WO2016143525A1 - 光電変換素子および太陽電池 - Google Patents

光電変換素子および太陽電池 Download PDF

Info

Publication number
WO2016143525A1
WO2016143525A1 PCT/JP2016/055519 JP2016055519W WO2016143525A1 WO 2016143525 A1 WO2016143525 A1 WO 2016143525A1 JP 2016055519 W JP2016055519 W JP 2016055519W WO 2016143525 A1 WO2016143525 A1 WO 2016143525A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
group
conversion element
atom
layer
Prior art date
Application number
PCT/JP2016/055519
Other languages
English (en)
French (fr)
Inventor
寛敬 佐藤
小林 克
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16761496.5A priority Critical patent/EP3267503A1/en
Priority to CN201680008225.9A priority patent/CN107251257A/zh
Priority to JP2017504958A priority patent/JP6323826B2/ja
Publication of WO2016143525A1 publication Critical patent/WO2016143525A1/ja
Priority to US15/659,007 priority patent/US20170323731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element and a solar cell.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Solar cells are expected to be put into full-scale practical use as non-depleting solar energy. Among these, a dye-sensitized solar cell using an organic dye or a Ru bipyridyl complex as a sensitizer has been actively researched and developed, and the photoelectric conversion efficiency has reached about 11%.
  • a photoelectric conversion element or a solar cell using a compound having a perovskite crystal structure (hereinafter also referred to as “perovskite compound”) has achieved certain results in improving photoelectric conversion efficiency.
  • perovskite compound a compound having a perovskite crystal structure
  • photoelectric conversion elements or solar cells using perovskite compounds have attracted attention in recent years, and little is known about battery performance other than photoelectric conversion efficiency.
  • the photoelectric conversion element and the solar cell are required to have durability capable of maintaining initial performance in the field environment where they are actually used.
  • Perovskite compounds are known to be easily damaged under high humidity environments, and photoelectric conversion elements or solar cells using the perovskite compounds are required to have improved durability particularly under high humidity conditions.
  • the present invention relates to a photoelectric conversion element using a perovskite compound as a light absorber, which is excellent in moisture resistance and excellent in manufacturing stability (durability (humidity resistance) uniformity between elements). The issue is to provide.
  • this invention makes it a subject to provide the solar cell using the said photoelectric conversion element.
  • the present inventors provide a photoelectric conversion element using a perovskite compound having a cation or an organic cation of a Group 1 element of the periodic table, a cation of a metal atom other than the Group 1 element of the periodic table, and an anion as a light absorber.
  • a perovskite compound having a cation or an organic cation of a Group 1 element of the periodic table, a cation of a metal atom other than the Group 1 element of the periodic table, and an anion as a light absorber.
  • a photoelectric conversion element having a first electrode having a photosensitive layer containing a light absorber on a conductive support, and a second electrode facing the first electrode,
  • the light absorber includes a compound having a perovskite crystal structure having a cation or organic cation of a Group 1 element of the periodic table, a cation of a metal atom other than the Group 1 element of the periodic table, and an anion.
  • the photoelectric conversion element whose at least one part of the said anion to comprise is an organic anion represented by a following formula (An).
  • R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aliphatic heterocyclic group, —N (R 2 ) 2 , —OR 3 , —SR 4 , or halogen. Indicates an atom.
  • X 1 represents an O atom or an S atom.
  • R 2 to R 4 each represents an alkyl group or an aryl group.
  • X 2 is O - or S - shows the.
  • X 2 X 1 is an O atom O - case, the alkyl group is 2 or more alkyl groups substituted methyl group or a carbon atoms.
  • X 1 represents an O atom
  • X 2 represents O 2 — .
  • R 1 represents an aryl group or a heteroaryl group.
  • each chemical formula may be expressed as a descriptive formula in order to understand the chemical structure of the perovskite compound. Accordingly, in each chemical formula, the partial structure is referred to as a (substituted) group, ion, atom, or the like. In this specification, these are represented by the above formula in addition to the (substituted) group, ion, atom, or the like. It may mean an element group or an element constituting a (substituent) group or ion.
  • the term “compound” is used to mean not only the compound itself but also its salt and its ion. Furthermore, a group or compound that does not clearly indicate substitution or non-substitution is meant to include a group or compound having an arbitrary substituent as long as a desired effect is obtained.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the photoelectric conversion element and solar cell of the present invention are excellent in moisture resistance and manufacturing stability (uniformity of durability between elements (humidity resistance)) while having a structure containing a perovskite compound as a light absorber. .
  • the photoelectric conversion element of the present invention has a first electrode having a conductive support, a photosensitive layer containing a light absorber, and a second electrode facing the first electrode.
  • the first electrode and the second electrode face each other means that the first electrode and the second electrode are stacked in contact with each other, and the first electrode and the second electrode are stacked via another layer. (That is, a form in which the first electrode and the second electrode are provided facing each other across another layer).
  • the photoelectric conversion element of the present invention preferably has a hole transport layer provided between the first electrode and the second electrode.
  • the photosensitive layer and the second electrode are provided on the conductive support in this order.
  • the photoelectric conversion element has a hole transport layer
  • the photosensitive layer, the hole transport layer, and the second electrode are provided on the conductive support in this order.
  • the hole transport layer may be provided between the conductive support and the photosensitive layer.
  • the hole transport layer, the photosensitive layer, and the second electrode are provided on the conductive support in this order.
  • the light absorber contains at least one perovskite compound described later.
  • the light absorber may contain a light absorber other than the perovskite compound in combination with the perovskite compound. Examples of the light absorber other than the perovskite compound include metal complex dyes and organic dyes.
  • “having a photosensitive layer on a conductive support” means an embodiment having a photosensitive layer in contact with the surface of the conductive support, and another layer above the surface of the conductive support. It is meant to include embodiments having a photosensitive layer.
  • examples of other layers provided between the conductive support and the photosensitive layer include a porous layer, a blocking layer, and an electron.
  • examples include a transport layer and a hole transport layer.
  • the photosensitive layer is provided in the form of a thin film on the surface of the porous layer (see FIG. 1). ), An embodiment provided thick on the surface of the porous layer (see FIG. 2), an embodiment provided thin on the surface of the blocking layer, an embodiment provided on the surface of the blocking layer in a thick film form (see FIG. 3), an electron transport layer Examples include a mode in which a thin film or a thick film (see FIG.
  • the photosensitive layer may be provided in a linear or dispersed form, but is preferably provided in a film form.
  • the photoelectric conversion element of the present invention is not particularly limited in structure other than the structure defined in the present invention, and known structures relating to the photoelectric conversion element and the solar cell can be adopted.
  • Each layer constituting the photoelectric conversion element of the present invention is designed according to the purpose, and may be formed in a single layer or multiple layers, for example.
  • 1 to 5 the same reference numerals mean the same components (members). 1 and 2 show the size of the fine particles forming the porous layer 12 with emphasis. These fine particles are preferably clogged (deposited or adhered) in the horizontal and vertical directions with respect to the conductive support 11 to form a porous structure.
  • photoelectric conversion element 10 means the photoelectric conversion elements 10A, 10B, 10C, 10D, and 10E unless otherwise specified.
  • photosensitive layer 13 means the photosensitive layers 13A, 13B and 13C unless otherwise specified.
  • hole transport layer 3 means the hole transport layers 3A and 3B unless otherwise specified.
  • a photoelectric conversion element 10A shown in FIG. 1 A system 100A shown in FIG. 1 is a system applied to a battery for causing an operation circuit M (for example, an electric motor) to perform work by the external circuit 6 using the photoelectric conversion element 10A.
  • This photoelectric conversion element 10A has a first electrode 1A, a second electrode 2, and a hole transport layer 3A containing a hole transport material described later between the first electrode 1A and the second electrode 2. Yes.
  • the first electrode 1A has a conductive support 11 composed of a support 11a and a transparent electrode 11b, a porous layer 12, and a photosensitive layer 13A on the porous layer 12.
  • the blocking layer 14 is provided on the transparent electrode 11 b, and the porous layer 12 is formed on the blocking layer 14.
  • the photoelectric conversion element 10A having the porous layer 12 improves the charge separation and charge transfer efficiency because the surface area of the photosensitive layer 13A is increased.
  • the photoelectric conversion element 10B shown in FIG. 2 schematically shows a preferred embodiment in which the photosensitive layer 13A of the photoelectric conversion element 10A shown in FIG. In the photoelectric conversion element 10B, the hole transport layer 3B is thinly provided.
  • the photoelectric conversion element 10B differs from the photoelectric conversion element 10A shown in FIG. 1 in the film thicknesses of the photosensitive layer 13B and the hole transport layer 3B, but is configured in the same manner as the photoelectric conversion element 10A except for these points. ing.
  • a photoelectric conversion element 10C shown in FIG. 3 schematically shows another preferred embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10C is different from the photoelectric conversion element 10B illustrated in FIG. 2 in that the porous layer 12 is not provided, but is configured in the same manner as the photoelectric conversion element 10B except for this point. That is, in the photoelectric conversion element 10 ⁇ / b> C, the photosensitive layer 13 ⁇ / b> C is formed in a thick film shape on the surface of the blocking layer 14.
  • a photoelectric conversion element 10D shown in FIG. 4 schematically shows another preferred embodiment of the photoelectric conversion element of the present invention.
  • This photoelectric conversion element 10D is different from the photoelectric conversion element 10C shown in FIG. 3 in that an electron transport layer 15 is provided instead of the blocking layer 14, but is otherwise configured in the same manner as the photoelectric conversion element 10C.
  • the first electrode 1 ⁇ / b> D includes a conductive support 11 and an electron transport layer 15 and a photosensitive layer 13 ⁇ / b> C that are sequentially formed on the conductive support 11.
  • This photoelectric conversion element 10D is preferable in that each layer can be formed of an organic material. As a result, the productivity of the photoelectric conversion element is improved, and it is possible to make it thinner or flexible.
  • the photoelectric conversion element 10E shown in FIG. 5 schematically shows still another preferred embodiment of the photoelectric conversion element of the present invention.
  • a system 100E including the photoelectric conversion element 10E is a system applied to battery use as in the system 100A.
  • the photoelectric conversion element 10 ⁇ / b> E has a first electrode 1 ⁇ / b> E, a second electrode 2, and an electron transport layer 4 between the first electrode 1 ⁇ / b> E and the second electrode 2.
  • the first electrode 1 ⁇ / b> E includes a conductive support 11 and a hole transport layer 16 and a photosensitive layer 13 ⁇ / b> C, which are sequentially formed on the conductive support 11.
  • This photoelectric conversion element 10E is preferable in that each layer can be formed of an organic material, like the photoelectric conversion element 10D.
  • the system 100 to which the photoelectric conversion element 10 is applied functions as a solar cell as follows. That is, in the photoelectric conversion element 10A, light that has passed through the conductive support 11 or passed through the second electrode 2 and entered the photosensitive layer 13 excites the light absorber. The excited light absorber has electrons with high energy and can emit these electrons. The light absorber that has released electrons with high energy becomes an oxidant.
  • the photoelectric conversion elements 10A to 10D electrons emitted from the light absorber move between the light absorbers and reach the conductive support 11. At this time, the light absorber that has released electrons with high energy is an oxidant. After the electrons that have reached the conductive support 11 work in the external circuit 6, they pass through the second electrode 2 (if there is a hole transport layer 3, further via the hole transport layer 3), and then the photosensitive layer Return to 13. The light absorber is reduced by the electrons returning to the photosensitive layer 13.
  • the electrons emitted from the light absorber reach the second electrode 2 from the photosensitive layer 13C through the electron transport layer 4, and after working in the external circuit 6, the conductive support 11 Then, the process returns to the photosensitive layer 13.
  • the light absorber is reduced by the electrons returning to the photosensitive layer 13.
  • the system 100 functions as a solar cell by repeating such excitation and electron transfer cycles of the light absorber.
  • the way in which electrons flow from the photosensitive layer 13 to the conductive support 11 differs depending on the presence and type of the porous layer 12 and the like.
  • the porous layer 12 can be formed with an insulator other than the conventional semiconductor.
  • the porous layer 12 is formed of a semiconductor, electron conduction in which electrons move inside or between the semiconductor particles of the porous layer 12 also occurs.
  • the porous layer 12 is formed of an insulator, electron conduction in the porous layer 12 does not occur.
  • the porous layer 12 is formed of an insulator
  • a relatively high electromotive force (Voc) can be obtained by using aluminum oxide (Al 2 O 3 ) particles as the insulator particles.
  • Al 2 O 3 aluminum oxide
  • the blocking layer 14 as the other layer is formed of a conductor or a semiconductor, electron conduction in the blocking layer 14 occurs. Also, electron conduction occurs in the electron transport layer 15.
  • the photoelectric conversion element and the solar cell of the present invention are not limited to the above-described preferred embodiments, and the configuration of each embodiment can be appropriately combined between the respective embodiments without departing from the spirit of the present invention.
  • materials and members used for the photoelectric conversion element or solar cell can be prepared by a conventional method except for the light absorber.
  • Patent Document 1 For a photoelectric conversion element or a solar cell using a perovskite compound, for example, Patent Document 1 can be referred to.
  • dye-sensitized solar cells for example, Japanese Patent Application Laid-Open No. 2001-291534, US Pat. No. 4,927,721, US Pat. No. 4,684,537, US Pat. No. 5,084, 365, US Pat. No. 5,350,644, US Pat. No. 5,463,057, US Pat. No. 5,525,440, JP-A-7-249790, JP 2004-220974 A and JP 2008-135197 A can be referred to.
  • the first electrode 1 has a conductive support 11 and a photosensitive layer 13 and functions as a working electrode in the photoelectric conversion element 10. As shown in FIGS. 1 to 5, the first electrode 1 preferably has at least one of a porous layer 12, a blocking layer 14, an electron transport layer 15, and a hole transport layer 16. The first electrode 1 preferably has at least the blocking layer 14 in terms of prevention of short circuit, and more preferably has the porous layer 12 and the blocking layer 14 in terms of light absorption efficiency and prevention of short circuit. Moreover, it is preferable that the 1st electrode 1 has the electron carrying layer 15 or the positive hole transport layer 16 at the point which can be formed with an organic material.
  • the conductive support 11 is not particularly limited as long as it has conductivity and can support the photosensitive layer 13 and the like.
  • the conductive support 11 includes a conductive material such as a metal, or a glass or plastic support 11a and a transparent electrode 11b as a conductive film formed on the surface of the support 11a. The structure which has is preferable.
  • a conductive support 11 in which a transparent metal electrode 11b is formed by coating a conductive metal oxide on the surface of a glass or plastic support 11a is more preferable.
  • the support 11a formed of plastic include a transparent polymer film described in paragraph No. 0153 of JP-A-2001-291534.
  • ceramic Japanese Patent Laid-Open No. 2005-135902
  • conductive resin Japanese Patent Laid-Open No. 2001-160425
  • tin oxide As the metal oxide, tin oxide (TO) is preferable, and fluorine-doped tin oxide such as indium-tin oxide (tin-doped indium oxide; ITO) and fluorine-doped tin oxide (FTO) is particularly preferable.
  • the coating amount of the metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the surface area of the support 11a. When the conductive support 11 is used, light is preferably incident from the support 11a side.
  • the conductive support 11 is preferably substantially transparent.
  • “substantially transparent” means that the transmittance of light (wavelength 300 to 1200 nm) is 10% or more, preferably 50% or more, and particularly preferably 80% or more.
  • the thicknesses of the support 11a and the conductive support 11 are not particularly limited, and are set to appropriate thicknesses.
  • the thickness is preferably 0.01 ⁇ m to 10 mm, more preferably 0.1 ⁇ m to 5 mm, and particularly preferably 0.3 ⁇ m to 4 mm.
  • the film thickness of the transparent electrode 11b is not particularly limited, and is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and more preferably 0.05 to 20 ⁇ m. It is particularly preferred that
  • the conductive support 11 or the support 11a may have a light management function on the surface.
  • the surface of the conductive support 11 or the support 11a may have an antireflection film in which high refractive films and low refractive index oxide films are alternately stacked as described in JP-A-2003-123859.
  • the light guide function described in JP-A-2002-260746 may be provided.
  • the blocking layer 14 is provided.
  • the blocking layer 14 functions to prevent this reverse current.
  • the blocking layer 14 is also referred to as a short circuit prevention layer.
  • This blocking layer may be provided also when a photoelectric conversion element has an electron carrying layer.
  • the photoelectric conversion element 10D it may be provided between the conductive support 11 and the electron transport layer 15, and in the case of the photoelectric conversion element 10E, it is provided between the second electrode 2 and the electron transport layer 4. May be.
  • the material for forming the blocking layer 14 is not particularly limited as long as it is a material capable of fulfilling the above function, but is a substance that transmits visible light and is an insulating substance for the conductive support 11 (transparent electrode 11b).
  • the “insulating substance with respect to the conductive support 11 (transparent electrode 11b)” specifically refers to a material whose conduction band energy level forms the conductive support 11 (metal oxide forming the transparent electrode 11b).
  • a compound (n-type semiconductor compound) that is higher than the energy level of the conduction band of the material and lower than the energy level of the conduction band of the material constituting the porous layer 12 and the ground state of the light absorber.
  • Examples of the material for forming the blocking layer 14 include silicon oxide, magnesium oxide, aluminum oxide, calcium carbonate, polyvinyl alcohol, and polyurethane.
  • the material generally used for the photoelectric conversion material may be used, and examples thereof include titanium oxide, tin oxide, niobium oxide, and tungsten oxide. Of these, titanium oxide, tin oxide, magnesium oxide, aluminum oxide and the like are preferable.
  • the thickness of the blocking layer 14 is preferably 0.001 to 10 ⁇ m, more preferably 0.005 to 1 ⁇ m, and particularly preferably 0.01 to 0.1 ⁇ m.
  • the thickness of each layer can be measured by observing the cross section of the photoelectric conversion element 10 using a scanning electron microscope (SEM) or the like.
  • the porous layer 12 is preferably provided on the transparent electrode 11b.
  • the porous layer 12 is preferably formed on the blocking layer 14.
  • the porous layer 12 is a layer that functions as a scaffold for carrying the photosensitive layer 13 on the surface.
  • the porous layer 12 is preferably a fine particle layer having pores, in which fine particles of the material forming the porous layer 12 are deposited or adhered.
  • the porous layer 12 may be a fine particle layer in which two or more kinds of multi-fine particles are deposited.
  • the amount of light absorbent supported (adsorption amount) can be increased.
  • the surface area of the porous layer 12 it is preferable to increase the surface area of the individual fine particles constituting the porous layer 12.
  • the surface area of the fine particles is preferably 10 times or more, more than 100 times the projected area. It is more preferable.
  • the particle diameter of the fine particles forming the porous layer 12 is preferably 0.001 to 1 ⁇ m as the primary particle in the average particle diameter using the diameter when the projected area is converted into a circle.
  • the average particle diameter of the fine particles is preferably 0.01 to 100 ⁇ m as the average particle diameter of the dispersion.
  • the material for forming the porous layer 12 is not particularly limited with respect to conductivity, and may be an insulator (insulating material), a conductive material, or a semiconductor (semiconductive material). .
  • Examples of the material for forming the porous layer 12 include metal chalcogenides (eg, oxides, sulfides, selenides, etc.), compounds having a perovskite crystal structure (excluding a light absorber described later), and oxidation of silicon.
  • An object for example, silicon dioxide, zeolite), or carbon nanotube (including carbon nanowire and carbon nanorod) can be used.
  • the metal chalcogenide is not particularly limited, but is preferably titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, aluminum or tantalum oxide, cadmium sulfide. , Cadmium selenide and the like.
  • Examples of the crystal structure of the metal chalcogenide include an anatase type, brookite type and rutile type, and anatase type and brookite type are preferable.
  • the compound having a perovskite crystal structure is not particularly limited, and examples thereof include transition metal oxides.
  • transition metal oxides For example, strontium titanate, calcium titanate, barium titanate, lead titanate, barium zirconate, barium stannate, lead zirconate, strontium zirconate, strontium tantalate, potassium niobate, bismuth ferrate, strontium barium titanate , Barium lanthanum titanate, calcium titanate, sodium titanate, bismuth titanate.
  • strontium titanate, calcium titanate and the like are preferable.
  • the carbon nanotube has a shape obtained by rounding a carbon film (graphene sheet) into a cylindrical shape.
  • Carbon nanotubes are single-walled carbon nanotubes (SWCNT) in which one graphene sheet is wound in a cylindrical shape, double-walled carbon nanotubes (DWCNT) in which two graphene sheets are wound in a concentric shape, and multiple graphene sheets are concentric
  • SWCNT single-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • any carbon nanotube is not particularly limited and can be used.
  • the material for forming the porous layer 12 is preferably titanium, tin, zinc, zirconium, aluminum or silicon oxide, or carbon nanotube, more preferably titanium oxide or aluminum oxide.
  • the porous layer 12 may be formed of at least one of the above-described metal chalcogenide, compound having a perovskite crystal structure, silicon oxide, and carbon nanotube, and may be formed of a plurality of types. .
  • the film thickness of the porous layer 12 is not particularly limited, but is usually in the range of 0.1 to 100 ⁇ m. When used as a solar cell, 0.1 to 50 ⁇ m is preferable, and 0.2 to 30 ⁇ m is more preferable.
  • the electron transport layer 15 is preferably provided on the surface of the transparent electrode 11b.
  • the electron transport layer 15 has a function of transporting electrons generated in the photosensitive layer 13 to the conductive support 11.
  • the electron transport layer 15 is formed of an electron transport material that can exhibit this function.
  • the electron transport material is not particularly limited, but an organic material (organic electron transport material) is preferable.
  • the organic electron transport material examples include fullerene compounds such as [6,6] -phenyl-C61-Butylic Acid Methyl Ester (PCBM), perylene compounds such as perylenetetracarboxydiimide (PTCDI), and other tetracyanoquinodimethane (TCNQ). ) And the like, or high molecular compounds.
  • the thickness of the electron transport layer 15 is not particularly limited, but is preferably 0.001 to 10 ⁇ m, and more preferably 0.01 to 1 ⁇ m.
  • the hole transport layer 16 is preferably provided on the surface of the transparent electrode 11b.
  • the hole transport layer 16 is the same as the hole transport layer 3 described later except that the position where it is formed is different.
  • the perovskite compound described later is preferably a porous layer 12 (photoelectric conversion elements 10A and 10B) or a blocking layer 14 (photoelectric conversion element 10C)) or an electron transport layer 15 (photoelectric conversion) as a light absorber. Element 10D) or the surface of each layer of hole transport layer 16 (photoelectric conversion element 10E) (including the inner surface when the surface on which photosensitive layer 13 is provided is uneven).
  • the light absorber only needs to contain at least one perovskite compound described below, and may contain two or more perovskite compounds.
  • the photosensitive layer 13 may be a single layer or a laminate of two or more layers. When the photosensitive layer 13 has a laminated structure of two or more layers, layers composed of different light absorbers may be laminated, and an intermediate layer containing a hole transport material is laminated between the photosensitive layer and the photosensitive layer. May be.
  • the form having the photosensitive layer 13 on the conductive support 11 is as described above.
  • the photosensitive layer 13 is preferably provided on the surface of each of the layers so that excited electrons flow through the conductive support 11. At this time, the photosensitive layer 13 may be provided on the entire surface of each of the above layers, or may be provided on a part of the surface.
  • the film thickness of the photosensitive layer 13 is appropriately set according to the mode having the photosensitive layer 13 on the conductive support 11 and is not particularly limited.
  • the film thickness of the photosensitive layer 13 (when the porous layer 12 is provided, the total film thickness with the porous layer 12) is preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and 0 2 to 30 ⁇ m is particularly preferable.
  • the light absorber contained in the photosensitive layer may function as a hole transport material.
  • the photosensitive layer 13 is a perovskite compound having a cation of a group 1 element of the periodic table or an organic cation, a cation of a metal atom other than the group 1 element of the periodic table, and an anion containing a specific organic anion as a light absorber. Including.
  • the cations of Group 1 elements of the periodic table that can be possessed by the perovskite compound used in the present invention are preferably lithium ions (Li + ), sodium ions (Na + ), potassium ions (K + ), and cesium ions (Cs + ). Of these, Cs + is more preferable.
  • the organic cation that can be possessed by the perovskite compound used in the present invention is not particularly limited as long as it is a cation of an organic group having the above properties, but an organic cation represented by the following formula (1) is preferable.
  • R A represents a substituent.
  • R A is preferably an alkyl group, a cycloalkyl group, a cycloalkenyl group, a cyclodienyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or a group that can be represented by the following formula (2).
  • an alkyl group and a group that can be represented by the following formula (2) are more preferable.
  • Xa represents NR ⁇ 1c> , an oxygen atom, or a sulfur atom.
  • R 1b and R 1c each independently represent a hydrogen atom or a substituent. * Represents a bonding position with the N atom in the formula (1).
  • the organic ammonium cation formed by bonding R A and NH 3 + represented by the above formula (1) can have a resonance structure.
  • the organic cation is a group that can be represented by the above formula (2), NH 3 +, and
  • an organic amidinium cation which is one of the resonance structures of the organic ammonium cation is also included.
  • the organic amidinium cation include cations represented by the following formula (A am ). Note that in this specification, a cation represented by the following formula (A am ) may be expressed as “R 1b C ( ⁇ NH) —NH 3 ” for convenience.
  • Alkyl groups that can be used as RA include linear alkyl groups and branched alkyl groups.
  • the alkyl group preferably has 1 to 18 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • Preferable specific examples of this alkyl group include, for example, methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, pentyl and hexyl.
  • the cycloalkyl group that can be used as RA preferably has 3 to 8 carbon atoms.
  • this cycloalkyl group include, for example, cyclopropyl, cyclopentyl and cyclohexyl.
  • the cycloalkenyl group that can be used as RA preferably has 3 to 8 carbon atoms, more preferably 4 to 6 carbon atoms, and still more preferably 5 to 6 carbon atoms.
  • this cycloalkenyl group include, for example, a cyclobutenyl group, a cyclopentenyl group, a cyclohexynyl group, a cycloheptenyl group, and a cyclooctenyl group.
  • Cyclodienyl group which may take as R A is the number of carbon atoms thereof is preferably 5-10, more preferably 5-8, more preferably 5-6.
  • this cyclodienyl group include, for example, a cyclopentadienyl group and a cyclohexadienyl group.
  • Alkenyl groups that can be employed as RA include straight-chain alkenyl groups and branched alkenyl groups.
  • the alkenyl group preferably has 2 to 18 carbon atoms, more preferably 2 to 7, still more preferably 2 to 6, and particularly preferably 2 to 5.
  • Preferable specific examples of this alkenyl group include, for example, vinyl, allyl, butenyl and hexenyl.
  • Alkynyl groups that can be employed as RA include straight-chain alkynyl groups and branched alkynyl groups.
  • the alkynyl group preferably has 2 to 18 carbon atoms, more preferably 2 to 7, still more preferably 2 to 5, and particularly preferably 2 to 4.
  • Preferable specific examples of the alkynyl group include ethynyl, butynyl, hexynyl and the like.
  • the aryl group that can be used as RA is preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 12 carbon atoms.
  • Preferable specific examples of the aryl group include phenyl and naphthyl, and phenyl is more preferable.
  • the heteroaryl group which can be taken as RA includes a group consisting of only an aromatic heterocycle and a group consisting of a condensed heterocycle in which an aromatic heterocycle is condensed with another ring, for example, an aromatic ring, an aliphatic ring or a heterocycle. Is included.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the number of ring members of the aromatic heterocycle is preferably a 5-membered ring or a 6-membered ring.
  • the condensed heterocycle including a 5-membered aromatic heterocycle and a 5-membered aromatic heterocycle
  • examples include a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a triazole ring, a furan ring, a thiophene ring, a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, an indoline ring, and an indazole ring.
  • Examples of the condensed heterocycle including a 6-membered aromatic heterocycle and a 6-membered aromatic heterocycle include a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a quinoline ring, and a quinazoline ring. .
  • X a represents NR 1c , an oxygen atom or a sulfur atom, and NR 1c is preferable.
  • R 1c represents a hydrogen atom or a substituent, and is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and more preferably a hydrogen atom.
  • R 1b represents a hydrogen atom or a substituent, and preferably a hydrogen atom.
  • R 1b can take include an amino group, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heteroaryl group.
  • the alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group that R 1b and R 1c can each take are an alkyl group, cycloalkyl, which can be taken as R A in the formula (1), respectively. It is synonymous with a group, an alkenyl group, an alkynyl group, an aryl group, and a heteroaryl group, and a preferable form is also the same.
  • Examples of the group that can be represented by the formula (2) include (thio) acyl group, (thio) carbamoyl group, imidoyl group, and amidino group.
  • the (thio) acyl group includes an acyl group and a thioacyl group.
  • the acyl group is preferably an acyl group having 1 to 7 carbon atoms, and examples thereof include formyl, acetyl (CH 3 C ( ⁇ O) —), propionyl, hexanoyl and the like.
  • the thioacyl group is preferably a thioacyl group having 1 to 7 carbon atoms in total, and examples thereof include thioformyl, thioacetyl (CH 3 C ( ⁇ S) —), thiopropionyl and the like.
  • the (thio) carbamoyl group includes a carbamoyl group (H 2 NC ( ⁇ O) —) and a thiocarbamoyl group (H 2 NC ( ⁇ S) —).
  • the amidino group as a group that can be represented by the formula (2) has a structure (—C ( ⁇ NH) NH 2 ) in which R 1b of the imidoyl group is an amino group and R 1c is a hydrogen atom.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aryl group, the heteroaryl group and the group that can be represented by the above formula (2), which can be taken as R A , may have a substituent. Good.
  • the substituent that R A may have is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkylthio group, an amino group, Alkylamino group, arylamino group, acyl group, alkylcarbonyloxy group, aryloxy group, alkoxycarbonyl group, aryloxycarbonyl group, acylamino group, sulfonamide group, carbamoyl group, sulfamoyl group, halogen atom, cyano group, hydroxy group Or a carboxy group is mentioned.
  • Each substituent that R A may have may be further substituted with a substituent.
  • the perovskite compound used in the present invention has a cation of a metal atom other than the Group 1 element of the periodic table in its crystal structure.
  • metal atoms other than Group 1 elements of the periodic table include calcium (Ca), strontium (Sr), cadmium (Cd), copper (Cu), nickel (Ni), manganese (Mn), iron (Fe), Cobalt (Co), palladium (Pd), germanium (Ge), tin (Sn), lead (Pb), ytterbium (Yb), europium (Eu), indium (In), titanium (Ti), bismuth (Bi), etc.
  • the perovskite compound used in the present invention may have one kind of cation of a metal atom other than the Group 1 element of the periodic table in its crystal structure, or two or more kinds. In the case of having two or more kinds of cations of metal atoms other than Group 1 elements of the periodic table, it is preferable to have two kinds of Pb atoms and Sn atoms.
  • the perovskite compound has two or more kinds of cations of metal atoms other than Group 1 elements of the periodic table, the abundance ratio of these two or more kinds of cations is not particularly limited.
  • the anion constituting the perovskite compound used in the present invention is an organic anion at least a part of which is represented by the following formula (An).
  • R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aliphatic heterocyclic group, —N (R 2 ) 2 , —OR 3 , —SR 4 Or a halogen atom.
  • X 1 represents an O atom or an S atom, and preferably an O atom.
  • R 2 to R 4 each represents an alkyl group or an aryl group.
  • X 2 is O - or S - indicates, O - are preferred.
  • X 2 X 1 is an O atom O - case
  • the alkyl group which can be taken as R 1 is 2 or more alkyl groups substituted methyl group or a carbon atoms.
  • the alkyl group, alkenyl group and alkynyl group which can be adopted as R 1 may be linear or branched.
  • the substituent of the “substituted methyl group” does not include an alkyl group.
  • the alkyl group that can be taken as R 1 is the number of carbon atoms Is preferably 1 to 30, more preferably 1 to 18, still more preferably 1 to 10, still more preferably 1 to 8, and still more preferably 1 to 6.
  • X 1 is and X 2 is O atom O - when it is an alkyl group having 2 or more carbon atoms can be taken as the R 1 preferably the number of carbon atoms of 2 to 30, more preferably 2 to 18, 2 to 10 is more preferable, 2 to 8 is more preferable, and 2 to 6 is more preferable.
  • R 1 is a substituted methyl group
  • substituent that methyl has include a halogen atom, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aliphatic heterocyclic group, a cyano group, a nitro group, an amino group, and an imino group.
  • An alkoxy group, a hydroxy group, a thiol group, a sulfide group, an azo group, an azide group, and a carbonyl group are preferable, a halogen atom is more preferable, and a fluorine atom is more preferable.
  • the number of substituents that methyl has is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • the alkenyl group, alkynyl group, aryl group, and heteroaryl group that can be taken as R 1 are respectively synonymous with the alkenyl group, alkynyl group, aryl group, and heteroaryl group that can be taken as R A in the above formula (1). Yes, the preferred form is also the same.
  • the aliphatic heterocyclic group that can be employed as R 1 preferably has 0 to 24 carbon atoms, and more preferably 1 to 18 carbon atoms.
  • Preferred examples of the ring constituting the aliphatic heterocyclic group include pyrrolidine ring, oxolane ring, thiolane ring, piperidine ring, oxane ring, thiane ring, piperazine ring, morpholine ring, quinuclidine ring, pyrrolidine ring, azetidine ring, An oxetane ring, an aziridine ring, a dioxane ring, a pentamethylene sulfide ring, etc. can be mentioned.
  • the alkyl group and aryl group that can be taken as R 2 to R 4 are respectively synonymous with the alkyl group and aryl group that can be taken as R A in the formula (1), and the preferred forms are also the same.
  • R 1 is preferably an alkyl group, an aryl group, or a heteroaryl group, more preferably an aryl group or a heteroaryl group, and further preferably an aryl group.
  • the perovskite compound used in the present invention preferably has an anion other than the organic anion represented by the above formula (An) as an anion.
  • the anion other than the organic anion represented by the above formula (An) may be a monoatomic anion or a polyatomic anion.
  • Examples of the monoatomic anion include a halogen atom anion.
  • anions other than the organic anion represented by the said formula (An) are anions of a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a bromine atom or an iodine atom, and more preferably an iodine atom.
  • the molar ratio of the anion of the halogen atom to the organic anion represented by the formula (An) preferably satisfies the following formula (i), and satisfies the following formula (ii). More preferably, the following formula (iii) is further satisfied, the following formula (iv) is more preferably satisfied, and the following formula (v) is more preferably satisfied.
  • the perovskite compound used in the present invention has a perovskite crystal structure having each of the above constituent ions.
  • the perovskite compound used in the present invention is preferably a perovskite compound represented by the following formula (I).
  • A represents a group 1 element of the periodic table or a cationic organic group.
  • M represents a metal atom other than Group 1 elements of the periodic table.
  • X represents an anionic atom, an anionic atomic group, or an anionic organic group.
  • a represents 1 or 2
  • a cationic organic group means an organic group that exists as an organic cation in a perovskite crystal structure
  • an anionic atom means an atom that exists as a monoatomic anion in a perovskite crystal structure.
  • An atomic group means an atomic group that exists as a polyatomic anion in a perovskite crystal structure
  • an anionic organic group means an organic group that exists as an organic anion in a perovskite crystal structure.
  • the periodic table group 1 element A exists as a cation in the perovskite crystal structure.
  • the cationic organic group A exists as an organic cation in the perovskite crystal structure.
  • the metal atom M exists as a cation of a metal atom other than the above-mentioned periodic table first group element in the perovskite crystal structure.
  • the anionic atom X exists as a monoatomic anion in the perovskite crystal structure.
  • the anionic atomic group X exists as a polyatomic anion in the perovskite crystal structure.
  • the anionic organic group X exists as an organic anion in the perovskite crystal structure.
  • the perovskite compound represented by the formula (I) at least a part of X is an anionic organic group that guides the organic anion represented by the formula (An).
  • the perovskite compound used in the present invention may be a mixture of a perovskite compound in which a is 1 in the above formula (I) and a perovskite compound in which a is 2.
  • the perovskite compound can be synthesized from MX 2 and AX.
  • a perovskite compound can be synthesized with reference to Patent Document 1 described above.
  • Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka “Organometric Halide Perovskits as Visible Slight-Lights. Am. Chem. Soc. , 2009, 131 (17), 6050-6051 as appropriate, a perovskite compound can be synthesized.
  • the perovskite compound used in the present invention has a ratio of the total molar amount of the cation of the metal atom other than the first group element of the periodic table and the organic cation of the above formula (1) to the total molar amount of the cation constituting the perovskite compound. It is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 98 to 100 mol%.
  • the ratio of the total molar amount of the organic anion represented by the above formula (An) and the halogen anion to the total molar amount of the anions constituting the perovskite compound is 90 to 100. It is preferably mol%, more preferably 95 to 100 mol%, still more preferably 98 to 100 mol%.
  • the amount of the light absorber used may be an amount that covers at least a part of the surface of the porous layer 12 or the blocking layer 14 on which light is incident, and is preferably an amount that covers the entire surface.
  • the content of the perovskite compound is usually 1 to 100% by mass.
  • the photoelectric conversion element of the present invention preferably has a hole transport layer 3 between the first electrode and the second electrode.
  • the hole transport layer 3 has a function of replenishing electrons to the oxidant of the light absorber, and is preferably a solid layer.
  • the hole transport layer 3 is preferably provided between the photosensitive layer 13 of the first electrode 1 and the second electrode 2.
  • the hole transport material for forming the hole transport layer 3 is not particularly limited, but inorganic materials such as CuI and CuNCS, and organic hole transport materials described in Paragraph Nos. 0209 to 0212 of JP-A-2001-291534 Etc.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, a spiro compound in which two rings share a tetrahedral structure such as C and Si, and triarylamine. And aromatic amine compounds such as triphenylene compounds, nitrogen-containing heterocyclic compounds, and liquid crystalline cyano compounds.
  • the hole transporting material is preferably an organic hole transporting material that can be applied by solution and becomes solid.
  • 2,2 ′, 7,7′-tetrakis- (N, N-di-p-methoxyphenyl) Amine) -9,9-spirobifluorene also referred to as Spiro-OMeTAD
  • 4- (diethylamino) benzaldehyde diphenylhydrazone polyethylenedioxythiophene (PEDOT), etc.
  • the thickness of the hole transport layer 3 is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 1 nm to 10 ⁇ m, further preferably 5 nm to 5 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m.
  • the total film thickness of the porous layer 12, the photosensitive layer 13, and the hole transport layer 3 is not particularly limited, but is preferably 0.1 to 200 ⁇ m, for example, 2 to 50 ⁇ m is more preferable, and 0.3 to 5 ⁇ m is more preferable.
  • the electron transport layer 4 is preferably provided between the photosensitive layer 13C and the second electrode 2.
  • the electron transport layer 4 is the same as the electron transport layer 15 except that the electron transport destination is the second electrode and the position where the electron transport layer 4 is formed is different.
  • the second electrode 2 functions as a positive electrode in the solar cell.
  • the 2nd electrode 2 will not be specifically limited if it has electroconductivity, Usually, it can be set as the same structure as the electroconductive support body 11. FIG. If the strength is sufficiently maintained, the support 11a is not necessarily required.
  • the structure of the second electrode 2 is preferably a structure having a high current collecting effect. In order for light to reach the photosensitive layer 13, at least one of the conductive support 11 and the second electrode 2 must be substantially transparent. In the solar cell of this invention, it is preferable that the electroconductive support body 11 is transparent and sunlight is entered from the support body 11a side. In this case, it is more preferable that the second electrode 2 has a property of reflecting light.
  • Examples of the material for forming the second electrode 2 include platinum (Pt), gold (Au), nickel (Ni), copper (Cu), silver (Ag), indium (In), ruthenium (Ru), palladium ( Examples thereof include metals such as Pd), rhodium (Rh), iridium (Ir), osnium (Os), and aluminum (Al), the above-described conductive metal oxides, carbon materials, and conductive polymers.
  • the carbon material may be a conductive material formed by bonding carbon atoms to each other, and examples thereof include fullerene, carbon nanotube, graphite, and graphene.
  • the second electrode 2 is preferably a metal or conductive metal oxide thin film (including a thin film formed by vapor deposition), or a glass substrate or a plastic substrate having this thin film.
  • a metal or conductive metal oxide thin film including a thin film formed by vapor deposition
  • a glass substrate or a plastic substrate having this thin film.
  • glass substrate or plastic substrate glass having a thin film of gold or platinum or glass on which platinum is deposited is preferable.
  • the film thickness of the second electrode 2 is not particularly limited, but is preferably 0.01 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, and particularly preferably 0.01 to 1 ⁇ m.
  • a spacer or a separator can be used instead of the blocking layer 14 or the like or together with the blocking layer 14 or the like.
  • a hole blocking layer may be provided between the second electrode 2 and the hole transport layer 3.
  • the solar cell of this invention is comprised using the photoelectric conversion element of this invention.
  • a photoelectric conversion element 10 provided with an external circuit 6 can be used as a solar cell.
  • the external circuit connected to the first electrode 1 (conductive support 11) and the second electrode 2 can be used without particular limitation.
  • the photoelectric conversion element and the solar cell of the present invention can be produced according to a known production method, for example, a method described in Patent Document 1 or the like. Below, the manufacturing method of the photoelectric conversion element and solar cell of this invention is demonstrated easily.
  • a blocking layer 14 is formed on the surface of the conductive support 11.
  • the blocking layer 14 can be formed by, for example, a method of applying a dispersion containing the insulating material or a precursor compound thereof to the surface of the conductive support 11 and baking it, or a spray pyrolysis method.
  • the material forming the porous layer 12 is preferably used as fine particles, and more preferably used as a dispersion containing fine particles.
  • the method for forming the porous layer 12 is not particularly limited, and examples thereof include a wet method, a dry method, and other methods (for example, a method described in Chemical Review, Vol. 110, page 6595 (2010)). It is done.
  • the dispersion (paste) is preferably applied to the surface of the conductive support 11 or the surface of the blocking layer 14 and then baked at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours. Thereby, microparticles
  • the firing temperature other than the last firing is preferably performed at a temperature lower than the last firing temperature (the last firing temperature).
  • the firing temperature other than the last can be set within a range of 50 to 300 ° C.
  • the final firing temperature can be set to be higher than the firing temperature other than the last within the range of 100 to 600 ° C.
  • the firing temperature is preferably 60 to 500 ° C.
  • the amount of the porous material applied when forming the porous layer 12 is appropriately set according to the thickness of the porous layer 12 and the number of times of application, and is not particularly limited.
  • the coating amount of the porous material per 1 m 2 of the surface area of the conductive support 11 is preferably 0.5 to 500 g, and more preferably 5 to 100 g.
  • the electron transport layer 15 or the hole transport layer 16 When the electron transport layer 15 or the hole transport layer 16 is provided, it can be formed in the same manner as the hole transport layer 3 or the electron transport layer 4 described later.
  • the method for providing the photosensitive layer 13 includes a wet method and a dry method, and is not particularly limited.
  • a wet method is preferred, and for example, a method of contacting with a light absorbent solution containing an absorbent is preferred.
  • a light absorbent solution for forming the photosensitive layer 13 is prepared.
  • the light absorber solution contains MX 2 and AX, which are raw materials for the perovskite compound.
  • A, M and X have the same meanings as A, M and X in the above formula (I).
  • the molar ratio of MX 2 to AX is appropriately adjusted according to the purpose.
  • the molar ratio of AX to MX 2 is preferably 1: 1 to 10: 1.
  • This light absorber solution can be prepared by mixing AX and MX 2 in a predetermined molar ratio, preferably by heating.
  • This forming liquid is usually a solution, but may be a suspension.
  • the heating conditions are not particularly limited, but the heating temperature is preferably 30 to 200 ° C, more preferably 60 to 150 ° C.
  • the heating time is preferably 0.5 to 100 hours, more preferably 1 to 3 hours.
  • the solvent or dispersion medium those described later can be used.
  • the prepared light absorber solution is a layer that forms the photosensitive layer 13 on the surface (in the photoelectric conversion element 10, any one of the porous layer 12, the blocking layer 14, the electron transport layer 15 and the hole transport layer 16).
  • the surface of the layer). Specifically, it is preferable to apply or immerse the light absorbent solution.
  • a perovskite compound is formed on the surface of the porous layer 12, the blocking layer 14, the electron transport layer 15 or the hole transport layer 16.
  • the contact temperature is preferably 5 to 100 ° C.
  • the immersion time is preferably 5 seconds to 24 hours, more preferably 20 seconds to 1 hour.
  • the above drying is preferably performed by heating, and is usually performed by heating to 20 to 300 ° C., preferably 50 to 170 ° C.
  • the photosensitive layer can also be formed according to the method for synthesizing the perovskite compound.
  • the AX solution containing the AX, and MX 2 solution containing the MX 2 and separately applied (including immersion method), and a method of drying if necessary.
  • any solution may be applied first, but preferably the MX 2 solution is applied first.
  • the molar ratio of AX and MX 2 put to this method, coating conditions and drying conditions are the same as the above method.
  • AX or MX 2 can be vapor-deposited instead of applying the AX solution and the MX 2 solution.
  • Still other methods include dry methods such as vacuum deposition using a compound or mixture from which the solvent of the light absorber solution has been removed. For example, the AX and the MX 2, simultaneously or sequentially, and a method of depositing. As a result, a light absorber is formed and becomes the photosensitive layer 13.
  • the hole transport layer 3 or the electron transport layer 4 is preferably formed on the photosensitive layer 13 thus provided.
  • the hole transport layer 3 can be formed by applying a hole transport material solution containing a hole transport material and drying it.
  • the hole transport material solution has a coating solution concentration of 0.1 to 1.0 M in that it has excellent coating properties, and if it has the porous layer 12, it easily penetrates into the pores of the porous layer 12. (Mol / L) is preferred.
  • the electron transport layer 4 can be formed by applying an electron transport material solution containing an electron transport material and drying it.
  • the second electrode 2 After forming the hole transport layer 3 or the electron transport layer 4, the second electrode 2 is formed, and a photoelectric conversion element and a solar cell are manufactured.
  • the film thickness of each layer can be adjusted by appropriately changing the concentration of each dispersion or solution and the number of coatings. For example, when the photosensitive layers 13B and 13C having a large film thickness are provided, the light absorber solution may be applied and dried a plurality of times.
  • Each of the above-mentioned dispersions and solutions may contain additives such as a dispersion aid and a surfactant as necessary.
  • Examples of the solvent or dispersion medium used in the photoelectric conversion element and solar cell manufacturing method include, but are not limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and an alcohol solvent, an amide solvent, a nitrile solvent, a hydrocarbon solvent, a lactone solvent, a halogen solvent, a sulfide solvent, and a mixed solvent of two or more of these are preferable.
  • the mixed solvent a mixed solvent of an alcohol solvent and a solvent selected from an amide solvent, a nitrile solvent, or a hydrocarbon solvent is preferable.
  • methanol, ethanol, ⁇ -butyrolactone, chlorobenzene, acetonitrile, dimethylformamide (DMF) or dimethylacetamide, or a mixed solvent thereof is preferable.
  • the application method of the solution or dispersant forming each layer is not particularly limited, and spin coating, extrusion die coating, blade coating, bar coating, screen printing, stencil printing, roll coating, curtain coating, spray coating, dip coating, inkjet
  • a known coating method such as a printing method or a dipping method can be used. Of these, spin coating, screen printing, dipping, and the like are preferable.
  • the photoelectric conversion element produced as described above can be used as a solar cell by connecting the external circuit 6 to the first electrode 1 and the second electrode 2.
  • the photoelectric conversion element 10A shown in FIG. 1 was manufactured by the following procedure.
  • the film thickness of the photosensitive layer 13 is large, it corresponds to the photoelectric conversion element 10B shown in FIG.
  • conductive support 11 A fluorine-doped SnO 2 conductive film (transparent electrode 11b) was formed on a glass substrate (support 11a, thickness 2.2 mm) to produce a conductive support 11.
  • a blocking layer 14 (thickness 50 nm) made of titanium oxide is formed on the SnO 2 conductive film of the conductive support 11 at 450 ° C. by spray pyrolysis using the prepared 0.02M blocking layer solution. did.
  • ⁇ Formation of porous layer 12> The prepared titanium oxide paste was applied onto the blocking layer 14 by screen printing and baked. The application and firing of the titanium oxide paste was repeated again. The first firing was performed at 130 ° C. for 1 hour, and the second firing was performed at 500 ° C. for 1 hour. The obtained titanium oxide fired body was immersed in a 40 mM TiCl 4 aqueous solution, heated at 60 ° C. for 1 hour, and then heated at 500 ° C. for 30 minutes to form a porous layer 12 (thickness of TiO 2). 250 nm).
  • the prepared light absorbent solution A was applied on the porous layer 12 by spin coating (at 3000 rpm for 60 seconds), and the applied light absorbent solution A was dried on a hot plate at 100 ° C. for 80 minutes to obtain a perovskite compound.
  • a photosensitive layer A (thickness 300 nm (including the thickness of the porous layer 12 of 250 nm)) was formed as a photosensitive layer 13 ⁇ / b> A. In this way, the first electrode 1 was produced.
  • a hole transport material solution is applied onto the photosensitive layer 13 of the first electrode 1 by spin coating, and the applied hole transport material solution is dried to form a hole transport layer 3 (thickness 0.1 ⁇ m). ) Was formed.
  • Photoelectric conversion efficiency was evaluated as follows. Each sample No. 10 specimens of each were produced. For each of the 10 specimens, a battery characteristic test was performed to measure photoelectric conversion efficiency ( ⁇ /%). And the average value of these 10 specimens is assigned to each sample No. The initial photoelectric conversion efficiency ( ⁇ /%) of the photoelectric conversion element was determined. The battery characteristic test was performed by irradiating 1000 W / m 2 of simulated sunlight from a xenon lamp through an AM1.5 filter using a solar simulator “WXS-85H” (manufactured by WACOM). The current-voltage characteristics were measured using an IV tester to determine the photoelectric conversion efficiency ( ⁇ /%).
  • the moisture resistance of the photoelectric conversion element was evaluated as follows. Each sample No. Each of the above 10 specimens is stored in a constant temperature and humidity chamber at a temperature of 35 ° C. and a humidity of 55% RH for 24 hours, and then a battery characteristic test is performed in the same manner as described above to measure photoelectric conversion efficiency ( ⁇ /%). did. The average value of 10 specimens is assigned to each sample No. The photoelectric conversion efficiency ( ⁇ /%) after storage of the photoelectric conversion element was determined. The moisture resistance of the photoelectric conversion element was evaluated based on the rate of decrease in photoelectric conversion efficiency calculated by the following formula.
  • Decreasing rate (%) 100 ⁇ ⁇ 100 ⁇ (photoelectric conversion efficiency after storage) / (initial photoelectric conversion efficiency) ⁇
  • Sample No. 101-123 photoelectric conversion elements photoelectric conversion elements having a perovskite compound having an organic anion defined in the present invention
  • the photoelectric conversion elements 201, 202 and 203 have a reduction rate of the photoelectric conversion efficiency calculated by the above formula exceeding 40%, It was inferior in nature.
  • Variation in reduction rate is less than 10% [B +]: The above [A] is not satisfied, and the variation in the reduction rate is less than 14% [B]: The above [A] and [B +] are not satisfied, and the variation in the reduction rate is less than 18% [C +]: None of the above [A], [B +] and [B] is satisfied, and the variation in the reduction rate is less than 22% [C]: None of the above [A], [B +], [B] and [C +] is satisfied, and the variation in the reduction rate is less than 26% [D]: None of the above [A], [B +], [B], [C +] and [C] are satisfied.
  • [A], [B +], [B], [C +] and [C] are acceptable levels, preferably [A], [B +] or [B], and more [A] is preferred.
  • [D] has a large variation in moisture resistance between elements, and does not reach the acceptable level (required level) of the present invention.
  • the results are shown in Table 1 below.
  • the halogen atom anion / organic anion (molar ratio in the perovskite compound) shown in Table 1 below is the above-described CH 3 NH 3 I and A— when A-1-1 is used as the anionic organic compound.
  • 1-1 / Mole ratio of methylamine compound and PbI 2 , CH 3 CH 2 NH 3 I and A-1-1 / Methyl mole ratio of ethylamine compound and PbI 2 , CH 3 NH 3 I and acetic acid / methylamine compound it can be calculated from the mixing molar ratio of PbI 2, or CH 3 NH 3 I and the mixing molar ratio of formic acid / methyl amine compound and PbI 2.
  • the halogen anion / organic anion (molar ratio in the perovskite compound) is determined from the mixed molar ratio. ) Can be calculated.
  • the perovskite compound in the light absorber contains the organic anion represented by the formula (An) in the crystal structure, variation in moisture resistance of the obtained photoelectric conversion element is greatly suppressed, and the quality is uniform. It turned out that a photoelectric conversion element can be manufactured.
  • Electron transport layer 16 Hole transport layer 2 Second electrode 3A, 3B Hole transport layer 4 Electron transport layer 6 External circuit (lead) 10A, 10B, 10C, 10D, 10E Photoelectric conversion elements 100A, 100B, 100C, 100D, 100E A system M electric motor using photoelectric conversion elements for battery applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光吸収剤を含む感光層を有する光電変換素子であって、 上記光吸収剤が、特定のカチオンと、アニオンとを有するペロブスカイト型結晶構造を持つ化合物を含み、この化合物を構成する上記アニオンの少なくとも一部が下記式(An)で表される有機アニオンである光電変換素子、およびこの光電変換素子を用いた太陽電池。 R-C(=X)-X 式(An) Rは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、脂肪族ヘテロ環基、-N(R、-OR、-SR、およびハロゲン原子を示す。XはO原子またはS原子を示す。XはOまたはSを示す。R~Rは特定の基である。但しXがO原子で且つXがOの場合、Rは特定の基である。

Description

光電変換素子および太陽電池
 本発明は、光電変換素子および太陽電池に関する。
 光電変換素子は、各種の光センサー、複写機、太陽電池等に用いられている。太陽電池は、非枯渇性の太陽エネルギーを利用するものとして、その本格的な実用化が期待されている。この中でも、増感剤として有機色素またはRuビピリジル錯体等を用いた色素増感太陽電池は、研究開発が盛んに進められ、光電変換効率が11%程度に到達している。
 その一方で、近年、ペロブスカイト型結晶構造を有する化合物として金属ハロゲン化物を用いた太陽電池が、比較的高い光電変換効率を達成できるとの研究成果が報告され、注目を集めている(例えば特許文献1)。
国際公開第2014/097299号
 ペロブスカイト型結晶構造を持つ化合物(以下、「ペロブスカイト化合物」ともいう)を用いた光電変換素子ないし太陽電池は、光電変換効率の向上に一定の成果が得られている。しかし、ペロブスカイト化合物を用いた光電変換素子ないし太陽電池は、近年、注目されたものであり、光電変換効率以外の電池性能についてはほとんど知られていない。
 光電変換素子および太陽電池には、高い光電変換効率に加え、これらが実際に使用される現場環境において、初期性能を維持できる耐久性が求められる。ペロブスカイト化合物は高湿環境下で損傷を受けやすいことが知られており、ペロブスカイト化合物を用いた光電変換素子ないし太陽電池には、特に高湿条件下における耐久性の向上が求められる。また、光電変換素子および太陽電池の実用化に際しては、光電変換性能のばらつきを抑え、品質の揃った光電変換素子ないし太陽電池を安定的に供給することが求められる。
 本発明は、ペロブスカイト化合物を光吸収剤として用いた光電変換素子であって、耐湿性に優れ、且つ製造安定性(素子間における耐久性(耐湿性)の均一性)も良好な光電変換素子を提供することを課題とする。また本発明は、上記光電変換素子を用いた太陽電池を提供することを課題とする。
 本発明者らは、周期表第一族元素のカチオンまたは有機カチオンと、周期表第一族元素以外の金属原子のカチオンと、アニオンとを有するペロブスカイト化合物を光吸収剤として用いた光電変換素子ないし太陽電池において、上記アニオンの少なくとも一部を特定の有機アニオンとすることにより、高湿環境下においても光電変換効率が低下しにくく、且つ製造した素子間の耐久性(耐湿性)のばらつきも抑えられることを見い出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、本発明の上記の課題は以下の手段により解決された
〔1〕
 光吸収剤を含む感光層を導電性支持体上に有する第一電極と、第一電極に対向する第二電極とを有する光電変換素子であって、
 上記光吸収剤が、周期表第一族元素のカチオンまたは有機カチオンと、周期表第一族元素以外の金属原子のカチオンと、アニオンとを有するペロブスカイト型結晶構造を持つ化合物を含み、この化合物を構成する上記アニオンの少なくとも一部が下記式(An)で表される有機アニオンである、光電変換素子。
 
 R-C(=X)-X        式(An)
 
 式中、Rは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、脂肪族ヘテロ環基、-N(R、-OR、-SR、またはハロゲン原子を示す。XはO原子またはS原子を示す。R~Rはアルキル基またはアリール基を示す。XはOまたはSを示す。
 但し、XがO原子で且つXがOの場合、上記アルキル基は、置換メチル基または炭素数2以上のアルキル基である。
〔2〕
 上記XがO原子を示し、上記XがOを示す、〔1〕に記載の光電変換素子。
〔3〕
 上記Rがアリール基またはヘテロアリール基を示す、〔1〕または〔2〕に記載の光電変換素子。
〔4〕
 上記のペロブスカイト型結晶構造を持つ化合物が、ハロゲン原子のアニオンを有する、〔1〕~〔3〕のいずれか1つに記載の光電変換素子。
〔5〕
 上記のペロブスカイト型結晶構造を持つ化合物中、上記式(An)で表される有機アニオンに対する上記ハロゲン原子のアニオンのモル比が下記式を満たす、〔4〕に記載の光電変換素子。
 32≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦331
〔6〕
 上記のペロブスカイト型結晶構造を持つ化合物中、上記式(An)で表される有機アニオンに対する上記ハロゲン原子のアニオンのモル比が下記式を満たす、〔5〕に記載の光電変換素子。
 54≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦331
〔7〕
 〔1〕~〔6〕のいずれか1つに記載の光電変換素子を用いた太陽電池。
 本明細書において、各化学式は、ペロブスカイト化合物の化学構造の理解のために、一部を示性式として表記することもある。これに伴い、各化学式において、部分構造を(置換)基、イオンまたは原子等と称するが、本明細書において、これらは、(置換)基、イオンまたは原子等のほかに、上記式で表される(置換)基もしくはイオンを構成する元素団、または、元素を意味することがある。
 本明細書において、化合物の表記については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。さらに、置換または無置換を明記していない基ないし化合物については、所望の効果を奏する範囲で、任意の置換基を有する基ないし化合物を含む意味である。
 本明細書において、特定の符号で表示された置換基等が複数あるとき、または複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、環、例えば脂環、芳香族環、ヘテロ環はさらに縮環して縮合環を形成していてもよい。
 本明細書において、「基」という用語は、特段の断りのない限り、この基が置換基を有する形態も包含する意味に用いる。例えば「アルキル基」は置換アルキル基と無置換アルキルの両形態を包含する意味である。
 また、本明細書において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の光電変換素子および太陽電池は、光吸収剤としてペロブスカイト化合物を含む構成でありながらも耐湿性に優れ、且つ製造安定性(素子間の耐久性(耐湿性)の均一性)にも優れる。
 本発明の上記および他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の光電変換素子の好ましい態様について模式的に示した断面図である。 本発明の光電変換素子の厚い感光層を有する好ましい態様について模式的に示した断面図である。 本発明の光電変換素子の別の好ましい態様について模式的に示した断面図である。 本発明の光電変換素子のまた別の好ましい態様について模式的に示した断面図である。 本発明の光電変換素子のさらに別の好ましい態様について模式的に示した断面図である。
<<光電変換素子>>
 本発明の光電変換素子は、導電性支持体と、光吸収剤を含む感光層とを有する第一電極と、第一電極に対向する第二電極とを有する。ここで、第一電極と第二電極が対向するとは、第一電極と第二電極が互いに接した状態で積層された形態、第一電極と第二電極とが他の層を介して積層された形態(すなわち第一電極と第二電極が他の層を挟んで互いに対向して設けられた形態)の両形態を含む意味である。
 本発明の光電変換素子は好ましくは、第一電極と第二電極の間に設けられた正孔輸送層を有する。感光層および第二電極はこの順で導電性支持体上に設けられている。すなわち光電変換素子が正孔輸送層を有する場合には、感光層、正孔輸送層および第二電極はこの順で導電性支持体上に設けられていることが好ましい。
 また、正孔輸送層は導電性支持体と感光層との間に設けられていてもよい。この場合、正孔輸送層、感光層および第二電極はこの順で導電性支持体上に設けられている。
 光吸収剤は、後述するペロブスカイト化合物を少なくとも1種含んでいる。光吸収剤は、ペロブスカイト化合物と併せて、ペロブスカイト化合物以外の光吸収剤を含んでいてもよい。ペロブスカイト化合物以外の光吸収剤としては、例えば金属錯体色素および有機色素が挙げられる。
 本発明において、「感光層を導電性支持体上に有する」とは、導電性支持体の表面に接して感光層を有する態様、および、導電性支持体の表面上方に他の層を介して感光層を有する態様を含む意味である。
 導電性支持体の表面上方に他の層を介して感光層を有する態様において、導電性支持体と感光層との間に設けられる他の層としては、例えば、多孔質層、ブロッキング層、電子輸送層および正孔輸送層等が挙げられる。
 本発明において、導電性支持体の表面上方に他の層を介して感光層を有する態様としては、例えば、感光層が、多孔質層の表面に薄い膜状等に設けられる態様(図1参照)、多孔質層の表面に厚く設けられる態様(図2参照)、ブロッキング層の表面に薄く設けられる態様、ブロッキング層の表面に厚い膜状に設けられる態様(図3参照)、電子輸送層の表面に薄い膜状または厚い膜状(図4参照)に設けられる態様、および、正孔輸送層の表面に薄い膜状または厚い膜状(図5参照)に設けられる態様が挙げられる。感光層は、線状または分散状に設けられてもよいが、好ましくは膜状に設けられる。
 本発明の光電変換素子は、本発明で規定する構成以外の構成は特に限定されず、光電変換素子および太陽電池に関する公知の構成を採用できる。本発明の光電変換素子を構成する各層は、目的に応じて設計され、例えば、単層に形成されても、複層に形成されてもよい。
 以下、本発明の光電変換素子の好ましい態様について説明する。
 図1~図5において、同じ符号は同じ構成要素(部材)を意味する。
 なお、図1および図2は、多孔質層12を形成する微粒子の大きさを強調して示してある。これらの微粒子は、好ましくは、導電性支持体11に対して水平方向および垂直方向に詰まり(堆積または密着して)、多孔質構造を形成している。
 本明細書において、単に「光電変換素子10」という場合は、特に断らない限り、光電変換素子10A、10B、10C、10Dおよび10Eを意味する。このことは、システム100、第一電極1についても同様である。また、単に、「感光層13」という場合は、特に断らない限り、感光層13A、13Bおよび13Cを意味する。同様に、「正孔輸送層3」という場合は、特に断らない限り、正孔輸送層3Aおよび3Bを意味する。
 本発明の光電変換素子の好ましい態様として、例えば、図1に示す光電変換素子10Aが挙げられる。図1に示されるシステム100Aは、光電変換素子10Aを外部回路6で動作手段M(例えば電動モーター)に仕事をさせる電池用途に応用したシステムである。
 この光電変換素子10Aは、第一電極1Aと、第二電極2と、第一電極1Aと第二電極2の間に、後述する正孔輸送材料を含む正孔輸送層3Aとを有している。
 第一電極1Aは、支持体11aおよび透明電極11bからなる導電性支持体11と、多孔質層12と、多孔質層12上に感光層13Aとを有している。また透明電極11b上にブロッキング層14を有し、ブロッキング層14上に多孔質層12が形成される。このように多孔質層12を有する光電変換素子10Aは、感光層13Aの表面積が大きくなるため、電荷分離および電荷移動効率が向上すると推測される。
 図2に示す光電変換素子10Bは、図1に示す光電変換素子10Aの感光層13Aを厚く設けた好ましい態様を模式的に示したものである。この光電変換素子10Bにおいて、正孔輸送層3Bは薄く設けられている。光電変換素子10Bは、図1で示した光電変換素子10Aに対して感光層13Bおよび正孔輸送層3Bの膜厚の点で異なるが、これらの点以外は光電変換素子10Aと同様に構成されている。
 図3に示す光電変換素子10Cは、本発明の光電変換素子の別の好ましい態様を模式的に示したものである。光電変換素子10Cは、図2に示す光電変換素子10Bに対して多孔質層12を設けていない点で異なるが、この点以外は光電変換素子10Bと同様に構成されている。すなわち、光電変換素子10Cにおいて、感光層13Cはブロッキング層14の表面に厚い膜状に形成されている。
 図4に示す光電変換素子10Dは、本発明の光電変換素子のまた別の好ましい態様を模式的に示したものである。この光電変換素子10Dは、図3に示す光電変換素子10Cに対してブロッキング層14に代えて電子輸送層15を設けた点で異なるが、この点以外は光電変換素子10Cと同様に構成されている。第一電極1Dは、導電性支持体11と、導電性支持体11上に順に形成された、電子輸送層15および感光層13Cとを有している。この光電変換素子10Dは、各層を有機材料で形成できる点で、好ましい。これにより、光電変換素子の生産性が向上し、しかも薄型化またはフレキシブル化が可能になる。
 図5に示す光電変換素子10Eは、本発明の光電変換素子のさらにまた別の好ましい態様を模式的に示したものである。この光電変換素子10Eを含むシステム100Eは、システム100Aと同様に電池用途に応用したシステムである。
 光電変換素子10Eは、第一電極1Eと、第二電極2と、第一電極1Eおよび第二電極2の間に電子輸送層4とを有している。第一電極1Eは、導電性支持体11と、導電性支持体11上に順に形成された、正孔輸送層16および感光層13Cとを有している。この光電変換素子10Eは、光電変換素子10Dと同様に、各層を有機材料で形成できる点で、好ましい。
 本発明において、光電変換素子10を応用したシステム100は、以下のようにして、太陽電池として、機能する。
 すなわち、光電変換素子10Aにおいて、導電性支持体11を透過して、または第二電極2を透過して感光層13に入射した光は光吸収剤を励起する。励起された光吸収剤はエネルギーの高い電子を有しており、この電子を放出できる。エネルギーの高い電子を放出した光吸収剤は酸化体となる。
 光電変換素子10A~10Dにおいては、光吸収剤から放出された電子は、光吸収剤間を移動して導電性支持体11に到達する。このとき、エネルギーの高い電子を放出した光吸収剤は酸化体となっている。導電性支持体11に到達した電子が外部回路6で仕事をした後、第二電極2を経て(正孔輸送層3がある場合にはさらに正孔輸送層3を経由して)、感光層13に戻る。感光層13に戻った電子により光吸収剤が還元される。
 一方、光電変換素子10Eにおいては、光吸収剤から放出された電子は、感光層13Cから電子輸送層4を経て第二電極2に到達し、外部回路6で仕事をした後に導電性支持体11を経て、感光層13に戻る。感光層13に戻った電子により光吸収剤が還元される。
 光電変換素子10において、このような、上記光吸収剤の励起および電子移動のサイクルを繰り返すことにより、システム100が太陽電池として機能する。
 光電変換素子10A~10Dにおいて、感光層13から導電性支持体11への電子の流れ方は、多孔質層12の有無およびその種類等により、異なる。本発明の光電変換素子10においては、光吸収剤間を電子が移動する電子伝導が起こる。したがって、多孔質層12を設ける場合、多孔質層12は従来の半導体以外に絶縁体で形成することができる。多孔質層12が半導体で形成される場合、多孔質層12の半導体微粒子内部や半導体微粒子間を電子が移動する電子伝導も起こる。一方、多孔質層12が絶縁体で形成される場合、多孔質層12での電子伝導は起こらない。多孔質層12が絶縁体で形成される場合、絶縁体微粒子に酸化アルミニウム(Al)の微粒子を用いると、比較的高い起電力(Voc)が得られる。
 なお、上記他の層としてのブロッキング層14が導体または半導体により形成された場合もブロッキング層14での電子伝導が起こる。
 また、電子輸送層15でも、電子伝導が起こる。
 本発明の光電変換素子および太陽電池は、上記の好ましい態様に限定されず、各態様の構成等は、本発明の趣旨を逸脱しない範囲で、各態様間で適宜組み合わせることができる。
 本発明において、光電変換素子または太陽電池に用いられる材料および各部材は、光吸収剤を除いて、常法により調製することができる。ペロブスカイト化合物を用いた光電変換素子または太陽電池について、例えば、特許文献1を参照することができる。また、色素増感太陽電池について、例えば、特開2001-291534号公報、米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,084,365号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。
 以下、本発明の光電変換素子および太陽電池の主たる部材および化合物の好ましい態様について、説明する。
<第一電極1>
 第一電極1は、導電性支持体11と感光層13とを有し、光電変換素子10において作用電極として機能する。
 第一電極1は、図1~5に示されるように、多孔質層12、ブロッキング層14、電子輸送層15および正孔輸送層16の少なくとも1つの層を有することが好ましい。
 第一電極1は、短絡防止の点で少なくともブロッキング層14を有することが好ましく、光吸収効率の点および短絡防止の点で多孔質層12およびブロッキング層14を有していることがさらに好ましい。
 また、第一電極1は、有機材料で形成できる点で、電子輸送層15または正孔輸送層16を有することが好ましい。
 - 導電性支持体11 -
 導電性支持体11は、導電性を有し、感光層13等を支持できるものであれば特に限定されない。導電性支持体11は、導電性を有する材料、例えば金属で形成された構成、または、ガラスもしくはプラスチックの支持体11aとこの支持体11aの表面に形成された導電膜としての透明電極11bとを有する構成が好ましい。
 なかでも、図1~図5に示されるように、ガラスまたはプラスチックの支持体11aの表面に導電性の金属酸化物を塗設して透明電極11bを成膜した導電性支持体11がさらに好ましい。プラスチックで形成された支持体11aとしては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体11aを形成する材料としては、ガラスおよびプラスチックの他にも、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いることができる。金属酸化物としては、スズ酸化物(TO)が好ましく、インジウム-スズ酸化物(スズドープ酸化インジウム;ITO)、フッ素をドープした酸化スズ(FTO)等のフッ素ドープスズ酸化物が特に好ましい。このときの金属酸化物の塗布量は、支持体11aの表面積1m当たり0.1~100gが好ましい。導電性支持体11を用いる場合、光は支持体11a側から入射させることが好ましい。
 導電性支持体11は、実質的に透明であることが好ましい。本発明において、「実質的に透明である」とは、光(波長300~1200nm)の透過率が10%以上であることを意味し、50%以上が好ましく、80%以上が特に好ましい。
 支持体11aおよび導電性支持体11の厚みは、特に限定されず、適宜の厚みに設定される。例えば、0.01μm~10mmであることが好ましく、0.1μm~5mmであることがさらに好ましく、0.3μm~4mmであることが特に好ましい。
 透明電極11bを設ける場合、透明電極11bの膜厚は、特に限定されず、例えば、0.01~30μmであることが好ましく、0.03~25μmであることがさらに好ましく、0.05~20μmであることが特に好ましい。
 導電性支持体11または支持体11aは、表面に光マネージメント機能を有してもよい。例えば、導電性支持体11または支持体11aの表面に、特開2003-123859号公報に記載の、高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。
 - ブロッキング層14 -
 本発明においては、光電変換素子10A~10Cのように、好ましくは、透明電極11bの表面に、すなわち、導電性支持体11と、多孔質層12、感光層13または正孔輸送層3等との間に、ブロッキング層14を有している。
 光電変換素子および太陽電池において、例えば感光層13または正孔輸送層3と、透明電極11bとが電気的に接続すると逆電流を生じる。ブロッキング層14は、この逆電流を防止する機能を果たす。ブロッキング層14は短絡防止層ともいう。
 このブロッキング層は、光電変換素子が電子輸送層を有する場合にも設けられてもよい。例えば、光電変換素子10Dの場合、導電性支持体11と電子輸送層15との間に設けられてもよく、光電変換素子10Eの場合、第二電極2と電子輸送層4との間に設けられてもよい。
 ブロッキング層14を形成する材料は、上記機能を果たすことのできる材料であれば特に限定されないが、可視光を透過する物質であって、導電性支持体11(透明電極11b)に対する絶縁性物質であることが好ましい。「導電性支持体11(透明電極11b)に対する絶縁性物質」とは、具体的には、伝導帯のエネルギー準位が、導電性支持体11を形成する材料(透明電極11bを形成する金属酸化物)の伝導帯のエネルギー準位以上であり、かつ、多孔質層12を構成する材料の伝導帯や光吸収剤の基底状態のエネルギー準位より低い化合物(n型半導体化合物)をいう。
 ブロッキング層14を形成する材料は、例えば、酸化ケイ素、酸化マグネシウム、酸化アルミニウム、炭酸カルシウム、ポリビニルアルコール、ポリウレタン等が挙げられる。また、一般的に光電変換材料に用いられる材料でもよく、例えば、酸化チタン、酸化スズ、酸化ニオブ、酸化タングステン等も挙げられる。なかでも、酸化チタン、酸化スズ、酸化マグネシウム、酸化アルミニウム等が好ましい。
 ブロッキング層14の膜厚は、0.001~10μmが好ましく、0.005~1μmがさらに好ましく、0.01~0.1μmが特に好ましい。
 本発明において、各層の膜厚は、走査型電子顕微鏡(SEM)等を用いて光電変換素子10の断面を観察することにより、測定できる。
 - 多孔質層12 -
 本発明において、光電変換素子10Aおよび10Bのように、好ましくは、透明電極11b上に多孔質層12を有している。ブロッキング層14を有している場合、多孔質層12はブロッキング層14上に形成されることが好ましい。
 多孔質層12は、表面に感光層13を担持する足場として機能する層である。太陽電池において、光吸収効率を高めるためには、少なくとも太陽光等の光を受ける部分の表面積を大きくすることが好ましく、多孔質層12の全体としての表面積を大きくすることが好ましい。
 多孔質層12は、多孔質層12を形成する材料の微粒子が堆積または密着してなる、細孔を有する微粒子層であることが好ましい。多孔質層12は、2種以上の多微粒子が堆積してなる微粒子層であってもよい。多孔質層12が細孔を有する微粒子層であると、光吸収剤の担持量(吸着量)を増量できる。
 多孔質層12の表面積を大きくするには、多孔質層12を構成する個々の微粒子の表面積を大きくすることが好ましい。本発明では、多孔質層12を形成する微粒子を導電性支持体11等に塗設した状態で、この微粒子の表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。多孔質層12を形成する微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径において、1次粒子として0.001~1μmが好ましい。微粒子の分散物を用いて多孔質層12を形成する場合、微粒子の上記平均粒径は、分散物の平均粒径として0.01~100μmが好ましい。
 多孔質層12を形成する材料は、導電性に関しては特に限定されず、絶縁体(絶縁性の材料)であっても、導電性の材料または半導体(半導電性の材料)であってもよい。
 多孔質層12を形成する材料としては、例えば、金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)、ペロブスカイト型結晶構造を有する化合物(後述する光吸収剤を除く。)、ケイ素の酸化物(例えば、二酸化ケイ素、ゼオライト)、またはカーボンナノチューブ(カーボンナノワイヤおよびカーボンナノロッド等を含む)を用いることができる。
 金属のカルコゲニドとしては、特に限定されないが、好ましくは、チタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、アルミニウムまたはタンタルの各酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。金属のカルコゲニドの結晶構造として、アナターゼ型、ブルッカイト型またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。
 ペロブスカイト型結晶構造を有する化合物としては、特に限定されないが、遷移金属酸化物等が挙げられる。例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、チタン酸鉛、ジルコン酸バリウム、スズ酸バリウム、ジルコン酸鉛、ジルコン酸ストロンチウム、タンタル酸ストロンチウム、ニオブ酸カリウム、鉄酸ビスマス、チタン酸ストロンチウムバリウム、チタン酸バリウムランタン、チタン酸カルシウム、チタン酸ナトリウム、チタン酸ビスマスが挙げられる。なかでも、チタン酸ストロンチウム、チタン酸カルシウム等が好ましい。
 カーボンナノチューブは、炭素膜(グラフェンシート)を筒状に丸めた形状を有する。カーボンナノチューブは、1枚のグラフェンシートが円筒状に巻かれた単層カーボンナノチューブ(SWCNT)、2枚のグラフェンシートが同心円状に巻かれた2層カーボンナノチューブ(DWCNT)、複数のグラフェンシートが同心円状に巻かれた多層カーボンナノチューブ(MWCNT)に分類される。多孔質層12としては、いずれのカーボンナノチューブも特に限定されず、用いることができる。
 多孔質層12を形成する材料は、なかでも、チタン、スズ、亜鉛、ジルコニウム、アルミニウムもしくはケイ素の酸化物、またはカーボンナノチューブが好ましく、酸化チタンまたは酸化アルミニウムがさらに好ましい。
 多孔質層12は、上述の、金属のカルコゲニド、ペロブスカイト型結晶構造を有する化合物、ケイ素の酸化物およびカーボンナノチューブのうち少なくとも1種で形成されていればよく、複数種で形成されていてもよい。
 多孔質層12の膜厚は、特に限定されないが、通常0.1~100μmの範囲であり、太陽電池として用いる場合は、0.1~50μmが好ましく、0.2~30μmがより好ましい。
 - 電子輸送層15- 
 本発明においては、光電変換素子10Dのように、好ましくは、透明電極11bの表面に電子輸送層15を有している。
 電子輸送層15は、感光層13で発生した電子を導電性支持体11へと輸送する機能を有する。電子輸送層15は、この機能を発揮することができる電子輸送材料で形成される。電子輸送材料としては、特に限定されないが、有機材料(有機電子輸送材料)が好ましい。有機電子輸送材料としては、[6,6]-Phenyl-C61-Butyric Acid Methyl Ester(PCBM)等のフラーレン化合物、ペリレンテトラカルボキシジイミド(PTCDI)等のペリレン化合物、その他、テトラシアノキノジメタン(TCNQ)等の低分子化合物、または、高分子化合物等が挙げられる。
 電子輸送層15の膜厚は、特に限定されないが、0.001~10μmが好ましく、0.01~1μmがより好ましい。
 - 正孔輸送層16- 
 本発明においては、光電変換素子10Eのように、好ましくは、透明電極11bの表面に正孔輸送層16を有している。
 正孔輸送層16は、形成される位置が異なること以外は、後述する正孔輸送層3と同じである。
 - 感光層(光吸収層)13 -
 感光層13は、好ましくは、後述するペロブスカイト化合物が、光吸収剤として多孔質層12(光電変換素子10Aおよび10B)、もしくはブロッキング層14(光電変換素子10C))、電子輸送層15(光電変換素子10D)、または、正孔輸送層16(光電変換素子10E)の各層の表面(感光層13が設けられる表面が凹凸の場合の内表面を含む。)に設けられる。
 本発明において、光吸収剤は、後述するペロブスカイト化合物を少なくとも1種含有していればよく、2種以上のペロブスカイト化合物を含有してもよい。
 感光層13は、単層であっても2層以上の積層であってもよい。感光層13が2層以上の積層構造である場合、互いに異なった光吸収剤からなる層を積層してもよく、また感光層と感光層の間に正孔輸送材料を含む中間層を積層してもよい。
 感光層13を導電性支持体11上に有する形態は、上述した通りである。感光層13は、好ましくは、励起した電子が導電性支持体11に流れるように、上記各層の表面に設けられる。このとき、感光層13は、上記各層の表面全体に設けられていてもよく、その表面の一部に設けられていてもよい。
 感光層13の膜厚は、導電性支持体11上に感光層13を有する態様に応じて適宜に設定され、特に限定されない。例えば、感光層13の膜厚(多孔質層12を有する場合、多孔質層12の膜厚との合計膜厚)は、0.1~100μmが好ましく、0.1~50μmがさらに好ましく、0.2~30μmが特に好ましい。
 本発明において、感光層を厚い膜状に設ける場合(感光層13Bおよび13C)、この感光層に含まれる光吸収剤は正孔輸送材料として機能することもある。
〔感光層の光吸収剤〕
 感光層13は、光吸収剤として、周期表第一族元素のカチオンまたは有機カチオンと、周期表第一族元素以外の金属原子のカチオンと、特定の有機アニオンを含むアニオンとを有するペロブスカイト化合物を含む。
 本発明に用いるペロブスカイト化合物が有しうる周期表第一族元素のカチオンは、リチウムイオン(Li)、ナトリウムイオン(Na)、カリウムイオン(K)およびセシウムイオン(Cs)が好ましく、なかでもCsがより好ましい。
 本発明に用いるペロブスカイト化合物が有しうる上記有機カチオンは、上記性質を有する有機基のカチオンであれば特に限定されないが、下記式(1)で表される有機カチオンが好ましい。
 R-NH        式(1)
 式中、Rは置換基を表す。Rはアルキル基、シクロアルキル基、シクロアルケニル基、シクロジエニル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基または下記式(2)で表すことができる基が好ましい。なかでも、アルキル基、下記式(2)で表すことができる基がより好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、XはNR1c、酸素原子または硫黄原子を表す。R1bおよびR1cは各々独立に水素原子または置換基を表す。*は式(1)のN原子との結合位置を表す。
 上記式(1)で表される、RとNH とが結合してなる有機アンモニウムカチオンは共鳴構造をとり得る。例えば、上記式(2)で表すことができる基においてXがNH(R1cが水素原子)である場合、上記有機カチオンは、上記式(2)で表すことができる基とNH とが結合してなる有機アンモニウムカチオンに加えて、この有機アンモニウムカチオンの共鳴構造の1つである有機アミジニウムカチオンをも包含する。この有機アミジニウムカチオンとしては、下記式(Aam)で表されるカチオンが挙げられる。なお、本明細書において、下記式(Aam)で表されるカチオンを便宜上、「R1bC(=NH)-NH」と表記することがある。
Figure JPOXMLDOC01-appb-C000002
 Rとして採り得るアルキル基は、直鎖アルキル基および分岐アルキル基を含む。このアルキル基の炭素数は1~18が好ましく、1~6がより好ましく、1~3がさらに好ましい。このアルキル基の好ましい具体例としては、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、t-ブチル、ペンチルおよびヘキシルが挙げられる。
 Rとして採り得るシクロアルキル基は、その炭素数が3~8が好ましい。このシクロアルキル基の好ましい具体例としては、例えば、シクロプロピル、シクロペンチルおよびシクロヘキシルが挙げられる。
 Rとして採り得るシクロアルケニル基は、その炭素数が3~8が好ましく、4~6がより好ましく、5~6がさらに好ましい。このシクロアルケニル基の好ましい具体例としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキシニル基、シクロヘプテニル基およびシクロオクテニル基が挙げられる。
 Rとして採り得るシクロジエニル基は、その炭素数が5~10が好ましく、5~8がより好ましく、5~6がさらに好ましい。このシクロジエニル基の好ましい具体例としては、例えば、シクロペンタジエニル基およびシクロヘキサジエニル基が挙げられる。
 Rとして採り得るアルケニル基は、直鎖アルケニル基および分岐アルケニル基を含む。このアルケニル基の炭素数は2~18が好ましく、より好ましくは2~7、さらに好ましくは2~6、特に好ましくは2~5である。このアルケニル基の好ましい具体例として、例えば、ビニル、アリル、ブテニルおよびヘキセニルが挙げられる。
 Rとして採り得るアルキニル基は、直鎖アルキニル基および分岐アルキニル基を含む。このアルキニル基の炭素数は2~18のアルキニル基が好ましく、より好ましくは2~7、さらに好ましくは2~5、特に好ましくは2~4である。このアルキニル基の好ましい具体例としては、例えば、エチニル、ブチニルまたはヘキシニル等が挙げられる。
 Rとして採り得るアリール基は、その炭素数6~14のアリール基が好ましく、炭素数6~12のアリール基がより好ましい。このアリール基の好ましい具体例としては、例えば、フェニルおよびナフチルが挙げられ、フェニルがさらに好ましい。
 Rとして採り得るヘテロアリール基は、芳香族ヘテロ環のみからなる基と、芳香族ヘテロ環に他の環、例えば、芳香環、脂肪族環やヘテロ環が縮合した縮合ヘテロ環からなる基とを包含する。
 芳香族ヘテロ環を構成する環構成ヘテロ原子としては、窒素原子、酸素原子、硫黄原子が好ましい。また、芳香族ヘテロ環の環員数としては、5員環または6員環が好ましい。
 5員環の芳香族ヘテロ環および5員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、
例えば、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、フラン環、チオフェン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、インドリン環、およびインダゾール環が挙げられる。また、6員環の芳香族ヘテロ環および6員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、例えば、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環、およびキナゾリン環が挙げられる。
 式(2)で表すことができる基において、XはNR1c、酸素原子または硫黄原子を表し、NR1cが好ましい。ここで、R1cは、水素原子または置換基を表し、水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基が好ましく、水素原子がさらに好ましい。
 R1bは、水素原子または置換基を表し、水素原子が好ましい。R1bが取りうる置換基は、アミノ基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基が挙げられる。
 R1bおよびR1cがそれぞれとり得る、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基は、それぞれ、上記式(1)における上記Rとして採り得るアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基と同義であり、好ましい形態も同じである。
 式(2)で表すことができる基としては、(チオ)アシル基、(チオ)カルバモイル基、イミドイル基またはアミジノ基が挙げられる。
 (チオ)アシル基は、アシル基およびチオアシル基を包含する。アシル基は、総炭素数が1~7のアシル基が好ましく、例えば、ホルミル、アセチル(CHC(=O)-)、プロピオニル、ヘキサノイル等が挙げられる。チオアシル基は、総炭素数が1~7のチオアシル基が好ましく、例えば、チオホルミル、チオアセチル(CHC(=S)-)、チオプロピオニル等が挙げられる。
 (チオ)カルバモイル基は、カルバモイル基(HNC(=O)-)およびチオカルバモイル基(HNC(=S)-)を包含する。
 イミドイル基は、R1b-C(=NR1c)-で表される基であり、R1bおよびR1cはそれぞれ水素原子またはアルキル基が好ましく、アルキル基は上記R1aのアルキル基と同義であるのがより好ましい。例えば、ホルムイミドイル(HC(=NH)-)、アセトイミドイル(CHC(=NH)-)、プロピオンイミドイル(CHCHC(=NH)-)等が挙げられる。中でも、ホルムイミドイルが好ましい。
 式(2)で表すことができる基としてのアミジノ基は、上記イミドイル基のR1bがアミノ基でR1cが水素原子である構造(-C(=NH)NH)を有する。
 Rとしてとり得る、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基および上記式(2)で表すことができる基は、いずれも、置換基を有していてもよい。Rが有していてもよい置換基としては、特に限定されないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アルコキシ基、アルキルチオ基、アミノ基、アルキルアミノ基、アリールアミノ基、アシル基、アルキルカルボニルオキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルアミノ基、スルホンアミド基、カルバモイル基、スルファモイル基、ハロゲン原子、シアノ基、ヒドロキシ基またはカルボキシ基が挙げられる。Rが有していてもよい各置換基は、さらに置換基で置換されていてもよい。
 本発明に用いるペロブスカイト化合物は、その結晶構造中に、周期表第一族元素以外の金属原子のカチオンを有する。周期表第一族元素以外の金属原子としては、例えば、カルシウム(Ca)、ストロンチウム(Sr)、カドミウム(Cd)、銅(Cu)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、パラジウム(Pd)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、イッテルビウム(Yb)、ユウロピウム(Eu)、インジウム(In)、チタン(Ti)、ビスマス(Bi)等の金属原子が挙げられ、なかでもPb原子、Cu原子、Ge原子およびSn原子からなる群より選択される少なくとも1種であることがより好ましく、Pb原子またはSn原子がさらに好ましく、Pb原子であることが特に好ましい。本発明に用いるペロブスカイト化合物は、その結晶構造中に周期表第一族元素以外の金属原子のカチオンを1種有してもよく、2種以上の有してもよい。周期表第一族元素以外の金属原子のカチオンを2種以上有する場合には、Pb原子およびSn原子の2種を有することが好ましい。ペロブスカイト化合物が周期表第一族元素以外の金属原子のカチオンを2種以上有する場合、これら2種以上のカチオンの存在比率は特に限定されない。
 本発明に用いるペロブスカイト化合物を構成するアニオンは、その少なくとも一部が下記式(An)で表される有機アニオンである。
 R-C(=X)-X        式(An)
 式(An)中、Rは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、脂肪族ヘテロ環基、-N(R、-OR、-SR、またはハロゲン原子を示す。XはO原子またはS原子を示し、O原子が好ましい。R~Rはアルキル基またはアリール基を示す。XはOまたはSを示し、Oが好ましい。
 但し、XがO原子で且つXがOの場合、Rとして採り得るアルキル基は、置換メチル基または炭素数2以上のアルキル基である。Rとして採り得るアルキル基、アルケニル基およびアルキニル基は、直鎖でも分岐を有していてもよい。また、本発明において「置換メチル基」の置換基には、アルキル基は含まれない。
 XがO原子でない場合またはXがOでない場合(XがO原子でなく且つXがOでない場合を含む)には、上記Rとして採り得るアルキル基は、その炭素数が1~30が好ましく、1~18がより好ましく、1~10がさらに好ましく、1~8がさらに好ましく、1~6がさらに好ましい。
 XがO原子で且つXがOである場合、上記Rとして採り得る炭素数2以上のアルキル基は、その炭素数が2~30が好ましく、2~18がより好ましく、2~10がさらに好ましく、2~8がさらに好ましく、2~6がさらに好ましい。
 Rが置換メチル基の場合、メチルが有する置換基としては、ハロゲン原子、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、脂肪族ヘテロ環基、シアノ基、ニトロ基、アミノ基、イミノ基、アルコキシ基、ヒドロキシ基、チオール基、スルフィド基、アゾ基、アジド基、カルボニル基が好ましく、ハロゲン原子がより好ましく、フッ素原子がさらに好ましい。置換メチル基において、メチルが有する置換基の数は1~3が好ましく、1または2がより好ましく、1がさらに好ましい。
 上記Rとして採り得るアルケニル基、アルキニル基、アリール基、およびヘテロアリール基は、それぞれ、上記式(1)のRとして採り得るアルケニル基、アルキニル基、アリール基、およびヘテロアリール基と同義であり、好ましい形態も同じである。
 上記Rとして採り得る脂肪族ヘテロ環基は、炭素数は0~24であることが好ましく、1~18であることがより好ましい。この脂肪族ヘテロ環基を構成する環の好ましい具体例としては、ピロリジン環、オキソラン環、チオラン環、ピペリジン環、オキサン環、チアン環、ピペラジン環、モルホリン環、キヌクリジン環、ピロリジン環、アゼチジン環、オキセタン環、アジリジン環、ジオキサン環、ペンタメチレンスルフィド環等を挙げることができる。
 上記R~Rとして採り得るアルキル基およびアリール基は、それぞれ、上記式(1)のRとして採り得るアルキル基およびアリール基と同義であり、好ましい形態も同じである。
 式(An)中、Rは、アルキル基、アリール基、またはヘテロアリール基が好ましく、アリール基またはヘテロアリール基がより好ましく、アリール基がさらに好ましい。
 上記式(An)で表される有機アニオンの好ましい具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 
 本発明に用いるペロブスカイト化合物はアニオンとして上記式(An)で表される有機アニオン以外のアニオンを有することが好ましい。上記式(An)で表される有機アニオン以外のアニオンは、単原子アニオンであってもよく、多原子アニオンでもよい。単原子アニオンとしてはハロゲン原子のアニオンが挙げられる。また、多原子アニオンの好ましい例としては、NCSおよびNCOが挙げられる。なかでも、上記式(An)で表される有機アニオン以外のアニオンは、ハロゲン原子のアニオンであることが好ましい。このハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、臭素原子またはヨウ素原子が好ましく、ヨウ素原子がさらに好ましい。
 本発明に用いるペロブスカイト化合物中、上記式(An)で表される有機アニオンに対する上記ハロゲン原子のアニオンのモル比は、下記式(i)を満たすことが好ましく、下記式(ii)を満たすことがより好ましく、下記式(iii)を満たすことがさらに好ましく、下記式(iv)を満たすことがさらに好ましく、下記式(v)を満たすことがさらに好ましい。
式(i):
 1≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦1659
式(ii):
 32≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦829
式(iii):
 32≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦414
式(iv):
 32≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦331
式(v):
 54≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦331
 本発明に用いるペロブスカイト化合物は、上記の各構成イオンを有するペロブスカイト型結晶構造を有する。本発明に用いるペロブスカイト化合物は下記式(I)で表されるペロブスカイト化合物が好ましい。
 A      式(I)
 式中、Aは周期表第一族元素またはカチオン性有機基を表す。Mは周期表第一族元素以外の金属原子を表す。Xはアニオン性原子、アニオン性原子群またはアニオン性有機基を表す。
 aは1または2を表し、mは1を表し、a、mおよびxはa+2m=xを満たす。
 本明細書において、カチオン性有機基とは、ペロブスカイト型結晶構造において有機カチオンとして存在する有機基を意味し、アニオン性原子とはペロブスカイト型結晶構造において単原子アニオンとして存在する原子を意味し、アニオン性原子群とは、ペロブスカイト型結晶構造において多原子アニオンとして存在する原子群を意味し、アニオン性有機基とは、ペロブスカイト型結晶構造において有機アニオンとして存在する有機基をいう。
 すなわち、式(I)において、周期表第一族元素Aは、ペロブスカイト型結晶構造中においてカチオンとなって存在する。
 また、式(I)において、カチオン性有機基Aは、ペロブスカイト型結晶構造中において有機カチオンとして存在する。
 また、式(I)において、金属原子Mは、ペロブスカイト型結晶構造中において、上述した周期表第一族元素以外の金属原子のカチオンとして存在する。
 また、式(I)において、アニオン性原子Xは、ペロブスカイト型結晶構造中において、単原子アニオンとして存在する。
 また、式(I)において、アニオン性原子群Xは、ペロブスカイト型結晶構造中において、多原子アニオンとして存在する。
 また、式(I)において、アニオン性有機基Xは、ペロブスカイト型結晶構造中において、有機アニオンとして存在する。
 式(I)で表されるペロブスカイト化合物において、Xの少なくとも一部は、上記式(An)で表される有機アニオンを導くアニオン性有機基である。
 本発明に用いるペロブスカイト化合物は、上記式(I)中のaが1のペロブスカイト化合物と、aが2のペロブスカイト化合物との混合物であってもよい。
 ペロブスカイト化合物は、MXとAXとから合成することができる。例えば、上記特許文献1を参照してペロブスカイト化合物を合成することができる。また、Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J.Am.Chem.Soc.,2009,131(17),6050-6051も適宜に参照し、ペロブスカイト化合物を合成することができる。
 本発明に用いるペロブスカイト化合物は、ペロブスカイト化合物を構成するカチオンの総モル量に対し、周期表第一族元素以外の金属原子のカチオンおよび上記式(1)の有機カチオンの合計モル量の割合が、90~100モル%であることが好ましく、95~100モル%であることがより好ましく、98~100モル%であることがさらに好ましい。また、本発明に用いるペロブスカイト化合物は、ペロブスカイト化合物を構成するアニオンの総モル量に対し、上記式(An)で表される有機アニオンおよびハロゲン原子のアニオンの合計モル量の割合が、90~100モル%であることが好ましく、95~100モル%であることがより好ましく、98~100モル%であることがさらに好ましい。
 光吸収剤の使用量は、多孔質層12またはブロッキング層14の表面のうち光が入射する表面の少なくとも一部を覆う量であればよく、表面全体を覆う量が好ましい。
 感光層13中、ペロブスカイト化合物の含有量は、通常は1~100質量%である。
<正孔輸送層3>
 本発明の光電変換素子は、第一電極と第二電極との間に正孔輸送層3を有することが好ましい。
 正孔輸送層3は、光吸収剤の酸化体に電子を補充する機能を有し、好ましくは固体状の層である。正孔輸送層3は、好ましくは第一電極1の感光層13と第二電極2の間に設けられる。
 正孔輸送層3を形成する正孔輸送材料は、特に限定されないが、CuI、CuNCS等の無機材料、および、特開2001-291534号公報の段落番号0209~0212に記載の有機正孔輸送材料等が挙げられる。有機正孔輸送材料としては、好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシラン等の導電性高分子、2個の環がC、Siなど四面体構造をとる中心原子を共有するスピロ化合物、トリアリールアミン等の芳香族アミン化合物、トリフェニレン化合物、含窒素複素環化合物または液晶性シアノ化合物が挙げられる。
 正孔輸送材料は、溶液塗布可能で固体状になる有機正孔輸送材料が好ましく、具体的には、2,2’,7,7’-テトラキス-(N,N-ジ-p-メトキシフェニルアミン)-9,9-スピロビフルオレン(Spiro-OMeTADともいう)、ポリ(3-ヘキシルチオフェン-2,5-ジイル)、4-(ジエチルアミノ)ベンゾアルデヒド ジフェニルヒドラゾン、ポリエチレンジオキシチオフェン(PEDOT)等が挙げられる。
 正孔輸送層3の膜厚は、特に限定されないが、50μm以下が好ましく、1nm~10μmがより好ましく、5nm~5μmがさらに好ましく、10nm~1μmが特に好ましい。
 本発明において、多孔質層12を有する場合、多孔質層12と感光層13と正孔輸送層3との合計膜厚は、特に限定されないが、例えば、0.1~200μmが好ましく、0.2~50μmがより好ましく、0.3~5μmがさらに好ましい。
<電子輸送層4>
 本発明においては、光電変換素子10Eのように、好ましくは、感光層13Cと第二電極2との間に電子輸送層4を有している。
 電子輸送層4は、電子の輸送先が第二電極である点、および、形成される位置が異なること以外は、上記電子輸送層15と同じである。
<第二電極2>
 第二電極2は、太陽電池において正極として機能する。第二電極2は、導電性を有していれば特に限定されず、通常、導電性支持体11と同じ構成とすることができる。強度が十分に保たれる場合は、支持体11aは必ずしも必要ではない。
 第二電極2の構造としては、集電効果が高い構造が好ましい。感光層13に光が到達するためには、導電性支持体11と第二電極2との少なくとも一方は実質的に透明でなければならない。本発明の太陽電池においては、導電性支持体11が透明であって太陽光を支持体11a側から入射させるのが好ましい。この場合、第二電極2は光を反射する性質を有することがさらに好ましい。
 第二電極2を形成する材料としては、例えば、白金(Pt)、金(Au)、ニッケル(Ni)、銅(Cu)、銀(Ag)、インジウム(In)、ルテニウム(Ru)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、オスニウム(Os)、アルミニウム(Al)等の金属、上述の導電性の金属酸化物、炭素材料および伝導性高分子等が挙げられる。炭素材料としては、炭素原子同士が結合してなる、導電性を有する材料であればよく、例えば、フラーレン、カーボンナノチューブ、グラファイト、グラフェン等が挙げられる。
 第二電極2としては、金属もしくは導電性の金属酸化物の薄膜(蒸着してなる薄膜を含む)、または、この薄膜を有するガラス基板もしくはプラスチック基板が好ましい。ガラス基板もしくはプラスチック基板としては、金もしくは白金の薄膜を有するガラス、または、白金を蒸着したガラスが好ましい。
 第二電極2の膜厚は、特に限定されず、0.01~100μmが好ましく、0.01~10μmがさらに好ましく、0.01~1μmが特に好ましい。
<その他の構成>
 本発明では、第一電極1と第二電極2との接触を防ぐために、ブロッキング層14等に代えて、または、ブロッキング層14等とともに、スペーサーやセパレータを用いることもできる。
 また、第二電極2と正孔輸送層3の間に正孔ブロッキング層を設けてもよい。
<<太陽電池>>
 本発明の太陽電池は、本発明の光電変換素子を用いて構成される。例えば図1~図5に示されるように、外部回路6を設けて構成した光電変換素子10を太陽電池として用いることができる。第一電極1(導電性支持体11)および第二電極2に接続される外部回路は、公知のものを特に制限されることなく、用いることができる。
 本発明の太陽電池は、構成物の劣化および蒸散等を防止するために、側面をポリマーや接着剤等で密封することが好ましい。
<<光電変換素子および太陽電池の製造方法>>
 本発明の光電変換素子および太陽電池は、公知の製造方法、例えば特許文献1等に記載の方法に準拠して、製造できる。
 以下に、本発明の光電変換素子および太陽電池の製造方法を簡単に説明する。
 導電性支持体11の表面に、所望により、ブロッキング層14、多孔質層12、電子輸送層15および正孔輸送層16の少なくとも一つを形成する。
 ブロッキング層14は、例えば、上記絶縁性物質またはその前駆体化合物等を含有する分散物を導電性支持体11の表面に塗布し、焼成する方法またはスプレー熱分解法等によって、形成できる。
 多孔質層12を形成する材料は、好ましくは微粒子として用いられ、さらに好ましくは微粒子を含有する分散物として用いられる。
 多孔質層12を形成する方法としては、特に限定されず、例えば、湿式法、乾式法、その他の方法(例えば、Chemical Review,第110巻,6595頁(2010年刊)に記載の方法)が挙げられる。これらの方法において、導電性支持体11の表面またはブロッキング層14の表面に分散物(ペースト)を塗布した後に、100~800℃の温度で10分~10時間焼成することが好ましい。これにより、微粒子同士を密着させることができる。
 焼成を複数回行う場合、最後の焼成以外の焼成の温度(最後以外の焼成温度)を、最後の焼成の温度(最後の焼成温度)よりも低い温度で行うのがよい。例えば、酸化チタンペーストを用いる場合、最後以外の焼成温度を50~300℃の範囲内に設定することができる。また、最後の焼成温度を、100~600℃の範囲内において、最後以外の焼成温度よりも高くなるように、設定することができる。支持体11aとしてガラス支持体を用いる場合、焼成温度は60~500℃が好ましい。
 多孔質層12を形成するときの、多孔質材料の塗布量は、多孔質層12の膜厚および塗布回数等に応じて適宜に設定され、特に限定されない。導電性支持体11の表面積1m当たりの、多孔質材料の塗布量は、例えば、0.5~500gが好ましく、さらには5~100gが好ましい。
 電子輸送層15または正孔輸送層16を設ける場合、それぞれ、後述する正孔輸送層3または電子輸送層4と同様にして、形成することができる。
 次いで、感光層13を設ける。
 感光層13を設ける方法は、湿式法および乾式法が挙げられ、特に限定されない。本発明においては、湿式法が好ましく、例えば、吸収剤を含有する光吸収剤溶液に接触させる方法が好ましい。この方法においては、まず、感光層13を形成するための光吸収剤溶液を調製する。光吸収剤溶液は、上記ペロブスカイト化合物の原料であるMXとAXとを含有する。ここで、A、MおよびXは上記式(I)のA、MおよびXと同義である。この光吸収剤溶液において、MXとAXとのモル比は目的に応じて適宜に調整される。光吸収剤としてペロブスカイト化合物を形成する場合、AXとMXとのモル比は、1:1~10:1であることが好ましい。この光吸収剤溶液は、AXとMXとを所定のモル比で混合した後に好ましくは加熱することにより、調製できる。この形成液は通常溶液であるが、懸濁液でもよい。加熱する条件は、特に限定されないが、加熱温度は30~200℃が好ましく、60~150℃がさらに好ましい。加熱時間は0.5~100時間が好ましく、1~3時間がさらに好ましい。溶媒または分散媒は後述するものを用いることができる。
 次いで、調製した光吸収剤溶液を、その表面に感光層13を形成する層(光電変換素子10においては、多孔質層12、ブロッキング層14、電子輸送層15または正孔輸送層16のいずれかの層)の表面に接触させる。具体的には、光吸収剤溶液を塗布または浸漬することが好ましい。これにより、ペロブスカイト化合物が多孔質層12、ブロッキング層14、電子輸送層15または正孔輸送層16の表面に形成される。接触させる温度は5~100℃であることが好ましく、浸漬時間は5秒~24時間であるのが好ましく、20秒~1時間がより好ましい。塗布した光吸収剤溶液を乾燥させる場合、上記乾燥は熱による乾燥が好ましく、通常は、20~300℃、好ましくは50~170℃に加熱することで乾燥させる。
 また、上記ペロブスカイト化合物の合成方法に準じて感光層を形成することもできる。
 さらに、上記AXを含有するAX溶液と、上記MXを含有するMX溶液とを、別々に塗布(浸漬法を含む)し、必要により乾燥する方法も挙げられる。この方法では、いずれの溶液を先に塗布してもよいが、好ましくはMX溶液を先に塗布する。この方法におけAXとMXとのモル比、塗布条件および乾燥条件は、上記方法と同じである。この方法では、上記AX溶液および上記MX溶液の塗布に代えて、AXまたはMXを、蒸着させることもできる。
 さらに他の方法として、上記光吸収剤溶液の溶剤を除去した化合物または混合物を用いた、真空蒸着等の乾式法が挙げられる。例えば、上記AXおよび上記MXを、同時または順次、蒸着させる方法も挙げられる。
 これにより、光吸収剤が形成され、感光層13となる。
 このようにして設けられた感光層13上に、好ましくは、正孔輸送層3または電子輸送層4を形成する。
 正孔輸送層3は、正孔輸送材料を含有する正孔輸送材料溶液を塗布し、乾燥して、形成することができる。正孔輸送材料溶液は、塗布性に優れる点、および多孔質層12を有する場合は多孔質層12の孔内部まで侵入しやすい点で、正孔輸送材料の濃度が0.1~1.0M(モル/L)であるのが好ましい。
 電子輸送層4は、電子輸送材料を含有する電子輸送材料溶液を塗布し、乾燥して、形成することができる。
 正孔輸送層3または電子輸送層4を形成した後に、第二電極2を形成して、光電変換素子および太陽電池が製造される。
 各層の膜厚は、各分散液または溶液の濃度、塗布回数を適宜に変更して、調整できる。例えば、膜厚が厚い感光層13Bおよび13Cを設ける場合には、光吸収剤溶液を複数回塗布、乾燥すればよい。
 上述の各分散液および溶液は、それぞれ、必要に応じて、分散助剤、界面活性剤等の添加剤を含有していてもよい。
 光電変換素子および太陽電池の製造方法に使用する溶媒または分散媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが、特にこれに限定されない。本発明においては、有機溶媒が好ましく、さらに、アルコール溶媒、アミド溶媒、ニトリル溶媒、炭化水素溶媒、ラクトン溶媒、ハロゲン溶媒、スルフィド溶媒、および、これらの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール溶媒と、アミド溶媒、ニトリル溶媒または炭化水素溶媒から選ばれる溶媒との混合溶媒が好ましい。具体的には、メタノール、エタノール、γ-ブチロラクトン、クロロベンゼン、アセトニトリル、ジメチルホルムアミド(DMF)もしくはジメチルアセトアミド、または、これらの混合溶媒が好ましい。
 各層を形成する溶液または分散剤の塗布方法は、特に限定されず、スピンコート、エクストルージョンダイコート、ブレードコート、バーコート、スクリーン印刷、ステンシル印刷、ロールコート、カーテンコート、スプレーコート、ディップコート、インクジェット印刷法、浸漬法等、公知の塗布方法を用いることができる。なかでも、スピンコート、スクリーン印刷、浸漬法等が好ましい。
 上記のようにして作製した光電変換素子は、第一電極1および第二電極2に外部回路6を接続して、太陽電池として用いることができる。
 以下に実施例に基づき本発明について更に詳細に説明するが、本発明はこれに限定されない。
実施例、比較例
[光電変換素子(試料No.101)の製造]
 以下に示す手順により、図1に示される光電変換素子10Aを製造した。なお、感光層13の膜厚が大きい場合は、図2に示される光電変換素子10Bに対応することになる。
<導電性支持体11の作製>
 ガラス基板(支持体11a、厚さ2.2mm)上にフッ素ドープされたSnO導電膜(透明電極11b)を形成し、導電性支持体11を作製した。
<ブロッキング層用溶液の調製>
 チタニウム ジイソプロポキシド ビス(アセチルアセトナート)の15質量%イソプロパノール溶液(アルドリッチ社製)を1-ブタノールで希釈して、0.02Mのブロッキング層用溶液を調製した。
<ブロッキング層14の形成>
 調製した0.02Mのブロッキング層用溶液を用いてスプレー熱分解法により、450℃にて、導電性支持体11のSnO導電膜上に酸化チタンからなるブロッキング層14(膜厚50nm)を形成した。
<酸化チタンペーストの調製>
 酸化チタン(アナターゼ、平均粒径20nm)のエタノール分散液に、エチルセルロース、ラウリン酸およびテルピネオールを加えて、酸化チタンペーストを調製した。
<多孔質層12の形成>
 調製した酸化チタンペーストをブロッキング層14の上にスクリーン印刷法で塗布し、焼成した。この酸化チタンペーストの塗布および焼成を再度繰り返した。なお、1回目の焼成を130℃で1時間行い、2回目の焼成を500℃で1時間行った。得られた酸化チタンの焼成体を、40mMのTiCl水溶液に浸した後、60℃で1時間加熱し、続けて500℃で30分間加熱して、TiOからなる多孔質層12(膜厚250nm)を形成した。
<感光層13Aの形成>
 メチルアミンの40%メタノール溶液(27.86mL)と57質量%のヨウ化水素の水溶液(ヨウ化水素酸、30mL)を、フラスコ中、0℃で2時間攪拌した後、濃縮して、CHNHIの粗体を得た。得られたCHNHIの粗体をエタノールに溶解し、ジエチルエーテルで再結晶した。析出した結晶をろ取し、60℃で24時間減圧乾燥して、精製CHNHIを得た。
 メチルアミンの9.8mol/Lメタノール溶液(10mL)と下記のアニオン性有機化合物A-1-1(8.6g)を混合し、化合物A-1-1のアニオン(A-1-1)とCHNH とが1:1のモル比で結合した化合物(以下、「A-1-1/メチルアミン化合物」という)の溶液(以下、「A-1-1/メチルアミン溶液」という)を得た。
 次いで、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=97:3:33(モル比)として、DMF中、40℃で5時間攪拌して混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液Aを調製した。
 調製した光吸収剤溶液Aをスピンコート法(3000rpmで60秒)により多孔質層12の上に塗布し、塗布した光吸収剤溶液Aをホットプレートにより100℃で80分間乾燥して、ペロブスカイト化合物を有する感光層13Aとしての感光層A(膜厚300nm(多孔質層12の膜厚250nmを含む))を形成した。
 このようにして、第一電極1を作製した。
Figure JPOXMLDOC01-appb-C000005
<正孔輸送材料溶液の調製>
 正孔輸送材料としてのSpiro-OMeTAD(180mg)をクロロベンゼン(1mL)に溶解させた。このクロロベンゼン溶液に、リチウム-ビス(トリフルオロメタンスルホニル)イミド(170mg)をアセトニトリル(1mL)に溶解させたアセトニトリル溶液(37.5μL)と、t-ブチルピリジン(TBP、17.5μL)とを加えて混合し、正孔輸送材料溶液を調製した。
<正孔輸送層3の形成>
 次いで、正孔輸送材料溶液を、スピンコート法により、第一電極1の感光層13上に塗布し、塗布した正孔輸送材料溶液を乾燥して、正孔輸送層3(膜厚0.1μm)を形成した。
<第二電極2の作製>
 蒸着法により金(膜厚0.1μm)を正孔輸送層3上に蒸着して、第二電極2を作製した。
 このようにして、試料No.101の光電変換素子10を製造した。
[光電変換素子(試料No.102)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-2-1に代えたこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.102の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000006
[光電変換素子(試料No.103)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-3-1に代えたこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.103の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000007
[光電変換素子(試料No.104)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=95:5:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.104の光電変換素子10を製造した。
[光電変換素子(試料No.105)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=99.5:0.5:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.105の光電変換素子10を製造した。
[光電変換素子(試料No.106)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、メチルアミンに代えてエチルアミンを用いたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.106の光電変換素子10を製造した。
[光電変換素子(試料No.107)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、上記アニオン性化合物A-2-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.107の光電変換素子10を製造した。
[光電変換素子(試料No.108)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、上記アニオン性化合物A-3-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.108の光電変換素子10を製造した。
[光電変換素子(試料No.109)の製造]
 上述した試料No.104の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、上記アニオン性化合物A-2-1に代えたこと以外は、試料No.104の光電変換素子の製造と同様にして、試料No.109の光電変換素子10を製造した。
[光電変換素子(試料No.110)の製造]
 上述した試料No.104の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、上記アニオン性化合物A-3-1に代えたこと以外は、試料No.104の光電変換素子の製造と同様にして、試料No.110の光電変換素子10を製造した。
[光電変換素子(試料No.111)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-8-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.111の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000008
[光電変換素子(試料No.112)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-12-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.112の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000009
[光電変換素子(試料No.113)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-14-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.113の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000010
[光電変換素子(試料No.114)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-17-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.114の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000011
[光電変換素子(試料No.115)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-18-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.115の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000012
[光電変換素子(試料No.116)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-19-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.116の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000013
[光電変換素子(試料No.117)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-20-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.117の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000014
[光電変換素子(試料No.118)の製造]
 上述した試料No.105の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、下記アニオン性化合物A-21-1に代えたこと以外は、試料No.105の光電変換素子の製造と同様にして、試料No.118の光電変換素子10を製造した。
Figure JPOXMLDOC01-appb-C000015
[光電変換素子(試料No.119)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=99.75:0.25:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.119の光電変換素子10を製造した。
[光電変換素子(試料No.120)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=99.4:0.6:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.120の光電変換素子10を製造した。
[光電変換素子(試料No.121)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=94.5:5.5:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.121の光電変換素子10を製造した。
[光電変換素子(試料No.122)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=95.8:4.2:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.122の光電変換素子10を製造した。
[光電変換素子(試料No.123)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIを、CHNHI:A-1-1/メチルアミン化合物:PbI=99:1:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.123の光電変換素子10を製造した。
[光電変換素子(試料No.201)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、酢酸に代えたこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.201の光電変換素子10を製造した。
[光電変換素子(試料No.202)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、アニオン性化合物A-1-1を、ギ酸に代えたこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.202の光電変換素子10を製造した。
[光電変換素子(試料No.203)の製造]
 上述した試料No.101の光電変換素子の製造における、<感光層13Aの形成>において、精製CHNHIとA-1-1/メチルアミン溶液とPbIをCHNHI:A-1-1/メチルアミン化合物:PbI=97:3:33(モル比)として混合したことに代えて、A-1-1/メチルアミン化合物を用いずに、CHNHI:PbI=100:33(モル比)として混合したこと以外は、試料No.101の光電変換素子の製造と同様にして、試料No.203の光電変換素子10を製造した。
[耐湿性および耐湿性のばらつきの評価]
<初期の光電変換効率の測定>
 光電変換効率を以下のようにして評価した。
 各試料No.の光電変換素子を10検体ずつ製造した。10検体それぞれについて、電池特性試験を行って、光電変換効率(η/%)を測定した。そして、それら10検体の平均値を各試料No.の光電変換素子の初期の光電変換効率(η/%)とした。電池特性試験は、ソーラーシミュレーター「WXS-85H」(WACOM社製)を用いて、AM1.5フィルタを通したキセノンランプから1000W/mの擬似太陽光を照射することにより行った。I-Vテスターを用いて電流-電圧特性を測定し、光電変換効率(η/%)を求めた。
<耐湿性の評価>
 光電変換素子の耐湿性を以下のようにして評価した。
 各試料No.の上記10検体それぞれを、温度35℃、湿度55%RHの恒温恒湿槽に24時間保存してから、上記と同様にして電池特性試験を行って、光電変換効率(η/%)を測定した。
 10検体の平均値を各試料No.の光電変換素子の、保存後の光電変換効率(η/%)とした。
 光電変換素子の耐湿性を、下記式によって算出される光電変換効率の低下率に基づき評価した。
 
 低下率(%)=100-{100×(保存後の光電変換効率)/(初期の光電変換効率)}
 
 試料No.101~123の光電変換素子(ペロブスカイト化合物が本発明で規定する有機アニオンを有する光電変換素子)は、上記式で算出される光電変換効率の低下率がいずれも40%未満に抑えられ、良好な耐湿性を示した。一方、試料No.201、202および203の光電変換素子(ペロブスカイト化合物が本発明で規定する有機アニオンを有しない光電変換素子)は、上記式で算出される光電変換効率の低下率が40%を超えており、耐湿性に劣るものであった。
<耐湿性のばらつきの評価>
 各試料No.の光電変換素子を10検体ずつ製造した。10検体それぞれについて、製造直後の初期の光電変換効率(IE)と、温度35℃、湿度55%RHの恒温恒湿槽に24時間保存した後の光電変換効率(IS)から、光電変換効率の低下率(低下率(%)=100-{100×IS/IE})を算出した。10検体のうち低下率が最も大きい光電変換素子の低下率(最大低下率)から、10検体のうち低下率が最も小さい光電変換素子の低下率(最小低下率)を引いた値を「低下率のばらつき」として、下記評価基準に基づき耐湿性のばらつきを評価した。
- 耐湿性のばらつき評価基準 -
〔A〕:
 低下率のばらつきが10%未満
〔B+〕:
 上記〔A〕を満たさず、且つ、低下率のばらつきが14%未満
〔B〕:
 上記〔A〕および〔B+〕を満たさず、且つ、低下率のばらつきが18%未満
〔C+〕:
 上記〔A〕、〔B+〕および〔B〕のいずれも満たさず、且つ、低下率のばらつきが22%未満
〔C〕:
 上記〔A〕、〔B+〕、〔B〕および〔C+〕のいずれも満たさず、且つ、低下率のばらつきが26%未満
〔D〕:
 上記〔A〕、〔B+〕、〔B〕、〔C+〕および〔C〕のいずれも満たさない。
 耐湿性のばらつき評価において、〔A〕、〔B+〕、〔B〕、〔C+〕、および〔C〕が合格レベルであり、好ましくは〔A〕、〔B+〕または〔B〕であり、より好ましくは〔A〕である。一方、〔D〕は素子間の耐湿性のばらつきが大きく、本発明の合格レベル(要求レベル)に到達しない。
 結果を下記表1に示す。
 なお、下記表1に示されるハロゲン原子のアニオン/有機アニオン(ペロブスカイト化合物中のモル比)は、アニオン性有機化合物としてA-1-1を用いるとき、上述した、CHNHIとA-1-1/メチルアミン化合物とPbIの混合モル比、CHCHNHIとA-1-1/エチルアミン化合物とPbIの混合モル比、CHNHIと酢酸/メチルアミン化合物とPbIの混合モル比、ないしはCHNHIとギ酸/メチルアミン化合物とPbIの混合モル比から算出することができる。
 また、アニオン性有機化合物としてA-1-1以外の上記式(An)で表される有機アニオンを用いる場合も同様に、混合モル比からハロゲン原子のアニオン/有機アニオン(ペロブスカイト化合物中のモル比)を算出することができる。
Figure JPOXMLDOC01-appb-T000016
 上記のように、光吸収剤中のペロブスカイト化合物が、その結晶構造中に式(An)で表される有機アニオンを含まない場合、耐湿性に劣り、しかも、同じ条件で製造した光電変換素子間において、耐湿性のばらつきが大きかった(試料No.201~203)。
 これに対し、光吸収剤中のペロブスカイト化合物が、その結晶構造中に式(An)で表される有機アニオンを含む場合、耐湿性が向上し、且つ、同じ条件で製造した光電変換素子間において、耐湿性のばらつきも抑えることができた(試料No.101~123)。すなわち、光吸収剤中のペロブスカイト化合物がその結晶構造中に式(An)で表される有機アニオンを含むことにより、得られる光電変換素子の耐湿性のばらつきが大幅に抑えられ、品質の揃った光電変換素子を製造できることがわかった。
 本発明をその実施態様および図面とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2015年3月6日に日本国で特許出願された特願2015-045168および2016年1月22日に日本国で特許出願された特願2016-010696に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1A、1B、1C、1D、1E 第一電極
 11 導電性支持体
  11a 支持体
  11b 透明電極
 12 多孔質層
 13A、13B、13C 感光層
 14 ブロッキング層
 15 電子輸送層
 16 正孔輸送層
2 第二電極
3A、3B 正孔輸送層
4 電子輸送層
6 外部回路(リード)
10A、10B、10C、10D、10E 光電変換素子
100A、100B、100C、100D、100E 光電変換素子を電池用途に応用したシステム
M 電動モーター

Claims (7)

  1.  光吸収剤を含む感光層を導電性支持体上に有する第一電極と、第一電極に対向する第二電極とを有する光電変換素子であって、
     前記光吸収剤が、周期表第一族元素のカチオンまたは有機カチオンと、周期表第一族元素以外の金属原子のカチオンと、アニオンとを有するペロブスカイト型結晶構造を持つ化合物を含み、該化合物を構成する前記アニオンの少なくとも一部が下記式(An)で表される有機アニオンである、光電変換素子。
     
     R-C(=X)-X        式(An)
     
     式中、Rは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、脂肪族ヘテロ環基、-N(R、-OR、-SR、またはハロゲン原子を示す。XはO原子またはS原子を示す。R~Rはアルキル基またはアリール基を示す。XはOまたはSを示す。
     但し、XがO原子で且つXがOの場合、前記アルキル基は、置換メチル基または炭素数2以上のアルキル基である。
  2.  前記XがO原子を示し、前記XがOを示す、請求項1に記載の光電変換素子。
  3.  前記Rがアリール基またはヘテロアリール基を示す、請求項1または2に記載の光電変換素子。
  4.  前記のペロブスカイト型結晶構造を持つ化合物が、ハロゲン原子のアニオンを有する、請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記のペロブスカイト型結晶構造を持つ化合物中、前記式(An)で表される有機アニオンに対する前記ハロゲン原子のアニオンのモル比が下記式を満たす、請求項4に記載の光電変換素子。
     32≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦331
  6.  前記のペロブスカイト型結晶構造を持つ化合物中、前記式(An)で表される有機アニオンに対する前記ハロゲン原子のアニオンのモル比が下記式を満たす、請求項5に記載の光電変換素子。
     54≦[ハロゲン原子のアニオン]/[式(An)で表される有機アニオン]≦331
  7.  請求項1~6のいずれか1項に記載の光電変換素子を用いた太陽電池。
PCT/JP2016/055519 2015-03-06 2016-02-24 光電変換素子および太陽電池 WO2016143525A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16761496.5A EP3267503A1 (en) 2015-03-06 2016-02-24 Photoelectric conversion element and solar cell
CN201680008225.9A CN107251257A (zh) 2015-03-06 2016-02-24 光电转换元件及太阳能电池
JP2017504958A JP6323826B2 (ja) 2015-03-06 2016-02-24 光電変換素子および太陽電池
US15/659,007 US20170323731A1 (en) 2015-03-06 2017-07-25 Photoelectric conversion element and solar cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015045168 2015-03-06
JP2015-045168 2015-03-06
JP2016010696 2016-01-22
JP2016-010696 2016-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/659,007 Continuation US20170323731A1 (en) 2015-03-06 2017-07-25 Photoelectric conversion element and solar cell

Publications (1)

Publication Number Publication Date
WO2016143525A1 true WO2016143525A1 (ja) 2016-09-15

Family

ID=56880035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055519 WO2016143525A1 (ja) 2015-03-06 2016-02-24 光電変換素子および太陽電池

Country Status (5)

Country Link
US (1) US20170323731A1 (ja)
EP (1) EP3267503A1 (ja)
JP (1) JP6323826B2 (ja)
CN (1) CN107251257A (ja)
WO (1) WO2016143525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211848A1 (ja) 2017-05-19 2018-11-22 富士フイルム株式会社 光電変換素子、太陽電池、光電変換素子の製造方法及び感光層形成用組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047998B (zh) * 2018-01-17 2023-09-26 杭州纤纳光电科技有限公司 一种沉浸式制备钙钛矿太阳能电池的设备及使用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016114A1 (ja) * 2013-07-31 2015-02-05 富士フイルム株式会社 光電変換素子および太陽電池
JP2015211213A (ja) * 2014-04-29 2015-11-24 国立中央大学 ペロブスカイト薄膜及び太陽電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223558B1 (ko) * 2006-04-17 2013-01-17 삼성에스디아이 주식회사 염료 감응 태양 전지용 염료 및 이로부터 제조된 염료 감응태양 전지
CA2895654A1 (en) * 2012-12-20 2014-06-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Perovskite schottky type solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016114A1 (ja) * 2013-07-31 2015-02-05 富士フイルム株式会社 光電変換素子および太陽電池
JP2015211213A (ja) * 2014-04-29 2015-11-24 国立中央大学 ペロブスカイト薄膜及び太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211848A1 (ja) 2017-05-19 2018-11-22 富士フイルム株式会社 光電変換素子、太陽電池、光電変換素子の製造方法及び感光層形成用組成物

Also Published As

Publication number Publication date
CN107251257A (zh) 2017-10-13
EP3267503A4 (en) 2018-01-10
JPWO2016143525A1 (ja) 2017-08-31
JP6323826B2 (ja) 2018-05-16
US20170323731A1 (en) 2017-11-09
EP3267503A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6286619B2 (ja) 光電変換素子、およびこれを用いた太陽電池
JP6047525B2 (ja) 光電変換素子および太陽電池
JP6194103B2 (ja) 光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法
JP6106130B2 (ja) 光電変換素子および太陽電池
JP6412774B2 (ja) 光電変換素子、太陽電池、および光電変換素子の製造方法
JP6419332B2 (ja) 光電変換素子、太陽電池、金属塩組成物および光電変換素子の製造方法
JP6383876B2 (ja) 光電変換素子および太陽電池
JP6523455B2 (ja) 光電変換素子、およびこれを用いた太陽電池
JP6106131B2 (ja) 光電変換素子および太陽電池
JP6427390B2 (ja) ペロブスカイト膜形成液、ペロブスカイト膜、光電変換素子、太陽電池、ペロブスカイト膜の製造方法、光電変換素子の製造方法、および太陽電池の製造方法
JP6229991B2 (ja) 光電変換素子、太陽電池および組成物
JP6323826B2 (ja) 光電変換素子および太陽電池
JP6496822B2 (ja) 光電変換素子、太陽電池および組成物
JP6621374B2 (ja) 光電変換素子の製造方法
JP6222641B2 (ja) 光電変換素子および太陽電池
JP6385001B2 (ja) 光電変換素子用電極の製造方法、光電変換素子の製造方法、太陽電池の製造方法及び光吸収剤塗布膜の製造方法
WO2017169151A1 (ja) 光電変換素子、太陽電池および組成物
JP6509342B2 (ja) 光電変換素子、光電変換素子の製造方法、および太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504958

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761496

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE