WO2016143600A1 - 電子部品包装用カバーテープおよび電子部品用包装体 - Google Patents

電子部品包装用カバーテープおよび電子部品用包装体 Download PDF

Info

Publication number
WO2016143600A1
WO2016143600A1 PCT/JP2016/056200 JP2016056200W WO2016143600A1 WO 2016143600 A1 WO2016143600 A1 WO 2016143600A1 JP 2016056200 W JP2016056200 W JP 2016056200W WO 2016143600 A1 WO2016143600 A1 WO 2016143600A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover tape
packaging
electronic component
antistatic layer
layer
Prior art date
Application number
PCT/JP2016/056200
Other languages
English (en)
French (fr)
Inventor
亮介 森藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56880391&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016143600(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201680014579.4A priority Critical patent/CN107428450B/zh
Priority to JP2016543252A priority patent/JP6011750B1/ja
Priority to KR1020177025623A priority patent/KR101876696B1/ko
Publication of WO2016143600A1 publication Critical patent/WO2016143600A1/ja
Priority to PH12017501660A priority patent/PH12017501660A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D73/00Packages comprising articles attached to cards, sheets or webs
    • B65D73/02Articles, e.g. small electrical components, attached to webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2585/00Containers, packaging elements or packages specially adapted for particular articles or materials
    • B65D2585/68Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form
    • B65D2585/86Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form for electrical components

Definitions

  • the present invention relates to an electronic component packaging cover tape and an electronic component packaging body.
  • Patent Document 1 discloses that a sealant layer is provided on a base material layer in order to suppress charge generated during peeling from a carrier tape, and the sealant layer includes a polyolefin resin and a polyether / polyolefin copolymer.
  • a cover tape including is disclosed.
  • Patent Document 2 discloses a cover tape in which the surface resistance value of the surface of the sealant layer is controlled so as to satisfy a specific condition in order to suppress charging caused by friction between the cover tape and the electronic component.
  • the present invention provides a cover tape for packaging electronic parts having excellent frictional antistatic properties.
  • the present inventor has obtained a base material layer, a sealant layer provided on one surface side of the base material layer, and a charge provided on the other surface of the base material layer. And a surface resistance value on the surface of the antistatic layer measured at 23 ° C. and 50% RH and a surface on the surface of the antistatic layer measured at 23 ° C. and 30% RH The present invention has been completed by obtaining the knowledge that the scale of the resistance value is effective as a design guideline for improving the antistatic properties accompanying peeling of the carrier tape.
  • a base material layer A sealant layer provided on one surface side of the base material layer; An antistatic layer provided on a surface opposite to the one surface of the base material layer; A cover tape for packaging electronic parts having The surface resistance value at the surface of the antistatic layer measured at 23 ° C. and 50% RH is defined as R 50, and the value of the surface resistance value at the surface of the antistatic layer measured at 23 ° C. and 30% RH is defined as R 30. Then, a cover tape for packaging electronic parts, in which the value of R 50 / R 30 is 0.35 or more and 2.8 or less, is provided.
  • the inventor has conducted extensive research to achieve the above-described problems, and as a result, the base material layer, the sealant layer provided on one surface side of the base material layer, and the other base material layer.
  • the cover tape for packaging electronic parts having the antistatic layer provided on the surface of the antistatic layer, the time when the absolute value of the frictional band voltage on the surface of the antistatic layer measured under different humidity conditions decays from 5 kV to 50 V (voltage decay)
  • the present invention was completed by obtaining the knowledge that the measure of the rate of change in time) is effective as a design guideline for improving the antistatic properties accompanying peeling of the carrier tape.
  • a base material layer A sealant layer provided on one surface side of the base material layer; An antistatic layer provided on a surface opposite to the one surface of the base material layer; A cover tape for packaging electronic parts having With respect to the charging voltage decay time until the absolute value of the frictional charging voltage on the surface of the antistatic layer decays from 5 kV to 50 V, the value of the charging voltage decay time measured at 23 ° C. and 50% RH is S 50.
  • a cover tape for packaging electronic parts in which the value of S 50 / S 30 is 0.7 or more and 1 or less, where S 30 is the value of the voltage decay time measured at 0 ° C. and 30% RH.
  • a component storage tape comprising a component tape for storing electronic components arranged side by side at a predetermined interval and a cover tape provided so as to cover the component storage portion formed on the carrier tape.
  • the component storage tape can be wound in a reel shape
  • the cover tape is an electronic component packaging body that is the electronic component packaging cover tape.
  • FIG. 1 is a schematic cross-sectional view showing an example of a cover tape for packaging electronic components according to the present embodiment.
  • an electronic component packaging cover tape 10 (hereinafter also referred to as “cover tape”) according to the present embodiment is provided on the base layer 1 and one surface side of the base layer 1.
  • the sealant layer 2 and the antistatic layer 3 provided on the surface of the base material layer 1 opposite to the one surface are provided.
  • the cover tape 10 has a surface resistance value measured on the surface of the antistatic layer 3 measured at 23 ° C. and 50% RH as R 50 and is measured on the surface of the antistatic layer 3 measured at 23 ° C. and 30% RH.
  • the surface resistance value is R 30
  • the value of R 50 / R 30 is 0.35 or more and 2.8 or less.
  • the cover tape excellent in the antistatic property accompanying peeling of a carrier tape is realizable.
  • the said surface resistance value can be measured according to IEC61340.
  • FIG. 2 is a diagram illustrating an example of a state in which the electronic component packaging cover tape according to the present embodiment is sealed with a carrier tape.
  • the cover tape 10 is used as a cover material for a carrier tape 20 in which concave pockets 21 are continuously provided in accordance with the shape of the electronic component.
  • the cover tape 10 is used by adhering (for example, heat sealing) to the surface of the carrier tape 20 so as to cover the entire opening of the pocket 21 of the carrier tape 20.
  • a structure obtained by bonding the cover tape 10 and the carrier tape 20 will be referred to as a package 100 for an electronic component.
  • the package 100 for electronic parts is produced by the following procedure. First, an electronic component is accommodated in the pocket 21 of the carrier tape 20. Next, the cover tape 10 is adhered to the surface of the carrier tape 20 so as to cover the entire opening of the pocket 21 of the carrier tape 20, thereby obtaining a structure in which the electronic component is hermetically housed in the package 100. Can do. A structure containing such electronic components is conveyed to a work area where surface mounting is performed on an electronic circuit board or the like in a state where the package 100 is wound around a paper or plastic reel. As described above, when the electronic component is conveyed with the package 100 wound around the reel, the bottom surface 20 a of the carrier tape 20 is in contact (friction) with the surface 10 a of the cover tape 10.
  • the electronic component packaging body includes a carrier tape 20 in which component storage portions (pockets 21) for storing electronic components are arranged at predetermined intervals, and a component storage portion formed on the carrier tape 20. It is comprised with the component storage tape which consists of the cover tape 10 provided so that it might cover. This component storage tape can be wound into a reel.
  • the electronic component packaging cover tape (cover tape 10) of the present embodiment may have a sheet shape or a roll shape that can be wound into a reel.
  • the present inventor has obtained the following knowledge. Specifically, when transporting a structure containing electronic components produced using a conventional cover tape, the surface where the carrier tape and the cover tape are bonded by vibration during transport, that is, the cover tape Static electricity is generated by friction on the surface opposite to the surface of the sealant layer.
  • the static electricity generated by friction during transportation may cause the electronic components contained in the package to break down or cause problems such as sticking when mounted on the board.
  • the present inventor has found that the conventional cover tape has room for improvement in terms of countermeasures against static electricity on the surface opposite to the surface of the sealant layer. For example, a method of reducing the surface resistance value can be considered as a normal antistatic measure. However, even if the surface resistance value is lowered, triboelectric charging may occur. As a result of studies based on such knowledge, it has been considered that the generation of frictional charging can be suppressed by suppressing the charging in consideration of the working environment.
  • the cover tape according to the present embodiment has the surface resistance value R 50 on the surface of the antistatic layer measured at 23 ° C. and 50% RH and the antistatic layer measured at 23 ° C. and 30% RH as described above.
  • the ratio of the surface resistance value R 30 on the surface, the value of R 50 / R 30 satisfies a specific condition.
  • the electronic component may be electrostatically damaged due to the vibration that occurs when the electronic component is transported and the bottom surface of the carrier tape and the surface of the cover tape come into contact with each other, or troubles such as sticking when mounting the substrate. It is possible to suppress the occurrence of inconvenience.
  • the lower limit value of R 50 / R 30 is, for example, preferably 0.35 or more, more preferably 0.4 or more, and further preferably 0.5 or more.
  • the upper limit value of R 50 / R 30 is, for example, preferably 2.8 or less, more preferably 2.5 or less, further preferably 2 or less, and still more preferably 1.5 or less. is there.
  • the cover tape according to the present embodiment has a surface resistance value R 50 on the surface of the antistatic layer measured at 23 ° C. and 50% RH, and a surface resistance on the surface of the antistatic layer measured at 23 ° C. and 12% RH.
  • the ratio between the value R 12, the value of R 50 / R 12 is, preferably, 0.1 to 10, still more preferably 0.125 to 8, and most preferably, 0.17 or more 6 It is as follows. This makes it possible to more strictly control the change in the surface resistance value of the antistatic layer on the cover tape as humidity changes in the work environment at the manufacturing site of electronic equipment.
  • the cover tape can be further improved depending on the property.
  • the cover tape 10 has a time when the absolute value of the frictional voltage on the surface of the antistatic layer 3 decays from 5 kV to 50 V, that is, the voltage decay time is 23 ° C.
  • the voltage decay time is 23 ° C.
  • S 50 is a value measured at 50% RH
  • S 30 is a value measured at 23 ° C. and 30% RH
  • the value of S 50 / S 30 is 0.7 or more and 1 or less.
  • the inventor of the present application can generate triboelectric charge by moving the charge derived from static electricity generated by friction through moisture adhering to the surface of the antistatic layer in the conventional cover tape. Based on the knowledge that it has high characteristics, we focused on the characteristics including humidity change as a factor, and found new design guidelines.
  • the cover tape according to the present embodiment is calculated from the charged voltage decay time S 50 measured at 23 ° C. and 50% RH and the charged voltage decay time S 30 measured at 23 ° C. and 30% RH as described above.
  • the value of S 50 / S 30 to be satisfied satisfies a specific condition.
  • the electronic component is electrostatically damaged due to the vibration generated when the electronic component is transported and the bottom surface of the carrier tape and the surface of the cover tape are in contact with each other, or troubles such as sticking when mounted on the board. It is possible to suppress the occurrence of inconvenience.
  • the lower limit value of the above S 50 / S 30 is, for example, 0.7 or more, preferably 0.8 or more, and more preferably 0.9 or more.
  • the upper limit value of S 50 / S 30 is not particularly limited, but may be 1 or less, for example.
  • the frictional voltage on the surface of the antistatic layer which is carried out to measure the charged voltage decay time S, can be measured, for example, by the following method.
  • the frictional voltage according to the present embodiment a result obtained by directly measuring the frictional voltage on the surface of the antistatic layer with a known surface potential meter may be employed, or the frictional voltage on the surface of the object may be used. You may employ
  • the value of the charging voltage decay time measured at 23 ° C. and 50% RH is S 50
  • the value of the charging voltage decay time measured at 23 ° C. and 12% RH is S 12
  • the value of S 50 / S 12 is preferably 0.2 or more and 1 or less, more preferably 0.4 or more and 1 or less, and most preferably 0.5 or more and 1 or less. In this way, it is possible to more strictly control the fluctuation of the triboelectric charge amount of the antistatic layer in the cover tape as the humidity of the work environment at the manufacturing site of the electronic equipment changes.
  • the cover tape can be further improved depending on the property.
  • the lower limit of the total light transmittance of the cover tape according to the present embodiment is preferably 80% or more, and more preferably 85% or more. In this way, in the package composed of the cover tape and the carrier tape, the necessary transparency is given to the extent that it is possible to inspect whether or not the electronic component is correctly accommodated in the pocket of the carrier tape. Can do. In other words, by making the total light transmittance of the base material layer equal to or higher than the above lower limit value, the electronic component housed in the package body composed of the cover tape and the carrier tape is visually confirmed from the outside of the package body. It becomes possible to do.
  • the upper limit of the total light transmittance of the cover tape is not particularly limited, but can be, for example, 100% or less. The total light transmittance of the cover tape can be measured according to JIS K7105 (1981).
  • a sheet made of a material made of polystyrene is superposed on the surface of the antistatic layer of the cover tape, and the sheet is rubbed twice at a speed of 100 mm / s at an interval of 50 mm. After 5 seconds, the frictional voltage is measured at 23 ° C. and 50% RH.
  • the friction withstand voltage of such a cover tape is not particularly limited, but is preferably, for example, preferably -1800 V or more and 1800 V or less, more preferably -1500 V or more and 1500 V or less, and further preferably -1000 V or more and 1000 V or less, More preferably, it is ⁇ 800V or more and 800V or less.
  • the static electricity generated by the contact between the bottom surface of the carrier tape and the surface of the cover tape due to vibration during transportation of the electronic component is stored in the package made of the carrier tape and the cover tape. It is possible to further reduce the influence on the.
  • the surface of the antistatic layer in the cover tape and the surface of the object to be brought into contact with the surface of the antistatic layer in the cover tape such as a carrier tape are neutralized.
  • the surface of the antistatic layer in the cover tape is brought into contact with the surface of the object twice in one direction, and the frictional voltage is measured using a known surface potential meter.
  • the frictional voltage according to the present embodiment a result obtained by directly measuring the frictional voltage on the surface of the antistatic layer with a known surface potential meter may be employed, or the frictional voltage on the surface of the object may be used. You may employ
  • the width of the cover tape according to the present embodiment is not particularly limited, but may be, for example, 2 mm or more and 100 mm or less, preferably 2 mm or more and 80 mm or less, and more preferably 2 mm or more and 50 mm or less.
  • the material constituting the base material layer can be used when making a cover tape by laminating an antistatic layer or sealant layer on the base material layer, when bonding the cover tape to the carrier tape, or when using the cover tape. As long as it has sufficient mechanical strength to withstand the stress applied from the outside, etc., and heat resistance to withstand the heat history applied when the cover tape is bonded to the carrier tape Good.
  • the form of the material which comprises a base material layer is although it does not specifically limit, From a viewpoint with which a process is easy, a film form may be sufficient.
  • the material constituting the base material layer include, for example, polyester resins, polyamide resins, polyolefin resins, polyacrylate resins, polymethacrylate resins, polyimide resins, polycarbonate resins, ABS resins, and the like. Can be mentioned. Among these, from the viewpoint of improving the mechanical strength of the cover tape, a polyester resin is preferable, and polyethylene terephthalate is more preferable. Further, from the viewpoint of improving the mechanical strength and flexibility of the cover tape, nylon 6 may be used as a material constituting the base material layer. In addition, you may contain a lubricant in the material which comprises a base material layer. These may be used alone or in combination of two or more.
  • the base material layer may be formed of a single layer film including the above-described material, or may be formed using a multilayer film including the above-described material in each layer. Moreover, as a form of the film used for forming the base material layer, an unstretched film or a film stretched in a uniaxial direction or a biaxial direction may be used. From the viewpoint of improving the strength, a film stretched in a uniaxial direction or a biaxial direction may be used.
  • the thickness of the base material layer may be, for example, 9 ⁇ m or more and 25 ⁇ m or less, and preferably 9 ⁇ m or more and 16 ⁇ m or less.
  • the cover tape is not too high in rigidity, and even if a torsional stress is applied to the carrier tape after sealing, the cover tape is Following the deformation, it is possible to suppress peeling.
  • the thickness of the base material layer is equal to or higher than the above upper limit value, the mechanical strength of the cover tape can be improved, so even when the cover tape is peeled off from the carrier tape at a high speed, It can suppress that a cover tape breaks.
  • the lower limit of the total light transmittance of the base material layer is, for example, preferably 80% or more, and preferably 85% or more. In this way, in the package composed of the cover tape and the carrier tape, the necessary transparency is given to the extent that it is possible to inspect whether or not the electronic component is correctly accommodated in the pocket of the carrier tape. Can do. In other words, by making the total light transmittance of the base material layer equal to or higher than the above lower limit value, the electronic component housed in the package body composed of the cover tape and the carrier tape is visually confirmed from the outside of the package body. It becomes possible to do.
  • the upper limit of the total light transmittance of a base material layer is not specifically limited, For example, it can be 100% or less. The total light transmittance of the base material layer can be measured according to JIS K7105 (1981).
  • the sealant layer is a layer provided on the surface of the base material layer opposite to the surface on which the antistatic layer is provided. The surface of the sealant layer comes into contact with the carrier tape when the cover tape is used by the method described above.
  • the multi-layer structure including an antistatic layer, a base material layer, and a sealant layer provides a balance between adhesion and peelability to a carrier tape, and an electronic component packaging cover tape having excellent antistatic properties. Can be realized.
  • a material constituting the sealant layer for example, a material containing a thermoplastic resin such as an acrylic resin or a polyester resin and an antistatic agent can be used.
  • antistatic agents include metal fillers such as tin oxide, zinc oxide, titanium oxide, and smectite, surfactants having a structure such as polyoxyethylene alkylamine, quaternary ammonium, and alkyl sulfonate, polyoxyethylene Polymer type antistatic agent, ionic liquid, polypyrrole, poly (3,4-ethylenedioxythiophene polyacetylene, polyaniline, etc.
  • incorporating block structures or random structures such as alkylamine, quaternary ammonium, alkylsulfonate, and polyether
  • examples thereof include conductive polymers composed of these derivatives, one kind selected from the group consisting of carbon, or a mixture thereof, and examples of the carbon include various carbons such as carbon black, white carbon, carbon fiber, and carbon tube.
  • a filler having the following shape may be used, and these may be used alone or in combination of two or more.
  • the material constituting the sealant layer includes oxide particles mainly composed of silicon, magnesium or calcium, inorganic particles such as silica and talc, polyethylene particles, polyacrylate particles, and polystyrene from the viewpoint of preventing blocking that occurs during transportation. 1 type selected from the group which consists of organic particles, such as particles, or these alloys may be contained.
  • the thickness of the sealant layer may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, preferably 1 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m, from the viewpoint of improving the balance between adhesion to the carrier tape and peelability. It is good also as follows.
  • the surface resistance value of the sealant layer may be set to, for example, 10 4 ⁇ or more and 10 11 ⁇ or less under the conditions of 23 ° C. and 50 RH% from the viewpoint of efficiently discharging static electricity generated by various factors to the outside. It may be from 10 5 ⁇ to 10 10 ⁇ , and more preferably from 10 5 ⁇ to 10 9 ⁇ .
  • the surface resistance value can be measured according to IEC61340.
  • the antistatic layer is a layer provided on the surface of the base material layer opposite to the surface on which the sealant layer is provided. As described above, the surface of the antistatic layer has a possibility of coming into contact with the bottom surface of the carrier tape when the electronic component is accommodated and transported in a package made of the carrier tape and the cover tape.
  • the material forming the antistatic layer is, for example, a charged column compared to a material forming an object that contacts the surface of the antistatic layer when an electronic component such as a material forming the bottom surface of the carrier tape is accommodated and transported. It is preferable to include a “positive compound” located on the positive side in FIG. 5 and a “negative compound” located on the negative side in the charged column as compared with the material forming the object. By doing so, it is possible to suppress the generation of static electricity due to friction when the surface of the antistatic layer comes into contact with the object.
  • the positive compound contained in the material forming the antistatic layer is charged positively, while the negative compound is negatively charged Therefore, it is considered that it can be electrically neutralized in the antistatic layer.
  • Examples of the method for measuring the positive and negative charge amounts include a method in which the surface of a resin sheet or the surface of a film coated on the sheet is rubbed with a cotton cloth (cotton 100%) and then measured with a surface potential meter.
  • a surface electrometer such as 3M Static Sensor 718 can be used.
  • the positive compound of the present embodiment may be a compound that is positively charged with respect to the cotton cloth.
  • an aziridinyl compound and its ring-opening compound may be used as a positive compound.
  • the aziridinyl compound generally refers to a compound having an aziridinyl group, and specific examples thereof include N, N′-hexamethylene-1,6-bis (1-aziridycarboxamide), N, N′-diphenylmethane.
  • the ring-opening compound of an aziridinyl compound refers to the compound in the state which the aziridinyl group in an aziridinyl compound was ring-opened.
  • the content of the positive compound described above is preferably 0.2% by weight or more and 98% by weight or less, and preferably 0.5% by weight or more and 90% by weight or less with respect to the total amount of the material forming the antistatic layer. And more preferred. By doing so, the physical strength of the coating film is increased and the antistatic agent slips off due to contact.
  • the negative compound of the present embodiment may be a compound that is negatively charged with respect to the cotton cloth, and examples thereof include a negative binder resin such as a fluororesin and a polyester compound. These may be used alone or in combination of two or more.
  • an ester compound refers to a compound formed by combining an organic acid or inorganic acid and an alcohol by a dehydration reaction. Specific examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof. Is mentioned.
  • the content of the negative compound described above is preferably 0.2% by weight or more and 98% by weight or less, and preferably 0.5% by weight or more and 90% by weight or less with respect to the total amount of the material forming the antistatic layer. And more preferred. By doing so, the physical strength of the coating film is increased and the antistatic agent slips off due to contact.
  • the antistatic property of the antistatic layer can be improved by using the positive compound and the negative compound in combination. Furthermore, the antistatic layer in which the positive compound and the negative compound are sufficiently dispersed can appropriately control the characteristics including the surface resistance value and the humidity change such as the charging voltage decay time as a factor. It has been found that prevention can be realized. Although the detailed mechanism is not clear, since the triboelectric charge generated by friction can be neutralized by the positive compound and the negative compound, it is considered that the characteristics including humidity change can be appropriately controlled.
  • the blending amount of the positive compound and the negative compound is determined based on the solid content, thereby facilitating the control of the frictional antistatic property by the combined use thereof.
  • the lower limit value of the solid content of the negative compound is, for example, 50% by weight or more with respect to the total value of 100% by weight of the solid content of the positive compound and the solid content of the negative compound.
  • 60% by weight or more is preferable, and 70% by weight or more is more preferable.
  • the upper limit value of the solid content of the negative compound is not particularly limited.
  • the upper limit value is 99% by weight or less with respect to 100% by weight of the total solid content of the positive compound and the solid content of the negative compound. Alternatively, it may be 95% by weight or less, or 90% by weight or less.
  • the upper limit of the surface resistance value of the antistatic layer is, for example, preferably 10 11 ⁇ or less, more preferably 10 10 ⁇ or less, further preferably 10 9 ⁇ or less, and 10 7 ⁇ or less, under the conditions of 23 ° C. and 15 RH%. Is more preferable. Thereby, antistatic property can be improved.
  • the lower limit of the surface resistance value of the antistatic layer is not particularly limited under the conditions of 23 ° C. and 15 RH%, but may be, for example, 10 3 ⁇ or more, and preferably 10 4 ⁇ or more.
  • the surface resistance value can be measured according to IEC61340.
  • the material for forming the antistatic layer preferably contains a conductive polymer from the viewpoint of reducing the surface resistance value of the antistatic layer and suppressing the generation of static electricity due to friction.
  • a conductive polymer include polyaniline, polypyrrole and the like, and among them, a polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) based compound can be suitably used. These may be used alone or in combination of two or more.
  • the material for forming the antistatic layer preferably contains a surfactant from the viewpoint of improving the wettability and leveling properties when forming the antistatic layer.
  • a surfactant may be a low molecular surfactant or a high molecular surfactant, but a surfactant having a fluorine alkyl structure can be suitably used. These may be used alone or in combination of two or more.
  • the frictional voltage of the antistatic layer is, for example, preferably from ⁇ 1800 V to 1800 V, more preferably from ⁇ 1500 V to 1500 V, and even more preferably from ⁇ 1000 V to 1000 V under the conditions of 23 ° C. and 50% RH. Or less, more preferably from ⁇ 800 V to 800 V, and most preferably from ⁇ 500 V to 500 V.
  • the absolute value of the frictional voltage of the antistatic layer is, for example, preferably 1800 V or less, more preferably 1500 V or less, and further preferably 1000 V or less under the conditions of 23 ° C. and 50% RH. More preferably, it is 800 V or less, and most preferably 500 V or less.
  • the electronic component may be electrostatically damaged due to the vibration that occurs when the electronic component is transported and the bottom surface of the carrier tape and the surface of the cover tape come into contact with each other, or trouble occurs when mounting the board. It is possible to suppress the occurrence of inconvenience.
  • the lower limit value of the film thickness of the antistatic layer of the present embodiment is not particularly limited, but may be, for example, 1 nm or more, preferably 10 nm or more, and more preferably 20 nm or more. Thereby, the mechanical strength of the antistatic layer can be improved.
  • the upper limit value of the film thickness of the antistatic layer is not particularly limited, but may be, for example, 5 ⁇ m or less, preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less. Thereby, the softness
  • the cover tape which concerns on this embodiment may provide an intermediate
  • Examples of the material for forming the intermediate layer described above include olefin resins, styrene resins, and cyclic olefin resins.
  • an olefin resin may be used from the viewpoint of improving the adhesion with the carrier tape to be bonded. These may be used alone or in combination of two or more.
  • the thickness of the intermediate layer may be, for example, 10 ⁇ m or more and 30 ⁇ m or less, and preferably 15 ⁇ m or more and 25 ⁇ m or less, from the viewpoint of improving the adhesion with the carrier tape that is the object to be bonded.
  • the cover tape according to the present embodiment may be provided with an adhesive layer between the base material layer and the sealant layer or between the base material layer and the antistatic layer. By doing so, the mechanical strength of the cover tape can be improved.
  • the material for forming the adhesive layer described above contains a resin.
  • resins include urethane-based dry laminate adhesive resins, anchor coat adhesive resins, and the like, and generally a combination of a polyester composition such as polyester polyol or polyether polyol and an isocyanate compound, or polybutadiene. Polyimine resin or the like can be used.
  • the object includes the bottom surface of the carrier tape, etc., but has the possibility of coming into contact with the surface of the antistatic layer when accommodating and transporting the electronic component or mounting the electronic component. If it is a thing, it will not be limited.
  • Specific examples of the material forming the object include materials for forming carrier tapes such as polystyrene, polyethylene terephthalate, and polycarbonate, polyethylene, rubber (material processed from natural rubber, synthetic rubber, etc.), and the like. .
  • the manufacturing method of the cover tape in this embodiment is different from the conventional manufacturing method, and it is necessary to highly control the manufacturing conditions described later. That is, for the first time by a manufacturing method that highly controls various factors relating to the following two conditions, the surface resistance value R 50 on the surface of the antistatic layer measured at 23 ° C. and 50% RH, and at 23 ° C. and 30% RH It is possible to obtain a cover tape in which the measured ratio of the surface resistance value R 30 on the surface of the antistatic layer and the value of R 50 / R 30 satisfies the above-mentioned specific conditions.
  • Composition of resin material for forming antistatic layer (2) Combination of material for forming antistatic layer and material for forming base material layer
  • the cover tape in the present embodiment adopts various specific manufacturing conditions such as temperature setting of the manufacturing apparatus, on the premise that various factors related to the above two conditions are highly controlled. Can do.
  • the cover tape in the present embodiment can be manufactured by adopting a known method except for highly controlling various factors related to the above two conditions.
  • a positively charged positive compound and a negatively charged negative compound are used in combination with the antistatic layer, and these are well dispersed. It is mentioned as an element for appropriately controlling the characteristics included in the factors and making R 50 , R 30 , and R 50 / R 30 within a desired numerical range.
  • an example of a cover tape manufacturing method will be described on the assumption that various factors related to the above two conditions are highly controlled.
  • an antistatic layer is formed by applying a predetermined material to one surface of the base material layer and drying it.
  • a sealant layer is laminated by extrusion lamination on the surface of the base material layer opposite to the surface on which the antistatic layer is formed.
  • the cover tape which concerns on this embodiment can be produced.
  • the manufacturing method of the cover tape in this embodiment is different from the conventional manufacturing method, and it is necessary to highly control the manufacturing conditions described later. That is, until the absolute value of the friction band voltage on the surface of the antistatic layer measured at 23 ° C. and 50% RH is attenuated from 5 kV to 50 V for the first time by a manufacturing method that highly controls various factors related to the following two conditions.
  • the cover tape in the present embodiment adopts various specific manufacturing conditions such as temperature setting of the manufacturing apparatus, on the premise that various factors related to the above two conditions are highly controlled. Can do.
  • the cover tape in the present embodiment can be manufactured by adopting a known method except for highly controlling various factors related to the above two conditions. Among these, for example, a positively charged positive compound and a negatively charged negative compound are used in combination, and these are well dispersed. Is controlled as appropriate, and the above S 50 , S 30 , and S 50 / S 30 are included as elements in a desired numerical range.
  • an example of a cover tape manufacturing method will be described on the assumption that various factors related to the above two conditions are highly controlled.
  • an antistatic layer is formed by applying a predetermined material to one surface of the base material layer and drying it.
  • a sealant layer is laminated by extrusion lamination on the surface of the base material layer opposite to the surface on which the antistatic layer is formed.
  • the cover tape according to this embodiment can be manufactured.
  • the intermediate layer when forming the above-described intermediate layer, the intermediate layer may be laminated by extrusion lamination on the surface of the base material layer opposite to the surface on which the antistatic layer is formed. After the sheet is formed by the extrusion method, the obtained sheet may be laminated on the surface of the base material layer opposite to the surface on which the antistatic layer is formed.
  • the material of the adhesive layer may be applied to the target surface by a conventionally known application method.
  • Example A In Example A and Comparative Example A, the respective raw material components used for the production of the antistatic layer and the sealant layer are shown below.
  • Antistatic agent A1 Conductive polymer containing polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) based compound (manufactured by Heraeus, CLEVIOS P)
  • Antistatic agent A2 tin dioxide (manufactured by Diary Catalysts)
  • Antistatic agent A3 cationic low-molecular surfactant (manufactured by NOF Corporation, Elegan 264-30)
  • Antistatic agent A4 cationic polymer surfactant (manufactured by Taisei Fine Chemical Co., Ltd., ACRYT 1SX-1090)
  • Diluting solvent A2: toluene: methyl ethyl ketone 1: 1 Diluting solvent
  • Positive binder resin A1 Carbodiimide (Nisshinbo Chemical Co., Ltd., Carbodilite V-02-L2)
  • Positive binder resin A2 Acrylic resin (Aron S-1001 manufactured by Toa Gosei Co., Ltd.)
  • Negative binder resin A3 water-soluble polyester resin (manufactured by Kyoyo Chemical Co., Ltd., plus coat Z760)
  • Negative binder resin A4 water-soluble polyester resin (manufactured by Kyoyo Chemical Co., Ltd., plus coat Z565)
  • Styrene- (meth) methyl acrylate copolymer manufactured by Nippon Steel Chemical Co., Ltd., Estyrene MS-600.
  • St-MMA Styrene- (meth) methyl acrylate copolymer
  • Ethylene-methyl acrylate copolymer Mitsubishi Chemical Co., Ltd., Elvalloy AC 1820, hereinafter also referred to as “EMA”
  • EMA Ethylene-methyl acrylate copolymer
  • PEG-PP Polyether / polyolefin copolymer
  • a biaxially stretched polyester film (Toyobo Co., Ltd. product: E5102) having a thickness of 16 ⁇ m was prepared as a base material layer.
  • the total light transmittance of the obtained base material layer was 87.7%.
  • a material for forming the antistatic layer was prepared by the following method.
  • the composition of each reagent is as shown in Table 1.
  • the antistatic agent was stirred for 30 seconds while adding a diluent solvent.
  • the binder resin and the surfactant were added, followed by stirring for 30 seconds. In this way, a material for forming a liquid antistatic layer was prepared.
  • the material (liquid form) for forming the obtained antistatic layer was applied to one surface of the base material layer using a bar coater or a gravure coater so that the wet film thickness was 4 ⁇ m. Then, the antistatic layer was formed into a film by making it dry at 100 degreeC.
  • a sealant layer was laminated by extrusion lamination on the surface of the base material layer opposite to the surface on which the antistatic layer was formed.
  • a resin composition comprising 15 parts by weight of St-MMA, 65 parts by weight of EMA and 20 parts by weight of PEG-PP was used.
  • the thickness of the sealant layer was 5 ⁇ m.
  • the cover tape which concerns on Example A1, A2 was produced.
  • the width of the obtained cover tape was 8 mm.
  • a cover tape was prepared in the same manner as in Example A using a mixed solution of an antistatic agent and a diluting solvent obtained without adding a binder resin and a surfactant. .
  • Total light transmittance The total light transmittance of the cover tape was measured according to JIS K7105 (1981). The unit is%.
  • Friction band voltage The friction band voltage measured at 23 ° C. and 50% RH was measured by the method described in (1) to (7) below with reference to FIG. The unit is V.
  • a plate-like rubber body 40 having a surface resistance value of 1.0 ⁇ 10 13 ⁇ or more was installed on the pedestal 30 with a wheel whose surface resistance value is less than 1.0 ⁇ 10 11 ⁇ .
  • two insulators 50 were installed on the rubber body 40 at a predetermined interval.
  • the insulator 50 is a quadrangular prism having a thickness of 10 mm or more and a surface resistance value of 1.0 ⁇ 10 13 ⁇ or more.
  • a polystyrene sheet 70 manufactured by Electrochemical Co., Ltd., Clearen CST2401
  • seat 70 is a friction target object made to contact with each cover tape in the measurement mentioned later.
  • the wheeled pedestal 30 was always in a grounded state.
  • the polystyrene sheet 70 was neutralized using an ionizer (BLH-H, manufactured by Kasuga Denki Co., Ltd.).
  • the cover tape 10 was wound around a rod-shaped support 80 having a surface resistance value of less than 1.0 ⁇ 10 9 ⁇ so that the antistatic layer became the surface layer.
  • a support made of a conductor made of a carbon kneaded film was used.
  • the cover tape 10 was also neutralized by the same method as that for the polystyrene-based sheet 70.
  • the cover tapes of Examples A1 and A2 were both excellent in antistatic properties associated with the peeling of the carrier tape, as well as the balance between the adhesiveness to the carrier tape and the peeling property.
  • the cover tapes of Examples A1 and A2 include both a positive binder resin and a negative binder resin, and the antistatic layer is formed using a material including a conductive polymer. It was hard to generate.
  • the cover tapes of Comparative Examples A1 and A2 have humidity dependency in terms of antistatic properties accompanying peeling of the carrier tape, and did not satisfy the required level. The obtained cover tape and a polystyrene carrier tape were rubbed, and the absolute value of the charged voltage on the surface of the cover tape was measured.
  • Examples A1 and A2 have good anti-friction properties.
  • Comparative Examples A1 and A2 were inferior in frictional antistatic properties.
  • the obtained cover tape was heat-sealed on a carrier tape, and then wound on a seal to obtain a package for electronic parts wound up in a reel shape.
  • Example B In Example B and Comparative Example B, the respective raw material components used for producing the antistatic layer and the sealant layer are shown below.
  • Antistatic agent B1 Conductive polymer containing polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) based compound (manufactured by Heraeus, CLEVIOS P)
  • Antistatic agent B2 tin dioxide (manufactured by Diary Catalysts)
  • Antistatic agent B3 cationic low-molecular surfactant (manufactured by NOF Corporation, Elegan 264-30)
  • Antistatic agent B4 Cationic polymer surfactant (manufactured by Taisei Fine Chemical Co., Ltd., ACRYT 1SX-1090)
  • B2: toluene: methyl ethyl ketone 1: 1 Diluting solvent
  • B3 isopropyl alcohol
  • Binder resin -Positive binder resin B1: Carbodiimide (Nisshinbo Chemical Co., Carbodilite V-02-L2) Positive binder resin B2: Acrylic resin (Aron S-1001 manufactured by Toa Gosei Co., Ltd.)
  • Negative binder resin B4 water-soluble polyester resin (manufactured by Kyoyo Chemical Co., Ltd., plus coat Z565)
  • Surfactant B1 BYK-3440 manufactured by Big Chemie Japan Surfactant B2: manufactured by San Nopco, SN Dispersant 9228
  • Styrene- (meth) methyl acrylate copolymer manufactured by Nippon Steel Chemical Co., Ltd., Estyrene MS-600.
  • St-MMA Styrene- (meth) methyl acrylate copolymer
  • Ethylene-methyl acrylate copolymer Mitsubishi Chemical Co., Ltd., Elvalloy AC 1820, hereinafter also referred to as “EMA”
  • EMA Ethylene-methyl acrylate copolymer
  • PEG-PP Polyether / polyolefin copolymer
  • a biaxially stretched polyester film (Toyobo Co., Ltd. product: E5102) having a thickness of 16 ⁇ m was prepared as a base material layer.
  • the total light transmittance of the obtained base material layer was 87.7%.
  • a material for forming the antistatic layer was prepared by the following method.
  • the composition of each reagent is as shown in Table 2.
  • the antistatic agent was stirred for 30 seconds while adding a diluent solvent.
  • the binder resin and the surfactant were added, followed by stirring for 30 seconds. In this way, a material for forming a liquid antistatic layer was prepared.
  • the material (in liquid form) for forming the obtained antistatic layer was applied to one surface of the base material layer using a bar coater or a gravure coater so that the wet thickness was 4 ⁇ m. Then, the antistatic layer was formed into a film by making it dry at 100 degreeC.
  • a sealant layer was laminated by extrusion lamination on the surface of the base material layer opposite to the surface on which the antistatic layer was formed.
  • a resin composition comprising 15 parts by weight of St-MMA, 65 parts by weight of EMA and 20 parts by weight of PEG-PP was used.
  • the thickness of the sealant layer was 5 ⁇ m.
  • the cover tape which concerns on Example B1, B2 was produced.
  • the width of the obtained cover tape was 8 mm.
  • Attenuation time of charged voltage the absolute value of the friction voltage on the surface of the antistatic layer measured using the method described later under three humidity conditions of 50% RH, 30% RH and 12% RH at a temperature of 23 ° C. The time until the value decayed from 5 kV to 50 V was measured. The unit is seconds (s). Further, in Table 1 below, the time until the friction band voltage value decays from +5 kV to +50 V is defined as S +, and the time until the friction band voltage value decays from ⁇ 5 kV to ⁇ 50 V is denoted as S ⁇ . did.
  • Friction band voltage The friction band voltage measured at 23 ° C. and 50% RH was measured by the same method as in Example A with reference to FIG. The unit is V.
  • Total light transmittance The total light transmittance of the cover tape was measured according to JIS K7105 (1981). The unit is%.
  • the cover tapes of Examples B1 and B2 were both excellent in antistatic properties accompanying the peeling of the carrier tape, as well as the balance between the adhesiveness to the carrier tape and the peeling property.
  • the cover tapes of Examples 1B and B2 include both a positive binder resin and a negative binder resin, and the antistatic layer is formed using a material containing a conductive polymer. It was hard to generate.
  • the cover tapes of Comparative Examples B1 and B2 have humidity dependency in terms of antistatic properties accompanying peeling of the carrier tape, and did not satisfy the required level. The obtained cover tape and a polystyrene carrier tape were rubbed, and the absolute value of the charged voltage on the surface of the cover tape was measured.
  • Examples B1 and B2 have good anti-friction properties.
  • Comparative Examples B1 and B2 were inferior in frictional antistatic properties.
  • the obtained cover tape was heat-sealed on a carrier tape, and then wound on a seal to obtain a package for electronic parts wound up in a reel shape.
  • Example C In Example C, the raw material components used for the production of the antistatic layer are shown below.
  • Positive compound C1 acrylate copolymer resin (manufactured by Toagosei Co., Ltd., Jurimer FC-80)
  • Negative compound C1 water-soluble polyester resin (manufactured by Kyoyo Chemical Co., Ltd., plus coat Z565)
  • Antistatic agent C1 Conductive polymer containing polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) -based compound (Orgacon ICP1010, manufactured by Japan Agfa Materials)
  • Diluent C1 Isopropyl alcohol
  • Diluent C2 Water Neutralizer
  • C1 Triethylamine (Wako Pure Chemical Industries, Ltd. TEA)
  • Surfactant C1 BYK-3440 manufactured by Big Chemie Japan
  • Example C ⁇ Production of Cover Tape According to Example C> First, a biaxially stretched polyester film (Toyobo Co., Ltd. product: E5102) having a thickness of 16 ⁇ m was prepared as a base material layer. The total light transmittance of the obtained base material layer was 87.7%.
  • a material for forming the antistatic layer was prepared by the following method.
  • the composition of the materials forming the antistatic layer is as shown in Table 3.
  • the mixture was stirred for 30 seconds while adding a neutralizing agent and a diluting solvent to the antistatic agent.
  • the binder resin and the surfactant were added, followed by stirring for 30 seconds. In this way, a material for forming a liquid antistatic layer was prepared.
  • the material (in liquid form) for forming the obtained antistatic layer was applied to one surface of the base material layer using a bar coater or a gravure coater so that the wet thickness was 4 ⁇ m. Then, the antistatic layer was formed into a film by making it dry at 100 degreeC.
  • a sealant layer was laminated by extrusion lamination on the surface of the base material layer opposite to the surface on which the antistatic layer was formed.
  • a resin composition comprising 15 parts by weight of St-MMA, 65 parts by weight of EMA and 20 parts by weight of PEG-PP was used.
  • the thickness of the sealant layer was 5 ⁇ m.
  • cover tapes according to Examples C1 to C3 were produced.
  • the widths of the obtained cover tapes were all 8 mm.
  • the surface resistance value on the surface of the antistatic layer was measured according to IEC61340 under three humidity conditions of 50 RH%, 30 RH% and 12 RH% at a temperature of 23 ° C. The unit is ⁇ .
  • Total light transmittance The total light transmittance of the cover tape was measured according to JIS K7105 (1981). The unit is%.
  • the obtained cover tape and a polystyrene carrier tape were rubbed, and the absolute value of the charged voltage on the surface of the cover tape was measured. As a result, it was found that Examples C1 to C3 have good anti-friction properties.
  • the obtained cover tape was heat-sealed on a carrier tape, and then wound on a seal to obtain a package for electronic parts wound up in a reel shape.
  • the cover tapes of Examples C1 to C3 were all excellent in antistatic properties against friction generated during transportation or the like and antistatic properties accompanying peeling of the carrier tape.
  • Example D In Example D, the respective raw material components used for the production of the antistatic layer and the sealant layer are shown below.
  • Positive compound D1 Acrylic ester copolymer resin (Arakawa Chemical Industries, Ltd .: Aracoat CL910)
  • Negative compound D1 water-soluble polyester resin (manufactured by Kyoyo Chemical Co., Ltd., plus coat Z565)
  • Antistatic agent D1 Conductive polymer containing polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) -based compound (Arakawa Chemical Co., Ltd., Aracoat ACS332)
  • Styrene- (meth) methyl acrylate copolymer manufactured by Nippon Steel Chemical Co., Ltd., Estyrene MS-600.
  • St-MMA Styrene- (meth) methyl acrylate copolymer
  • Ethylene-methyl acrylate copolymer Mitsubishi Chemical Co., Ltd., Elvalloy AC 1820, hereinafter also referred to as “EMA”
  • EMA Ethylene-methyl acrylate copolymer
  • PEG-PP Polyether / polyolefin copolymer
  • Example D ⁇ Preparation of Cover Tape for Electronic Component Packaging According to Example D> First, a biaxially stretched polyester film (Toyobo Co., Ltd. product: E5102) having a thickness of 25 ⁇ m was prepared as a base material layer. The total light transmittance of the obtained base material layer was 87.7%.
  • a material for forming the antistatic layer was prepared by the following method.
  • the composition of the material forming the antistatic layer is as shown in Table 4. It stirred for 30 seconds, adding the diluting solvent which mix
  • the material (in liquid form) for forming the obtained antistatic layer was applied to one surface of the base material layer using a bar coater or a gravure coater so that the wet thickness was 4 ⁇ m. Thereafter, an antistatic layer was formed by drying at 100 ° C. for 1 minute.
  • a sealant layer was laminated by extrusion lamination on the surface of the base material layer opposite to the surface on which the antistatic layer was formed.
  • a resin composition comprising 15 parts by weight of St-MMA, 65 parts by weight of EMA and 20 parts by weight of PEG-PP was used.
  • the thickness of the sealant layer was 5 ⁇ m.
  • cover tapes for packaging electronic parts according to Examples D1 to D4 were produced.
  • the widths of the obtained cover tapes were all 8 mm.
  • the surface resistance value on the surface of the antistatic layer was measured according to IEC61340 under three humidity conditions of 50 RH%, 30 RH% and 12 RH% at a temperature of 23 ° C. The unit is ⁇ .
  • Total light transmittance The total light transmittance of the cover tape was measured according to JIS K7105 (1981). The unit is%.
  • the obtained cover tape and a polystyrene carrier tape were rubbed, and the absolute value of the charged voltage on the surface of the cover tape was measured.
  • Examples D1 to D4 have good anti-friction properties.
  • the obtained cover tape was heat-sealed on a carrier tape, and then wound on a seal to obtain a package for electronic parts wound up in a reel shape.
  • the cover tapes of Examples D1 to D4 were all excellent in antistatic properties against friction generated during transportation and the antistatic properties associated with peeling of the carrier tape, regardless of the type of material constituting the carrier tape. It was a thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packaging Frangible Articles (AREA)
  • Laminated Bodies (AREA)
  • Packages (AREA)
  • Wrappers (AREA)

Abstract

 本発明の電子部品包装用カバーテープは、基材層と、前記基材層の一方の面側に設けられるシーラント層と、前記基材層の前記一方の面とは反対側の面に設けられる帯電防止層と、を有するものであり、23℃、50%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR50とし、23℃、30%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR30としたとき、R50/R30の値が、0.35以上2.8以下である。

Description

電子部品包装用カバーテープおよび電子部品用包装体
 本発明は、電子部品包装用カバーテープおよび電子部品用包装体に関する。
 従来、トランジスタ、ダイオード、コンデンサ、圧電素子レジスタ等の電子部品は、電子機器の製造現場において、当該電子部品を収納することが可能なポケットが連続的に形成されたキャリアテープと、上記キャリアテープにシールするカバーテープとからなる包装体に収容して熱シール処理を施した後、紙製或いはプラスチック製のリールに巻かれた状態で、電子回路基板等に表面実装を行う作業領域まで搬送されている。そして、かかる電子部品は、上述した作業領域内で上記包装体のカバーテープを剥離した後、キャリアテープに形成された上記ポケットから取り出され、電子回路基板等に表面実装されることとなる。上記電子部品については、近年の電子機器の小型化に伴って、さらなる小型化、高度実装化が要求されている。そのため、近年の電子部品は、これまで以上に静電気による影響を受けやすくなってきている傾向にある。
 たとえば、特許文献1には、キャリアテープからの剥離の際に発生する帯電を抑えるべく、基材層上に、シーラント層を備え、シーラント層がポリオレフィン系樹脂とポリエーテル/ポリオレフィン共重合体とを含むカバーテープが開示されている。
 特許文献2には、カバーテープと電子部品との間の摩擦によって発生する帯電などを抑えるべく、シーラント層面の表面抵抗値が特定の条件を満たすように制御されたカバーテープが開示されている。
特開2012-214252号公報 特開2012-30897号公報
 しかしながら、近年カバーテープの静電気対策という観点について要求される技術水準は、ますます高くなっている。
 本発明者は、従来のカバーテープについて各種の検討を行った結果、次のような課題を見出した。
 電子部品を収容した包装体をリールに巻かれた状態で搬送する際に、搬送時の振動によってキャリアテープとカバーテープとを接着している面、すなわち、カバーテープにおけるシーラント層表面とは反対側の表面における摩擦により静電気が発生する。このような静電気により、包装体内に収容している電子部品が故障する、又は基盤実装時に貼り付きなどのトラブルを引き起こす場合がある。
 このような知見に基づき、本発明者は、従来のカバーテープについて、シーラント層表面とは反対側の表面における静電気対策という点に改善の余地があることを見出した。
 そこで、本発明は、摩擦帯電防止性に優れた電子部品包装用カバーテープを提供する。
 本発明者は、上記課題を達成するために鋭意研究を重ねた結果、基材層と、基材層の一方の面側に設けられるシーラント層と、基材層の他方の面に設けられる帯電防止層と、を有する電子部品包装用カバーテープにおいて、23℃、50%RHで測定した帯電防止層の表面における表面抵抗値と、23℃、30%RHで測定した帯電防止層の表面における表面抵抗値との比という尺度が、キャリアテープの剥離に伴う帯電防止性を向上させるための設計指針として有効であるという知見を得て、本発明を完成させた。
 本発明によれば、基材層と、
 前記基材層の一方の面側に設けられるシーラント層と、
 前記基材層の前記一方の面とは反対側の面に設けられる帯電防止層と、
を有する電子部品包装用カバーテープであって、
 23℃、50%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR50とし、23℃、30%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR30としたとき、R50/R30の値が、0.35以上2.8以下である、電子部品包装用カバーテープが提供される。
 また本発明者は、別の観点から、上記課題を達成するために鋭意研究を重ねた結果、基材層と、基材層の一方の面側に設けられるシーラント層と、基材層の他方の面に設けられる帯電防止層と、を有する電子部品包装用カバーテープにおいて、異なる湿度条件において測定した帯電防止層の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰する時間(帯電圧減衰時間)の変化率という尺度が、キャリアテープの剥離に伴う帯電防止性を向上させるための設計指針として有効であるという知見を得て、本発明を完成させた。
 本発明によれば、基材層と、
 前記基材層の一方の面側に設けられるシーラント層と、
 前記基材層の前記一方の面とは反対側の面に設けられる帯電防止層と、
を有する電子部品包装用カバーテープであって、
 前記帯電防止層の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰するまでの帯電圧減衰時間について、23℃、50%RHで測定した前記帯電圧減衰時間の値をS50とし、23℃、30%RHで測定した前記帯電圧減衰時間の値をS30としたとき、S50/S30の値が0.7以上1以下である、電子部品包装用カバーテープが提供される。
 また、本発明によれば、
 電子部品を収納する部品収納部が所定の間隔で並んで形成されているキャリアテープと前記キャリアテープに形成された前記部品収納部を覆うように設けられたカバーテープとからなる部品収納テープで構成されており、
 前記部品収納テープは、リール状に巻き取り可能であり、
 前記カバーテープは、上記電子部品包装用カバーテープである、電子部品用包装体が提供される。
 本発明によれば、摩擦帯電防止性に優れた電子部品包装用カバーテープを提供できる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態に係る電子部品包装用カバーテープの一例を示す概略断面図である。 本実施形態に係る電子部品包装用カバーテープをキャリアテープにシールした状態の一例を示す図である。 摩擦帯電圧の測定方法を説明するための図である。
 図1は、本実施形態に係る電子部品包装用カバーテープの一例を示す概略断面図である。
 図1に示すように、本実施形態に係る電子部品包装用カバーテープ10(以下、「カバーテープ」とも示す。)は、基材層1と、基材層1の一方の面側に設けられるシーラント層2と、基材層1の上記一方の面とは反対側の面に設けられる帯電防止層3と、を有するものである。そして、かかるカバーテープ10は、23℃、50%RHで測定した帯電防止層3の表面における表面抵抗値の値をR50とし、23℃、30%RHで測定した帯電防止層3の表面における表面抵抗値の値をR30としたとき、R50/R30の値が、0.35以上2.8以下である。これにより、キャリアテープの剥離に伴う帯電防止性に優れたカバーテープを実現することができる。なお、上記表面抵抗値は、IEC61340に準じて測定することができる。
 図2は、本実施形態に係る電子部品包装用カバーテープをキャリアテープにシールした状態の一例を示す図である。
 まず、カバーテープの使用方法について、図2を参照して説明する。図2に示すように、カバーテープ10は、電子部品の形状に合わせて凹状のポケット21が連続的に設けられたキャリアテープ20の蓋材として用いられる。具体的には、カバーテープ10は、キャリアテープ20のポケット21の開口部全面を覆うように、キャリアテープ20の表面に接着(例えば、ヒートシール)させて使用する。なお、後述においては、カバーテープ10と、キャリアテープ20とを接着して得られた構造体のことを、電子部品用の包装体100と称して説明する。
 実際、電子機器の製造現場においては、以下の手順で電子部品用の包装体100を作製する。まず、キャリアテープ20のポケット21内に電子部品を収容する。次いで、キャリアテープ20のポケット21の開口部全面を覆うように、キャリアテープ20の表面にカバーテープ10を接着することで、電子部品が包装体100内に密封収容されてなる構造体を得ることができる。かかる電子部品を収容してなる構造体は、紙製或いはプラスチック製のリールに包装体100を巻いた状態で、電子回路基板等に表面実装を行う作業領域まで搬送される。このように、リールに包装体100を巻いた状態で電子部品を搬送する際、キャリアテープ20の底面20aは、カバーテープ10の表面10aと接触(摩擦)している。
 本実施形態において、電子部品用包装体は、電子部品を収納する部品収納部(ポケット21)が所定の間隔で並んで形成されたキャリアテープ20と、キャリアテープ20に形成された部品収納部を覆うように設けられたカバーテープ10とからなる部品収納テープで構成されている。この部品収納テープはリール状に巻き取り可能である。
 また、本実施形態の電子部品包装用カバーテープ(カバーテープ10)は、シート形状でもよく、リール状に巻き取り可能なロール形状でもよい。
 ここで、本発明者は、各種の検討を行った結果、次のような知見を得た。具体的には、従来のカバーテープを用いて作製した電子部品を収容してなる構造体を搬送する際、搬送時の振動によってキャリアテープとカバーテープとを接着している面、すなわち、カバーテープにおけるシーラント層表面とは反対側の表面における摩擦により静電気が発生する。運搬時等の摩擦により発生した静電気により、包装体内に収容している電子部品が故障する、又は基盤実装時に貼り付きなどのトラブルを引き起こす場合があった。
 このような知見から、本発明者は、従来のカバーテープには、シーラント層表面とは反対側の表面における静電気対策という点に改善の余地があることを見出した。
 たとえば、通常の帯電防止対策として表面抵抗値を下げるという方法が考えられる。しかしながら、表面抵抗値を下げたとしても、摩擦帯電が生じてしまう事があった。こうした知見に基づいて検討した結果、作業環境を踏まえた上で帯電を抑制することにより、摩擦帯電の発生を抑制できると考えるに至った。
 さらに検討を深めた結果、特に、従来のカバーテープは、電子機器の製造現場における作業環境の湿度変化に伴い、帯電防止層の表面における表面抵抗値の変動が大きいものがほとんどであった。具体的には、従来のカバーテープは、上記表面抵抗値R50と、上記表面抵抗値R30の変動率が2.8倍より大きな比率となっていた。このことから、本願発明者は、従来のカバーテープにおいては、摩擦により発生する静電気に由来する電荷が帯電防止層の表面に付着した水分を介して移動している可能性が高いという知見を得て、湿度変化を因子に含む特性に着眼し、新たな設計指針を見出した。
 すなわち、本実施形態に係るカバーテープは、上述したように23℃、50%RHで測定した帯電防止層の表面における表面抵抗値R50と、23℃、30%RHで測定した帯電防止層の表面における表面抵抗値R30との比、R50/R30の値が特定の条件を満たすものである。こうすることで、電子部品を搬送する際の振動により、キャリアテープの底面とカバーテープの表面とが接触して発生する静電気が、キャリアテープとカバーテープとからなる包装体内に収容された電子部品に及ぼす影響を低減することが可能となる。そのため、電子部品を搬送する際の振動により、キャリアテープの底面とカバーテープの表面とが接触して発生する帯電により、電子部品が静電破壊されてしまう、又は基盤実装時に張り付きなどのトラブルを引き起こすという不都合が生じることを抑制できる。
 本実施形態に係るカバーテープにおいて、上記R50/R30の下限値は、例えば、好ましくは0.35以上であり、より好ましくは0.4以上であり、さらに好ましくは0.5以上である。一方、上記R50/R30の上限値は、例えば、好ましくは2.8以下であり、より好ましくは2.5以下であり、さらに好ましくは2以下であり、一層好ましくは1.5以下である。こうすることで、キャリアテープの剥離に伴う帯電防止性をより一層向上させることができる。なお、従来の代表的なカバーテープは、上記R50/R30の値が0.06程度となるものがほとんどであった。特に、上記R50/R30の値が、上記上限値以下である場合、摩擦により静電気が発生した場合においても放電特性に優れたカバーテープを実現することができる。また、湿度変化による表面抵抗値変化が小さいので保管性に優れたカバーテープとすることができる。一方、上記R50/R30の値が、上記下限値以上である場合、電子機器の製造現場における作業環境が湿度30RH%程度の乾燥状態にある場合においても、搬送中にカバーテープと電子部品とが摩擦することにより発生した静電気、キャリアテープからカバーテープを剥離する際に発生した静電気、付着した埃や内容物から発生した静電気等の放電特性に優れたカバーテープを実現することができる。本実施形態に係るカバーテープのように、上記R50/R30の値が特定の条件を満たすものである場合、すなわち、電子機器の製造現場における作業環境の湿度変化に伴う表面抵抗値の変動率が小さい場合、摩擦により発生する静電気に由来する電荷が帯電防止層を形成する材料中を移動できているため、従来のカバーテープのように、帯電防止層の表面に付着した水分を介して移動することを抑制できているものと考えられる。
 また、本実施形態に係るカバーテープは、23℃、50%RHで測定した帯電防止層の表面における表面抵抗値R50と、23℃、12%RHで測定した帯電防止層の表面における表面抵抗値R12との比、R50/R12の値が、好ましくは、0.1以上10以下であり、さらに好ましくは、0.125以上8以下であり、最も好ましくは、0.17以上6以下である。こうすることで、電子機器の製造現場における作業環境の湿度変化に伴って、カバーテープにおける帯電防止層の表面抵抗値が変動することをより一層厳しく制御できるため、キャリアテープの剥離に伴う帯電防止性により一層優れたカバーテープとすることができる。
 また、別の観点から、本実施形態にかかるカバーテープ10は、帯電防止層3の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰する時間、すなわち、帯電圧減衰時間について、23℃、50%RHで測定した値をS50とし、23℃、30%RHで測定した値をS30としたとき、S50/S30の値が0.7以上1以下となるものである。こうすることで、キャリアテープの剥離に伴う帯電防止性に優れたカバーテープを実現することができる。なお、後述においては、「帯電圧減衰時間S」が、帯電防止層3の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰する時間のことを指すものとして説明する。
 特に、従来のカバーテープは、電子機器の製造現場における作業環境の湿度変化に伴い、帯電防止層の表面における摩擦帯電圧の変動が大きいものがほとんどであった。具体的には、従来のカバーテープは、上記帯電圧減衰時間S50と、上記帯電圧減衰時間S30とから算出されるS50/S30の値が0.7未満となっていた。このことから、本願発明者は、従来のカバーテープにおいては、摩擦により発生する静電気に由来する電荷が帯電防止層の表面に付着した水分を介して移動することにより摩擦帯電が発生している可能性が高いという知見を得て、湿度変化を因子に含む特性に着眼し、新たな設計指針を見出した。
 すなわち、本実施形態に係るカバーテープは、上述したように23℃、50%RHで測定した帯電圧減衰時間S50と、23℃、30%RHで測定した帯電圧減衰時間S30とから算出されるS50/S30の値が特定の条件を満たすものである。こうすることで、電子部品を搬送する際の振動により、キャリアテープの底面とカバーテープの表面とが接触して発生する静電気が、キャリアテープとカバーテープとからなる包装体内に収容された電子部品に及ぼす影響を低減することが可能となる。そのため、電子部品を搬送する際の振動により、キャリアテープの底面とカバーテープの表面とが接触して発生する帯電により、電子部品が静電破壊されてしまう、又は基板実装時に張り付きなどのトラブルを引き起こすという不都合が生じることを抑制できる。
 本実施形態に係るカバーテープにおいて、上記S50/S30の下限値は、例えば、0.7以上であり、好ましくは0.8以上であり、より好ましくは0.9以上である。一方、上記S50/S30の上限値は、特に限定されないが、例えば、1以下とすることができる。こうすることで、キャリアテープの剥離に伴う帯電防止性をより一層向上させることができる。具体的には、S50/S30の値が、上記数値範囲を満たす場合には、電子機器の製造現場における作業環境が湿度30%RH程度の乾燥状態にある場合においても、搬送中にカバーテープと電子部品とが摩擦することにより発生した静電気、キャリアテープからカバーテープを剥離する際に発生した静電気、付着した埃や内容物から発生した静電気等の放電特性に優れたカバーテープを実現することができる。
 ここで、帯電圧減衰時間Sを測定するために実施する帯電防止層の表面における摩擦帯電圧は、たとえば、次の方法で測定することができる。まず、カバーテープにおける帯電防止層の表面と、たとえば、キャリアテープ等の上記カバーテープにおける帯電防止層の表面と接触させる対象物表面とを除電する。次いで、対象物表面に対してカバーテープにおける帯電防止層の表面を、たとえば、速度:約100mm/s、距離:約50mmの条件で一方向に2回接触させ、公知の表面電位計を用いて上記摩擦帯電圧を測定する。なお、本実施形態に係る摩擦帯電圧は、公知の表面電位計により、帯電防止層の表面における摩擦帯電圧を直接測定して得られた結果を採用してもよいし、対象物表面における摩擦帯電圧を測定して得られた結果から算出した結果を採用してもよい。
 また、本実施形態に係るカバーテープは、23℃、50%RHで測定した帯電圧減衰時間の値をS50とし、23℃、12%RHで測定した帯電圧減衰時間の値をS12としたとき、S50/S12の値が、好ましくは0.2以上1以下であり、さらに好ましくは、0.4以上1以下であり、最も好ましくは、0.5以上1以下である。こうすることで、電子機器の製造現場における作業環境の湿度変化に伴って、カバーテープにおける帯電防止層の摩擦帯電量が変動することをより一層厳しく制御できるため、キャリアテープの剥離に伴う帯電防止性により一層優れたカバーテープとすることができる。
 本実施形態に係るカバーテープの全光線透過率の下限値は、好ましくは、80%以上であり、さらに好ましくは、85%以上である。こうすることで、カバーテープとキャリアテープとからなる包装体において、上記キャリアテープのポケット内に電子部品が正しく収容されているか否かを検査することができる程度に必要な透明性を付与することができる。言い換えれば、基材層の全光線透過率を上記下限値以上とすることにより、カバーテープとキャリアテープとからなる包装体の内部に収容した電子部品を、当該包装体の外部から視認して確認することが可能となる。また、カバーテープの全光線透過率の上限値は、特に限定されないが、例えば、100%以下とすることができる。なお、カバーテープの全光線透過率は、JIS K7105(1981)に準じて測定することが可能である。
 本実施形態に係るカバーテープにおいて、当該カバーテープの帯電防止層の表面に対して、ポリスチレンからなる材料により形成されたシートを重ね合わせ、上記シートを速度100mm/sで50mmの間隔で2回摩擦させてから5秒後に、23℃、50%RHの条件で摩擦帯電圧を測定する。このようなカバーテープの摩擦耐電圧は、特に限定されないが、例えば、好ましくは-1800V以上1800V以下であり、より好ましくは-1500V以上1500V以下であり、さらに好ましくは-1000V以上1000V以下であり、一層好ましくは-800V以上800V以下である。こうすることで、電子部品を搬送する際の振動により、キャリアテープの底面とカバーテープの表面とが接触して発生する静電気が、キャリアテープとカバーテープとからなる包装体内に収容された電子部品に及ぼす影響をより一層低減することが可能である。
 なお、上記カバーテープにおける帯電防止層の表面と、たとえば、キャリアテープ等の上記カバーテープにおける帯電防止層の表面と接触させる対象物表面とを除電する。次いで、対象物表面に対してカバーテープにおける帯電防止層の表面を、一方向に2回接触させ、公知の表面電位計を用いて上記摩擦帯電圧を測定する。なお、本実施形態に係る摩擦帯電圧は、公知の表面電位計により、帯電防止層の表面における摩擦帯電圧を直接測定して得られた結果を採用してもよいし、対象物表面における摩擦帯電圧を測定して得られた結果から算出した結果を採用してもよい。
 本実施形態に係るカバーテープの幅は、特に限定されないが、例えば、2mm以上100mm以下としてもよく、好ましくは2mm以上80mm以下としてもよく、より好ましくは、2mm以上50mm以下としてもよい。
 以下、本実施形態に係るカバーテープを形成する各層の構成について詳説する。
<基材層1>
 基材層を構成する材料は、当該基材層に対して帯電防止層やシーラント層を積層してカバーテープを作製する際、キャリアテープに対してカバーテープを接着させる際、カバーテープの使用時等に外部から加わる応力に耐えうることができる程度の機械的強度、キャリアテープに対してカバーテープを接着させる際に加わる熱履歴に耐えうることができる程度の耐熱性を有したものであればよい。また、基材層を構成する材料の形態は、特に限定されないが、加工が容易である観点から、フィルム状でもよい。
 基材層を構成する材料の具体例としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリアクリレート系樹脂、ポリメタアクリレート系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ABS樹脂等が挙げられる。中でも、カバーテープの機械的強度を向上させる観点から、ポリエステル系樹脂が好ましく、ポリエチレンテレフタレートであるとさらに好ましい。また、カバーテープの機械的強度、柔軟性を向上させる観点から、ナイロン6を、基材層を構成する材料として用いてもよい。なお、基材層を構成する材料中には、滑材を含有させてもよい。これらを1種または2種以上を併用してもよい。
 基材層は、上述した材料を含む単層フィルムにより形成してもよいし、上述した材料を各層に含む多層フィルムを用いて形成してもよい。また、基材層を形成するために使用するフィルムの形態としては、未延伸フィルムであってもよいし、一軸方向又は二軸方向に延伸したフィルムであってもよいが、カバーテープの機械的強度を向上させる観点から、一軸方向又は二軸方向に延伸したフィルムを使用してもよい。
 基材層の厚さは、例えば、9μm以上25μm以下としてもよく、好ましくは9μm以上16μm以下としてもよい。基材層の厚さが上記上限値以下である場合、カバーテープの剛性が高くなりすぎず、シール後のキャリアテープに対して捻り応力がかかった場合であっても、カバーテープがキャリアテープの変形に追従し、剥離してしまうことを抑制することができる。また、基材層の厚さが上記上限値以上である場合、カバーテープの機械的強度を良好なものとすることができるため、キャリアテープからカバーテープを高速で剥離する場合であっても、カバーテープが破断してしまうことを抑制することができる。
 基材層の全光線透過率の下限値は、たとえば、好ましくは80%以上としてもよく、好ましくは85%以上としてもよい。こうすることで、カバーテープとキャリアテープとからなる包装体において、上記キャリアテープのポケット内に電子部品が正しく収容されているか否かを検査することができる程度に必要な透明性を付与することができる。言い換えれば、基材層の全光線透過率を上記下限値以上とすることにより、カバーテープとキャリアテープとからなる包装体の内部に収容した電子部品を、当該包装体の外部から視認して確認することが可能となる。基材層の全光線透過率の上限値は、特に限定されないが、例えば、100%以下とすることができる。なお、基材層の全光線透過率は、JIS K7105(1981)に準じて測定することが可能である。
<シーラント層2>
 本実施形態に係るカバーテープにおいて、シーラント層は、基材層における帯電防止層が設けられた面とは反対側の面に設けられる層である。かかるシーラント層の表面は、上述した方法でカバーテープを使用する場合、キャリアテープと接触することになる。本実施形態において、帯電防止層、基材層、およびシーラント層を含む多層構造とすることにより、キャリアテープに対する接着性と剥離性とのバランスとともに、帯電防止性に優れた電子部品包装用カバーテープを実現することができる。
 シーラント層を構成する材料としては、例えば、アクリル系樹脂やポリエステル系樹脂等の熱可塑性樹脂と、帯電防止剤とを含むものを使用することができる。かかる帯電防止剤の具体例としては、酸化錫、酸化亜鉛、酸化チタン、スメクタイト等の金属フィラー、ポリオキシエチレンアルキルアミン、第四級アンモニウム、アルキルスルホネート等の構造を有する界面活性剤、ポリオキシエチレンアルキルアミン、第四級アンモニウム、アルキルスルホネート、ポリエーテル等の構造をブロックあるいはランダムに組み込んだ高分子型帯電防止剤、イオン性液体、ポリピロール、ポリ(3,4-エチレンジオキシチオフェンポリアセチレン、ポリアニリンとそれらの誘導体からなる導電ポリマー、カーボンからなる群より選択される1種またはこれらの混合物が挙げられる。なお、上記カーボンとしては、カーボンブラック、ホワイトカーボン、カーボン繊維、カーボンチューブ等の炭素からなる種々の形状のフィラーを用いることができる。これらを1種または2種以上を併用してもよい。
 シーラント層を構成する材料には、搬送中に生じるブロッキングを防止する観点から、ケイ素、マグネシウムまたはカルシウムを主成分とする酸化物粒子、シリカ、タルク等の無機粒子、ポリエチレン粒子、ポリアクリレート粒子およびポリスチレン粒子等の有機粒子からなる群より選択される1種またはこれらのアロイが含まれていてもよい。
 シーラント層の厚さは、キャリアテープに対する接着性と剥離性とのバランスを向上させる観点から、たとえば、1μm以上15μm以下としてもよく、好ましくは1μm以上10μm以下としてもよく、より好ましくは1μm以上5μm以下としてもよい。
 シーラント層の表面抵抗値は、種々の要因により発生した静電気を効率よく外部に放出させる観点から、23℃、50RH%の条件で、たとえば、10Ω以上1011Ω以下としてもよく、好ましくは10Ω以上1010Ω以下としてもよく、より好ましくは10Ω以上10Ω以下としてもよい。上記表面抵抗値は、IEC61340に準じて測定することができる。
<帯電防止層3>
 本実施形態に係るカバーテープにおいて、帯電防止層は、基材層におけるシーラント層が設けられた面とは反対側の面に設けられる層である。かかる帯電防止層の表面は、上述したように、キャリアテープとカバーテープとからなる包装体に電子部品を収容して搬送する際に、キャリアテープの底面と接触する可能性を有している。
 以下、帯電防止層を形成する材料について説明する。
 帯電防止層を形成する材料は、たとえば、キャリアテープの底面を形成する材料等の電子部品を収容して搬送する際に帯電防止層の表面と接触する対象物を形成する材料と比べて帯電列において正側に位置する「正の化合物」と、上記対象物を形成する材料と比べて帯電列において負側に位置する「負の化合物」とを含むものであることが好ましい。こうすることで、帯電防止層の表面が対象物と接触した際に、摩擦に伴う静電気の発生を抑制することができる。詳細なメカニズムは定かでないが、帯電防止層の表面が対象物と接触した際に、当該帯電防止層を形成する材料に含まれる正の化合物が正極性に帯電する一方、負の化合物は負極性に帯電することになるため、帯電防止層内において電気的に中和することができる、と考えられる。
 ここで、本発明者が検討したところ、帯電防止層の表面と接触する対象物として特定の材料を使用し、これを基準とすることにより、正の化合物と負の化合物とを併用した時に帯電防止層の摩擦帯電防止性を安定的に得られることを見出した。さらに検討した結果、綿布(コットン100%)を基準に採用することにより、摩擦する材質によって帯電の正負が変化する影響を回避できるため、本実施形態の正の化合物と負の化合物との併用により得られる帯電防止層の摩擦帯電防止性を安定的に得られる事が判明した。正負の帯電量の測定方法としては、例えば、樹脂シートの表面又はシートにコーティングしたフィルムの表面を、綿布(コットン100%)で摩擦した後、表面電位計により測定する方法が挙げられる。この場合、例えば、3M社製Static Sensor 718などの表面電位計を使用できる。
 本実施形態の正の化合物としては、綿布に対して正に帯電する化合物であればよく、例えば、スチレンアクリル共重合、エステルアクリル共重合、アクリル樹脂、ビニルアルコール、ホルムアルデヒド変性ナイロン、アジリジニル化合物、エポキシ化合物、カルボジイミド化合物等の正のバインダー樹脂が挙げられる。これらを1種または2種以上を併用してもよい。
 また、正の化合物として、たとえば、キャリアテープの底面を形成する材料等の、電子部品を収容して搬送する際に帯電防止層の表面と接触する対象物を形成する材料がポリスチレン等を含む場合が多いことから、アジリジニル化合物とその開環化合物を使用してもよい。アジリジニル化合物は、一般に、アジリジニル基を有する化合物のことを指し、その具体例としては、N,N´-ヘキサメチレン-1,6-ビス(1-アジリジカルボキシアミド)、N,N´-ジフェニルメタン-4,4´-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート)、N,N´-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)、トリエチレンメラミン、トリメチロールプロパン-トリ-β(2-メチルアジリジン)プロピオネート、ビスイソフタロイル-1-2-メチルアジリジン、トリ-1-アジリジニルフォスフィンオキサイド、トリス-1-2-メチルアジリジンフォスフィンオキサイド等が挙げられる。また、上記アジリジニル化合物として、日本触媒社製のケミタイトPZ-33、DZ-22E等の市販品を使用することもできる。なお、アジリジニル化合物の開環化合物は、アジリジニル化合物中のアジリジニル基が開環した状態にある化合物のことを指す。
 上述した正の化合物の含有量は、帯電防止層を形成する材料全量に対して、0.2重量%以上98重量%以下であることが好ましく、0.5重量%以上90重量%以下であるとさらに好ましい。こうすることで、塗膜の物理的な強度が高まり接触による帯電防止剤の滑落に強くなる。
 本実施形態の負の化合物としては、綿布に対して負に帯電する化合物であればよく、たとえば、フッ素樹脂、ポリエステル化合物等の負のバインダー樹脂が挙げられる。これらを1種または2種以上を併用してもよい。
 また、負の化合物として、キャリアテープの底面を形成する材料等の電子部品を収容して搬送する際に帯電防止層の表面と接触する対象物を形成する材料がポリスチレン等を含む場合が多いことから、エステル化合物を使用しても良い。エステル化合物とは、有機酸または無機酸とアルコールとが脱水反応により結合して生成した化合物のことを指し、その具体例としては、ポリエチレンテレフタラート、ポリブチレンテレフタレート、ポリエチレンナフタレートやこれらの誘導体等が挙げられる。
 上述した負の化合物の含有量は、帯電防止層を形成する材料全量に対して、0.2重量%以上98重量%以下であることが好ましく、0.5重量%以上90重量%以下であるとさらに好ましい。こうすることで、塗膜の物理的な強度が高まり接触による帯電防止剤の滑落に強くなる。
 ここで、本発明者が検討したところ、上記正の化合物と負の化合物とを併用することにより、帯電防止層の摩擦帯電防止性を向上させることができることが見出された。さらに、正の化合物と負の化合物とが十分に分散された帯電防止層においては、表面抵抗値や帯電圧減衰時間等の湿度変化を因子に含む特性を適切に制御できるため、優れた摩擦帯電防止性を実現できることが判明した。詳細なメカニズムは定かでないが、正の化合物と負の化合物により、摩擦により生じた摩擦帯電を中和することができるため、湿度変化を因子に含む特性を適切に制御できると考えられる。
 また、正の化合物と負の化合物との配合量に関しては、固形分に基づいて決定することにより、これらの併用による摩擦帯電防止性の制御が容易になることが分かった。
 具体的には、負の化合物の固形分の含有量の下限値は、例えば、正の化合物の固形分と負の化合物の固形分との合計値100重量%に対して、50重量%以上が好ましく、60重量%以上が好ましく、70重量%以上がさらに好ましい。負の化合物の固形分の含有量の上限値は、特に限定されないが、例えば、正の化合物の固形分と負の化合物の固形分との合計値100重量%に対して、99重量%以下としてもよく、95重量%以下としてもよく、90重量%以下としてもよい。このように正の化合物と負の化合物とのバランスを図ることにより、摩擦帯電防止性に優れた帯電防止層の製造安定性を向上させることができる。
 帯電防止層の表面抵抗値の上限値は、23℃、15RH%の条件で、たとえば、1011Ω以下が好ましく、1010Ω以下がより好ましく、10Ω以下がさらに好ましく、10Ω以下が一層好ましい。これにより、帯電防止性を向上させることができる。帯電防止層の表面抵抗値の下限値は、23℃、15RH%の条件で、特に限定されないが、例えば、10Ω以上としてもよく、好ましくは10Ω以上としてもよい。上記表面抵抗値は、IEC61340に準じて測定することができる。
 帯電防止層を形成する材料は、当該帯電防止層の表面抵抗値を低下させて摩擦に伴う静電気の発生を抑制する観点から、導電性ポリマーを含むことが好ましい。かかる導電性ポリマーの具体例としては、ポリアニリン、ポリピロール等が挙げられ、中でもポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)系の化合物を好適に用いることができる。これらを1種または2種以上を併用してもよい。
 帯電防止層を形成する材料は、当該帯電防止層を形成する際の濡れ性やレベリング性を向上させる観点から、界面活性剤を含むことが好ましい。かかる界面活性剤は、低分子型の界面活性剤であっても、高分子型の界面活性剤であってもよいが、フッ素アルキル構造を含む界面活性剤を好適に用いることができる。これらを1種または2種以上を併用してもよい。
 帯電防止層の摩擦帯電圧は、23℃、50%RHの条件下において、例えば、好ましくは-1800V以上1800V以下であり、より好ましくは-1500V以上1500V以下であり、さらに好ましくは-1000V以上1000V以下であり、一層好ましくは-800V以上800V以下であり、最も好ましくは-500V以上500V以下である。また、帯電防止層の摩擦帯電圧の絶対値は、23℃、50%RHの条件下において、例えば、好ましくは1800V以下であり、より好ましくは1500V以下であり、さらに好ましくは1000V以下であり、一層好ましくは800V以下であり、最も好ましくは500V以下である。こうすることで、電子部品を搬送する際の振動により、キャリアテープの底面とカバーテープの表面とが接触して発生する帯電により、電子部品が静電破壊されてしまう、又は基盤実装時にトラブルを引き起こすという不都合が生じることを抑制できる。 
 また、本実施形態の帯電防止層の膜厚の下限値は、特に限定されないが、例えば、たとえば、1nm以上としてもよく、好ましくは10nm以上としてもよく、より好ましくは20nm以上としてもよい。これにより、帯電防止層の機械強度を向上させることができる。また、帯電防止層の膜厚の上限値は、特に限定されないが、例えば、5μm以下としてもよく、好ましくは4μm以下としてもよく、さらに好ましくは3μm以下としてもよい。これにより、帯電防止層が積層されたカバーテープ全体の柔軟性を向上させることができる。また、収容スペースの体積当たりのカバーテープの集積密度を高めることもできる。
<その他の層>
 本実施形態に係るカバーテープは、基材層とシーラント層の間に中間層(図示せず)を設けてもよい。こうすることで、カバーテープ全体のクッション性を向上させるとともに、接着対象であるキャリアテープとの密着性を向上させることができる。
 上述した中間層を形成する材料としては、オレフィン系樹脂、スチレン系樹脂、環状オレフィン系樹脂等が挙げられる。中でも、接着対象であるキャリアテープとの密着性を向上させる観点から、オレフィン系樹脂を使用してもよい。これらを1種または2種以上を併用してもよい。
 中間層の厚さは、接着対象であるキャリアテープとの密着性を向上させる観点から、たとえば、10μm以上30μm以下としてもよく、好ましくは15μm以上25μm以下としてもよい。
 本実施形態に係るカバーテープは、基材層とシーラント層の間または基材層と帯電防止層の間に接着層を設けてもよい。こうすることで、カバーテープの機械的強度を向上させることができる。
 上述した接着層を形成する材料には、樹脂が含まれている。かかる樹脂の具体例としては、ウレタン系のドライラミネート用接着樹脂、アンカーコート用接着樹脂等が挙げられ、一般に、ポリエステルポリオールやポリエーテルポリオールなどのポリエステル組成物とイソシアネート化合物とを組み合わせたものやポリブタジエン、ポリイミン樹脂等を使用することができる。
 次に、電子部品を収容して搬送する際に帯電防止層の表面と接触する対象物を形成する材料について説明する。上述した通り、上記対象物としては、キャリアテープの底面等が挙げられるが、電子部品を収容して搬送する際や電子部品を実装する際に帯電防止層の表面と接触する可能性を有したものであれば限定されない。また、上記対象物を形成する材料の具体例としては、ポリスチレン、ポリエチレンテレフタレート、ポリカーボネート等のキャリアテープを形成する材料や、ポリエチレン、ゴム(天然ゴム、合成ゴムなどを加工した材料)等が挙げられる。
 次に、本実施形態に係るカバーテープの製造方法について説明する。
 本実施形態におけるカバーテープの製造方法は、従来の製造方法とは異なるものであって、後述する製造条件を高度に制御する必要がある。すなわち、以下の2つの条件に係る各種因子を高度に制御する製造方法によって初めて、23℃、50%RHで測定した帯電防止層の表面における表面抵抗値R50と、23℃、30%RHで測定した帯電防止層の表面における表面抵抗値R30との比、R50/R30の値が、上述した特定の条件を満たすカバーテープを得ることができる。
(1)帯電防止層を形成する樹脂材料の配合組成
(2)帯電防止層を形成する材料と基材層を形成する材料との組み合わせ
 ただし、本実施形態におけるカバーテープは、上記2つの条件に係る各種因子を高度に制御することを前提に、たとえば、製造装置の温度設定などの具体的な製造条件は種々のものを採用することができる。言い換えれば、本実施形態におけるカバーテープは、上記2つの条件に係る各種因子を高度に制御すること以外の点については、公知の方法を採用して作製することが可能である。これらの中でも、帯電防止層に、たとえば正に帯電する正の化合物と負に帯電する負の化合物を併用するとともに、これらが良く分散した状態とすること等が、表面抵抗値等の湿度変化を因子に含む特性を適切に制御し、上記R50、R30、R50/R30を所望の数値範囲とするための要素として挙げられる。以下、上記2つの条件に係る各種因子を高度に制御していることを前提に、カバーテープの製造方法の一例を説明する。
 まず、基材層の一方の面に所定の材料を塗布し乾燥させることによって、帯電防止層を形成する。次いで、基材層の帯電防止層を形成した面とは反対側の面にシーラント層を押出しラミネート法によって積層する。このようにして、本実施形態に係るカバーテープを作製することができる。なお、シーラント層を押出し加工法によりシート形成した後、基材層の帯電防止層を形成した面とは反対側の面に得られたシートを積層してもよい。
 また、別の観点における本実施形態に係るカバーテープの製造方法について説明する。
 本実施形態におけるカバーテープの製造方法は、従来の製造方法とは異なるものであって、後述する製造条件を高度に制御する必要がある。すなわち、以下の2つの条件に係る各種因子を高度に制御する製造方法によって初めて、23℃、50%RHで測定した帯電防止層の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰するまでの帯電圧減衰時間S50、23℃、30%RHで測定した帯電防止層の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰するまでの帯電圧減衰時間S30、S50/S30の値が、上述した特定の条件を満たすカバーテープを得ることができる。
(1)帯電防止層を形成する樹脂材料の配合組成
(2)帯電防止層を形成する材料と基材層を形成する材料との組み合わせ
 ただし、本実施形態におけるカバーテープは、上記2つの条件に係る各種因子を高度に制御することを前提に、たとえば、製造装置の温度設定などの具体的な製造条件は種々のものを採用することができる。言い換えれば、本実施形態におけるカバーテープは、上記2つの条件に係る各種因子を高度に制御すること以外の点については、公知の方法を採用して作製することが可能である。これらの中でも、たとえば正に帯電する正の化合物と負に帯電する負の化合物を併用するとともに、これらが良く分散した状態とすること等が、帯電圧減衰時間等の湿度変化を因子に含む特性を適切に制御し、上記S50、S30、S50/S30を所望の数値範囲とするための要素として挙げられる。以下、上記2つの条件に係る各種因子を高度に制御していることを前提に、カバーテープの製造方法の一例を説明する。
 まず、基材層の一方の面に所定の材料を塗布し乾燥させることによって、帯電防止層を形成する。次いで、基材層の帯電防止層を形成した面とは反対側の面にシーラント層を押出しラミネート法によって積層する。このようにして、本実施形態に係るカバーテープは作製することができる。なお、シーラント層を押出し加工法によりシート形成した後、基材層の帯電防止層を形成した面とは反対側の面に得られたシートを積層してもよい。
 また、上述した中間層を形成する場合には、基材層の帯電防止層を形成した面とは反対側の面に押出しラミネート法によって当該中間層を積層してもよいし、当該中間層を押出し加工法によりシート形成した後、基材層の帯電防止層を形成した面とは反対側の面に得られたシートを積層してもよい。
 また、上述した接着層を形成する場合には、従来公知の塗布方法によって、対象となる面に接着層の材料を塗布すればよい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
[実施例A]
 実施例A及び比較例Aにおいて、帯電防止層およびシーラント層の作製に用いた各原料成分を下記に示した。
<帯電防止層>
(帯電防止剤)
・帯電防止剤A1:ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)系の化合物を含む導電性ポリマー(ヘレウス社製、CLEVIOS P)
・帯電防止剤A2:二酸化錫(日記触媒社製)
・帯電防止剤A3:カチオン系低分子界面活性剤(日油社製、エレガン264-30)
・帯電防止剤A4:カチオン系高分子界面活性剤(大成ファインケミカル社製、アクリット1SX-1090)
(希釈溶剤)
・希釈溶剤A1:イソプロピルアルコール:水=1:1
・希釈溶剤A2:トルエン:メチルエチルケトン=1:1
・希釈溶剤A3:イソプロピルアルコール
(バインダー樹脂)
・正のバインダー樹脂A1:カルボジイミド(日清紡ケミカル社製、カルボジライトV-02-L2)
・正のバインダー樹脂A2:アクリル樹脂(東亜合成社製、アロンS-1001)
・負のバインダー樹脂A3:水溶性ポリエステル樹脂(互応化学社製、プラスコートZ760)
・負のバインダー樹脂A4:水溶性ポリエステル樹脂(互応化学社製、プラスコートZ565)
(界面活性剤)
・界面活性剤A1:ビックケミージャパン社製、BYK-3440
・界面活性剤A2:サンノプコ社製、SNディスパーサント9228
<シーラント層>
・スチレン-(メタ)アクリル酸メチル共重合体(新日鐵化学社製、エスチレンMS-600。以下「St―MMA」とも言う。)
・エチレン-アクリル酸メチル共重合体(三井・デュポンポリケミカル社製、エルバロイAC 1820。以下、「EMA」とも言う。)
・ポリエーテル/ポリオレフィン共重合体(三洋化成工業社製、ペレスタット212。以下「PEG-PP」とも言う。)
<実施例Aに係るカバーテープの製造>
 まず、基材層として、厚さが16μmの二軸延伸ポリエステルフィルム(東洋紡績株式会社製:E5102)を準備した。得られた基材層の全光線透過率は、87.7%であった。
 次に、帯電防止層を形成する材料を、以下の方法で準備した。なお、各試薬の配合組成は、表1に示す通りである。
 帯電防止剤に対して、希釈溶剤を加えながら30秒間撹拌した。次に、基材密着性および分散安定性を高めるため、バインダー樹脂と界面活性剤を加えてから30秒間撹拌した。このようにして、液体状の帯電防止層を形成する材料を準備した。
 次いで、得られた帯電防止層を形成する材料(液体状の)を基材層の一方の面に対して、バーコーター又はグラビアコーターを用いてwet膜厚が4μmとなるように塗布した。その後、100℃で乾燥させることにより帯電防止層を製膜した。
 次に、基材層における帯電防止層を製膜した面とは反対側の面に対し、押出しラミネート法によってシーラント層を積層した。かかるシーラント層を形成する材料としては、15量部のSt―MMA、65重量部のEMAおよび20重量部のPEG-PPからなる樹脂組成物を使用した。なお、シーラント層の厚みは、5μmであった。
 以上の方法により、実施例A1、A2に係るカバーテープを作製した。得られたカバーテープの幅は、8mmであった。
 <比較例Aに係るカバーテープの製造>
 帯電防止層は、表1に示すようにバインダー樹脂と界面活性剤を加えることなく得られた帯電防止剤と希釈溶剤の混合溶液を用いて、実施例Aと同様の方法でカバーテープを作製した。
 実施例Aおよび比較例Aの各カバーテープを用いて、以下の評価を行った。
<評価方法>
・帯電防止層の表面における表面抵抗値:23℃という温度にて50RH%、30RH%および12RH%の3つの湿度条件下での帯電防止層の表面における表面抵抗値を、IEC61340に準じて測定した。なお、単位は、Ωである。
・全光線透過率:カバーテープの全光線透過率は、JIS K7105(1981)に準じて測定した。なお、単位は%である。
・摩擦帯電圧:23℃、50%RHで測定した摩擦帯電圧は、図3を参照して以下の(1)~(7)で説明する方法により測定した。なお、単位は、Vである。
(1)表面抵抗値が1.0×1011Ω未満である車輪付台座30の上に、表面抵抗値が1.0×1013Ω以上であり、かつ板状のゴム体40を設置した。次いで、ゴム体40の上に、所定の間隔を設けて2つの絶縁体50を設置した。なお、絶縁体50は、四角柱状で厚みが10mm以上であり、かつ表面抵抗値が1.0×1013Ω以上のものを使用した。次に、2つの絶縁体50の両方に接触した状態となるように、両面テープを用いて8mm幅にカットしたポリスチレン系シート70(電気化学社製、クリアレンCST2401)を固定した。なお、上記ポリスチレン系シート70は、後述する測定において各カバーテープと接触させる摩擦対象物である。また、車輪付台座30は、常に接地(アース)の状態となっていた。
(2)ポリスチレン系シート70を、イオナイザー(春日電機社製、BLH-H)を用いて除電した。
(3)車輪付台座30を動かし、表面電位計(TREK社製、MODEL370)に備わる測定プローブ60の下にポリスチレン系シート70が配されるように移動させ、上記ポリスチレン系シート70が除電されていることを確認した。なお、ポリスチレン系シート70と測定プローブ60との間隔は、1~2mmとした。
(4)帯電防止層が表層となるようにカバーテープ10を、表面抵抗値が1.0×10Ω未満であり、かつ棒状の支持体80に巻きつけた。この支持体80は、手で支える際の帯電の影響を少なくするために、カーボン練り込みフィルムからなる導体で構成されているものを用いた。また、カバーテープ10についても、ポリスチレン系シート70と同様の方法で除電した。
(5)車輪付台座30を動かし、ポリスチレン系シート70を測定プローブ60の下から移動させ、支持体80に巻き付けられたカバーテープ10における帯電防止層によりポリスチレン系シート70表面を摩擦した。このとき、カバーテープ10における帯電防止層による摩擦は、車輪付台座30を固定した状態で、ポリスチレン系シート70に対して長手方向の一方向に、速度100mm/sで50mmの間隔で2回摩擦するというものであった。
(6)カバーテープ10における帯電防止層とポリスチレン系シート70との摩擦から5秒以内に、測定プローブ60の下にポリスチレン系シート70を移動させ、イオナイザーを用いて摩擦帯電圧の測定を行った。
(7)得られたポリスチレン系シート70表面の摩擦帯電圧の値から、カバーテープ10における帯電防止層の表面の摩擦帯電圧を算出した。なお、摩擦帯電圧の測定に使用したポリスチレン系シート70とカバーテープ10はいずれも、上述したように摩擦試験前に除電した帯電圧が0Vのものを用いている。そのため、ポリスチレン系シート70表面の摩擦帯電圧が100Vである場合、カバーテープ10における帯電防止層の表面の摩擦帯電圧は、100V(=0V-100V)と算出されることになる。
 上記評価項目に関する評価結果を、帯電防止層の配合組成とあわせて以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例A1、A2のカバーテープは、いずれも、キャリアテープに対する接着性と剥離性とのバランスとともに、キャリアテープの剥離に伴う帯電防止性に優れたものであった。特に、実施例A1およびA2のカバーテープは、正のバインダー樹脂と負のバインダー樹脂の両方を含み、かつ導電性ポリマーを含む材料を用いて帯電防止層を形成しているため、摩擦帯電自体が発生しにくいものであった。一方、比較例A1、A2のカバーテープは、キャリアテープの剥離に伴う帯電防止性という点においては、湿度依存性があり、要求水準を満たすものではなかった。
 得られたカバーテープとポリスチレン製キャリアテープとを摩擦させて、カバーテープの表面の帯電圧の絶対値を測定した。その結果、実施例A1、A2については、摩擦帯電防止性が良好であることが分かった。一方、比較例A1、A2については、摩擦帯電防止性が劣ることが分かった。
 また、得られたカバーテープをキャリアテープに熱シール後、シールに巻くことにより、リール状に巻き取られた電子部品用包装体が得られた。
[実施例B]
 実施例B及び比較例Bにおいて、帯電防止層およびシーラント層の作製に用いた各原料成分を下記に示した。
<帯電防止層>
(帯電防止剤)
・帯電防止剤B1:ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)系の化合物を含む導電性ポリマー(ヘレウス社製、CLEVIOS P)
・帯電防止剤B2:二酸化錫(日記触媒社製)
・帯電防止剤B3:カチオン系低分子界面活性剤(日油社製、エレガン264-30)
・帯電防止剤B4:カチオン系高分子界面活性剤(大成ファインケミカル社製、アクリット1SX-1090)
(希釈溶剤)
・希釈溶剤B1:イソプロピルアルコール:水=1:1
・希釈溶剤B2:トルエン:メチルエチルケトン=1:1
・希釈溶剤B3:イソプロピルアルコール
(バインダー樹脂)
・正のバインダー樹脂B1:カルボジイミド(日清紡ケミカル社製、カルボジライトV-02-L2)
・正のバインダー樹脂B2:アクリル樹脂(東亜合成社製、アロンS-1001)
・負のバインダー樹脂B3:水溶性ポリエステル樹脂(互応化学社製、プラスコートZ760)
・負のバインダー樹脂B4:水溶性ポリエステル樹脂(互応化学社製、プラスコートZ565)
(界面活性剤)
・界面活性剤B1:ビックケミージャパン社製、BYK-3440
・界面活性剤B2:サンノプコ社製、SNディスパーサント9228
<シーラント層>
・スチレン-(メタ)アクリル酸メチル共重合体(新日鐵化学社製、エスチレンMS-600。以下「St―MMA」とも言う。)
・エチレン-アクリル酸メチル共重合体(三井・デュポンポリケミカル社製、エルバロイAC 1820。以下、「EMA」とも言う。)
・ポリエーテル/ポリオレフィン共重合体(三洋化成工業社製、ペレスタット212。以下「PEG-PP」とも言う。)
<実施例Bに係るカバーテープの製造>
 まず、基材層として、厚さが16μmの二軸延伸ポリエステルフィルム(東洋紡績株式会社製:E5102)を準備した。得られた基材層の全光線透過率は、87.7%であった。
 次に、帯電防止層を形成する材料を、以下の方法で準備した。なお、各試薬の配合組成は、表2に示す通りである。
 帯電防止剤に対して、希釈溶剤を加えながら30秒間撹拌した。次に、基材密着性および分散安定性を高めるため、バインダー樹脂と界面活性剤を加えてから30秒間撹拌した。このようにして、液体状の帯電防止層を形成する材料を準備した。
 次いで、得られた帯電防止層を形成する材料(液体状の)を基材層の一方の面に対して、バーコーター又はグラビアコーターを用いてwet厚みが4μmとなるように塗布した。その後、100℃で乾燥させることにより帯電防止層を製膜した。
 次に、基材層における帯電防止層を製膜した面とは反対側の面に対し、押出しラミネート法によってシーラント層を積層した。かかるシーラント層を形成する材料としては、15量部のSt―MMA、65重量部のEMAおよび20重量部のPEG-PPからなる樹脂組成物を使用した。なお、シーラント層の厚みは、5μmであった。
 以上の方法により、実施例B1、B2に係るカバーテープを作製した。得られたカバーテープの幅は、8mmであった。
<比較例Bに係るカバーテープの製造>
 帯電防止層を形成する材料として、バインダー樹脂と界面活性剤を加えることなく得られた帯電防止剤と希釈溶剤の混合溶液を用いた点以外は、実施例1および2と同様の方法でカバーテープを作製した。
 実施例Bおよび比較例Bの各カバーテープを用いて、以下の評価を行った。
<評価方法>
・帯電圧減衰時間:23℃という温度にて50%RH、30%RHおよび12%RHの3つの湿度条件下、後述する方法を用いて測定された帯電防止層の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰するまでの時間を測定した。なお、単位は、秒(s)である。さらに、下記表1においては、摩擦帯電圧の値が+5kVから+50Vに減衰するまでの時間を、S+とし、摩擦帯電圧の値が-5kVから-50Vに減衰するまでの時間を、S-とした。
・摩擦帯電圧:23℃、50%RHで測定した摩擦帯電圧は、図3を参照して、上記実施例Aと同様の方法により測定した。なお、単位は、Vである。
・全光線透過率:カバーテープの全光線透過率は、JIS K7105(1981)に準じて測定した。なお、単位は%である。
 上記評価項目に関する評価結果を、帯電防止層の配合組成とあわせて以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例B1、B2のカバーテープは、いずれも、キャリアテープに対する接着性と剥離性とのバランスとともに、キャリアテープの剥離に伴う帯電防止性に優れたものであった。特に、実施例1BおよびB2のカバーテープは、正のバインダー樹脂と負のバインダー樹脂の両方を含み、かつ導電性ポリマーを含む材料を用いて帯電防止層を形成しているため、摩擦帯電自体が発生しにくいものであった。一方、比較例B1、B2のカバーテープは、キャリアテープの剥離に伴う帯電防止性という点においては、湿度依存性があり、要求水準を満たすものではなかった。
 得られたカバーテープとポリスチレン製キャリアテープとを摩擦させて、カバーテープの表面の帯電圧の絶対値を測定した。その結果、実施例B1、B2については、摩擦帯電防止性が良好であることが分かった。一方、比較例B1、B2については、摩擦帯電防止性が劣ることが分かった。
 また、得られたカバーテープをキャリアテープに熱シール後、シールに巻くことにより、リール状に巻き取られた電子部品用包装体が得られた。
[実施例C]
 実施例Cにおいて、帯電防止層の作製に用いた各原料成分を下記に示した。
(バインダー樹脂)
・正の化合物C1:アクリル酸エステル共重合体樹脂(東亜合成社製、ジュリマーFC-80)
・負の化合物C1:水溶性ポリエステル樹脂(互応化学社製、プラスコートZ565)
(帯電防止剤)
・帯電防止剤C1:ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)系の化合物を含む導電性ポリマー(日本アグフアマテリアルズ社製、Orgacon ICP1010)
(その他)
・希釈剤C1:イソプロピルアルコール
・希釈剤C2:水
・中和剤C1:トリエチルアミン(和光純薬社製:TEA)
・界面活性剤C1:ビックケミージャパン社製、BYK-3440
<実施例Cに係るカバーテープの作製>
 まず、基材層として、厚さが16μmの二軸延伸ポリエステルフィルム(東洋紡績株式会社製:E5102)を準備した。得られた基材層の全光線透過率は、87.7%であった。
 次に、帯電防止層を形成する材料を、以下の方法で準備した。なお、帯電防止層を形成する材料の配合組成は、表3に示す通りである。
 帯電防止剤に対して、中和剤と希釈溶剤を加えながら30秒間撹拌した。次に、基材密着性および分散安定性を高めるため、バインダー樹脂と界面活性剤を加えてから30秒間撹拌した。このようにして、液体状の帯電防止層を形成する材料を準備した。
 次いで、得られた帯電防止層を形成する材料(液体状の)を基材層の一方の面に対して、バーコーター又はグラビアコーターを用いてwet厚みが4μmとなるように塗布した。その後、100℃で乾燥させることにより帯電防止層を製膜した。
 次に、基材層における帯電防止層を製膜した面とは反対側の面に対し、押出しラミネート法によってシーラント層を積層した。かかるシーラント層を形成する材料としては、15量部のSt―MMA、65重量部のEMAおよび20重量部のPEG-PPからなる樹脂組成物を使用した。なお、シーラント層の厚みは、5μmであった。
 以上の方法により、実施例C1~C3に係るカバーテープを作製した。得られたカバーテープの幅は、いずれも、8mmであった。
 実施例Cの各カバーテープを用いて、以下の評価を行った。
・表面抵抗値:23℃という温度にて50RH%、30RH%および12RH%の3つの湿度条件下での帯電防止層の表面における表面抵抗値を、IEC61340に準じて測定した。なお、単位は、Ωである。
・全光線透過率:カバーテープの全光線透過率は、JIS K7105(1981)に準じて測定した。なお、単位は%である。
Figure JPOXMLDOC01-appb-T000003
 得られたカバーテープとポリスチレン製キャリアテープとを摩擦させて、カバーテープの表面の帯電圧の絶対値を測定した。その結果、実施例C1~C3については、摩擦帯電防止性が良好であることが分かった。
 また、得られたカバーテープをキャリアテープに熱シール後、シールに巻くことにより、リール状に巻き取られた電子部品用包装体が得られた。
 実施例C1~C3のカバーテープは、いずれも、搬送時等に生じる摩擦に対する摩擦帯電防止性やキャリアテープの剥離に伴う帯電防止性に優れたものであった。
[実施例D]
 実施例Dにおいて、帯電防止層およびシーラント層の作製に用いた各原料成分を下記に示した。
<帯電防止層>
(バインダー樹脂)
・正の化合物D1:アクリル酸エステル共重合体樹脂(荒川化学社製:アラコートCL910)
・負の化合物D1:水溶性ポリエステル樹脂(互応化学社製、プラスコートZ565)
(帯電防止剤)
・帯電防止剤D1:ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)系の化合物を含む導電性ポリマー(荒川化学社製:、アラコートACS332)
(その他)
・希釈剤D1:イソプロピルアルコール
・希釈剤D2:水
・界面活性剤D1:荒川化学社製、アラコートACS347
<シーラント層>
・スチレン-(メタ)アクリル酸メチル共重合体(新日鐵化学社製、エスチレンMS-600。以下「St―MMA」とも言う。)
・エチレン-アクリル酸メチル共重合体(三井・デュポンポリケミカル社製、エルバロイAC 1820。以下、「EMA」とも言う。)
・ポリエーテル/ポリオレフィン共重合体(三洋化成工業社製、ペレスタット212。以下「PEG-PP」とも言う。)
<実施例Dに係る電子部品包装用カバーテープの作製>
 まず、基材層として、厚さが25μmの二軸延伸ポリエステルフィルム(東洋紡績株式会社製:E5102)を準備した。得られた基材層の全光線透過率は、87.7%であった。
 次に、帯電防止層を形成する材料を、以下の方法で準備した。なお、帯電防止層を形成する材料の配合組成は、表4に示す通りである。
 帯電防止剤に対して、イソプロピルアルコールと水とを所定の比率で配合した希釈溶剤を加えながら30秒間撹拌した。次に、基材密着性および分散安定性を高めるため、バインダー樹脂と界面活性剤を加えてから30秒間撹拌した。このようにして、液体状の帯電防止層を形成する材料を準備した。
 次いで、得られた帯電防止層を形成する材料(液体状の)を基材層の一方の面に対して、バーコーター又はグラビアコーターを用いてwet厚みが4μmとなるように塗布した。その後、100℃で1分間乾燥させることにより帯電防止層を製膜した。
 次に、基材層における帯電防止層を製膜した面とは反対側の面に対し、押出しラミネート法によってシーラント層を積層した。かかるシーラント層を形成する材料としては、15量部のSt―MMA、65重量部のEMAおよび20重量部のPEG-PPからなる樹脂組成物を使用した。なお、シーラント層の厚みは、5μmであった。
 以上の方法により、実施例D1~D4に係る電子部品包装用カバーテープを作製した。得られたカバーテープの幅は、いずれも、8mmであった。
 実施例Dの各カバーテープを用いて、以下の評価を行った。
・表面抵抗値:23℃という温度にて50RH%、30RH%および12RH%の3つの湿度条件下での帯電防止層の表面における表面抵抗値を、IEC61340に準じて測定した。なお、単位は、Ωである。
・全光線透過率:カバーテープの全光線透過率は、JIS K7105(1981)に準じて測定した。なお、単位は%である。
Figure JPOXMLDOC01-appb-T000004
 得られたカバーテープとポリスチレン製キャリアテープとを摩擦させて、カバーテープの表面の帯電圧の絶対値を測定した。その結果、実施例D1~D4については、摩擦帯電防止性が良好であることが分かった。
 また、得られたカバーテープをキャリアテープに熱シール後、シールに巻くことにより、リール状に巻き取られた電子部品用包装体が得られた。
 実施例D1~D4のカバーテープは、いずれも、キャリアテープを構成する素材の種類に関係なく、搬送時等に生じる摩擦に対する摩擦帯電防止性や該キャリアテープの剥離に伴う帯電防止性に優れたものであった。
 この出願は、2015年3月10日に出願された日本出願特願2015-046796号および2015年4月1日に出願された日本出願特願2015-075142号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (17)

  1.  基材層と、
     前記基材層の一方の面側に設けられるシーラント層と、
     前記基材層の前記一方の面とは反対側の面に設けられる帯電防止層と、
    を有する電子部品包装用カバーテープであって、
     23℃、50%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR50とし、23℃、30%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR30としたとき、R50/R30の値が、0.35以上2.8以下である、電子部品包装用カバーテープ。
  2.  請求項1に記載の電子部品包装用カバーテープであって、
     23℃、50%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR50とし、23℃、12%RHで測定した前記帯電防止層の表面における表面抵抗値の値をR12としたとき、R50/R12の値が、0.1以上10以下である、電子部品包装用カバーテープ。
  3.  基材層と、
     前記基材層の一方の面側に設けられるシーラント層と、
     前記基材層の前記一方の面とは反対側の面に設けられる帯電防止層と、
    を有する電子部品包装用カバーテープであって、
     前記帯電防止層の表面における摩擦帯電圧の絶対値が5kVから50Vに減衰するまでの帯電圧減衰時間について、23℃、50%RHで測定した前記帯電圧減衰時間の値をS50とし、23℃、30%RHで測定した前記帯電圧減衰時間の値をS30としたとき、S50/S30の値が0.7以上1以下である、電子部品包装用カバーテープ。
  4.  請求項3に記載の電子部品包装用カバーテープであって、
     23℃、50%RHで測定した前記帯電圧減衰時間の値をS50とし、23℃、12%RHで測定した前記帯電圧減衰時間の値をS12としたとき、S50/S12の値が、0.2以上1以下である、電子部品包装用カバーテープ。
  5.  請求項1から4のいずれか1項に記載の電子部品包装用カバーテープであって、
     当該電子部品包装用カバーテープの全光線透過率が、80%以上である、電子部品包装用カバーテープ。
  6.  請求項1から5のいずれか1項に記載の電子部品包装用カバーテープであって、
     当該電子部品包装用カバーテープの前記帯電防止層の表面に対して、ポリスチレンからなる材料により形成されたシートを重ね合わせ、前記表面に対して前記シートを速度100mm/sで50mmの間隔で2回摩擦させてから5秒後に、23℃、50%RHで測定した摩擦帯電圧が、-1800V以上1800V以下である、電子部品包装用カバーテープ。
  7.  請求項1から6のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記帯電防止層が、エステル化合物を含む、電子部品包装用カバーテープ。
  8.  請求項1から7のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記帯電防止層が、正に帯電する正の化合物と負に帯電する負の化合物とを含む、電子部品包装用カバーテープ。
  9.  請求項8に記載の電子部品包装用カバーテープであって、
     前記負の化合物の固形分の含有量が、前記正の化合物の固形分と前記負の化合物の固形分との合計値100重量%に対して、50重量%以上である、電子部品包装用カバーテープ。
  10.  請求項1から9のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記帯電防止層が、導電ポリマーを含む、電子部品包装用カバーテープ。
  11.  請求項1から10のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記帯電防止層が、界面活性剤を含む、電子部品包装用カバーテープ。
  12.  請求項1から11のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記帯電防止層の膜厚が、1μm以上20μm以下である、電子部品包装用カバーテープ。
  13.  請求項1から12のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記シーラント層の表面抵抗値が、23℃、50RH%の条件で10Ω以上1011Ω以下である、電子部品包装用カバーテープ。
  14.  請求項1から13のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記シーラント層の膜厚が、1μm以上15μm以下である、電子部品包装用カバーテープ。
  15.  請求項1から14のいずれか1項に記載の電子部品包装用カバーテープであって、
     前記基材層の全光線透過率が、80%以上である、電子部品包装用カバーテープ。
  16.  請求項1から15のいずれか1項に記載の電子部品包装用カバーテープであって、
     当該電子部品包装用カバーテープの幅が2mm以上100mm以下である、電子部品包装用カバーテープ。
  17.  電子部品を収納する部品収納部が所定の間隔で並んで形成されているキャリアテープと前記キャリアテープに形成された前記部品収納部を覆うように設けられたカバーテープとからなる部品収納テープで構成されており、
     前記部品収納テープは、リール状に巻き取り可能であり、
     前記カバーテープは、請求項1から16のいずれか1項に記載の電子部品包装用カバーテープである、電子部品用包装体。
PCT/JP2016/056200 2015-03-10 2016-03-01 電子部品包装用カバーテープおよび電子部品用包装体 WO2016143600A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680014579.4A CN107428450B (zh) 2015-03-10 2016-03-01 电子部件包装用盖带及电子部件用包装体
JP2016543252A JP6011750B1 (ja) 2015-03-10 2016-03-01 電子部品包装用カバーテープおよび電子部品用包装体
KR1020177025623A KR101876696B1 (ko) 2015-03-10 2016-03-01 전자 부품 포장용 커버 테이프 및 전자 부품용 포장체
PH12017501660A PH12017501660A1 (en) 2015-03-10 2017-09-11 Cover tape for packaging electronic component and package for electronic component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015046796 2015-03-10
JP2015-046796 2015-03-10
JP2015075142 2015-04-01
JP2015-075142 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016143600A1 true WO2016143600A1 (ja) 2016-09-15

Family

ID=56880391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056200 WO2016143600A1 (ja) 2015-03-10 2016-03-01 電子部品包装用カバーテープおよび電子部品用包装体

Country Status (6)

Country Link
JP (1) JP6011750B1 (ja)
KR (1) KR101876696B1 (ja)
CN (1) CN107428450B (ja)
PH (1) PH12017501660A1 (ja)
TW (1) TWI663109B (ja)
WO (1) WO2016143600A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199013A (ja) * 2018-05-16 2019-11-21 住友ベークライト株式会社 カバーテープおよび電子部品包装体
WO2021070935A1 (ja) * 2019-10-11 2021-04-15 大日本印刷株式会社 電子部品包装用カバーテープおよび包装体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114267A (ja) * 2000-10-12 2002-04-16 Nitto Denko Corp 電子部品搬送用ボトムカバーテープ
JP2005178811A (ja) * 2003-12-17 2005-07-07 Nitto Denko Corp 電子部品搬送用ボトムカバーテープ及び電子部品搬送体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251860A (ja) * 1994-03-10 1995-10-03 Colcoat Eng Kk 電子部品包装用カバーテープ及びその製法
JPH11286079A (ja) * 1998-04-02 1999-10-19 Toyo Chem Co Ltd カバーテープ
SG115510A1 (en) * 2001-12-20 2005-10-28 Nitto Denko Corp Cover tape for the electronic part conveyance, process for its production and electronic part conveying member
JP4162961B2 (ja) * 2002-09-27 2008-10-08 住友ベークライト株式会社 電子部品包装用カバーテープ
TW200426030A (en) * 2003-04-24 2004-12-01 Dainippon Printing Co Ltd Electronic part taping packaging cover tape
JP2012030897A (ja) * 2005-04-07 2012-02-16 Sumitomo Bakelite Co Ltd 電子部品包装用カバーテープ
US8828535B2 (en) * 2008-11-12 2014-09-09 Denki Kagaku Kogyo Kabushiki Kaisha Cover tape
US8584859B2 (en) * 2009-07-22 2013-11-19 Sumitomo Bakelite Co., Ltd Cover tape for packaging electronic part and electronic part package
JP2012214252A (ja) * 2010-09-30 2012-11-08 Sumitomo Bakelite Co Ltd 電子部品包装用カバーテープ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114267A (ja) * 2000-10-12 2002-04-16 Nitto Denko Corp 電子部品搬送用ボトムカバーテープ
JP2005178811A (ja) * 2003-12-17 2005-07-07 Nitto Denko Corp 電子部品搬送用ボトムカバーテープ及び電子部品搬送体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199013A (ja) * 2018-05-16 2019-11-21 住友ベークライト株式会社 カバーテープおよび電子部品包装体
WO2021070935A1 (ja) * 2019-10-11 2021-04-15 大日本印刷株式会社 電子部品包装用カバーテープおよび包装体
JP2021062881A (ja) * 2019-10-11 2021-04-22 大日本印刷株式会社 電子部品包装用カバーテープおよび包装体

Also Published As

Publication number Publication date
JPWO2016143600A1 (ja) 2017-04-27
PH12017501660B1 (en) 2018-03-19
TW201639758A (zh) 2016-11-16
JP6011750B1 (ja) 2016-10-19
PH12017501660A1 (en) 2018-03-19
TWI663109B (zh) 2019-06-21
KR101876696B1 (ko) 2018-07-09
CN107428450B (zh) 2018-12-28
KR20170106509A (ko) 2017-09-20
CN107428450A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
TWI511907B (zh) 電子零件包裝用覆蓋帶
US8584859B2 (en) Cover tape for packaging electronic part and electronic part package
WO2016024529A1 (ja) カバーフィルムおよびそれを用いた電子部品包装体
JP5554561B2 (ja) 電子部品包装体
KR20160114602A (ko) 전자 부품 포장용 커버 테이프
JP6011750B1 (ja) 電子部品包装用カバーテープおよび電子部品用包装体
JP2022044697A (ja) 電子部品包装用カバーテープ、電子部品包装体およびその製造方法
JP4899593B2 (ja) 電子部品包装用カバーテープ
JP2017013801A (ja) 電子部品包装用カバーテープ
JP2006232405A (ja) 電子部品包装用カバーテープ
JP2017128354A (ja) 電子部品包装用カバーテープ
JP2012030897A (ja) 電子部品包装用カバーテープ
JP6806753B2 (ja) カバーテープおよび電子部品用包装体
JP2016068987A (ja) 電子部品包装用カバーテープ
TWI805842B (zh) 電子零件包裝用覆蓋帶及包裝體
JP6596887B2 (ja) 電子部品包装用カバーテープ
JP2017109753A (ja) 電子部品包装用カバーテープ
JP6795569B2 (ja) カバーテープおよび電子部品用包装体
JP2017013803A (ja) 電子部品包装用カバーテープ
JP2020073401A (ja) 電子部品包装用カバーテープ
JP5691295B2 (ja) 帯電防止フィルムの製造方法
JP2022081138A (ja) 電子部品包装用カバーテープ
KR20190045014A (ko) 광학 필름, 및 광학 필름을 이용한 유기발광전자장치의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016543252

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12017501660

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20177025623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761570

Country of ref document: EP

Kind code of ref document: A1