역을 형성하는 방식은 후술한다.
에멀젼 영역은, 역시 중합성 화합물, 예를 들면, 라디칼 중합성 화합물을 중합시켜서 형성할 수 있다. 예를 들면, 에멀젼 영역은, 상기 소수성 라디칼 중합성 화합물을 중합시켜서 형성할 수 있다.
하나의 예시에서 에멀젼 영역은, 하기 화학식 5 내지 7 중 어느 하나의 화학식으로 표시되는 화합물의 중합 단위를 포함할 수 있다.
[화학식 5]
Figure PCTKR2015008493-appb-I000005
화학식 5에서 Q는 수소 또는 알킬기이고, B는 탄소수 5 이상의 직쇄 또는 분지쇄 알킬기 또는 지환식 탄화수소기이다.
[화학식 6]
Figure PCTKR2015008493-appb-I000006
화학식 6에서 Q는 수소 또는 알킬기이고, U는 알킬렌, 알케닐렌 또는 알키닐렌 또는 아릴렌기이다.
[화학식 7]
Figure PCTKR2015008493-appb-I000007
화학식 7에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, Y는 탄소 원자, 산소 원자 또는 황 원자이며, X는 산소 원자, 황 원자 또는 알킬렌기이고, Ar은 아릴기이며, n은 임의의 수이다.
본 출원에서 용어 알케렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케렌기 또는 알키닐렌기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알케렌기 또는 알키닐렌기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 「아릴렌기」는, 특별히 달리 규정하지 않는 한, 벤젠 또는 2개 이상의 벤젠이 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 2가 잔기를 의미할 수 있다. 아릴렌기는, 예를 들면, 벤젠, 나프탈렌 또는 플루오렌(fluorene) 등을 포함하는 구조를 가질 수 있다.
화학식 5에서 B는 탄소수 5 이상, 탄소수 7 이상 또는 탄소수 9 이상의 직쇄 또는 분지쇄 알킬기일 수 있다. 이와 같이 상대적으로 장쇄의 알킬기를 포함하는 화합물은 상대적으로 비극성의 화합물로 알려져 있다. 상기 직쇄 또는 분지쇄 알킬기의 탄소수의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 알킬기는, 탄소수 20 이하의 알킬기일 수 있다.
화학식 5에서 B는 다른 예시에서 지환식 탄화수소기, 예를 들면, 탄소수 3 내지 20, 탄소수 3 내지 16 또는 탄소수 6 내지 12의 지환식 탄화수소기일 수 있고, 그러한 탄화수소기의 예로는 사이클로헥실기 또는 이소보르닐기 등이 예시될 수 있다. 이와 같이 지환식 탄화수소기를 가지는 화합물은, 상대적으로 비극성의 화합물로 알려져 있다.
화학식 7에서 n은 임의의 수이며, 예를 들면, 각각 독립적으로 1 내지 20, 1 내지 16 또는 1 내지 12의 범위 내의 수일 수 있다.
제 2 영역은, 예를 들면, 소수성 라디칼 중합성 화합물 및 라디칼 개시제를 포함하는 소수성 중합성 조성물을 중합시켜 형성할 수 있다. 따라서, 상기 제 2 영역은 상기 소수성 중합성 조성물의 중합물일 수 있다.
소수성 중합성 조성물에 포함되는 소수성 라디칼 중합성 화합물의 종류는 특별히 제한되지 않고, 업계에서 소위 비극성의 단량체로 알려져 있는 화합물을 사용할 수 있다. 예를 들면, 상기 화합물로는 전술한 화합물을 사용할 수 있다.
소수성 중합성 조성물에 포함되는 라디칼 개시제의 종류는 특별히 제한되지 않는다. 예를 들면, 전술한 친수성 중합성 화합물의 항목에서 기술한 개시제 중에서 적절한 종류를 선택하여 사용할 수 있다.
소수성 중합성 조성물은, 예를 들면, 라디칼 개시제를, 5 중량% 이하의 농도로 포함할 수 있다. 이러한 농도는, 예를 들면, 필름의 물성이나 중합 효율 등을 고려하여 변경할 수 있다.
필름화 물성 등을 고려하여, 필요하다면 소수성 중합성 조성물도, 가교제를 추가로 포함할 수 있다. 가교제로는, 특별한 제한 없이, 예를 들면, 상기 친수성 중합성 조성물 항목에서 설명한 성분들 중에서 적절한 성분을 선택하여 사용할 수 있다.
가교제는, 예를 들면, 소수성 중합성 조성물에 50 중량% 이하, 또는 10 내지 50 중량%의 농도로 포함될 수 있다. 가교제의 농도는, 예를 들면, 필름의 물성 등이나 중합성 화합물에 포함되는 다른 성분으로의 영향 등을 고려하여 변경될 수 있다.
소수성 중합성 조성물도 필요하다면 다른 성분을 추가로 포함할 수 있다. 또한, 상기 소수성 중합성 조성물을 사용하여 에멀젼 영역을 형성하는 방식은 후술한다.
발광층은, 발광 나노입자를 포함한다. 전술한 바와 같이 발광 나노입자는, 소정 파장의 광을 흡수하여 그와 동일하거나 다른 파장의 광을 방출할 수 있는 입자일 수 있다. 예를 들면, 발광 나노입자는 420 내지 490 nm의 범위 내의 어느 한 파장의 광을 흡수하여 490 내지 580 nm 범위 내의 어느 한 파장의 광을 방출할 수 있는 나노입자(이하, 녹색 입자라 칭할 수 있다.) 및/또는 450 내지 490 nm의 범위 내의 어느 한 파장의 광을 흡수하여 580 내지 780 nm 범위 내의 어느 한 파장의 광을 방출할 수 있는 나노입자(이하, 적색 입자라 칭할 수 있다.)일 수 있다. 예를 들어, 백색광을 방출할 수 있는 발광 필름을 얻기 위하여 상기 적색 입자와 녹색 입자가 적정 비율로 함께 발광층에 포함되어 있을 수 있다. 일 예시에서 백색광을 방출할 수 있는 발광 필름의 발광층은, 상기 적색 입자 100 중량부 대비 300 내지 1500 중량부의 녹색 입자를 포함할 수 있다. 발광 나노입자로는 이러한 작용을 나타내는 것이라면 특별한 제한 없이 사용할 수 있다. 이러한 나노입자의 대표적인 예로는, 소위 양자점(Quantum Dot)으로 호칭되는 나노 구조물이 예시될 수 있다.
본 명세서에서는 편의상 나노입자로 호칭하나, 상기 나노 구조물은, 입자 형태일 수도 있고, 예를 들면, 나노와이어, 나노로드, 나노튜브, 분기된 나노구조, 나노테트라포드(nanotetrapods), 트라이포드(tripods) 또는 바이포드(bipods) 등의 형태일 수 있으며, 이러한 형태도 본 출원에서 규정하는 나노입자에 포함될 수 있다. 본 출원에서 용어 나노 구조물에는 약 500 nm 미만, 약 200 nm 미만, 약 100 nm 미만, 약 50 nm 미만, 약 20 nm 미만 또는 약 10 nm 미만의 치수를 가지는 적어도 하나의 영역 또는 특성 치수를 가지는 유사한 구조들을 포함할 수 있다. 일반적으로, 영역 또는 특성 치수들은 그 구조의 가장 작은 축을 따라서 존재할 수 있으나, 이에 제한되는 것은 아니다. 상기 나노 구조물은, 예를 들면, 실질적으로 결정질이거나, 실질적으로 단결정질, 다결정질 또는 비정질이거나, 상기의 조합일 수 있다.
발광 나노입자로 사용될 수 있는 양자점은 공지된 임의의 방식으로 제조할 수 있다. 예를 들어, 양자점을 형성하는 적합한 방법들은, 미국특허 제6,225,198호, 미국공개특허 제2002-0066401호, 미국 특허 제6,207,229호, 미국특허 제6,322,901호, 미국특허 제6,949,206호, 미국특허 제7,572,393호, 미국특허 제7,267,865호, 미국특허 제7,374,807호 또는 미국특허 제6,861,155호 등에 공지되어 있으며, 상기 외에도 다양한 공지의 방식들이 본 출원에 적용될 수 있다.
본 출원에서 사용될 수 있는 양자점 또는 다른 나노입자들은 임의의 적합한 재료, 예를 들면, 무기 재료로서, 무기 전도 또는 반전도 재료를 사용하여 형성될 수 있다. 적합한 반도체 재료로는 II-VI족, III-V족, IV-VI족 및 IV족 반도체들이 예시될 수 있다. 구체적으로는, Si, Ge, Sn, Se, Te, B, C(다이아몬드 포함), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4, Al2O3, (Al, Ga, In)2 (S, Se, Te)3, Al2CO 및 2개 이상의 상기 반도체들의 적합한 조합들이 예시될 수 있지만, 이에 한정되지 않는다.
하나의 예시에서 반도체 나노결정 또는 다른 나노구조는 p-형 도펀트 또는 n-형 도펀트 등과 같은 도펀트를 포함할 수도 있다. 본 출원에서 사용될 수 있는 나노입자는 또한 II-VI 또는 III-V 반도체들을 포함할 수 있다. II-VI 또는 III-V 반도체 나노결정들 및 나노구조들의 예로는, Zn, Cd 및 Hg 등과 같은 주기율표 II족 원소와 S, Se, Te, Po 등과 같은 주기표 VI족 원소와의 임의의 조합; 및 B, Al, Ga, In, 및 Tl 등과 같은 III족 원소와 N, P, As, Sb 및 Bi 등과 같은 V족 원소와의 임의의 조합이 있지만, 이에 제한되는 것은 아니다. 다른 예시에서 적합한 무기 나노구조들은 금속 나노구조들을 포함하고, 적합한 금속으로는 Ru, Pd, Pt, Ni, W, Ta, Co, Mo, Ir, Re, Rh, Hf, Nb, Au, Ag, Ti, Sn, Zn, Fe 또는 FePt 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
발광 나노입자, 예를 들면, 양자점은 코어-셀 구조(core-shell structure)를 가질 수 있다. 코어-셀 구조의 발광 나노입자를 형성할 수 있는 예시적인 재료에는 Si, Ge, Sn, Se, Te, B, C (다이아몬드 포함), P, Co, Au, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4, Al2O3, (Al, Ga, In)2 (S, Se, Te)3, Al2CO 및 2개 이상의 이런 재료들의 임의의 조합들이 포함되지만, 이에 제한되는 것은 아니다. 본 출원에서 적용 가능한 예시적인 코어-셀 발광 나노입자(코어/셀)에는 CdSe/ZnS, InP/ZnS, PbSe/PbS, CdSe/CdS, CdTe/CdS 또는 CdTe/ZnS 등이 포함되지만, 이에 제한되는 것은 아니다.
발광 나노입자의 구체적인 종류는 특별히 제한되지 않고, 목적하는 광 방출 특성을 고려하여 적절하게 선택될 수 있다.
하나의 예시에서 양자점과 같은 발광 나노입자는, 하나 이상의 리간드 또는 배리어에 의해 둘러싸여 있을 수 있다. 상기 리간드 또는 배리어는, 양자점과 같은 발광 나노입자의 안정성을 향상시키고, 고온, 고강도, 외부 가스 또는 수분 등을 포함하는 유해한 외부 조건들로부터 발광 나노입자를 보호하는 것에 유리할 수 있다. 또한, 후술하는 바와 같이 발광 나노입자는 상기 매트릭스 또는 에멀젼 영역 중 어느 하나의 영역에만 존재할 수 있는데, 이와 같은 발광층을 얻기 위하여 상기 리간드 또는 배리어의 특성이 상기 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 상용성을 가지도록 선택될 수도 있다.
하나의 예시에서 양자점과 같은 발광 나노입자는, 그 표면과 공액, 협동, 연관 또는 부착된 리간드를 포함할 수 있다. 양자점과 같은 발광 나노입자의 표면에 적합한 특성을 나타낼 수 있게 하는 리간드와 그 형성 방법은 공지이며, 이와 같은 방식은 본 출원에서 제한 없이 적용될 수 있다. 이러한 재료 내지는 방법들은, 예를 들면, 미국공개특허 제2008-0281010호, 미국공개특허 제2008-0237540호, 미국공개특허 제2010-0110728호, 미국공개특허 제2008-0118755호, 미국특허 제7,645,397호, 미국특허 제7,374,807호, 미국특허 제6,949,206호, 미국특허 제7,572,393호 또는 미국특허 제7,267,875호 등에 개시되어 있으나, 이에 제한되는 것은 아니다. 하나의 예시에서 상기 리간드는, 아민기를 갖는 분자(oleylamine, triethylamine, hexylamine, naphtylamine 등) 혹은 고분자, 카복실기를 갖는 분자(oleic acid 등) 혹은 고분자, 티올기를 갖는 분자(butanethiol, hexanethiol, dodecanethiol 등) 혹은 고분자, 피리딘기를 갖는 분자(pyridine 등) 혹은 고분자, 포스핀기를 갖는 분자(triphenylphosphine 등), 산화포스핀기를 갖는 분자(trioctylphosphine oxide 등), 카보닐기를 갖는 분자(alkyl ketone 등), 벤젠고리를 갖는 분자(benzene, styrene 등) 혹은 고분자, 히드록시기를 갖는 분자(butanol, hexanol 등) 혹은 고분자 등에 의해 형성될 수 있다.
발광 나노입자는 발광층에 포함되고, 예를 들면 상기 매트릭스 또는 에멀젼 영역에 포함될 수 있다. 하나의 예시에서 발광 나노입자는, 상기 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 포함되고, 다른 영역에는 존재하지 않을 수 있다. 상기에서 발광 나노입자가 존재하지 않는 영역은, 전술한 바와 같이 발광 나노입자를 실질적으로 포함하지 않는 영역을 의미할 수 있다.
발광 나노입자의 발광층 내에서의 비율은 특별히 제한되지 않으며, 예를 들면, 목적하는 광 특성 등을 고려하여 적정 범위로 선택될 수 있다. 하나의 예시에서 발광층 내에서 상기 발광 나노입자는 0.05 내지 20 중량%, 0.05 내지 15 중량%, 0.1 내지 15 중량% 또는 0.5 내지 15 중량% 정도의 농도로 존재할 수 있으나, 이에 제한되는 것은 아니다.
발광층은, 전술한 성분에 추가적으로 다른 성분을 포함할 수 있다. 상기 다른 성분의 예로는, 공지의 계면활성제나, 후술하는 양친매성 나노입자, 항산화제 또는 산란 입자 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
발광층은 양친매성 나노입자를 포함할 수 있고, 이러한 양친매성 나노입자는 예를 들면, 상기 매트릭스 또는 에멀젼 영역 중 하나 이상에 존재할 수 있으며, 적절하게는 상기 매트릭스 및 에멀젼 영역의 경계에 존재할 수 있다. 양친매성 나노입자는, 발광층에서 상분리되어 있는 매트릭스 및 에멀젼 영역의 안정성을 증대시킬 수 있다.
하나의 예시에서 양친매성 나노입자는, 나노입자를 포함하는 코어부 및 상기 나노입자를 둘러싸고 있는 양친매성 화합물을 포함하는 셀부를 포함할 수 있다. 상기에서 양친매성 화합물이란, 친수성 부위와 소수성 부위를 동시에 포함하는 화합물이고, 일부 화합물은 업계에서 소위 계면활성제로서 알려져 있기도 하다. 예를 들어, 코어부의 나노입자가 소수성을 띄는 경우에 상기 셀부의 양친매성 나노입자의 친수 부위는 코어를 향하고, 소수 부위는 외부로 배치되어 전체적으로 양친매성 나노입자가 형성될 수 있으며, 반대로 코어부의 나노입자가 친수성인 경우에는 셀부의 양친매성 나노입자의 소수 부위는 코어를 향하고, 친수 부위는 외부로 배치되어 전체적으로 양친매성 나노입자가 형성될 수 있다. 상기에서 코어부의 나노입자는, 예를 들면, 약 10 nm 내지 1000 nm 범위 내의 평균 입경을 가질 수 있으나, 이는 목적에 따라서 변경될 수 있는 것으로 특별히 제한되지 않는다. 코어부의 나노입자로는, 예를 들면, 금, 은, 구리, 백금, 팔라듐, 니켈, 망간 또는 아연 등의 금속 입자, SiO2, Al2O3, TiO2, ZnO, NiO, CuO, MnO2 ,MgO, SrO 또는 CaO 등의 산화물 입자 또는 PMMA(polymethacrylate) 또는 PS(polystyrene) 등의 고분자로 되는 입자를 사용할 수 있다.
또한, 상기 셀부의 양친매성 화합물로는, Triton X-114(CAS No.: 9036-19-5), Triton X-100(CAS No.: 92046-34-9), Brij-58(CAS No.: 9004-95-9), 옥틸 글루코사이드(octyl glucoside, CAS No.: 29836-26-8), 옥틸티오글루코사이드(octylthio glucoside, CAS No.: 85618-21-9), 데카에틸렌글리콜 모노데실 에테르(decaethylene glycol monododecyl ether, CAS No.: 9002-92-0), N-데카노일-N-메틸글루카민(N-decanoyl-N-methylglucamine, CAS No.: 85261-20-7), 데실 말토피라노사이드(decyl maltopyranoside, CAS No.: 82494-09-5), N-도데실 말토사이드(N-dodecyl maltoside, CAS No.: 69227-93-6), 노나에틸렌글리콜 모노데실 에테르(nonaethylene glycol monododecyl ether, CAS No.: 3055-99-0), N-노나노일-N-메틸글루카민(N-nonanoyl-N-methylglucamine, CAS No.: 85261-19-4), 옥타에틸렌글리콜 모노도데실 에테르(octaethylene glycol monododecyl ether, CAS No.: 3055-98-9), 스판20(Span20, CAS No.: 1338-39-2), 폴리비닐피롤리돈(polyvinylpyrrolidone, CAS No.: 9003-39-8) 또는 Synperonic F108(PEO-b-PPO-b-PEO, CAS No.: 9003-11-06) 등을 사용할 수 있지만 이에 제한되는 것은 아니다.
양친매성 나노입자는, 매트릭스 및 에멀젼 영역의 안정성을 확보할 수 있는 범위로 상기 양친매성 화합물을 포함할 수 있다. 예를 들면, 양친매성 나노입자에서 양친매성 화합물의 비율은 5 중량% 내지 30 중량% 정도일 수 있으나, 매트릭스 및 에멀젼 영역간의 안정성이 적절하게 확보될 수 있는 한, 상기 범위는 변경될 수 있다.
양친매성 나노입자를 발광층에 포함시키는 방식, 예를 들면, 상기 매트릭스 및 에멀젼 영역의 경계에 위치시키는 방식은 특별히 제한되지 않으며, 예를 들면, 후술하는 발광층의 제조 과정에서의 혼합물에 상기 양친매성 나노입자를 배합하는 방식을 사용할 수 있다.
하나의 예시에서 상기 양친매성 나노입자는, 상기 매트릭스 및 에멀젼 영역과는 상이한 굴절률을 가질 수 있다. 이와 같은 양친매성 나노입자가 매트릭스 및 에멀젼 영역의 경계에 위치하게 되면, 상기 나노입자에 의한 광의 산란 또는 확산에 의해, 예를 들면, 백색광의 생성 효율이 보다 증가할 수 있다.
상기에서 나노입자와 매트릭스 및 에멀젼 영역의 굴절률의 차이의 정도는 목적하는 광의 산란 내지는 확산 효과를 고려하여 적정 범위로 설정될 수 있으며, 그 구체적인 범위는 특별히 제한되지 않는다. 예를 들면, 상기 나노입자와 상기 매트릭스간의 굴절률의 차이의 절대값 및 상기 나노입자와 상기 에멀젼 영역간의 굴절률의 차이의 절대값은 각각 0.05 내지 0.5의 범위 내에 있을 수 있다. 나노입자의 굴절률은 상기 범위를 만족한다면, 특별히 제한되지 않고, 예를 들면, 1.0 내지 2.0의 범위 내에 있을 수 있다. 본 명세서에서 용어 굴절률은 특별히 달리 규정하지 않는 한, 약 550 nm의 파장의 광에 대하여 측정한 값이다.
발광층 내에서 양친매성 나노입자의 비율은, 예를 들면, 매트릭스 및 에멀젼 영역의 안정성을 고려하여 선택할 수 있다. 하나의 예시에서 상기 양친매성 나노입자는 매트릭스 및 에멀젼 영역 또는 발광층의 전체 중량을 기준으로 1 중량% 내지 10 중량%의 농도로 존재할 수 있다.
양친매성 나노입자로는, Soken사에서 MX 80H의 제품명으로 판매되는 것, Sekisui사에서 XX-43BQ, XX-128BQ, XX-130 BQ, XX-50 BQ, XX-131 BQ, MBX-2H, MBX-30, SSX-104, XXS-105, SSX-108, SSX-110, XX-129BQ 또는 XX-99BQ 등의 제품명으로 판매되고 있는 것인, Nissan사에서 MIBK-SD-L, MIBK-SD, MIBK-ST-L, MIBK-ST 또는 TOL-ST 등의 제품명으로 판매되고 있는 것을 적용할 수도 있다.
발광층은 또한 항산화제를 포함할 수 있고, 이러한 성분은 특히 상기 발광 나노입자로서, 양자점을 적용하는 경우에 유용할 수 있다. 양자점은, 산소에 노출되면, 열화되어 발광능이 저하되는 특성을 가지는데, 이러한 경우에 전술한 항산화제가 발광층에 포함되어 있다면, 상기 발광 나노입자를 보호할 수 있다. 항산화제로는, 예를 들면, 산화성 금속, 페놀계 산화 방지제, 티오에테르계 산화 방지제, 포스파이트(phosphate)계 산화 방지제 또는 힌더드 아민계와 같은 아민계 산화 방지제가 사용될 수 있다. 항산화제는 전술한 매트릭스 또는 에멀젼 영역 중 어느 영역 내에 포함되어 있어도 무방하다.
따라서, 발광층은 산화성 금속 입자 또는 그 금속 입자의 산화물을 포함할 수 있다. 산화성 금속 입자는, 산소와 반응하여 산화물을 형성할 수 있는 금속을 의미하고, 알칼리 금속, 알칼리 토금속 또는 전이 금속 등도 산화성인 경우에 적용될 수 있다. 상기 금속이 발광층 내의 산소와 반응하여 산화물을 형성함으로써 상기 발광 나노입자를 보호할 수 있다. 사용될 수 있는 산화성 금속은, 산소와 반응하여 산화물을 형성할 수 있는 것이라면, 특별히 제한되지 않는다. 산화성 금속으로는, 예를 들면, Pt, Au, Ag 또는 Ce 등을 들 수 있지만, 이에 제한되는 것은 아니다. 금속 입자의 크기는, 산소와의 반응성을 고려하여 조절될 수 있으며, 일반적으로 약 10 nm 내지 10,000 nm의 범위 내의 평균 입자 직경을 가질 수 있다.
발광층 내에서 상기 산화성 금속 입자 또는 그 산화물의 비율은, 예를 들면, 산소와의 반응성, 발광층 재료의 경화성이나, 발광층의 발광 특성을 고려하여 선택될 수 있다. 일 예시에서 상기 산화성 금속 입자는, 발광층 내에서 약 0.01 중량% 내지 1 중량%의 비율로 존재할 수 있다. 필요하다면, 상기 산화성 금속 입자의 분산을 위한 공지의 분산제가 함께 사용될 수 있다.
발광층은 또한 항산화제로는, 페놀계 산화 방지제, 티오에테르계 산화 방지제, 포스파이트(phosphate)계 산화 방지제 또는 힌더드 아민계와 같은 아민계 산화 방지제를 포함할 수 있다. 상기 각 산화 방지제의 구체적인 종류는 특별히 제한되지 않으며, 공지의 물질이 적용될 수 있다.
발광층 내에서 상기 산화 방지제의 비율도, 예를 들면, 산소와의 반응성, 발광층 재료의 경화성이나, 발광층의 발광 특성을 고려하여 선택될 수 있다. 일 예시에서 상기 산화 방지제는, 발광층 내에서 약 0.01 중량% 내지 1 중량%의 비율로 존재할 수 있다.
발광층은, 또한 산란 입자를 포함할 수 있다. 발광층에 포함되는 산란 입자는, 상기 발광층에 입사되는 광이 상기 발광 나노입자로 도입될 확률을 조절하여 발광층이 가지는 광 특성을 보다 개선할 수 있다. 본 명세서에서 용어 산란 입자는, 주변 매질, 예를 들면, 상기 매트릭스 또는 에멀젼 영역과는 상이한 굴절률을 가지고, 또한 적절한 크기를 가져서 입사되는 광을 산란, 굴절 또는 확산시킬 수 있는 모든 종류의 입자를 의미할 수 있다. 예를 들면, 산란 입자는, 주변 매질, 예를 들면, 매트릭스 및/또는 에멀젼 영역에 비하여 낮거나 높은 굴절률을 가질 수 있고, 상기 매트릭스 및/또는 에멀젼 영역과의 굴절률의 차이의 절대값이 0.2 이상 또는 0.4 이상인 입자일 수 있다. 상기 굴절률의 차이의 절대값의 상한은 특별히 제한되지 않고, 예를 들면, 약 0.8 이하 또는 약 0.7 이하일 수 있다. 산란 입자는, 예를 들면, 평균 입경이 10nm 이상, 100 nm 이상, 100 nm 초과, 100 nm 내지 20000 nm, 100 nm 내지 15000 nm, 100 nm 내지 10000 nm, 100 nm 내지 5000 nm, 100 nm 내지 1000 nm 또는 100 nm 내지 500 nm 정도일 수 있다. 산란 입자는, 구형, 타원형, 다면체 또는 무정형과 같은 형상을 가질 수 있으나, 상기 형태는 특별히 제한되는 것은 아니다. 산란 입자로는, 예를 들면, 폴리스티렌 또는 그 유도체, 아크릴 수지 또는 그 유도체, 실리콘 수지 또는 그 유도체, 또는 노볼락 수지 또는 그 유도체 등과 같은 유기 재료, 또는 실리카, 알루미나, 산화 티탄 또는 산화 지르코늄과 같은 무기 재료를 포함하는 입자가 예시될 수 있다. 산란 입자는, 상기 재료 중에 어느 하나의 재료만을 포함하거나, 상기 중 2종 이상의 재료를 포함하여 형성될 수 있다. 예를 들면, 산란 입자로 중공 실리카(hollow silica) 등과 같은 중공 입자 또는 코어/셀 구조의 입자도 사용할 수 있다. 산란 입자의 발광층 내에서의 비율은 특별히 제한되지 않고, 예를 들면, 발광층으로 입사되는 광의 경로를 고려하여 적정 비율로 선택될 수 있다.
산란 입자는, 예를 들면 상기 매트릭스 또는 에멀젼 영역에 포함될 수 있다. 하나의 예시에서 산란 입자는, 상기 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 포함되고, 다른 영역에는 존재하지 않을 수 있다. 상기에서 산란 입자가 존재하지 않는 영역은, 전술한 바와 같이 해당 입자를 실질적으로 포함하지 않는 영역으로서, 그 영역의 전체 중량을 기준으로 산란 입자의 그 영역 내에서의 중량 비율이 10% 이하, 8% 이하, 6% 이하, 4% 이하, 2% 이하, 1% 이하 또는 0.5% 이하 인 경우를 의미할 수 있다. 하나의 예시에서 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 상기 발광 나노입자가 포함되는 경우에 산란 입자는 상기 발광 나노입자가 포함되지 않는 영역에만 존재할 수 있다.
산란 입자는, 예를 들면, 매트릭스 또는 에멀젼 영역의 전체 중량 100 중량부 대비 10 내지 100 중량부의 비율로 발광층에 포함될 수 있고, 이러한 비율 내에서 적절한 산란 특성을 확보할 수 있다.
발광층은, 전술한 성분 외에도 산소 제거제(oxygen scavenger) 또는 라디칼 제거제 등과 같은 첨가제를 필요한 양으로 추가로 포함할 수도 있다.
발광층의 두께는 특별히 제한되지 않고, 목적하는 용도 및 광특성을 고려하여 적정 범위로 선택될 수 있다. 하나의 예시에서 발광층은 10 내지 500 ㎛, 10 내지 400㎛, 10 내지 300㎛ 또는 10 내지 200㎛의 범위 내의 두께를 가질 수 있으나, 이에 제한되는 것은 아니다.
발광 필름은, 상기 발광층의 일면 또는 양면에 배치된 배리어층을 추가로 포함할 수 있다. 이러한 배리어층은, 고온 조건이나 산소 및 수분 등과 같은 유해한 외부 요인이 존재하는 조건으로부터 발광층을 보호할 수 있다. 도 1은, 하나의 예시적인 발광 필름으로서, 발광층(101)과 그 양측에 배치된 배리어층(102a, 102b)을 포함하는 구조를 나타내고 있다. 배리어층은, 예를 들면 소수성이면서 광에 노출되어도 황변 등이 유발되지 않는 안정성이 좋은 소재로 형성될 수 있다. 하나의 예시에서, 발광층과 상기 배리어층과의 계면에서의 광의 손실 등을 줄이기 위하여 상기 배리어층은 상기 발광층과 전체적으로 유사한 범위의 굴절률을 가질 수 있도록 선택될 수 있다.
배리어층은, 예를 들면, 고체의 재료이거나, 혹은 경화된 액체, 겔, 또는 폴리머일 수 있고, 용도에 따라서 가요성이거나 비가요성의 재료로부터 선택될 수 있다. 배리어층을 형성하는 재료의 종류는 특별히 제한되지 않고, 유리, 폴리머, 산화물 또는 질화물 등을 포함하는 공지의 재료로부터 선택될 수 있다. 배리어층은, 예를 들면, 유리; PET(poly(ethylene terephtalate)) 등과 같은 폴리머; 또는 실리콘, 티타늄 또는 알루미늄 등의 산화물이나 질화물 등이나 상기 중 2종 이상의 조합을 포함할 수 있지만, 이에 제한되는 것은 아니다.
배리어층은, 도 1에 예시적으로 나타낸 바와 같이 발광층의 양 표면에 존재하거나, 혹은 그 어느 한 표면에만 존재할 수 있다. 또한, 발광 필름은, 양 표면은 물론 측면에도 배리어층이 존재하여, 발광층이 전체적으로 배리어층에 의해 밀봉되어 있는 구조를 가질 수 있다.
본 출원은 또한, 발광 필름, 예를 들면, 전술한 발광 필름을 제조하는 방법에 대한 것이다. 상기 방법은, 예를 들면, 친수성 중합성 화합물과 소수성 중합성 화합물 및 양친매성 나노입자의 혼합물을 포함하는 층을 중합시키는 단계를 포함할 수 있다. 상기에서 친수성 중합성 화합물은, 전술한 용해도 파라미터가 10 (cal/cm3)1/2 이상인 고분자를 형성할 수 있는 화합물이고, 소수성 중합성 화합물은 용해도 파라미터가 10 (cal/cm3)1/2 미만인 고분자를 형성할 수 있는 화합물이다. 상기 각 화합물은 예를 들면, 라디칼 중합성 화합물일 수 있다. 상기 혼합물은, 필요한 첨가제, 예를 들면, 발광 나노입자 등이나 개시제 등을 추가로 포함할 수 있다.
상기와 같은 혼합물은, 상기 각 성분을 단순히 배합하여 제조할 수도 있고, 소수성 중합성 조성물과 친수성 중합성 조성물을 각각 제조한 후에 이를 다시 혼합하여 제조할 수도 있다. 친수성 및 소수성 중합성 조성물로는, 예를 들면, 상기 기술한 조성물, 즉 친수성 또는 소수성의 중합성 화합물과 개시제 등을 포함하는 조성물을 각각 사용할 수 있다. 또한, 상기 혼합물은 친수성 및 소수성 중합성 조성물을 각각 별도로 제조한 후에 이를 혼합하여 제조하거나, 혹은 친수성 및 소수성 중합성 조성물을 이루는 성분을 한번에 혼합하여 제조할 수도 있다. 이와 같은 혼합물을 중합시키면, 중합 과정에서 상분리가 일어나고, 전술한 형태의 발광층이 형성될 수 있다.
상기 혼합물을 포함하는 층을 형성하는 방식은 특별히 제한되지 않는다. 예를 들면, 얻어진 혼합물을 공지의 코팅 방식으로 적정한 기재상에 코팅하여 형성할 수 있다.
상기와 같은 방식으로 형성된 층을 경화시키는 방식도 특별히 제한되지 않으며, 예를 들면, 각 조성물에 포함되어 있는 개시제가 활성활될 수 있을 정도의 적정 범위의 열을 인가하거나, 혹은 자외선 등과 같은 전자기파를 인가하는 방식으로 수행할 수 있다.
상기 제조 방법에서는 상기 단계를 거쳐 전술한 발광층이 형성될 있다. 필요하다면, 상기 단계를 통해 발광층을 형성한 후에 배리어층을 형성하는 단계를 추가로 수행하거나, 혹은 상기 중합 공정을 배리어층에 인접한 상태로 수행할 수도 있다.
본 출원은 또한 조명 장치에 대한 것이다. 예시적인 조명 장치는, 광원과 상기 발광 필름을 포함할 수 있다. 하나의 예시에서 상기 조명 장치에서의 광원과 발광 필름은, 상기 광원에서 조사된 광이 상기 발광 필름으로 입사할 수 있도록 배치될 수 있다. 광원으로부터 조사된 광이 상기 발광 필름으로 입사하면, 입사된 광 중에서 일부는 상기 발광 필름 내의 발광 나노입자에 흡수되지 않고 그대로 방출되고, 다른 일부는 상기 발광 나노입자에 흡수된 후에 다른 파장의 광으로 방출될 수 있다. 이에 따라 상기 광원에서 방출되는 광의 파장과 상기 발광 나노입자가 방출하는 광의 파장을 조절하여 발광 필름으로부터 방출되는 광의 색순도 또는 칼라 등을 조절할 수 있다. 예를 들어, 발광층에 전술한 적색 및 녹색 입자를 적정량 포함시키고, 광원이 청색광을 방출하도록 조절하면, 발광 필름에서는 백색광이 방출될 수 있다.
본 출원의 조명 장치에 포함되는 광원의 종류는 특별히 제한되지 않으며, 목적하는 광의 종류를 고려하여 적절한 종류가 선택될 수 있다. 하나의 예시에서 상기 광원은 청색 광원이고, 예를 들면, 450 내지 490 nm의 범위 내의 파장의 광을 방출할 수 있는 광원일 수 있다.
도 2 및 3은, 상기와 같이 광원과 발광 필름을 포함하는 조명 장치를 예시적으로 보여주는 도면이다.
도 2 및 3에 나타난 바와 같이 조명 장치에서 광원과 발광 필름은 상기 광원에서 조사된 광이 상기 발광 필름으로 입사될 수 있도록 배치될 수 있다. 도 2에서는 광원(201)이 발광 필름(101)의 하부에 배치되어 있고, 이에 따라 상부 방향으로 광원(201)으로부터 조사된 광은 상기 발광 필름(101)으로 입사될 수 있다.
도 3은, 광원(201)이 발광 필름(101)의 측면에 배치된 경우이다. 필수적인 것은 아니지만, 상기와 같이 광원(201)이 발광 필름(101)의 측면에 배치되는 경우에는, 도광판(Light Guiding Plate)(301)이나 반사판(302)과 같이 광원(201)으로부터의 광이 보다 효율적으로 발광 필름(101)에 입사될 수 있도록 하는 다른 수단이 포함될 수도 있다.
도 2 및 3에 나타난 예시는 본 출원의 조명 장치의 하나의 예시이며, 이 외에도 조명 장치는 공지된 다양한 형태를 가질 수 있고, 이를 위해 공지의 다양한 구성을 추가로 포함할 수 있다.
본 출원의 조명 장치는 다양한 용도에 사용될 수 있다. 본 출원의 조명 장치가 적용될 수 있는 대표적인 용도에는 디스플레이 장치가 있다. 예를 들면, 상기 조명 장치는 LCD(Liquid Crystal Display) 등과 같은 디스플레이 장치의 BLU(Backlight Unit)로서 사용될 수 있다.
이 외에도 상기 조명 장치는, 컴퓨터, 모바일폰, 스마트폰, 개인 휴대정보 단말기(PDA), 게이밍 장치, 전자 리딩 (reading) 장치 또는 디지털 카메라 등과 같은 디스플레이 장치의 BLU(Backlight Unit), 실내 또는 실외 조명, 무대 조명, 장식 조명, 액센트 조명 또는 박물관 조명 등에 사용될 수 있고, 이 외에도 원예학이나, 생물학에서 필요한 특별한 파장 조명 등에 사용될 수 있으나, 상기 조명 장치가 적용될 수 있는 용도가 상기에 제한되는 것은 아니다.
본 출원은, 우수한 색순도와 효율을 가지고, 칼라 특성이 뛰어난 조명 장치를 제공할 수 있는 발광 필름을 제공할 수 있다. 본 출원의 발광 필름은 상기와 같은 우수한 특성이 장기간 안정적으로 유지될 수 있다. 본 출원의 발광 필름은, 다양한 조명 장치는 물론 광전지 애플리케이션, 광 필터 또는 광 변환기 등을 포함하는 다양한 용도에 사용될 수 있다.
도 1은 예시적인 발광 필름의 단면도이다.
도 2 및 3은 예시적인 조명 장치의 모식도이다.
도 4 내지 10은 실시예 및 비교예의 발광 필름을 평가한 결과이다.
[부호의 설명]
101: 발광층 또는 발광 필름
102a, 102b: 배리어층
201: 광원
301: 도광판
302: 반사층
이하 실시예 및 비교예를 통하여 본 출원의 발광 필름 등을 구체적으로 설명하지만, 상기 발광 필름 등의 범위가 하기 실시예에 제한되는 것은 아니다.
실시예 1.
PEGDA(poly(ethyleneglycol) diacrylate, CAS No.: 26570-48-9, 용해도 파라미터(HSP): 약 18 (cal/cm3)1/2), LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 9 (cal/cm3)1/2), 녹색 양자점(Quantum Dot, 발광 나노입자), 양친매성 나노입자(MX 80-H, Soken사제) 및 SiO2 나노 입자를 9:1:1:0.2:0.05:0.05(PEGDA:LA:BD:녹색입자:양친매성 나노입자:SiO2 나노입자)의 중량 비율로 혼합하였다. 이어서 라디칼 개시제로서 Irgacure2959와 Irgacure907를 각각 농도가 약 1중량%가 되도록 혼합하고, 6시간 정도 교반하여 혼합물 A를 제조였다. 상기와 별도로 PEGDA(poly(ethyleneglycol) diacrylate, CAS No.: 26570-48-9, 용해도 파라미터(HSP): 약 18 (cal/cm3)1/2), LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 9 (cal/cm3)1/2), 적색 양자점(Quantum Dot, 발광 나노입자), 양친매성 나노입자(MX 80-H, Soken사제) 및 SiO2 나노 입자를 9:1:1:0.02:0.05:0.05(PEGDA:LA:BD:적색입자:양친매성 나노입자:SiO2 나노입자)의 중량 비율로 혼합하였다. 이어서 라디칼 개시제로서 Irgacure2959와 Irgacure907를 각각 농도가 약 1중량%가 되도록 혼합하고, 6시간 정도 교반하여 혼합물 B를 제조였다. 혼합물 A와 B를 동일 중량 비율로 배합하여 코팅액을 제조하고, 일정 간격으로 이격 배치된 2장의 배리어 필름(i-component)의 사이에 상기 코팅액을 약 100 ㎛의 두께로 위치시키고, 자외선을 조사하여 라디칼 중합을 유도하여 경화시켜 발광층을 형성하였다. 도 4 및 5는 상기 실시예에 대하여 확인한 현미경 사진이고, 상기 양친매성 나노입자가 상분리된 영역의 경계에 위치하고 있는 것을 확인할 수 있다.
실시예 2.
PEGDA(poly(ethyleneglycol) diacrylate, CAS No.: 26570-48-9, 용해도 파라미터(HSP): 약 18 (cal/cm3)1/2), LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 9 (cal/cm3)1/2), 녹색 입자(Quantum Dot 입자), 양친매성 나노입자(MX 80-H, Soken사제) 및 SiO2 나노 입자를 9:1:1:0.1:0.05:0.05(PEGDA: LA:BD:녹색입자:양친매성 나노 입자:SiO2 나노입자)의 중량 비율로 혼합하였다. 이어서 라디칼 개시제로서 Irgacure2959와 Irgacure907를 각각 농도가 약 1중량%가 되도록 혼합하고, 6시간 정도 교반하여 혼합물을 제조였다. 일정 간격으로 이격 배치된 2장의 배리어 필름(i-component)의 사이에 상기 혼합물을 약 100 ㎛의 두께로 위치시키고, 자외선을 조사하여 라디칼 중합을 유도하여 경화시켜 발광층을 형성하였다. 도 6은 상기와 같은 방식으로 형성된 발광층의 사진이다. 도면에서 녹색 입자가 존재하는 에멀젼 영역이 매트릭스 내에 분산되어 존재하는 것을 확인할 수 있다.
비교예 1.
실시예 1과 동일한 방식으로 혼합물 A 및 B를 제조하되, 상기 각 혼합물에 양친매성 나노입자 대신 계면활성제(polyvinylpyrrolidone)를 동량 배합한 것을 제외하고는 실시예 1과 동일하게 발광층을 형성하였다. 도 7은 상기 방식으로 제조된 발광층의 현미경 사진이고, 상분리된 영역이 적절히 형성되지 않고, 배합된 적색 및 녹색 입자도 혼재되어 적절한 발광 특성이 확보되지 못하였다.
비교예 2.
LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 9 (cal/cm3)1/2), TMPTA(trimethylolpropane triacylate, CAS No.: 15625-89-5), 녹색 입자(Quantum Dot 입자 및 SiO2 나노입자를 10:1:0.1:0.05:0.05(LA:BD:TMPTA:녹색입자:SiO2 나노입자)의 중량 비율로 혼합하여 제조된 혼합물을 사용한 것을 제외하고는, 실시예와 동일하게 발광층을 제조하여 발광 필름을 제조하였다.
시험예 1.
블루 영역의 광을 방출하는 광원의 광 방출측에 상온에서 실시예 2 또는 비교예 2에서 제조된 발광 필름을 위치시키고, 약 24 시간 동안 광원에서 방출되는 광을 입사시켰다. 그 후, 현미경을 통해 필름의 가장자리로부터 발광 광량이 감소되는 영역(손상 영역)을 확인하였다. 도 8은 실시예 2에 대한 관찰 결과이고, 손상 영역(광량 감소된 영역)이 약 200 ㎛ 정도였다. 도 9는 비교예 2에 대한 관찰 결과이고, 손상 영역(광량 감소된 영역)이 약 1000 ㎛ 정도였다. 도 10은 실시예 2와 비교예 2의 손상 영역(광량 감소된 영역)의 시간에 따른 발생 정도를 보여주는 그래프이다.

Claims (20)

  1. 연속상인 매트릭스내에 분산되어 있는 에멀젼 영역을 포함하고, 상기 연속상 또는 상기 에멀젼 영역에 존재하는 발광 나노입자 및 양친매성 나노입자를 포함하는 발광층을 가지는 발광 필름.
  2. 제 1 항에 있어서, 발광 나노입자는 에멀젼 영역 내에 포함되어 있는 발광 필름.
  3. 제 2 항에 있어서, 에멀젼 영역 내에 포함되어 있는 발광 나노입자의 비율은, 발광층에 포함되어 있는 전체 발광 나노입자의 90 중량% 이상인 발광 필름.
  4. 제 1 항에 있어서, 발광 나노입자는 양자점인 발광 필름.
  5. 제 1 항에 있어서, 발광층은, 매트릭스 100 중량부 대비 5 중량부 내지 40 중량부의 에멀젼 영역을 포함하는 발광 필름.
  6. 제 1 항에 있어서, 매트릭스 및 에멀젼 영역 중 어느 하나는 용해도 파라미터가 10 (cal/cm3)1/2 미만인 고분자 성분을 포함하고, 다른 하나는 용해도 파라미터가 10 (cal/cm3)1/2 이상인 고분자 성분을 포함하는 발광 필름.
  7. 제 1 항에 있어서, 매트릭스는, 하기 화학식 1의 화합물, 하기 화학식 2의 화합물, 하기 화학식 3의 화합물, 하기 화학식 4의 화합물, 질소 함유 라디칼 중합성 화합물, 아크릴산, 메타크릴산 또는 염 부위를 포함하는 라디칼 중합성 화합물의 중합 단위를 포함하는 발광 필름:
    [화학식 1]
    Figure PCTKR2015008493-appb-I000008
    화학식 1에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, Z는 수소, 알콕시기, 에폭시기 또는 1가 탄화수소기이고, m은 임의의 수이다:
    [화학식 2]
    Figure PCTKR2015008493-appb-I000009
    화학식 2에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, m은 임의의 수이다:
    [화학식 3]
    Figure PCTKR2015008493-appb-I000010
    화학식 3에서 Q는 수소 또는 알킬기이고, A는 히드록시기가 치환되어 있을 수 있는 알킬렌기이며, U는 알킬렌기이다:
    [화학식 4]
    Figure PCTKR2015008493-appb-I000011
    화학식 4에서 Q는 수소 또는 알킬기이고, A 및 U는 각각 독립적으로 알킬렌기이며, X는 히드록시기 또는 시아노기이다.
  8. 제 1 항에 있어서, 에멀젼 영역은 하기 화학식 5 내지 7 중 어느 하나의 화학식으로 표시되는 화합물의 중합 단위를 포함하는 발광 필름:
    [화학식 5]
    Figure PCTKR2015008493-appb-I000012
    화학식 5에서 Q는 수소 또는 알킬기이고, B는 탄소수 5 이상의 직쇄 또는 분지쇄 알킬기 또는 지환식 탄화수소기이다:
    [화학식 6]
    Figure PCTKR2015008493-appb-I000013
    화학식 6에서 Q는 수소 또는 알킬기이고, U는 알킬렌, 알케닐렌 또는 알키닐렌 또는 아릴렌기이다:
    [화학식 7]
    Figure PCTKR2015008493-appb-I000014
    화학식 7에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, Y는 탄소 원자, 산소 원자 또는 황 원자이며, X는 산소 원자, 황 원자 또는 알킬렌기이고, Ar은 아릴기이며, n은 임의의 수이다.
  9. 제 1 항에 있어서, 양친매성 나노입자는 매트릭스와 에멀젼 영역의 경계에 존재하는 발광 필름.
  10. 제 1 항에 있어서, 양친매성 나노입자는, 나노입자를 포함하는 코어부 및 상기 나노입자를 둘러싸고 있는 양친매성 화합물을 포함하는 셀부를 포함하는 발광 필름.
  11. 제 10 항에 있어서, 코어부의 나노입자는 평균 입경이 10 nm 내지 1000 nm의 범위 내에 있는 발광 필름.
  12. 제 10 항에 있어서, 코어부의 나노입자는 금속 입자, 산화물 입자 또는 고분자 입자인 발광 필름.
  13. 제 12 항에 있어서, 금속 입자는, 금 입자, 은 입자, 구리 입자, 백금 입자, 팔라듐 입자, 니켈 입자, 망간 입자 또는 아연 입자이고, 산화물 입자는, SiO2 입자, Al2O3 입자, TiO2 입자, ZnO 입자, NiO 입자, CuO 입자, MnO2 입자, MgO 입자, SrO 입자 또는 CaO 입자이며, 고분자 입자는 아크릴 고분자 입자 또는 폴리스티렌 고분자 입자인 발광 필름.
  14. 제 1 항에 있어서, 발광층은 항산화제를 추가로 포함하는 발광 필름.
  15. 제 15 항에 있어서, 항산화제는 산화성 금속 입자인 발광 필름.
  16. 제 1 항에 있어서, 항산화제는 페놀계 산화 방지제, 티오에테르계 산화 방지제, 포스파이트계 산화 방지제 또는 아민계 산화 방지제인 발광 필름.
  17. 용해도 파라미터가 10 (cal/cm3)1/2 이상인 고분자를 형성할 수 있는 중합성 화합물, 용해도 파라미터가 10 (cal/cm3)1/2 미만인 고분자를 형성할 수 있는 중합성 화합물 및 양친매성 나노입자의 혼합물을 포함하는 층을 중합시키는 것을 포함하는 제 1 항의 발광층의 제조 방법.
  18. 광원 및 제 1 항의 발광 필름을 포함하고, 상기 광원과 발광 필름은, 상기 광원으로부터의 광이 상기 발광 필름으로 입사될 수 있도록 배치되어 있는 조명 장치.
  19. 제 18 항에 있어서, 광원은 420 내지 490 nm의 범위 내의 어느 한 파장의 광을 방출할 수 있는 조명 장치.
  20. 제 18 항의 조명 장치를 포함하는 디스플레이 장치.
PCT/KR2015/008493 2014-08-14 2015-08-13 발광 필름 WO2016024828A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/314,460 US10359175B2 (en) 2014-08-14 2015-08-13 Light-emitting film
CN201580038226.3A CN106663726B (zh) 2014-08-14 2015-08-13 发光膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140106260 2014-08-14
KR10-2014-0106260 2014-08-14
KR1020150114366A KR101959487B1 (ko) 2014-08-14 2015-08-13 발광 필름
KR10-2015-0114366 2015-08-13

Publications (1)

Publication Number Publication Date
WO2016024828A1 true WO2016024828A1 (ko) 2016-02-18

Family

ID=55304376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008493 WO2016024828A1 (ko) 2014-08-14 2015-08-13 발광 필름

Country Status (1)

Country Link
WO (1) WO2016024828A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126681A (ja) * 1998-10-21 2000-05-09 Mitsubishi Chemicals Corp ナノ粒子薄膜の作製方法
KR20100069105A (ko) * 2008-12-16 2010-06-24 삼성전자주식회사 나노입자/블록공중합체 복합체의 제조방법
KR20130044072A (ko) * 2011-10-21 2013-05-02 삼성전자주식회사 발광 소자
WO2013160190A1 (en) * 2012-04-25 2013-10-31 Joker Ag Gel-like mass comprising natural or synthetic polymers and method for producing the gel-like mass
WO2014045137A1 (en) * 2012-09-21 2014-03-27 Koninklijke Philips N.V. A light emitting assembly, a lamp and a luminaire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126681A (ja) * 1998-10-21 2000-05-09 Mitsubishi Chemicals Corp ナノ粒子薄膜の作製方法
KR20100069105A (ko) * 2008-12-16 2010-06-24 삼성전자주식회사 나노입자/블록공중합체 복합체의 제조방법
KR20130044072A (ko) * 2011-10-21 2013-05-02 삼성전자주식회사 발광 소자
WO2013160190A1 (en) * 2012-04-25 2013-10-31 Joker Ag Gel-like mass comprising natural or synthetic polymers and method for producing the gel-like mass
WO2014045137A1 (en) * 2012-09-21 2014-03-27 Koninklijke Philips N.V. A light emitting assembly, a lamp and a luminaire

Similar Documents

Publication Publication Date Title
KR101999979B1 (ko) 파장 변환 입자 복합체 및 이를 포함하는 광학 필름
KR102034463B1 (ko) 파장 변환 입자 복합체 및 이를 포함하는 광학 필름
KR101959487B1 (ko) 발광 필름
WO2016159608A1 (ko) 발광 필름
KR102006378B1 (ko) 광학 필름용 조성물 및 이를 포함하는 광학 필름
KR101959486B1 (ko) 발광 필름
WO2016024827A1 (ko) 발광 필름
KR101874292B1 (ko) 배리어 필름
KR101815344B1 (ko) 발광 필름
KR102010812B1 (ko) 광학 부재 및 이를 포함하는 디스플레이 장치
WO2016024828A1 (ko) 발광 필름
KR102078399B1 (ko) 광학 필름
KR101719033B1 (ko) 발광 필름
KR101798755B1 (ko) 광학 필름용 조성물 및 이를 포함하는 광학 필름
KR20170004429A (ko) 발광 필름
KR101748911B1 (ko) 발광 필름
KR102041810B1 (ko) 파장 변환 입자 복합체 및 이를 포함하는 광학 필름용 조성물
KR101958655B1 (ko) 광학 필름용 조성물 및 이를 포함하는 광학 필름
KR101880210B1 (ko) 배리어 필름
KR101985804B1 (ko) 광학 부재용 조성물
KR20170004437A (ko) 발광 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831798

Country of ref document: EP

Kind code of ref document: A1