WO2016143760A1 - セルロースの製造方法 - Google Patents

セルロースの製造方法 Download PDF

Info

Publication number
WO2016143760A1
WO2016143760A1 PCT/JP2016/057046 JP2016057046W WO2016143760A1 WO 2016143760 A1 WO2016143760 A1 WO 2016143760A1 JP 2016057046 W JP2016057046 W JP 2016057046W WO 2016143760 A1 WO2016143760 A1 WO 2016143760A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
cellulose
water
acid
polymerization
Prior art date
Application number
PCT/JP2016/057046
Other languages
English (en)
French (fr)
Inventor
裕哉 佐藤
小柳 賢司
高嘉 濱口
理 嶋田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2016143760A1 publication Critical patent/WO2016143760A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials

Definitions

  • the present invention relates to a method for producing cellulose.
  • Cellulose is used in various applications such as foods, pharmaceuticals, and industrial applications.
  • the addition of cellulose to foods is effective in improving the texture because thickening and dispersion effects can be obtained.
  • Cellulose has high water absorption and oil absorption, and is particularly effective for improving the texture of fried foods.
  • microcrystals or crystalline cellulose used in the above applications are generally required to conform to the legal standards for food additives or pharmaceutical additives in the country where they are used.
  • the ignition residue that is one of the above standards is an indicator of the concentration of inorganic impurities contained in the product.
  • the ignition residue of cellulose is specified to be 0.05% or less for microcrystalline cellulose as a food additive and 0.1% or less for crystalline cellulose as a pharmaceutical additive.
  • wood chips such as hardwood chips and softwood chips.
  • wood chips contain metal inorganic substances such as iron, aluminum, manganese, silicon, magnesium, and calcium (Non-patent Document 1).
  • talc is an inorganic powder obtained by finely pulverizing ore, and the main component is an inorganic substance such as hydrous magnesium silicate.
  • chemical pulp is produced by decomposing and removing lignin and resin content (pitch) in wood by sulfite cooking method, kraft cooking method, or a combination of these methods.
  • lignin and resin content Pitch
  • those having a low content of hemicellulose or lignin are preferred.
  • pulp made from cotton linter with high cellulose purity there are few inorganic impurities, pulp made from cotton linter with high cellulose purity, and a special grade chemical called solubilized pulp that has been refined to increase cellulose purity. Pulp is used (Non-Patent Document 2).
  • Cellulose is usually produced by subjecting pulp such as wood pulp to a treatment for reducing the degree of polymerization (hydrolysis, etc.) using mineral acid, ferric chloride, etc., followed by washing, purification, and drying.
  • a treatment for reducing the degree of polymerization hydrolysis, etc.
  • a special grade pulp such as high-purity dissolving pulp or cotton linter pulp is hydrolyzed using a dilute mineral acid such as dilute hydrochloric acid or dilute sulfuric acid.
  • a method for reducing the degree of polymerization by reaction is disclosed.
  • these special grade pulps have a problem in that they are expensive compared with chemical pulps for papermaking that are generally distributed, and the degree of freedom of selection as a raw material is limited due to the small amount of distribution.
  • Patent Document 2 discloses a method for producing powdered cellulose from kraft pulp, which is a commonly distributed chemical pulp, but it is difficult to say that cellulose that can be used in food or pharmaceutical applications is obtained.
  • the present inventors analyzed inorganic substances contained in kraft pulp, which is one of the commercially available paper pulps. As a result, iron, aluminum, silicon, magnesium, calcium, and sodium were detected. It was found that iron, aluminum, calcium, and sodium are dissolved in mineral acid in the process of producing cellulose and are relatively easily removed by washing with water, but silicon and magnesium remain almost as they are. Therefore, in order to produce microcrystalline or crystalline cellulose from commercially available paper pulp, it is considered necessary to reduce the ignition residue derived from the above-mentioned metals that are inorganic impurities, particularly silicon and magnesium. It was.
  • Patent Document 2 discloses a method for producing powdered cellulose from kraft pulp, which is a commonly distributed chemical pulp, but does not describe any reduction in ignition residue. .
  • the inventors tried to produce cellulose by hydrolyzing kraft pulp with mineral acid with reference to Patent Document 2, and the obtained cellulose was determined in the food additive standard and the pharmaceutical additive standard. It has been found that it is not compatible with the residual ignition test.
  • microcrystalline or crystalline cellulose obtained by lowering the degree of polymerization of pulp has good compatibility with water and water retention, and the primary particles are fine particles having a particle diameter of several ⁇ m to several 100 ⁇ m. Therefore, washing and filtering the cellulose itself is extremely unsatisfactory and unsuitable for industrial use.
  • the problem to be solved by the present invention is to provide a method for producing a cellulose, which is a microcrystalline or crystalline cellulose having a low ignition residue, which can be used as an additive for foods and / or pharmaceuticals, from chemical pulp. It is. That is, an object of the present invention is to provide a method for producing cellulose having an ignition residue of 0.1% or less from commercially available chemical pulp including kraft pulp.
  • a method for producing cellulose from chemical pulp comprising the following steps (a) to (c): (A) Step of disaggregating chemical pulp (b) Step of washing the disaggregated pulp obtained in step (a) (c) Hydrolysis of the disaggregated pulp washed in step (b) with a treatment solution comprising an aqueous solution containing a mineral acid Step ⁇ 2> for obtaining cellulose by reducing the degree of polymerization by decomposition
  • the method for producing cellulose according to ⁇ 1> wherein in the step (a) and / or the step (b), ultrasonic waves are irradiated.
  • ⁇ 3> The method for producing cellulose according to ⁇ 1> or ⁇ 2>, wherein an ignition residue of the obtained cellulose is 0.1% or less.
  • ⁇ 3-1> The method for producing cellulose according to any one of ⁇ 1> to ⁇ 3>, wherein the obtained cellulose has an average degree of polymerization of 350 or less.
  • ⁇ 4> The method for producing cellulose according to any one of ⁇ 1> to ⁇ 3-1>, wherein the mineral acid is sulfuric acid or hydrochloric acid.
  • ⁇ 5> The method for producing cellulose according to ⁇ 4>, wherein the sulfuric acid or hydrochloric acid is contained in the treatment liquid in an amount of 0.05 to 30% by weight.
  • ⁇ 6> The method for producing cellulose according to any one of ⁇ 1> to ⁇ 5>, wherein the treatment liquid further contains a peroxide.
  • the peroxide is hydrogen peroxide.
  • ⁇ 8> The method for producing cellulose according to ⁇ 7>, wherein the hydrogen peroxide is contained in the treatment liquid in an amount of 0.05 to 15% by weight.
  • ⁇ 9> The method for producing cellulose according to any one of ⁇ 1> to ⁇ 8>, wherein the chemical pulp is paper pulp.
  • the method for producing cellulose of the present invention includes disaggregating chemical pulp, washing the disaggregated pulp with water, and hydrolyzing the washed pulp with a known method.
  • cellulose having a reduced ignition residue (that means an inorganic impurity) can be obtained.
  • Such cellulose can be used as an additive for foods and / or pharmaceuticals where the ignition residue is regulated.
  • the reason why the ignition residue of cellulose obtained by the method according to the embodiment is not clear is not clear, but it is considered that it is meaningful to wash the pulp with water before the treatment for reducing the degree of polymerization.
  • the method according to the embodiment in addition to the removal of metal inorganic substances (for example, iron, aluminum, calcium, sodium, etc.) dissolved in the mineral acid by the treatment for reducing the degree of polymerization in an aqueous solution containing a mineral acid, by carrying out the water washing step before that, inorganic substances that do not dissolve in the mineral acid (for example, those derived from silicon or magnesium, specifically talc) can be removed in advance. Thereby, it is thought that the ignition residue in the cellulose finally obtained becomes low.
  • metal inorganic substances for example, iron, aluminum, calcium, sodium, etc.
  • the microcrystalline or crystalline cellulose obtained by the treatment for reducing the degree of polymerization of the pulp is obtained as fine particles having a particle diameter of several ⁇ m to several 100 ⁇ m. Therefore, the obtained cellulose itself is washed and filtered. Is extremely poor in workability, and moisture and ignition residue are likely to remain in the cellulose. Therefore, it is not practical to wash the microcrystalline or crystalline cellulose obtained by the lower polymerization treatment of the pulp later, and the ignition residue in the cellulose tends to be relatively high.
  • the water washing and filtration steps can be easily performed, and furthermore, cellulose having a low ignition residue can be obtained. it can. Therefore, according to the method according to the embodiment, it can be said that cellulose having a low ignition residue can be obtained by a simple method.
  • Chemical pulp is produced from pulp chips.
  • the raw material for pulp chips include conifers represented by radiata pine, spruce, and hemlock, and broad-leaved trees represented by eucalyptus and acacia. These coniferous and hardwood pulps can be used alone or in combination of two or more. When a plurality of types are used in combination, the combination is not limited at all.
  • the chemical pulp is produced by using the above-mentioned pulp chip as a raw material, a sulfite cooking method, a kraft cooking method, or a combination of these methods.
  • the chemical pulp produced by the above method may be either non-bleached pulp or bleached pulp, or a combination thereof.
  • chemical pulp includes papermaking pulp and highly purified dissolving pulp, both of which can be used, and these can also be used in combination.
  • the chemical pulp may be used in a water-containing state after cooking or bleaching, and a dried plate-like pulp may be used.
  • the chemical pulp used in the method according to the embodiment may be any of the above types of pulp, but bleached pulp is preferably used.
  • Step of disaggregating chemical pulp (disaggregation step)
  • B A step (water washing step) of washing the disaggregated pulp obtained in step (a).
  • C A step of obtaining cellulose by lowering the degree of polymerization by hydrolysis of the disaggregated pulp washed with water in step (b) with a treatment solution comprising an aqueous solution containing a mineral acid (step of reducing the degree of polymerization)
  • Step of disaggregating chemical pulp In this step, the chemical pulp, which is a raw material, is stirred in water or an aqueous solution to break up the fibers of the pulp, and then the chemical pulp and water or the aqueous solution are separated by a method such as filtration to obtain a disaggregated pulp.
  • the pulp may be disaggregated to such an extent that the binding fibers of the pulp disappear.
  • the degree of disaggregation can be expressed in Canadian standard freeness, and is preferably 100 to 800 mL, more preferably 300 to 800 mL, and still more preferably 500 to 800 mL. If it is higher than this, disaggregation is insufficient, and if it is lower than this, as a result of excessive disaggregation, the filterability of the pulp is deteriorated, and inorganic impurities are hardly removed in a later step.
  • the ratio of the pulp in the slurry containing water or an aqueous solution and chemical pulp is preferably in the range of 0.1 to 25% by weight, more preferably 1 to 20% by weight, and further preferably 1 to 15% by weight.
  • the amount of pulp is less than the above range, the treatment amount per time or per unit time is reduced, which is not economical.
  • the amount of the pulp is larger than the above range, it is not preferable because water or an aqueous solution does not sufficiently penetrate into the pulp and the efficiency of disaggregating the chemical pulp decreases.
  • the processing temperature there is no particular limitation on the processing temperature.
  • water the easily available water which does not contain insoluble solid content can be utilized as it is.
  • aqueous solution an aqueous solution of an inorganic acid and a salt thereof, an aqueous solution of an organic acid and a salt thereof, and the like can be used.
  • organic acid and a salt thereof an organic acid and a salt thereof having high solubility in water are preferable.
  • inorganic acids include sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid.
  • organic acid examples include carboxylic acids such as acetic acid, propionic acid, succinic acid, gluconic acid, citric acid, glycolic acid, lactic acid, malonic acid, oxalic acid and malic acid; ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid And aminocarboxylic acids such as hydroxyethylethylenediaminetriacetic acid; phosphonic acids such as hydroxyethylidene diphosphonic acid, nitrilotris (methylenephosphonic acid), and phosphonobutanetricarboxylic acid.
  • amidosulfuric acid can also be used.
  • these salts include sodium salts, potassium salts, calcium salts, ammonium salts and the like.
  • water When chemical pulp is stirred in water or an aqueous solution, ultrasonic waves may be irradiated. By irradiating with ultrasonic waves, the time of the dissociation step can be shortened.
  • step (B) A step (water washing step) of washing the disaggregated pulp obtained in step (a). This step includes a step of washing the pulp after disaggregation and a step of dehydrating.
  • the ratio of the pulp in the slurry containing water and the disaggregated pulp is preferably in the range of 0.1 to 25% by weight, more preferably 1 to 20% by weight.
  • the amount of pulp is less than the above range, the treatment amount per time or per unit time is reduced, which is not economical.
  • the amount of the pulp is larger than the above range, it is not preferable because water does not sufficiently penetrate into the pulp and the efficiency of removing inorganic impurities is lowered.
  • the slurry is stirred.
  • inorganic impurities mainly containing magnesium and silicon remain.
  • This step is performed to remove the inorganic impurities. Washing of the disaggregated pulp can be performed using the same equipment as the step (a) (disaggregation step).
  • water and the disaggregated pulp obtained in step (a) may be introduced into a general-purpose tank such as a drum can and stirred with a general stirring blade such as a paddle blade, a turbine blade, an anchor blade, or a propeller blade.
  • a general stirring blade such as a paddle blade, a turbine blade, an anchor blade, or a propeller blade.
  • Commercially available pulpers, refiners, etc. can also be used.
  • you may irradiate an ultrasonic wave, stirring.
  • the time for the water washing step can be shortened. This is because the washing step is carried out with stirring, but by irradiating ultrasonic waves, the dispersibility of the disaggregated pulp in water is improved, and the washing efficiency is improved.
  • the temperature of the system in the water washing step is not particularly limited, but it is economically preferable to carry out at room temperature that does not require heating or cooling.
  • the slurry containing the disaggregated pulp is dehydrated by a centrifuge, a filter press, a belt press, an Oliver type filter, a Young filter, a drum filter, a belt filter or the like.
  • the degree of dehydration may be appropriately determined depending on the type of pulp to be used, but it is generally preferable to dehydrate until the solid content is about 40 to 50% by weight. If the solid content rate is to be more than the above range, there is a concern that it takes too much dehydration time (that is, the productivity is deteriorated). On the other hand, if it is less than the above range, there is a concern that the removal of impurities becomes insufficient. . Washing and dehydration may be performed only once or multiple times.
  • step (C) A step of obtaining cellulose by lowering the degree of polymerization by hydrolysis of the disaggregated pulp washed with water in step (b) with a treatment solution comprising an aqueous solution containing a mineral acid (step of reducing the degree of polymerization)
  • a treatment solution comprising an aqueous solution containing a mineral acid
  • the pulp that has been washed with water in step (b) is subjected to a treatment for reducing the degree of polymerization by hydrolyzing it with a treatment liquid to produce cellulose having a desired average degree of polymerization.
  • the treatment liquid used for the low polymerization degree treatment is an aqueous solution containing a mineral acid.
  • the mineral acid include sulfuric acid, hydrochloric acid, nitric acid, sulfurous acid, phosphoric acid and the like.
  • One kind may be used alone, or two or more kinds of mineral acids may be mixed and used. Of these, preferred mineral acids are sulfuric acid or hydrochloric acid.
  • concentrations of mineral acid are available, but the concentration of mineral acid to be used is not limited as long as the concentration of mineral acid in the treatment liquid can be adjusted to a desired concentration.
  • a commercially available mineral acid may be diluted and used.
  • the concentration of the mineral acid in the treatment liquid is preferably 0.05 to 30% by weight, more preferably 1.0 to 30% by weight, and particularly preferably 1.0 to 20% by weight.
  • the treatment liquid may further contain a peroxide.
  • peroxides examples include hydrogen peroxide, peracetic acid, organic peroxides, monopersulfuric acid, chlorine peroxide, etc., and only one of these may be used alone, or two A combination of the above may also be used.
  • a preferred peroxide is hydrogen peroxide.
  • the peroxide can be added in the form of an aqueous solution.
  • hydrogen peroxide solution is generally distributed at a concentration of 30 to 70% by weight, but the concentration of hydrogen peroxide solution to be used is limited if the peroxide concentration in the treatment liquid can be adjusted to a desired concentration.
  • commercially available hydrogen peroxide solution may be diluted and used.
  • the concentration of peroxide in the treatment liquid is preferably 0.05 to 15.0% by weight, more preferably 0.1 to 15.0% by weight, and particularly preferably 1.0 to 5.0% by weight.
  • the concentration of the mineral acid and the peroxide means a ratio (% by weight) with respect to the whole treatment liquid as undiluted, that is, as 100% mineral acid and peroxide.
  • the component excluding the mineral acid and peroxide in the treatment liquid is basically water.
  • the water used for the treatment liquid is preferably water with few impurities such as ion exchange water.
  • the low polymerization degree treatment can be performed using a known method. For example, it can be performed by immersing the chemical pulp in the treatment liquid at a predetermined temperature for a predetermined time, but is not limited thereto.
  • the ratio of the pulp in the slurry containing the treatment liquid and the pulp is preferably 1 to 20% by weight, more preferably 3 to 10% by weight. If it is higher than 20% by weight, it becomes difficult for the treatment liquid to sufficiently penetrate into the pulp. On the other hand, if it is lower than 1% by weight, the reaction efficiency is poor and the economy is poor.
  • the reaction temperature is preferably 80 to 100 ° C, more preferably 85 to 95 ° C.
  • the reaction time is preferably 30 minutes to 3 hours, and more preferably 1 to 2 hours.
  • the low polymerization degree treatment can be performed using a continuous apparatus using a reaction tube or a tower, or a batch reaction tank.
  • a stirring blade may be used so that the treatment liquid can be sufficiently circulated, and the treatment liquid may be circulated through the extraction line.
  • a surfactant can be used as a penetrant.
  • Surfactants include, but are not limited to, cationic, anionic, zwitterionic and nonionic. Any of these may be used alone or in combination.
  • the cellulose after the low polymerization degree treatment and the used treatment liquid are separated by a centrifuge, a filter press, a belt press, an Oliver filter, a Young filter, or the like. Moreover, you may perform the neutralization process of the obtained cellulose, the washing process, the drying process, the grinding
  • the ignition residue of the cellulose produced by the above method is 0.1% or less, preferably 0.05% or less.
  • the average degree of polymerization of the cellulose produced by the above method is preferably 350 or less, more preferably 300 or less, and particularly preferably 250 or less.
  • Test conditions ⁇ Water used>
  • ion-exchanged water obtained by Yamato Kagaku ultrapure water production apparatus Autopure WR-7000 was used.
  • the electric conductivity of the ion exchange water was 18.2 M ⁇ (25.0 ° C.), and the TOC content was 5 ppb.
  • the Canadian Standard Freeness of the disaggregated pulp produced in the above step (a) is a Canadian standard filter according to Japanese Industrial Standard JIS P-8121, “Pulp-Freeness Test Method-Part 2: Canadian Standard Freeness Method”. It measured by the method using a water tester. When the measured value exceeded 700 mL, the value of 700 mL in the correction table to the standard temperature of 20 ° C. and the correction table to the standard concentration of 0.30% was adopted.
  • ⁇ Average polymerization degree> The average degree of polymerization was measured by a viscosity measurement method using copper ethylenediamine described in the 16th revised Japanese Pharmacopoeia Manual, “crystalline cellulose confirmation test (3)”.
  • Example 1 944 g of bleached softwood pulp (ignition residue 0.240%, average degree of polymerization 1,254) (absolutely dry weight) and 37 L of water, which were cut into 4 mm both vertically and horizontally by a cutter, were placed in a 100 L stirring tank with stirring blades, and 850 rpm For 10 minutes. After stirring, suction filtration was performed with a mesh having a mesh opening of 2 mm to obtain disaggregated pulp (disaggregation step). 37 L of water was added to the obtained disaggregated pulp and stirred for 3 minutes, followed by filtration (water washing step). This water washing step was repeated five times to obtain de-pulverized pulp washed with water.
  • the Canadian standard freeness of the water-dissolved disaggregated pulp was 762 mL, and the ignition residue was 0.10%.
  • 100 g (absolute dry weight) of disaggregated pulp washed with water and 1800 g of a 16 wt% sulfuric acid aqueous solution were placed in a 2 L separable flask and immersed in a constant temperature water bath at 90 ° C. for 180 minutes to carry out a low polymerization degree treatment. After the reaction, suction filtration was performed, and after washing with water five times, suction filtration was performed to obtain cellulose (low polymerization degree treatment step). The average degree of polymerization of the obtained cellulose was 233, and the ignition residue was 0.03%.
  • ⁇ Example 2 > 12.5g (absolute dry weight) of bleached softwood pulp (ignition residue 0.397%, average polymerization degree 1,497) and 487.5g of water cut into a length of 40mm and a width of 5mm with a shredder (FM Corporation, RM-5200V) and stirred for 5 minutes. After stirring, suction filtration was performed with a nylon filter having an opening of 30 ⁇ m to obtain a disaggregated pulp (disaggregation step).
  • a shredder FM Corporation, RM-5200V
  • Example 3 944g (absolutely dry weight) of bleached softwood pulp (ignition residue 0.234%, average degree of polymerization 1,254) and 37L of water 5mm and 5mm wide by a cutting machine and put in a 100L stirring tank, hand mixer (Ryobi Co., Ltd. PM-851) was used and stirred at 850 rpm for 10 minutes. After stirring, the mixture was filtered through a mesh having a mesh size of 2.0 mm to obtain a disaggregated pulp (disaggregation step).
  • This 2200 mL separable flask was immersed in an oil bath at 130 ° C. and refluxed for 2 hours to perform a treatment for reducing the degree of polymerization. After the reaction, suction filtration was performed, followed by washing with water twice, neutralization once, and water washing once, followed by suction filtration to obtain cellulose (reduction degree of polymerization treatment step). The average degree of polymerization of the obtained cellulose was 254, and the ignition residue was 0.07%.
  • Example 4 Bleached softwood pulp cut with a shredder to a length of 40 mm and a width of 5 mm (ignition residue 0.240%, average polymerization degree 1,254) 12.5 g (absolutely dry weight) and water 487.5 g in a 1000 mL polypropylene container And stirred for 2 hours at 500 rpm using a propeller blade having a blade diameter of 40 mm. After stirring, suction filtration was performed with a quantitative filter paper (No. 5C) to obtain disaggregated pulp (disaggregation step).
  • the obtained disaggregated pulp and water having a weight 20 times the dry weight of the disaggregated pulp were put into a 1000 mL polypropylene container and stirred at 500 rpm for 10 minutes with a three-one motor (manufactured by Shinto Kagaku, BL600), followed by filtration ( Washing step). This water washing step was repeated 25 times to obtain de-pulverized pulp washed with water.
  • the Canadian standard freeness of this water-dissolved disaggregated pulp was 735 mL.
  • Example 5 Bleached hardwood pulp cut with a shredder to a length of 40mm and a width of 5mm (ignition residue 0.358, average degree of polymerization 1,556) 11.5g (absolutely dry weight) and 988.5g of water in a 2000mL beaker Then, ultrasonic waves were irradiated while stirring at 50 rpm for 1 hour using a propeller blade having a blade diameter of 40 mm. After stirring, suction filtration was performed with a quantitative filter paper (No. 5C), and then the same operation was repeated twice to obtain disaggregated pulp (disaggregation step and washing step). About this disaggregated pulp, the low polymerization degree process was performed similarly to Example 2, and the cellulose was obtained. The obtained cellulose residue was 0.02%.
  • Example 1 A bleached pulp was produced in the same manner as in Example 2 using bleached softwood pulp (ignition residue 0.397%, average degree of polymerization 1,497) cut to a length of 40 mm and a width of 5 mm with a shredder. Thereafter, the depolymerized pulp was not washed with water, and the degree of polymerization was reduced in the same manner as in Example 2 to obtain cellulose. The ignition residue of the obtained cellulose was 0.12%.
  • ⁇ Comparative example 2> A bleached pulp was produced in the same manner as in Example 2 using bleached hardwood pulp cut with a shredder to a length of 40 mm and a width of 5 mm (ignition residue 0.368%, average degree of polymerization 1,566). Thereafter, the depolymerized pulp was not washed with water, and the degree of polymerization was reduced in the same manner as in Example 2 to obtain cellulose. The ignition residue of the obtained cellulose was 0.14%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)

Abstract

 一実施形態によると、下記の(a)~(c)の工程を含む、化学パルプからセルロースを製造する方法が提供される。 (a)化学パルプを離解する工程 (b)(a)工程で得られた離解パルプを水洗する工程 (c)鉱酸を含む水溶液からなる処理液で(b)工程で水洗した離解パルプを加水分解により低重合度化してセルロースを得る工程

Description

セルロースの製造方法
 本発明は、セルロースの製造方法に関するものである。
 セルロースは、食品、医薬品、工業用途などの種々の用途に使用されている。
 例えば、食品用途においては、食品にセルロースを添加することにより、増粘及び分散効果が得られるため、食感改善に有効である。セルロースは吸水性や吸油性も高く、例えば揚げ物等の食感改善に特に有効である。
 医薬品用途においては、錠剤、散剤(粉薬)、顆粒剤などの固形製剤に、成型、増量、希釈等を目的とする賦形剤として添加される。
 上記の用途で使用される微結晶又は結晶セルロースは、一般的には使用される国の食品添加物、又は医薬品添加物の法的な規格に適合することが求められる。
 上記規格の一つである強熱残分は、製品中に含まれる無機不純物濃度の指標となる。例えば日本国では、セルロースの強熱残分は、食品添加物としての微結晶セルロースで0.05%以下、医薬品添加物としての結晶セルロースで0.1%以下と規定されている。
 ところで、セルロースを製造するための原料である化学パルプは、広葉樹チップや針葉樹チップなどの木材チップを化学的に処理して生産されている。通常、これらの木材チップには、鉄、アルミニウム、マンガン、ケイ素、マグネシウム、カルシウムなどの金属無機物が含有される(非特許文献1)。
 また、木材のパルプ化の過程において、ピッチ沈着コントロール剤として多量のタルクが添加される場合がある(特許文献3)。タルクとは、鉱石を微粉砕した無機粉末で、主成分は含水珪酸マグネシウム等の無機物である。
 一般的に、化学パルプは、サルファイト蒸解法、又はクラフト蒸解法、あるいはこれら方法を組み合わせることにより、木材中のリグニンや樹脂分(ピッチ)を分解し除去して製造される。白色度に優れたセルロースを製造するためには、へミセルロースやリグニンの含有量が低いものが好まれる。特に、微結晶又は結晶セルロースを製造する原料パルプとしては、無機不純物が少なく、セルロース純度の高いコットンリンターから製造されたパルプや、精製してセルロース純度を高くした溶解パルプと言われる特殊グレードの化学パルプが用いられる(非特許文献2)。
 セルロースは通常、木材パルプなどのパルプを、鉱酸、塩化第二鉄などを用いて低重合度化処理(加水分解等)した後、洗浄、精製、及び乾燥して製造する。特許文献1には、微結晶又は結晶セルロースを製造する方法として、高純度の溶解パルプやコットンリンターパルプ等の特殊グレードのパルプを、希塩酸や希硫酸などの希薄濃度の鉱酸を用いて加水分解反応により低重合度化する方法が開示されている。しかし、これら特殊グレードのパルプは、一般に流通している製紙用化学パルプに比べて高額である上に、流通量が少ないために原料として選択の自由度が限られるという点で問題があった。
 上記以外の化学パルプで、一般に広く流通しているパルプとして、主に紙用途で利用される製紙用化学パルプがある。しかし、製紙用化学パルプは、特殊グレードのパルプに比べ、セルロース濃度が低く、精製度が低いため、食品又は医薬品用途のセルロース原料としては、不向きであった。例えば、特許文献2には、一般に流通している化学パルプであるクラフトパルプから粉末状セルロースを製造する方法が開示されているが、食品又は医薬品用途において使用できるセルロースが得られるとは言い難い。
米国特許第2978446号公報 特開2013-60544号公報 特表2010-521595号公報
紙パ技術協会紙,2004年7月,第58巻第7号,38~41頁 Cellulose Commun,2010,Vol.17,No.2
 本発明者らが、市販されている製紙用パルプの一種であるクラフトパルプに含まれる無機物質を分析したところ、鉄、アルミニウム、ケイ素、マグネシウム、カルシウム、及びナトリウムが検出された。鉄、アルミニウム、カルシウム、及びナトリウムは、セルロースを製造する過程で鉱酸に溶解し、水洗により比較的容易に除去されるが、ケイ素とマグネシウムはほぼそのまま残存することが分かった。従って、市販されている製紙用パルプから微結晶又は結晶セルロースを製造するには、無機不純物である上記の金属等、特にケイ素やマグネシウムに由来する強熱残分を低減する必要があると考えられた。
 しかし、溶解パルプの製造過程で無機物を除去する方法は、古くから開発されているものの、製品として一般に流通している製紙用化学パルプ等に含まれる無機物を除去し、強熱残分を低減する技術は知られていない。
 上述したように、特許文献2には、一般に流通している化学パルプであるクラフトパルプから粉末状セルロースを製造する方法が開示されているが、強熱残分の低減に関しては何ら記述されていない。実際に、本発明者らが、特許文献2を参考に、クラフトパルプを鉱酸で加水分解することによりセルロースの製造を試みたところ、得られるセルロースは食品添加物規格及び医薬品添加物規格に定められている強熱残分試験に適合しないことが分かった。
 一方、製造されたセルロースを洗浄することにより、強熱残分の低減を図ることも考えられる。しかし、パルプを低重合度化処理して得られる微結晶又は結晶セルロースは、水との馴染が良く保水性があり、その一次粒子の粒子径は数μm~数100μmの微粒子である。そのため、セルロース自体を洗浄、ろ過することは、極めて作業性が悪く、工業的には不向きである。
 そこで、市販されている化学パルプ中に含まれる、無機不純物、特にケイ素及びマグネシウムに代表される鉱酸に溶解しない不純物を効率的に除去することにより、強熱残分の少ない微結晶又は結晶セルロースを製造できる方法が求められていた。
 本発明が解決しようとする課題は、化学パルプから、強熱残分の低い微結晶又は結晶セルロースであって、食品及び/又は医薬品の添加剤として使用可能なセルロースを製造する方法を提供することである。すなわち、市販されているクラフトパルプを含む化学パルプから、強熱残分0.1%以下のセルロースを製造する方法を提供することを課題とする。
 本発明者らは、セルロースの製造方法について検討を行った結果、化学パルプから強熱残分が0.1%以下のセルロースを製造できる方法を見出し、本発明を完成するに至った。すなわち、本願は以下の発明を包含する。
<1>
 下記の(a)~(c)の工程を含む、化学パルプからセルロースを製造する方法。
(a)化学パルプを離解する工程
(b)(a)工程で得られた離解パルプを水洗する工程
(c)鉱酸を含む水溶液からなる処理液で(b)工程で水洗した離解パルプを加水分解により低重合度化してセルロースを得る工程
<2>
 前記(a)工程及び/又は(b)工程において、超音波を照射する、<1>に記載のセルロースを製造するする方法。
<3>
 得られたセルロースの強熱残分が0.1%以下である、<1>又は<2>に記載のセルロースを製造する方法。
<3-1>
 得られたセルロースの平均重合度が350以下である、<1>~<3>のいずれかに記載のセルロースを製造する方法。
<4>
 前記鉱酸が、硫酸又は塩酸である、<1>~<3-1>のいずれかに記載のセルロースを製造する方法。
<5>
 前記硫酸又は塩酸が、前記処理液中に0.05~30重量%含まれる、<4>に記載のセルロースを製造する方法。
<6>
 前記処理液が、さらに過酸化物を含む、<1>~<5>のいずれかに記載のセルロースを製造する方法。
<7>
 前記過酸化物が、過酸化水素である、<6>に記載のセルロースを製造する方法。
<8>
 前記過酸化水素が、前記処理液中に0.05~15重量%含まれる、<7>に記載のセルロースを製造する方法。
<9>
 前記化学パルプが製紙用パルプである、<1>~<8>のいずれかに記載のセルロースを製造する方法。
 本発明の製造方法により、安価な化学パルプを原料として使用し、強熱残分が0.1%以下のセルロースを製造することが出来る。
 1つの実施形態によると、本発明のセルロースを製造する方法は、化学パルプを離解すること、離解したパルプを水で洗浄すること、水洗したパルプを公知の方法で加水分解することを含む。
 実施形態に係る方法によると、強熱残分(すなわち、無機不純物を意味する)の低下したセルロースを得ることができる。そのようなセルロースは、強熱残分が規制されている食品及び/又は医薬品の添加剤として使用することができる。実施形態に係る方法によって得られるセルロースの強熱残分が低下する理由は定かではないが、低重合度化処理の前にパルプを水洗することに意味があるものと考えられる。すなわち、実施形態に係る方法によると、鉱酸を含む水溶液での低重合度化処理によって鉱酸に溶解する金属無機物(例えば、鉄、アルミニウム、カルシウム、ナトリウム等)が除去されることに加え、その前に水洗工程を行うことにより、鉱酸には溶解しない無機物(例えば、ケイ素やマグネシウムに由来するもの、具体的にはタルク)も予め除去することができる。これにより、最終的に得られるセルロース中の強熱残分が低くなるものと考えられる。
 また、上述したように、パルプの低重合度化処理によって得られる微結晶又は結晶セルロースは、粒子径が数μm~数100μmの微粒子として得られるため、得られたセルロース自体を水洗およびろ過することは極めて作業性が悪く、また、水分および強熱残分がセルロース中に残存しやすい。従って、パルプの低重合度化処理によって得られた微結晶又は結晶セルロースを、後から洗浄することは実用的ではなく、さらに、セルロース中の強熱残分が比較的高くなる傾向にある。一方、実施形態に係る方法のように低重合度化処理前のパルプを水洗する場合には、水洗およびろ過工程を容易に行うことができ、さらには強熱残分の低いセルロースを得ることができる。従って、実施形態に係る方法によると、簡便な方法で強熱残分の低いセルロースを得ることができると言える。
 以下、実施形態に係る方法の構成要素について順に説明する。
<原材料>
 化学パルプはパルプチップから製造される。パルプチップの原料としては、ラジアータパイン、スプルース、ヘムロックに代表される針葉樹、ならびにユーカリ、アカシアに代表される広葉樹が挙げられる。これら針葉樹及び広葉樹のパルプをそれぞれ単独で使用することもできるし、複数種を組み合わせて使用することもできる。複数種を組み合わせて使用する場合、その組み合わせはなんら限定されるものではない。
 化学パルプは、上記パルプチップを原料として、サルファイト蒸解法、又はクラフト蒸解法、あるいはこれら方法を組み合わせることにより製造される。
 上記方法で製造された化学パルプは、非漂白パルプ、又は漂白パルプのいずれでも良く、これらの組み合わせであっても良い。
 また、化学パルプには、製紙用パルプと精製度の高い溶解パルプがあるが、いずれも使用することができ、これらを組み合わせて使用することもできる。
 化学パルプは、蒸解、又は漂白後の含水状態で使用しても良く、乾燥された板状のパルプを使用しても良い。
 実施形態に係る方法に使用される化学パルプは、上記のいずれの種類のパルプでも良いが、好ましくは漂白パルプが使用される。
<製造工程>
 以下、製造工程(a)~(c)について、順に説明する。
(a)化学パルプを離解する工程(離解工程)
(b)(a)工程で得られた離解パルプを水洗する工程(水洗工程)
(c)鉱酸を含む水溶液からなる処理液で(b)工程で水洗した離解パルプを加水分解により低重合度化してセルロースを得る工程(低重合度化処理工程)
(a)化学パルプを離解する工程(離解工程)
 本工程では、原材料である化学パルプを、水又は水溶液の中で攪拌してパルプの繊維を解し、その後、ろ過などの方法により化学パルプと水又は水溶液とを分離し、離解パルプを得る。
 パルプの離解は、パルプの結束繊維がなくなる程度行えば良い。離解の度合いは、カナディアンスタンダードフリーネスで表すことができ、好ましくは100~800mLであり、より好ましくは300~800mL、更に好ましくは500~800mLである。これより高いと離解が不十分であり、これより低いと離解しすぎる結果、パルプのろ過性が悪化して後の工程で無機不純物が除去されにくくなる。
 水又は水溶液と化学パルプとを含むスラリー中のパルプの割合は、0.1~25重量%の範囲が良く、より好ましくは1~20重量%、さらに好ましくは1~15重量%である。パルプの量が上記範囲より少ない場合には、1回当り、又は単位時間当たりの処理量が少なくなるため経済的でない。一方、パルプの量が上記範囲より多い場合は、水又は水溶液がパルプに十分に浸透せず、化学パルプを離解する効率が落ちるため、好ましくない。
 処理温度には、特に制約はない。また、水としては、不溶な固形分が含まれない入手しやすい水をそのまま利用することができる。水溶液としては、無機酸およびその塩の水溶液、有機酸およびその塩の水溶液等を使用することができ、有機酸およびその塩としては、水への溶解度が高い有機酸およびその塩が好ましい。無機酸としては、例えば、硫酸、塩酸、硝酸、リン酸が挙げられる。有機酸としては、例えば、酢酸、プロピオン酸、コハク酸、グルコン酸、クエン酸、グリコール酸、乳酸、マロン酸、シュウ酸、リンゴ酸などのカルボン酸;エチレンジアミン四酢酸、ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸などのアミノカルボン酸;ヒドロキシエチリデンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸などのホスホン酸等が挙げられる。あるいは、アミド硫酸も使用することができる。これらの塩としては、ナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩等が挙げられる。離解工程においては、水を使用することがより好ましい。
 化学パルプを、水又は水溶液の中で攪拌する際に、超音波を照射してもよい。超音波を照射することにより、解離工程の時間を短縮することができる。
(b)(a)工程で得られた離解パルプを水洗する工程(水洗工程)
 本工程には、離解後のパルプを水洗する工程、及び脱水する工程が含まれる。
 本工程では、まず、離解パルプに水を加える。水と離解パルプとを含むスラリー中のパルプの割合は、0.1~25重量%の範囲が良く、より好ましくは1~20重量%である。パルプの量が上記範囲より少ない場合には、1回当り、又は単位時間当たりの処理量が少なくなるため経済的でない。一方、パルプの量が上記範囲より多い場合は、水がパルプに十分に浸透せず、無機不純物を除去する効率が落ちるため、好ましくない。
 次いで、前記スラリーを攪拌する。(a)工程で得られた離解パルプには、まだマグネシウム及びケイ素を主成分とする無機不純物が残留している。該無機不純物を除去するために、本工程を行う。離解パルプの水洗は、(a)工程(離解工程)と同じ設備を用いて行うことができる。例えば、ドラム缶等の汎用の槽類に水と(a)工程で得られた離解パルプを投入し、パドル翼、タービン翼、アンカー翼、プロペラ翼など一般的な攪拌翼で撹拌するだけで良い。市販のパルパー、リファイナー等を用いることもできる。また、攪拌しながら、超音波を照射しても良い。超音波を照射することにより、水洗工程の時間を短縮することができる。水洗工程は撹拌しながら行うが、超音波を照射することにより水中での離解パルプの拡散性が向上し、水洗効率が向上するためである。水洗工程における系の温度は特に限定されないが、加熱や冷却を必要としない室温で行うことが、経済的に好ましい。
 次いで、離解パルプを含むスラリーを、遠心分離機、フィルタープレス、ベルトプレス、オリバー型フィルター、ヤングフィルター、ドラムフィルター、ベルトフィルター等により、脱水する。ここで脱水することにより、最終的に得られるセルロース中の強熱残分をより低下させることができる。脱水の程度は、使用するパルプ種によって適宜決定すればよいが、一般的に固形分率が40~50重量%程度になるまで脱水することが好ましい。固形分率を上記範囲以上にしようとすると、脱水時間がかかりすぎる懸念があり(すなわち、生産性が悪化する)、一方、上記範囲以下であると、不純物の除去が不十分となる懸念がある。
 水洗および脱水は、1回のみ行っても、複数回行っても良い。
(c)鉱酸を含む水溶液からなる処理液で(b)工程で水洗した離解パルプを加水分解により低重合度化してセルロースを得る工程(低重合度化処理工程)
 本工程では、(b)工程で水洗した離解パルプを、処理液で加水分解することより低重合度化処理して、目的の平均重合度を有するセルロースを製造する。
 低重合度化処理に使用される処理液は、鉱酸を含む水溶液からなる。鉱酸としては、硫酸、塩酸、硝酸、亜硫酸、リン酸などが挙げられ、1種を単独で使用してもよく、又は2種類以上の鉱酸を混ぜて用いても良い。中でも好ましい鉱酸は硫酸又は塩酸である。
 鉱酸としては種々の濃度のものが流通しているが、処理液中の鉱酸の濃度を所望の濃度に調節することができれば、使用する鉱酸の濃度は限定されない。処理液中の鉱酸の濃度を所定の濃度とするために、市販の鉱酸を希釈して使用しても良い。
 処理液中の鉱酸の濃度は、好ましくは0.05~30重量%、より好ましくは1.0~30重量%、特に好ましくは1.0~20重量%である。
 処理液はさらに、過酸化物を含んでいてもよい。使用できる過酸化物としては、過酸化水素、過酢酸、有機過酸化物、モノ過硫酸、過酸化塩素等が挙げられ、この中から1種のみを単独で使用してもよく、又は2種類以上を組み合わせて使用してもよい。中でも好ましい過酸化物は、過酸化水素である。
 過酸化物は、水溶液の状態で添加し得る。例えば、過酸化水素水は、一般に30~70重量%の濃度で流通しているが、処理液中の過酸化物の濃度を所望の濃度に調節できれば、使用する過酸化水素水の濃度は限定されない。処理液中の過酸化物の濃度を所定の濃度とするために、市販の過酸化水素水を希釈して使用しても良い。
 処理液中の過酸化物の濃度は、好ましくは0.05~15.0重量%、より好ましくは0.1~15.0重量%、特に好ましくは1.0~5.0重量%である。ここで、鉱酸および過酸化物の濃度は、希釈されていない、すなわち100%の鉱酸および過酸化物としての、処理液全体に対する割合(重量%)を意味する。また、処理液中の鉱酸と過酸化物を除く成分は、基本的には水である。処理液に使われる水は、イオン交換水など不純物の少ない水であることが好ましい。
 低重合度化処理は、公知の方法を用いて行うことができる。例えば、化学パルプを所定の時間、所定の温度で処理液に浸漬することにより行うことができるが、これに限定されるものではない。
 処理液とパルプとを含むスラリー中のパルプの割合は、好ましくは1~20重量%であり、より好ましくは3~10重量%である。20重量%よりも高い場合は、処理液がパルプに十分に浸透しづらくなる。一方、1重量%よりも低い場合は、反応効率が悪く経済性に欠ける。
 反応温度は、80~100℃が好ましく、85~95℃がより好ましい。反応時間は、30分~3時間が好ましく、1~2時間がより好ましい。
 低重合度化処理は、反応チューブやタワーを用いた連続装置、又はバッチでの反応槽を用いて実施することができる。処理液が十分に循環できるよう、撹拌翼を用いても良く、処理液を抜出ラインを経由して循環させても良い。
 処理液のパルプへの浸透を早めるため、浸透剤として界面活性剤を用いることができる。界面活性剤としては、カチオン性、アニオン性、双性、ノニオン性等があるが、特に限定されない。これらのいずれかを単独で使用しても良く、組み合わせて使用しても良い。
 低重合度化処理の後、遠心分離機、フィルタープレス、ベルトプレス、オリバー型フィルター、ヤングフィルター等により、低重合度化処理後のセルロースと使用済みの処理液とを分離する。また、必要に応じて、得られたセルロースの中和工程、洗浄工程、乾燥工程、粉砕工程、分級工程等を行ってもよい。
 上記方法で製造されるセルロースの強熱残分は、0.1%以下であり、好ましくは0.05%以下である。
 また、上記方法で製造されるセルロースの平均重合度は、好ましくは350以下、より好ましくは300以下、特に好ましくは250以下である。
 以下に実施例及び比較例をあげて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(1)試験条件
<使用した水>
 以下の実施例及び比較例においては、ヤマト科学製超純水製造装置オートピュアWR-7000により得られたイオン交換水を使用した。イオン交換水の電気伝導度は18.2MΩ(25.0℃)、TOC含有量は5ppbであった。
<カナディアンスタンダードフリーネス測定方法>
 上記工程(a)で製造される離解パルプのカナディアンスタンダードフリーネスは、日本工業規格 JIS P-8121、「パルプ-ろ水度試験方法-第2部:カナダ標準ろ水度法」に従い、カナダ標準ろ水度試験器を用いた方法により測定した。測定値が700mLを超える場合は、標準温度20℃への補正表及び標準濃度0.30%への補正表の700mLの値を採用した。
<強熱残分>
 強熱残分は、第8版食品添加物公定書解説書、「微結晶セルロース強熱残分試験方法」により測定した。
<平均重合度>
平均重合度は、第16改正日本薬局方解説書、「結晶セルロース確認試験(3)」記載の銅エチレンジアミンを用いた粘度測定法により測定した。
(2)実施例及び比較例
<実施例1>
 裁断機で縦横とも4mmに裁断した漂白針葉樹パルプ(強熱残分0.240%、平均重合度1,254)944g(絶乾重量)と水37Lとを攪拌翼付き100L撹拌槽に入れ、850rpmで10分間攪拌した。撹拌後に目開き2mmの網で吸引ろ過を行い、離解パルプを得た(離解工程)。得られた離解パルプに37Lの水を加えて3分間攪拌した後、ろ過を行った(水洗工程)。この水洗工程を5回繰り返し、水洗した離解パルプを得た。この水洗した離解パルプのカナディアンスタンダードフリーネスは762mL、強熱残分は0.10%であった。水洗した離解パルプ100g(絶乾重量)と16重量%硫酸水溶液1800gを2Lセパラブルフラスコに入れ、90℃の恒温水槽に180分間浸漬して低重合度化処理を行った。反応後に吸引ろ過を行い、水洗を5回行った後、吸引ろ過を行い、セルロースを得た(低重合度化処理工程)。得られたセルロースの平均重合度は233、強熱残分は0.03%であった。
<実施例2>
 シュレッダーで長さ40mm、幅5mmに裁断した漂白針葉樹パルプ(強熱残分0.397%、平均重合度1,497)12.5g(絶乾重量)と水487.5gとを、家庭用ミキサー(株式会社エフエムアイ、RM-5200V)に入れ、5分間攪拌した。撹拌後に目開き30μmのナイロンフィルターにて吸引ろ過を行い、離解パルプを得た(離解工程)。この離解パルプに離解パルプ絶乾重量の20倍量の水を加えて、1000mLポリプロピレン容器内でスリーワンモーター(新東科学製、BL600)にて500rpm、10分間攪拌した後、ろ過を行った(水洗工程)。この水洗工程を5回繰り返し、水洗した離解パルプを得た。この水洗した離解パルプのカナディアンスタンダードフリーネスは720mLであった。水洗した離解パルプ6g(絶乾重量)を300mLセパラブルフラスコに入れ、さらに硫酸16重量%及び過酸化水素2重量%を含む水溶液54gを加えた。この300mLセパラブルフラスコを90℃の恒温水槽に120分間浸漬して、低重合度化処理を行った。反応後に吸引ろ過を行い、水洗を5回行った後、吸引ろ過を行い、セルロースを得た(低重合度化処理工程)。得られたセルロースの平均重合度は216、強熱残分は0.04%であった。
<実施例3>
 裁断機にて5mm、幅5mmにした漂白針葉樹パルプ(強熱残分0.234%、平均重合度1,254)944g(絶乾重量)と水37Lとを、100L撹拌槽に入れ、ハンドミキサー(リョウビ(株)製 PM-851)を使用して850rpmで10分間攪拌した。撹拌後に目開き2.0mmの網で濾過し、離解パルプを得た(離解工程)。この離解パルプ944g(絶乾重量)と水37Lを100L撹拌槽に入れ、ハンドミキサーにて850rpm、3分間攪拌し、その後ろ過を行った(水洗工程)。この水洗工程を5回繰り返した後、遠心分離機にて脱水し、水洗した離解パルプを得た。この水洗した離解パルプのカナディアンスタンダードフリーネスは758mLであった。1.4重量%塩酸水溶液2kgを2200mLセパラブルフラスコに入れ、水洗した離解パルプ100g(絶乾重量)を加えた。この2200mLセパラブルフラスコを130℃のオイルバスに浸漬して、2時間還流を行い、低重合度化処理を行った。反応後に吸引ろ過を行い、水洗を2回、中和を1回、水洗を1回行った後、吸引ろ過を行い、セルロースを得た(低重合度化処理工程)。得られたセルロースの平均重合度は254、強熱残分は0.07%であった。
<実施例4>
 シュレッダーで長さ40mm、幅5mmに裁断した漂白針葉樹パルプ(強熱残分0.240%、平均重合度1,254)12.5g(絶乾重量)と水487.5gとを、1000mLポリプロピレン容器に入れ、翼径40mmのプロペラ翼を用いて500rpmで2時間攪拌した。撹拌後に定量ろ紙(No.5C)にて吸引ろ過を行い、離解パルプを得た(離解工程)。得られた離解パルプおよび離解パルプ絶乾重量の20倍の重量の水を1000mLポリプロピレン容器に入れ、スリーワンモーター(新東科学製、BL600)にて500rpm、10分間攪拌した後、ろ過を行った(水洗工程)。この水洗工程を25回繰り返し、水洗した離解パルプを得た。この水洗した離解パルプのカナディアンスタンダードフリーネスは735mLであった。この水洗した離解パルプ10g(絶乾重量)と16重量%硫酸水溶液100gを300mLセパラブルフラスコに入れ、90℃の恒温水槽に180分間浸漬して低重合度化処理を行った。反応後に吸引ろ過を行い、水洗を5回行った後、吸引ろ過を行い、セルロースを得た(低重合度化処理工程)。得られたセルロースの強熱残分は0.02%であった。
<実施例5>
 シュレッダーで長さ40mm、幅5mmに裁断した漂白広葉樹パルプ(強熱残分0.358、平均重合度1,556)11.5g(絶乾重量)と水988.5gとを、2000mLのビーカーに入れ、翼径40mmのプロペラ翼を用いて50rpmで1時間攪拌しながら、超音波を照射した。撹拌後に定量ろ紙(No.5C)にて吸引ろ過を行った後、同様の操作を2回繰り返し、離解パルプを得た(離解工程及び水洗工程)。この離解パルプについて、実施例2と同様に低重合度化処理を行い、セルロースを得た。得られたセルロースの強熱残分は0.02%であった。
<比較例1>
 シュレッダーで長さ40mm、幅5mmに裁断した漂白針葉樹パルプ(強熱残分0.397%、平均重合度1,497)を用いて、実施例2と同様に離解パルプを製造した。その後、離解パルプを水洗せずに、実施例2と同様に低重合度化処理を行い、セルロースを得た。得られたセルロースの強熱残分は0.12%であった。
<比較例2>
 シュレッダーで長さ40mm、幅5mmに裁断した漂白広葉樹パルプ(強熱残分0.368%、平均重合度1,566)を用いて、実施例2と同様に離解パルプを製造した。その後、離解パルプを水洗せずに、実施例2と同様に低重合度化処理を行い、セルロースを得た。得られたセルロースの強熱残分は0.14%であった。
 比較例1及び比較例2の結果から、低重合度化処理の前に水洗工程を行わない場合には、パルプ中の無機不純物の除去が不十分で、得られるセルロースの強熱残分が0.10%より大きくなることが分かった。
<比較例3>
 比較例2で得られたセルロース2g(絶乾重量)及び水400gを500mLポリプロピレン容器に入れ、スリーワンモーター(新東科学製、BL600)にて500rpm、10分間攪拌し、その後ろ過を行った。この操作を5回繰り返した。本操作で得られたセルロースの強熱残分は0.12%であった。
 比較例3に示すように、低重合度化処理の前に水洗工程を行わずに得られたセルロースを、後から水洗しても、無機不純物は除去できなかった。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 

Claims (8)

  1.  下記の(a)~(c)の工程を含む、化学パルプからセルロースを製造する方法:
    (a)化学パルプを離解する工程
    (b)(a)工程で得られた離解パルプを水洗する工程
    (c)鉱酸を含む水溶液からなる処理液で(b)工程で水洗した離解パルプを加水分解により低重合度化してセルロースを得る工程。
  2.  前記(a)及び/又は(b)工程において、超音波を照射する、請求項1に記載のセルロースを製造するする方法。
  3.  得られたセルロースの強熱残分が0.1%以下である、請求項1又は2に記載のセルロースを製造する方法。
  4.  前記鉱酸が、硫酸又は塩酸である、請求項1~3のいずれかに記載のセルロースを製造する方法。
  5.  前記硫酸又は塩酸が、前記処理液中に0.05~30重量%含まれる、請求項4に記載のセルロースを製造する方法。
  6.  前記処理液が、さらに過酸化物を含む、請求項1~5のいずれかに記載のセルロースを製造する方法。
  7.  前記過酸化物が、過酸化水素である、請求項6に記載のセルロースを製造する方法。
  8.  前記過酸化水素が、前記処理液中に0.05~15重量%含まれる、請求項7に記載のセルロースを製造する方法。
     
     
PCT/JP2016/057046 2015-03-09 2016-03-08 セルロースの製造方法 WO2016143760A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-045792 2015-03-09
JP2015045792A JP2018070665A (ja) 2015-03-09 2015-03-09 セルロースの製造方法

Publications (1)

Publication Number Publication Date
WO2016143760A1 true WO2016143760A1 (ja) 2016-09-15

Family

ID=56880277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057046 WO2016143760A1 (ja) 2015-03-09 2016-03-08 セルロースの製造方法

Country Status (3)

Country Link
JP (1) JP2018070665A (ja)
TW (1) TW201641518A (ja)
WO (1) WO2016143760A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001876A (ja) * 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
JP2022031457A (ja) * 2017-06-14 2022-02-18 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594601A (ja) * 1982-06-30 1984-01-11 Unitika Ltd 白色度の優れた結晶セルロ−ス及びその製造法
JPH01183590A (ja) * 1988-01-06 1989-07-21 Kooriyama Chitsupu Kogyo Kk パルプの洗浄方法
JP2003504427A (ja) * 1999-07-02 2003-02-04 エドワード メンデル カンパニー 微結晶セルロースを製造するためのパルプの処理
US20040074615A1 (en) * 2002-10-16 2004-04-22 Nguyen Xuan Truong Process for preparing microcrystalline cellulose
JP2010275659A (ja) * 2009-05-28 2010-12-09 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594601A (ja) * 1982-06-30 1984-01-11 Unitika Ltd 白色度の優れた結晶セルロ−ス及びその製造法
JPH01183590A (ja) * 1988-01-06 1989-07-21 Kooriyama Chitsupu Kogyo Kk パルプの洗浄方法
JP2003504427A (ja) * 1999-07-02 2003-02-04 エドワード メンデル カンパニー 微結晶セルロースを製造するためのパルプの処理
US20040074615A1 (en) * 2002-10-16 2004-04-22 Nguyen Xuan Truong Process for preparing microcrystalline cellulose
JP2010275659A (ja) * 2009-05-28 2010-12-09 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001876A (ja) * 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
JP2022031457A (ja) * 2017-06-14 2022-02-18 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
US11655310B2 (en) 2017-06-14 2023-05-23 Kyoto University Fine cellulose fiber, production method thereof, slurry, and composite
JP7340195B2 (ja) 2017-06-14 2023-09-07 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体

Also Published As

Publication number Publication date
JP2018070665A (ja) 2018-05-10
TW201641518A (zh) 2016-12-01

Similar Documents

Publication Publication Date Title
JP4981735B2 (ja) セルロースナノファイバーの製造方法
US5074960A (en) Lignin removal method using ozone and acetic acid
JPS6011159B2 (ja) セルロ−スパルプを65乃至95%の範囲の収率で製造する方法
WO2015037424A1 (ja) セルロースの製造方法
JP2023515044A (ja) 変性硫酸およびその使用
JP6366178B2 (ja) セルロースナノファイバーの製造方法
WO2016143760A1 (ja) セルロースの製造方法
CA3018446C (en) Method of producing hemicellulose extracts
RU2495830C1 (ru) Способ извлечения ионов тяжелых металлов из водных растворов
JPS63256786A (ja) パルプ漂白方法
JP2016204277A (ja) リグニンの抽出方法
JP6619576B2 (ja) セルロースナノファイバーの製造方法
JP2016524660A (ja) パルプを漂泊するための組成物およびその使用
WO2015163111A1 (ja) 溶解パルプの製造法
CN104302675B (zh) 用于从植物材料分离木聚糖的方法和系统,以及木聚糖、碳酸钙和纤维素纤维
JP6522274B2 (ja) 溶解クラフトパルプの製造方法。
RU2590882C1 (ru) Способ получения целлюлозы
EP1258559B1 (en) Method for brightening mechanical pulps
JP2015206136A (ja) 溶解パルプの製造法
KR20200074477A (ko) 면펄프 제조방법 및 그 방법으로 제조된 면펄프
RU2516846C2 (ru) Композиция, cодержащая оксид кремния
JP7098467B2 (ja) セルロースナノファイバーの製造方法
JP4304392B2 (ja) 非木材パルプの漂白方法
JPS6137393B2 (ja)
WO2016143761A1 (ja) セルロースの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP