WO2016143085A1 - オートサンプラ - Google Patents

オートサンプラ Download PDF

Info

Publication number
WO2016143085A1
WO2016143085A1 PCT/JP2015/057100 JP2015057100W WO2016143085A1 WO 2016143085 A1 WO2016143085 A1 WO 2016143085A1 JP 2015057100 W JP2015057100 W JP 2015057100W WO 2016143085 A1 WO2016143085 A1 WO 2016143085A1
Authority
WO
WIPO (PCT)
Prior art keywords
autosampler
sample
sample rack
condensed water
cover member
Prior art date
Application number
PCT/JP2015/057100
Other languages
English (en)
French (fr)
Inventor
眞巳 冨田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201580077686.7A priority Critical patent/CN107430102B/zh
Priority to US15/557,345 priority patent/US11209449B2/en
Priority to JP2017504497A priority patent/JP6402821B2/ja
Priority to PCT/JP2015/057100 priority patent/WO2016143085A1/ja
Publication of WO2016143085A1 publication Critical patent/WO2016143085A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/026Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/12Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the preparation of the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/24Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the treatment of the fractions to be distributed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1081Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
    • G01N35/1083Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane with one horizontal degree of freedom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8804Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 automated systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00445Other cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00455Controlling humidity in analyser

Definitions

  • the present invention relates to an autosampler having a cooling unit for cooling a sample liquid in a sample container placed on a sample rack.
  • a sample liquid is automatically collected from a plurality of sample bottles (vials) placed on a sample rack and introduced into the analyzer. Is used (see, for example, Patent Document 1).
  • the sample liquid may be cooled using a sample cooling unit in order to prevent the sample liquid from volatilizing or deteriorating.
  • the sample liquid is cooled, for example, by bringing the heat transfer block cooled by the Peltier element into contact with the bottom surface of the sample rack and cooling the vial placed on the sample rack.
  • the temperature inside the autosampler decreases and condensation occurs.
  • condensation is likely to occur in the heat transfer block cooled to a low temperature and in the vicinity thereof. If the water condensed in this way flows down the wall of the heat transfer block and flows out to the periphery, a part of it flows into the part that houses the electrical system, causing a short circuit or causing rust in the housing Occurs.
  • a dehumidifying mechanism is arranged to prevent the generation of condensed water by dehumidifying the air inside the autosampler. Yes.
  • a high-performance dehumidifying mechanism must be installed, and the autosampler becomes expensive.
  • the problem to be solved by the present invention is an autosampler having a sample cooling unit for cooling a sample solution, and is capable of discharging condensed water without using an expensive configuration like a high-performance dehumidifier. It is to provide an autosampler that can.
  • the autosampler according to the present invention made to solve the above problems is a) a sample cooling unit that cools the sample stored in the sample rack by being in thermal contact with the bottom surface of the sample rack; b) a condensed water receiving portion provided below the sample rack and receiving water condensed at the periphery of the sample rack and having at least one hole formed in the bottom surface; c) a drainage channel formed so that a droplet falling from the at least one hole flows.
  • the sample cooling unit can be, for example, a plate-like or block-like aluminum member cooled by a Peltier element or the like.
  • the present invention has been made by paying attention to the fact that condensed water is locally generated inside the autosampler, and solves the conventional problems by reliably discharging the condensed water. That is, the problem caused by the dew condensation water is solved without using an expensive dehumidifying mechanism for dehumidifying the entire air inside the autosampler as in the prior art.
  • the air in the autosampler where the sample solution is collected contains a lot of water vapor, and when the sample solution is cooled, condensation occurs locally in the case where the sample solution is cooled to a low temperature.
  • the water condensed around the sample rack cooled by the sample cooling part flows down to the condensed water receiving part located below the sample rack and drains from the hole of the condensed water receiving part. Guided to the flow path. Therefore, the dew condensation water in the autosampler can be surely discharged.
  • the autosampler according to the present invention further includes: d) It is preferable to include a cover member that is disposed between the sample rack and the sample cooling unit and covers the sample cooling unit from above, and at least the upper surface has heat conductivity.
  • the sample cooling unit is not exposed to the inside of the autosampler, and thus condensation occurs on the cover member that covers the sample cooling unit. Therefore, by arranging the cover member so that the condensed water generated in the cover member flows down the side surface of the cover member to the condensed water receiving portion, the condensed water can be discharged more reliably. In addition, by adjusting the shape of the cover member as appropriate, even if a slight shift occurs in the relative positional relationship of each member, the condensed water flowing down from the side surface of the cooling unit cover member flows into the drainage flow path, Condensed water can be discharged reliably.
  • the dew condensation water receiving portion has a slope that decreases toward the one or more holes. Thereby, the dew condensation water which flowed down to the dew condensation water receiving part can be efficiently led to the drainage channel.
  • the schematic block diagram of one Example of the autosampler which concerns on this invention The figure explaining the structure of the recessed part in a present Example. The figure explaining the shape of the recessed part of the dew condensation water receiving part in a present Example. The figure explaining the shape of the drainage channel in a present Example.
  • the schematic block diagram of another Example of the autosampler which concerns on this invention The schematic block diagram of the detachable autosampler which is another Example of the autosampler which concerns on this invention.
  • FIG. 1 shows a schematic configuration of the autosampler of this embodiment.
  • a sample rack mounting portion 12 for mounting the sample rack 11 is provided on the inner side surface of the autosampler 1.
  • a sampling needle (hereinafter simply referred to as “needle”) 17 for collecting a sample solution from each vial 16 placed on the sample rack 11, and the needle 17 in the horizontal direction
  • the moving mechanism 18 which moves to a perpendicular direction is provided.
  • the sample collected by the needle 17 flows into a flow path pipe (not shown) made of flexible resin or the like, and is introduced into an analyzer such as a liquid chromatograph.
  • the autosampler 1 is also provided with flow path switching valves 191 and 192 for switching such flow paths.
  • a cooling unit cover member 3 (hereinafter simply referred to as a “cover member”) on which the sample rack 11 is placed and a condensed water receiving unit 4 are disposed.
  • FIG. 2 shows a schematic diagram of the condensed water receiving portion 4.
  • the condensed water receiving portion 4 includes a recess 42 that surrounds the two openings 41 formed in the center, and an inclined portion 43 that is located outside the recess 42 and decreases toward the recess 42.
  • a metal block 21 made of, for example, aluminum described later is inserted into the two openings 41.
  • the concave portion 42 has one or more holes 44 at its four corners and long side portions.
  • the bottom surface of the recess 42 is inclined so as to become lower toward the hole 44.
  • the cooling mechanism 2 includes a metal block 21 that is cooled by a Peltier element (not shown) and a drain passage 22.
  • the metal block 21 is inserted into the opening 41 of the condensed water receiving unit 4 from below.
  • the cover member 3 made from aluminum is attached so that the upper surface and side surface of the metal block 21 may be covered, and it fixes with a screw etc. from upper direction.
  • the cover member 3 is attached, the lower end of the side peripheral portion of the cover member 3 comes into contact with the upper surface of the concave portion 42 of the condensed water receiving portion 4, and the internal space of the autosampler 1 is blocked from the outside.
  • the drainage channel 22 of the present embodiment is formed in a U-shape, for example, in plan view as shown in FIG. However, the shape does not have to be U-shaped as long as the position indicated by the broken-line circle is located immediately below the hole 44 of the recess 42. Also, as shown in the CC ′ cross-sectional view (right) in FIG. 4, the drainage flow path 22 is inclined so as to become lower from the back of the autosampler toward the front, and at the tip of the inclination is a cooling mechanism. A flow path for draining to the outside of 2 is formed.
  • a path through which condensed water flows when the sample solution is cooled in the autosampler 1 of the present embodiment will be described.
  • the metal block 21 is cooled to a low temperature by the Peltier element, and the sample rack 11 is cooled via the cover member 3.
  • the sample solution in the vial 16 placed on the sample rack 11 is cooled.
  • the water vapor present inside the autosampler 1 where the sample liquid is collected and the like is condensed to cause dew condensation.
  • condensation occurs in the cover member 3 cooled to a low temperature and in the vicinity thereof.
  • the water thus condensed flows down along the side surface of the cover member 3 and flows into the concave portion 42 of the condensed water receiving portion 4 located in contact with the lower end of the side surface of the cover member 3.
  • Condensation generated on the inner wall surface or the like of the autosampler 1 flows down along the wall surface or the like, is guided to the recess 42 through the inclined portion 43 of the condensed water receiving portion 4, and is discharged in the same manner as described above.
  • the bottom surface of the recess 42 is inclined toward the hole 44. Accordingly, the water flowing into the recess 42 reaches the hole 44 and falls. As described with reference to FIG. 4, the drainage flow path 22 is formed immediately below the hole 44, and the dew condensation water falls into the drainage flow path 22 (the position indicated by the dotted circle in FIG. 4). The condensed water that has fallen into the drainage channel 22 flows forward along the inclination of the channel, and is discharged to the outside of the cooling mechanism 2 along the channel.
  • the dew condensation water receiving portion 4 is provided with the concave portion 42 provided so as to surround the entire circumference of the opening 41 and the inclined portion 43 formed in the periphery thereof, but the inclined portion which is lowered from the outside toward the opening; It can also comprise so that it may have a wall standing upright at the tip of an inclination.
  • the condensed water receiving portion 4 is placed under the cover member 3 is shown.
  • the condensed water receiving portion 4 is placed on the cover member 3. The same effect can be obtained.
  • the cooling mechanism 2 is disposed inside the autosampler 1, which is a so-called integrated autosampler.
  • the configuration of the present invention is configured such that the cooling mechanism is detachable from the autosampler body. It can also be used in so-called detachable autosamplers.
  • FIG. 6 shows an example of a detachable autosampler 60.
  • This autosampler 60 is configured such that an autosampler main body 61 having a sample rack mounting portion 12 and a condensed water receiving portion 4 and a cooling mechanism 62 having a metal block 21 and a drainage channel 42 are detachable. Is different from the autosampler 1 described above.
  • the cooling mechanism 62 can be attached only when analyzing a sample solution that needs to be cooled, so that it can meet a wider range of user needs.
  • the cover member 3 and the dew condensation water receiving portion 4 are formed of independent members. However, they can be formed integrally.
  • FIG. 7 shows an example of such a cover integrated member 5.
  • the cover integrated member 5 is an aluminum integrated member, for example, and includes a cover portion 51 including an upper surface portion on which the sample rack 11 is placed and a side peripheral portion for allowing condensed water to flow down, and a side peripheral portion of the cover portion 51. It has the inclination part 53 connected from the lower end, and the hole 54 provided in at least one place.
  • FIG. 7 shows a configuration in which the inclined portion 53 is connected to the lower end of the side peripheral portion.
  • the above-described concavity 42 and the inclined portion 43 are arranged in this order at the lower end of the side peripheral portion, and the above-described dew condensation water receiving portion. 4 can be configured.
  • the metal block 21 cooled by the Peltier element is used as the cooling member and the aluminum cover member 3 is used.
  • the cover member 3 should just be able to connect the cooling member 21 and the sample rack 11 thermally, and the side surface may be resin.
  • the cover member 3 only needs to have a shape having a side surface through which condensed water flows and flows, and in addition to a shape having a rectangular cross section as in the above embodiment, various types such as a shape having a trapezoidal cross section are used. be able to.
  • the number (two places) of the openings 41 can be changed as appropriate (when the cover integrated member is used, no opening is provided), and the number of the cooling members 21 and the number of the cover members 3 are also appropriately determined accordingly. Can be changed.
  • the cover member 3 is used.
  • the cover member 3 may be used without using the cover member 3.
  • the gap between the metal block 21 and the opening 41 of the condensed water receiving portion 4 is closed with a heat-insulating seal member or the like, so that the part that accommodates the electrical system is used.
  • the condensed water can be discharged from the hole 44 of the condensed water receiving portion 4 to the drainage flow path 22 while preventing the condensed water from flowing in.
  • FIG. 1 in the configuration of FIG.
  • the condensed water receiving portion 4 is placed on the upper surface of the metal block 21, and the metal block 21 is formed on the bottom surface of the upper housing of the autosampler 1 for inserting the metal block 21.
  • the condensed water can be discharged while preventing the condensed water from flowing into a portion that houses the electrical system.
  • the autosampler used in the liquid chromatograph has been described.
  • the autosampler can be used in various analyzers that analyze sample liquids using the autosampler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 サンプルラック11の底面と熱的に接触することにより該サンプルラック11に収容された試料を冷却する試料冷却部21と、サンプルラック11の下方に設けられ、該サンプルラック11の周辺で結露した水を受容する、底面に少なくとも1つの孔44が形成された結露水受容部4と、前記少なくとも1つの孔44から落下する液滴が流れ込むように形成された排水流路22と、を備えるオートサンプラを提供する。

Description

オートサンプラ
 本発明は、サンプルラックに載置された試料容器内の試料液を冷却する冷却部を有するオートサンプラに関する。
 通常、液体クロマトグラフ等の分析装置を用いた複数試料の連続分析では、サンプルラックに載置された複数の試料瓶(バイアル)から試料液を自動的に採取して該分析装置に導入するためのオートサンプラが使用される(例えば特許文献1を参照)。
 オートサンプラでは、試料液の揮発や変質を防ぐために、試料冷却部を用いて試料液を冷却する場合がある。試料液の冷却は、例えば、ペルチェ素子により冷却された伝熱ブロックをサンプルラックの底面に当接させ、サンプルラックに載置されたバイアルを冷却することにより行う。
 このようにして試料液を冷却すると、オートサンプラ内部の温度が低下して結露が生じる。特に、低温に冷却された伝熱ブロックやその付近に結露が生じやすい。こうして結露した水が伝熱ブロックの壁を流下し、周辺に流れ出すと、その一部が電気系統を収容する部分に流れ込んで短絡を生じさせたり、筐体内に錆を発生させたりする、という問題が生じる。
特開2011-252718号公報
 上記の問題を解消するために、試料冷却部を備えたオートサンプラでは、従来、例えば除湿機構を配置してオートサンプラ内部の空気を除湿することで結露水の発生を防ぐなどの対策がなされている。しかし、結露水の発生を防ぐにはオートサンプラ内の空気全体を除湿する必要があり、そのためには高性能の除湿機構を搭載しなければならず、オートサンプラが高価なものになってしまう。
 本発明が解決しようとする課題は、試料液を冷却するための試料冷却部を有するオートサンプラであって、高性能の除湿装置のように高価な構成を用いることなく結露水を排出することができるオートサンプラを提供することである。
 上記課題を解決するために成された本発明に係るオートサンプラは、
 a) サンプルラックの底面と熱的に接触することにより該サンプルラックに収容された試料を冷却する試料冷却部と、
 b) 前記サンプルラックの下方に設けられ、該サンプルラックの周辺で結露した水を受容する、底面に少なくとも1つの孔が形成された結露水受容部と、
 c) 前記少なくとも1つの孔から落下する液滴が流れ込むように形成された排水流路と
 を備えることを特徴とする。
 前記試料冷却部は、例えば、ペルチェ素子等により冷却される板状やブロック状のアルミニウム部材とすることができる。
 本発明は、オートサンプラ内部で結露水が局所的に発生することに着目してなされたものであり、そうした結露水を確実に排出することで従来の問題を解決する。つまり、従来のようにオートサンプラ内部の空気全体を除湿するための高価な除湿機構を用いることなく、結露水によって起こる問題を解消する。
 試料液を採取等が行われるオートサンプラ内の空気には多くの水蒸気が含まれ、試料液を冷却すると筐体内で低温に冷却された場所で局所的に結露が生じる。本発明に係るオートサンプラでは、試料冷却部によって冷却されるサンプルラックの周辺で結露した水は、該サンプルラックの下方に位置する結露水受容部に流下し、該結露水受容部の孔から排水流路に導かれる。そのため、オートサンプラ内の結露水を確実に排出することができる。
 本発明に係るオートサンプラは、さらに、
 d) 前記サンプルラックと前記試料冷却部の間に配置され、該試料冷却部を上方から覆う、少なくとも上面が伝熱性を有するカバー部材
 を備えることが好ましい。
 このように、カバー部材を用いて試料冷却部を上方から覆う構成では、試料冷却部がオートサンプラの内部に露出しないため、該試料冷却部を覆うカバー部材に結露が生じる。従って、カバー部材に発生した結露水が該カバー部材の側面を伝って結露水受容部に流下するようにカバー部材を配置することで、より確実に結露水を排出することができる。
 また、カバー部材の形状を適宜に調整することによって、各部材の相対的な位置関係に多少のずれが生じても、冷却部カバー部材の側面から流下する結露水を排水流路に流れ込ませ、確実に結露水を排出することができる。
 前記結露水受容部は、前記1乃至複数の孔に向かって低くなる傾斜を有することが好ましい。これにより、結露水受容部に流下した結露水を効率よく排水流路に導くことができる。
 本発明に係るオートサンプラを用いることにより、高性能の除湿機構のように高価な構成を用いることなく、確実に結露水を排出することができる。
本発明に係るオートサンプラの一実施例の概略構成図。 本実施例における凹部の構成を説明する図。 本実施例における結露水受容部の凹部の形状を説明する図。 本実施例における排水流路の形状を説明する図。 本発明に係るオートサンプラの別の実施例の概略構成図。 本発明に係るオートサンプラのさらに別の実施例である着脱型のオートサンプラの概略構成図。 カバー部材と結露水受容部を一体的に構成した例を説明する図。
 本発明に係るオートサンプラの一実施例について、以下、図面を参照して説明する。
 図1に本実施例のオートサンプラの概略構成を示す。
 オートサンプラ1の内部の側面には、サンプルラック11を取り付けるサンプルラック取付部12が設けられている。また、オートサンプラ1の内部には、サンプルラック11上に載置された各バイアル16から試料液を採取するためのサンプリングニードル(以下単に「ニードル」と呼ぶ)17と、該ニードル17を水平方向及び鉛直方向に移動する移動機構18が設けられている。さらに、ニードル17で採取された試料は可撓性の樹脂等から成る流路配管(図示略)に流入し、液体クロマトグラフ等の分析装置へ導入される。オートサンプラ1には、こうした流路を切り替えるための流路切替バルブ191、192も設けられている。
 オートサンプラ1の底部には、サンプルラック11を載置する冷却部カバー部材3(以下、単に「カバー部材」という。)と、結露水受容部4が配置されている。
 図2に結露水受容部4の概略図を示す。結露水受容部4は、中央に形成された2つの開口41を取り囲む凹部42と、該凹部42の外側に位置し凹部42に向かって低くなる傾斜部43で構成されている。2つの開口41には後述する例えばアルミニウムで作られた金属ブロック21が挿入される。また、図3に示すように。凹部42は、その四隅やと、長辺部などに一つ以上の孔44を有している。図3のA-A’断面図(右)及びB-B’断面図(下)に示すように、凹部42の底面は、孔44に向かって低くなるように傾斜している。
 冷却機構2は、図示しないペルチェ素子により冷却される金属ブロック21と、排水流路22を備えている。
 金属ブロック21は、結露水受容部4の開口41に下方から差し込まれる。そして、金属ブロック21の上面と側面を覆うようにアルミニウム製のカバー部材3が取り付けられ上方からねじなどで固定される。カバー部材3を取り付けると、該カバー部材3の側周部の下端が結露水受容部4の凹部42の上面に当接し、オートサンプラ1の内部空間が外部から遮断される。
 本実施例の排水流路22は、図4に示すように例えば平面視でコの字状に形成されている。ただし、破線の丸印で示す位置が上記凹部42の孔44の直下に位置するように配置されていれば形状はコの字状でなくても良い。また、図4のC-C’断面図(右)に示すように、排水流路22は、オートサンプラの奥から手前に向かって低くなるように傾斜しており、傾斜の先には冷却機構2の外部に排水する流路が形成されている。
 本実施例のオートサンプラ1において試料液を冷却した場合に、結露した水が流れる経路を説明する。ペルチェ素子により金属ブロック21を低温に冷却し、カバー部材3を介してサンプルラック11を冷却する。これにより、サンプルラック11に載置されたバイアル16内の試料液が冷却される。すると、試料液の採取等が行われるオートサンプラ1の内部に存在する水蒸気が凝集して結露が生じる。特に、低温に冷却されたカバー部材3とその付近に集中的に結露が生じる。こうして結露した水は、カバー部材3の側面を伝って流下し、該カバー部材3の側面の下端に当接して位置する結露水受容部4の凹部42に流れ込む。なお、オートサンプラ1の内壁面等で生じた結露は、該壁面等を伝って流下して結露水受容部4の傾斜部43を通じて凹部42に導かれ、上記同様に排出される。
 図3により説明したとおり、凹部42の底面は孔44に向かって傾斜している。従って、凹部42に流れ込んだ水は孔44に到達して落下する。図4により説明したように、孔44の直下には排水流路22が形成されており、結露水は排水流路22(図4の破線の丸印の位置)に落下する。排水流路22に落下した結露水は、流路の傾斜に沿って手前方向に流れ、流路に沿って冷却機構2の外部に排出される。
 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
 上記実施例では結露水受容部4を開口41の全周を取り囲むように設けた凹部42とその周辺に形成した傾斜部43を備える構成としたが、外側から開口に向かって低くなる傾斜部と傾斜の先に立設する壁を有するように構成することもできる。
 また、上記実施例ではカバー部材3の下に結露水受容部4を載置した例を示したが、図5に示すように、カバー部材3の上に結露水受容部4を載置しても同様の効果が得られる。さらに、カバー部材3と結露水受容部4を一体的に構成しても良い。これらの場合、開口41は不要であり、カバー部材3の裏面に直接金属ブロック21の上面を熱的に接触させれば良い。
 また、上記実施例ではオートサンプラ1の内部に冷却機構2が配置された、いわゆる一体型のオートサンプラとしたが、本発明の構成は、冷却機構がオートサンプラ本体から着脱可能に構成された、いわゆる着脱型のオートサンプラにおいても用いることができる。
 図6に、着脱型のオートサンプラ60の一例を示す。このオートサンプラ60は、サンプルラック取り付け部12や結露水受容部4等を備えたオートサンプラ本体61と、金属ブロック21や排水流路42を備えた冷却機構62が着脱可能に構成されている点において、上述したオートサンプラ1と異なる。このオートサンプラ60では、冷却を必要とする試料液を分析する場合にのみ冷却機構62を取り付けることができるため、より幅広いユーザのニーズに応えることができる。
 また、上記実施例ではカバー部材3と結露水受容部4を独立の部材で構成したが、これらを一体的に構成することもできる。図7に、そのようなカバー一体部材5の一例を示す。カバー一体部材5は、例えばアルミニウム製の一体部材であり、サンプルラック11が載置される上面部及び結露水を流下させる側周部からなるカバー部51と、該カバー部51の側周部の下端から連接された傾斜部53と、少なくとも一箇所に設けられた孔54を有する。図7には、側周部の下端に傾斜部53が連接された構成を示したが、側周部の下端に上述した凹部42と傾斜部43を順に配置して、上述の結露水受容部4と同様に構成することもできる。
 上記実施例では、ペルチェ素子により冷却された金属ブロック21を冷却部材とし、アルミニウム製のカバー部材3を用いたが、他にも高い熱伝導性を有する銅などからなるものを用いることもできる。また、カバー部材3は冷却部材21とサンプルラック11を熱的に接続可能であればよく、側面は樹脂であってもよい。さらに、カバー部材3は、結露水が伝って流下する側面を有する形状であればよく、上記実施例のように矩形断面を有する形状のほか、例えば台形断面を有する形状等、種々のものを用いることができる。その他、開口41の数(2箇所)は適宜に変更することができ(カバー一体部材を用いる場合には開口を設けない)、冷却部材21の数やカバー部材3の数もこれに応じて適宜に変更することができる。
 上記実施例では、いずれもカバー部材3を用いたが、カバー部材3を用いずに構成することも可能である。例えば、図1の構成では、カバー部材3を用いる代わりに、金属ブロック21と結露水受容部4の開口41の隙間を断熱性のシール部材等で塞ぐことにより、電気系統を収容する部分等に結露水が流れ込むのを防止しつつ、結露水を結露水受容部4の孔44から排水流路22に排出することができる。また、図5の構成では、金属ブロック21の上面に結露水受容部4を載置し、金属ブロック21と、該金属ブロック21を挿入するためにオートサンプラ1の上部筐体の底面に形成した孔との隙間を断熱性のシール部材等で塞ぐことにより、電気系統を収容する部分等に結露水が流れ込むのを防止しつつ、結露水を排出することができる。
 上記実施例では、液体クロマトグラフにおいて用いられるオートサンプラについて説明したが、オートサンプラを用いて試料液を分析する、様々な分析装置に用いることができる。
1…オートサンプラ
 11…サンプルラック
 12…サンプルラック取付部
 16…バイアル
 17…ニードル
 18…移動機構
 191、192…流路切替バルブ
61…オートサンプラ本体
2…冷却機構
 21…金属ブロック(冷却部材)
 22…排水流路
3…冷却部カバー部材
4…結露水受容部
 41…開口
 42…凹部
 43…傾斜部
 44…孔
5…カバー一体部材
 51…カバー部
 53…傾斜部
 54…孔

Claims (5)

  1.  a) サンプルラックの底面と熱的に接触することにより該サンプルラックに収容された試料を冷却する試料冷却部と、
     b) 前記サンプルラックの下方に設けられ、該サンプルラックの周辺で結露した水を受容する、底面に少なくとも1つの孔が形成された結露水受容部と、
     c) 前記少なくとも1つの孔から落下する液滴が流れ込むように形成された排水流路と、
     を備えることを特徴とするオートサンプラ。
  2.  d) 前記サンプルラックと前記試料冷却部の間に配置され、該試料冷却部を上方から覆う、少なくとも上面が伝熱性を有するカバー部材
     を備えることを特徴とする請求項1に記載のオートサンプラ。
  3.  前記結露水受容部が、前記1乃至複数の孔に向かって低くなる傾斜を有することを特徴とする請求項1又は2に記載のオートサンプラ。
  4.  前記試料冷却部と前記排水流路を有する冷却機構が本体に着脱可能に構成されていることを特徴とする請求項1~3のいずれかに記載のオートサンプラ。
  5.  請求項1~4のいずれかに記載のオートサンプラを備えた液体クロマトグラフ。
PCT/JP2015/057100 2015-03-11 2015-03-11 オートサンプラ WO2016143085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580077686.7A CN107430102B (zh) 2015-03-11 2015-03-11 自动取样器
US15/557,345 US11209449B2 (en) 2015-03-11 2015-03-11 Autosampler
JP2017504497A JP6402821B2 (ja) 2015-03-11 2015-03-11 オートサンプラ
PCT/JP2015/057100 WO2016143085A1 (ja) 2015-03-11 2015-03-11 オートサンプラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057100 WO2016143085A1 (ja) 2015-03-11 2015-03-11 オートサンプラ

Publications (1)

Publication Number Publication Date
WO2016143085A1 true WO2016143085A1 (ja) 2016-09-15

Family

ID=56878570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057100 WO2016143085A1 (ja) 2015-03-11 2015-03-11 オートサンプラ

Country Status (4)

Country Link
US (1) US11209449B2 (ja)
JP (1) JP6402821B2 (ja)
CN (1) CN107430102B (ja)
WO (1) WO2016143085A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141860U (ja) * 1989-05-02 1990-11-29
JPH09281112A (ja) * 1996-04-17 1997-10-31 Shimadzu Corp 冷却器
JP2005291731A (ja) * 2004-03-31 2005-10-20 Fujifilm Techno Products Co Ltd 保冷庫および生化学分析装置
JP2011099705A (ja) * 2009-11-04 2011-05-19 Hitachi High-Technologies Corp サンプルラック
JP2013190245A (ja) * 2012-03-13 2013-09-26 Shimadzu Corp 試料冷却装置及びサンプリング装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1684502A (en) * 1926-07-19 1928-09-18 Nilson Gustaf Albin Shower receptor
US1766125A (en) * 1929-05-27 1930-06-24 Alfred H Jahns Bath cabinet
US4037427A (en) * 1971-05-21 1977-07-26 Kramer Doris S Refrigeration evaporators with ice detectors
US5147551A (en) 1990-04-20 1992-09-15 Dynatech Precision Sampling Corporation Solids and semi-solids sampling apparatus, method, and fluid injection apparatus
US5158184A (en) * 1992-01-10 1992-10-27 Rubbermaid Incorporated Dish rack and drain tray assembly
JPH10123141A (ja) * 1996-10-22 1998-05-15 Toa Medical Electronics Co Ltd 冷却装置およびそれを備えた分析装置
JP3422262B2 (ja) * 1998-08-28 2003-06-30 株式会社島津製作所 試料冷却装置
JP3763294B2 (ja) * 2002-10-03 2006-04-05 松下電器産業株式会社 分注装置
JP5471846B2 (ja) 2010-05-31 2014-04-16 株式会社島津製作所 液体試料導入装置及び液体試料導入方法
US8999241B2 (en) * 2011-03-16 2015-04-07 Sysmex Corporation Specimen analyzer
JP5949603B2 (ja) * 2013-03-08 2016-07-06 株式会社島津製作所 試料冷却装置
CN203422384U (zh) * 2013-08-23 2014-02-05 株式会社东芝 一种自动分析装置及其试药库

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141860U (ja) * 1989-05-02 1990-11-29
JPH09281112A (ja) * 1996-04-17 1997-10-31 Shimadzu Corp 冷却器
JP2005291731A (ja) * 2004-03-31 2005-10-20 Fujifilm Techno Products Co Ltd 保冷庫および生化学分析装置
JP2011099705A (ja) * 2009-11-04 2011-05-19 Hitachi High-Technologies Corp サンプルラック
JP2013190245A (ja) * 2012-03-13 2013-09-26 Shimadzu Corp 試料冷却装置及びサンプリング装置

Also Published As

Publication number Publication date
US11209449B2 (en) 2021-12-28
JPWO2016143085A1 (ja) 2017-09-28
US20180052184A1 (en) 2018-02-22
CN107430102A (zh) 2017-12-01
CN107430102B (zh) 2020-05-12
JP6402821B2 (ja) 2018-10-10

Similar Documents

Publication Publication Date Title
CN103308377B (zh) 试料冷却装置及采样装置
US9851282B2 (en) Sample cooling device, and autosampler provided with the same
JP5949603B2 (ja) 試料冷却装置
JP5103461B2 (ja) サンプルラック
JP5707253B2 (ja) 冷却試薬保管庫及び核酸分析装置
JP6402821B2 (ja) オートサンプラ
EP4119949A1 (en) Automated analyzer
JP2008039386A (ja) 還流凝縮器
JP5634061B2 (ja) 電子冷却器
US20090000763A1 (en) Heat Exchanger for a Transformer
JP6992927B1 (ja) バッテリケース及びこれを用いた蓄電池システム
CN110360795B (zh) 试剂锅盖及样本试剂装载装置
JP2006084366A (ja) 自動分析装置
JP6858037B2 (ja) 試薬保冷装置、自動分析装置及び保冷システム
JP7151650B2 (ja) ガス分析装置
JP2542208Y2 (ja) 分析用サンプル冷却装置及びそのサンプルホルダー
CN109425524A (zh) 恒温装置和具有该恒温装置的分析装置
KR102410003B1 (ko) 감마선 계측기의 흡습장치
JPH0125422B2 (ja)
KR102593663B1 (ko) 포집된 공기에 포함되어 있는 수증기 제거장치 및 이를 이용한 대기오염물질 분석장치
BR102019013039A2 (pt) Dispositivo de secagem para condução de análises biológicas
JPH048982Y2 (ja)
JP2005172639A (ja) 試料恒温装置とそれを用いたオートサンプラ
JPWO2020084696A1 (ja) オートサンプラ
JP2001194294A (ja) 分光光度計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504497

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15557345

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884576

Country of ref document: EP

Kind code of ref document: A1