WO2016143639A1 - ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法 - Google Patents

ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法 Download PDF

Info

Publication number
WO2016143639A1
WO2016143639A1 PCT/JP2016/056482 JP2016056482W WO2016143639A1 WO 2016143639 A1 WO2016143639 A1 WO 2016143639A1 JP 2016056482 W JP2016056482 W JP 2016056482W WO 2016143639 A1 WO2016143639 A1 WO 2016143639A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
incident
light
hologram laminate
volume hologram
Prior art date
Application number
PCT/JP2016/056482
Other languages
English (en)
French (fr)
Inventor
伸子 老川
大川 浩正
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2017505012A priority Critical patent/JPWO2016143639A1/ja
Publication of WO2016143639A1 publication Critical patent/WO2016143639A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording

Definitions

  • the present invention relates to a hologram laminate, a security medium, and a method of using the hologram laminate that prevent the forgery of the article by being attached or transferred to the article or the like.
  • Holograms can be classified into several types according to the recording pattern of interference fringes, but surface relief holograms and volume holograms are typical.
  • the surface relief hologram is a hologram image recorded by forming a fine uneven pattern on the surface of the hologram layer.
  • the volume hologram is a hologram image recorded by three-dimensionally drawing interference fringes caused by light interference as fringes having different refractive indexes in the thickness direction.
  • the volume hologram is a hologram image recorded by the refractive index distribution inside the material, it has the advantage that it is difficult to replicate compared to the surface relief hologram, so that securities and cards It is expected to be used as an anti-counterfeiting measure.
  • Patent Document 1 describes that a reflection type volume hologram can be transmitted and observed, and an illumination light source can be arranged behind the observation side and used in a different manner.
  • the reflective volume hologram disclosed in Patent Document 1 does not describe a specific method for use in authenticity determination or the like.
  • the present invention provides a hologram laminate, a security medium, and a method for using the hologram laminate that can be accurately determined by a new usage method.
  • the hologram laminate according to the present invention that achieves the above object is as follows.
  • the hologram laminate according to the present invention is A scattering layer is provided between the reflective volume hologram and the reflective layer.
  • the hologram laminate according to the present invention is
  • the reflective volume hologram has a pattern portion for reproducing a pattern and a non-pattern portion other than that,
  • the reflectance of the non-picture part is 10% or more.
  • the hologram laminate according to the present invention is
  • the reflective volume hologram has a pattern portion for reproducing a pattern and a non-pattern portion other than that,
  • the contrast between the picture part and the non-picture part (the brightness of the picture part) / (the brightness of the non-picture part) is 1 or more.
  • the security medium according to the present invention is: The hologram laminate; An adherend to which the hologram laminate is bonded; It is characterized by providing.
  • the method for using the hologram laminate according to the present invention is as follows.
  • the incident light is incident from a predetermined incident direction of the reflective volume hologram, and the emitted light is observed from a surface side on which the incident light is incident.
  • the method for using the hologram laminate according to the present invention is as follows.
  • the incident light is rotated by 180 degrees in a plane including the surface on which the incident light is incident, and the emitted light is observed from the surface side on which the incident light is incident.
  • the method of using the hologram laminate, the security medium, and the hologram laminate of the present invention it is possible to accurately determine the authenticity by a new method of use.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1.
  • regeneration of the hologram laminated body of 1st Embodiment is shown.
  • regeneration of the hologram laminated body of 1st Embodiment is shown.
  • regeneration light is observed by one incident light direction with respect to the hologram laminated body of 1st Embodiment is shown.
  • the top view of the hologram laminated body of 2nd Embodiment is shown. Sectional drawing of the VII-VII line of FIG. 6 is shown.
  • regeneration of the hologram laminated body of 2nd Embodiment is shown.
  • regeneration of the hologram laminated body of 2nd Embodiment is shown.
  • luminance of the hologram laminated body of an Example is shown.
  • region of a non-pattern part are shown.
  • hologram laminate according to the present invention will be described with reference to the drawings.
  • shape and geometric conditions and the degree thereof are specified.
  • terms such as “orthogonal” and “identical”, and values of angles and wavelengths are bound to strict meanings. Therefore, it should be interpreted including the extent to which similar functions can be expected.
  • FIG. 1 shows a front view of the hologram laminate 1 of the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the hologram laminate 1 includes a reflective volume hologram 2 and a reflective layer 3 as shown in FIGS.
  • the pattern portion 21 and the reflective layer 3 of the reflective volume hologram 2 are arranged so that at least a part thereof overlaps.
  • the upper side of the hologram laminate 1 is 1a and the lower side is 1b.
  • the surface of the hologram laminate 1 on the reflective volume hologram side is referred to as a surface 2a, and the surface on the reflective layer 3 side is referred to as a surface 3a.
  • the reflective layer 3 is formed by depositing a metal such as Al on a transparent substrate such as a plastic film, or a reflective (or high brightness) metallic ink (Al flake ink, silver ink) on a transparent substrate such as a plastic film.
  • a print of the above is preferably used.
  • a reflective (or highly bright) metallic ink Al flake ink, silver ink
  • the reflective layer 3 only needs to partially overlap the pattern portion 21 of the reflective volume hologram 2 and may be patterned.
  • the hologram laminate 1 of the first embodiment may be laminated with another transparent material on the outside of the surface 2a (outside of the reflective volume hologram 2) in FIG. Also, other layers may be laminated on the outside of the surface 3a (outside of the reflective layer 3) regardless of whether it is transparent or opaque. Moreover, between the reflective volume hologram 2 and the reflective layer 3, another transparent material (assuming no scattering performance) may be laminated.
  • the reflection type volume hologram 2 may be a conventional reflection type volume hologram, and has a picture part 21 and a non-picture part 22 as shown in FIG.
  • the pattern portion 21 is a portion that emits reproduction light in a predetermined direction when the reproduction illumination light enters from a predetermined direction.
  • the non-pattern portion 22 is the same as the pattern portion and the material structure, and is a portion where no interference fringes having a difference in refractive index in the material are recorded.
  • the reflective layer 3 is laminated on the reflective volume hologram 2.
  • the reflection type volume hologram 2 determined to be authentic is transparent, and is manufactured by making an object beam and a reference beam having a predetermined wavelength enter a hologram recording photosensitive material at a predetermined incident angle.
  • the incident direction of the light source where the amount of diffracted light is the strongest is referred to as the “previously designed incident direction” of the reflective volume hologram 2.
  • the diffraction direction of the diffracted light in this case is referred to as a “predesigned diffraction direction” of the reflective volume hologram.
  • FIG. 3 shows a state during normal reproduction of the hologram laminate 1 of the first embodiment.
  • Reproduction illumination light 11 is incident on the hologram laminate 1 of the first embodiment.
  • the reproduction illumination light 11 is incident from the incident direction designed in advance when the reflective volume hologram 2 is produced.
  • the reproduction light 12 diffracted by the pattern portion 21 of the reflective volume hologram 2 is emitted in a diffraction direction designed in advance when the reflective volume hologram 2 is produced.
  • the non-pattern part 21 since there is no interference fringe, incident light is not diffracted. Accordingly, when observing the hologram laminate 1 of the first embodiment from a predetermined direction, the pattern portion 21 has high luminance and the non-pattern portion 22 has low luminance. Therefore, the pattern portion 21 can be easily recognized. .
  • the reproduction illumination light 11 when the reproduction illumination light 11 is incident on the first surface 2a from a position inclined 45 ° upward, the reproduction light 12 is reflected on the first surface 2a. It was set to emit in the normal direction.
  • FIG. 4 shows another state during reproduction of the hologram laminate 1 of the first embodiment.
  • incident light is incident on the first surface 2a of the reflective volume hologram 2 of the hologram laminate 1 of the first embodiment from a position inclined downward by 45 °. Then, the incident light 13 passes through the second surface 2b and is reflected by the reflective layer 3 to generate reflected light 14.
  • the reflected light 14 enters the reflective volume hologram 2 from a direction opposite to a previously designed incident direction when the reflective volume hologram 2 is produced. Therefore, the diffracted light 15 diffracted by the reflective volume hologram 2 with respect to the reflected light 14 is generated toward the second surface 2b. Then, the diffracted light 15 is reflected by the reflective layer 3, and the emitted light 16 is emitted from the normal direction of the first surface 2 a of the hologram laminate 1.
  • the incident light is incident on the surface 2a from a position inclined downward by 45 °, the incident light is not diffracted in the non-picture portion 21 because there is no interference fringe. Therefore, when the surface 2a is observed from the normal direction when incident light is incident on the surface 2a from a position inclined 45 ° downward, the pattern portion 21 has high luminance and the non-pattern portion 22 has low luminance. The pattern portion 21 can be recognized.
  • the hologram laminate 1 of the first embodiment can emit reproduction light in a predetermined direction with respect to incident light 13 other than the angle set in the reflective volume hologram 2. That is, when the hologram laminate 1 according to the first embodiment makes light incident on the incident surface of the volume hologram so that the azimuth is 180 ° different from the incident light having a preset angle and the elevation angle is the same. The emitted light can be obtained from the same angle as when light having a preset angle is incident. Therefore, it is possible to determine the authenticity of the hologram laminate 1 by performing the normal reproduction shown in FIG. 3 and the other reproduction shown in FIG.
  • the preset incident direction is an elevation angle of 45 ° with respect to the entrance surface of the volume hologram and the diffraction direction is the elevation angle of 90 ° with respect to the exit surface of the volume hologram
  • the entrance direction and the diffraction direction are arbitrary. In this case, the above-mentioned “other reproduction” is possible.
  • FIG. 5 shows a specific observation method for realizing the normal reproduction state and other reproduction state in the hologram structure of the first embodiment.
  • FIG. 5A shows a case where reproduction light is observed in one incident light direction with respect to the hologram laminate of the first embodiment.
  • FIG. 5B shows a state where the hologram laminate of the first embodiment is rotated by 180 ° without changing the positions of the light source and the observer.
  • the portion of the reflective volume hologram 2 is shown in a star shape so that the top and bottom are easily understood.
  • the hologram laminate 1 has the hologram laminate 1 without changing the positional relationship between the light source and the observer when the reproduction light is observed in one incident light direction. Is rotated 180 ° so that the top and bottom of the pattern are reversed, it is possible to observe a reproduced image with the top and bottom reversed.
  • the surface of the hologram laminate 1 on the reflective volume hologram side is referred to as a surface 2a, and the surface on the reflective layer 3 side is referred to as a surface 3a.
  • the hologram laminate 1 is rotated so that the top and bottom of the pattern is reversed.
  • the present invention is not limited to this, and in this embodiment, the hologram laminate 1 is compared with the normal reproduction state. Is rotated 180 ° in a plane parallel to the first surface, another playback state can be obtained.
  • FIG. 6 shows a plan view of the hologram laminate 1 of the second embodiment.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • the hologram laminate 1 of the second embodiment includes a reflective volume hologram 2, a reflective layer 3, and a scattering layer 4.
  • the pattern portion 21, the reflective layer 3, and the scattering layer 4 of the reflective volume hologram are arranged so that at least a part thereof overlaps.
  • the upper side of the hologram laminate 1 is 1a and the lower side is 1b.
  • another transparent material may be laminated outside the surface 2a in FIG. 2 (outside the reflective volume hologram 2). Also, other layers may be laminated on the outside of the surface 3a (outside of the reflective layer 3) regardless of whether it is transparent or opaque. Further, another transparent material may be laminated between the hologram laminate 1 and the scattering layer 4. Further, another transparent material may be laminated between the scattering layer 4 and the reflective layer 3.
  • the reflection type volume hologram 2 may be a conventional reflection type volume hologram, and has a picture part 21 and a non-picture part 22 as shown in FIG.
  • the pattern portion 21 is a portion that emits reproduction light in a predetermined direction when the reproduction illumination light enters from a predetermined direction.
  • the non-pattern portion 22 is the same as the pattern portion and the material structure, and is a portion where no interference fringes having a difference in refractive index in the material are recorded.
  • the scattering layer 4 scatters light in multiple directions, and is laminated between the reflective volume hologram 2 and the reflective layer 3.
  • the scattering layer 4 only needs to partially overlap the pattern portion 21 of the reflective volume hologram 2 and the reflective layer 3, and may be patterned.
  • the material of the scattering layer 4 is not particularly limited as long as it has a function of transmitting and scattering light.
  • the outermost surface layer of the metal layer of the reflective layer 3 may have a fine and random uneven structure. In that case, the material of the scattering layer 4 and the reflective layer 3 is the same metal, and the reflective layer 3 is In such a portion, the scattering layer 4 is an uneven structure portion, and the two layers are continuously connected.
  • the scattering layer 4 a transparent resin material mixed with organic fine particles or inorganic fine particles may be laminated by coating.
  • the scattering layer 4 may be colored as long as it has a function of transmitting and scattering light.
  • a transparent resin material laminated on the reflective layer 3 and having a fine and random uneven structure may be used.
  • the presence of the scattering layer 4 can reduce the regular reflectance of the light source at the non-pattern part 22 and can reduce the glare under the regular reflection condition of the non-pattern part.
  • the pre-designed diffraction angle of the reflection hologram 2 can be designed to be different from the specular reflection condition, the specular reflection light of the light source does not get in the way when viewing the pattern of the reflection hologram.
  • the regular reflection light of the light source can be reduced to increase the visibility of those printed pattern elements. Can be raised.
  • the degree of light scattering of the scattering layer 4 is related to the regular reflectance of the light source.
  • the ability to scatter light is high, and it is desirable that the regular reflectance is low.
  • the regular reflectance of the non-picture portion 22 is preferably 10% or more.
  • the regular reflectance of the non-picture part 22 is 10% or more, the luminance of the picture part 21 of the hologram inverted by 180 degrees is 1 or more with respect to the brightness of the non-picture part 22, and a luminance meter, etc. If the instrument is used, it is possible to observe the pattern of the hologram reversed 180 degrees. More preferably, the regular reflectance of the non-picture portion 22 is preferably 20% or more. If the regular reflectance of the non-picture part 22 is 20% or more, the luminance of the picture part 21 of the hologram reversed 180 degrees is 2 or more with respect to the brightness of the non-picture part 22 and is clearly visible. The hologram pattern reversed 180 degrees can be recognized.
  • FIG. 8 shows a state during normal reproduction of the hologram laminate 1 of the second embodiment.
  • the reproduction illumination light 11 is incident on the hologram laminate 1 of the second embodiment.
  • the reproduction illumination light 11 is incident from the incident direction designed in advance when the reflective volume hologram 2 is produced.
  • the reproduction light 12 diffracted by the reflective volume hologram 2 is emitted in a diffraction direction designed in advance when the reflective volume hologram 2 is produced.
  • the non-pattern part 21 since there is no interference fringe, incident light is not diffracted. Therefore, when the hologram laminate of the first embodiment is observed from a predetermined direction, the pattern portion 21 has high luminance and the non-pattern portion 22 has low luminance. Therefore, the pattern portion 21 can be easily recognized.
  • the reproduction illumination light 11 is incident on the first surface 2a from a position inclined 45 ° upward, the reproduction light 12 is converted into the first surface 2a. It was set to emit in the normal direction.
  • FIG. 9 shows another state during reproduction of the hologram laminate 1 of the second embodiment.
  • the light enters from the first surface 2a of the reflective volume hologram 2 of the hologram laminate 1 of the second embodiment. Then, the incident light 13 is scattered by the scattering layer 4 and reflected by the reflection layer 3 to generate reflected light 14. The light that has passed through the scattering layer 4 is emitted in various directions and reflected. Of the reflected light, diffracted light 15 diffracted by the reflective volume hologram 2 is generated with respect to the reflected light 14 reflected in the direction of the reference light when the reflective volume hologram 2 is produced. Then, the diffracted light 15 is scattered by the scattering layer 4, reflected by the reflection layer 3, and emitted light 16 is emitted from the first surface 2 a of the hologram laminate 1.
  • the incident light is incident on the surface 2a from a position inclined downward by 45 °, the incident light does not diffract in the non-picture portion 21 because there is no interference fringe. Therefore, when the surface 2a is observed from the normal direction when incident light is incident on the surface 2a from a position inclined 45 ° downward, the pattern portion 21 has high luminance and the non-pattern portion 22 has low luminance. The pattern portion 21 can be recognized.
  • the hologram laminate 1 of the second embodiment can emit reproduction light in various directions with respect to incident light other than the angle set in the reflective volume hologram 2 by using the scattering layer 4. It becomes possible. That is, as shown in FIG. 5A and FIG. 5B, the hologram laminate 1 of the second embodiment has a light source and an observer's position when the reproduction light is observed in one incident light direction. If the hologram laminate 1 is rotated 180 ° so that the top and bottom of the pattern is reversed without changing the positional relationship, it is possible to observe a reproduced image with the top and bottom reversed. Therefore, the authenticity of the hologram laminate 1 can be determined by performing the normal reproduction shown in FIG. 8 and the other reproduction shown in FIG.
  • the preset incident direction is an elevation angle of 45 ° with respect to the entrance surface of the volume hologram and the diffraction direction is the elevation angle of 90 ° with respect to the exit surface of the volume hologram has been described.
  • the direction and the diffraction direction can be arbitrarily set, and even in this case, the effect of the present embodiment can be obtained.
  • FIG. 10 shows an optical measurement system for measuring the luminance of the hologram laminate 1 of the example.
  • FIG. 11 shows a region of the pattern portion 21 and a region of the non-pattern portion 22 of the reflective volume hologram 2 of the embodiment.
  • the volume hologram recording material is formed on a PET film (Toray Co., Ltd., Lumirror (registered trademark) T-60, thickness 25 ⁇ m) (base film) so as to have a dry film thickness of 10 ⁇ m. Coating was performed with a gravure coat, and a PET film (Tosero Co., Ltd., “SP-PET”, thickness 50 ⁇ m) (release film) was laminated on the coated surface, and the first laminate (release film / volume hologram layer / Substrate film).
  • a PET film Toray Co., Ltd., Lumirror (registered trademark) T-60, thickness 25 ⁇ m
  • base film base film
  • a reflective volume hologram was recorded on the first laminate using a laser beam having a wavelength of 532 nm to obtain a volume hologram film having a pattern having a diffraction center wavelength at 530 nm.
  • the reflective volume hologram 2 is fixed at a dose of 2500 mJ / cm 2 using a high-pressure mercury lamp, then the release film is peeled off, and the volume hologram layer / base film layer Got the configuration.
  • a hologram laminate 1 having a laminated structure of reflective volume hologram 2 / reflective base material (reflective layer 3) using the base film as a reflective base material.
  • Epoxy group-containing acrylic resin Blemmer CP-50M (manufactured by NOF Corporation) (mass average molecular weight 10,000, epoxy equivalent 310 g / eq.): 17 parts by mass Polyvinyl acetate; Dencasacnol SN-08H ( (Manufactured by Denki Kagaku Kogyo Co., Ltd.) (degree of polymerization 800): 17 parts by mass 1,6-hexanediol diglycidyl ether (Denacol EX-212; manufactured by Nagase ChemteX Corporation): 25 parts by mass diphenoxyethanol full orange Acrylate (BPEFA; manufactured by Osaka Gas Chemical Co., Ltd.): 35 parts by mass • Diaryliodonium salt (PI2074; manufactured by Rhodia): 4 parts by mass • 2,5-bis (4-diethylaminobenzylidene) cyclopentanone: 1 part by
  • the obtained hologram laminate 1 was able to visually recognize a hologram even when it was inverted 180 degrees from that position into the incident plane. That is, the hologram can be visually recognized even if the hologram laminate 1 is rotated upside down.
  • the reflectance of the non-picture portion 22 of the obtained volume hologram laminate 1 was measured using a spectrophotometer (UV-2450, manufactured by Shimadzu Corporation).
  • UV-2450 UV-2450, manufactured by Shimadzu Corporation.
  • the specular reflectance of the part having no pattern (22a part in FIG. 11) when the incident angle was 45 degrees was measured, it was 72% at a wavelength of 530 nm.
  • the incident direction of light was incident on the obtained volume hologram laminate 1 from the “ground” side (1b side) of the pattern.
  • the brightness of the case was measured.
  • a xenon light source manufactured by Asahi Spectrograph Co., Ltd .; MAX-301
  • a color equipped with a daylighting lens for sensing reflected light is used as an apparatus for measuring the brightness of reflected light
  • a luminance meter Topiccon Co., Ltd .; BM-7) was used.
  • the optical measurement system for measuring the luminance is as shown in FIG.
  • This optical measurement system includes a traveling direction of light emitted from the xenon light source 51 (arrow L in FIG. 10) and a thickness direction of a daylighting lens of the color luminance meter 52 (a direction along a direction in which a straight line Y extends in FIG. 10). ),
  • the xenon light source 51 and the color luminance meter 52 are arranged so that the angle (angle ⁇ on the acute angle side) is 45 degrees, and light is emitted from the xenon light source 51 at a position on the extension line in the thickness direction of the daylighting lens.
  • the hologram laminate 1 is arranged at the incident position.
  • the hologram laminate 1 is arranged so that the surface 2 a on the hologram layer side faces the xenon light source 51 and the color luminance meter 52.
  • the light is incident so that the incident direction is from the “ground” side (1 b side) of the pattern.
  • the hologram laminate 1 is tilted at various angles (rotation angle ⁇ ; an angle formed by the straight line X orthogonal to the straight line Y and the surface of the laminated structure), and the hologram laminate is determined from the position of the daylighting lens of the color luminance meter 52. Measurement was performed at a position where the image recorded on the reflective volume hologram 2 was most bright when 1 was viewed. For the measurement of luminance, as shown in FIG.
  • the region of the pattern portion 21 (the portion of the pattern where the hologram image appears bright and bright) and the non-pattern portion 22 (the portion where there is no hologram image and the layer below the hologram layer is visible)
  • Two areas were selected as measurement spots (areas 21a and 22a divided by broken lines in FIG. 11), and the luminances of the areas 21a and 22a serving as the respective measurement spots were measured.
  • both the region 21 a and the region 22 a are portions in which the reflective layer 3 is laminated on the reflective volume hologram 2.
  • the brightness of the picture part 21 was 5209 cd / m 2
  • the brightness of the non-picture part 22 was 66.15 cd / m 2.
  • the contrast of the hologram image when the light incident direction is incident on the hologram laminate 1 from the "ground" side (1b side) of the pattern is As shown in Table 1 below, it was 78.7.
  • the contrast indicates a value obtained by dividing (the luminance of the pattern portion) by (the luminance of the portion having no pattern).
  • the release film was peeled off to obtain a layer structure of volume hologram layer / base film, and then on the surface of the base film Before vapor-depositing aluminum, it prepared similarly to the Example except having provided the scattering layer 4 which strengthens scattering on the base film surface. That is, a composition having the following composition was applied on the base film with a thickness of 1 ⁇ m to form the scattering layer 4.
  • the material of the scattering layer 4 is as follows.
  • -Titanium oxide pigment ink Panacia CVL-SP709 white, manufactured by DIC Graphics Corporation
  • 5 parts by mass-Transparent resin-Polymethyl methacrylate weight average molecular weight 100,000
  • 95 parts by mass-Solvent methyl ethyl ketone
  • Example 2 In the same manner as in Example 1, an aluminum layer was further deposited by vapor deposition of 500 mm on the surface provided with the layer (scattering layer 4) for enhancing scattering.
  • Table 1 shows the contrast between the luminance of the pattern portion 21 and the luminance of the non-pattern portion 22 when the reflectance of the non-pattern portion 22 and the incident direction of light are incident from the “ground” side (1b side) of the pattern. It was. Note that both the regions 21a and 22a serving as luminance measurement spots were portions in which the scattering layer 4 and the reflection layer 3 were laminated on the reflection type volume hologram 2.
  • the hologram laminate 1 of Example 3 was carried out in the same manner except that the material of the scattering layer 4 of Example 2 was changed to the following.
  • -Titanium oxide pigment ink Panacia CVL-SP709 white manufactured by DIC Graphics Corporation
  • the hologram laminate 1 of Example 4 was carried out in the same manner except that the material of the scattering layer 4 of Example 2 was changed to the following.
  • -Titanium oxide pigment ink Panacia CVL-SP709 white manufactured by DIC Graphics: 15 parts by mass-Transparent resin-Polymethyl methacrylate (weight average molecular weight 100,000): 85 parts by mass-Solvent (methyl ethyl ketone): 150 parts by mass Part
  • the hologram laminate 1 of Example 5 was carried out in the same manner except that the material of the scattering layer 4 of Example 2 was changed to the following.
  • -Titanium oxide pigment ink Panacia CVL-SP709 white manufactured by DIC Graphics Corporation: 20 parts by mass-Transparent resin-Polymethyl methacrylate (weight average molecular weight 100,000): 80 parts by mass-Solvent (methyl ethyl ketone): 150 parts by mass Part
  • the hologram laminate 1 of Example 6 was carried out in the same manner except that the material of the layer for enhancing scattering in Example 2 was changed to the following.
  • -Titanium oxide pigment ink Panacia CVL-SP709 white manufactured by DIC Graphics Corporation: 30 parts by mass-Transparent resin-Polymethyl methacrylate (weight average molecular weight 100,000): 70 parts by mass-Solvent (methyl ethyl ketone): 150 parts by mass Part
  • the hologram laminate 1 of Comparative Example 1 was carried out in the same manner except that aluminum was not deposited in Example 1 above. Since aluminum was not deposited, no reflective layer was laminated on the reflective volume hologram 2 in the regions 21a and 22a serving as luminance measurement spots. Since no scattering layer is provided, both the regions 21a and 22a are portions where the scattering layer is laminated.
  • the hologram laminate 1 of Comparative Example 2 was obtained by laminating the volume hologram 2 with high-quality white paper (scattering layer 4) using a transparent adhesive instead of performing aluminum deposition in Example 1 above. Since aluminum was not deposited, no reflective layer was laminated on the reflective volume hologram 2 in the regions 21a and 22a serving as luminance measurement spots. Since the high quality paper is laminated, the scattering layer 4 is not laminated in both the regions 21a and 22a.
  • the hologram laminate 1 of Comparative Example 3 was implemented in the same manner except that the material of the scattering layer 4 of Example 2 was changed to the following.
  • -Titanium oxide pigment ink Panacia CVL-SP709 white manufactured by DIC Graphics Corporation
  • Table 1 is shown below.
  • indicates that the pattern can be clearly visually recognized
  • indicates that the difference can be recognized by measuring with a luminance meter
  • x indicates that it is difficult to visually recognize.
  • the hologram laminate 1 of this embodiment has a contrast between the luminance of the picture portion 21 and the luminance of the non-picture portion 22 larger than 1, and even if the hologram is rotated 180 degrees in the incident plane, It is possible to observe the pattern.
  • the hologram laminate 1 of the present embodiment can emit reproduction light with respect to incident light other than the angle set in the reflective volume hologram 2.
  • the hologram laminate 1 is adhered to at least a part of an adherend such as a card to constitute a security medium.
  • the hologram laminate 1 includes at least a part of the reflective volume hologram 2 that emits incident light from at least a predetermined angle to a predetermined angle, and the reflective volume hologram 2. Since the reflective layer 3 is provided, it is possible to accurately determine the authenticity by a new usage method.
  • the hologram laminate 1 of the present embodiment includes the scattering layer 4 laminated between the reflective volume hologram 2 and the reflective layer 3, it is possible to accurately determine the authenticity by a new usage method.
  • the reflective volume hologram 2 has a pattern portion 21 for reproducing a pattern and a non-pattern portion 22 other than that, and the reflectance of the non-pattern portion 22 is 10% or more. Therefore, authenticity determination can be made more accurately.
  • the reflection type volume hologram 2 has a pattern portion 21 for reproducing a pattern and a non-pattern portion 22 other than that, and the contrast between the pattern portion 21 and the non-pattern portion 22 (described above). Since the brightness of the picture part) / (the brightness of the non-picture part) is 1 or more, the authenticity determination can be made more accurately.
  • the security medium of the present embodiment includes the hologram laminate 1 and the adherend to which the hologram laminate 1 is bonded, it is possible to accurately determine the authenticity by a new usage method.
  • the method of using the hologram laminate 1 of the present embodiment is such that incident light is incident on the hologram laminate 1 from a predetermined incident direction of the reflective volume hologram 2 and is emitted from the surface side on which the incident light is incident. Since the incident light is observed, it is possible to accurately determine the authenticity by a new usage method.
  • the incident light is incident on the hologram laminate 1 after being rotated by 180 degrees in a plane including the surface on which the incident light is incident. Since the emitted light is observed from the surface side, the authenticity can be accurately determined by a new usage method.
  • the present invention is not limited to these embodiments, and various combinations or modifications are possible.
  • SYMBOLS 1 Hologram laminated body 1a ... Upper side 1b ... Lower side 2 ... Volume type hologram 21 ... Pattern part 22 ... Non-pattern part 2a ... 1st surface 2b ... 2nd surface 3 ... Reflective layer 4 ... Scattering layer 51 ... Xenon light source 52 ... Color Luminance meter

Abstract

【課題】 新たな使用方法によって的確に真贋判定が可能なホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法を提供する。 【解決手段】 ホログラム積層体1は、少なくとも予め定めた所定の角度からの入射光を予め定めた所定の角度へ出射する反射型体積ホログラム2と、反射型体積ホログラム2に少なくとも一部が積層される反射層3と、を備えることを特徴とする。

Description

ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法
 本発明は、物品等に貼付又は転写することで、物品の偽造を防止するホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法に関するものである。
 従来から、キャッシュカード、クレジットカード、小切手カード等のカード類、金券類、身分証明書、重要書類等のような認証とともに偽造防止を必要とする物品に対して、各種の偽造防止手段が図られている。例えば、ホログラムを用いて、コピー機等による複製を防止する技術が開示されている。
 ホログラムは、干渉縞の記録形態によっていくつかの種類に分類することができるが、表面レリーフホログラムと体積ホログラムとが代表的である。ここで、表面レリーフホログラムは、ホログラム層の表面に微細な凹凸パターンが賦型されることによりホログラム像が記録されたものである。一方、上記体積ホログラムは光の干渉によって生じる干渉縞が、屈折率の異なる縞として厚み方向に三次元的に描画されることによってホログラム像が記録されたものである。このうち、上記体積ホログラムは材料内部の屈折率分布によってホログラム像が記録されたものであるため、上記表面レリーフホログラムに比べて複製することが困難であるという利点を有することから、有価証券やカード類の偽造防止手段としての用途が期待されている。
 特許文献1には、反射型体積ホログラムを透過観察可能とし、照明光源を観察側と反対側の背後に配置可能とし、通常とは異なる方法で使用することが記載されている。
特許3552161号公報
 特許文献1に開示された反射型体積ホログラムでは、真贋判定等に用いる場合の具体的な方法は記載されていない。
 本発明は、新たな使用方法によって的確に真贋判定が可能なホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法を提供する。
 上記目的を達成する本発明にかかるホログラム積層体は、
 少なくとも予め定めた所定の角度からの入射光を予め定めた所定の角度へ出射する反射型体積ホログラムと、
 前記反射型体積ホログラムに少なくとも一部が積層される反射層と、
を備えることを特徴とする。
 また、本発明にかかるホログラム積層体は、
 前記反射型体積ホログラムと前記反射層との間に積層される散乱層を備える
ことを特徴とする。
 また、本発明にかかるホログラム積層体は、
 前記反射型体積ホログラムは、絵柄を再生する絵柄部分及びそれ以外の非絵柄部分を有し、
 前記非絵柄部分の反射率は、10%以上である
ことを特徴とする。
 また、本発明にかかるホログラム積層体は、
 前記反射型体積ホログラムは、絵柄を再生する絵柄部分及びそれ以外の非絵柄部分を有し、
 前記絵柄部分と前記非絵柄部分のコントラスト(前記絵柄部分の輝度)/(前記非絵柄部分の輝度)は、1以上である
ことを特徴とする。
 また、本発明にかかるセキュリティ媒体は、
 前記ホログラム積層体と、
 前記ホログラム積層体を接着する被着体と、
を備えることを特徴とする。
 また、本発明にかかるホログラム積層体の使用方法は、
 前記ホログラム積層体に対して、
 前記反射型体積ホログラムの予め定めた入射方向から前記入射光を入射させ、前記入射光が入射する面側から出射光を観察する
ことを特徴とする。
 また、本発明にかかるホログラム積層体の使用方法は、
 前記ホログラム積層体に対して、
 前記入射光が入射する面を含む面内で180度回転させて前記入射光を入射させ、前記入射光が入射する面側から出射光を観察する
ことを特徴とする。
 本発明のホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法によれば、新たな使用方法によって的確に真贋判定が可能となる。
第1実施形態のホログラム積層体の正面図を示す。 図1のII-II線の断面図を示す。 第1実施形態のホログラム積層体の通常再生時の状態を示す。 第1実施形態のホログラム積層体の他の再生時の状態を示す。 第1実施形態のホログラム積層体に対して1つの入射光方向で再生光が観察される場合を示す。 第2実施形態のホログラム積層体の平面図を示す。 図6のVII-VII線の断面図を示す。 第2実施形態のホログラム積層体の通常再生時の状態を示す。 第2実施形態のホログラム積層体の他の再生時の状態を示す。 実施例のホログラム積層体の輝度を測定するための光学測定系を示す。 実施例の反射型体積ホログラムの絵柄部分の領域と非絵柄部分の領域を示す。
 以下、図面を参照にして本発明にかかるホログラム積層体について説明する。なお、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「直交」、「同一」等の用語や角度や波長の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
 図1は、第1実施形態のホログラム積層体1の正面図を示す。図2は、図1のII-II線の断面図を示す。
 第1実施形態のホログラム積層体1は、図1及び図2に示すように、反射型体積ホログラム2と、反射層3と、を備える。反射型体積ホログラム2の絵柄部分21及び反射層3は、それぞれ少なくとも一部が重なるように配置される。なお、ホログラム積層体1の上辺を1a、下辺を1bとする。また、ホログラム積層体1の反射型体積ホログラム側の面を面2a、反射層3側の面を面3aとする。
 反射層3は、プラスチックフィルムなどの透明の基材にAlなどの金属蒸着したものや、プラスチックフィルムなどの透明の基材に反射性(または高輝性)のメタリックインキ(Alフレークインキ、銀インキ)などを印刷したものなどが好適に用いられる。また、反射型体積ホログラム2に直接、Alなどの金属蒸着を施してもよい。また、反射型体積ホログラム2に直接、反射性(または高輝性)のメタリックインキ(Alフレークインキ、銀インキ)などを印刷してもよい。反射層3は、一部が反射型体積ホログラム2の絵柄部分21に重なっていればよく、パターニングされていてもよい。
 第1実施形態のホログラム積層体1は、図2において面2aの外側(反射型体積ホログラム2の外側)には、透明の他の材料が積層されていてもよい。また、面3aの外側(反射層3の外側)には透明・不透明にかかわらず、他の層が積層されていてもよい。また、反射型体積ホログラム2と反射層3の間には、透明の他の材料(散乱性能はないものとする)が積層されていてもよい。
 反射型体積ホログラム2は、従来からの反射型体積ホログラムでよく、図2に示すように、絵柄部分21と非絵柄部分22とを有する。絵柄部分21は、所定の方向から再生照明光を入射すると所定の方向に再生光を射出する部分である。非絵柄部分22は、絵柄部分と材料構成としては同一のものであって、材料内に屈折率の高低の差がある干渉縞が記録されていない部分である。反射層3は、反射型体積ホログラム2に積層される。
 真贋判定される反射型体積ホログラム2は、透明であって、予め定めた所定の波長の物体光と参照光をホログラム記録用感光材料に予め定めた所定の入射角で入射させることで作製する。例えば、第1実施形態の反射型体積ホログラム2は、ホログラム記録用感光材料の表面に垂直な方向から波長λ=532nmの物体光を入射させ、裏面から波長λ=532nmの参照光を入射角45°で入射させる。
 このようにして記録した反射型体積ホログラム2は、作成時の参照光が向かう方向とは反対の方向の角度近傍より光を入射させると、物体光が入射してきた方向と反対の方向近傍へ、記録波長(λ=532nm)近傍の波長の光を強く回折する。この場合、回折光の光量が最も強くなる光源の入射方向を、反射型体積ホログラム2の「予め設計された入射方向」と言う。また、その場合の回折光の回折方向を、反射型体積ホログラムの「予め設計された回折方向」と言う。
 図3は、第1実施形態のホログラム積層体1の通常再生時の状態を示す。
 第1実施形態のホログラム積層体1に再生照明光11を入射する。再生照明光11は、反射型体積ホログラム2を作製した時の予め設計された入射方向から入射させる。すると、反射型体積ホログラム2の絵柄部分21で回折した再生光12が反射型体積ホログラム2を作製した時の予め設計された回折方向に出射する。非絵柄部分21では干渉縞がないため入射光は回折しない。従って所定の方向から、第1実施形態のホログラム積層体1を観察すると、絵柄部分21は輝度が高く、非絵柄部分22は輝度が低く、そのために、絵柄部分21を容易に認識することができる。第1実施形態のホログラム積層体1では、一例として、図3に示すように、再生照明光11を上方45°傾斜した位置から第1面2aに入射させると、再生光12が第1面2aの法線方向に出射するように設定した。
 図4は、第1実施形態のホログラム積層体1の他の再生時の状態を示す。
 次に、第1実施形態のホログラム積層体1の反射型体積ホログラム2の第1面2aに入射光を下方45°傾斜した位置から入射させる。すると、入射光13は第2面2bを通過し、反射層3に反射して、反射光14が生じる。その反射光14は、反射型体積ホログラム2を作製した時の予め設計された入射方向とは逆の方向から反射型体積ホログラム2に入射することとなる。したがって、反射光14に対して反射型体積ホログラム2で回折された回折光15が第2面2bに向かって生じる。そして、回折光15が反射層3に反射してホログラム積層体1の第1面2aの法線方向から出射光16が出射する。面2aに入射光を下方45°傾斜した位置から入射させた場合にも、非絵柄部分21では干渉縞がないため入射光は回折しない。従って、面2aに入射光を下方45°傾斜した位置から入射させた場合に法線方向から面2aを観察すると、絵柄部分21は輝度が高く、非絵柄部分22は輝度が低く、そのために、絵柄部分21を認識することができる。
 このように、第1実施形態のホログラム積層体1は、反射型体積ホログラム2に設定した角度以外の入射光13に対して所定の方向に再生光を出射することが可能となる。すなわち、第1実施形態のホログラム積層体1は、体積ホログラムの入射面に対して、予め設定した角度の入射光とは方位角が180°異なり、仰角が同じになるよう、光を入射させると、予め設定した角度の光を入射した際と同じ角度から出射光を得ることができる。したがって、図3に示した通常の再生と図4に示した他の再生を行うことで、ホログラム積層体1の真贋を判定することが可能となる。なお、予め設定した入射方向が体積ホログラムの入射面に対して仰角45°、回折方向が体積ホログラムの出射面に対して仰角90°である場合を説明したが、入射方向、回折方向は任意に設定でき、この場合においても、上記の「他の再生」は可能である。
 図5は、第1実施形態のホログラム構造体において、通常再生時の状態、他の再生時の状態を実現するための、具体的な観察方法を示す。図5(a)は、第1実施形態のホログラム積層体に対して1つの入射光方向で再生光が観察される場合を示す。また、図5(b)は、光源と観察者の位置を変えずに、第1実施形態のホログラム積層体を180°回転した状態を示す。なお、図5では、上下がわかりやすいように、反射型体積ホログラム2の部分を星形に表している。
 「図3に示した通常の再生と図4に示した他の再生を行うことでホログラム積層体1の真贋を判定することが可能」ということを言いかえると、図5(a)および図5(b)に示すように、第1実施形態のホログラム積層体1は、1つの入射光方向で再生光が観察される場合に、光源と観察者の位置関係を変えずに、ホログラム積層体1を絵柄の天地が逆になるように180°回転させると、その場合でも天地が逆の再生像が観察されるということが可能となる。また、ホログラム積層体1の反射型体積ホログラム側の面を面2a、反射層3側の面を面3aとする。
 なお、図5においては、ホログラム積層体1を絵柄の天地が逆になるように回転させたが、これに限らず、本実施形態においては、通常再生時の状態に対して、ホログラム積層体1を第1面に平行な面内において180°回転させれば、他の再生時の状態を得ることができる。
 図6は、第2実施形態のホログラム積層体1の平面図を示す。図7は、図6のVII-VII線の断面図を示す。
 第2実施形態のホログラム積層体1は、図6に示すように、反射型体積ホログラム2と、反射層3と、散乱層4と、を備える。反射型体積ホログラムの絵柄部分21、反射層3、及び散乱層4は、それぞれ少なくとも一部が重なるように配置される。なお、ホログラム積層体1の上辺を1a、下辺を1bとする。
 第2実施形態のホログラム積層体1は、図2において面2aの外側(反射型体積ホログラム2の外側)には、透明の他の材料が積層されていてもよい。また、面3aの外側(反射層3の外側)には透明・不透明にかかわらず、他の層が積層されていてもよい。また、ホログラム積層体1と散乱層4の間には透明の他の材料が積層されていてもよい。また、散乱層4と反射層3の間には透明の他の材料が積層されていてもよい。
 反射型体積ホログラム2は、従来からの反射型体積ホログラムでよく、図2に示すように、絵柄部分21と非絵柄部分22とを有する。絵柄部分21は、所定の方向から再生照明光を入射すると所定の方向に再生光を射出する部分である。非絵柄部分22は、絵柄部分と材料構成としては同一のものであって、材料内に屈折率の高低の差がある干渉縞が記録されていない部分である。散乱層4は、光を多方向に散乱させ、反射型体積ホログラム2と反射層3の間に積層されている。
 散乱層4は、一部が反射型体積ホログラム2の絵柄部分21と反射層3に重なっていればよく、パターニングされていてもよい。
 散乱層4は、光を透過、散乱させる機能をもっていれば、材質に特段限定はない。反射層3の金属層の最表面層に微細でランダムな凹凸構造があるものであってもよく、その場合は散乱層4と反射層3の材料は同じ金属であって、反射層3は一様な部分で散乱層4は凹凸構造部分であって、この2つの層が連続的につながっている。
 また、散乱層4の別な例として、透明な樹脂材料に有機微粒子、または無機微粒子を混ぜ合わせたものをコーティングにより積層させたものでも良い。また、散乱層4は光を透過、散乱する機能があれば、着色していても良い。
 また、散乱層4の別な例として、反射層3の上に積層された透明な樹脂材料であって、微細でランダムな凹凸構造があるものであってもよい。
 散乱層4があることで、非絵柄部分22での光源の正反射率を低減することができ、非絵柄部分の正反射条件での眩しさを低減することができる。多くの場合、反射ホログラム2の予め設計された回折角が正反射条件とは異なるように設計することができるため、光源の正反射光が反射ホログラムの絵柄を視認する場合に邪魔にならないようにすることができるが、例えば印刷などの反射型ホログラム以外の絵柄要素などがセキュリティ媒体内に共存する場合には、光源の正反射光を低減させることで、それらの印刷絵柄要素などの視認性を上げることができる。
 散乱層4の光を散乱させる度合いは光源の正反射率と関係があり、正反射率が高いほど、光を散乱させる能力は低く、正反射率が低いほど光を散乱させる能力が高い。防眩といった意味では、光を散乱させる能力は高い方が望ましく、正反射率が低い方が望ましいが、正反射率10%未満では光が散乱しすぎてしまい、180度絵柄を反転させた場合、ホログラムの天地逆の絵柄を観察することはできなくなる。そのため、非絵柄部分22の正反射率は10%以上であることが好ましい。非絵柄部分22の正反射率が10%以上であれば、180度反転したホログラムの絵柄部分21の輝度が非絵柄部分22の輝度に対して、その比が1以上となって輝度計などの計器を用いれば180度反転したホログラムの絵柄を観察することができる。また、より望ましくは非絵柄部分22の正反射率は20%以上であることが好ましい。非絵柄部分22の正反射率が20%以上であれば、180度反転したホログラムの絵柄部分21の輝度が非絵柄部分22の輝度に対して、その比が2以上となって目視で明確に180度反転したホログラムの絵柄を認識することができる。
 図8は、第2実施形態のホログラム積層体1の通常再生時の状態を示す。
 第2実施形態のホログラム積層体1に再生照明光11を入射する。再生照明光11は、反射型体積ホログラム2を作製した時の予め設計された入射方向から入射させる。すると、反射型体積ホログラム2で回折した再生光12が反射型体積ホログラム2を作製した時の予め設計された回折方向に出射する。非絵柄部分21では干渉縞がないため入射光は回折しない。従って所定の方向から、第1実施形態のホログラム積層体を観察すると、絵柄部分21は輝度が高く、非絵柄部分22は輝度が低く、そのために、絵柄部分21を容易に認識することができる。第2実施形態のホログラム積層体1では、一例として、図8に示すように、再生照明光11を上方45°傾斜した位置から第1面2aに入射させると、再生光12が第1面2aの法線方向に出射するように設定した。
 図9は、第2実施形態のホログラム積層体1の他の再生時の状態を示す。
 次に、第2実施形態のホログラム積層体1の反射型体積ホログラム2の第1面2aから入射する。すると、入射光13が散乱層4で散乱し、反射層3に反射して反射光14が生じる。なお、散乱層4を通過した光は様々な方向に出射し、それぞれ反射する。反射した光のうち、反射型体積ホログラム2の作製した時の参照光の方向に反射した反射光14に対して反射型体積ホログラム2で回折された回折光15が生じる。そして、回折光15は、散乱層4で散乱し、反射層3に反射してホログラム積層体1の第1面2aから出射光16が出射する。面2aに入射光を下方45°傾斜した位置から入射させた場合にも、非絵柄部分21では干渉縞がないため入射光は回折しない。従って、面2aに入射光を下方45°傾斜した位置から入射させた場合に法線方向から面2aを観察すると、絵柄部分21は輝度が高く、非絵柄部分22は輝度が低く、そのために、絵柄部分21を認識することができる。
 このように、第2実施形態のホログラム積層体1は、散乱層4を用いることで、反射型体積ホログラム2に設定した角度以外の入射光に対して様々な方向に再生光を出射することが可能となる。すなわち、図5(a)および図5(b)に示したように、第2実施形態のホログラム積層体1は、1つの入射光方向で再生光が観察される場合に、光源と観察者の位置関係を変えずに、ホログラム積層体1を絵柄の天地が逆になるように180°回転させると、その場合でも天地が逆の再生像が観察されるということが可能となる。したがって、図8に示した通常の再生と図9に示した他の再生を行うことで、ホログラム積層体1の真贋を判定することが可能となる。
 上記の説明においては、一例として、予め設定した入射方向が体積ホログラムの入射面に対して仰角45°、回折方向が体積ホログラムの出射面に対して仰角90°である場合を説明したが、入射方向、回折方向は任意に設定でき、この場合においても、本実施形態の効果を得ることができる。
 次に、本実施形態の実施例について説明する。
 図10は、実施例のホログラム積層体1の輝度を測定するための光学測定系を示す。図11は、実施例の反射型体積ホログラム2の絵柄部分21の領域と非絵柄部分22の領域を示す。
 実施例1のホログラム積層体1は、PETフィルム(東レ株式会社製、ルミラー(登録商標)T-60、厚み25μm)(基材フィルム)上に体積ホログラム記録材料を乾燥膜厚10μmとなるようにグラビアコートにて塗工し、塗工面にPETフィルム(東セロ株式会社、「SP-PET」、厚み50μm)(離型フィルム)をラミネートし、第1の積層体(離型フィルム/体積ホログラム層/基材フィルム)を作製した。そして、第1の積層体に532nmの波長レーザー光を用いて反射型体積ホログラムを記録し、530nmに回折中心波長を有する絵柄をもつ、体積ホログラムフィルムを得た。100℃、10分間加熱した後、高圧水銀灯を利用して2500mJ/cm2の照射量で反射型体積ホログラム2を定着処理した後、離型フィルムを剥離し、体積ホログラム層/基材フィルムの層構成を得た。その後、基材フィルム面にアルミを500Å蒸着し、基材フィルムを反射性基材として反射型体積ホログラム2/反射性基材(反射層3)の積層構成のホログラム積層体1を得た。
 なお、体積ホログラム記録材料は、以下の処方で調整される。
・エポキシ基含有アクリル樹脂;ブレンマーCP-50M(日本油脂(株)製)(質量平均分子量10,000、エポキシ当量310g/eq.):17質量部
・ポリ酢酸ビニル;デンカサクノールSN-08H(電気化学工業(株)製)(重合度800):17質量部
・1,6-ヘキサンジオールジグリシジルエーテル(デナコールEX-212;ナガセケムテックス(株)製):25質量部
・ジフェノキシエタノールフルオレンジアクリレート(BPEFA;大阪ガスケミカル(株)製):35質量部
・ジアリールヨードニウム塩(PI2074;ローディア製):4質量部
・2,5-ビス(4-ジエチルアミノベンジリデン)シクロペンタノン:1質量部
・メチルイソブチルケトン:100質量部
・1-ブタノール:100質量部
 得られたホログラム積層体1は、図5に示すように、予め設計された観察位置においても、そこから入射面内に180度反転させた場合にホログラムが視認できた。すなわち、ホログラム積層体1の上下を逆に回転させてもホログラムを視認することが可能となる。
 ここで、得られた体積型ホログラム積層体1の非絵柄部分22の反射率を分光光度計((株)島津製作所社製、UV-2450)を用いて測定した。 入射角度は45度とした場合の絵柄のない部分(図11の22a部分)の正反射率を測定したところ、波長530nmで72%であった。
 次に、得られた体積型ホログラム積層体1に、図4、図5(b)、および図9に示すように、光の入射方向が絵柄の「地」側(1b側)より入射させた場合の輝度を測定した。このとき、光の入射を行うための装置として、キセノン光源(朝日分光社製;MAX-301)を用い、反射光の輝度を測定するための装置として、反射光を感知する採光レンズを備える色彩輝度計(トプコン社製;BM-7)を用いた。
 輝度を測定するための光学測定系は、図10に示すとおりである。この光学測定系は、キセノン光源51から照射される光の進行方向(図10において、矢印L)と色彩輝度計52の採光レンズの厚み方向(図10中、直線Yの延びる方向に沿った方向)のなす角度(鋭角側の角度θ)が45度となるように、キセノン光源51と色彩輝度計52を配置し、採光レンズの厚み方向の延長線上の位置であってキセノン光源51から光を入射される位置にホログラム積層体1を配置してなる。このときホログラム積層体1は、そのホログラム層側の面2aをキセノン光源51と色彩輝度計52に向けるように配置されている。また、図4、図5(b)、および図9に示すのと同様に、光の入射方向が絵柄の「地」側(1b側)より入射するように配置されている。
 輝度の測定にあたっては、ホログラム積層体1を様々な角度(回転角度ψ;直線Yに直交する直線Xと積層構造体面のなす角度)に傾け、色彩輝度計52の採光レンズの位置からホログラム積層体1を見た場合に最も反射型体積ホログラム2に記録された絵柄が明るく見える位置にて測定を行った。輝度の測定には、図11のように、絵柄部分21(ホログラム画像が明るく光って見える絵柄の部分)の領域と非絵柄部分22(ホログラム画像がなく、ホログラム層の下の層が見える部分)の領域より2箇所を測定スポット(図11中、破線で区画された領域21a,22a)として選択して、それぞれの測定スポットとなる領域21a,22aについての輝度を測定した。なお、領域21a、領域22aともに、反射型体積ホログラム2に反射層3が積層された部分である。絵柄部分21の輝度は5209cd/m2であり、非絵柄部分22の輝度は66.15cd/m2であった。
 ホログラム積層体1に、図4、図5(b)、および図9に示すように、光の入射方向が絵柄の「地」側(1b側)より入射させた場合におけるホログラム画像のコントラストは、以下の表1に示すとおり、78.7であった。ここで、コントラストは、(絵柄部分の輝度)を(絵柄のない部分の輝度)で除算した値を示す。
 実施例2のホログラム積層体1は、実施例1において反射型ホログラム2を定着させた後に離型フィルムを剥離し、体積ホログラム層/基材フィルムの層構成を得たあと、基材フィルム面にアルミを蒸着する前に、基材フィルム面上に、散乱を強める散乱層4を設けた以外は、実施例と同様に準備した。つまり、以下の組成からなる組成物を基材フィルム上に1μmの厚みで塗布し、散乱層4とした。
 散乱層4の材料は、以下の通りである。
・酸化チタン顔料インキ(DICグラフィックス(株)製 パナシアCVL-SP709白):5質量部
・透明樹脂・ポリメチルメタクリレート(重量平均分子量100,000):95質量部
・溶剤(メチルエチルケトン):150質量部
 散乱を強める層(散乱層4)を設けた面にさらにアルミの層を500Å蒸着にてさせたのは、実施例1と同様である。非絵柄部分22の反射率および、光の入射方向が絵柄の「地」側(1b側)より入射させた場合の絵柄部分21の輝度と非絵柄部分22の輝度のコントラストを表1中に示した。なお、輝度の測定スポットとなる領域21a,22aについてはともに、反射型体積ホログラム2に散乱層4と反射層3が積層された部分であった。
 実施例3のホログラム積層体1は、上記実施例2の散乱層4の材料を以下のものにした以外は同様に実施した。
・酸化チタン顔料インキ(DICグラフィックス(株)製 パナシアCVL-SP709白):10質量部
・透明樹脂・ポリメチルメタクリレート(重量平均分子量100,000):90質量部
・溶剤(メチルエチルケトン):150質量部
 実施例4のホログラム積層体1は、上記実施例2の散乱層4の材料を以下のものにした以外は同様に実施した。
・酸化チタン顔料インキ(DICグラフィックス(株)製 パナシアCVL-SP709白):15質量部
・透明樹脂・ポリメチルメタクリレート(重量平均分子量100,000):85質量部
・溶剤(メチルエチルケトン):150質量部
 実施例5のホログラム積層体1は、上記実施例2の散乱層4の材料を以下のものにした以外は同様に実施した。
・酸化チタン顔料インキ(DICグラフィックス(株)製 パナシアCVL-SP709白):20質量部
・透明樹脂・ポリメチルメタクリレート(重量平均分子量100,000):80質量部
・溶剤(メチルエチルケトン):150質量部
 実施例6のホログラム積層体1は、上記実施例2の散乱を強める層の材料を以下のものにした以外は同様に実施した。
・酸化チタン顔料インキ(DICグラフィックス(株)製 パナシアCVL-SP709白):30質量部
・透明樹脂・ポリメチルメタクリレート(重量平均分子量100,000):70質量部
・溶剤(メチルエチルケトン):150質量部
 次に、比較例について説明する。
 比較例1のホログラム積層体1は、上記実施例1でアルミの蒸着を行わなかった以外は同様に実施した。アルミの蒸着を行わなかったので、輝度の測定スポットとなる領域21a,22aについてはともに、反射型体積ホログラム2に反射層は積層されていない。散乱層も設けていないため、領域21a,22aについてはともに散乱層は積層されている部分であった。
 比較例2のホログラム積層体1は、体積型ホログラム2を上記実施例1でアルミの蒸着を行わなかった代わりに、透明の接着剤を用いて白紙の上質紙(散乱層4)と積層した。アルミの蒸着を行わなかったので、輝度の測定スポットとなる領域21a,22aについてはともに、反射型体積ホログラム2に反射層は積層されていない。上質紙と積層しているため、領域21a,22aについてはともに散乱層4は積層されていない。
 比較例3のホログラム積層体1は、上記実施例2の散乱層4の材料を以下のものにした以外は同様に実施した。
・酸化チタン顔料インキ(DICグラフィックス(株)製 パナシアCVL-SP709白):50質量部
・透明樹脂・ポリメチルメタクリレート(重量平均分子量100,000):70質量部
・溶剤(メチルエチルケトン):150質量部
 以下に表1を示す。なお、表中、◎は目視で明確に絵柄を視認できることを示し、○は輝度計で測定して差が認識できることを示し、×は視認が困難な場合を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本実施形態のホログラム積層体1は、絵柄部分21の輝度と非絵柄部分22の輝度のコントラストが1より大きく、入射面内で180度回転させたとしても、ホログラムの絵柄を観察することが可能である。
 すなわち、本実施形態のホログラム積層体1は、反射型体積ホログラム2に設定した角度以外の入射光に対して再生光を出射することが可能である。
 なお、ホログラム積層体1は、カード等の被着体の少なくとも一部に接着され、セキュリティ媒体を構成する。
 以上、本実施形態のホログラム積層体1は、少なくとも予め定めた所定の角度からの入射光を予め定めた所定の角度へ出射する反射型体積ホログラム2と、反射型体積ホログラム2に少なくとも一部が積層される反射層3と、を備えるので、新たな使用方法によって的確に真贋判定が可能となる。
 また、本実施形態のホログラム積層体1は、反射型体積ホログラム2と反射層3との間に積層される散乱層4を備えるので、さらに新たな使用方法によって的確に真贋判定が可能となる。
 また、本実施形態のホログラム積層体1では、反射型体積ホログラム2は、絵柄を再生する絵柄部分21及びそれ以外の非絵柄部分22を有し、非絵柄部分22の反射率は、10%以上であるので、より的確に真贋判定が可能となる。
 また、本実施形態のホログラム積層体1では、反射型体積ホログラム2は、絵柄を再生する絵柄部分21及びそれ以外の非絵柄部分22を有し、絵柄部分21と非絵柄部分22のコントラスト(前記絵柄部分の輝度)/(前記非絵柄部分の輝度)は、1以上であるので、より的確に真贋判定が可能となる。
 また、本実施形態のセキュリティ媒体は、ホログラム積層体1と、ホログラム積層体1を接着する被着体と、を備えるので、新たな使用方法によって的確に真贋判定が可能となる。
 また、本実施形態のホログラム積層体1の使用方法は、ホログラム積層体1に対して、反射型体積ホログラム2の予め定めた入射方向から入射光を入射させ、入射光が入射する面側から出射光を観察するので、新たな使用方法によって的確に真贋判定が可能となる。
 また、本実施形態のホログラム積層体1の使用方法は、ホログラム積層体1に対して、入射光が入射する面を含む面内で180度回転させて入射光を入射させ、入射光が入射する面側から出射光を観察するので、新たな使用方法によって的確に真贋判定が可能となる。
 なお、ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法をいくつかの実施形態に基づいて説明してきたが、本発明はこれら実施形態に限定されず種々の組み合わせ又は変形が可能である。
1…ホログラム積層体
1a…上辺
1b…下辺
2…体積型ホログラム
21…絵柄部分
22…非絵柄部分
2a…第1面
2b…第2面
3…反射層
4…散乱層
51…キセノン光源
52…色彩輝度計

Claims (6)

  1.  少なくとも予め定めた所定の角度からの入射光を予め定めた所定の角度へ出射する反射型体積ホログラムと、
     前記反射型体積ホログラムに少なくとも一部が積層される反射層と、
    を備えることを特徴とするホログラム積層体。
  2.  前記反射型体積ホログラムと前記反射層との間に積層される散乱層を備える
    ことを特徴とする請求項1に記載のホログラム積層体。
  3.  前記反射型体積ホログラムは、絵柄を再生する絵柄部分及びそれ以外の非絵柄部分を有し、
     前記非絵柄部分の反射率は、10%以上である
    ことを特徴とする
    請求項1または請求項2に記載のホログラム積層体。
  4.  前記反射型体積ホログラムは、絵柄を再生する絵柄部分及びそれ以外の非絵柄部分を有し、
     前記絵柄部分と前記非絵柄部分のコントラスト(前記絵柄部分の輝度)/(前記非絵柄部分の輝度)は、1以上である
    ことを特徴とする
    請求項1乃至請求項3のいずれか1つに記載のホログラム積層体。
  5.  請求項1乃至請求項4のいずれか1つに記載されたホログラム積層体と、
     前記ホログラム積層体を接着する被着体と、
    を備えることを特徴とするセキュリティ媒体。
  6.  少なくとも予め定めた所定の角度からの入射光を予め定めた所定の角度へ出射する反射型体積ホログラムと、
     前記反射型体積ホログラムに少なくとも一部が積層される反射層と、
    を備えることを特徴とするホログラム積層体に対して、
     前記反射型体積ホログラムの予め定めた入射方向から前記入射光を入射させ、前記入射光が入射する面側から出射光を観察し、
     前記反射型体積ホログラムの予め定めた入射方向とは異なる方向から前記入射光を入射させ、前記入射光が入射する面側から出射光を観察する
    ことを特徴とするホログラム積層体の使用方法。
PCT/JP2016/056482 2015-03-06 2016-03-02 ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法 WO2016143639A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017505012A JPWO2016143639A1 (ja) 2015-03-06 2016-03-02 ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-044742 2015-03-06
JP2015044742 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016143639A1 true WO2016143639A1 (ja) 2016-09-15

Family

ID=56879056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056482 WO2016143639A1 (ja) 2015-03-06 2016-03-02 ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法

Country Status (2)

Country Link
JP (1) JPWO2016143639A1 (ja)
WO (1) WO2016143639A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097169A (ja) * 1996-09-24 1998-04-14 Dainippon Printing Co Ltd 複製防止ホログラム
JP2000347555A (ja) * 1999-04-02 2000-12-15 Dainippon Printing Co Ltd 透過観察が可能な反射型ホログラム
JP2006235209A (ja) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd 光情報記録装置のホログラム情報記録方法
JP2007102203A (ja) * 2005-09-07 2007-04-19 Dainippon Printing Co Ltd 真正性表示体
JP2008090157A (ja) * 2006-10-04 2008-04-17 Canon Inc 光情報記録再生方法及び装置
JP2010286768A (ja) * 2009-06-15 2010-12-24 Dainippon Printing Co Ltd 偽造防止体積ホログラム積層体
WO2014174402A1 (fr) * 2013-04-26 2014-10-30 Arjowiggins Security Element de securite comportant un hologramme en volume

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646771B2 (en) * 2000-12-21 2003-11-11 E. I. Du Pont De Nemours And Company Method for producing holographic optical element comprising primary and complementary holograms and associated methods for establishing authenticity of element used as security device
JP4170747B2 (ja) * 2002-12-16 2008-10-22 大日本印刷株式会社 光回折層を有する転写箔
JP2006023670A (ja) * 2004-07-09 2006-01-26 Fuji Xerox Co Ltd ホログラム記録方法、光記録媒体、及びホログラム記録装置
JP5481953B2 (ja) * 2009-06-12 2014-04-23 凸版印刷株式会社 表示体及びラベル付き物品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097169A (ja) * 1996-09-24 1998-04-14 Dainippon Printing Co Ltd 複製防止ホログラム
JP2000347555A (ja) * 1999-04-02 2000-12-15 Dainippon Printing Co Ltd 透過観察が可能な反射型ホログラム
JP2006235209A (ja) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd 光情報記録装置のホログラム情報記録方法
JP2007102203A (ja) * 2005-09-07 2007-04-19 Dainippon Printing Co Ltd 真正性表示体
JP2008090157A (ja) * 2006-10-04 2008-04-17 Canon Inc 光情報記録再生方法及び装置
JP2010286768A (ja) * 2009-06-15 2010-12-24 Dainippon Printing Co Ltd 偽造防止体積ホログラム積層体
WO2014174402A1 (fr) * 2013-04-26 2014-10-30 Arjowiggins Security Element de securite comportant un hologramme en volume

Also Published As

Publication number Publication date
JPWO2016143639A1 (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
US10620351B2 (en) Display and article with label
RU2535655C2 (ru) Индикатор и маркированное изделие
US10821764B2 (en) Display body and article
TWI497124B (zh) 顯示體及具顯示體之物品
JP2008083599A (ja) 光学素子およびそれを用いた表示体
AU2008301524B2 (en) Optical device, laminate and labelled article
JP5143855B2 (ja) 表示体及びラベル付き物品
CN1568264A (zh) 安全元件
CN104249597B (zh) 一种光学防伪元件
JP2011509422A (ja) 再帰反射安全物品
CN107835949B (zh) 显示体、物品、原版以及原版的制造方法
KR20140029355A (ko) 전환 특징부를 갖는 보안 물품
JP5163137B2 (ja) 表示体及び表示体付き物品
KR20170142183A (ko) 표시체, 물품, 원판, 및 원판의 제조 방법
US20120281294A1 (en) Security element comprising an adhesive and a substrate bearing an optical structure, and associated method
JP2012078447A (ja) 表示体及びラベル付き物品
JP2010286722A (ja) 表示体及びラベル付き物品
JP2021177248A (ja) ホログラム構造体
WO2019182050A1 (ja) 光学素子、転写箔、認証体、および、認証体の検証方法
US11294108B2 (en) Display
WO2016143639A1 (ja) ホログラム積層体、セキュリティ媒体、及びホログラム積層体の使用方法
JP2011231151A (ja) セキュリティインキ
JP5055949B2 (ja) ゴニオクロマティック素子およびそれを用いた表示体
JP2009037112A (ja) 表示体及びラベル付き物品
JP2010078821A (ja) 表示体、粘着ラベル及びラベル付き物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761609

Country of ref document: EP

Kind code of ref document: A1