WO2016140196A1 - 導通ペースト、電気モジュール及び電気モジュールの製造方法 - Google Patents

導通ペースト、電気モジュール及び電気モジュールの製造方法 Download PDF

Info

Publication number
WO2016140196A1
WO2016140196A1 PCT/JP2016/056094 JP2016056094W WO2016140196A1 WO 2016140196 A1 WO2016140196 A1 WO 2016140196A1 JP 2016056094 W JP2016056094 W JP 2016056094W WO 2016140196 A1 WO2016140196 A1 WO 2016140196A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive
conductive particles
electric module
particles
Prior art date
Application number
PCT/JP2016/056094
Other languages
English (en)
French (fr)
Inventor
壮一郎 鈴木
大輔 時田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56848217&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016140196(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017503648A priority Critical patent/JP6626494B2/ja
Priority to CN201680009307.5A priority patent/CN107210082A/zh
Priority to KR1020177022012A priority patent/KR20170125814A/ko
Publication of WO2016140196A1 publication Critical patent/WO2016140196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a conductive paste, an electric module, and a method for manufacturing the electric module.
  • a dye-sensitized solar cell has high photoelectric conversion efficiency and is inexpensive and easily mass-produced. Therefore, its structure and manufacturing method are widely studied.
  • Patent Document 1 discloses a photoelectric conversion in which photoelectric conversion elements each including a transparent electrode, a counter electrode, and a sealing insulating portion that seals and insulates these electrodes are arranged in the same plane.
  • a module is disclosed.
  • this photoelectric conversion module in order to electrically connect adjacent photoelectric conversion elements, a part of the transparent electrode member of the first photoelectric conversion element and a part of the counter electrode member of the second photoelectric conversion element And facing each other, and a conductive material is disposed between them. Thereby, a serial structure between a plurality of cells is formed.
  • the present invention has been made in view of the above circumstances, and provides a conductive paste that can ensure the ease of cutting and the stability of quality, and an electrical module that includes a conductive material formed from the conductive paste.
  • the conductive paste of the present invention includes an adhesive and a plurality of conductive particles capable of conducting between the electrodes, and a variation coefficient of a diameter dimension of the conductive particles is 25% or less.
  • the variation coefficient is expressed as the following equation (1).
  • a measuring method of the average particle diameter used for calculation of the coefficient of variation of the diameter size of the conductive particles for example, a method of observing the conductive particles with a microscope and converting a result measured with a caliper, an image analysis method, a Coulter method, Examples of the method include a centrifugal sedimentation method and a laser analysis scattering method, but the method is not particularly limited.
  • the coefficient of variation of the diameter of the conductive particles is 25% or less, the diameter of the conductive particles is substantially uniform.
  • the conductive paste of the present invention is disposed between the electrodes constituting the electric module, the conductive particles are dispersed in the extending direction of the electrodes.
  • the conductive particles preferably have an average particle size of 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness dimension between the electrodes is appropriately set.
  • the first electrode and the second electrode are bonded in a state where the first electrode and the second electrode are partitioned into a plurality of cells by the conductive material formed by the conductive paste described above, and the plurality of adjacent cells Are electrically connected.
  • the ratio of the number of conductive particles in contact with both the first electrode and the second electrode among the conductive particles is 50% or more.
  • the number of contact points between the electrodes and the conductive particles is ensured so as to achieve good conduction, and the contacts between the electrodes in the thickness direction between the electrodes can be easily obtained. As a result, it becomes easy for the electrodes of the electric module to conduct.
  • the number of conductive particles in contact with both the first electrode and the second electrode per unit area of the first electrode or the second electrode is 20/1 mm 2 or more. Preferably there is.
  • the number of contact points between the electrode and the conductive particles per unit area is ensured so as to achieve good conduction, and the contact between the electrodes in the thickness direction between the electrodes can be easily obtained. As a result, it becomes easy for the electrodes of the electric module to conduct.
  • the conductive material may further include an auxiliary conductive material having a smaller diameter than the interval in the thickness direction between the first electrode and the second electrode.
  • the auxiliary conductive material is disposed in the gap between the conductive particles between the electrodes, and the contact between the electrodes can be obtained more easily.
  • electrical_connection between electrodes is further aimed at.
  • the auxiliary conductive material is preferably in the form of particles or fibers.
  • the auxiliary conductive material is effectively disposed in the gap between the conductive particles between the electrodes by being in the form of particles or fibers.
  • the first electrode or the second electrode may contain a photosensitizing dye.
  • electrons are passed from the photosensitizing dye that has been stimulated by light irradiation or the like to the first electrode or the second electrode, so that, for example, a dye-sensitized electric module can be easily realized.
  • the electrical module manufacturing method of the present invention is the above-described electrical module manufacturing method of the present invention, wherein the first electrode and the second electrode are opposed to each other at an arbitrary distance, and the first electrode and the The distance between the first step of arranging at least the conductive paste between the second electrode and the first electrode and the second electrode is 70% to 90% of the average particle diameter of the conductive particles. And a second step of pressing the first electrode and the second electrode together until they are close to each other.
  • the first electrode, the second electrode, and the conductive particles are more pressed by pressing the distance between the first electrode and the second electrode to be smaller than the average particle diameter of the conductive particles. It becomes easy to contact, and the contact between these electrodes and conductive particles can be obtained easily and reliably. Thereby, the conduction
  • the conductive paste of the present invention it is easy to electrically cut and the effect that the electrodes can be stably conducted is obtained. Moreover, according to the electric module which concerns on this invention, while being able to cut
  • FIG. 1 It is a top view which shows the electric module which is one Embodiment of this invention. It is a figure which shows the electric module which is one Embodiment of this invention, and is sectional drawing which shows a part of cross section looked at the BB line
  • the conductive paste of this embodiment includes at least an adhesive and conductive particles.
  • the conductive paste may have a reduced fluidity or a low fluidity.
  • the adhesive is a substance having a function of maintaining a state in which electrodes of an electric module (not shown) are arranged to face each other with a predetermined interval.
  • the function of the adhesive may be manifested by stimulation such as baking, heating or light irradiation.
  • Examples of such an adhesive include, but are not particularly limited to, a resin material containing at least one thermoplastic resin, thermosetting resin, or ultraviolet curable resin.
  • the resin material examples include vinyl acetate resin emulsion adhesive, ethylene / vinyl acetate copolymer resin, EVA (ethylene-vinyl acetate-vinyl chloride terpolymer) emulsion adhesive, ⁇ -olefin ( Isobutene-maleic anhydride resin) adhesive, acrylic resin emulsion adhesive, styrene / butadiene rubber latex adhesive, vinyl acetate resin solvent adhesive, acrylic resin solvent adhesive, vinyl chloride resin Solvent adhesive, chloroprene rubber solvent adhesive, chloroprene rubber solvent mastic type adhesive, nitrile rubber solvent adhesive, recycled rubber solvent styrene butadiene rubber (SBR) solvent type Adhesive, urethane resin adhesive, silicone resin Adhesive, Modified silicone resin adhesive, Epoxy / modified silicone resin adhesive, Acrylic resin adhesive (second generation of acrylic adhesives: SGA), Starch adhesive, Polymer cement mortar, Epoxy resin mortar, Silylated urethane Resin-based adhesive
  • an adhesive material having high viscosity can be used as long as it has a function of maintaining a state in which the electrodes of the electric module are arranged to face each other with a predetermined interval.
  • an adhesive material include, but are not limited to, rubber-based, acrylic-based, silicone-based, and urethane-based materials. Specific examples include natural rubber, acrylate copolymer, silicone rubber, urethane resin, and the like.
  • the conductive particles are a substance that is dispersed in an adhesive and enables conduction between electrodes of an electric module (not shown).
  • the conductive particles may be electrically conductive, such as metal particles, and may be particles formed of a metal layer having at least a surface having conductivity, for example.
  • the shape of the conductive particles is not particularly limited as long as it serves as a spacer when arranged between the electrodes. From the viewpoint of having a maximum inclusion volume and low resistance, the conductive particles are preferably spherical. Examples of the shape other than the spherical shape of the conductive particles include an elliptical shape, a cubic shape, and a polygonal shape.
  • the diameter of the conductive particles is substantially uniform. That is, the coefficient of variation of the diameter of the conductive particles defined by the formula (1) is 25% or less, preferably 15% or less, more preferably 8% or less.
  • the average particle size of the conductive particles is preferably 3 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 250 ⁇ m or less, and further preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the conductive particles having an average particle diameter within the above range are 1% by mass or more, preferably 10% of the plurality of conductive substances included in the conductive paste. It is contained by weight% or more, more preferably 40% by weight or more, and still more preferably 70% by weight or more. As a result, the distance between the electrodes on which the conductive material is disposed is easily kept constant.
  • the conductive particles include metal particles such as gold, silver, copper, chromium, titanium, platinum, nickel, tin, zinc, lead, tungsten, iron, and aluminum.
  • grains which consist of electroconductive resin, or carbon-type particles, such as carbon black, are mentioned.
  • grains etc. are mentioned.
  • the conductive particles are preferably conductive particles having flexible resin particles and a conductive metal layer covering the surface of the resin particles (hereinafter referred to as “resin core conductive particles”).
  • the resin core conductive particles When the resin core conductive particles are used, electrical connection between the electrodes can be secured extremely stably by manufacturing an electric module by the manufacturing method of the present invention described later.
  • the resin for forming the resin particles of the resin core conductive particles include polyolefin resin, acrylic resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate. , Polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, polyetheretherketone, and polyethersulfone.
  • the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group.
  • the conductive metal layer is preferably a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer.
  • the thickness of the conductive metal layer is preferably 10 nm or more and 200 ⁇ m or less, more preferably 200 nm or more and 100 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • International Publication No. 2011-132658 can be referred to.
  • the conductive paste of the present embodiment 99.9% by mass to 30% by mass of the adhesive with respect to 0.1% by mass to 70% by mass of the conductive particles is present from the viewpoint that the conductive particles are appropriately dispersed in the conductive paste. It is preferably included. With such a mass ratio, the conductive particles are moderately dispersed in the conductive paste as described above, and the hardness of the conductive paste is convenient for the electrode. Moreover, in the conductive paste, conductive particles suitable for achieving stable conduction between the electrodes can be held, and the conductive particles are included to such an extent that the conductive paste can be easily insulated or cut with ultrasonic waves or the like. As described above, the adhesive has a function of maintaining the dispersed state of the conductive particles in addition to the above-described functions.
  • the conductive paste of this embodiment preferably contains an auxiliary conductive material in addition to the adhesive and the conductive particles.
  • the auxiliary conductive material is in the form of particles, it has a smaller diameter than the interval in the thickness direction between the electrodes when arranged as a conductive material between the electrodes.
  • the average particle diameter of the auxiliary conductive material is, for example, 80% or less, more preferably 50% or less, further preferably, relative to the average particle diameter of the conductive particles. It is desirable that it is 30% or less.
  • the auxiliary conductive material only needs to have conductivity and does not hinder the conductivity of the conductive particles.
  • the auxiliary conductive material include particulate and fiber auxiliary conductive materials having a smaller diameter than the conductive particles.
  • Examples of the auxiliary conductive material include gold, silver, copper, chromium, titanium, platinum, nickel, tin, zinc, lead, tungsten, iron, aluminum, etc., compounds containing these metals, conductive resins, or carbon The thing which consists of carbon materials, such as black, is mentioned. A substance equivalent to the conductive particles may be used.
  • the auxiliary conductive material is fibrous, it can be exemplified that the fiber diameter is 45% or less with respect to the particle diameter of the conductive particles.
  • the fiber length of the conductive fiber include an aspect ratio of 2 to 500.
  • the fiber diameter and the aspect ratio can be appropriately adjusted so as not to hinder the conductivity of the conductive particles.
  • the auxiliary conductive material described above may be uniform or non-uniform in shape and size, and is not particularly limited.
  • an organic solvent may be added to the conductive paste of this embodiment.
  • This organic solvent is an auxiliary medium for maintaining the dispersed state of the conductive particles and the binder resin.
  • organic solvents include, but are not limited to, water, ethyl acetate, ester-based, alcohol-based and ketone-based solvents, tetrahydrofuran, hexane, and aromatic solvents.
  • the conductive paste described above contains an appropriate amount of conductive particles formed in a substantially uniform manner in the adhesive, the conductive particles are placed on the same surface by applying pressure or the like when placed between the electrodes. It is easy to be arranged in a single layer on top. Therefore, when the conductive paste is disposed as a conductive material between the electrodes of the electrical module, the conductive particles are interposed between these electrodes in a single direction (ie, a single layer) in the thickness direction. It becomes easy to cut
  • the conductive particles and conductive material in which the conductive particles are directly dispersed in the adhesive have been described as examples.
  • the conductive particles may be made of an appropriate auxiliary material (not shown) or sealing material. It is hold
  • a non-conductive material that can constitute such an auxiliary material for example, a resin material containing at least one resin such as a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin, or a fiber material constituting a known fiber , Materials such as cellulose and polyvinyl alcohol.
  • the conductive material 6 of the present embodiment includes sealing of a plurality of cells C formed between the first base material 2 and the second base material 4.
  • Cell C, C.I. ... it is applicable to various electric modules that require electrical series connection or parallel connection between C.
  • the dye-sensitized solar cell 1 ⁇ / b> A includes a transparent conductive film 3 provided on the first substrate 2 and a counter conductive film 5 provided on the second substrate 4. , An electric module disposed to face each other with the conductive material 6 interposed therebetween.
  • a dye-sensitized solar cell 1A includes a first substrate 2, a semiconductor electrode (first electrode) 7, a second substrate 4, a counter electrode (second electrode) 8, and an electrolyte. 9 and a conductive material 6.
  • the semiconductor electrode 7 includes a transparent conductive film 3 stacked on the first base material 2 and a porous semiconductor layer 10 stacked on the transparent conductive film 3.
  • a known photosensitizing dye (not shown) is adsorbed on the surface of the semiconductor layer 10 in contact with the electrolyte 9 including the porous interior.
  • the counter electrode 8 includes a counter conductive film 5 stacked on the second substrate 4 and a catalyst layer 11 stacked on the counter conductive film 5.
  • the conductive material 6 is disposed between a plurality of semiconductor layers 10 extending in one direction in parallel with each other. As described above, the conductive particles 20 included in the conductive material 6 are formed in a substantially uniform size, and the conductive material 6 is equalized or pressurized when the conductive material 6 is applied or disposed.
  • the conductive particles 20 are easily arranged in a single layer without overlapping in the thickness direction. That is, as shown in FIG. 3, the conductive particles 20 of the conductive material 6 are easily arranged in a single layer in the thickness direction between the transparent conductive film 3 and the counter conductive film 5 by a leveling operation such as pressurization. It has become.
  • the number ratio of the conductive particles 20 in contact with both the transparent conductive film 3 of the semiconductor electrode 7 and the counter conductive film 5 of the counter electrode 8 is 50% or more.
  • it is preferably 60% or more, and more preferably 68% or more.
  • both the semiconductor electrode 7 and the counter electrode 8 are used.
  • contact with the number of the conductive particles 20 have a 20 or / 1 mm 2 or more, preferably 30 or / 1 mm 2 or more, more preferably 50 pieces / 1 mm 2 or more.
  • sealing materials 12 and 12 are disposed on both sides of the conductive material 6.
  • the conductive material 6 and the sealing material 12 bond the electrodes (that is, between the transparent conductive film 3 and the counter conductive film 5).
  • the insulated portion is referred to as "insulating portion 13"). To do).
  • the cells C each having the semiconductor layer 10 are sealed in a liquid-tight manner.
  • the conductive particles 20 included in the conductive material 6 form a gap in the thickness direction between the semiconductor electrode 7 and the counter electrode 8, and the electrolyte 9 is sealed in the gap.
  • the conductive material 6 is in direct contact with the transparent conductive film 3 constituting the semiconductor electrode 7 and the counter electrode 8.
  • a plurality of patterning portions 25 insulated by laser irradiation or the like are provided at predetermined locations of the transparent conductive film 3 and the counter conductive film 5.
  • the transparent conductive film 3 and the counter conductive film 5 between the adjacent cells C and C are divided into a plurality of parts by the patterning unit 25, and a pattern of the plurality of transparent conductive films 3 and the counter conductive film 5 is formed.
  • the opposing conductive film 5 constituting the opposing electrode 8 of the first cell C1 and the transparent conductive film 3 constituting the semiconductor electrode 7 of the second cell C2 adjacent to the first cell C1.
  • the first cell C1 and the second cell C2 are connected in series.
  • the materials of the first base material 2 and the second base material 4 constituting the semiconductor electrode 7 and the counter electrode 8 are not particularly limited, and examples thereof include insulators such as glass and resin, semiconductors, metals, and the like.
  • the resin include poly (meth) acrylic acid ester, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide.
  • the substrate is preferably made of a transparent resin, more preferably a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film. .
  • the type of the transparent conductive film 3 and the counter conductive film 5 is not particularly limited, and a conductive film used for a known dye-sensitized solar cell is applicable, and examples thereof include a thin film made of a metal oxide.
  • the metal oxide include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (ATO), indium oxide / zinc oxide (IZO), and gallium-doped zinc oxide (GZO). .
  • the semiconductor layer 10 is made of a material capable of receiving electrons from the adsorbed photosensitizing dye, and is usually preferably porous.
  • the material which comprises the semiconductor layer 10 is not specifically limited,
  • the material of the well-known semiconductor layer 10 is applicable, For example, metal oxide semiconductors, such as a titanium oxide, a zinc oxide, a tin oxide, are mentioned.
  • the photosensitizing dye supported on the semiconductor layer 10 is not particularly limited, and examples thereof include known dyes such as organic dyes and metal complex dyes.
  • the organic dye include coumarin, polyene, cyanine, hemicyanine, and thiophene.
  • dye, a ruthenium complex etc. are used suitably, for example.
  • the material constituting the catalyst layer 11 is not particularly limited, and known materials can be applied.
  • carbons such as platinum and carbon nanotubes, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) ) (PEDOT / PSS) and other conductive polymers.
  • the type of the electrolyte 9 is not particularly limited, and an electrolyte used in a known dye-sensitized solar cell can be applied.
  • Examples of the redox couple (that is, the electrolyte 9) include an electrolytic solution in which iodine and sodium iodide are dissolved in an organic solvent.
  • the dye-sensitized solar cell 1A described above has a configuration in which the conductive material 6 includes a large number of conductive particles 20 to achieve conduction. Therefore, when the cells C are formed or the cells C are repartitioned using ultrasonic waves. In addition, the conductive material 6 can be easily insulated. Further, in the dye-sensitized solar cell 1 ⁇ / b> A, since the conductive particles 20 included in the conductive material 6 are formed in a substantially uniform size, the thickness direction is between the transparent conductive film 3 and the counter conductive film 5. It becomes easy to arrange a single conductive particle 20 on the surface. Accordingly, the dye-sensitized solar cell 1 ⁇ / b> A has an effect that the dimension between the transparent conductive film 3 and the counter conductive film 5 can be easily made substantially constant.
  • the dye-sensitized solar cell 1A can easily make the dimension between the transparent conductive film 3 and the counter conductive film 5 substantially constant, and the gap between the transparent conductive film 3 and the counter conductive film 5 is single in the thickness direction ( Since conduction is easily achieved by the conductive particles 20 of a single layer), each conductive particle 20 has an effect that it is easy to ensure conduction.
  • the dye-sensitized solar cell 1 ⁇ / b> A can form a gap between the transparent conductive film 3 and the counter conductive film 5 using the conductive material 6, the gap is formed on both sides of the conductive material 6. , 12 does not depend. Therefore, in the dye-sensitized solar cell 1A, the width of the sealing materials 12 and 12 disposed on both sides of the conductive material 6 is made as small as possible, and the area of the semiconductor layer 10 in the cell C is made as small as possible. It has the effect that it can be enlarged.
  • the ratio of the number of conductive particles in contact with both the semiconductor electrode 7 and the counter electrode 8 in the conductive particles 20 is 50% or more.
  • the number of contact points with the conductive particles 20 is ensured to such an extent that good conduction can be achieved in the dye-sensitized solar cell 1A.
  • the number of conductive particles 20 in contact with both the semiconductor electrode 7 and the counter electrode 8 per unit area of the semiconductor electrode 7 and the counter electrode 8 is 20/1 mm 2 or more.
  • the number of contact points between the semiconductor electrode 7 and the counter electrode 8 and the conductive particles per unit area is ensured to such an extent that good conduction can be achieved in the dye-sensitized solar cell 1A. Therefore, according to the dye-sensitized solar cell 1A, since the contact between the electrodes in the thickness direction between the electrodes can be easily obtained, the electrodes of the dye-sensitized solar cell 1A are easily connected to each other.
  • FIG. 4 is a diagram showing a dye-sensitized solar cell (electric module) 1B which is a modification of the dye-sensitized solar cell 1A, and the position of the dye-sensitized solar cell 1B corresponding to the line BB shown in FIG. It is sectional drawing which shows a part of cross section seen by arrow.
  • symbol is attached
  • the conductive material 6 of the dye-sensitized solar cell 1 ⁇ / b> B includes auxiliary conductive particles (auxiliary conductive material) 28 in addition to the adhesive 21 and the conductive particles 20.
  • the auxiliary conductive particles 28 are conductive and have a diameter smaller than the thickness-direction interval between the semiconductor electrode 7 and the counter electrode 8. That is, the auxiliary conductive particles 28 are conductive particles that do not have a spacer function.
  • the auxiliary conductive particles 28 are disposed in the gaps between the conductive particles 20, and the contact between the semiconductor electrode 7 and the counter electrode 8 is further facilitated. Is obtained. Therefore, more reliable conduction between the semiconductor electrode 7 and the counter electrode 8 is achieved.
  • the manufacturing method of this embodiment is a manufacturing method (electric module manufacturing method) of the dye-sensitized solar cell 1 ⁇ / b> A, in which the semiconductor electrode 7 and the counter electrode 8 are opposed to each other with an arbitrary distance therebetween.
  • a second step of pressing the semiconductor electrode 7 and the counter electrode 8 together will be specifically described.
  • the counter conductive film 5 is formed at a predetermined position for forming cells on the second substrate 4 continuously conveyed in a predetermined direction P by using a known method for manufacturing a dye-sensitized solar cell. Thereafter, the catalyst layer 11 is formed at a predetermined position. Thereby, as shown in FIG. 6, the bonding base material 32 provided with the counter electrode 8 is obtained.
  • the gap (between the first electrode and the second electrode) S of the bonded base material 31 contains at least an adhesive and the conductive particles 20 from the conductive paste supply unit 40.
  • a conductive paste is filled to form a conductive material 6.
  • the conductive paste may be filled slightly thicker than a predetermined thickness in consideration of the fact that the sealing material 12 and the wiring material are crushed and expanded in the second step described later.
  • the semiconductor layer 10 of the bonded base material 31 and the catalyst layer 11 of the bonded base material 32 are opposed to each other, and the bonded base material 31 and the bonded base material 32 are brought close to each other.
  • the bonded base material 31 and the bonded base material 32 are Press them closer together.
  • the distance T between the transparent conductive film 3 of the semiconductor electrode 7 and the counter conductive film 5 of the counter electrode 8 is 70% or more and 90% or less, preferably 75% or more and 85% or less of the average particle diameter of the conductive particles 20. To do.
  • the bonded base material is formed by irradiating ultraviolet rays UV from an ultraviolet irradiation unit 46 appropriately disposed to the pressing space w pressed by the pair of rollers 41 and 42 and curing the sealing material 12 made of an ultraviolet curable resin. 31 and the bonding base material 32 are bonded together. At this time, as described above, the shape of the conductive particles 20 crushed in the pressing space w by the pair of rollers 41 and 42 may be restored, whereby the semiconductor electrode 7, the counter electrode 8, and the conductive particles 20 The contact area of the semiconductor electrode 7 and the counter electrode 8 and the conductive particles 20 is more reliably formed. Further, dispersion of the conductive particles 20 in the conductive material 6 is stabilized.
  • the conductive particles 20 are preferably composed of resin balls (fine particles) from the viewpoint that the conductive particles 20 can be elastically deformed by being crushed and the shape of the conductive particles 20 can be restored by elastic recovery. .
  • the dye-sensitized solar cell 1A shown in FIGS. 1 and 2 is obtained by the first step and the second step described above.
  • the manufacturing method of the dye-sensitized solar cell 1B shown in FIG. 4 is the same as the manufacturing method of the dye-sensitized solar cell 1A described above, except that the auxiliary conductive material 21 is contained in the conductive paste.
  • the semiconductor Conductive particles 20 are dispersed in the extending direction of the electrode 7 and the counter electrode 8. Then, the bonded base material 31 having the semiconductor electrode 7 and the bonded base material 32 having the counter electrode 8 are leveled by pressing and the like so as to be close to each other, and the conductive particles 20 are bonded on the same surface (that is, It is easy to be arranged in a single layer on one surface of the electrode.
  • a single conductive particle 20 (ie, a single layer) is interposed in the gap S in the thickness direction between the electrodes. It becomes.
  • the electric module 1 between the conductive particles 20 in the extending direction of the electrodes is relatively soft, and the electric module 1 that is easy to cut can be obtained.
  • the distance T between the transparent conductive film 3 and the counter conductive film 5 is set to the average particle diameter of the conductive particles 20 in the thickness direction between the semiconductor electrode 7 and the counter electrode 8 in the pressing space w.
  • the transparent conductive film 3 and the counter conductive film 5 are pressed against the conductive particles 20.
  • a contact point between the semiconductor electrode 7 and the counter electrode 8 and the conductive particles 20 can be obtained easily and reliably, and a contact area between the semiconductor electrode 7 and the counter electrode 8 and the conductive particles 20 is ensured to a certain extent.
  • the electrodes are electrically connected to each other.
  • the electrical conductivity of the electric module 1 can be reliably maintained, and the quality of the electric module 1 can be stabilized satisfactorily. That is, it is possible to obtain an electrical module 1 that can be easily electrically disconnected, can easily disconnect the conductive material 6 between the semiconductor electrode 7 and the counter electrode 8, and can conduct electricity between the electrodes with high stability. it can.
  • the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Deformation / change is possible.
  • the conductive material 6 itself may serve as the sealing material 12 and may also serve as the sealing material 12.
  • a conductive film made of a PET film on which ITO was formed was prepared.
  • the size of the conductive film was 10 cm in length and 15 cm in width, and the thickness of the conductive film was 100 ⁇ m.
  • the insulation process was performed to the 8.3 cm inside location from the edge part (refer FIG. 8).
  • a sealing material having a width of 1.5 mm in a line of plan view was disposed at an interval in the vicinity of the portion where the insulation processing was performed and in the vicinity of the portion.
  • conductive particles were mixed as conductive particles with Micropearl (registered trademark) AU-250 whose surface was plated with gold, to obtain a conductive paste.
  • the average particle diameter of the conductive particles was 50 ⁇ m, and the variation coefficient of the diameter of the conductive particles was 6%.
  • the conductive particles were mixed with the epoxy resin and the phenol resin so that the conductive paste was contained in an amount of 10% by mass. Subsequently, as shown in FIG. 8, the conductive paste was applied between two sealing materials.
  • a counter electrode having the same size as that of the conductive film was prepared, bonded to the conductive film, and the conductive paste was solidified by thermosetting at 140 ° C., and the conductive paste was used as a conductive material to produce an electric module.
  • the electrical module of the first example was divided (cut) by an ultrasonic fusion machine in a direction crossing the conductive material. Then, when the conductivity of the cell adjacent on the diagonal (X-ray shown in FIG. 10) was confirmed with a tester, the conductivity was not confirmed, and it was confirmed that the cell was cut. When this operation was performed, no extra time was taken to cut the conductive material.
  • An electric module was formed in the same manner as in the first example except that silver particles were used as the conductive particles instead of Micropearl (registered trademark) AU-250 plated with gold.
  • the average particle size and the coefficient of variation of the size of the silver particles were the same as in the first example.
  • the electrical resistance value between the conductive film and the counter electrode was measured with a tester. As in the first example, a resistance value substantially equivalent to that of the copper wire and the silver paste was obtained. .
  • the electric module of the second embodiment is divided by an ultrasonic fusion machine in a direction crossing the adhesive and the conductive material, and then on the diagonal line (X-ray shown in FIG. 10).
  • the continuity of the cells adjacent to each other was confirmed with a tester, the continuity was not confirmed and it was confirmed that the cells were cut.
  • this operation was performed, no extra time was taken to cut the conductive material.
  • the electric module of the third embodiment is separated by an ultrasonic fusion machine in a direction crossing the adhesive and the conductive material, and then on the diagonal line (X-ray shown in FIG. 10).
  • the continuity of the cells adjacent to each other was confirmed with a tester, the continuity was not confirmed and it was confirmed that the cells were cut.
  • this operation was performed, no extra time was taken to cut the conductive material.
  • a conductive adhesive tape (manufacturer: Teraoka Manufacturing Co., Ltd.) having a width dimension of 1.5 mm and a thickness dimension of 60 ⁇ m is used as the conductive material, and is provided along the extending direction of the sealant. Thus, an electric module was formed.
  • the rigidity of the conductive material is lower than before, and the conductive material. It became softer than before, and it was confirmed that the conductive material and the electric module using this conductive material can be easily cut by laser or ultrasonic fusion.
  • Electric module 1A, 1B Dye-sensitized solar cell (electric module) 2 ... 1st base material 6 ... Conductive material 7 ... Semiconductor electrode (1st electrode) 8 ... Counter electrode (second electrode) 20 ... Conductive particles 21 ... Adhesive 28 ... Auxiliary conductive particles (auxiliary conductive material) C ... cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 接着剤と、電極間を導通可能とする導電粒子と、を含み、前記導電粒子の径寸法の変動係数が25%以下である導通ペースト。前記導電粒子の平均粒子径は10μm以上500μm以下であることが好ましい。 第一電極と、第二電極とが、前記導通ペーストにより形成される導通材によって複数のセルに区画された状態で接着されているとともに、隣接する前記複数のセルが電気的に接続されている電気モジュール。

Description

導通ペースト、電気モジュール及び電気モジュールの製造方法
 本発明は、導通ペースト、電気モジュール及び電気モジュールの製造方法に関する。本願は、2015年3月4日に日本に出願された特願2015-042662号に基づき優先権を主張し、その内容をここに援用する。
 近年、クリーンエネルギーの発電装置として太陽電池が注目され、シリコン系太陽電池及び色素増感太陽電池の開発が進められている。色素増感太陽電池は、高い光電変換効率を有するとともに安価で量産しやすいため、その構造及び製造方法が広く研究されている。
 上述の色素増感太陽電池をはじめとして封止を必要とする電気モジュールにおいては、複数のセルを同一平面内に並べて作製する際に、例えば、隣接するセル間において、第一のセルの上側電極と、第二のセルの下側電極とを電気的に接続し、かつ電極間に電解質等の要素を封止するために、「封止材/導通材(例えば導線、導通ペースト等)/封止材」の構造を備えている。
 例えば、特許文献1には、透明電極と、対向電極と、これらの電極を封止して絶縁する封止絶縁部と、を備えた光電変換素子が同一平面内に並んで設けられた光電変換モジュールが開示されている。この光電変換モジュールにおいては、隣り合う光電変換素子同士を電気的に接続するために、第一の光電変換素子の透明電極部材の一部と、第二の光電変換素子の対向電極部材の一部とを、互いに向き合わせ、その間に導通材を配する。これにより、複数のセル間での直列構造が形成される。
 ところが、特許文献1に記載の光電変換モジュールには、導通材として金属製のワイヤー等が用いられていたため、レーザや超音波融着等でセルを切断する際に、導通材を切断し難く、セルを切断するのに手間がかかるという問題があった。この問題を解決する方法として、接着剤に導電性フィラーを備えた導通ペーストを用いて電気的な接続を図る方法が知られている。
特開2001-357897号公報
 しかしながら、特許文献1に記載の光電変換モジュールでは、導通ペーストが光電変換素子同士の電気的な接続を確保するのに十分な導電性能を有していないため、導通ペーストを用いた電気モジュールの品質が安定し難いという問題があった。
 本発明は、上述の事情を鑑みてなされたものであり、切断の容易性及び品質の安定性を確保できる導通ペースト、及び該導通ペーストにより形成される導通材を備えた電気モジュールを提供する。
 本発明の導通ペーストは、接着剤と、電極間を導通可能とする複数個の導電粒子と、を含み、前記導電粒子の径寸法の変動係数が25%以下であることを特徴とする。
 ここで、上記の変動係数は以下の(1)式のように表される。
Figure JPOXMLDOC01-appb-M000001
 なお、導電粒子の径寸法の変動係数の算出に用いる平均粒子径の測定方法としては、例えば導電粒子を顕微鏡で観察し、ノギス等で測定した結果を換算する方法、画像解析法、コールター法、遠心沈降法、レーザ解析散乱法等が挙げられるが、特に限定されない。
 導電粒子の径寸法の変動係数が25%以下であることで、導電粒子の径寸法は略均一となっている。例えば、電気モジュールを構成する電極間に本発明の導通ペーストを配した際に、電極の延在方向に導電粒子が分散される。そして、これらの電極を備える基材を加圧等して均すことによって、導電粒子が同一面(即ち、電極の一面)上に単層で配されやすくなる。従って、電極同士の間に導通ペーストを固化させた導通材を配したときに、これらの電極同士の厚み方向の隙間に導電粒子が単数(即ち単層で)介在した状態となる。これにより、電極の延在方向の導電粒子の間の接着剤のみの部分は比較的柔らかく、切断し易くなる。切断された際には、電極間の厚み方向では電極間の接点が容易に得られ、電極同士が導通し易くなる。また、電極間の厚み寸法が略一定に保たれる。
 本発明の導通ペーストにおいて、前記導電粒子の平均粒子径は、10μm以上500μm以下であることが好ましい。
 上述の構成によれば、電気モジュールの電極同士の間に導通ペーストを配した際に、電極間の厚み寸法が適切に設定される。
 本発明の電気モジュールは、第一電極と、第二電極とが、上述の導通ペーストにより形成される導通材によって複数のセルに区画された状態で接着されているとともに、隣接する前記複数のセルが電気的に接続されていることを特徴とする。
 上述の構成によれば、電気モジュールの電極間のより良好な導通が図られるとともに、電気モジュールの電極間の距離が一定に保たれ易くなる。
 本発明の電気モジュールにおいて、前記導電粒子のうち、前記第一電極及び前記第二電極の両方に接している導電粒子の個数割合が50%以上であることが好ましい。
 上述の構成によれば、電極と導電粒子との接触点の個数が良好な導通を図れる程度に確保され、電極間の厚み方向における電極間の接点が容易に得られる。その結果、電気モジュールの電極同士が導通し易くなる。
 本発明の電気モジュールにおいて、前記第一電極又は前記第二電極の単面積あたりの、前記第一電極及び前記第二電極の両方に接している導電粒子の個数が、20個/1mm以上であることが好ましい。
 上述の構成によれば、単位面積あたりの電極と導電粒子との接触点の個数が良好な導通を図れる程度に確保され、電極間の厚み方向における電極間の接点が容易に得られる。その結果、電気モジュールの電極同士が導通し易くなる。
 本発明の電気モジュールにおいて、前記導通材が前記第一電極と前記第二電極との間の厚み方向の間隔よりも小さい径寸法の補助導電物質をさらに含んでもよい。
 上述の構成によれば、電極間の導電粒子同士の隙間に補助導電物質が配置され、電極間の接点がさらに容易に得られる。これにより、電極間の導通がさらに図られる。
 本発明の電気モジュールにおいて、前記補助導電物質は粒子状または繊維状であることが好ましい。
 上述の構成によれば、粒子状または繊維状であることによって、補助導電物質が電極間の導電粒子同士の隙間に効果的に配置される。
 本発明の電気モジュールにおいて、前記第一電極又は前記第二電極は光増感色素を含んでいてもよい。
 上述の構成によれば、光を照射される等の刺激を受けた光増感色素から第一電極又は第二電極に電子が渡されるので、例えば色素増感型の電気モジュールが容易に実現される。
 本発明の電気モジュールの製造方法は、上述の本発明の電気モジュールの製造方法であって、前記第一電極と前記第二電極とを任意の距離を空けて対向させ、前記第一電極と前記第二電極との間に、少なくとも前記導通ペーストを配する第一工程と、前記第一電極と前記第二電極とを互いの距離が前記導電粒子の平均粒子径の70%以上90%以下になるまで互いに近づけるように押圧し、前記第一電極と前記第二電極とを貼り合わせる第二工程と、を備えることを特徴とする。
 上述の構成によれば、第二工程において、第一電極と第二電極との距離を導電粒子の平均粒子径より小さく抑えて押圧することで第一電極及び第二電極と導電粒子とがより接触し易くなり、これらの電極と導電粒子との間の接点が容易且つ確実に得られる。これにより、電気モジュールの電極間の導通がさらに図られる。
 本発明に係る導電ペーストによれば、電気的に切断し易く、電極間を安定的に導通させることができるという効果が得られる。また、本発明に係る電気モジュールによれば、第一電極と第二電極との間の導通ペーストを容易に切断することができるとともに、電極間の導通が安定的となるという効果が得られる。
本発明の一実施形態である電気モジュールを示す平面図である。 本発明の一実施形態である電気モジュールを示す図であり、図1に示すB-B線で矢視した断面の一部を示す断面図である。 本発明の一実施形態である電気モジュールを示す図であり、図1に示すA-A線で矢視した断面図である。 本発明の一実施形態である電気モジュールの変形例を示す図であり、図1に示すB-B線に対応する変形例の色素増感太陽電池の位置で矢視した断面の一部を示す断面図である。 本発明の一実施形態である色素増感太陽電池の製造方法を説明するための図であり、一方の貼り合わせ基材の断面図である。 本発明の一実施形態である色素増感太陽電池の製造方法を説明するための図であり、他方の貼り合わせ基材の断面図である。 本発明の一実施形態である色素増感太陽電池の製造方法を説明するための図であり、貼り合わせ基材同士を貼り合わせる様子を示す断面図である。 第一実施例から第三実施例の電気モジュールを示す平面図である。
 以下、本発明を適用した一実施形態である導通ペースト、電気モジュール及び電気モジュールの製造方法について、図面を参照して説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更することができる。また、以下の説明において例示される材料等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
<導通ペースト>
 本実施形態の導通ペーストは、少なくとも接着剤と、導電粒子と、を含んでいる。導通ペーストは、流動性を抑えたもの、又は流動性の低いものであってもよい。
 接着剤は、図示略の電気モジュールの電極間を所定の間隔をあけて対向配置させた状態を保持する機能を有する物質である。接着剤の前記の機能は、焼成、加熱や光照射等の刺激によって発現するものであってもよい。このような接着剤としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂の樹脂を少なくとも一種含んだ樹脂材料が挙げられるが、特にこれらに限定されない。前記樹脂材料としては、例えば酢酸ビニル樹脂系エマルション形接着剤、エチレン・酢酸ビニル共重合樹脂、EVA(エチレン-酢酸ビニル-塩化ビニルの三元共重合体)系エマルション形接着剤、α-オレフィン(イソブテン-無水マレイン酸樹脂)系接着剤、アクリル樹脂系エマルジョン形接着剤、スチレン・ブタジエンゴム系ラテックス形接着剤、酢酸ビニル樹脂系溶剤形接着剤、アクリル樹脂系溶剤形接着剤、塩化ビニル樹脂系溶剤形接着剤、クロロプレンゴム系溶剤形接着剤、クロロプレンゴム系溶剤形マスチックタイプ接着剤、ニトリルゴム系溶剤形接着剤、再生ゴム系溶剤形スチレンブタジエンラバー(styrene-butadiene rubber:SBR)系溶剤形接着剤、ウレタン樹脂系接着剤、シリコーン樹脂系接着剤、変成シリコーン樹脂系接着剤、エポキシ・変成シリコーン樹脂系接着剤、アクリル樹脂系(second generation of acrylic adhesives:SGA)接着剤、でん粉系接着剤、ポリマーセメントモルタル、エポキシ樹脂モルタル、シリル化ウレタン樹脂系接着剤、ホットメルト形接着剤等が挙げられる。
 また、接着剤としては、電気モジュールの電極間を所定の間隔をあけて対向配置させた状態を保持する機能を有していれば、高い粘性を有する粘着材を用いることができる。このような粘着材としては、例えばゴム系、アクリル系、シリコーン系、ウレタン系のものが挙げられるが、特にこれらに限定されない。具体的には、天然ゴム、アクリル酸エステル共重合体、シリコーンゴム、ウレタン樹脂等が挙げられる。
 導電粒子は、接着剤中に分散され、図示略の電気モジュールの電極同士を導通可能とする物質である。導電粒子は、金属粒子のように導電粒子自体が導電性を有していてもよく、例えば少なくとも表面が導電性を有する金属層により形成された粒子であってもよい。
 導電粒子の形状は、電極間に配置した際にスペーサーの役割を果たせば、特に制限されない。最大の内包体積を持つと同時に、抵抗が少ない観点から、導電粒子は球状であることが好ましい。導電粒子の球状以外の形状としては、例えば楕円形状、立方形状、多角体形状等が挙げられる。
 導電粒子の径寸法は、略均一に形成されている。即ち、前記(1)式で定義される導電粒子の径寸法の変動係数は25%以下であり、好ましくは15%以下、より好ましくは8%以下である。また、導電粒子の平均粒子径は、3μm以上500μm以下であることが好ましく、10μm以上250μm以下であることがより好ましく、50μm以上100μm以下であることがさらに好ましい。
 なお、上記の導電粒子の他に導電性物質が含まれる場合、上記範囲内の平均粒子径を有する導電粒子は、導通ペーストに含まれる複数の導電性物質のうち1質量%以上、好ましくは10重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上含まれている。これにより、導通材を配する電極間の距離が一定に保持され易くなる。
 導電粒子としては、例えば金、銀、銅、クロム、チタン、白金、ニッケル、錫、亜鉛、鉛、タングステン、鉄、アルミニウム等の金属粒子が挙げられる。また、これらの金属を含む化合物からなる粒子、導電性樹脂からなる粒子、又はカーボンブラック等の炭素系粒子が挙げられる。さらに、樹脂製の粒子に無電解ニッケル等の導電性を有する金属を被覆したもの等が挙げられる。
 特に、導電粒子は、柔軟性を有する樹脂粒子と、該樹脂粒子の表面を被覆している導電金属層とを有する導電粒子(以下、「樹脂コア導電粒子」と称す)であることが好ましい。樹脂コア導電粒子を使用した場合、特に後述する本発明の製造方法によって電気モジュールを製造することにより、電極間の導通を極めて安定に確保することが可能になる。
 樹脂コア導電粒子の樹脂粒子を形成するための樹脂としては、例えば、ポリオレフィン樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン及びポリエーテルスルホン等が挙げられる。樹脂粒子の硬度を好適な範囲に容易に制御できるので、樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。また、導電金属層としてはニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることが更に好ましい。
 また、導電金属層の厚さは、10nm以上200μm以下であることが好ましく、200nm以上100μm以下であることがより好ましく、1μm以上30μm以下であることが特に好ましい。
 前記樹脂コア導電粒子の詳細な構成や調製方法に関しては、国際公開公報第2011/132658号を参照することができる。
 本実施形態の導通ペーストでは、導電粒子が導通ペーストにおいて適度に分散される観点から、0.1質量%から70質量%の導電粒子に対して99.9質量%から30質量%の接着剤が含まれていることが好ましい。このような質量比により、前述のように導電粒子が導通ペーストに適度に分散され、導通ペーストの硬度が電極に配するのに便宜的な程度になる。また、導通ペーストにおいて、電極間の安定的な導通を図るのに適した導電粒子を保持させることができるとともに、導通ペーストを超音波等で絶縁又は切断しやすい程度に、導電粒子が含まれる。このように接着剤は、上述の機能等に加え、導電粒子の分散状態を保持する機能も有する。
 本実施形態の導通ペーストは、接着剤と、導電粒子との他に、補助導電物質を含んでいることが好ましい。例えば補助導電物質が粒子状であれば、電極間に導通材として配置された際に、電極間の厚み方向の間隔よりも小さい径寸法を有する。
 導通材における導電粒子の隙間に介在させる目的から、補助導電物質の平均粒子径は、例えば導電粒子の平均粒子径に対し、80%以下であり、より好ましくは50%以下であり、さらに好ましくは30%以下であることが望ましい。これにより、前記目的が果たされ、導通材の導電性がより高められることで、電極間が電気的に安定して導通する。
 補助導電物質としては、導電性を有し、導電粒子の導通性を阻害しないものであればよく、前記導電粒子よりも更に小さな径の粒子状や繊維の補助導電物質が挙げられる。
 補助導電物質の材料としては、金、銀、銅、クロム、チタン、白金、ニッケル、錫、亜鉛、鉛、タングステン、鉄、アルミニウム等の金属、これらの金属を含む化合物、導電性樹脂、又はカーボンブラック等の炭素材料からなるものが挙げられる。前記導電粒子と同等の物質であってもよい。
 補助導電物質が繊維状の場合は、導電粒子の粒子径に対し、繊維径が45%以下であることが例示できる。より好ましくは30%以下であり、さらに好ましくは15%以下である。前記導電性繊維の繊維長としては、アスペクト比2~500を例示することができる。繊維径とアスペクト比は、導電粒子の導通性を阻害しないように、適宜調整することができる。
 上述の補助導電物質は、形状や大きさが均一でも不均一でもよく、特に限定されない。
 さらに、本実施形態の導通ペーストには、有機溶媒が添加されていてもよい。この有機溶媒は、導電粒子やバインダー樹脂の分散状態を保持するための補助媒体である。このような有機溶媒としては、例えば水、酢酸エチル、エステル系、アルコール系及びケトン系の溶媒、テトラヒドロフラン、ヘキサン、芳香族の溶媒等が挙げられるが、特にこれらに限定されない。
 以上説明した導通ペーストは、略均一に形成されている導電粒子を接着剤中に適量含んでいるため、電極間に配置された際に、加圧等して均すことにより導電粒子が同一面上に単層で配され易い。従って、導通ペーストを電気モジュールの電極同士の間に導通材として配したときに、これらの電極同士の間に導電粒子が厚さ方向に単数(即ち、単層)で介在した状態となり、導電粒子同士の間で導通材が切断し易くなる。また、電極同士が導通し易くなる。そのため、電極間の接点を取り易くなり、電極間の距離を一定に保ち易くなる。
 なお、本実施形態では、導電粒子が直接的に接着剤中に分散されている導通ペーストや導通材を例示して説明したが、導電粒子は適当な補助材(図示略)や封止材を介して間接的に接着剤に保持され、これらが一体化されていてもよい。このような補助材を構成し得る非導電性材料として、例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等の樹脂を少なくとも一種含んだ樹脂材料、又は公知の繊維を構成する繊維材料、セルロース、ポリビニルアルコール等の材料が挙げられる。また、前記補助材として、上述で例示したもの以外で、太陽電池等の電気モジュールに使われている公知の封止材を用いてもよい。
<電気モジュール>
 次いで、本実施形態の電気モジュール1の一例として色素増感太陽電池(電気モジュール)1Aについて説明する。
 なお、以下では色素増感太陽電池1Aについて説明するが、本実施形態の導通材6は第一基材2及び第二基材4の間に形成された複数のセルCの封止と、各セルC,C.…,C同士の電気的な直列接続又は並列接続とを要する種々の電気モジュールに適用可能である。図1又は図2に示すように、色素増感太陽電池1Aは、第一基材2上に設けられた透明導電膜3と、第二基材4上に設けられた対向導電膜5とが、導通材6を介して対向配置された電気モジュールである。
 図1に示すように、色素増感太陽電池1Aは、第一基材2と、半導体電極(第一電極)7と、第二基材4と、対向電極(第二電極)8と、電解質9と、導通材6と、を備えている。
 半導体電極7は、第一基材2上に積層された透明導電膜3と、透明導電膜3上に積層された多孔質の半導体層10と、を備えている。
 電解質9が接触する半導体層10において多孔質内部を含む表面には、公知の図示しない光増感色素が吸着している。
 対向電極8は、第二基材4上に積層された対向導電膜5と、対向導電膜5上に積層された触媒層11とを備えている。
 導通材6は、互いに平行に一方向に延びる複数の半導体層10の間に配されている。
 導通材6は、前述したとおり、導通材6に含まれた導電粒子20が略均一な大きさに形成されており、導通材6の塗工又は配設において均したり加圧したりすることで、導電粒子20が厚さ方向に重なることなく単層で配されやすくなっている。即ち、導通材6の導電粒子20は、図3に示すように、透明導電膜3と対向導電膜5との間に、加圧等の均す作業によって厚さ方向に単層で配され易くなっている。
 上述の配置において、導通材6の導電粒子20のうち、半導体電極7の透明導電膜3と対向電極8の対向導電膜5との両方に接している導電粒子20の個数割合は50%以上であって、60%以上であることが好ましく、68%以上であることがより好ましい。
 また、色素増感太陽電池1Aにおける良好な導通を図るために半導体電極7及び対向電極8の両方に接触している導電粒子20が重要であるという観点から、半導体電極7及び対向電極8の両方に接している導電粒子20の個数は20個/1mm以上であって、30個/1mm以上であることが好ましく、50個/1mm以上であることがより好ましい。
 図1又は図2に示すように、導通材6の両側方には封止材12,12が配されている。
 導通材6と封止材12とにより、電極間(即ち、透明導電膜3と対向導電膜5との間)を接着している。一方、前述の一方向(導通材6の延在方向)に交叉する方向には、超音波融着等の手段により絶縁及び接着されている(以下、絶縁された部分を「絶縁部13」とする)。このようにして、それぞれに半導体層10を有するセルCが液密に封止されている。そして、導通材6に含まれた導電粒子20によって、半導体電極7と対向電極8の間には厚み方向に間隙が形成され、その間隙内に電解質9が封止されている。
 色素増感太陽電池1Aにおいて、導通材6は、半導体電極7及び対向電極8を構成する透明導電膜3に直接接触している。透明導電膜3及び対向導電膜5の所定の箇所には、レーザ照射等によって絶縁された複数のパターニング部25が設けられている。
 隣接するセルC,C同士の透明導電膜3及び対向導電膜5は、パターニング部25により複数に区画され、複数の透明導電膜3及び対向導電膜5のパターンが形成される。区画された各セルCにおいて、第一のセルC1の対向電極8を構成する対向導電膜5と、第一のセルC1に隣接する第二のセルC2の半導体電極7を構成する透明導電膜3とが導通材6によって電気的に接続されている。この結果、第一のセルC1と第二のセルC2が直列に接続されている。
 半導体電極7及び対向電極8を構成する第一基材2及び第二基材4の材料は特に限定されず、例えば、ガラス、樹脂等の絶縁体、半導体、金属等が挙げられる。前記樹脂としては、例えば、ポリ(メタ)アクリル酸エステル、ポリカーボネート、ポリエステル、ポリイミド、ポリスチレン、ポリ塩化ビニル、ポリアミド等が挙げられる。薄くて軽いフレキシブルな色素増感太陽電池1Aを製造する観点からは、基材は透明樹脂製であることが好ましく、ポリエチレンテレフタレート(PET)フィルム又はポリエチレンナフタレート(PEN)フィルムであることがより好ましい。
 透明導電膜3、対向導電膜5の種類は特に限定されず、公知の色素増感太陽電池に使用される導電膜が適用可能であり、例えば、金属酸化物で構成される薄膜が挙げられる。前記金属酸化物としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アルミドープ酸化亜鉛(ATO)、酸化インジウム/酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)等が挙げられる。
 半導体層10は、吸着した光増感色素から電子を受け取ることが可能な材料によって構成され、通常は多孔質であることが好ましい。半導体層10を構成する材料は特に限定されず、公知の半導体層10の材料が適用可能であり、例えば、酸化チタン、酸化亜鉛、酸化スズ等の金属酸化物半導体が挙げられる。
 半導体層10に担持される光増感色素は特に限定されず、例えば有機色素、金属錯体色素等の公知の色素が挙げられる。前記有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系等が挙げられる。前記金属錯体色素としては、例えば、ルテニウム錯体等が好適に用いられる。
 触媒層11を構成する材料は特に限定されず、公知の材料が適用可能であり、例えば、白金、カーボンナノチューブ等のカーボン類、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT/PSS)等の導電性ポリマー等が挙げられる。
 電解質9の種類は特に限定されず、公知の色素増感太陽電池で使用されている電解質を適用できる。酸化還元対(即ち、電解質9)としては、例えばヨウ素とヨウ化ナトリウムが有機溶媒に溶解された電解液が挙げられる。
 以上説明した色素増感太陽電池1Aは、導通材6が多数の導電粒子20を備えて導通を図る構成を備えているため、超音波を用いてセルCの形成又はセルCを再区画する際に、導通材6を容易に絶縁することが可能となるという効果を有する。
 また、色素増感太陽電池1Aは、導通材6に含まれた導電粒子20が略均一な大きさに形成されているため、透明導電膜3と対向導電膜5との間に、厚さ方向に単一の導電粒子20を配することが容易となる。従って、色素増感太陽電池1Aは、透明導電膜3と対向導電膜5との間の寸法を略一定にし易いという効果を有する。
 また、色素増感太陽電池1Aは、透明導電膜3と対向導電膜5との間の寸法を略一定にし易く、透明導電膜3と対向導電膜5との間が厚さ方向に単一(単層)の導電粒子20により導通が容易に図られるため、各々の導電粒子20で確実に導通を取り易いという効果を有する。
 また、色素増感太陽電池1Aは、導通材6により透明導電膜3と対向導電膜5とのギャップを形成することができるため、ギャップの形成は導通材6の両側に配する封止材12,12に依存しない。したがって、色素増感太陽電池1Aは、導通材6の両側に配する封止材12,12の幅寸法を可及的に小さくして、セルC内の半導体層10の面積を可及的に大きくすることができるという効果を有する。
 また、色素増感太陽電池1Aでは、導電粒子20のうち、半導体電極7及び対向電極8の両方に接している導電粒子の個数割合が50%以上であるため、半導体電極7及び対向電極8と導電粒子20との接触点の個数が色素増感太陽電池1Aにおける良好な導通を図れる程度に確保される。
 また、色素増感太陽電池1Aでは、半導体電極7及び対向電極8の単面積あたりの、半導体電極7及び対向電極8の両方に接している導電粒子20の個数が、20個/1mm以上であるため、単位面積あたりの半導体電極7及び対向電極8と導電粒子との接触点の個数が色素増感太陽電池1Aにおける良好な導通を図れる程度に確保される。
 従って、色素増感太陽電池1Aによれば、電極間の厚み方向における電極間の接点が容易に得られるので、色素増感太陽電池1Aの電極同士が導通し易くなる。
 図4は、色素増感太陽電池1Aの変形例である色素増感太陽電池(電気モジュール)1Bを示す図であり、図1に示すB-B線に対応する色素増感太陽電池1Bの位置で矢視した断面の一部を示す断面図である。なお、図4に示す色素増感太陽電池1Bの構成要素において、図2に示す色素増感太陽電池1Aの構成要素と同一の構成要素については同一の符号を付し、その説明を省略する。
 色素増感太陽電池1Bの導通材6は、接着剤21と、導電粒子20に加えて、補助導電粒子(補助導電物質)28を含んでいる。図4に示すように、補助導電粒子28は、導電性を有し、半導体電極7と対向電極8との間の厚み方向の間隔よりも小さい径寸法を有する。即ち、補助導電粒子28は、スペーサーの機能を有していない導電粒子である。この構成により、半導体電極7と対向電極8との間の導通材6において、導電粒子20同士の隙間に補助導電粒子28が配置され、半導体電極7と対向電極8との間の接点がさらに容易に得られる。従って、半導体電極7と対向電極8との間のより確実な導通が図られる。
<電気モジュールの製造方法>
 次いで、本発明に係る電気モジュール1の製造方法の一実施形態について、色素増感太陽電池1Aの製造方法(以下、単に「製造方法」ともいう。)を例に挙げて説明する。
 本実施形態の製造方法は、色素増感太陽電池1Aの製造方法(電気モジュールの製造方法)であって、半導体電極7と対向電極8とを任意の距離を空けて対向させ、半導体電極7と対向電極8との間に、少なくとも導通ペーストを配する第一工程と、半導体電極7と対向電極8とを互いの距離が導電粒子20の平均粒子径の70%以上90%以下になるまで互いに近づけるように押圧し、半導体電極7と対向電極8とを貼り合わせる第二工程と、を備えている。以下、各工程について具体的に説明する。
[第一工程]
 先ず、ロール・ツー・ロール方式を用いた公知の色素増感太陽電池の製造方法を用いて、所定の方向Pに連続搬送される第一基材2上のセルを形成するための所定の位置に透明導電膜3を形成し、その後、所定の位置に半導体層10を形成し、半導体層10の両側(即ち、周囲)に封止材12を形成した後、電解質9を積層する。これにより、図5に示すように、半導体電極7及び封止材12を備えると共に、適所に隙間Sが形成された貼り合わせ基材31を得る。なお、所定の方向Pは製造上の都合等を勘案して自由に設定すればよく、例えば導通材6の延在方向に平行な方向としてもよい。
 次に、公知の色素増感太陽電池の製造方法を用いて、所定の方向Pに連続搬送される第二基材4上のセルを形成するための所定の位置に対向導電膜5を形成し、その後、所定の位置に触媒層11を形成する。これにより、図6に示すように、対向電極8を備えた貼り合わせ基材32を得る。
 次に、図7に示すように、貼り合わせ基材31の隙間(第一電極と第二電極との間)Sに、導通ペースト供給部40から少なくとも接着剤と、導電粒子20とを含有する導通ペーストを充填し、導通材6とする。実際には、封止材12や配線材料等が後述する第二工程において押し潰され、拡がることを勘案して、導電性ペーストを所定の厚みよりもやや厚く充填してもよい。
[第二工程]
 続いて図8に示すように、貼り合わせ基材31の半導体層10と貼り合わせ基材32の触媒層11とを対向させ、貼り合わせ基材31と貼り合わせ基材32とを互いに近づける。貼り合わせ基材31,32の厚み方向に所定の間隔をあけた状態で該厚み方向に沿って配置され一対のローラー41,42を用いて、貼り合わせ基材31と貼り合わせ基材32とを互いにより近づけるように押圧する。このとき、半導体電極7の透明導電膜3と対向電極8の対向導電膜5との距離Tを導電粒子20の平均粒子径の70%以上90%以下とし、好ましくは75%以上85%以下とする。また、半導体電極7と対向電極8との距離Tが上述の条件となるように一対のローラー41,42同士の上下方向の間隔及び押圧力等を適切に調整することが好ましい。このように一対のローラー41,42によって距離Tが導電粒子20の平均粒子径よりも短くなるように押圧することで、導電粒子20の材質及び弾性に応じて一部の導電粒子20(即ち、径寸法が距離Tより大きい導電粒子20)は押し潰される。
 一対のローラー41,42によって押圧された押圧空間wに対して適当に配置された紫外線照射部46から紫外線UVを照射し、紫外線硬化樹脂からなる封止材12を硬化させることで貼り合わせ基材31と貼り合わせ基材32とを貼り合わせる。この際、上述したように一対のローラー41,42によって押圧空間wで押し潰された導電粒子20の形状が復帰する場合もあるが、それによって、半導体電極7及び対向電極8と導電粒子20との接触面積が拡がり、半導体電極7及び対向電極8と導電粒子20との接点がより確実に形成される。また、導通材6における導電粒子20の分散等が安定する。なお、封止材12の硬化を促進するために、押圧空間Wより搬送方向Pの前方で紫外線を二次的に照射しても構わない。
 なお、押し潰されることによる導電粒子20の弾性変形及び弾性復帰による導電粒子20の形状復帰を用いることができる点から、導電粒子20は樹脂製のボール(微粒子)から構成されていることが好ましい。
 上述の第一工程及び第二工程により、図1及び図2に示す色素増感太陽電池1Aが得られる。なお、図4に示す色素増感太陽電池1Bの製造方法は、導通ペーストに補助導電物質21が含有されること以外は、上述した色素増感太陽電池1Aの製造方法と同様である。
 以上説明した電気モジュール1の製造方法では、電気モジュール1を構成する半導体電極7及び対向電極8との間に、少なくとも接着剤と、導電粒子20とを含有する導通ペーストを配した際に、半導体電極7及び対向電極8の延在方向に導電粒子20が分散される。そして、半導体電極7を有する貼り合わせ基材31と対向電極8を有する貼り合わせ基材32とを互いに近づけるように押圧等して均し、貼り合わせることによって、導電粒子20が同一面(即ち、電極の一面)上に単層で配され易い。従って、電極同士の間に導通ペーストの流動性を低下させた導通材6を配したときに、これらの電極同士の厚み方向の隙間Sに導電粒子20が単数(即ち単層で)介在した状態となる。これにより、電気モジュール1の製造方法によれば、電極の延在方向の導電粒子20の間の接着剤やバインダー等のみの部分は比較的柔らかく、切断し易い電気モジュール1を得ることができる。
 また、電気モジュール1の製造方法では、押圧空間wの半導体電極7及び対向電極8の間の厚み方向において、透明導電膜3と対向導電膜5との距離Tを導電粒子20の平均粒子径の70%以上90%以下とすることによって、透明導電膜3と対向導電膜5が導電粒子20に押し当てられる。これにより、半導体電極7及び対向電極8と導電粒子20との間の接点が容易且つ確実に得られ、且つ半導体電極7及び対向電極8と導電粒子20との接触面積が程度に確保されるので、電極同士が良好に導通される。従って、電気モジュール1の製造方法によれば、電気モジュール1の導電性能を確実に保持し、電気モジュール1の品質が良好に安定させることができる。即ち、電気的に切断し易く、半導体電極7と対向電極8との間の導通材6を容易に切断することができるとともに、電極間を高安定的に導通可能な電気モジュール1を得ることができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、導通材6自体が封止材12の役割を担い、封止材12を兼ねていてもよい。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(第一実施例)
 ITOが成膜されたPETフィルムからなる導電性フィルムを用意した。導電性フィルムの大きさは縦寸法10cm、横寸法15cmとし、導電性フィルムの厚み寸法は100μmとした。また、端部から8.3cm内方の箇所に絶縁加工を行った(図8参照)。
 続いて、図8に示すように、絶縁加工を行った箇所及び当該箇所近傍に、間隔をあけて平面視線状で幅寸法1.5mmの封止材を配置した。
 次に、接着剤として4.5gのエポキシ樹脂及び4.5gのフェノール樹脂に、表面に金めっきを施したミクロパール(登録商標)AU-250を導電粒子として混合し、導通ペーストとした。この導電粒子の平均粒子径は50μmであり、導電粒子の径寸法の変動係数は6%であった。また、導電粒子は導通ペーストに10質量%含まれる状態になるように、エポキシ樹脂及びフェノール樹脂に混合した。
 続いて、図8に示すように、2本の封止材間に上記導通ペーストを塗布した。その後、この導電性フィルムと同じ大きさの対向電極を用意し、導電性フィルムに貼りあわせ、140℃で導通ペーストを熱硬化によって固化させ、導通ペーストを導通材とし、電気モジュールを作製した。
 熱硬化後に、導電性フィルムと対向電極との間の電気抵抗値をテスターで測定したところ、銅線及び銀ペーストと略同等の抵抗値が得られた。即ち、上述のように本実施例の電気モジュールにおいては、銅線と同等の導電性が確保されていることを確認した。
 続いて、図8に示すように、導通材を横断する方向に、第一実施例の電気モジュールを超音波融着機で区切る(切断)作業を行った。その後、対角線(図10に示すX線)上に隣り合うセルの導通性をテスターで確認したところ、導通性は確認されず、切断されていることを確認した。この作業を行った際、導通材を切断するのに余計な時間はかからなかった。
(第二実施例)
 導電粒子として、金めっきを施したミクロパール(登録商標)AU-250に替えて銀粒子を用いること以外は、第一実施例と同様にして電気モジュールを形成した。なお、この銀粒子の平均粒子径及び径寸法の変動係数も第一実施例と同様とした。
 導通ペーストの熱硬化後に、導電性フィルムと対向電極との間の電気抵抗値をテスターで測定したところ、第一実施例と同様に、銅線及び銀ペーストと略同等の抵抗値が得られた。
 また、第一実施例と同様にして、接着剤及び導通材を横断する方向に、第二実施例の電気モジュールを超音波融着機で区切った後、対角線(図10に示すX線)上に隣り合うセルの導通性をテスターで確認したところ、導通性は確認されず、切断されていることを確認した。この作業を行った際、導通材を切断するのに余計な時間はかからなかった。
(第三実施例)
 導電粒子として、第一実施例で用いたミクロパール(登録商標)AU-250の表面に無電解ニッケルメッキを施した。その結果、平均粒子径63μm、径寸法の変動係数23%の導電粒子を得た。それ以外は、第一実施例と同様にして電気モジュールを形成した。
 導通ペーストの熱硬化後に、導電性フィルムと対向電極との間の電気抵抗値をテスターで測定したところ、第一実施例と同様に、銅線及び銀ペーストと略同等の抵抗値が得られた。
 また、第一実施例と同様にして、接着剤及び導通材を横断する方向に、第三実施例の電気モジュールを超音波融着機で区切った後、対角線(図10に示すX線)上に隣り合うセルの導通性をテスターで確認したところ、導通性は確認されず、切断されていることを確認した。この作業を行った際、導通材を切断するのに余計な時間はかからなかった。
(比較例)
 導通材として幅寸法1.5mm、厚さ寸法60μmの導電性粘着テープ(製造元:株式会社寺岡製作所)を用い、封止剤の延在方向に沿って設けること以外は、第一実施例と同様にして電気モジュールを形成した。
 また、第一実施例と同様にして、導通材を横断する方向に、比較例の電気モジュールを超音波融着機で区切った後、対角線(図8に示すX線)上に隣り合うセルの導通性をテスターで確認したところ、導通性が確認され、切断されていなかった。この作業を行った際、導通材を切断するのに、第一実施例から第三実施例の所要時間の約3倍の時間を要した。なお、最終的にこの導通材を切断するためには、別工程を行わざるを得なかった。
 以上説明した第一実施例から第三実施例までの各実施例及び比較例によって、本実施形態の導通ペースト及び導通材によれば、導通材の剛性が従前に比べて低くなると共に、導通材が従前に比べて柔らかくなり、導通材及びこの導通材を用いた電気モジュールをレーザや超音波融着等で容易に切断できることを確認した。
1…電気モジュール
1A,1B…色素増感太陽電池(電気モジュール)
2…第一基材
6…導通材
7…半導体電極(第一電極)
8…対向電極(第二電極)
20…導電粒子
21…接着剤
28…補助導電粒子(補助導電物質)
C…セル

Claims (9)

  1.  接着剤と、電極間を導通可能とする導電粒子と、を含み、
     前記導電粒子の径寸法の変動係数が25%以下である導通ペースト。
  2.  前記導電粒子の平均粒子径は3μm以上500μm以下である請求項1に記載の導通ペースト。
  3.  第一電極と、第二電極とが、請求項1又は2に記載の導通ペーストにより形成される導通材によって複数のセルに区画された状態で接着されているとともに、隣接する前記複数のセルが電気的に接続されている電気モジュール。
  4.  前記導電粒子のうち、前記第一電極及び前記第二電極の両方に接している導電粒子の個数割合が50%以上である請求項3に記載の電気モジュール。
  5.  前記第一電極又は前記第二電極の単面積あたりの、前記第一電極及び前記第二電極の両方に接している導電粒子の個数が、20個/1mm以上であることを特徴とする請求項3に記載の電気モジュール。
  6.  前記導通材は前記第一電極と前記第二電極との間の厚み方向の間隔よりも小さい径寸法の補助導電物質をさらに含む請求項3から請求項5に記載の電気モジュール。
  7.  前記補助導電物質が、粒子状または繊維状である請求項6に記載の電気モジュール。
  8.  前記第一電極又は前記第二電極が光増感色素を含む請求項3から請求項7の何れか一項に記載の電気モジュール。
  9.  請求項3から請求項8に記載の何れか一項に記載の電気モジュールの製造方法であって、
     前記第一電極と前記第二電極とを任意の距離を空けて対向させ、前記第一電極と前記第二電極との間に、少なくとも前記導通ペーストを配する第一工程と、
     前記第一電極と前記第二電極とを互いの距離が前記導電粒子の平均粒子径の70%以上90%以下になるまで互いに近づけるように押圧し、前記第一電極と前記第二電極とを貼り合わせる第二工程と、を備える電気モジュールの製造方法。
PCT/JP2016/056094 2015-03-04 2016-02-29 導通ペースト、電気モジュール及び電気モジュールの製造方法 WO2016140196A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017503648A JP6626494B2 (ja) 2015-03-04 2016-02-29 電気モジュール及び電気モジュールの製造方法
CN201680009307.5A CN107210082A (zh) 2015-03-04 2016-02-29 导电膏、电气模块及电气模块的制造方法
KR1020177022012A KR20170125814A (ko) 2015-03-04 2016-02-29 도통 페이스트, 전기 모듈 및 전기 모듈의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015042662 2015-03-04
JP2015-042662 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140196A1 true WO2016140196A1 (ja) 2016-09-09

Family

ID=56848217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056094 WO2016140196A1 (ja) 2015-03-04 2016-02-29 導通ペースト、電気モジュール及び電気モジュールの製造方法

Country Status (5)

Country Link
JP (1) JP6626494B2 (ja)
KR (1) KR20170125814A (ja)
CN (1) CN107210082A (ja)
TW (1) TWI694468B (ja)
WO (1) WO2016140196A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076666A (ja) * 2016-11-07 2018-05-17 積水化学工業株式会社 太陽電池モジュール付きスラット、太陽電池スラット、太陽電池モジュール付きスラットの製造方法、及び太陽電池スラットの製造方法
JP2018147981A (ja) * 2017-03-03 2018-09-20 積水化学工業株式会社 電気モジュールおよび電気モジュールの製造方法
WO2018174247A1 (ja) * 2017-03-24 2018-09-27 積水化学工業株式会社 太陽電池モジュール、太陽電池モジュールの製造方法
JP2018163935A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 太陽電池モジュール、及び太陽電池モジュールの製造方法
JP2018170463A (ja) * 2017-03-30 2018-11-01 積水化学工業株式会社 色素増感太陽電池
JP2019004059A (ja) * 2017-06-15 2019-01-10 積水化学工業株式会社 電気モジュール及び電気モジュールの製造方法
JP2020038942A (ja) * 2018-09-05 2020-03-12 積水化学工業株式会社 電気モジュールおよびその製造方法
JP2020043198A (ja) * 2018-09-10 2020-03-19 積水化学工業株式会社 導電接着材料及び色素増感型太陽電池
JP2020043199A (ja) * 2018-09-10 2020-03-19 積水化学工業株式会社 色素増感型太陽電池
JPWO2021045186A1 (ja) * 2019-09-05 2021-09-27 日立金属株式会社 熱電変換モジュールの製造方法
EP3955320A4 (en) * 2019-04-10 2023-01-04 Zeon Corporation SOLAR CELL MODULE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259253A (ja) * 1997-03-21 1998-09-29 Hayakawa Rubber Co Ltd 金属被覆微粒子及び導電性材料
JP2001357897A (ja) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd 光電変換モジュール
JP2002173702A (ja) * 2000-09-29 2002-06-21 Jsr Corp 導電性金属粒子および導電性複合金属粒子並びにそれらを用いた応用製品
JP2006032110A (ja) * 2004-07-15 2006-02-02 Hitachi Maxell Ltd 光電変換素子モジュール
JP2008210748A (ja) * 2007-02-28 2008-09-11 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその製造方法
JP2010165544A (ja) * 2009-01-15 2010-07-29 Panasonic Corp 導電性樹脂材料
JP2011100573A (ja) * 2009-11-04 2011-05-19 Kyoto Elex Kk 加熱硬化型導電性ペースト組成物
US20130323501A1 (en) * 2012-05-29 2013-12-05 Conpart As Isotropic conductive adhesive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663799B2 (en) * 2000-09-28 2003-12-16 Jsr Corporation Conductive metal particles, conductive composite metal particles and applied products using the same
KR20100075552A (ko) * 2007-11-02 2010-07-02 니폰 가야꾸 가부시끼가이샤 색소 증감 태양전지 모듈
JP5832943B2 (ja) * 2012-03-23 2015-12-16 富士フイルム株式会社 導電性組成物、導電性部材、導電性部材の製造方法、タッチパネルおよび太陽電池
TWI480229B (zh) * 2012-03-26 2015-04-11 Toshiba Kk A battery electrode material, a battery electrode paste, a method for manufacturing an electrode material for a battery, a dye-sensitized solar cell, and a battery
GB201212489D0 (en) * 2012-07-13 2012-08-29 Conpart As Improvements in conductive adhesives
JP5740063B2 (ja) * 2012-12-14 2015-06-24 積水化学工業株式会社 電極基板及び色素増感太陽電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259253A (ja) * 1997-03-21 1998-09-29 Hayakawa Rubber Co Ltd 金属被覆微粒子及び導電性材料
JP2001357897A (ja) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd 光電変換モジュール
JP2002173702A (ja) * 2000-09-29 2002-06-21 Jsr Corp 導電性金属粒子および導電性複合金属粒子並びにそれらを用いた応用製品
JP2006032110A (ja) * 2004-07-15 2006-02-02 Hitachi Maxell Ltd 光電変換素子モジュール
JP2008210748A (ja) * 2007-02-28 2008-09-11 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその製造方法
JP2010165544A (ja) * 2009-01-15 2010-07-29 Panasonic Corp 導電性樹脂材料
JP2011100573A (ja) * 2009-11-04 2011-05-19 Kyoto Elex Kk 加熱硬化型導電性ペースト組成物
US20130323501A1 (en) * 2012-05-29 2013-12-05 Conpart As Isotropic conductive adhesive

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076666A (ja) * 2016-11-07 2018-05-17 積水化学工業株式会社 太陽電池モジュール付きスラット、太陽電池スラット、太陽電池モジュール付きスラットの製造方法、及び太陽電池スラットの製造方法
JP2018147981A (ja) * 2017-03-03 2018-09-20 積水化学工業株式会社 電気モジュールおよび電気モジュールの製造方法
WO2018174247A1 (ja) * 2017-03-24 2018-09-27 積水化学工業株式会社 太陽電池モジュール、太陽電池モジュールの製造方法
JP2018163935A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 太陽電池モジュール、及び太陽電池モジュールの製造方法
JP2018170463A (ja) * 2017-03-30 2018-11-01 積水化学工業株式会社 色素増感太陽電池
JP2019004059A (ja) * 2017-06-15 2019-01-10 積水化学工業株式会社 電気モジュール及び電気モジュールの製造方法
JP2020038942A (ja) * 2018-09-05 2020-03-12 積水化学工業株式会社 電気モジュールおよびその製造方法
JP7084259B2 (ja) 2018-09-05 2022-06-14 積水化学工業株式会社 電気モジュールおよびその製造方法
JP2020043198A (ja) * 2018-09-10 2020-03-19 積水化学工業株式会社 導電接着材料及び色素増感型太陽電池
JP2020043199A (ja) * 2018-09-10 2020-03-19 積水化学工業株式会社 色素増感型太陽電池
EP3955320A4 (en) * 2019-04-10 2023-01-04 Zeon Corporation SOLAR CELL MODULE
EP4235811A3 (en) * 2019-04-10 2023-10-04 Zeon Corporation Solar cell module
JPWO2021045186A1 (ja) * 2019-09-05 2021-09-27 日立金属株式会社 熱電変換モジュールの製造方法
JP7037734B2 (ja) 2019-09-05 2022-03-17 日立金属株式会社 熱電変換モジュールの製造方法

Also Published As

Publication number Publication date
KR20170125814A (ko) 2017-11-15
CN107210082A (zh) 2017-09-26
TW201643891A (zh) 2016-12-16
JP6626494B2 (ja) 2019-12-25
TWI694468B (zh) 2020-05-21
JPWO2016140196A1 (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
WO2016140196A1 (ja) 導通ペースト、電気モジュール及び電気モジュールの製造方法
JP6916162B2 (ja) 電気モジュール及び電気モジュールの製造方法
CN109478468B (zh) 太阳能电池模块及太阳能电池模块的制造方法
CN109478469B (zh) 太阳能电池模块
CN102495493A (zh) 液晶面板的制作方法及液晶面板、液晶显示装置
CN107342117B (zh) 各向异性导电膜及其制作方法
CN109564823B (zh) 太阳能电池模块
CN104051079A (zh) 一种含有机械剥离石墨烯的导电电线电缆的制备方法
WO2013089060A1 (ja) 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法
US20120085383A1 (en) Solar cell module and method of manufacturing the same
CN101944403A (zh) 导电板及其制作方法
WO2015105120A1 (ja) バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール
JP6561880B2 (ja) 色素増感型太陽電池モジュールの製造方法
WO2017154493A1 (ja) 色素増感型太陽電池モジュール
JP2020043199A (ja) 色素増感型太陽電池
JP2020126876A (ja) 電気モジュール
JP2015233096A (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
JP2020126875A (ja) 電気モジュール及びその製造方法
JP7084259B2 (ja) 電気モジュールおよびその製造方法
JP6703574B2 (ja) 電気モジュールおよびその製造方法
JP2020129655A (ja) 色素増感型太陽電池
JP2017059832A (ja) 太陽電池
WO2017141902A1 (ja) 太陽電池
JP2015191987A (ja) 色素増感太陽電池およびその製造方法
JP2020043198A (ja) 導電接着材料及び色素増感型太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503648

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022012

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758889

Country of ref document: EP

Kind code of ref document: A1