WO2016143400A1 - バッテリ、システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体 - Google Patents

バッテリ、システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体 Download PDF

Info

Publication number
WO2016143400A1
WO2016143400A1 PCT/JP2016/052165 JP2016052165W WO2016143400A1 WO 2016143400 A1 WO2016143400 A1 WO 2016143400A1 JP 2016052165 W JP2016052165 W JP 2016052165W WO 2016143400 A1 WO2016143400 A1 WO 2016143400A1
Authority
WO
WIPO (PCT)
Prior art keywords
environment information
battery
information acquisition
acquisition unit
temperature
Prior art date
Application number
PCT/JP2016/052165
Other languages
English (en)
French (fr)
Inventor
皓正 高塚
一希 笠井
泰司 吉川
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US15/555,033 priority Critical patent/US10686225B2/en
Priority to JP2017504899A priority patent/JP6540792B2/ja
Priority to MYPI2017703150A priority patent/MY183607A/en
Priority to EP16761372.8A priority patent/EP3249736A4/en
Publication of WO2016143400A1 publication Critical patent/WO2016143400A1/ja
Priority to PH12017501572A priority patent/PH12017501572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery, a system, a battery damage degree calculation device, a battery management method, a battery management program, and a recording medium, for example, a battery battery carried alone.
  • a battery (so-called secondary battery) is used as a power supply source of an electric vehicle.
  • Examples of the battery include battery packs described in Patent Documents 1 and 2.
  • the system lends a battery to a user of the system, and when the used battery is returned from the user, the system replaces (swaps) the returned battery with another charged battery. Therefore, the system is called a battery swap system.
  • JP 2013-193738 A published September 30, 2013
  • JP2013-223423A released on October 28, 2013
  • Precision parts such as battery cells and electronic circuits are accommodated in the outer case of the battery.
  • a load for example, heat, moisture, and current
  • various detection units for example, a temperature sensor, a humidity sensor, and a current sensor
  • a temperature sensor for example, a thermometer, a thermometer, and a thermometer
  • a battery includes an outer case, an external environment information acquisition unit, and an internal environment information acquisition unit.
  • the outer case houses one or more cells.
  • the external environment information acquisition unit acquires predetermined external environment information outside the outer case.
  • the internal environment information acquisition unit acquires predetermined internal environment information inside the outer case.
  • the environment information inside the outer case can be acquired as information regarding the load from the internal environment on the battery.
  • environmental information outside the outer case can be acquired when the outer case of the battery is exposed to the external environment. Based on the acquired environmental information, for example, it is possible to determine the degree of damage and usage state of the battery, accurately grasp the state of the battery, and appropriately manage the battery.
  • a battery according to a second aspect is the battery according to the first aspect, wherein the external environment information acquisition unit and the internal environment information acquisition unit are the same type of sensor. With such a configuration, it is possible to detect changes in the environment outside and inside the outer case due to the same type of environmental factors, and to grasp the influence of the external environment on the internal environment.
  • a battery according to a third aspect is the battery according to the second aspect, wherein the external environment information acquisition unit includes one or more temperature sensors, and the internal environment information acquisition unit includes one or more temperature sensors.
  • the predetermined external environment information is a temperature outside the outer case
  • the predetermined internal environment information is a temperature inside the outer case. According to such a configuration, the degree of damage and usage state of the battery caused by the temperature load (heat) can be determined with high accuracy using the temperature inside the outer case and the temperature outside the outer case. Can do.
  • a battery according to a fourth aspect is the battery according to the first aspect, wherein the external environment information acquisition unit and the internal environment information acquisition unit are different types of sensors. With such a configuration, it is possible to acquire external and internal environmental information by different types of environmental factors.
  • a battery according to a fifth invention is the battery according to the fourth invention, wherein the external environment information acquisition unit has one or more sunshine sensors, and the internal environment information acquisition unit has one or more temperature sensors.
  • the predetermined external environment information is sunshine to the outer case, and the predetermined internal environment information is a temperature inside the outer case.
  • a battery according to a sixth invention is the battery according to the first, second, or fourth invention, wherein the internal environment information acquisition unit acquires a plurality of internal environment information arranged between the cell and the wall surface of the outer case. Has a sensor. According to such a configuration, the internal environment between the cell and the wall surface of the outer case can be detected with higher accuracy. In addition, the cell temperature can be estimated with high accuracy.
  • a battery according to a seventh aspect of the invention is the battery according to the sixth aspect of the invention, further comprising a cell storage case disposed inside the outer case and surrounding the one or more cells. At least one of the plurality of internal environment information acquisition sensors is disposed inside the cell storage case and in proximity to the cell, and at least one of the plurality of internal environment information acquisition sensors is disposed inside the outer case and is a cell. Located outside the containment case. According to such a configuration, it is possible to accurately detect the environment inside and outside the cell storage case inside the outer case.
  • a battery according to an eighth aspect is the battery according to the first aspect, wherein the predetermined external environment information acquired by the external environment information acquisition unit and the predetermined internal environment information acquired by the internal environment information acquisition unit Is further provided to the information processing device that analyzes the environmental information of the battery.
  • the communication unit By providing the communication unit in this way, the internal environment information and external environment information of the battery while the battery is lent can be transmitted to the information processing device in real time, and the damage degree and use state of the battery can be determined. Can be judged.
  • a battery according to a ninth aspect is the battery according to the eighth aspect, and the information processing apparatus is a virtual server in cloud computing.
  • the information processing apparatus may be provided as a virtual server on cloud computing, and the communication unit may transmit to the cloud computing system.
  • the user can obtain the analysis result by accessing the cloud computing system.
  • a system according to a tenth aspect includes the battery according to the first to ninth aspects and an information processing apparatus.
  • the information processing apparatus includes a battery environment information acquisition unit and an environment information analysis unit.
  • the battery environment information acquisition unit acquires predetermined external environment information from the external environment information acquisition unit, and acquires predetermined internal environment information from the internal environment information acquisition unit.
  • the environment information analysis unit analyzes the battery environment information using the predetermined external environment information and the predetermined internal environment information acquired by the battery environment information acquisition unit.
  • the battery may include a communication unit, the information processing apparatus may be provided as a cloud computing system, and the communication unit may transmit to the cloud computing system. The user can obtain the analysis result by accessing the cloud computing system.
  • a system according to an eleventh aspect is the system according to the tenth aspect, wherein the environmental information analysis unit uses the predetermined external environment information and the predetermined internal environment information acquired by the battery environment information acquisition unit to A damage calculation unit for calculating the degree of damage.
  • the environmental information analysis unit uses the predetermined external environment information and the predetermined internal environment information acquired by the battery environment information acquisition unit to A damage calculation unit for calculating the degree of damage.
  • a system according to a twelfth aspect is the system according to the eleventh aspect, wherein the environmental information analysis unit determines whether or not the battery can be used based on the degree of damage calculated by the damage calculation unit. It further has a part. According to such a configuration, use of the battery can be automatically determined based on the degree of damage.
  • a system according to a thirteenth aspect is the system according to the eleventh aspect, wherein the environment information analysis unit uses the predetermined external environment information and the predetermined internal environment information acquired by the battery environment information acquisition unit to A use state determination unit for determining the use state of According to such a configuration, it is possible to analyze the usage state of the battery while renting the battery. That is, the lender's handling of the battery can be determined, and the corresponding lender can be alerted.
  • a system is the system according to the eleventh aspect, wherein the external environment information acquisition unit includes a temperature sensor, and the predetermined external environment information is a temperature outside the outer case.
  • the internal environment information acquisition unit includes one or a plurality of temperature sensors arranged between the cell and the wall surface of the outer case, and the predetermined internal environment information is a temperature inside the outer case.
  • the environmental information analysis unit estimates the cell temperature based on the temperature sensor of the external environment information acquisition unit and the detection value of the temperature sensor of the internal environment information acquisition unit. According to such a configuration, the temperature of the cell can be accurately estimated based on the temperature sensor outside the outer case and the temperature sensor inside the outer case. For this reason, it is possible to accurately determine the damage and usage state of the cell.
  • a battery damage degree calculation device includes an external environment information acquisition unit, an internal environment information acquisition unit, and a damage calculation unit.
  • the external environment information acquisition unit acquires predetermined external environment information outside the outer case of the battery.
  • the internal environment information acquisition unit acquires predetermined internal environment information inside the outer case.
  • the damage calculation unit calculates the degree of damage of the battery using predetermined external environment information and predetermined internal environment information. According to such a configuration, it is possible to determine the degree of damage of the battery with high accuracy by using the environmental information inside and outside the outer case.
  • a battery management method is a battery management method for managing a battery having an outer case that houses one or more cells, and includes an environmental information acquisition step and an environmental information analysis step.
  • the environmental information acquisition step acquires predetermined external environment information outside the outer case and predetermined internal environment information inside.
  • the environmental information analysis step analyzes the environmental information of the battery using the predetermined external environment information and the predetermined internal environment information acquired in the environmental information acquisition step.
  • the environment information inside the outer case can be acquired as information regarding the load from the internal environment on the battery.
  • environmental information outside the outer case can be acquired when the outer case of the battery is exposed to the external environment.
  • the acquired environmental information can determine, for example, the degree of damage and usage state of the battery, and can manage the battery appropriately.
  • a battery management method is the battery management method according to the sixteenth aspect of the present invention, comprising a damage degree calculating step and a usability determining step.
  • the damage degree calculation step the damage degree of the battery is calculated using the predetermined external environment information and the predetermined internal environment information acquired in the environment information acquisition step.
  • the usability determination step determines whether or not the battery can be used based on the damage degree calculated by the damage degree calculation step. According to such a configuration, it is possible to determine the degree of damage of the battery with high accuracy by using the environmental information inside and outside the outer case.
  • a battery management method is the battery management method according to the sixteenth aspect of the present invention, wherein the environmental information analysis step uses the predetermined external environment information and the predetermined internal environment information acquired in the environmental information acquisition step. And a use state determining step for determining the use state of the battery. This allows you to analyze the battery usage status while renting out the battery. In other words, it is possible to determine the handling of the lender's battery, etc., and to alert the lender whose handling is rough.
  • a battery management method is the battery management method according to the sixteenth aspect, wherein the predetermined external environment information is a temperature outside the outer case, and the predetermined internal environment information is the outer case information. It is the internal temperature.
  • the environmental information analysis step includes an in-cell temperature estimation step and a damage degree calculation step.
  • the in-cell temperature estimation step the internal temperature of the cell is estimated using the external temperature of the external case acquired in the environmental information acquisition step and the internal temperature of the external case.
  • the damage degree calculation step the damage degree of the battery is calculated from the estimation result of the temperature inside the cell estimated in the in-cell temperature estimation step. According to this, it is possible to determine the degree of damage and the use state of the battery with high accuracy by using the environmental information inside and outside the outer case.
  • a battery management program is a battery management program for managing a battery having an outer case that houses one or a plurality of cells, and includes an environmental information acquisition step and an environmental information analysis step.
  • the computer executes the battery management method.
  • the environmental information acquisition step acquires predetermined external environment information outside the outer case and predetermined internal environment information inside.
  • the environmental information analysis step analyzes the environmental information of the battery using the predetermined external environment information and the predetermined internal environment information acquired in the environmental information acquisition step.
  • the environmental damage information inside and outside the outer case can be used to determine the degree of damage and usage state of the battery with high accuracy.
  • one usage form of the program is a transmission medium such as the Internet, It may be a mode in which it is transmitted through a transmission medium such as light, radio wave, and sound wave, read by a computer, and operated in cooperation with the computer.
  • the program may be provided in the server of the cloud computing system.
  • a recording medium is a recording medium recording the battery management program according to the twentieth aspect, and can be processed by a computer. As described above, the program may be recorded on a recording medium such as a ROM.
  • a battery according to a twenty-second aspect of the present invention is a battery that is carried alone in a system that can lend a plurality of batteries, and includes an outer case and an external environment information acquisition unit.
  • the outer case houses one or more cells.
  • the external environment information acquisition unit acquires predetermined external environment information outside the outer case. With such a configuration, it is possible to acquire external environment information of the outer case of the battery that is being lent. For this reason, it is possible to accurately determine the degree of damage and usage state of the battery during lending.
  • a battery according to a twenty-third aspect is the battery according to the twenty-second aspect, wherein the predetermined external environment information acquired by the external environment information acquisition unit is transmitted to an information processing apparatus that analyzes the environmental information of the battery.
  • a section. By providing the communication unit in this manner, the external environment information of the battery while the battery is lent can be transmitted to the information processing device in real time, and the damage degree and use state of the battery can be determined.
  • a battery according to a twenty-fourth invention is the battery according to the twenty-third invention, and the information processing apparatus is a virtual server in cloud computing.
  • the information processing apparatus is provided as a virtual server on cloud computing, and the communication unit may transmit to the cloud computing system. The user can obtain the analysis result by accessing the cloud computing system.
  • a battery according to a twenty-fifth aspect of the invention is the battery according to the twenty-second aspect of the invention, further comprising a storage unit that stores predetermined external environment information acquired by the external environment information acquisition unit. Thereby, the external environment information of the battery while the battery is lent can be recorded. For this reason, when the battery is returned to the battery management apparatus, it is possible to determine the degree of damage and the use state of the battery using the external environment information stored in the battery.
  • a battery according to a twenty-sixth invention is the battery according to the twenty-second invention, wherein the external environment information acquisition unit includes a temperature sensor, a humidity sensor, a sunshine sensor, an illuminance sensor, an image sensor, a gas sensor, a sound wave sensor, a magnetic sensor, At least one of a radio wave sensor and a submergence sensor is included.
  • the external environment information acquisition unit includes a temperature sensor, a humidity sensor, a sunshine sensor, an illuminance sensor, an image sensor, a gas sensor, a sound wave sensor, a magnetic sensor, At least one of a radio wave sensor and a submergence sensor is included.
  • the temperature sensor the temperature outside the outer case can be measured.
  • the humidity sensor the humidity outside the outer case can be measured.
  • the sunshine sensor and the illuminance sensor it is possible to detect sunlight or the like irradiated on the outer case. Thereby, it can be determined that the battery is placed in the sun.
  • an image outside the outer case can be detected.
  • the image sensor for example, it can be detected that a foreign object such as dust is placed in an environment in which it is floating.
  • the gas sensor the floating gas in the outer case can be detected, and the environment in which the battery is disposed during lending can be detected.
  • the acoustic wave sensor it is possible to detect the environment where the battery is arranged during the rental.
  • the magnetic sensor and the radio wave sensor it is possible to detect that a device that generates an electromagnetic wave is disposed in the vicinity of the battery.
  • the submergence sensor it is possible to detect that the outer case is wet. (The invention's effect)
  • the battery can be managed appropriately.
  • FIG. 1 is a block diagram showing a configuration of a battery swap system according to an embodiment (Embodiment 1).
  • FIG. It is a figure which shows the example of arrangement
  • (A) (b) shows the example of the damage factor of the battery with which the battery swap system concerning one embodiment was provided.
  • (A) (b) shows the other example of the damage factor of the battery with which the battery swap system which concerns on one Embodiment was equipped.
  • (A) (b) shows the further another example of the battery damage factor with which the battery swap system concerning one embodiment was provided.
  • It is a flowchart which shows the flow of the usability determination process performed by the control part with which the battery swap system which concerns on one Embodiment (Embodiment 1) was equipped. It is a figure which shows an example of the estimation result of the temperature in a cell by the temperature load damage calculation part with which the battery swap system which concerns on one Embodiment was provided.
  • FIG. 1 It is a figure which shows an example of the detected value acquired by the physical load information acquisition part with which the battery swap system which concerns on one Embodiment is provided. It is the graph which plotted the experimental data which show the relationship between the acceleration and damage degree of the battery with which the battery swap system which concerns on one Embodiment was equipped. It is a block diagram which shows the structure of the battery swap system which concerns on one Embodiment (Embodiment 2). It is a flowchart which shows the flow of the use condition determination process performed by the control part with which the battery swap system which concerns on one Embodiment (Embodiment 2) was equipped. It is a block diagram which shows the structure of the battery swapping system in the modification of this Embodiment.
  • FIG. 1 is a block diagram showing a configuration of a battery swap system 1 (hereinafter abbreviated as system 1) according to the first embodiment.
  • the system 1 includes a battery 10 and a battery management device 20. Although only one battery 10 is shown in FIG. 1, the system 1 actually includes a plurality of batteries 10.
  • the system 1 lends a plurality of batteries 10 to the user of the system 1.
  • the plurality of batteries 10 are lent to a user of the system 1 and then mounted on a vehicle such as an electric vehicle to be used as a power supply source for the vehicle. Thereafter, the battery 10 is returned to the station of the system 1. The returned battery 10 is recharged to the user of the system 1 after being charged at the station.
  • the system 1 further includes a power storage unit information acquisition unit that acquires information of the cell 12 (power storage unit) using various sensors (for example, a current sensor, a power sensor, a voltage sensor, and a temperature sensor). It may be. Moreover, you may further provide the use load information acquisition part which acquires the information regarding power use load using various sensors (for example, a current sensor, a power sensor, a voltage sensor).
  • the battery 10 includes a damage factor information acquisition unit 11 (detection unit), a cell 12, an information output unit 13, an information storage unit 14, a storage unit 15, a cell storage case 18, and a CPU 16.
  • a damage factor information acquisition unit 11 detection unit
  • a cell 12 an information output unit 13
  • an information storage unit 14 a storage unit 15, a cell storage case 18, and a CPU 16.
  • Each part of the battery 10 (specifically, excluding the external environment information acquisition unit 11b of the damage factor information acquisition unit 11) is accommodated in a case 17 (outer case) (see FIG. 2).
  • FIG. 2A is a diagram illustrating a configuration of the battery 10 and is a diagram illustrating an arrangement example of various sensors described later.
  • a plurality of cells 12 are arranged in the case 17 in close proximity to each other. These cells 12 are surrounded by a cell storage case 18 disposed inside the case 17.
  • the CPU 16 is disposed inside the case 17 and outside the cell storage case 18.
  • nine cells 12 are arranged, and three cells 12 are arranged side by side on a straight line.
  • the CPU 16 is disposed on the electronic substrate 16 a, and the electronic substrate 16 a is surrounded by an electronic substrate storage case 19.
  • the cell storage case 18 and the electronic substrate storage case 19 have functions of protecting and waterproofing the stored components.
  • the damage factor information acquisition unit 11 acquires damage factor information that is information related to the damage factor of the battery 10. Damage factors include physical load, electronic load, and heat load as well as moisture. Examples of damage factors will be described later.
  • the damage factor information acquired by the damage factor information acquisition unit 11 is output to the information storage unit 14.
  • the damage factor information acquisition unit 11 includes an internal environment information acquisition unit 11a, an external environment information acquisition unit 11b, and a physical load information acquisition unit 11c (physical load detection unit).
  • 2A to 2D show arrangement examples of the damage factor information acquisition unit 11 (the internal environment information acquisition unit 11a, the external environment information acquisition unit 11b, and the physical load information acquisition unit 11c) in the case 17 of the battery 10.
  • the internal environment information acquisition unit 11a acquires information on the internal environment, which is the environment in the case 17 of the battery 10, as damage factor information. As shown in FIGS. 1 and 2A, the internal environment information acquisition unit 11a includes, for example, an in-case temperature sensor 30, an out-cell temperature sensor 31, a submergence sensor 32, and an electromagnetic wave sensor 33 as internal environment acquisition sensors.
  • the in-case temperature sensor 30 detects the temperature in the case 17, the out-cell temperature sensor 31 detects the temperature outside the cell 12, and the submergence sensor 32 detects information indicating whether or not the battery 10 is submerged.
  • the internal environment information acquired by the internal environment information acquisition unit 11a includes detection values (detection results) obtained by the in-case temperature sensor 30, the outside-cell temperature sensor 31, the submergence sensor 32, and the electromagnetic wave sensor 33.
  • the internal environment information acquisition unit 11a may not include all of the plurality of types of sensors described above, and may include any one type of sensor.
  • the in-case temperature sensors 30 included in the internal environment information acquisition unit 11a are arranged at the four corners inside the case 17 having a rectangular shape, and the outside-cell temperature sensors 31 are located in the vicinity of each cell 12. Respectively. Further, a plurality of outside-cell temperature sensors 31 are arranged inside the cell storage case 18 surrounding the plurality of cells 12.
  • the submergence sensor 32 for example, a moisture detection sensor that reads a change in resistance value when water adheres can be used. Further, as the submergence sensor 32, submergence may be detected by detecting the color of the submergence detection seal using an image sensor.
  • the submergence sensor 32 is disposed with the cell 12 inside the cell storage case 18. The submergence sensor 32 may be arranged inside the case 17 and outside the cell storage case 18 as shown in FIG. 2A. Further, the submergence sensor 32 may be disposed inside the electronic substrate storage case 19. Thereby, it can be judged to which position water has entered.
  • the electromagnetic wave sensor 33 can detect an electromagnetic wave, for example, that a device that generates an electromagnetic wave is brought close to the battery 10. As shown in FIG. 2A, the electromagnetic wave sensor 33 may be arranged inside the case 17 and in the vicinity of the CPU 16. By arranging the electromagnetic wave sensor 33 in the vicinity of the CPU 16, the influence on the CPU 16 can be detected.
  • the internal environment information acquisition unit 11a further includes at least one of a humidity sensor 34, an image sensor 35, a gas sensor 36, a sound wave sensor 37, a magnetic sensor 38, and a radio wave sensor 39.
  • a humidity sensor 34 may be arranged inside the cell storage case 18 or outside the cell storage case 18 and inside the case 17.
  • the humidity sensor 34 detects the humidity inside the case 17.
  • the humidity sensor 34 may be housed inside the cell storage case 18.
  • the humidity sensor 34 can also detect water wetting.
  • the image sensor 35 may be disposed on the inner surface of the case 17.
  • the image sensor 35 can detect entry of foreign matter such as dust.
  • the gas sensor 36 may be arranged inside the case 17 and inside or outside the cell storage case 18.
  • the gas sensor 36 can detect the intrusion of gas into the case 17 and can detect the environment in which the battery 10 is disposed during lending.
  • the sonic sensor 37 may be disposed inside the case 17 as shown in FIG. 2B.
  • the magnetic sensor 38 and the radio wave sensor 39 may be disposed inside the case 17 and in the vicinity of the CPU 16. By disposing the magnetic sensor 38 and the radio wave sensor 39 in the vicinity of the CPU 16, the influence on the CPU 16 can be detected.
  • the internal environment information acquired by the internal environment information acquisition unit 11a includes a humidity sensor 34, an image sensor 35, a gas sensor 36, and a sound wave.
  • a humidity sensor 34 an image sensor 35
  • a gas sensor 36 a gas sensor 36
  • a sound wave a sound wave.
  • Each detection value (detection result) by the sensor 37, the magnetic sensor 38, and the radio wave sensor 39 is included.
  • the vibration sensor 51 of the physical load information acquisition unit 11c described later may be included in the internal environment information acquisition unit 11a. Further, the position and number of each sensor described in FIG. 1, FIG. 2A and FIG. 2B are not limited.
  • the external environment information acquisition unit 11b acquires information on an external environment that is an environment outside the case 17 of the battery 10 as damage factor information.
  • the external environment information acquisition unit 11 b includes, for example, a case outside temperature sensor 40 and a sunshine sensor 41 as external environment acquisition sensors.
  • the external environment information includes detection values obtained by the case outside temperature sensor 40 and the sunshine sensor 41.
  • the external environment information acquisition unit 11b may not include both of the two types of sensors described above, and may include only one of them.
  • the case outside temperature sensor 40 and the sunshine sensor 41 of the external environment information acquisition unit 11b are arranged at the four corners outside the case 17 having a rectangular shape.
  • the outside temperature sensor 40 can measure the temperature outside the case 17. Although details will be described later, the temperature of the cell 12 can be accurately detected based on the detection values of the in-case temperature sensor 30 and the outside-cell temperature sensor 31.
  • the sunshine sensor 41 detects the time when the sun is shining on the battery 10 and can detect, for example, that the battery 10 is left in the sun by the user.
  • the external environment information acquisition unit 11b includes at least one of the illuminance sensor 42, the image sensor 43, the gas sensor 44, the sound wave sensor 45, the magnetic sensor 46, the radio wave sensor 47, the submergence sensor 48, and the humidity sensor 49. You may have.
  • the illuminance sensor 42 is disposed, for example, on the outer surface of the case 17, and can detect the brightness of the light irradiated on the battery 10.
  • the image sensor 43 is disposed on the outer surface of the case 17, for example, and can detect an environment where the battery 10 is disposed as an image. According to the image sensor 43, for example, it can be detected that the object is placed in an environment where foreign matters such as dust are floating.
  • the gas sensor 44 is disposed, for example, on the outer surface of the case 17, and can detect an environment in which the battery 10 is disposed during lending. As shown in FIG.
  • the sound wave sensor 45 is disposed on the outer surface of the case 17, for example, and can detect sound waves.
  • the magnetic sensor 46 and the radio wave sensor 47 may be disposed on the outer surface of the case 17 and in the vicinity of the CPU 16. By disposing the magnetic sensor 46 and the radio wave sensor 47 in the vicinity of the CPU 16, the influence on the CPU 16 can be detected.
  • the submergence sensor 48 is provided outside the case 17 and, like the submergence sensor 32 described above, submergence may be detected using a moisture detection sensor, or the color of the submergence detection seal is detected by an image sensor. Thus, the submergence may be detected.
  • the submergence sensor 48 can detect that the case 17 is wet.
  • the humidity sensor 49 is provided outside the case 17 and detects the humidity outside the battery 10.
  • FIG. 2C only one illuminance sensor 42, image sensor 43, gas sensor 44, sound wave sensor 45, magnetic sensor 46, radio wave sensor 47, submergence sensor 48, and humidity sensor 49 are arranged. It is preferable that a plurality of cases are arranged around the case 17 like the case outside temperature sensor 40 and the humidity sensor 49 in FIG. 2A.
  • the sunshine sensor 42 it is preferable that the sunshine sensor 42 is provided on all surfaces so that it can be detected from any surface.
  • the battery 10 includes at least one internal environment information acquisition unit 11a that acquires predetermined environment information inside the case 17, and at least one external that acquires corresponding (same) environment information outside the case 17. And an environmental information acquisition unit 11b.
  • the temperature sensor 30 in the case of the internal environment information acquisition unit 11a detects the temperature inside the case 17 as the predetermined environment information, and the temperature sensor 40 outside the case of the external environment information acquisition unit 11b corresponds. As environmental information, the temperature outside the case 17 is detected.
  • the predetermined environment information acquired inside the case 17 and the corresponding environment information acquired outside the case 17 are used to calculate the damage degree of the battery 10.
  • the temperature inside the cell 12 is estimated from the temperature inside the case 17 (predetermined environment information) and the temperature outside the case 17 (corresponding environment information) (see FIG. 7).
  • the degree of damage of the battery 10 based on the temperature load is calculated from the estimated temperature in the cell 12.
  • a plurality of case internal temperature sensors 30 are arranged between the cell 12 and the wall surface 17 a of the case 17. Specifically, the in-case temperature sensors 30 are arranged at the four corners inside the cell storage case 18 and inside the case 17. Thereby, the temperature change from the cell 12 toward the outside can be detected, and the temperature in the cell 12 can be estimated more accurately.
  • the predetermined environmental information and the corresponding environmental information are not limited to temperature.
  • the predetermined environment information and the corresponding environment information may be humidity, or may be whether or not the battery 10 is submerged.
  • the predetermined environment information (predetermined internal environment information) acquired by the internal environment information acquisition unit 11a and the predetermined environment information (predetermined external environment information) acquired by the external environment information acquisition unit 11b are the same type. It is not limited to this information, and different types of information may be used.
  • the predetermined environment information acquired by the internal environment information acquisition unit 11a is temperature
  • the predetermined environment information acquired by the external environment information acquisition unit 11b is illuminance.
  • the physical load information acquisition unit 11c acquires physical load information that is information on the physical load applied to the battery 10 as damage factor information. As shown in FIGS. 1 and 2A, the physical load information acquisition unit 11c includes an acceleration sensor 50, a vibration sensor 51, a strain sensor 52, and an impact sensor 53. The physical load information includes detection values obtained by the acceleration sensor 50, the vibration sensor 51, the strain sensor 52, and the impact sensor 53.
  • the physical load information acquisition unit 11c does not have to include all of the plurality of types of sensors described above, and may include any one type of sensor.
  • the acceleration sensor 50 of the physical load information acquisition unit 11 c is arranged at one corner in the case 17 of the battery 10.
  • the acceleration sensor 50 may be disposed anywhere inside or outside the battery 10 (such as the outside surface of the case 17).
  • the acceleration sensor 50 When the physical load information acquisition unit 11c includes the acceleration sensor 50, the acceleration information of the battery 10 is acquired. For this reason, it is possible to determine what kind of acceleration is applied to the battery 10 based on the acquired acceleration information, so that it is possible to determine the degree of damage and usage state of the battery. Further, according to the acceleration sensor 50, for example, information such as from which direction the battery 10 has dropped can be detected. As shown in FIG. 2A, the vibration sensor 51 is disposed in the case 17. However, like the acceleration sensor 50, the vibration sensor 51 may be disposed anywhere inside or outside the battery 10 (such as the outer surface of the case 17). . Since the vibration sensor 51 detects what kind of vibration (vibration information) is loaded on the battery 10, it is possible to determine the degree of damage and usage state of the battery 10.
  • the strain sensor 52 is provided on the inner wall of the case 17, and detects strain information of the case 17 due to a physical load applied to the case 17. Since the strain sensor 52 detects what kind of impact or the like is applied to the battery 10, it is possible to determine the degree of damage or usage state of the battery 10.
  • a strain gauge can be used as the strain sensor 52.
  • the strain sensor 52 may be arranged on all the surfaces of the case 17, and thereby information such as which surface a load is applied to (for example, which surface is subjected to an impact, from which surface). It is possible to detect information such as whether it has fallen.
  • the strain sensor 52 may be provided on either the inner surface or the outer surface of the case 17.
  • strain sensors 52 in both the cell storage case 18 and the case 17 surrounding the cell 12, it can be determined whether or not the impact has reached the inside, and the damage degree can be determined in more detail. Furthermore, when the strain sensor 52 is provided in the electronic substrate storage case 19 for storing the electronic substrate in the battery 10, it can be determined whether the impact has reached the electronic substrate 16a.
  • the impact sensor 53 is arranged in the case 17. However, like the acceleration sensor 50, the impact sensor 53 may be arranged anywhere inside or outside the battery 10 (such as the outer surface of the case 17). . Since the impact sensor 53 detects an impact (impact information) loaded on the battery 10, it is possible to determine the degree of damage and usage state of the battery 10.
  • the physical load information acquisition unit 11 c may include at least one of the pressure sensor 54, the tilt sensor 55, the position sensor 56, and the speed sensor 57.
  • FIG. 2D is a diagram illustrating an arrangement example of the pressure sensor 54, the tilt sensor 55, the position sensor 56, and the speed sensor 57.
  • the pressure sensor 54 is disposed outside the case 17 and can detect the pressure loaded on the battery 10. Thus, since what kind of pressure (pressure information) is loaded on the battery can be determined, the degree of damage and the use state of the battery 10 can be determined.
  • the pressure sensor 54 is disposed only at one location, but by arranging the pressure sensors 54 on a plurality of surfaces of the battery 10, for example, which surface has been subjected to an impact, from which surface it has fallen, etc. Information can be acquired.
  • An atmospheric pressure sensor may be used as an example of the pressure sensor 54.
  • FIG. 2D by providing the atmospheric pressure sensor 541 in the cell storage case 18 of the case 17, it is possible to detect minute damage when the case 17, which is a sealed container, is damaged.
  • the inclination sensor 55 is disposed inside the case 17 and detects the inclination (inclination information) of the battery 10 during lending. Thereby, the information regarding the arrangement
  • the position sensor 56 is disposed inside the case 17 in FIG. 2D and detects the position (position information) of the battery 10 in the height direction. By detecting the position in the height direction in this way, the speed and acceleration can be calculated. As shown in FIG. 2D, the speed sensor 57 is disposed inside the case 17 and detects the speed (speed information) of the battery 10. Acceleration information can be calculated from the moving speed of the battery 10.
  • 3A and 3B show examples of damage factors that damage the battery 10 by changing the internal environment of the battery 10.
  • FIG. 3A the electromagnetic wave (electronic load) applied to the battery 10 is a damage factor
  • FIG. 3B moisture (water wetting) that has entered the battery 10 is a damage factor.
  • the CPU 16 of the battery 10 may malfunction and the inside of the battery 10 may be damaged.
  • FIG. 3B when the battery 10 is submerged, moisture permeates into the battery 10, so that condensation easily occurs inside the battery 10. Water droplets generated by condensation cause the CPU 16 of the battery 10 to malfunction, causing damage to the battery 10.
  • FIG. 4A and 4B show examples of damage factors that damage the battery 10 by changing the external environment of the battery 10.
  • FIG. 4A the direct sunlight (heat load) applied to the battery 10 left outdoors is a damage factor.
  • the temperature of the battery 10 rises.
  • FIG. 4B high heat (heat load) applied to the battery 10 is a damage factor.
  • the temperature of the battery 10 rises.
  • the state where the battery 10 is at a high temperature lasts for a long time, the battery 10 may be damaged.
  • FIGS. 5A and 5B show examples of physical loads as damage factors.
  • the impact (physical load) applied to the battery 10 is a damage factor.
  • FIG. 5A when the user of the system 1 drops the battery 10, a strong impact is applied to the battery 10 due to the collision between the battery 10 and the ground.
  • FIG. 5B a strong impact (physical load) is indirectly applied to the battery 10 even when a vehicle on which the battery 10 is mounted collides with another vehicle.
  • the inside of the battery 10 mainly, the structure portion and a support material that supports the structure, etc.
  • the cell 12 is a secondary battery cell. As shown in FIGS. 2A to 2D, the battery 10 includes a plurality of cells 12. Each cell 12 is stored with electric power supplied from the outside of the battery 10 and can discharge the stored electric power. Switching between charging and discharging of the cell 12 is controlled by the CPU 16.
  • the information storage unit 14 stores the damage factor information input from the damage factor information acquisition unit 11 in the storage unit 15.
  • the information storage unit 14 outputs the damage factor information stored in the storage unit 15 to the information output unit 13.
  • the information output unit 13 outputs the damage factor information input from the information storage unit 14 to the output information acquisition unit 211 (battery environment information acquisition unit) of the battery management device 20 as output information.
  • the storage unit 15 stores the damage factor information by the information storage unit 14.
  • the damage factor information includes internal environment information acquired by the internal environment information acquisition unit 11a, external environment information acquired by the external environment information acquisition unit 11b, and physical load information acquired by the physical load information acquisition unit 11c.
  • the battery management device 20 includes a control unit 21 (information processing device) and a display unit 22.
  • the control unit 21 includes an output information acquisition unit 211, a damage calculation unit 212, and a usability determination unit 213.
  • Each unit of the control unit 21 calculates the degree of damage of the battery 10 using output information (that is, damage factor information) output from the battery 10 and determines whether or not the use of the battery 10 can be continued.
  • the usability determination process is executed.
  • the control unit 21 displays the determination result in the usability determination process on the display unit 22.
  • the control unit 21 may present the determination result in the usability determination process to the user by means other than display. The details of the usability determination process will be described later.
  • the damage calculation unit 212 and the usability determination unit 213 correspond to an example of an environment information analysis unit.
  • the output information acquisition unit 211 acquires output information from the information output unit 13 of the battery 10.
  • the output information acquired by the output information acquisition unit 211 is damage factor information acquired by the damage factor information acquisition unit 11 of the battery 10, and includes internal environment information, external environment information, and physical load information.
  • the output information acquisition unit 211 outputs the acquired output information to the damage calculation unit 212.
  • the damage calculation unit 212 uses the output information input from the output information acquisition unit 211, and uses four types of damage degrees (physical load damage degree, temperature load damage degree, electronic load damage degree, and water wetting damage degree) described below. ) Is calculated. Then, information regarding the calculated damage degree is output to the usability determination unit 213. As shown in FIG. 1, the damage calculation unit 212 includes a water wetting damage calculation unit 212a, an electronic load damage calculation unit 212b, a temperature load damage calculation unit 212c, and a physical load damage calculation unit 212d. In one modification, the damage calculation unit 212 may calculate a frequency other than the damage level as long as the frequency indicates the usage state of the battery 10.
  • the water wetting damage calculation unit 212a calculates a water wetting damage degree that is a degree of damage of the battery 10 due to water wetting (see FIG. 3B). Therefore, the water wetting damage calculation unit 212a extracts internal environment information from the output information. As described above, the internal environment information includes detection values by the case temperature sensor 30, the outside-cell temperature sensor 31, the submergence sensor 32, and the electromagnetic wave sensor 33. The water wetting damage calculation unit 212 a calculates the water wetting damage degree of the battery 10 using the detection value obtained by the submergence sensor 32. Alternatively, when the internal environment information acquisition unit 11 a includes the humidity sensor 34, the water wetting damage calculation unit 212 a can also calculate the water wetting damage degree of the battery 10 using the detection value of the humidity sensor 34.
  • the wetness damage degree may correspond to the frequency of malfunction of the CPU 16 of the battery 10.
  • the correlation (formula model) between the detection value of the submergence sensor 32 and the frequency of malfunction of the CPU 16 of the battery 10 is learned in advance by experiments.
  • the electronic load damage calculation unit 212b calculates an electronic load damage degree that is a damage degree of the battery 10 due to the electronic load (see FIG. 3A).
  • the electronic load includes radio waves, magnetism, and electromagnetic waves applied to the battery 10.
  • the electronic load damage calculation unit 212b extracts internal environment information from the output information.
  • the electronic load damage calculation unit 212b calculates the electronic load damage degree using the detection value obtained by the electromagnetic wave sensor 33 of the internal environment information acquisition unit 11a. Alternatively, when the internal environment information acquisition unit 11a includes the magnetic sensor 38 and the radio wave sensor 39, the electronic load damage calculation unit 212b uses the detection value of the magnetic sensor 38, the detection value of the radio wave sensor 39, or a combination thereof.
  • the electronic load damage degree of the battery 10 can also be calculated.
  • the temperature load damage calculation unit 212c extracts external environment information and internal environment information from the output information.
  • the temperature load damage calculation unit 212c detects the ambient temperature of the cell 12 (i.e., the detected values of the internal temperature information sensor 30 and the external temperature sensor 31 of the internal environment information acquisition unit 11a, and the external environment information acquisition unit 11b).
  • the in-cell temperature is estimated from the detection value of the case outside temperature sensor 40). Details of a specific method for estimating the temperature in the cell will be described later.
  • the physical load damage calculation unit 212d calculates the damage degree (physical load damage degree) of the battery 10 (mainly the structure part) due to the physical load (see FIGS. 5A and 5B). For this purpose, the physical load damage calculation unit 212d extracts physical load information from the output information. The physical load damage calculation unit 212d calculates the physical load damage degree using the detection values obtained by the acceleration sensor 50, the vibration sensor 51, the strain sensor 52, and the impact sensor 53 of the physical load information acquisition unit 11c.
  • the physical load damage degree may correspond to the damage degree of the structural portion of the battery 10 and the support material.
  • a correlation between each detected value by the acceleration sensor 50, the vibration sensor 51, the strain sensor 52, and the impact sensor 53 and the damage degree of the battery 10 is learned in advance by an experiment.
  • the usability determination unit 213 In the usability determination unit 213, the four types of damage levels (water wetting damage level, electronic load damage level, temperature load damage level, physical load damage level) calculated by each unit of the damage calculation unit 212 exceed the threshold value, respectively. It is determined whether or not. When at least one kind of damage exceeds the threshold value, the usability determination unit 213 determines that the use of the battery 10 cannot be continued. On the other hand, when the four types of damage levels are all equal to or less than the threshold value, the usability determination unit 213 determines that the use of the battery 10 can be continued.
  • the threshold value may be different for each type of damage degree. The threshold value may be determined using experimental data indicating a correlation between the degree of damage and a damage factor (electronic load, water wetting, electronic load, physical load). Details of a specific threshold determination method will be described later.
  • FIG. 6 is a flowchart showing the flow of the usability determination process.
  • S10 and S20 shown in FIG. 6 are executed in the battery 10 as a pre-stage of the usability determination process by the control unit 21.
  • the damage factor information acquisition unit 11 acquires the damage factor information, and the information storage unit 14 stores the damage factor information in the storage unit 15 (S10).
  • the information output unit 13 outputs the damage factor information as output information (S20).
  • the output information acquisition unit 211 acquires the output information output from the information output unit 13, that is, damage factor information (S30, environment information acquisition step).
  • Each unit of the damage calculation unit 212 calculates the damage level of the battery 10 using the output information (damage factor information) acquired from the output information acquisition unit 211 (S40, environmental information analysis step, damage level calculation step).
  • the usability determination unit 213 determines whether or not the degree of damage of the battery 10 calculated by the damage calculation unit 212 is equal to or less than a threshold value (S50, environment information analysis step, usability determination step). More specifically, the usability determination unit 213 determines whether each of the four types of damage calculated by the damage calculation unit 212 is equal to or less than a threshold value.
  • the damage calculation unit 212 estimates the in-cell temperature using each output information indicating the case outside temperature and the case inside temperature before S40 ( (In-cell temperature estimation step) (Refer to “Method for Estimating In-Cell Temperature”). In S40, the damage calculation unit 212 calculates the degree of damage of the battery 10 due to the temperature load using the estimated in-cell temperature.
  • the usability determination unit 213 determines whether “use of battery 10 cannot be continued”. Is displayed on the display unit 22 (S60). On the other hand, when the degree of damage of the battery 10 is equal to or less than the threshold (YES in S50), the usability determination unit 213 displays on the display unit 22 that “use of the battery 10 can be continued” (S70). . Thus, the usability determination process ends.
  • FIG. 7 is a diagram illustrating an example of the estimation result of the in-cell temperature by the temperature load damage calculation unit 212c.
  • the case outside temperature is higher than the case inside temperature and the cell outside temperature
  • the case outside temperature is lower than the case inside temperature and the cell outside temperature.
  • the outside-cell temperature is assumed to be the same.
  • the case outside temperature is detected by the case outside temperature sensor 40
  • the case inside temperature is detected by the case inside temperature sensor 30, and the cell outside temperature is detected by the cell outside temperature sensor 31.
  • the case outside temperature corresponds to the outside air temperature
  • the outside air temperature is considered to be higher than the cell inside temperature.
  • the temperature inside the cell is less affected by the outside air temperature than the outside temperature of the cell. Therefore, when the case outside temperature is higher than the case inside temperature and the cell outside temperature (in FIG. 7, when the outside air temperature is high), the cell inside temperature is considered to be lower than the cell outside temperature. Therefore, as shown in FIG. 7, the temperature load damage calculation unit 212c estimates a temperature inside the cell that is lower than the outside temperature by extending a curve passing through the outside temperature, the inside temperature, and the outside temperature. .
  • the temperature load damage calculation unit 212c estimates a temperature inside the cell that is higher than the outside temperature by extending a curve passing through the outside temperature, the inside temperature, and the outside temperature. .
  • (Threshold determination method) 8 and 9 will be used to describe how the threshold used for the determination by the usability determination unit 213 is determined.
  • the damage factor is a physical load (acceleration, vibration, distortion, impact) is considered.
  • a physical load is applied to the battery 10, and detection values are acquired from the acceleration sensor 50, the vibration sensor 51, the strain sensor 52, and the impact sensor 53 of the physical load information acquisition unit 11c. Is done.
  • FIG. 8 is a diagram illustrating an example of detection values acquired by the physical load information acquisition unit 11c.
  • the physical load information acquisition unit 11 c acquires detected values of acceleration, vibration, distortion, and impact of the battery 10.
  • the maximum value of the detected value during the period in which the physical load is applied is specified as the damage factor of the battery 10.
  • the degree of damage of the battery 10 is determined from the degree of damage of the structural portion of the battery 10 and the support material. Thereby, a set of experimental data showing the relationship between the damage factor (acceleration detection value) of the battery 10 and the damage degree is obtained.
  • FIG. 9 is a graph plotting experimental data showing the relationship between the damage factor (detection value of acceleration) of the battery 10 and the damage degree.
  • the experimental data shown in FIG. 9 includes experimental data of the battery 10 that is damaged such that the use cannot be continued (in FIG. 8, “unusable” experimental data), and of the battery 10 that does not have such damage.
  • Experimental data (in FIG. 8, “usable” experimental data) is included.
  • the threshold value of acceleration is determined to be a value that distinguishes between “unusable” experimental data and “usable” experimental data.
  • the damage degree threshold is determined to be a value corresponding to the acceleration threshold using the correlation between the acceleration and the damage degree.
  • the battery swap system 1001 (hereinafter referred to as the system 1001) according to the second embodiment of the present invention will be described below.
  • the system 1001 according to the second embodiment is different from the system 1 according to the first embodiment in that it includes a use state determination unit 214 (environment information analysis unit). Therefore, this difference will be mainly described.
  • symbol is attached
  • the control unit 1021 of the battery management apparatus 1020 in the battery swap system 1001 illustrated in FIG. 10 further includes a use state determination unit 214 in addition to the output information acquisition unit 211, the damage calculation unit 212, and the usability determination unit 213.
  • the battery management device 1020 determines the usage state of the battery 10 based on the physical load information, the external environment information, and the internal environment information acquired by the output information acquisition unit 211.
  • FIG. 11 is a flowchart of the use state determination process (battery management method) in the second embodiment.
  • the flowchart shown in FIG. 11 is the same as FIG. 6 of the first embodiment from S10 to S30.
  • the use state determination unit 214 uses the output information acquired in S30, in S40 (use state determination step, environment information analysis step), the use state determination unit 214 determines the use state of the rented battery 10.
  • the determination of the use state is, for example, whether or not the user is using correctly, whether or not the user's use is correct but a damage factor due to the environment is loaded, or the user's use Whether or not a damage factor has been loaded is determined.
  • the damage factor is loaded by the user placing the battery 10 in the sun, or the damage factor is loaded on the battery 10 by the temperature rising to an unexpected temperature. It can be judged. Further, the use state determination unit 214 may determine the use state based on the frequency indicating the use state calculated by the damage calculation unit 212.
  • the battery management device 1020 may include a communication unit and notify the user's portable information terminal (smart phone, tablet, etc.) of the determined usage state. For example, when the use state determination unit 214 determines that damage has occurred by the user, a warning or the like may be notified to the user's portable information terminal.
  • the use state determination unit 214 determines the cause of the temperature information based on the detection value from the sunshine sensor 41 and the detection value from the in-case temperature sensor 30. Specifically, when the value of the in-case temperature sensor 30 increases, the use state determination unit 214 determines that the temperature increase in the case 17 is “the battery 10 is placed in the sun” based on the detection value of the sunshine sensor 41. It is possible to determine whether it is the cause or the cause of the temperature rise.
  • the use state determination unit 214 displays a warning on the display unit 22 when the temperature rise is “caused by being placed in the sun”.
  • the battery management apparatus 1020 may include a communication unit, and may notify a warning to a portable information terminal (smart phone, tablet, etc.) of the user of the battery 10.
  • the use state determination unit 214 does not display or notify the user because there is a limit to the measures on the user side.
  • the use state determination unit 214 determines the use state based on the frequency indicating the use state calculated by the damage calculation unit 212. For example, the use state determination unit 214 calculates the damage degree by converting the sunshine time into a frequency. When the degree of damage due to sunshine hours is equal to or longer than a predetermined time, it can be determined that the cause is caused by the user. Further, as the temperature sensor inside the case 17, not only the in-case temperature sensor 30 but also an outside-cell temperature sensor 31 may be further provided. That is, different types of sensors may be provided outside and inside the case 17, and a plurality of the same type of sensors may be provided inside the case 17.
  • Example of use condition judgment 2 As shown in FIG. 2A, an example in which a submergence sensor 32 (second submergence sensor) is arranged in the electronic substrate storage case 19 and a submergence sensor 32 (first submergence sensor) is arranged in the cell storage case 18 as an example. I will give you a description.
  • the use state determination unit 214 can determine which region in the battery 10 has been submerged, and can determine the flooded range. For example, when the electronic substrate storage case 19 is submerged and the cell storage case 18 is not submerged, the electronic substrate 16a is replaced, but there is a high possibility that the cell 12 portion can be confirmed and reused. On the other hand, when the cell storage case 18 is submerged, the cell 12 portion needs to be replaced.
  • the use state determination unit 214 can perform submergence state determination that is useful for repair and replacement.
  • the submergence sensor 32 may be disposed outside the cell storage case 18 and inside the case 17.
  • the damage degree values are set as water in the case 17, water in the electronic substrate storage case 19, and water in the cell storage case 18, respectively. The degree of damage may be calculated.
  • the control blocks (particularly, the output information acquisition unit 211, the damage calculation unit 212, the usability determination unit 213, and the use state determination unit 214) of the battery management devices 20 and 1020 are logic circuits formed in an integrated circuit (IC chip) or the like. (Hardware) or software using a CPU (Central Processing Unit).
  • the battery management devices 20 and 1020 include a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read Only) in which the program and various data are recorded so as to be readable by the computer (or CPU). Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like. Then, the computer (or CPU) reads the program from the recording medium and executes it to achieve the object of the present invention.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • FIG. 12 is a diagram showing a battery swap system 2001 (hereinafter referred to as the system 2001) in which the physical load information 111c is not provided.
  • a system 2001 illustrated in FIG. 12 includes a battery 2010 and a battery management device 2020.
  • the damage factor information acquisition unit 2011 of the battery 2010 is not provided with the physical load information acquisition unit 11c, and the internal environment information acquisition unit 11a and the external An environmental information acquisition unit 11b is provided.
  • the damage calculation unit 2212 provided in the control unit 2021 of the battery management device 2020 is provided with a physical load damage calculation unit 212d as compared with the damage calculation unit 212 of the battery management device 1020 illustrated in FIG.
  • a water leakage damage calculation unit 212a, an electronic load damage calculation unit 212b, and a temperature load damage calculation unit 212c are provided.
  • the internal environment information and the external environment information of the case 17 of the battery 2010 are acquired by various sensors included in the internal environment information acquisition unit 11a and the external environment information acquisition unit 11b and stored in the storage unit 15. Then, the battery management device 2020 acquires the stored internal environment information and external environment information, calculates the degree of damage in the damage calculation unit 2212, and determines whether or not it can be used. In addition, the battery management device 2020 determines the use state in the use state determination unit 214 using the acquired internal environment information and external environment information.
  • the external environment information acquisition unit 11b, the internal environment information acquisition unit 11a, and the physical load information acquisition unit 11c are provided.
  • the external environment information acquisition unit 11b and the physical load information acquisition unit 11c may not be provided.
  • Such a battery swap system 3001 (hereinafter referred to as system 3001) is shown in FIG.
  • the system 3001 includes a battery 3010 and the battery management device 2020 shown in FIG.
  • the battery 3010 includes an internal environment information acquisition unit 11a as a damage factor information acquisition unit.
  • environment information inside the case 17 of the battery 3010 is acquired by various sensors included in the internal environment information acquisition unit 11a and stored in the storage unit 15. Then, the battery management apparatus 2020 acquires the stored internal environment information, calculates the damage degree in the damage calculation unit 2212, and determines whether or not it can be used. In addition, the battery management device 2020 determines the usage state in the usage state determination unit 214 using the acquired internal environment information.
  • the external environment information acquisition unit 11b, the internal environment information acquisition unit 11a, and the physical load information acquisition unit 11c are provided.
  • the internal environment information acquisition unit 11a and the physical load information acquisition unit 11c may not be provided.
  • Such a battery swap system 4001 (hereinafter referred to as system 4001) is shown in FIG.
  • the system 4001 includes a battery 4010 and the battery management device 2020 shown in FIG.
  • the battery 4010 includes an external environment information acquisition unit 11b as a damage factor information acquisition unit.
  • the battery management device 2020 acquires the stored external environment information, calculates the damage level in the damage calculation unit 2212, and determines whether or not it can be used. In addition, the battery management device 2020 determines the usage state in the usage state determination unit 214 using the acquired external environment information.
  • the physical load information, the external environment information, and the internal environment information acquired by the damage factor information acquisition unit 11 are stored in the storage unit 15 via the information storage unit 14.
  • the physical load information, the external environment information, and the internal environment information acquired by the damage factor information acquisition unit 11 are transmitted to the battery management device 20 in real time by the communication unit 5017. Is sent.
  • the output information acquisition unit 211 in the battery management device 20 has a configuration capable of wireless communication with the communication unit 5017.
  • the battery management device 20 calculates the damage degree for the damage factor information that is sequentially transmitted.
  • the storage unit 15 may be provided in addition to the communication unit 5017 in the battery 5010, and the configuration may be such that a predetermined amount of time is stored in the storage unit 15 and then transmitted.
  • the control unit 21 (information processing device) of the battery management device 20 may be a virtual server on the cloud computing system. In this case, physical load information, external environment information, and internal environment information are transmitted from the communication unit 5017 to the cloud computing system. Information is analyzed in the virtual server, and the user can obtain the analysis result by accessing the cloud computing system.
  • the battery 10 (at least the damage factor information acquisition unit 11 of the battery 10) and the battery management device 20 may be integrally configured as a battery damage degree calculation device.
  • the battery damage degree calculation apparatus includes an external environment information acquisition unit 11b that acquires predetermined environment information outside the case 17 (outer case) of the battery 10, and a corresponding environment inside the storage unit.
  • An internal environment information acquisition unit 11a that acquires information
  • a damage calculation unit 212 that calculates the degree of damage of the battery 10 using the predetermined environment information and the corresponding environment information.
  • the systems 1001, 2001, 3001, and 4001 include the use state determination unit 214, the damage calculation unit 212, and the usability determination unit 213.
  • the damage calculation unit 212 and the usability determination unit 213 are provided. It does not have to be. In this case, only the usage state is determined.
  • the battery management devices 20, 1020, and 2020 may be provided in a station that lends the battery 10, a system that manages a plurality of stations, or the like.
  • the display unit 22 of the battery management devices 20, 1020, and 2020 may use a screen of a user's smartphone, tablet, or the like.
  • FIGS. 2A to 2D in the first and second embodiments The arrangement of the various sensors described in FIGS. 2A to 2D in the first and second embodiments is an example, and the arrangement and number of the various sensors may be changed as appropriate.
  • the cell storage case 18 for storing a plurality of cells and the electronic board storage case 19 for storing the electronic board 16a are provided, but either or both of them may not be provided.
  • the battery management apparatus 20 of the first embodiment includes the output information acquisition unit 211, the damage calculation unit 212, and the usability determination unit 213, the usability determination unit 213 is not provided, and the battery It may function as a damage degree calculation device.
  • a vehicle such as an electric vehicle is illustrated as an example of a power consumer on which a plurality of batteries 10, 2010, 3010, 4010, and 5010 lent out in the systems 1, 1001, 2001, 3001, 4001, and 5001 are mounted.
  • examples of the vehicle include mobility such as the electric vehicle (EV), electric motorcycle, electric unicycle, electric vehicle, electric assist bicycle, and PHV (Plug-in Hybrid Vehicle).
  • the power consumer on which the battery is mounted is not limited to mobility, but may be another electric product driven by a replaceable battery.
  • the electric product include home appliances such as a refrigerator, a washing machine, a vacuum cleaner, a rice cooker, and a hot water pot that function with electric power from a battery.
  • a battery used for the electric tool may be charged in a battery station or the like that charges a plurality of rentable batteries.
  • the present invention can be used for a battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

バッテリ(10)は、ケース(17)と、外部環境情報取得部(11b)と、内部環境情報取得部(11a)とを備える。ケース(17)は、一つまたは複数のセル(12)を収納する。外部環境情報取得部(11b)は、ケース(17)の外部において、所定の外部環境情報(例えば、温度、日照など)を取得する。内部環境情報取得部(11a)は、ケース(17)の内部において、所定の内部環境情報(例えば、温度、湿度など)を取得する。

Description

バッテリ、システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体
 本発明は、バッテリ、システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体に関し、例えば、単体で持ち運びされるバッテリバッテリに関する。
 従来、バッテリ(いわゆる二次電池)は、電気自動車の電力供給源として使用されている。バッテリの例として、特許文献1および2に記載されているバッテリーパックが挙げられる。
 近年では、電気自動車のユーザに複数のバッテリを貸し出すシステムが登場してきている。前記システムは、システムの利用者にバッテリを貸し出し、利用者から使用済のバッテリが返却されたとき、返却されたバッテリと、充電済みの他のバッテリとを交換(スワップ)する。そのため、前記システムは、バッテリスワップシステムと呼ばれている。
特開2013-193738号公報(2013年9月30日公開) 特開2013-223423号公報(2013年10月28日公開)
 バッテリの外側ケース内には、バッテリセルや電子回路などの精密部品が収容されている。このような精密部品に対する負荷(例えば、熱、湿気、電流)は、バッテリが損傷する要因となる。
 そのため、電気自動車等に据え付けられているバッテリでは、バッテリの内部環境情報を取得するための各種検出部(例えば、温度センサ、湿度センサ、電流センサ)を配置し、バッテリの状態を検出することが考えられる。
 一方、上述したように、前記バッテリスワップシステムでは、バッテリは、電気自動車から取り外され、システムの利用者によって持ち運びされる。
 そのため、貸し出されている間におけるバッテリの環境を把握できず、再度貸し出し可能かを判断できない場合があり、バッテリを適切に管理することができないという問題がある。
 本発明は、前記の課題に鑑みてなされたものであり、その目的は、バッテリを適切に管理することにある。
(課題を解決するための手段)
 前記の課題を解決するために、第1の発明に係るバッテリは、外側ケースと、外部環境情報取得部と、内部環境情報取得部とを備える。外側ケースは、一つまたは複数のセルを収納する。外部環境情報取得部は、外側ケースの外部において、所定の外部環境情報を取得する。内部環境情報取得部は、外側ケースの内部において、所定の内部環境情報を取得する。
 このような構成によれば、バッテリに対する内部環境からの負荷に関する情報として、外側ケースの内部における環境情報を取得することができる。また、バッテリに対する外部環境からの負荷に関する情報として、バッテリの外側ケースが、外部環境に露出した際に、外側ケースの外部における環境情報を取得することができる。取得された環境情報に基づいて、例えば、バッテリの損傷度や使用状態を判定することができ、バッテリの状態を精度良く把握し、バッテリを適切に管理することができる。
 第2の発明に係るバッテリは、第1の発明に係るバッテリであって、外部環境情報取得部と内部環境情報取得部が同種のセンサである。
 このような構成により、同じ種類の環境因子による外側ケースの外部と内部における環境の変化と検出でき、外部環境が内部環境に与える影響を把握できる。
 第3の発明に係るバッテリは、第2の発明に係るバッテリであって、外部環境情報取得部は、1又は複数の温度センサを有し、内部環境情報取得部は、1又は複数の温度センサを有する。所定の外部環境情報は、外側ケースの外部における温度であり、所定の内部環境情報は、外側ケースの内部における温度である。
 このような構成によれば、外側ケースの内部における温度と、外側ケースの外部における温度とを用いて、温度負荷(熱)を要因とするバッテリの損傷度や使用状態を高精度に判定することができる。
 第4の発明に係るバッテリは、第1の発明に係るバッテリであって、外部環境情報取得部と内部環境情報取得部が異種のセンサである。
 このような構成により、異なる種類の環境因子による外部と内部における環境情報を取得できる。
 第5の発明に係るバッテリは、第4の発明に係るバッテリであって、外部環境情報取得部は、1又は複数の日照センサを有し、内部環境情報取得部は、1又は複数の温度センサを有する。所定の外部環境情報は、外側ケースへの日照であり、所定の内部環境情報は、外側ケースの内部における温度である。
 このような構成によれば、外側ケースの内部の温度が上昇した場合に、温度上昇が「使用者によって日向に置かれたことが原因」なのか、「気温上昇が原因」なのかといったことを日照センサによって判断できる。
 このため、温度上昇が使用者の使用によるものである場合、使用者に警告を通告できる。
 第6の発明に係るバッテリは、第1、2または4の発明に係るバッテリであって、内部環境情報取得部は、セルから外側ケースの壁面までの間に配置された複数の内部環境情報取得センサを有する。
 このような構成によれば、セルから外側ケースの壁面までの間の内部環境をより精度良く検出できる。また、セルの温度を精度良く推定することができる。
 第7の発明に係るバッテリは、第6の発明に係るバッテリであって、外側ケースの内部に配置され1つまたは複数のセルを囲むように形成されたセル格納ケースを更に備える。複数の内部環境情報取得センサの少なくとも1つは、セル格納ケースの内部であってセルに近接して配置され、複数の内部環境情報取得センサの少なくとも1つは、外側ケースの内部であってセル格納ケースの外部に配置されている。
 このような構成によれば、外側ケースの内部であってセル格納ケースの内部および外部の環境を精度良く検出できる。
 第8の発明に係るバッテリは、第1の発明に係るバッテリであって、外部環境情報取得部によって取得された所定の外部環境情報と、内部環境情報取得部によって取得された所定の内部環境情報を、バッテリの環境情報を分析する情報処理装置へ送信する通信部を更に備える。
 このように通信部を備えていることにより、バッテリが貸し出されている間におけるバッテリの内部環境情報と外部環境情報をリアルタイムで情報処理装置へ送信することができ、バッテリの損傷度や使用状態を判定できる。
 第9の発明に係るバッテリは、第8の発明に係るバッテリであって、情報処理装置は、クラウドコンピューティングにおける仮想サーバである。
 情報処理装置がクラウドコンピューティング上の仮想サーバとして設けられており、通信部はクラウドコンピューティングシステムに送信してもよい。使用者は、クラウドコンピューティングシステムにアクセスすることにより、分析結果を得ることができる。
 第10の発明に係るシステムは、第1~第9の発明に係るバッテリと、情報処理装置と、を備えている。情報処理装置は、バッテリ環境情報取得部と、環境情報分析部と、を有する。バッテリ環境情報取得部は、外部環境情報取得部から所定の外部環境情報を取得するとともに、内部環境情報取得部から所定の内部環境情報を取得する。環境情報分析部は、バッテリ環境情報取得部が取得した所定の外部環境情報および所定の内部環境情報を用いて、バッテリの環境情報を分析する。
 このような構成によれば、バッテリが貸し出されている間のバッテリの環境情報が分かるため、損傷度や使用状態を判断でき、バッテリスワップシステムにおいて、バッテリの状態を精度良く把握し、バッテリを適切に管理することができる。
 また、バッテリが通信部を有し、情報処理装置がクラウドコンピューティングシステムとして設けられており、通信部はクラウドコンピューティングシステムに送信してもよい。使用者は、クラウドコンピューティングシステムにアクセスすることにより、分析結果を得ることができる。
 第11の発明に係るシステムは、第10の発明に係るシステムであって、環境情報分析部は、バッテリ環境情報取得部が取得した所定の外部環境情報および所定の内部環境情報を用いて、バッテリの損傷度を算出する損傷算出部を有する。
 このような構成によれば、外側ケースの内部および外部における各環境情報を用いて、バッテリの損傷度を高精度に判定することができる。
 これにより、バッテリの損傷度を算出することが出来、損傷度に基づいて、バッテリに対して点検、修理、破棄などの判断を行うことが出来る。
 第12の発明に係るシステムは、第11の発明に係るシステムであって、環境情報分析部は、損傷算出部によって算出された損傷度に基づいて、バッテリの使用の可否を判定する使用可否判定部を更に有する。
 このような構成によれば、損傷度に基づいてバッテリの使用の判断を自動で行うことができる。
 第13の発明に係るシステムは、第11の発明に係るシステムであって、環境情報分析部は、バッテリ環境情報取得部が取得した所定の外部環境情報および所定の内部環境情報を用いて、バッテリの使用状態を判定する使用状態判定部を有する。
 このような構成によれば、バッテリを貸し出している間のバッテリの使用状態を分析することが出来る。すなわち、貸出人のバッテリの取り扱いを判定することができ、該当する貸出人に注意喚起を行うことが可能となる。
 第14の発明に係るシステムは、第11の発明に係るシステムであって、外部環境情報取得部は、温度センサを有し、所定の外部環境情報は、外側ケースの外部における温度である。内部環境情報取得部は、セルから外側ケースの壁面の間に配置された1つまたは複数の温度センサを有し、所定の内部環境情報は、外側ケースの内部における温度である。環境情報分析部は、外部環境情報取得部が有する温度センサおよび内部環境情報取得部が有する温度センサの検出値に基づいて、セルの温度を推定する。
 このような構成によれば、外側ケースの外部の温度センサと、外側ケースの内部の温度センサに基づいて、セルの温度を精度良く推定することができる。このため、セルの損傷ヂや使用状態を正確に判定することができる。
 第15の発明に係るバッテリ損傷度算出装置は、外部環境情報取得部と、内部環境情報取得部と、損傷算出部と、を備えている。外部環境情報取得部は、バッテリの外側ケースの外部において、所定の外部環境情報を取得する。内部環境情報取得部は、外側ケースの内部において、所定の内部環境情報を取得する。損傷算出部は、所定の外部環境情報および所定の内部環境情報を用いて、バッテリの損傷度を算出する。
 このような構成によれば、外側ケースの内部および外部における各環境情報を用いて、バッテリの損傷度を高精度に判定することができる。
 第16の発明に係るバッテリ管理方法は、1つまたは複数のセルを収納する外側ケースを備えたバッテリを管理するバッテリ管理方法であって、環境情報取得ステップと、環境情報分析ステップと、を備えている、環境情報取得ステップは、外側ケースの外部における所定の外部環境情報および内部における所定の内部環境情報を取得する。環境情報分析ステップは、環境情報取得ステップにおいて取得された所定の外部環境情報および所定の内部環境情報を用いて、バッテリの環境情報を分析する。
 このような構成によれば、バッテリに対する内部環境からの負荷に関する情報として、外側ケースの内部における環境情報を取得することができる。また、バッテリに対する外部環境からの負荷に関する情報として、バッテリの外側ケースが、外部環境に露出した際に、外側ケースの外部における環境情報を取得することができる。取得された環境情報は、例えば、バッテリの損傷度や使用状態を判定することができ、バッテリを適切に管理することができる。
 第17の発明に係るバッテリ管理方法は、第16の発明に係るバッテリ管理方法であって、損傷度算出ステップと、使用可否判定ステップと、を有する。損傷度算出ステップは、環境情報取得ステップにおいて取得した所定の外部環境情報および所定の内部環境情報を用いて、バッテリの損傷度を算出する。使用可否判定ステップは、損傷度算出ステップによって算出された損傷度に基づいて、バッテリの使用の可否を判定する。
 このような構成によれば、外側ケースの内部および外部における各環境情報を用いて、バッテリの損傷度を高精度に判定することができる。
 第18の発明に係るバッテリ管理方法は、第16の発明に係るバッテリ管理方法であって、環境情報分析ステップは、環境情報取得ステップにおいて取得された所定の外部環境情報および所定の内部環境情報を用いて、バッテリの使用状態を判定する使用状態判定ステップを有する。
 これにより、バッテリを貸し出している間のバッテリの使用状態を分析することが出来。すなわち、貸出人のバッテリの取り扱いなどを判定することができ、取り扱いの乱暴な貸出人に注意喚起を行うことが可能となる。
 第19の発明に係るバッテリ管理方法は、第16の発明に係るバッテリ管理方法であって、所定の外部環境情報は、外側ケースの外部の温度であり、所定の内部環境情報は、外側ケースの内部の温度である。環境情報分析ステップは、セル内温度推定ステップと、損傷度算出ステップと、を有する。セル内温度推定ステップは、環境情報取得ステップにおいて取得した外側ケースの外部の温度、および、外側ケースの内部の温度を用いて、セルの内部の温度を推定する。損傷度算出ステップは、セル内温度推定ステップにおいて推定したセルの内部の温度の推定結果から、バッテリの損傷度を算出する。
 これによれば、外側ケースの内部および外部における各環境情報を用いて、バッテリの損傷度や使用状態を高精度に判定することができる。
 第20の発明に係るバッテリ管理プログラムは、1つまたは複数のセルを収納する外側ケースを備えたバッテリを管理するバッテリ管理プログラムであって、環境情報取得ステップと、環境情報分析ステップと、を備えた、バッテリ管理方法をコンピュータに実行させる。環境情報取得ステップは、外側ケースの外部における所定の外部環境情報および内部における所定の内部環境情報を取得する。環境情報分析ステップは、環境情報取得ステップにおいて取得された前記所定の外部環境情報および前記所定の内部環境情報を用いて、バッテリの環境情報を分析する。
 これによれば、外側ケースの内部および外部における各環境情報を用いて、バッテリの損傷度や使用状態を高精度に判定することができる
 なお、プログラムの一利用形態は、インターネット等の伝送媒体、光・電波・音波等の伝送媒体中を伝送し、コンピュータにより読みとられ、コンピュータと協働して動作する態様であってもよい。また、プログラムは、クラウドコンピューティングシステムのサーバに設けられていてもよい。
 第21の発明に係る記録媒体は、第20の発明に係るバッテリ管理プログラムを記録した記録媒体であって、コンピュータにより処理可能である。
 このように、プログラムの一利用形態として、ROM等の記録媒体に記録された態様としてもよい。
 第22の発明に係るバッテリは、複数のバッテリを貸し出し可能なシステムにおいて、単体で持ち運びされるバッテリであって、外側ケースと、外部環境情報取得部と、を備える。外側ケースは、一つまたは複数のセルを収納する。外部環境情報取得部は、外側ケースの外部において、所定の外部環境情報を取得する。
 このような構成により、貸し出し中におけるバッテリの外側ケースの外部環境情報を取得することが出来る。このため、貸し出し中におけるバッテリの損傷度や使用状態を精度良く判定できる。
 第23の発明に係るバッテリは、第22の発明に係るバッテリであって、外部環境情報取得部によって取得された所定の外部環境情報を、バッテリの環境情報を分析する情報処理装置へ送信する通信部を更に備える。
 このように通信部を備えていることにより、バッテリが貸し出されている間におけるバッテリの外部環境情報をリアルタイムで情報処理装置へ送信することができ、バッテリの損傷度や使用状態を判定できる。
 第24の発明に係るバッテリは、第23の発明に係るバッテリであって、情報処理装置は、クラウドコンピューティングにおける仮想サーバである。
 このように情報処理装置がクラウドコンピューティング上の仮想サーバとして設けられており、通信部はクラウドコンピューティングシステムに送信してもよい。使用者は、クラウドコンピューティングシステムにアクセスすることにより、分析結果を得ることができる。
 第25の発明に係るバッテリは、第22の発明に係るバッテリであって、外部環境情報取得部によって取得された所定の外部環境情報を記憶する記憶部を更に備える。
 これにより、バッテリが貸し出されている間におけるバッテリの外部環境情報を記録することができる。このため、バッテリをバッテリ管理装置に返却した際に、バッテリに記憶されている外部環境情報を用いてバッテリの損傷度や使用状態を判定できる。
 第26の発明に係るバッテリは、第22の発明に係るバッテリであって、外部環境情報取得部は、温度センサ、湿度センサ、日照センサ、照度センサ、画像センサ、ガスセンサ、音波センサ、磁気センサ、電波センサ、および水没センサのうち少なくとも1つを有する。
 温度センサによれば、外側ケースの外側の温度を測定することができる。湿度センサによれば、外側ケースの外側の湿度を測定することができる。日照センサおよび照度センサによれば、外側ケースに照射される日光などを検出することができる。これにより、バッテリが日向に載置されていたこと等を判定することができる。画像センサによれば、外側ケースの外部の画像を検出することが出来る。画像センサによれば、例えば埃などの異物が浮遊している環境下に載置されていたこと等を検知することができる。ガスセンサによれば、外側ケースにおける浮遊ガスを検知でき、貸し出し中にバッテリが配置されていた環境を検出できる。音波センサによれば、貸し出し中にバッテリが配置されていた環境を検出できる。磁気センサおよび電波センサによれば、バッテリの近傍に電磁波を発生する装置が配置されていたことなどを検出することが出来る。水没センサによれば、外側ケースが水に濡れたことを検出することが出来る。
(発明の効果)
 本発明によれば、バッテリを適切に管理することができる。
一実施形態(実施の形態1)に係るバッテリスワップシステムの構成を示すブロック図である  。 一実施形態に係るバッテリスワップシステムが備えたバッテリのケース内に  おけるセンサの配置例を示す図である。 一実施形態に係るバッテリスワップシステムが備えたバッテリのケース内におけるセンサの配置例を示す図である。 一実施形態に係るバッテリスワップシステムが備えたバッテリのケース内におけるセンサの配置例を示す図である。 一実施形態に係るバッテリスワップシステムが備えたバッテリのケース内におけるセンサの配置例を示す図である。 (a)(b)は、一実施形態に係るバッテリスワップシステムが備えたバッ  テリの損傷要因の例を示す。 (a)(b)は、一実施形態に係るバッテリスワップシステムが備えたバッ  テリの損傷要因の他の例を示す。 (a)(b)は、一実施形態に係るバッテリスワップシステムが備えたバッ  テリの損傷要因のさらに他の例を示す。 一実施形態(実施の形態1)に係るバッテリスワップシステムが備えた制御部によって実行される使用可否判定処理の流れを示すフローチャートである。 一実施形態に係るバッテリスワップシステムが備えた温度負荷損傷算出部に  よるセル内温度の推定結果の一例を示す図である。 一実施形態に係るバッテリスワップシステムが備えた物理負荷情報取得部に  よって取得される検出値の一例を示す図である。 一実施形態に係るバッテリスワップシステムが備えたバッテリの加速度と損傷度との関係を示す実験データをプロットしたグラフである。 一実施形態(実施の形態2)に係るバッテリスワップシステムの構成を示すブロック図である。 一実施形態(実施の形態2)に係るバッテリスワップシステムが備えた制御部によって実行される使用状態判定処理の流れを示すフローチャートである。 本実施の形態の変形例におけるバッテリスワッピングシステムの構成を示すブロック図である。 本実施の形態の変形例におけるバッテリスワッピングシステムの構成を示すブロック図である。 本実施の形態の変形例におけるバッテリスワッピングシステムの構成を示すブロック図である。 本実施の形態の変形例におけるバッテリスワッピングシステムの構成を示すブロック図である。
 以下、本発明の実施の形態について、詳細に説明する。
 (バッテリスワップシステム1)
 (実施の形態1)
 図1は、本実施の形態1に係るバッテリスワップシステム1(以下では、システム1と略称する)の構成を示すブロック図である。図1に示すように、システム1は、バッテリ10およびバッテリ管理装置20を含んでいる。図1には、1つのバッテリ10のみが示されているが、システム1は、実際には複数のバッテリ10を含んでいる。
 システム1は、システム1の利用者に対して、複数のバッテリ10を貸し出す。複数のバッテリ10は、システム1の利用者に貸し出された後、電気自動車等の車両に搭載されて、車両への電力供給源として使用される。その後、バッテリ10は、システム1のステーションに返却される。返却されたバッテリ10は、ステーションで充電された後、システム1の利用者に再び貸し出される。
 なお、図示しないが、システム1は、各種センサ(例えば、電流センサ、電力センサ、電圧センサ、温度センサ)を用いて、セル12(蓄電部)の情報を取得する蓄電部情報取得部をさらに備えていてもよい。また、各種センサ(例えば、電流センサ、電力センサ、電圧センサ)を用いて、電力使用負荷に関する情報を取得する使用負荷情報取得部をさらに備えていてもよい。
 (バッテリ10)
 図1に示すように、バッテリ10は、損傷要因情報取得部11(検出部)、セル12、情報出力部13、情報蓄積部14、記憶部15、セル格納ケース18およびCPU16を備えている。バッテリ10の各部(詳細には、損傷要因情報取得部11の外部環境情報取得部11bを除く)は、ケース17(外側ケース)(図2参照)に収容されている。
 図2Aは、バッテリ10の構成を示す図であり、後述する各種センサの配置例を示す図である。図2Aに示すように、複数のセル12がケース17内に互いに近接して配置されている。これらのセル12は、ケース17の内側に配置されているセル格納ケース18によって囲まれている。CPU16は、ケース17の内側であってセル格納ケース18の外側に配置されている。また、セル12は、9個配置されており、縦横に3個ずつ直線上に並んで配置されている。CPU16は、電子基板16aに配置されており、電子基板16aは、電子基板格納ケース19によって囲まれている。
 なお、セル格納ケース18および電子基板格納ケース19は、格納している部品に対する保護および防水の機能を有する。
 (損傷要因情報取得部11)
 損傷要因情報取得部11は、バッテリ10の損傷要因に関する情報である損傷要因情報を取得する。損傷要因には、物理負荷、電子負荷、および熱負荷の他、湿気などが含まれる。損傷要因の例を後述する。損傷要因情報取得部11が取得した損傷要因情報は、情報蓄積部14に出力される。
 図1に示すように、損傷要因情報取得部11は、内部環境情報取得部11a、外部環境情報取得部11b、および物理負荷情報取得部11c(物理負荷検出部)を含んでいる。
 図2A~図2Dに、バッテリ10のケース17内における損傷要因情報取得部11(内部環境情報取得部11a、外部環境情報取得部11b、物理負荷情報取得部11c)の配置例を示す。
 (内部環境情報取得部11a)
 内部環境情報取得部11aは、損傷要因情報として、バッテリ10のケース17内における環境である内部環境の情報を取得する。
 図1および図2Aに示すように、内部環境情報取得部11aは、内部環境取得センサとして例えば、ケース内温度センサ30、セル外温度センサ31、水没センサ32、および電磁波センサ33を備えている。ケース内温度センサ30はケース17内の温度を検出し、セル外温度センサ31はセル12外の温度を検出し、水没センサ32はバッテリ10が水没したか否かを示す情報を検出する。内部環境情報取得部11aが取得する内部環境情報には、ケース内温度センサ30、セル外温度センサ31、水没センサ32、および電磁波センサ33による各検出値(検出結果)が含まれる。
 なお、内部環境情報取得部11aは、上述した複数の種類のセンサの全てを含んでいなくてもよく、いずれか一つの種類のセンサを備えていればよい。
 図2Aに示すように、内部環境情報取得部11aが備えたケース内温度センサ30は、矩形を有するケース17の内側の四隅に配置されており、セル外温度センサ31は、各セル12の近傍にそれぞれ配置されている。また、セル外温度センサ31は、複数のセル12を囲むセル格納ケース18の内側に複数個配置されている。
 水没センサ32としては、例えば、水が付着した際の抵抗値の変化を読み取る水分検知センサを用いることが出来る。また、水没センサ32として、水没検知シールの色を画像センサによって検出することにより、水没を検出してもよい。水没センサ32は、セル格納ケース18の内側にセル12とともに配置されている。なお、水没センサ32は、図2Aに示すように、ケース17の内側であってセル格納ケース18の外側に配置されていてもよい。更に水没センサ32は、電子基板格納ケース19の内側に配置されていてもよい。これにより、どの位置まで水が浸入したかを判断できる。
 電磁波センサ33は、電磁波を検出し、例えばバッテリ10に電磁波を発生する機器が近づけられたことを検出することが出来る。電磁波センサ33は、図2Aに示すように、ケース17の内側であってCPU16の近傍に配置されていてもよい。電磁波センサ33をCPU16の近傍に配置することにより、CPU16に与える影響を検出することができる。
 また、図1に示すように、内部環境情報取得部11aは、湿度センサ34、画像センサ35、ガスセンサ36、音波センサ37、磁気センサ38、および電波センサ39のうち、少なくともいずれか1つをさらに備えていてもよい。図2Bは、これらのセンサの配置の一例を示す図である。
 湿度センサ34は、図2Bに示すように、セル格納ケース18の内側またはセル格納ケース18の外側であってケース17の内側に配置されていてもよい。湿度センサ34は、ケース17の内部の湿度を検出する。湿度センサ34は、セル格納ケース18の内側に収納されていてもよい。湿度センサ34により、水濡れの検出も可能である。
 画像センサ35は、例えば、図2Bに示すように、ケース17の内側面に配置してもよい。画像センサ35により、例えば埃などの異物の侵入などを検知することができる。
 ガスセンサ36は、例えば図2Bに示すように、ケース17の内側であって、セル格納ケース18の内側または外側に配置されていてもよい。ガスセンサ36によって、ケース17の内部へのガスの侵入を検知でき、貸し出し中にバッテリ10が配置されていた環境を検出できる。音波センサ37は、図2Bに示すようにケース17の内側に配置されていてもよい。磁気センサ38および電波センサ39は、図2Bに示すように、ケース17の内側であってCPU16の近傍に配置されていてもよい。磁気センサ38および電波センサ39をCPU16の近傍に配置することにより、CPU16に与える影響を検出することができる。
 なお、内部環境情報取得部11aが、上記複数種類のセンサを備えている場合には、内部環境情報取得部11aが取得する内部環境情報には、湿度センサ34、画像センサ35、ガスセンサ36、音波センサ37、磁気センサ38および、電波センサ39による各検出値(検出結果)が含まれる。
 なお、後述する物理負荷情報取得部11cの振動センサ51は、内部環境情報取得部11aが有していてもよい。
 また、図1、図2Aおよび図2Bで説明した各々のセンサの位置および数は限定されるものではない。
 (外部環境情報取得部11b)
 外部環境情報取得部11bは、損傷要因情報として、バッテリ10のケース17外における環境である外部環境の情報を取得する。
 図1に示すように、外部環境情報取得部11bは、外部環境取得センサとして例えば、ケース外温度センサ40および日照センサ41を備えている。外部環境情報には、ケース外温度センサ40および日照センサ41による各検出値が含まれる。
 なお、外部環境情報取得部11bは、上述した2つの種類のセンサの双方を含んでいなくてもよく、いずれか一方のみを含んでいてもよい。
 図2Aに示すように、外部環境情報取得部11bのケース外温度センサ40および日照センサ41は、矩形を有するケース17の外側の四隅に配置されている。ケース外温度センサ40により、ケース17の外側の温度を測定できる。詳しくは、後述するが、ケース内温度センサ30およびセル外温度センサ31による検出値に基づいてセル12の温度を精度良く検出できる。
 日照センサ41は、バッテリ10に対して日が当たっている時間などを検出し、例えば、使用者によってバッテリ10が日向に放置されていたことなどを検出できる。
 なお、外部環境情報取得部11bは、照度センサ42、画像センサ43、ガスセンサ44、音波センサ45、磁気センサ46、電波センサ47、および水没センサ48および湿度センサ49のうち、少なくともいずれか1つを備えていてもよい。
 照度センサ42は、図2Cに示すように、例えばケース17の外側面に配置されており、バッテリ10に照射された光の明るさを検出できる。画像センサ43は、図2Cに示すように、例えばケース17の外側面に配置されており、バッテリ10の配置されている環境を画像として検出できる。画像センサ43によれば、例えば埃などの異物が浮遊している環境下に載置されていたこと等を検知することができる。ガスセンサ44は、図2Cに示すように、例えばケース17の外側面に配置されており、貸し出し中にバッテリ10が配置されていた環境を検出できる。音波センサ45は、図2Cに示すように、例えばケース17の外側面に配置されており、音波を検出できる。磁気センサ46および電波センサ47は、ケース17の外側面であって、CPU16の近傍に配置されていてもよい。磁気センサ46および電波センサ47をCPU16の近傍に配置することにより、CPU16に与える影響を検出することができる。
 水没センサ48は、ケース17の外側に設けられており、上述した水没センサ32と同様に、水分検知センサを用いて水没を検出してもよいし、水没検知シールの色を画像センサによって検出することにより、水没を検出してもよい。水没センサ48によれば、ケース17が水に濡れたことを検出することが出来る。
 湿度センサ49は、ケース17の外側に設けられており、バッテリ10の外部の湿度を検出する。
 なお、図2Cでは、照度センサ42、画像センサ43、ガスセンサ44、音波センサ45、磁気センサ46、電波センサ47、水没センサ48、および湿度センサ49は、各々一つずつしか配置されていないが、図2Aのケース外温度センサ40および湿度センサ49のようにケース17の周囲に複数個配置されているほうが好ましい。例えば、日照センサ42の場合、どの面から日が当たっていても検出できるように全ての面に設けられているほうが好ましい。
 なお、バッテリ10は、ケース17の内部において、所定の環境情報を取得する少なくとも1つの内部環境情報取得部11aと、ケース17の外部において、対応する(同じ)環境情報を取得する少なくとも1つの外部環境情報取得部11bと、を備えていてもよい。図2Aでは、内部環境情報取得部11aのケース内温度センサ30は、所定の環境情報として、ケース17の内部における温度を検出し、外部環境情報取得部11bのケース外温度センサ40は、対応する環境情報として、ケース17の外部における温度を検出する。
 ケース17の内部において取得された所定の環境情報、および、ケース17の外部において取得された対応する環境情報は、バッテリ10の損傷度を算出するために使用される。例えば、ケース17内の温度(所定の環境情報)およびケース17外の温度(対応する環境情報)から、セル12内の温度が推定される(図7参照)。推定されたセル12内の温度から、温度負荷に基づくバッテリ10の損傷度が算出される。
 なお、ケース内温度センサ30は、セル12からケース17の壁面17aまでの間に複数配置されている。詳細には、ケース内温度センサ30は、セル格納ケース18内とケース17の内側の四隅に配置されている。これにより、セル12から外部に向かっての温度変化を検出することが出来、セル12内の温度をより正確に推定できる。
 所定の環境情報および対応する環境情報は、温度に限定されない。例えば、所定の環境情報および対応する環境情報は、湿度であってもよいし、バッテリ10が水没したか否かであってもよい。
 また、内部環境情報取得部11aによって取得される所定の環境情報(所定の内部環境情報)と、外部環境情報取得部11bによって取得される所定の環境情報(所定の外部環境情報)は、同じ種類の情報に限られるものではなく、異なる種類の情報であってもよい。例えば、内部環境情報取得部11aによって取得される所定の環境情報が、温度であり、外部環境情報取得部11bによって取得される所定の環境情報が、照度である場合があげられる。
 (物理負荷情報取得部11c)
 物理負荷情報取得部11cは、損傷要因情報として、バッテリ10に印加された物理負荷の情報である物理負荷情報を取得する。
 図1および図2Aに示すように、物理負荷情報取得部11cは、加速度センサ50、振動センサ51、歪みセンサ52、および衝撃センサ53を備えている。物理負荷情報には、加速度センサ50、振動センサ51、歪みセンサ52、および衝撃センサ53による各検出値が含まれる。
 なお、物理負荷情報取得部11cは、上述した複数の種類のセンサの全てを含んでいなくてもよく、いずれか一つの種類のセンサを備えていればよい。
 図2Aでは、物理負荷情報取得部11cの加速度センサ50が、バッテリ10のケース17内の一隅に配置されている。加速度センサ50は、バッテリ10の内側または外側(ケース17の外側面など)のどこに配置されてもよい。
 物理負荷情報取得部11cが加速度センサ50を有する場合には、バッテリ10の加速度情報が取得される。そのため、取得された加速度情報に基づいて、バッテリ10にどのような加速度が印加されたのかが分かるので、バッテリの損傷度や使用状態を判定することができる。また、加速度センサ50によれば、例えば、バッテリ10がどの方向から落下したか等の情報を検出することができる。
 振動センサ51は、図2Aに示すように、ケース17内に配置されているが、加速度センサ50と同様に、バッテリ10の内側または外側(ケース17の外側面等)のどこに配置されてもよい。振動センサ51は、バッテリ10にどのような振動(振動情報)が負荷されたかを検出するため、バッテリ10の損傷度や使用状態を判定することが出来る。
 歪みセンサ52は、図2Aに示すように、例えばケース17の内壁に設けられており、ケース17に加えられた物理負荷によるケース17の歪み情報を検出する。歪みセンサ52は、バッテリ10にどのような衝撃等が負荷されたかを検出するため、バッテリ10の損傷度や使用状態を判定することが出来る。歪みセンサ52としては例えば歪みゲージを用いることができる。また、歪みセンサ52は、ケース17の各面の全てに配置されていてもよく、これにより、どの面に負荷が加えられたか等の情報(例えば、どの面に衝撃が加わったか、どの面から落下したか等の情報)を検出することが出来る。なお、歪みセンサ52は、ケース17の内面または外面のどちらに設けられていてもよい。また、セル12を囲むセル格納ケース18およびケース17の双方に歪みセンサ52を設けることにより、衝撃が内側まで届いたか否かを判別でき、より詳細に損傷度を判断することができる。さらに、バッテリ10内の電子基板を格納する電子基板格納ケース19に歪みセンサ52を設けた場合には、電子基板16aに衝撃が届いたのかを判定することができる。
 衝撃センサ53は、図2Aに示すように、ケース17内に配置されているが、加速度センサ50と同様に、バッテリ10の内側または外側(ケース17の外側面等)のどこに配置されてもよい。衝撃センサ53は、バッテリ10に負荷された衝撃(衝撃情報)を検出するため、バッテリ10の損傷度や使用状態を判定することが出来る。
 なお、物理負荷情報取得部11cは、圧力センサ54、傾きセンサ55、位置センサ56および速度センサ57のうち少なくとも一つを備えていてもよい。
 図2Dは、圧力センサ54、傾きセンサ55、位置センサ56および速度センサ57の配置例を示す図である。
 図2Dに示すように、圧力センサ54は、ケース17の外側に配置されており、バッテリ10に負荷された圧力を検出できる。このようにバッテリにどのような圧力(圧力情報)が負荷されたかが分かるため、バッテリ10の損傷度や使用状態を判定することが出来る。図2Dでは一箇所にのみ圧力センサ54が配置されているが、バッテリ10の複数の面に圧力センサ54を配置することによって、例えば、どの面に衝撃が加わったか、どの面から落下したか等の情報を取得することができる。
 また、圧力センサ54の一例として気圧センサが用いられてもよい。図2Dに示すように気圧センサ541をケース17のセル格納ケース18内に設けることにより、密閉容器であるケース17が破損した場合に、微小な破損を検知することができる。
 図2Dに示すように、傾きセンサ55は、ケース17の内側に配置されており、貸し出し中におけるバッテリ10の傾き(傾き情報)を検出する。これによって、貸し立ち中におけるバッテリ10の配置姿勢に関する情報を取得することができる。
 位置センサ56は、図2Dでは、ケース17の内側に配置されており、バッテリ10の高さ方向の位置(位置情報)を検出する。このように高さ方向の位置を検出することにより、速度、加速度を算出することが出来る。
 速度センサ57は、図2Dに示すように、ケース17の内側に配置されており、バッテリ10の速度(速度情報)を検出する。バッテリ10の移動速度から加速度情報を算出することが出来る。
 (損傷要因の例)
 図3の(a)(b)~図5の(a)(b)を用いて、バッテリ10の損傷要因の例を説明する。
 図3の(a)(b)は、バッテリ10の内部環境を変化させることによってバッテリ10を損傷させる損傷要因の例を示す。図3の(a)において、バッテリ10に加わる電磁波(電子負荷)が損傷要因であり、図3の(b)において、バッテリ10の内部に浸入した水分(水濡れ)が損傷要因である。図3の(a)に示すように、バッテリ10に電磁波が照射された場合、バッテリ10のCPU16が誤動作し、バッテリ10の内部が損傷する可能性がある。また、図3の(b)に示すように、バッテリ10が水没した場合、バッテリ10の内部に水分が浸透することによって、バッテリ10の内部では結露が生じ易くなる。結露によって発生した水滴は、バッテリ10のCPU16を誤動作させるので、バッテリ10が損傷する要因になる。
 図4の(a)(b)は、バッテリ10の外部環境を変化させることによってバッテリ10を損傷させる損傷要因の例を示す。図4の(a)において、屋外等に放置されたバッテリ10に対して照射される直射日光(熱負荷)が損傷要因である。バッテリ10に直射日光が照射された場合、バッテリ10の温度が上昇する。また、図4の(b)において、バッテリ10に加わる高熱(熱負荷)が損傷要因である。バッテリ10が高熱にさらされた場合、バッテリ10の温度は上昇する。バッテリ10が高温である状態が長期間にわたって持続した場合、バッテリ10が損傷する可能性がある。
 図5の(a)(b)は、損傷要因としての物理負荷の例を示す。図5の(a)(b)において、バッテリ10に加わる衝撃(物理負荷)が損傷要因である。図5の(a)に示すように、システム1の利用者が、バッテリ10を落下させた場合、バッテリ10と地面とが衝突することによって、バッテリ10には強い衝撃が加わる。また、図5の(b)に示すように、バッテリ10を搭載した車両と、他の車両とが衝突した場合にも、バッテリ10には、間接的に強い衝撃(物理負荷)が加わる。このように大きな衝撃がバッテリ10に加わった場合、バッテリ10の内部(主に、構造部、およびそれを支持する支持材など)が剥離または破損する可能性がある。
 (セル12、CPU16)
 セル12は、二次電池のセルである。図2A~図2Dに示すように、バッテリ10は、複数のセル12を備えている。各セル12は、バッテリ10の外部から供給される電力によって蓄電され、蓄電された電力を放電することができる。セル12の充電と放電との切り換えは、CPU16によって制御される。
 (情報出力部13、情報蓄積部14)
 情報蓄積部14は、損傷要因情報取得部11から入力された損傷要因情報を、記憶部15に記憶する。また、情報蓄積部14は、記憶部15に蓄積された損傷要因情報を、情報出力部13に出力する。情報出力部13は、情報蓄積部14から入力された損傷要因情報を、出力情報として、バッテリ管理装置20の出力情報取得部211(バッテリ環境情報取得部)へ出力する。
 (記憶部15)
 記憶部15には、情報蓄積部14によって、損傷要因情報が記憶される。損傷要因情報には、内部環境情報取得部11aが取得した内部環境情報、外部環境情報取得部11bが取得した外部環境情報、および、物理負荷情報取得部11cが取得した物理負荷情報が含まれる。
 (バッテリ管理装置20)
 図1に示すように、バッテリ管理装置20は、制御部21(情報処理装置)および表示部22を備えている。制御部21は、出力情報取得部211、損傷算出部212、および使用可否判定部213を備えている。制御部21の各部は、バッテリ10から出力される出力情報(すなわち損傷要因情報)を用いて、バッテリ10の損傷度を算出し、バッテリ10の使用を継続することができるか否かを判定する使用可否判定処理を実行する。そして、制御部21は、使用可否判定処理における判定結果を、表示部22に表示する。一変形例では、制御部21は、使用可否判定処理における判定結果を、表示以外の手段でユーザに提示してもよい。なお、使用可否判定処理の詳細については後述する。また、損傷算出部212および使用可否判定部213は、環境情報分析部の一例に対応する。
 (出力情報取得部211)
 出力情報取得部211は、バッテリ10の情報出力部13から、出力情報を取得する。出力情報取得部211が取得する出力情報は、バッテリ10の損傷要因情報取得部11が取得した損傷要因情報であり、内部環境情報、外部環境情報、および物理負荷情報が含まれる。出力情報取得部211は、取得した出力情報を、損傷算出部212に出力する。
 (損傷算出部212)
 損傷算出部212は、出力情報取得部211から入力された出力情報を用いて、以下で説明する4種類の損傷度(物理負荷損傷度、温度負荷損傷度、電子負荷損傷度、水濡れ損傷度)を算出する。そして、算出した損傷度に関する情報を、使用可否判定部213に出力する。図1に示すように、損傷算出部212は、水濡れ損傷算出部212a、電子負荷損傷算出部212b、温度負荷損傷算出部212c、および物理負荷損傷算出部212dを含んでいる。なお、一変形例において、損傷算出部212は、バッテリ10の使用状態を示す度数であれば、損傷度以外の度数を算出してもよい。
 (水濡れ損傷算出部212a)
 水濡れ損傷算出部212aは、水濡れ(図3の(b)参照)によるバッテリ10の損傷度である水濡れ損傷度を算出する。そのために、水濡れ損傷算出部212aは、出力情報から、内部環境情報を抽出する。前述したように、内部環境情報には、ケース内温度センサ30、セル外温度センサ31、水没センサ32、および電磁波センサ33による各検出値が含まれる。水濡れ損傷算出部212aは、水没センサ32による検出値を用いて、バッテリ10の水濡れ損傷度を算出する。あるいは、内部環境情報取得部11aが湿度センサ34を備えている場合、水濡れ損傷算出部212aは、湿度センサ34の検出値を用いて、バッテリ10の水濡れ損傷度を算出することもできる。
 例えば、水濡れ損傷度は、バッテリ10のCPU16の誤動作の頻度に対応していてもよい。この場合、水没センサ32の検出値と、バッテリ10のCPU16の誤動作の頻度との相関関係(数式モデル)が、実験によって予め学習される。そして、水濡れ損傷算出部212aは、学習された相関関係に基づいて、水没センサ32の検出値から、水濡れ損傷度(=水濡れによる誤動作の頻度)を算出する。
 (電子負荷損傷算出部212b)
 電子負荷損傷算出部212bは、電子負荷(図3の(a)参照)によるバッテリ10の損傷度である電子負荷損傷度を算出する。電子負荷には、バッテリ10に照射される電波、磁気、および電磁波が含まれる。電子負荷損傷算出部212bは、出力情報から、内部環境情報を抽出する。電子負荷損傷算出部212bは、内部環境情報取得部11aの電磁波センサ33による検出値を用いて、電子負荷損傷度を算出する。あるいは、内部環境情報取得部11aが磁気センサ38および電波センサ39を備えている場合、電子負荷損傷算出部212bは、磁気センサ38の検出値、電波センサ39の検出値、またはその組合せを用いて、バッテリ10の電子負荷損傷度を算出することもできる。
 例えば、電子負荷損傷度が、バッテリ10のCPU16の誤動作の頻度に対応している場合、電磁波センサ33の検出値と、バッテリ10のCPU16の誤動作の発生頻度との相関関係が、実験によって予め学習される。そして、電子負荷損傷算出部212bは、学習された相関関係に基づいて、電磁波センサ33の検出値から、電子負荷損傷度(=電子負荷による誤動作の頻度)を算出する。
 (温度負荷損傷算出部212c)
 温度負荷損傷算出部212cは、セル12の内部の温度(セル内温度)を用いて、温度負荷(図4の(a)(b)参照)によるバッテリ10の損傷度(温度負荷損傷度)を算出する。
 例えば、温度負荷損傷度が、バッテリ10のCPU16の誤動作の頻度に対応している場合、セル内温度と、バッテリ10のCPU16の誤動作の発生頻度との相関関係が、実験によって予め学習される。そして、温度負荷損傷算出部212cは、学習された相関関係に基づいて、セル内温度から、温度負荷損傷度(=温度負荷による誤動作の頻度)を算出する。
 ここで、損傷要因情報取得部11は、セル12内に温度センサを備えていない(図2A参照)ので、セル内温度を取得することができない。そこで、温度負荷損傷算出部212cは、出力情報から、外部環境情報および内部環境情報を抽出する。そして、温度負荷損傷算出部212cは、セル12の周辺温度(すなわち、内部環境情報取得部11aのケース内温度センサ30およびセル外温度センサ31の各検出値、および、外部環境情報取得部11bのケース外温度センサ40の検出値)から、セル内温度を推定する。なお、具体的なセル内温度の推定方法の詳細については、後で説明する。
 (物理負荷損傷算出部212d)
 物理負荷損傷算出部212dは、物理負荷(図5の(a)(b)参照)によるバッテリ10(主に、構造部)の損傷度(物理負荷損傷度)を算出する。そのために、物理負荷損傷算出部212dは、出力情報から、物理負荷情報を抽出する。物理負荷損傷算出部212dは、物理負荷情報取得部11cの加速度センサ50、振動センサ51、歪みセンサ52、および衝撃センサ53による検出値を用いて、物理負荷損傷度を算出する。
 例えば、物理負荷損傷度は、バッテリ10の構造部および支持材等の損傷度に対応していてもよい。この場合、加速度センサ50、振動センサ51、歪みセンサ52、および衝撃センサ53による各検出値と、バッテリ10の損傷度との相関関係が、実験によって予め学習される。そして、物理負荷損傷算出部212dは、学習された相関関係に基づいて、加速度センサ50、振動センサ51、歪みセンサ52、および衝撃センサ53の各検出値から、物理負荷損傷度(=物理負荷による構造部および支持材等の損傷度)を算出する。
 (使用可否判定部213)
 使用可否判定部213は、損傷算出部212の各部によって算出された4種類の損傷度(水濡れ損傷度、電子負荷損傷度、温度負荷損傷度、物理負荷損傷度)が、それぞれ、閾値を超えるか否かを判定する。そして、少なくとも1種類の損傷度が閾値を超える場合、使用可否判定部213は、バッテリ10の使用を継続することはできないと判定する。一方、4種類の損傷度が全て閾値以下である場合、使用可否判定部213は、バッテリ10の使用を継続することができると判定する。なお、閾値は、損傷度の種類ごとに異なっていてもよい。
 前記閾値は、損傷度と、損傷要因(電子負荷、水濡れ、電子負荷、物理負荷)との相関関係を示す実験データを用いて決定されてよい。なお、具体的な閾値の決定方法の詳細については、後で説明する。
 (使用可否判定処理)
 図6を用いて、制御部21によって実行される使用可否判定処理の流れを説明する。図6は、使用可否判定処理の流れを示すフローチャートである。ただし、図6に示すS10およびS20は、制御部21による使用可否判定処理の前段階として、バッテリ10において実行される。
 図6に示すように、使用可否判定処理では、損傷要因情報取得部11が、損傷要因情報を取得し、情報蓄積部14が、損傷要因情報を記憶部15に記憶する(S10)。
 次に、情報出力部13が、損傷要因情報を、出力情報として出力する(S20)。出力情報取得部211は、情報出力部13から出力された出力情報、すなわち損傷要因情報を取得する(S30、環境情報取得ステップ)。
 損傷算出部212の各部は、出力情報取得部211から取得した出力情報(損傷要因情報)を用いて、バッテリ10の損傷度を算出する(S40、環境情報分析ステップ、損傷度算出ステップ)。使用可否判定部213は、損傷算出部212によって算出されたバッテリ10の損傷度が、閾値以下であるか否かを判定する(S50、環境情報分析ステップ、使用可否判定ステップ)。より詳細には、使用可否判定部213は、損傷算出部212によって算出された4種類の損傷度の各々について、閾値以下であるか否かを判定する。
 ここで、損傷算出部212は、温度負荷によるバッテリ10の損傷度を算出する場合、S40の前に、ケース外温度およびケース内温度を示す各出力情報を用いて、セル内温度を推定する(セル内温度推定ステップ)(「セル内温度の推定方法」参照)。そして、S40において、損傷算出部212は、推定したセル内温度を用いて、温度負荷によるバッテリ10の損傷度を算出する。
 バッテリ10の損傷度(4種類の損傷度のうち少なくとも一つ)が閾値以下ではない場合(S50でNO)、使用可否判定部213は、「バッテリ10の使用を継続することはできない」旨を、表示部22に表示する(S60)。一方、バッテリ10の損傷度が閾値以下である場合(S50でYES)、使用可否判定部213は、「バッテリ10の使用を継続することができる」旨を、表示部22に表示する(S70)。以上で、使用可否判定処理は終了する。
 (セル内温度の推定方法)
 図7を用いて、温度負荷損傷算出部212cが、ケース外温度、ケース内温度、およびセル外温度を用いて、セル12の内部の温度(セル内温度)をどのようにして算出するのかを説明する。図7は、温度負荷損傷算出部212cによるセル内温度の推定結果の一例を示す図である。ここでは、2つの場合、すなわち、ケース外温度がケース内温度およびセル外温度よりも高い場合と、ケース外温度がケース内温度およびセル外温度よりも低い場合とを考える。なお、2つの場合において、セル外温度は同じであるとする。また、ケース外温度は、ケース外温度センサ40によって検出され、ケース内温度は、ケース内温度センサ30によって検出され、セル外温度は、セル外温度センサ31によって検出される。
 ケース外温度は外気温に対応するので、ケース外温度がケース内温度およびセル外温度よりも高い場合、外気温はセル内温度よりも高いと考えられる。また、セル内温度は、セル外温度よりも、外気温の影響を受け難いと考えられる。従って、ケース外温度がケース内温度およびセル外温度よりも高い場合(図7では、外気温が高い場合)、セル内温度は、セル外温度よりも低いと考えられる。そこで、温度負荷損傷算出部212cは、図7に示すように、ケース外温度、ケース内温度、およびセル外温度を通る曲線を延長することによって、セル外温度よりも低いセル内温度を推定する。
 一方、ケース外温度がケース内温度およびセル外温度よりも低い場合、セル12の内部での発熱があることによって、セル内温度が外気温よりも高くなっていると考えられる。また、セル12の内部での発熱がある場合、セル内温度は、セル外温度よりも高いと考えられる。従って、セル外温度がケース内温度およびケース外温度よりも低い場合(図7では、外気温が低い場合)、セル内温度は、セル外温度よりも高いと考えられる。そこで、温度負荷損傷算出部212cは、図7に示すように、ケース外温度、ケース内温度、およびセル外温度を通る曲線を延長することによって、セル外温度よりも高いセル内温度を推定する。
 (閾値の決定方法)
 図8および図9を用いて、使用可否判定部213が判定を行うために使用する閾値が、どのようにして決定されるのかを説明する。ここでは、損傷要因が、物理負荷(加速度、振動、歪み、衝撃)である場合について考える。実験的に閾値を決定するために、バッテリ10に物理負荷が与えられるとともに、物理負荷情報取得部11cの加速度センサ50、振動センサ51、歪みセンサ52、および衝撃センサ53から、それぞれ検出値が取得される。
 図8は、物理負荷情報取得部11cによって取得される検出値の一例を示す図である。図8に示すように、物理負荷情報取得部11cは、バッテリ10の加速度、振動、歪み、および衝撃の各検出値を取得する。物理負荷を与えられている期間中における検出値の最大値が、バッテリ10の損傷要因であると特定される。その後、バッテリ10の構造部および支持材等の損傷度から、バッテリ10の損傷度が判定される。これにより、バッテリ10の損傷要因(加速度の検出値)と損傷度との関係を示す一組の実験データが得られる。また、損傷度を判定されたバッテリ10は、使用を継続することができないような損傷があるか否かをさらに判定される。
 図9は、バッテリ10の損傷要因(加速度の検出値)と損傷度との関係を示す実験データをプロットしたグラフである。図9に示す実験データには、使用を継続することができないような損傷があるバッテリ10の実験データ(図8では、「使用不可」の実験データ)と、そのような損傷がないバッテリ10の実験データ(図8では、「使用可能」の実験データ)とが含まれている。図9に示すように、加速度の閾値は、「使用不可」の実験データと「使用可能」の実験データとを区分するような値に決定される。損傷度の閾値は、加速度と損傷度との相関関係を用いて、加速度の閾値に対応する値に決定される。
 (実施の形態2)
 以下に、本発明にかかる実施の形態2におけるバッテリスワップシステム1001(以下システム1001と述べる)について説明する。
 本実施の形態2のシステム1001は、図10に示すように、実施の形態1のシステム1と比較して使用状態判定部214(環境情報分析部)を備えている点が異なっている。そのため、本相違点を中心に説明する。尚、実施の形態1と同様の構成については同一の符号を付している。
 図10に示すバッテリスワップシステム1001におけるバッテリ管理装置1020の制御部1021は、出力情報取得部211、損傷算出部212、および使用可否判定部213に加えて使用状態判定部214を更に有する。
 バッテリ管理装置1020は、出力情報取得部211によって取得した物理負荷情報、外部環境情報、および内部環境情報に基づいて、バッテリ10の使用状態を判定する。
 図11は、本実施の形態2における使用状態判定処理(バッテリ管理方法)のフロー図である。図11に示すフロー図は、S10~S30までは、実施の形態1の図6と同様である。
 S30において取得した出力情報を用いて、S40(使用状態判定ステップ、環境情報分析ステップ)において、使用状態判定部214は、貸し出し中のバッテリ10の使用状態を判定する。ここで、使用状態の判定とは、例えば、使用者が正しい使用をしているか否か、若しくは、使用者の使用は正しいが環境起因による損傷要因が負荷されているか、若しくは、使用者の使用によって損傷要因が負荷されたか等について判定する。具体的には、使用者が日向にバッテリ10を置いたことによって損傷要因が負荷されたことや、気温が想定していない温度まで上昇したことによってバッテリ10に損傷要因が負荷されたということについて判定することが出来る。また、使用状態判定部214は、損傷算出部212によって算出された使用状態を示す度数にも基づいて使用状態の判定をしてもよい。
 次に、S50において、表示部22によって、判定された使用状態が表示される。なお、表示に限らなくても良く、バッテリ管理装置1020が通信部を有し、判定した使用状態を使用者の携帯情報端末(スマートフォン、タブレット等)に通知してもよい。例えば、使用状態判定部214が、使用者によって損傷が発生したと判定した場合には、使用者の携帯情報端末に警告などを通知してもよい。
 (使用状態の判定例1)
 図2Aに示すように、バッテリ10のケース17の外側に日照センサ41が配置され、ケース17の内側にケース内温度センサ30が配置されている構成を例に挙げて説明する。
 使用状態判定部214は、日照センサ41からの検出値とケース内温度センサ30からの検出値に基づいて、温度情報の原因の切り分けを行う。具体的には、使用状態判定部214は、ケース内温度センサ30の値が上昇した場合、日照センサ41の検出値に基づいて、ケース17内の温度上昇が「バッテリ10が日向に置かれたことが原因」なのか、「気温上昇が原因」なのかを切り分けることが出来る。
 使用状態判定部214は、温度上昇が「日向に置かれたことが原因」である場合には、表示部22に警告の表示を行う。また、バッテリ管理装置1020が通信部を備えており、バッテリ10の使用者の携帯情報端末(スマートホン、タブレット等)に警告を通知してもよい。
 一方、使用状態判定部214は、温度情報が「気温上昇が原因」である場合には、使用者側の対策では限界があるため、使用者に表示または通知を行わない。
 なお、使用状態判定部214は、損傷算出部212によって算出された使用状態を示す度数にも基づいて、使用状態の判定をするとは、例えば、日照時間を度数に変換して損傷度を算出し、日照時間による損傷度が所定時間以上の場合、使用者による原因と判定することができる。
 また、ケース17の内部の温度センサとして、ケース内温度センサ30だけでなく、セル外温度センサ31が更に設けられていてもよい。すなわち、ケース17の外部と内部で異種のセンサが設けられており、ケース17の内部において複数の同種のセンサが設けられていてもよい。
 (使用状態の判定例2)
 図2Aに示すように、電子基板格納ケース19に水没センサ32(第2水没センサ)が配置され、更にセル格納ケース18に水没センサ32(第1水没センサ)が配置されている構成を例に挙げて説明する。
 使用状態判定部214は、バッテリ10内のどの領域が水没したのかを判定し、浸水範囲の見極めを行うことが出来る。例えば、電子基板格納ケース19が浸水し、セル格納ケース18に浸水していない場合には、電子基板16aの交換が行われるが、セル12部分は確認して再使用できる可能性が高い。一方、セル格納ケース18に浸水している場合には、セル12部分を取り替える必要が生じる。
 このように、使用状態判定部214によって、修理交換の際に役立つ水没の状態判定を行うことができる。なお、セル格納ケース18の外側であってケース17の内側にも水没センサ32が配置されていてもよい。
 また、複数の水没センサ32を取り付けた場合には、ケース17内への浸水、電子基板格納ケース19内への浸水およびセル格納ケース18内への浸水としてそれぞれに損傷度の値を設定し、損傷度が算出されてもよい。
 〔ソフトウェアによる実現例〕
 バッテリ管理装置20、1020の制御ブロック(特に出力情報取得部211、損傷算出部212、使用可否判定部213、および使用状態判定部214)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、バッテリ管理装置20、1020は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、前記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、前記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。前記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施の形態のシステム1、1001では、外部環境情報取得部11bと内部環境情報取得部11aに加えて物理負荷情報取得部11cが設けられているが、物理負荷情報取得部11cが設けられていなくてもよい。
 図12は、物理負荷情報111cが設けられていないバッテリスワップシステム2001(以下システム2001という)を示す図である。図12に示すシステム2001は、バッテリ2010とバッテリ管理装置2020を備えている。バッテリ2010の損傷要因情報取得部2011は、図10に示すバッテリ1010の損傷要因情報取得部11と比較して、物理負荷情報取得部11cが設けられておらず、内部環境情報取得部11aおよび外部環境情報取得部11bが設けられている。また、バッテリ管理装置2020の制御部2021に設けられている損傷算出部2212は、図10に示すバッテリ管理装置1020の損傷算出部212と比較して、物理負荷損傷算出部212dが設けられておらず、水漏れ損傷算出部212a、電子負荷損傷算出部212b、および温度負荷損傷算出部212cが設けられている。
 すなわち、システム2001では、バッテリ2010のケース17の内部の環境情報および外部の環境情報が、内部環境情報取得部11aおよび外部環境情報取得部11bが有する各種センサによって取得されて記憶部15に記憶される。そして、バッテリ管理装置2020は、記憶されている内部の環境情報および外部の環境情報を取得して損傷算出部2212において損傷度を算出して使用可否の判定を行う。また、バッテリ管理装置2020は、取得した内部の環境情報および外部の環境情報を用いて使用状態判定部214において使用状態の判定を行う。
 (B)
 上記実施の形態のシステム1、1001では、外部環境情報取得部11bと内部環境情報取得部11aと物理負荷情報取得部11cが設けられているが、外部環境情報取得部11bと物理負荷情報取得部11cが設けられていなくてもよい。このようなバッテリスワップシステム3001(以下システム3001という)が、図13に示されている。システム3001は、バッテリ3010と、図12に示したバッテリ管理装置2020とを備えている。バッテリ3010は、損傷要因情報取得部として内部環境情報取得部11aを備えている。
 システム3001では、バッテリ3010のケース17の内部の環境情報が、内部環境情報取得部11aが有する各種センサによって取得されて記憶部15に記憶される。そして、バッテリ管理装置2020は、記憶されている内部の環境情報を取得して損傷算出部2212において損傷度を算出して使用可否の判定を行う。また、バッテリ管理装置2020は、取得した内部の環境情報を用いて使用状態判定部214において使用状態の判定を行う。
 (C)
 上記実施の形態のシステム1、1001では、外部環境情報取得部11bと内部環境情報取得部11aと物理負荷情報取得部11cが設けられているが、内部環境情報取得部11aと物理負荷情報取得部11cが設けられていなくてもよい。このようなバッテリスワップシステム4001(以下システム4001という)が、図14に示されている。システム4001は、バッテリ4010と、図12に示したバッテリ管理装置2020とを備えている。バッテリ4010は、損傷要因情報取得部として外部環境情報取得部11bを備えている。
 システム4001では、バッテリ4010のケース17の外部の環境情報が、外部環境情報取得部11bが有する各種センサによって取得されて記憶部15に記憶される。そして、バッテリ管理装置2020は、記憶されている外部の環境情報を取得して損傷算出部2212において損傷度を算出して使用可否の判定を行う。また、バッテリ管理装置2020は、取得した外部の環境情報を用いて使用状態判定部214において使用状態の判定を行う。
 (D)
 上記実施の形態のシステム1、1001では、損傷要因情報取得部11によって取得された物理負荷情報、外部環境情報、および内部環境情報は、情報蓄積部14を介して記憶部15に記憶されているが、これに限られるものではない。例えば、図15に示すバッテリスワップシステム5001のバッテリ5010では、損傷要因情報取得部11によって取得された物理負荷情報、外部環境情報、および内部環境情報は、通信部5017によってリアルタイムでバッテリ管理装置20へと送信される。バッテリ管理装置20における出力情報取得部211は、通信部5017と無線通信可能な構成となっている。バッテリ管理装置20は、順次送信されている損傷要因情報について損傷度を算出する。
 なお、リアルタイムでなくてもよく、バッテリ5010に通信部5017とともに記憶部15も設けられており、所定時間分を記憶部15に記憶してから送信するような構成であってもよい。
 また、図15に示すバッテリスワップシステム5001において、バッテリ管理装置20の制御部21(情報処理装置)は、クラウドコンピューティングシステム上の仮想サーバであってもよい。この場合、通信部5017からクラウドコンピューティングシステムに物理負荷情報、外部環境情報、および内部環境情報が送信される。そして、仮想サーバにおいて情報の分析が行われ、使用者は、クラウドコンピューティングシステムにアクセスすることにより、分析結果を得ることができる。
 (E)
 本実施形態では、バッテリ10とバッテリ管理装置20とが、別体である構成を説明した。しかしながら、一変形例では、バッテリ10(少なくとも、バッテリ10の損傷要因情報取得部11)と、バッテリ管理装置20とが、バッテリ損傷度算出装置として、一体的に構成されていてもよい。本変形例に係るバッテリ損傷度算出装置は、バッテリ10のケース17(外側ケース)の外部において、所定の環境情報を取得する外部環境情報取得部11bと、前記収容部の内部において、対応する環境情報を取得する内部環境情報取得部11aと、前記所定の環境情報および前記対応する環境情報を用いて、前記バッテリ10の損傷度を算出する損傷算出部212とを備える。
 (F)
 上記実施の形態のシステム1001、2001、3001、4001では、使用状態判定部214、損傷算出部212および使用可否判定部213を備えているが、損傷算出部212および使用可否判定部213が設けられていなくてもよい。この場合、使用状態の判定のみが行われる。
 (G)
 上記実施の形態では特に述べていないが、バッテリ管理装置20、1020、2020は、バッテリ10の貸し出しを行うステーション、複数のステーションを統括するシステム等に設けられていても良い。また、バッテリ管理装置20、1020、2020の表示部22は、使用者のスマートホン、タブレット等の画面を利用してもよい。
 (H)
 上記実施の形態1、2における図2A~図2Dで説明した各種センサの配置は、一例であり、各種センサの配置、数は適宜変更しても良い。
 (I)
 上記実施の形態では、複数のセルを格納するセル格納ケース18と、電子基板16aを格納する電子基板格納ケース19が設けられているが、どちらか一方または双方が設けられていなくてもよい。
 (J)
 上記実施の形態1のバッテリ管理装置20は、出力情報取得部211と、損傷算出部212と、使用可否判定部213とを備えているが、使用可否判定部213が設けられておらず、バッテリ損傷度算出装置として機能してもよい。
 (K)
 上記実施の形態では、システム1、1001、2001、3001、4001、5001において貸し出される複数のバッテリ10、2010、3010、4010、5010が搭載される電力消費体の一例として電気自動車等の車両が例示されている。具体的には、車両としては、上記電気自動車(EV)、電動自動二輪車、電動一輪車、電動自動車、電動アシスト自転車、PHV(Plug-in Hybrid Vehicle)等のモビリティが挙げられる。
 また、バッテリが搭載される電力消費体としては、モビリティに限らず、交換可能なバッテリによって駆動される他の電気製品であってもよい。
 電気製品としては、例えば、バッテリからの電力によって機能する冷蔵庫、洗濯機、掃除機、炊飯器、湯沸しポット等の家電製品も含まれる。
 さらに、バッテリが搭載される電力消費体として、電動工具を用いてもよい。
 この場合には、貸し出し可能な複数のバッテリの充電を行うバッテリステーション等において、電動工具に使用されるバッテリを充電すればよい。
 本発明は、バッテリに利用することができる。
 10  バッテリ
 11a 内部環境情報取得部
 11b 外部環境情報取得部
 17  ケース(外側ケース)
 21  制御部(情報処理装置)
 211 出力情報取得部(バッテリ環境情報取得部)
 212 損傷算出部

Claims (26)

  1.  一つまたは複数のセルを収納する外側ケースと、
     前記外側ケースの外部において、所定の外部環境情報を取得する外部環境情報取得部と、
     前記外側ケースの内部において、所定の内部環境情報を取得する内部環境情報取得部と、を備えたバッテリ。
  2.  前記外部環境情報取得部と前記内部環境情報取得部が同種のセンサであることを特徴とする
    請求項1に記載のバッテリ。
  3.  前記外部環境情報取得部は、1又は複数の温度センサを有し、
     前記所定の外部環境情報は、前記外側ケースの外部における温度であり、
     前記内部環境情報取得部は、1又は複数の温度センサを有し、
     前記所定の内部環境情報は、前記外側ケースの内部における温度である、
    請求項2に記載のバッテリ。
  4.  前記外部環境情報取得部と前記内部環境情報取得部が異種のセンサであることを特徴とする、
    請求項1に記載のバッテリ。
  5.  前記外部環境情報取得部は、1又は複数の日照センサを有し、
     前記所定の外部環境情報は、前記外側ケースへの日照であり、
     前記内部環境情報取得部は、1又は複数の温度センサを有し、
     前記所定の内部環境情報は、前記外側ケースの内部における温度である、
    請求項4に記載のバッテリ。
  6.  前記内部環境情報取得部は、
     前記セルから前記外側ケースの壁面までの間に配置された複数の内部環境情報取得センサを有する、
    請求項1、2または4に記載のバッテリ。
  7.  前記外側ケースの内部に配置され前記1つまたは複数のセルを囲むように形成されたセル格納ケースを更に備え、
     前記複数の内部環境情報取得センサの少なくとも1つは、前記セル格納ケースの内部であって前記セルに近接して配置され、
     前記複数の内部環境情報取得センサの少なくとも1つは、前記外側ケースの内部であって前記セル格納ケースの外部に配置されている、
    請求項6に記載のバッテリ。
  8.  前記外部環境情報取得部によって取得された前記所定の外部環境情報と、前記内部環境情報取得部によって取得された前記所定の内部環境情報を、前記バッテリの環境情報を分析する情報処理装置へ送信する通信部を更に備えた、
    請求項1に記載のバッテリ。
  9.  前記情報処理装置は、クラウドコンピューティングにおける仮想サーバである、
    請求項8に記載のバッテリ。
  10.  請求項1~9のいずれか1項に記載のバッテリと、
     情報処理装置と、を備え、
     前記情報処理装置は、
     前記外部環境情報取得部から前記所定の外部環境情報を取得するとともに、前記内部環境情報取得部から前記所定の内部環境情報を取得するバッテリ環境情報取得部と、
     前記バッテリ環境情報取得部が取得した前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの環境情報を分析する環境情報分析部と、を有する、
    システム。
  11.  前記環境情報分析部は、
     前記バッテリ環境情報取得部が取得した前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの損傷度を算出する損傷算出部を有する、
    請求項10に記載のシステム。
  12.  前記環境情報分析部は、
     前記損傷算出部によって算出された前記損傷度に基づいて、前記バッテリの使用の可否を判定する使用可否判定部を更に有する、
    請求項11に記載のシステム。
  13.  前記環境情報分析部は、
     前記バッテリ環境情報取得部が取得した前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの使用状態を判定する使用状態判定部を有する、
    請求項10に記載のシステム。
  14.  前記外部環境情報取得部は、温度センサを有し、
     前記所定の外部環境情報は、前記外側ケースの外部における温度であり、
     前記内部環境情報取得部は、前記セルから前記外側ケースの壁面の間に配置された1つまたは複数の温度センサを有し、
     前記所定の内部環境情報は、前記外側ケースの内部における温度であり、
     前記環境情報分析部は、前記外部環境情報取得部が有する温度センサおよび前記内部環境情報取得部が有する温度センサの検出値に基づいて、前記セルの温度を推定する、
    請求項10に記載のシステム。
  15.  バッテリの外側ケースの外部において、所定の外部環境情報を取得する外部環境情報取得部と、
     前記外側ケースの内部において、所定の内部環境情報を取得する内部環境情報取得部と、
     前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの損傷度を算出する損傷算出部と、
    を備えた、バッテリ損傷度算出装置。
  16.  1つまたは複数のセルを収納する外側ケースを備えたバッテリを管理するバッテリ管理方法であって、
     前記外側ケースの外部における所定の外部環境情報および内部における所定の内部環境情報を取得する環境情報取得ステップと、
     前記環境情報取得ステップにおいて取得された前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの環境情報を分析する環境情報分析ステップと、を備えた、
    バッテリ管理方法。
  17.  前記環境情報分析ステップは、
     前記環境情報取得ステップにおいて取得した前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの損傷度を算出する損傷度算出ステップと、
     前記損傷度算出ステップによって算出された前記損傷度に基づいて、前記バッテリの使用の可否を判定する使用可否判定ステップと、を有する、
    請求項16に記載のバッテリ管理方法。
  18.  前記環境情報分析ステップは、
     前記環境情報取得ステップにおいて取得された前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの使用状態を判定する使用状態判定ステップを有する、
    請求項16に記載のバッテリ管理方法。
  19.  前記所定の外部環境情報は、前記外側ケースの外部の温度であり、
     前記所定の内部環境情報は、前記外側ケースの内部の温度であり、
     前記環境情報分析ステップは、
     前記環境情報取得ステップにおいて取得した前記外側ケースの外部の温度、および、前記外側ケースの内部の温度を用いて、前記セルの内部の温度を推定するセル内温度推定ステップと、
     前記セル内温度推定ステップにおいて推定した前記セルの内部の温度の推定結果から、前記バッテリの損傷度を算出する損傷度算出ステップと、を有する、
    請求項16に記載のバッテリ管理方法。
  20.  1つまたは複数のセルを収納する外側ケースを備えたバッテリを管理するバッテリ管理方法プログラムであって、
    バッテリの外部における所定の外部環境情報および内部における所定の内部環境情報を取得する環境情報取得ステップと、
     前記環境情報取得ステップにおいて取得された前記所定の外部環境情報および前記所定の内部環境情報を用いて、前記バッテリの環境情報を分析する環境情報分析ステップと、を備えた、バッテリ管理方法をコンピュータに実行させるバッテリ管理プログラム。
  21.  請求項20に記載のバッテリ管理プログラムを記録した記録媒体であって、コンピュータにより処理可能な記録媒体。
  22.  複数のバッテリを貸し出し可能なシステムにおいて、単体で持ち運びされるバッテリであって、
     一つまたは複数のセルを収納する外側ケースと、
     前記外側ケースの外部において、所定の外部環境情報を取得す
    る外部環境情報取得部と、を備えた、バッテリ。
  23.  前記外部環境情報取得部によって取得された前記所定の外部環境情報を、前記バッテリの環境情報を分析する情報処理装置へ送信する通信部を更に備えた、
    請求項22に記載のバッテリ。
  24.  前記情報処理装置は、クラウドコンピューティングにおける仮想サーバである、
    請求項23に記載のバッテリ。
  25.  前記外部環境情報取得部によって取得された前記所定の外部環境情報を記憶する記憶部を更に備えた、
    請求項22に記載のバッテリ。
  26.  前記外部環境情報取得部は、温度センサ、湿度センサ、日照センサ、照度センサ、画像センサ、ガスセンサ、音波センサ、磁気センサ、電波センサ、および水没センサのうち少なくとも1つを有する、請求項22に記載のバッテリ。
PCT/JP2016/052165 2015-03-12 2016-01-26 バッテリ、システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体 WO2016143400A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/555,033 US10686225B2 (en) 2015-03-12 2016-01-26 Battery, system, battery damage calculation device, battery management method, battery management program, and recording medium
JP2017504899A JP6540792B2 (ja) 2015-03-12 2016-01-26 システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体
MYPI2017703150A MY183607A (en) 2015-03-12 2016-01-26 Battery, system, battery damage detection device, battery management method, battey management program, and recording medium
EP16761372.8A EP3249736A4 (en) 2015-03-12 2016-01-26 Battery, system, battery damage detection device, battery management method, battery management program, and recording medium
PH12017501572A PH12017501572A1 (en) 2015-03-12 2017-08-31 Battery, system, battery damage calculation device, battery management method, battery management program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015049615 2015-03-12
JP2015-049615 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016143400A1 true WO2016143400A1 (ja) 2016-09-15

Family

ID=56880341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052165 WO2016143400A1 (ja) 2015-03-12 2016-01-26 バッテリ、システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体

Country Status (7)

Country Link
US (1) US10686225B2 (ja)
EP (1) EP3249736A4 (ja)
JP (1) JP6540792B2 (ja)
MY (1) MY183607A (ja)
PH (1) PH12017501572A1 (ja)
TW (1) TWI607616B (ja)
WO (1) WO2016143400A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098056A (ja) * 2016-12-14 2018-06-21 株式会社デンソー 電池装置
JP2019040700A (ja) * 2017-08-23 2019-03-14 株式会社デンソー 電池パック
KR102051810B1 (ko) * 2019-09-06 2019-12-04 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 방법 및 장치
WO2020045499A1 (ja) * 2018-08-28 2020-03-05 ミネベアミツミ株式会社 電池パック
JP2020034536A (ja) * 2018-08-28 2020-03-05 ミネベアミツミ株式会社 電池パック
JP2020104587A (ja) * 2018-12-26 2020-07-09 川崎重工業株式会社 バッテリパックおよびそれを備える移動体
CN111602263A (zh) * 2018-03-22 2020-08-28 宝马股份公司 用于机动车的具有用于检测高压电池损坏的检测设备的高压电池、用于检测高压电池损坏的方法以及机动车
KR20210029639A (ko) * 2019-09-06 2021-03-16 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 장치
CN114447455A (zh) * 2022-02-10 2022-05-06 上海汽车集团股份有限公司 一种温度测量方法及装置
JP2023504687A (ja) * 2020-10-14 2023-02-06 エルジー エナジー ソリューション リミテッド モジュール変形度推定装置及び方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143399A1 (ja) * 2015-03-12 2016-09-15 オムロン株式会社 バッテリ、システム、バッテリ管理方法、バッテリ管理プログラムおよび記録媒体
DE102018214984A1 (de) * 2018-09-04 2020-03-05 Robert Bosch Gmbh Verfahren zur Ermittlung einer Umgebungstemperatur einer ersten elektrischen Energiespeichereinheit im Verbund mit zweiten elektrischen Energiespeichereinheiten sowie entsprechende Vorrichtung, Computerprogramm und maschinenlesbares Speichermedium
DE102019213054A1 (de) * 2019-08-29 2021-03-04 Audi Ag Verfahren zum Ermitteln einer potentiellen Schädigung einer Fahrzeugbatterie sowie Kraftfahrzeug mit einer Fahrzeugbatterie
KR102395518B1 (ko) * 2020-03-06 2022-05-09 (주)에스엔 아크 감시 기능을 가지는 에너지 저장 장치
DE102020210359A1 (de) 2020-08-14 2022-02-17 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriezelle mit Feuchtigkeitssensor
CN113269087B (zh) * 2021-05-25 2023-08-25 北京亿华通科技股份有限公司 一种基于机器学习识别燃料电池干湿模式的方法和装置
CN117723976A (zh) * 2022-09-09 2024-03-19 霍尼韦尔国际公司 用于利用传感器事件的时间序列来确定热失控事件的原因的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258175A (ja) * 2000-03-14 2001-09-21 Hitachi Ltd 電力貯蔵用二次電池の利用システムおよび利用方法
JP2005302337A (ja) * 2004-04-07 2005-10-27 Aichi Electric Co Ltd バッテリーの再生・流通システムおよび該システムを実現するプログラム
JP2011118638A (ja) * 2009-12-03 2011-06-16 Nec Corp 電池レンタルシステムのサーバ、方法、プログラム、及び、携帯電子機器
JP2013009531A (ja) * 2011-06-24 2013-01-10 Yoshiaki Shiyafu 蓄電池監視システム及び蓄電池監視方法、サーバ装置及び蓄電池制御装置並びにサーバ装置用プログラム及び蓄電池制御装置用プログラム
WO2013140781A1 (ja) * 2012-03-19 2013-09-26 パナソニック株式会社 蓄電池監視方法、蓄電池監視システム、および、蓄電池システム
WO2013161540A1 (ja) * 2012-04-23 2013-10-31 株式会社日立製作所 電池システムのメンテナンス管理システム及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055450A (ja) * 2005-08-24 2007-03-08 Fuji Heavy Ind Ltd 蓄電デバイスの劣化状態推定システム
US8831904B2 (en) 2009-08-05 2014-09-09 Texas Instruments Incorporated Cell based temperature monitoring
JP5912450B2 (ja) * 2011-11-25 2016-04-27 トヨタ自動車株式会社 蓄電装置、電池温度調節方法
EP2641783B1 (en) 2012-03-20 2016-04-20 Samsung SDI Co., Ltd. Battery pack and method of controlling the same
US9231440B2 (en) 2012-04-18 2016-01-05 Samsung Sdi Co., Ltd. Power supply apparatus and controlling method of the same
TWM443328U (en) 2012-05-31 2012-12-11 Emerald Battery Technologies Co Ltd Cell monitoring and protection device and system thereof
JP6036443B2 (ja) 2013-03-21 2016-11-30 株式会社豊田自動織機 電池パック
US20140342193A1 (en) * 2013-05-17 2014-11-20 Tenergy Corporation Smart battery system
US9385355B2 (en) * 2013-07-30 2016-07-05 Johnson Controls Technology Company System and method for crimping interconnection of battery cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258175A (ja) * 2000-03-14 2001-09-21 Hitachi Ltd 電力貯蔵用二次電池の利用システムおよび利用方法
JP2005302337A (ja) * 2004-04-07 2005-10-27 Aichi Electric Co Ltd バッテリーの再生・流通システムおよび該システムを実現するプログラム
JP2011118638A (ja) * 2009-12-03 2011-06-16 Nec Corp 電池レンタルシステムのサーバ、方法、プログラム、及び、携帯電子機器
JP2013009531A (ja) * 2011-06-24 2013-01-10 Yoshiaki Shiyafu 蓄電池監視システム及び蓄電池監視方法、サーバ装置及び蓄電池制御装置並びにサーバ装置用プログラム及び蓄電池制御装置用プログラム
WO2013140781A1 (ja) * 2012-03-19 2013-09-26 パナソニック株式会社 蓄電池監視方法、蓄電池監視システム、および、蓄電池システム
WO2013161540A1 (ja) * 2012-04-23 2013-10-31 株式会社日立製作所 電池システムのメンテナンス管理システム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249736A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098056A (ja) * 2016-12-14 2018-06-21 株式会社デンソー 電池装置
JP2019040700A (ja) * 2017-08-23 2019-03-14 株式会社デンソー 電池パック
CN111602263A (zh) * 2018-03-22 2020-08-28 宝马股份公司 用于机动车的具有用于检测高压电池损坏的检测设备的高压电池、用于检测高压电池损坏的方法以及机动车
CN111602263B (zh) * 2018-03-22 2023-01-13 宝马股份公司 用于机动车的具有用于检测高压电池损坏的检测设备的高压电池及方法以及机动车
JP7008618B2 (ja) 2018-08-28 2022-01-25 ミネベアミツミ株式会社 電池パック
JP7189293B2 (ja) 2018-08-28 2022-12-13 ミネベアミツミ株式会社 電池パック
JP2020034536A (ja) * 2018-08-28 2020-03-05 ミネベアミツミ株式会社 電池パック
WO2020045499A1 (ja) * 2018-08-28 2020-03-05 ミネベアミツミ株式会社 電池パック
JP2022008536A (ja) * 2018-08-28 2022-01-13 ミネベアミツミ株式会社 電池パック
CN112913068A (zh) * 2018-08-28 2021-06-04 美蓓亚三美株式会社 电池组
JP2020104587A (ja) * 2018-12-26 2020-07-09 川崎重工業株式会社 バッテリパックおよびそれを備える移動体
JP7205989B2 (ja) 2018-12-26 2023-01-17 カワサキモータース株式会社 バッテリパックおよびそれを備える移動体
KR102299116B1 (ko) * 2019-09-06 2021-09-07 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 장치
KR20210029639A (ko) * 2019-09-06 2021-03-16 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 장치
WO2021045578A1 (ko) * 2019-09-06 2021-03-11 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 방법 및 장치
KR102051810B1 (ko) * 2019-09-06 2019-12-04 인셀(주) 통합 환경 감시 장치를 이용한 배터리 보호 방법 및 장치
JP2023504687A (ja) * 2020-10-14 2023-02-06 エルジー エナジー ソリューション リミテッド モジュール変形度推定装置及び方法
JP7452783B2 (ja) 2020-10-14 2024-03-19 エルジー エナジー ソリューション リミテッド モジュール変形度推定装置及び方法
CN114447455A (zh) * 2022-02-10 2022-05-06 上海汽车集团股份有限公司 一种温度测量方法及装置

Also Published As

Publication number Publication date
US20180040920A1 (en) 2018-02-08
JPWO2016143400A1 (ja) 2018-01-11
PH12017501572A1 (en) 2018-03-12
TW201633652A (zh) 2016-09-16
MY183607A (en) 2021-03-02
EP3249736A4 (en) 2018-07-11
JP6540792B2 (ja) 2019-07-10
TWI607616B (zh) 2017-12-01
US10686225B2 (en) 2020-06-16
EP3249736A1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6489204B2 (ja) バッテリ、システム、バッテリ管理方法、バッテリ管理プログラムおよび記録媒体
WO2016143400A1 (ja) バッテリ、システム、バッテリ損傷度算出装置、バッテリ管理方法、バッテリ管理プログラム、および記録媒体
US9696214B2 (en) Portable electronic device with inside temperature calibation
EP2910938B1 (en) Portable electronic device
EP2802128B1 (en) Self-calibrating temperature sensor within a mobile terminal device
US20150349570A1 (en) Method for operating a portable electronic device
US20110215940A1 (en) Free fall detection system for protecting hard drives in mobile devices
JP6888765B2 (ja) バッテリー温度推定装置及び方法
CN103868610A (zh) 温度校准方法、装置及设备
CN106772091A (zh) 电池容量值的更新方法、装置及终端
CN105469083A (zh) 指纹图像处理方法、装置和终端设备
CN211576483U (zh) 用于检测冷却剂泄漏的装置和电池组
CN104502854A (zh) 一种终端剩余电量显示方法及装置
CN108474823A (zh) 一种估算温度的方法及装置
CN110492563A (zh) 电池管理方法、装置、设备及介质
CA2999899C (en) System and methods for commissioning and maintaining industrial equipment
JP2016149271A (ja) 電子機器、及び状態通知プログラム
CN108429850A (zh) 跌落处理方法及相关产品
CN104166089B (zh) 六氟化硫密度继电器校验仪气源系统
CN109921104B (zh) 一种电芯状态监测方法及装置
CN114166375A (zh) 异常温度测试数据的确定方法、装置及电子设备
CN107678873A (zh) 进液保护方法、装置、介质及应用所述方法的电子设备
CN117665584A (zh) 电芯热失控预警规则生成方法、装置、设备和介质
CN117250517A (zh) 一种基于电容变化检测的电池包安全检测方法及系统
CN109710076A (zh) 一种电路板自动检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761372

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016761372

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017504899

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555033

Country of ref document: US

Ref document number: 12017501572

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE