WO2013089060A1 - 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法 - Google Patents

太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2013089060A1
WO2013089060A1 PCT/JP2012/081930 JP2012081930W WO2013089060A1 WO 2013089060 A1 WO2013089060 A1 WO 2013089060A1 JP 2012081930 W JP2012081930 W JP 2012081930W WO 2013089060 A1 WO2013089060 A1 WO 2013089060A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
solar battery
pad
receiving surface
light receiving
Prior art date
Application number
PCT/JP2012/081930
Other languages
English (en)
French (fr)
Inventor
須賀 保博
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2013089060A1 publication Critical patent/WO2013089060A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a measurement method for measuring output characteristics of a solar battery cell, and relates to a solar battery cell having a configuration suitable for measurement of output characteristics of a solar battery cell, a solar battery manufacturing method, and a solar battery module manufacturing method.
  • This application claims priority on the basis of Japanese Patent Application No. 2011-271410 filed on Dec. 12, 2011 in Japan. This application is incorporated herein by reference. Incorporated.
  • a measurement jig for measuring the electrical output characteristics of a solar battery cell a measurement jig having a plurality of probe pins that are in contact with the bus bar electrode of the solar battery cell is generally used.
  • This type of measurement jig has a current measurement probe pin for measuring a current flowing through the solar battery cell and a voltage measurement probe pin for measuring a voltage generated in the solar battery cell.
  • the measurement of the output characteristics of the solar battery cell is performed by using the current measurement probe pin 50 and the voltage measurement probe pin 51 as the bus bar electrode 54 of the solar battery cell 53 to be measured.
  • This is performed by a so-called four-terminal method in which the current flowing through the solar battery cell 53 and the voltage generated in the solar battery cell 53 are measured while contacting the upper surface and irradiating the light receiving surface of the solar battery cell 53 with pseudo sunlight.
  • a conductive adhesive film is provided without providing bus bar electrodes.
  • a method of directly connecting a tab wire serving as an interconnector so as to cross the finger electrode through the connector has been proposed.
  • the current collection efficiency is equal to or higher than that of the solar cell in which the bus bar electrode is formed.
  • the probe pin 56 When measuring the output characteristics of the solar cell 55 having such a bus barless structure, the probe pin 56 needs to be in direct contact with the finger electrode 57. However, as shown in FIG. 14, the interval between the probe pins 56 and the interval at which the finger electrodes 57 are formed often do not coincide with each other. In this case, conduction to all the finger electrodes 57 is possible. Therefore, finger electrodes 57 that are not measured are generated, and accurate output characteristics cannot be measured.
  • the present invention is capable of accurately measuring output characteristics not only for a solar battery cell having a bus bar electrode but also for a solar battery cell having a bus bar-less structure, and an output of the solar battery cell.
  • An object is to provide a measurement method.
  • a photovoltaic cell includes a plurality of finger electrodes provided in parallel with each other on a light receiving surface, and an outer edge of the light receiving surface.
  • An outer peripheral electrode connected to an electrode, and a pad connected to the outer peripheral electrode and connected to a measuring device for measuring output characteristics.
  • the output measuring method of the solar battery cell according to the present invention includes a plurality of finger electrodes provided in parallel to each other on the light receiving surface, and provided along the outer edge of the light receiving surface and connected to the plurality of finger electrodes.
  • a terminal connected to a measuring device for measuring the output characteristics of the solar battery cell is connected to the pad of the solar battery cell provided with the outer peripheral electrode connected to the outer peripheral electrode and a pad for measuring the output characteristics. Then, the output characteristics of the solar battery cell are measured by irradiating the light receiving surface with a predetermined light beam.
  • the manufacturing method of the photovoltaic cell according to the present invention is provided along a plurality of finger electrodes provided in parallel to each other by applying a conductive paste on the light receiving surface, and along the outer edge of the light receiving surface, An outer peripheral electrode connected to the plurality of finger electrodes and a pad connected to the outer peripheral electrode and connected to a measuring device for measuring output characteristics of the solar battery cell are formed.
  • the method for manufacturing a solar cell module according to the present invention is provided along a plurality of finger electrodes provided in parallel to each other by applying a conductive paste on the light receiving surface, and along the outer edge of the light receiving surface, Forming a solar cell provided with an outer peripheral electrode connected to the plurality of finger electrodes, and a pad connected to the outer peripheral electrode and connected to a measuring device for measuring output characteristics of the solar battery cell;
  • a measuring device for measuring output characteristics of the solar battery cell By connecting tab wires to the battery cells via an adhesive, the plurality of solar cells are connected via the tab wires, and the plurality of solar cells connected by the tab wires are sealed. It laminates with a surface cover and a back sheet through resin.
  • this is performed by connecting a terminal connected to the measuring device to a pad provided on the light receiving surface. Therefore, even in a solar cell with a bus bar-less structure, the problem of measurement failure due to poor connection between the measurement jig and the finger electrode does not occur, and output characteristics can be measured accurately.
  • FIG. 1 is an exploded perspective view showing a configuration of a solar cell module to which the present invention is applied.
  • FIG. 2 is a cross-sectional view showing strings of solar cells.
  • FIG. 3 is a plan view of the solar battery cell.
  • FIG. 4 is a bottom view of the solar battery cell.
  • FIG. 5 is a plan view of an essential part showing a pad provided on the outer edge of the solar battery cell.
  • FIG. 6 is a plan view of the solar battery cell.
  • FIG. 7 is a plan view of the solar battery cell.
  • FIG. 8 is a cross-sectional view showing a conductive adhesive film.
  • FIG. 9 is a cross-sectional view showing a conductive adhesive film having a release substrate attached and wound in a roll shape.
  • FIG. 10 is a plan view showing a state in which the electrical output characteristics of the solar battery cell are measured.
  • FIG. 11 is a cross-sectional view showing a state in which the electrical output characteristics of the solar battery cell are measured.
  • FIG. 12 is a perspective view showing a state in which the electrical characteristics of the solar battery cell are measured using a conventional measuring device using probe pins.
  • FIG. 13 is a diagram for explaining measurement by a conventional measuring apparatus using probe pins.
  • FIG. 14 is a diagram for explaining measurement of electrical characteristics of a solar cell having a bus bar-less structure by a conventional measuring apparatus using probe pins.
  • a solar cell module 1 to which the present invention is applied has a string 4 in which a plurality of solar cells 2 are connected in series by a tab wire 3 serving as an interconnector.
  • a matrix 5 in which a plurality of 4 are arranged is provided.
  • the solar cell module 1 is laminated together with the front cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back surface side, with the matrix 5 sandwiched between the sealing adhesive sheets 6.
  • a metal frame 9 such as aluminum is attached to the periphery.
  • sealing adhesive for example, a translucent sealing material such as ethylene-vinyl acetate copolymer resin (EVA) is used.
  • EVA ethylene-vinyl acetate copolymer resin
  • surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
  • back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • Each solar battery cell 2 of the solar battery module 1 has a photoelectric conversion element 10.
  • the photoelectric conversion element 10 a single crystal silicon type photoelectric conversion element or a crystalline silicon type solar cell using a polycrystalline silicon type photoelectric conversion element will be described as an example, but the present invention is a thin film type solar cell, an organic type, Various photoelectric conversion elements such as a quantum dot type can be used.
  • the solar battery cell 2 is provided with a finger electrode 12 serving as a surface electrode for collecting electricity generated inside on the light receiving surface side.
  • the finger electrode 12 is formed by baking a conductive paste such as an Ag paste applied by screen printing or the like over two opposing sides of the surface serving as a light receiving surface of the solar battery cell 2.
  • the finger electrode 12 has a plurality of lines having a width of about 50 to 200 ⁇ m, for example, approximately parallel to each other at a predetermined interval, for example, every 2 mm, over the entire light receiving surface.
  • the outer periphery electrode 15 is provided in the surface used as a light-receiving surface along a cell outer edge.
  • the outer peripheral electrode 15 is connected to a plurality of finger electrodes 12 arranged in parallel on the light receiving surface side, and is also connected to a pad 16 to be described later, whereby the finger electrode 12 and the pad 16 are made continuous.
  • the outer peripheral electrode 15 circulates along the outer edge of the light receiving surface of the solar battery cell 2 and is continuous with both ends of the plurality of finger electrodes 12 formed between two opposing sides.
  • the outer peripheral electrode 15 is formed by, for example, applying Ag paste by screen printing or the like and then baking it, and is formed simultaneously with the finger electrode 12.
  • the outer peripheral electrode 15 is connected to a pad 16 serving as a measurement terminal for measuring the output characteristics of the solar battery cell 2.
  • the solar cell 2 can measure the output characteristics by connecting the terminal of the conducting wire 21 connected to the ammeter 19 and the voltmeter 20 to the pad 16.
  • a plurality of the pads 16 are formed on the light receiving surface of the solar battery cell 2 adjacent to the outer peripheral electrode 15.
  • the pad 16 extends in the direction orthogonal to the longitudinal direction of the finger electrode 12. It is formed in the vicinity of the two side edges and is in contact with the outer peripheral electrode 15.
  • Each pad 16 has, for example, a rectangular shape, is formed by baking an Ag paste applied by screen printing or the like, and is formed simultaneously with the finger electrode 12 and the outer peripheral electrode 15.
  • a plurality of pads 16 are formed in the solar battery cell 2 so that at least one of the pads 16 is a terminal for current measurement and the other one is a terminal for voltage measurement.
  • the solar battery cell 2 is connected to the pad 16 with the ammeter 19 and the voltmeter 20 without using a measuring jig having a probe pin that comes into contact with the finger electrode or the bus bar electrode when measuring the output characteristics.
  • the conducting wire 21 When the conducting wire 21 is connected, output characteristics can be measured.
  • the pad 16 is preferably formed with a width W of one side larger than 1 mm and a width of 4 mm 2 or more.
  • the pad 16 has a distance W from the outer edge of the solar battery cell 2 toward the inner surface side as a width W of the pad 16 and a distance parallel to the outer edge of the solar battery cell 2 as a length. If the pad 16 has a width of 1 mm or less or a size of less than 4 mm 2 , the connection area with the terminal of the conducting wire 21 for measuring current and voltage is insufficient, and there is a risk of poor connection.
  • the solar cell 2 to form a pad 16 in a substantially rectangular shape, large width W of one side than 1 mm, by the area of a 4 mm 2 or more, the solar cell 2, the current and voltage accurately
  • a preferable shape can be provided as a connection terminal for measurement.
  • the pad 16 is preferably formed to be 10 mm 2 or less, for example, because if the area on the light receiving surface of the solar battery cell 2 is too large, the conversion efficiency is reduced by shadow loss.
  • the pad 16 may be provided at any location within the light receiving surface of the solar battery cell 2 as long as it is in contact with the outer peripheral electrode 15, and the two sides in the direction orthogonal to the longitudinal direction of the finger electrode 12 shown in FIG.
  • the finger electrode 12 can be provided on one side edge or two side edges in the longitudinal direction, a corner portion of the solar battery cell 2, or the like.
  • the solar battery cell 2 has a so-called bus bar-less structure in which a bus bar electrode for collecting electricity of the finger electrode 12 is not provided by being substantially orthogonal to each finger electrode 12. Therefore, in the solar battery cell 2, a tab wire 3 described later is directly connected to the finger electrode 12 through the conductive adhesive film 17.
  • the solar battery cell 2 in which the bus bar electrode 23 is formed can be used as the solar battery cell 2.
  • the solar battery cell 2 is formed with a narrow bus bar electrode 23, for example, with a width of 1.0 mm or less, in order to increase the light receiving area and improve the conversion efficiency. If the bus bar electrode 23 is formed with a width of 1.0 mm or less, it is difficult for the conventional measurement jig to contact the probe pin accurately and there is a risk of variation in measurement. As described above, since the pad 16 serving as a terminal for output measurement is provided, the output characteristics can be accurately measured even when the extremely thin bus bar electrode 23 is used.
  • the photoelectric conversion element 10 is provided with a back electrode 13 made of aluminum or silver on the back side opposite to the light receiving surface. As shown in FIGS. 2 and 4, for example, an electrode made of aluminum or silver is formed on the back surface of the solar battery cell 2 by screen printing or sputtering.
  • the back electrode 13 has a tab wire connecting portion 14 to which the tab wire 3 is connected via a conductive adhesive film 17 described later.
  • each of the finger electrodes 12 formed on the surface of the solar battery cell 2 and the back electrode 13 of the adjacent solar battery cell 2 are electrically connected by the tab wire 3.
  • the strings 4 connected in series are configured.
  • the tab wire 3, the finger electrode 12 and the back electrode 13 are connected by a conductive adhesive film 17 described later.
  • the tab wire 3 is made of a long conductive base material that electrically connects the adjacent solar cells 20a, 20b, 20c, and has a thickness of 50 to 300 ⁇ m, for example.
  • a ribbon-like copper foil having substantially the same width as the adhesive adhesive film 17 is used, and gold plating, silver plating, tin plating, solder plating, or the like is applied as necessary.
  • the conductive adhesive film 17 is a film in which conductive particles 24 are contained in a thermosetting binder resin 18 at a high density and formed into a film shape. Made by Co., Ltd .: SP100 series can be used.
  • the conductive particles 24 used for the conductive adhesive film 17 are not particularly limited.
  • metal particles such as nickel, gold, silver, and copper, those obtained by applying gold plating to resin particles, and gold plating on resin particles. And the like.
  • the composition of the binder resin 18 of the conductive adhesive film 17 is not particularly limited, but more preferably, for example, a thermosetting epoxy-based curable resin composition or an acrylic curable resin composition can be used.
  • the epoxy thermosetting resin composition is composed of, for example, a compound or resin having two or more epoxy groups in the molecule, an epoxy curing agent, a film forming component, and the like.
  • the compound or resin having two or more epoxy groups in the molecule may be liquid or solid, bifunctional epoxy resin such as bisphenol A type epoxy resin or bisphenol F type epoxy resin, phenol, etc.
  • bifunctional epoxy resin such as bisphenol A type epoxy resin or bisphenol F type epoxy resin, phenol, etc.
  • novolac type epoxy resins such as novolac type epoxy resins and cresol novolac type epoxy resins.
  • alicyclic epoxy compounds such as 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate can also be used.
  • epoxy curing agent examples include an amine curing agent, an imidazole curing agent, an acid anhydride curing agent, and a sulfonium cation curing agent.
  • the curing agent may be latent.
  • film forming components include phenoxy resins and acrylic resins that are compatible with epoxy compounds and epoxy resins.
  • the epoxy thermosetting resin composition is a known curing accelerator, a silane coupling agent, a metal scavenger, a stress relaxation agent such as butadiene rubber, an inorganic filler such as silica, a polyisocyanate crosslinking agent, a coloring, if necessary. May contain additives, preservatives, solvents, and the like.
  • the acrylic thermosetting resin composition includes, for example, a (meth) acrylate monomer, a film-forming resin, an inorganic filler such as silica, a silane coupling agent, a radical polymerization initiator, and the like.
  • the (meth) acrylate monomer a monofunctional (meth) acrylate monomer, a polyfunctional (meth) acrylate monomer, or a modified monofunctional in which an epoxy group, a urethane group, an amino group, an ethylene oxide group, a propylene oxide group, or the like is introduced. Or a polyfunctional (meth) acrylate monomer can be used. Further, other monomers capable of radical copolymerization with the (meth) acrylate monomer, for example, (meth) acrylic acid, vinyl acetate, styrene, vinyl chloride and the like can be used in combination as long as the effects of the present invention are not impaired.
  • the film forming resin for the acrylic thermosetting resin composition examples include phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, alkylated cellulose resin, polyester resin, acrylic resin, styrene resin, urethane resin, and polyethylene terephthalate resin. Can be mentioned.
  • radical polymerization initiators examples include organic peroxides such as benzoyl peroxide, dicumyl peroxide, and dibutyl peroxide, and azobis compounds such as azobisisobutyronitrile and azobisvaleronitrile.
  • the acrylic thermosetting resin composition can contain a stress relaxation agent such as butadiene rubber, a solvent such as ethyl acetate, a colorant, an antioxidant, an antioxidant, and the like, if necessary.
  • the formation of the conductive adhesive film from the binder resin 18 comprising the epoxy thermosetting resin composition or the acrylic thermosetting resin composition containing the conductive particles 24 can be performed using a known technique. it can.
  • the conductive particle 24, the film-forming resin, the liquid epoxy resin, the latent curing agent, and the silane coupling agent are dissolved in a solvent, and the resin generation solution obtained by dissolution is dissolved on the release sheet 25.
  • the conductive adhesive film 17 formed into a film shape is obtained by applying to the substrate and evaporating the solvent.
  • the solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
  • the release sheet 25 is not particularly limited, and PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), or the like can be used.
  • PET Poly Ethylene Terephthalate
  • OPP Oriented Polypropylene
  • PMP Poly-4-methlpentene-1
  • PTFE Polytetrafluoroethylene
  • the film-like conductive adhesive film 17 is wound around a reel 26 as shown in FIG.
  • the conductive adhesive film 17 supported by the release sheet 25 is pulled out from the reel 26 and cut into a predetermined length substantially equal to one side of the solar battery cell 2. It peels and is stuck on the light receiving surface so as to be substantially orthogonal to the finger electrode 12, and is stuck on the tab wire connecting portion 14 of the back electrode 13. At this time, the conductive adhesive film 17 is heat-pressed at a temperature, pressure, and time such that the binder resin 18 exhibits fluidity but is not thermally cured.
  • the bus bar electrode 23 is formed on the light receiving surface of the solar battery cell 2, the conductive adhesive film 17 is attached on the bus bar electrode 23.
  • the conductive adhesive film 17 has the tab wire 3 superimposed thereon and is heated and pressed by a heating bonder, so that the conductive adhesive film 17 flows out from between the tab wire 3 and the finger electrode 12 or the tab wire connecting portion 14 and is conductive.
  • the binder resin 18 is thermally cured through the particles 24 or directly in this state. Thereby, the conductive adhesive film 17 can achieve connection between the tab wire 3, the finger electrode 12, and the back electrode 13.
  • a solar battery string 4 in which a plurality of solar battery cells 2 are connected by a tab wire 3 is formed.
  • a matrix 5 in which a plurality of strings 4 are arranged has a surface cover 7 provided on the light receiving surface side, in which sheets 6 of a light-transmitting sealing adhesive such as EVA for sealing the solar cells 2 are laminated on the front and back surfaces. And it laminates collectively with the back sheet 8 provided in the back surface side, and finally, metal frames 9, such as aluminum, are attached to the circumference
  • the conductive adhesive film having a film shape has been described, but there is no problem even if it is in a paste form.
  • the photovoltaic cell 2 can also use the insulating adhesive film or insulating adhesive paste which does not contain the electroconductive particle 24.
  • FIG. In this case, the binder resin 18 is thermoset while the finger electrode 12, the back electrode 13, and the tab wire 3 are directly connected.
  • the conductive adhesive film 17 and the insulating adhesive film have a laminated body in which the tab wire 3 is connected in advance by roll lamination or the like on the surface opposite to the surface on which the release sheet 25 is provided. Also good. By using such a laminated body, it is possible to simultaneously attach the conductive adhesive film 17 or the insulating adhesive film and connect the tab wire 3 in a single hot press process.
  • Measurement of the output characteristics of the solar cell 2 is performed before the finger electrode 12, the outer peripheral electrode 15, and the pad 16 are formed on the light receiving surface, the back electrode 13 is formed on the back surface, and the conductive adhesive film 17 and the like are attached. To be done.
  • the measurement of the output characteristics of the solar battery cell 2 does not require a dedicated measurement jig, and an ammeter 19 or a voltmeter is provided between the pad 16 provided on the light receiving surface side and the back electrode 13. This is done by connecting the conductive wire 21 connected to 20. Therefore, even in the solar cell 2 having the bus barless structure, the problem of measurement failure due to poor connection between the measurement jig and the finger electrode 12 does not occur, and output characteristics can be measured accurately.
  • one pair of pads 16 is used for current measurement and the other pair of pads 16 is used for voltage measurement.
  • the conducting wire 21 After being connected to each other by the conducting wire 21, it is connected to the back electrode 13 through an ammeter 19 or a voltmeter 20 as shown in FIGS. 11 (a) and 11 (b).
  • the solar cell 2 to form a pad 16 in a substantially rectangular shape, larger than 1mm width W, by setting the area of 4 mm 2 or more, the connection terminals for measuring the current and voltage As a result, it is possible to prevent the connection failure with the conductor 21.
  • the solar battery cell 2 performs output characteristic measurement using the pad 16, for example, even when an extremely thin bus bar electrode 23 having a width of 1 mm or less is provided, a measurement jig by narrowing the width of the bus bar electrode 23. There is no problem such as an influence due to poor contact between the probe pin and the bus bar electrode 23, and it is not necessary to make the bus bar electrode 23 thicker, so that shadow loss can be reduced.
  • the solar battery cell 2 according to the example and the comparative example is a crystalline silicon solar battery having an outer shape of 5 inches, and the conversion efficiency (%) was obtained for the solar battery cell 2 by the method according to the example and the comparative example.
  • the measurement was performed under standard measurement conditions (illuminance 1000 W / m 2 , temperature 25 ° C., spectrum AM 1.5 G) using a solar simulator (Nisshinbo Mechatronics Corporation, solar simulator PVS1116i-M).
  • the measurement was performed by a so-called four-terminal method, and was measured in accordance with JIS C8913 (crystal solar cell output measurement method).
  • the solar cell theoretical output value means a theoretical output value originally provided in the solar cell according to the example and the comparative example.
  • the performance of the solar cell is 100%, (measured value / sun The battery cell theoretical output value) is 1.
  • (measured value / solar cell theoretical output value) is allowed to be 0.99 or more, and less than 0.99.
  • Example 1 a solar cell 2 having a bus bar-less structure was used.
  • two pads 16 are formed in the vicinity of the two side edges in the direction orthogonal to the longitudinal direction of the finger electrode 12 on the outer edge of the light receiving surface.
  • Each pad 16 is formed into a 2 mm ⁇ 2 mm square by applying and baking an Ag paste, and the pad area is 4 mm 2 .
  • the solar cell 2 according to Example 2 was under the same conditions as Example 1 except that one pad 16 was formed near each of the two side edges in the direction orthogonal to the longitudinal direction of the finger electrode 12.
  • the solar battery cell 2 according to Example 3 had the same conditions as Example 1 except that the size of the pad 16 was a rectangular shape of 2 mm ⁇ 3 mm and the pad area was 6 mm 2 .
  • the solar battery cell 2 according to Example 4 had the same conditions as Example 1 except that the size of the pad 16 was 3 mm ⁇ 3 mm square and the pad area was 9 mm 2 .
  • the solar battery cell 2 according to Example 5 had the same conditions as Example 1 except that the size of the pad 16 was a rectangular shape of 4 mm ⁇ 2 mm and the pad area was 8 mm 2 .
  • the solar battery cell 2 according to Example 6 had the same conditions as Example 1 except that the size of the pad 16 was a rectangular shape of 5 mm ⁇ 2 mm and the pad area was 10 mm 2 .
  • the solar cell 2 according to Example 7 was made the same conditions as Example 1 except that the solar cell 2 provided with a 1.0 mm wide bus bar electrode was used.
  • Comparative Example 1 uses a solar battery cell having a bus bar-less structure and uses a solar battery cell in which no pad 16 is formed, and abuts the probe pin of a measurement jig having a conventional probe pin on a finger electrode. Was used to measure the output characteristics.
  • Example 2 the conditions of the pad 16 were the same as those in Example 1 except that the shape of the pad 16 was a rectangular shape having a width of 1 mm and a length of 1 mm, and the pad area was 1 mm 2 .
  • Comparative Example 3 the conditions of the pad 16 were the same as those of Example 1 except that the shape of the pad 16 was a rectangular shape having a width of 1 mm and a length of 2 mm, and the pad area was 2 mm 2 .
  • Comparative Example 4 the shape of pads 16 and width 1 mm ⁇ 4mm long rectangular, except that the pad area was 4mm 2 were the same conditions as in Example 1.
  • Table 1 shows the measurement results. As shown in Table 1, in each of Examples 1 to 7, (measured value / solar cell theoretical output value) is 0.99, and the output result is almost the theoretical output value, which can be used without any practical problems. I understand.
  • 1 solar cell module 1 solar cell module, 2 solar cells, 3 tab wires, 4 strings, 5 matrix, 6 sheets, 7 surface cover, 8 back sheet, 9 metal frame, 10 photoelectric conversion element, 12 finger electrodes, 13 back electrodes, 14 tabs Wire connection part, 15 outer peripheral electrode, 16 pad, 17 conductive adhesive film, 18 binder resin, 19 ammeter, 20 voltmeter, 21 conductor, 23 bus bar electrode, 24 conductive particles, 25 release sheet, 26 reel

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 測定治具を用いることなく太陽電池セルの出力特性の測定を正確に行う。受光面上に互いに平行に設けられた複数のフィンガー電極(12)と、受光面の外側縁に沿って設けられ、複数のフィンガー電極(12)と接続された外周電極(15)と、外周電極(15)と接続され、出力特性を測定する測定機器(19),(20)と接続されるパット(16)とを備えた。

Description

太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法
 本発明は、太陽電池セルの出力特性を測定する測定方法に関し、太陽電池セルの出力特性の測定に適した構成を有する太陽電池セル、太陽電池セルの製造方法及び太陽電池モジュールの製造方法に関する。
 本出願は、日本国において2011年12月12日に出願された日本特許出願番号特願2011-271410を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来、太陽電池セルの電気的な出力特性の測定を行う測定治具としては、一般に太陽電池セルのバスバー電極に接触されるプローブピンを複数備えた測定治具が用いられている。この種の測定治具は、太陽電池セルに流れる電流を測定する電流測定用プローブピンと、太陽電池セルに発生する電圧を測定する電圧測定用プローブピンを有する。
 太陽電池セルの出力特性の測定は、例えば、図12及び図13に示すように、これら電流測定用プローブピン50及び電圧測定用プローブピン51を、測定対象となる太陽電池セル53のバスバー電極54上に接触し、太陽電池セル53の受光面に疑似太陽光を照射しながら、太陽電池セル53に流れる電流及び太陽電池セル53に発生する電圧を測定するいわゆる4端子法によって行われる。
特開2006-118983号公報
 ここで、近年、太陽電池セルの製造工数を削減すると共に、Agペースト等の電極材料の使用量を削減し製造コストの低コスト化を図るために、バスバー電極を設けることなく、導電性接着フィルムを介してフィンガー電極と交差するように直接インターコネクタとなるタブ線を接続させる工法が提案されている。かかるバスバーレス構造の太陽電池セルにおいても、集電効率はバスバー電極を形成した太陽電池セルと同等以上となる。
 このようなバスバーレス構造の太陽電池セル55に対して出力特性を測定する場合、プローブピン56を直接フィンガー電極57に接触させる必要がある。しかし、図14に示すように、プローブピン56の立設間隔とフィンガー電極57が形成される間隔とは一致しないことも多く、この場合、全てのフィンガー電極57に対して導通をとることができず、計測の対象から外れるフィンガー電極57が発生し、正確な出力特性を測定することができなくなる。
 このような問題を解決するために、プローブピンを用いるのではなく、矩形板状のバー電極を測定端子に用い、全フィンガー電極と交叉するように太陽電池セルの受光面に配置する測定手法も提案されている。
 しかし、バー電極による測定手法においては、各フィンガー電極にバー電極の当接面を均一に当接させる必要があるが、バー電極の当接面の平面度を高精度に形成することや、バー電極の太陽電池セルに対する水平度の調整が困難となる。さらに、フィンガー電極の高さは太陽電池セルの面内において不均一である場合、全てのフィンガー電極にバー電極を充分な圧力で当接させることは難しい。
 このように、バスバーレス構造の太陽電池セルの出力を測定するために、測定治具の改良による対処では課題も多く、また開発にも相当のコスト、時間を要する。本発明は、かかる課題を踏まえ、バスバー電極を備える太陽電池セルのみならず、バスバーレス構造の太陽電池セルに対しても出力特性の測定を正確に行うことができる太陽電池セル及び太陽電池セルの出力測定方法を提供すること目的とする。
 上述した課題を解決するために、本発明に係る太陽電池セルは、受光面上に互いに平行に設けられた複数のフィンガー電極と、上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、上記外周電極と接続され、出力特性を測定する測定機器と接続されるパットとを備えたものである。
 また、本発明に係る太陽電池セルの出力測定方法は、受光面上に互いに平行に設けられた複数のフィンガー電極と、上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、上記外周電極と接続され、出力特性を測定するパットとを備えた太陽電池セルの上記パットに、上記太陽電池セルの出力特性を測定する測定機器と接続された端子を接続し、上記受光面に所定の光線を照射して上記太陽電池セルの出力特性を測定するものである。
 また、本発明に係る太陽電池セルの製造方法は、受光面上に導電性ペースト塗布することにより、互いに平行に設けられた複数のフィンガー電極と、上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、上記外周電極と接続され、太陽電池セルの出力特性を測定する測定機器と接続されるパットとを形成するものである。
 また、本発明に係る太陽電池モジュールの製造方法は、受光面上に導電性ペースト塗布することにより、互いに平行に設けられた複数のフィンガー電極と、上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、上記外周電極と接続され、太陽電池セルの出力特性を測定する測定機器と接続されるパットとが設けられた太陽電池セルを形成し、上記太陽電池セルに、接着剤を介してタブ線を接続することにより、上記タブ線を介して複数の上記太陽電池セルを接続し、上記タブ線によって接続された複数の上記太陽電池セルを、封止樹脂を介して表面カバー及びバックシートによってラミネートするものである。
 本発明によれば、受光面に設けられたパットに、測定機器と接続された端子を接続することにより行う。したがって、バスバーレス構造の太陽電池セルにおいても、測定治具とフィンガー電極との接続不良による測定不良といった問題が生じることが無く、正確に出力特性の測定を行うことができる。
図1は、本発明を適用した太陽電池モジュールの構成を示す分解斜視図である。 図2は、太陽電池セルのストリングスを示す断面図である。 図3は、太陽電池セルの平面図である。 図4は、太陽電池セルの底面図である。 図5は、太陽電池セルの外側縁に設けられたパットを示す要部平面図である。 図6は、太陽電池セルの平面図である。 図7は、太陽電池セルの平面図である。 図8は、導電性接着フィルムを示す断面図である。 図9は、剥離基材が貼着されロール状に巻回された導電性接着フィルムを示す断面図である。 図10は、太陽電池セルの電気的な出力特性の測定を行う状態を示す平面図である。 図11は、太陽電池セルの電気的な出力特性の測定を行う状態を示す断面図である。 図12は、従来のプローブピンを用いた測定装置を用いて太陽電池セルの電気的特性の測定を行う状態を示す斜視図である。 図13は、従来のプローブピンを用いた測定装置による測定を説明するための図である。 図14は、従来のプローブピンを用いた測定装置によってバスバーレス構造の太陽電池セルの電気的特性の測定を説明するための図である。
 以下、本発明が適用された太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法について図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [太陽電池モジュール]
 本発明が適用された太陽電池モジュール1は、図1~図4に示すように、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、このストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、このマトリクス5が封止接着剤のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより形成される。
 封止接着剤としては、例えばエチレン-酢酸ビニル共重合樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスや、アルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
 [太陽電池セル]
 太陽電池モジュール1の各太陽電池セル2は、光電変換素子10を有する。以下では、光電変換素子10として、単結晶シリコン型光電変換素子や多結晶シリコン型光電変換素子を用いる結晶シリコン系太陽電池を例に説明するが、本発明は、薄膜系太陽電池、有機系、量子ドット型など、各種光電変換素子を用いることができる。
 図3に示すように、太陽電池セル2は、受光面側に内部で発生した電気を集電する表面電極となるフィンガー電極12が設けられている。フィンガー電極12は、太陽電池セル2の受光面となる表面の相対向する2辺間に亘って、例えばAgペースト等の導電ペーストがスクリーン印刷等により塗布された後、焼成されることにより形成される。また、フィンガー電極12は、受光面の全面に亘って、例えば約50~200μm程度の幅を有するラインが、所定間隔、例えば2mmおきに、ほぼ平行に複数形成されている。
 [外周電極15/パット16]
 また、太陽電池セル2は、受光面となる表面に、セル外縁に沿って外周電極15が設けられている。外周電極15は、受光面側に複数並列したフィンガー電極12と接続されるとともに、後述するパット16とも接続され、これによりフィンガー電極12とパット16とを連続させるものである。外周電極15は、太陽電池セル2の受光面の外側縁に沿って周回し、相対向する2辺間に亘って形成されている複数のフィンガー電極12の各両端と連続される。
 この外周電極15は、例えばAgペーストがスクリーン印刷等により塗布された後、焼成されることにより形成され、フィンガー電極12と同時に形成される。
 外周電極15は、太陽電池セル2の出力特性を測定する測定端子となるパット16と接続されている。太陽電池セル2は、パット16に、電流計19や電圧計20と接続されている導線21の端子が連結されることにより、出力特性の測定が可能となる。
 このパット16は、外周電極15に隣接して太陽電池セル2の受光面に複数形成され、例えば、太陽電池セル2の受光面の外側縁のうち、フィンガー電極12の長手方向と直交する方向の2側縁の近傍に形成され、外周電極15と接している。各パット16は、例えば、矩形状をなし、Agペーストがスクリーン印刷等により塗布された後、焼成されることにより形成され、フィンガー電極12や外周電極15と同時に形成される。
 パット16は、太陽電池セル2に複数形成されることにより、少なくとも一つを電流測定用の端子、他の一つを電圧測定用の端子とされる。すなわち、太陽電池セル2は、出力特性の測定に際し、フィンガー電極やバスバー電極と当接されるプローブピンを備えた測定治具を用いることなく、パット16に電流計19や電圧計20と接続されている導線21が連結されることにより、出力特性の測定を行うことができる。
 このパット16は、一辺の幅Wが1mmより大きく形成され、かつ、4mm以上の広さで形成されることが好ましい。ここでパット16は、図5に示すように、太陽電池セル2の外側縁より内面側に向かう距離をパット16の幅Wとし、太陽電池セル2の外側縁と平行な距離を長さとする。パット16は、幅1mm以下の場合や、4mm未満の大きさでは、電流や電圧を測定する導線21の端子との接続面積が不十分となり接続不良のおそれがある。そこで、太陽電池セル2は、パット16を略矩形状に形成すると共に、一辺の幅Wが1mmより大きく、面積が4mm以上とすることにより、太陽電池セル2は、電流や電圧を正確に測定するための接続端子として好ましい形状を備えることができる。
 また、パット16は、太陽電池セル2の受光面上における面積が大きすぎると、シャドーロスによる変換効率の低減を招くことから、例えば10mm以下に形成されることが好ましい。
 なお、パット16は、外周電極15と接していれば、太陽電池セル2の受光面内のいずれの箇所に設けてもよく、図3に示すフィンガー電極12の長手方向と直交する方向の2側縁のほか、例えば図6に示すように、フィンガー電極12の長手方向の1側縁又は2側縁や、太陽電池セル2のコーナー部などに設けることができる。
 [バスバー/バスバーレス]
 太陽電池セル2は、各フィンガー電極12と略直交することによりフィンガー電極12の電気を集電するバスバー電極が設けられていない、いわゆるバスバーレス構造とされている。したがって、太陽電池セル2は、後述するタブ線3が導電性接着フィルム17を介して直接フィンガー電極12と接続される。
 なお、太陽電池セル2は、図7に示すように、バスバー電極23が形成された太陽電池セルを用いることもできる。この場合、太陽電池セル2は、受光面積を拡大させ、変換効率を向上させるために、バスバー電極23を細くすること、例えば1.0mm以下の幅で形成することが好ましい。なお、バスバー電極23を、幅1.0mm以下で形成すると、従来の測定治具ではプローブピンを正確に当接させることが困難となり、測定のバラツキなどのおそれがあるが、太陽電池セル2では、上述したように出力測定用の端子となるパット16を備えているため、極細のバスバー電極23を用いた場合にも正確に出力特性の測定を行うことができる。
 [裏面電極13]
 また、光電変換素子10は、受光面と反対の裏面側に、アルミニウムや銀からなる裏面電極13が設けられている。裏面電極13は、図2及び図4に示すように、例えばアルミニウムや銀からなる電極が、スクリーン印刷やスパッタ等により太陽電池セル2の裏面に形成される。裏面電極13は、後述する導電性接着フィルム17を介してタブ線3が接続されるタブ線接続部14を有する。
 そして、太陽電池セル2は、図2に示すように、タブ線3によって、表面に形成された各フィンガー電極12と、隣接する太陽電池セル2の裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とフィンガー電極12及び裏面電極13とは、後述する導電性接着フィルム17によって接続される。
 [タブ線3]
 タブ線3は、図2に示すように、隣接する太陽電池セル20a、20b、20cの各間を電気的に接続する長尺状の導電性基材からなり、例えば、50~300μm厚で導電性接着フィルム17と略同幅のリボン状銅箔を使用し、必要に応じて金メッキ、銀メッキ、スズメッキ、ハンダメッキ等が施されている。また、導電性接着フィルムが予めタブ線に積層された導電性接着フィルム付タブ線を用いてもよい。
 [導電性接着フィルム17]
 導電性接着フィルム17は、図8に示すように、熱硬化型のバインダー樹脂18に導電性粒子24が高密度に含有され、フィルム状に成形されたものであり、例えば、ソニーケミカル&インフォメーションデバイス株式会社製:SP100シリーズを用いることができる。
 導電性接着フィルム17に用いられる導電性粒子24としては、特に制限されず、例えば、ニッケル、金、銀、銅などの金属粒子、樹脂粒子に金めっきなどを施したもの、樹脂粒子に金めっきを施した粒子の最外層に絶縁被覆を施したものなどを挙げることができる。
 導電性接着フィルム17のバインダー樹脂18の組成は、特に制限されないが、より好ましくは、例えば、熱硬化型のエポキシ系硬化型樹脂組成物やアクリル系硬化型樹脂組成物を使用することができる。
 エポキシ系熱硬化型樹脂組成物は、例えば、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂、エポキシ硬化剤、成膜成分等から構成される。
 分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂としては、液状であっても、固体状であってもよく、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂などの二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂などを例示できる。また、3,4-エポキシシクロヘキセニルメチル-3´,4´-エポキシシクロヘキセンカルボキシレート等の脂環式エポキシ化合物も使用することができる。
 エポキシ硬化剤としては、例えば、アミン系硬化剤、イミダゾール系硬化剤、酸無水物系硬化剤、スルホニウムカチオン系硬化剤等が挙げられる。硬化剤は潜在性であってもよい。
 成膜成分としては、例えば、エポキシ化合物やエポキシ樹脂と相溶するフェノキシ樹脂やアクリル樹脂を挙げることができる。
 エポキシ系熱硬化型樹脂組成物は、必要に応じて公知の硬化促進剤、シランカップリング剤、金属捕捉剤、ブタジエンゴム等の応力緩和剤、シリカなどの無機フィラー、ポリイソシアネート系架橋剤、着色料、防腐剤、溶剤等を含有することができる。
 アクリル系熱硬化型樹脂組成物は、例えば、(メタ)アクリレートモノマー、成膜用樹脂、シリカなどの無機フィラー、シランカップリング剤、ラジカル重合開始剤等から構成される。
 (メタ)アクリレートモノマーとしては、単官能(メタ)アクリレートモノマー、多官能(メタ)アクリレートモノマー、あるいはそれらにエポキシ基、ウレタン基、アミノ基、エチレンオキサイド基、プロピレンオキサイド基等を導入した変性単官能または多官能(メタ)アクリレートモノマーを使用することができる。また、本発明の効果を損なわない限り、(メタ)アクリレートモノマーとラジカル共重合可能な他のモノマー、例えば(メタ)アクリル酸、酢酸ビニル、スチレン、塩化ビニル等を併用することができる。
 アクリル系熱硬化型樹脂組成物用の成膜用樹脂としては、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、アルキル化セルロース樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、ポリエチレンテレフタレート樹脂等が挙げられる。
 ラジカル重合開始剤としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジブチルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスバレロニトリル等のアゾビス系化合物を挙げることができる。
 アクリル系熱硬化型樹脂組成物は、必要に応じ、ブタジエンゴム等の応力緩和剤や、酢酸エチル等の溶剤、着色料、酸化防止剤、老化防止剤等を含有することができる。
 導電性粒子24を含有したエポキシ系熱硬化型樹脂組成物やアクリル系熱硬化型樹脂組成物からなるバインダー樹脂18から、導電性接着フィルムへの成形は、公知の手法を使用して行うことができる。例えば、導電性粒子24と、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを溶剤に溶解させ、溶解させて得られた樹脂生成用溶液を剥離シート25上に塗布し、溶剤を揮発させることにより、フィルム状に成形された導電性接着フィルム17を得る。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。
 剥離シート25としては、特に制限はなく、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)などを用いることができる。このフィルム状の導電性接着フィルム17は、図9に示すように、リール26に巻回される。
 [太陽電池モジュールの製造方法]
 剥離シート25に支持された導電性接着フィルム17は、実使用時においては、リール26より引き出され、太陽電池セル2の一辺と略同等の所定の長さにカットされた後、剥離シート25が剥離され、フィンガー電極12と略直交するように受光面上に貼着され、また裏面電極13のタブ線接続部14上に貼着される。このとき、導電性接着フィルム17は、バインダー樹脂18が流動性を示すが熱硬化しない程度の温度、圧力、時間で熱加圧される。なお、太陽電池セル2の受光面にバスバー電極23が形成されている場合は、導電性接着フィルム17はバスバー電極23上に貼着される。
 その後、導電性接着フィルム17は、タブ線3が重畳配置され、加熱ボンダーによって熱加圧されることにより、タブ線3とフィンガー電極12あるいはタブ線接続部14との間から流出するとともに導電性粒子24を介して、あるいは直接に接触し、この状態でバインダー樹脂18が熱硬化する。これにより、導電性接着フィルム17は、タブ線3とフィンガー電極12及び裏面電極13との接続を図ることができる。
 また、これにより複数の太陽電池セル2がタブ線3によって接続された太陽電池ストリングス4が形成される。ストリングス4が複数配列されたマトリクス5は、太陽電池セル2を封止するEVA等の透光性の封止接着剤のシート6が表裏面に積層され、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられ、太陽電池モジュール1が完成する。
 上記では、フィルム形状を有する導電性接着フィルムについて説明したが、ペースト状であっても問題は無い。また、太陽電池セル2は、導電性粒子24を含有しない絶縁性接着フィルムあるいは絶縁性接着ペーストを用いることもできる。この場合、フィンガー電極12及び裏面電極13とタブ線3とは直接接続された状態でバインダー樹脂18が熱硬化する。
 また、これら導電性接着フィルム17や絶縁性接着フィルムは、剥離シート25が設けられた面と反対側の面に、ロールラミネート等により予めタブ線3を接続させた積層体を形成しておいてもよい。このような積層体を用いることにより、導電性接着フィルム17や絶縁性接着フィルムの貼着とタブ線3の接続とを一回の熱加圧工程で同時に行うことができる。
 [出力特性の測定方法]
 太陽電池セル2の出力特性の測定は、受光面にフィンガー電極12と外周電極15とパット16とが形成され、裏面に裏面電極13が形成され、導電性接着フィルム17等が貼着される前に行われる。
 上述したように、太陽電池セル2の出力特性の測定は、専用の測定治具は不要であり、受光面側に設けられたパット16と裏面電極13との間に、電流計19や電圧計20と接続された導線21を接続することにより行う。したがって、バスバーレス構造の太陽電池セル2においても、測定治具とフィンガー電極12との接続不良による測定不良といった問題が生じることが無く、正確に出力特性の測定を行うことができる。
 例えば、パット16を太陽電池セル2の相対向する2辺に2つずつ形成した場合、図10に示すように、1対のパット16を電流測定用とし、もう1対のパット16を電圧測定用とし、それぞれ導線21によって接続された後、図11(a)(b)に示すように、電流計19又は電圧計20を介して裏面電極13に接続される。
 また、このとき、太陽電池セル2は、パット16を略矩形状に形成するとともに、幅Wを1mmより大きくし、面積を4mm以上とすることにより、電流や電圧を測定するための接続端子として必要な形状を備えることができ、導線21との接続不良を防止することができる。
 また、太陽電池セル2は、パット16を用いて出力特性の測定を行うため、例えば幅1mm以下の極細のバスバー電極23を設けた場合にも、バスバー電極23の幅の狭小化による測定治具のプローブピンとバスバー電極23との接触不良による影響といった問題もなく、またバスバー電極23を太くする必要がないため、シャドーロスを低減することができる。
 次いで、太陽電池セル2の出力特性の測定を行った実施例について説明する。実施例及び比較例にかかる太陽電池セル2は、外形が5インチの結晶シリコン系太陽電池であり、この太陽電池セル2について実施例及び比較例にかかる方法にて変換効率(%)を求めた。測定は、ソーラーシミュレータ(日清紡メカトロニクス株式会社製、ソーラーシュミレーターPVS1116i-M)を用いて、標準的な測定条件(照度1000W/m、温度25℃、スペクトルAM1.5G)で行った。また、測定は、いわゆる4端子法にて行い、JIS C8913(結晶系太陽電池セル出力測定方法)に準拠して測定した。
 次いで、測定値の太陽電池セル理論出力値に対する比(測定値/太陽電池セル理論出力値)を算出した。太陽電池セル理論出力値とは、実施例及び比較例に係る太陽電池セルが本来備えている理論上の出力値をいい、太陽電池セルの性能が100%発揮された場合、(測定値/太陽電池セル理論出力値)は1となる。本実施例では、出力特性の測定の可否判断基準として、(測定値/太陽電池セル理論出力値)が0.99以上を可とし、0.99未満を否とした。
 実施例1は、バスバーレス構造の太陽電池セル2を用いた。実施例1にかかる太陽電池セル2は、受光面の外側縁のうち、フィンガー電極12の長手方向と直交する方向の2側縁の近傍に各2つずつパット16が形成されている。各パット16は、Agペーストを塗布、焼成することにより、2mm×2mmの正方形に形成され、パット面積が4mmとされている。
 実施例2にかかる太陽電池セル2は、フィンガー電極12の長手方向と直交する方向の2側縁の近傍に各1つずつパット16を形成した以外は実施例1と同一の条件とした。
 実施例3にかかる太陽電池セル2は、パット16の大きさを2mm×3mmの矩形状とし、パット面積を6mmとした以外は実施例1と同一の条件とした。
 実施例4にかかる太陽電池セル2は、パット16の大きさを3mm×3mmの正方形状とし、パット面積を9mmとした以外は実施例1と同一の条件とした。
 実施例5にかかる太陽電池セル2は、パット16の大きさを4mm×2mmの矩形状とし、パット面積を8mmとした以外は実施例1と同一の条件とした。
 実施例6にかかる太陽電池セル2は、パット16の大きさを5mm×2mmの矩形状とし、パット面積を10mmとした以外は実施例1と同一の条件とした。
 実施例7にかかる太陽電池セル2は、幅1.0mmのバスバー電極が設けられた太陽電池セル2を用いた以外は、実施例1と同一の条件とした。
 比較例1は、バスバーレス構造の太陽電池セルを用いるとともに、パット16が形成されていない太陽電池セルを用い、従来のプローブピンを備えた測定治具の当該プローブピンをフィンガー電極に当接させることにより出力特性の測定を行った。
 比較例2は、パット16の形状を幅1mm×長さ1mmの矩形状とし、パット面積を1mmとした以外は実施例1と同一の条件とした。
 比較例3は、パット16の形状を幅1mm×長さ2mmの矩形状とし、パット面積を2mmとした以外は実施例1と同一の条件とした。
 比較例4は、パット16の形状を幅1mm×長さ4mmの矩形状とし、パット面積を4mmとした以外は実施例1と同一の条件とした。
Figure JPOXMLDOC01-appb-T000001
 測定結果を表1に示す。表1に示すように、実施例1~7では、いずれも(測定値/太陽電池セル理論出力値)が0.99となり、出力結果がほぼ理論上の出力値となり、実用上問題なく使用できることが分かる。
 一方、比較例1ではフィンガー電極とプローブピンとの接触不良によって、出力結果が理論上の出力値を大きく下回った。
 また、比較例2及び比較例3では、パット面積が狭小となり、また、比較例2~比較例4では、パットの幅Wが1mmと狭いことから、いずれも導線とパットとの接触不良によって出力結果が理論上の出力値を大きく下回った。
1 太陽電池モジュール、2 太陽電池セル、3 タブ線、4 ストリングス、5 マトリクス、6 シート、7 表面カバー、8 バックシート、9 金属フレーム、10 光電変換素子、12 フィンガー電極、13 裏面電極、14 タブ線接続部、15 外周電極、16 パット、17 導電性接着フィルム、18 バインダー樹脂、19 電流計、20 電圧計、21 導線、23 バスバー電極、24 導電性粒子、25 剥離シート、26 リール

Claims (16)

  1.  受光面上に互いに平行に設けられた複数のフィンガー電極と、
     上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、
     上記外周電極と接続され、出力特性を測定する測定機器と接続されるパットとを備えた太陽電池セル。
  2.  上記受光面には、上記複数のフィンガー電極と接続され、太陽電池セル間を接続するタブ線が接続されるバスバー電極が形成されている請求項1記載の太陽電池セル。
  3.  上記バスバー電極は幅1mm以下である請求項2記載の太陽電池セル。
  4.  上記受光面には、バスバー電極が設けられていない請求項1記載の太陽電池セル。
  5.  上記パットは、上記太陽電池セルの相対向する2辺の上記外側縁の近傍にそれぞれ設けられている請求項1~4のいずれか1項に記載の太陽電池セル。
  6.  上記パットは、幅2~5mmである請求項1~5のいずれか1項に記載の太陽電池セル。
  7.  上記パットの面積は4~10mmである請求項1~6のいずれか1項に記載の太陽電池セル。
  8.  受光面上に互いに平行に設けられた複数のフィンガー電極と、上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、上記外周電極と接続され、出力特性を測定するパットとを備えた太陽電池セルの上記パットに、上記太陽電池セルの出力特性を測定する測定機器と接続された端子を接続し、
     上記受光面に所定の光線を照射して上記太陽電池セルの出力特性を測定する太陽電池セルの出力測定方法。
  9.  上記受光面には、上記複数のフィンガー電極と接続され、太陽電池セル間を接続するタブ線が接続されるバスバー電極が形成されている請求項8記載の太陽電池セルの出力測定方法。
  10.  上記バスバー電極は幅1mm以下である請求項9記載の太陽電池セルの出力測定方法。
  11.  上記受光面には、バスバー電極が設けられていない請求項8記載の太陽電池セルの出力測定方法。
  12.  上記パットは、上記太陽電池セルの相対向する2辺の上記外側縁の近傍にそれぞれ設けられている請求項8~11のいずれか1項に記載の太陽電池セルの出力測定方法。
  13.  上記パットは、幅2~5mmである請求項8~12のいずれか1項に記載の太陽電池セルの出力測定方法。
  14.  上記パットの面積は4~10mmである請求項8~13のいずれか1項に記載の太陽電池セルの出力測定方法。
  15.  受光面上に導電性ペースト塗布することにより、互いに平行に設けられた複数のフィンガー電極と、上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、上記外周電極と接続され、太陽電池セルの出力特性を測定する測定機器と接続されるパットとを形成する太陽電池セルの製造方法。
  16.  受光面上に導電性ペースト塗布することにより、互いに平行に設けられた複数のフィンガー電極と、上記受光面の外側縁に沿って設けられ、上記複数のフィンガー電極と接続された外周電極と、上記外周電極と接続され、太陽電池セルの出力特性を測定する測定機器と接続されるパットとが設けられた太陽電池セルを形成し、
     上記太陽電池セルに、接着剤を介してタブ線を接続することにより、上記タブ線を介して複数の上記太陽電池セルを接続し、
     上記タブ線によって接続された複数の上記太陽電池セルを、封止樹脂を介して表面カバー及びバックシートによってラミネートする太陽電池モジュールの製造方法。
PCT/JP2012/081930 2011-12-12 2012-12-10 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法 WO2013089060A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-271410 2011-12-12
JP2011271410A JP2013123009A (ja) 2011-12-12 2011-12-12 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2013089060A1 true WO2013089060A1 (ja) 2013-06-20

Family

ID=48612507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081930 WO2013089060A1 (ja) 2011-12-12 2012-12-10 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法

Country Status (3)

Country Link
JP (1) JP2013123009A (ja)
TW (1) TW201342641A (ja)
WO (1) WO2013089060A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076446A (ja) * 2013-10-07 2015-04-20 日立化成株式会社 太陽電池セル
JP2015079858A (ja) * 2013-10-17 2015-04-23 三洋電機株式会社 太陽電池及び太陽電池モジュール
JP2015233095A (ja) * 2014-06-10 2015-12-24 日立化成株式会社 太陽電池ユニット及び太陽電池ユニットの製造方法
JP6196585B2 (ja) * 2014-06-13 2017-09-13 三菱電機株式会社 太陽電池システム
CN106876496B (zh) * 2017-03-03 2019-07-05 广东爱旭科技股份有限公司 P型perc双面太阳能电池及其组件、系统和制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487989A (en) * 1983-07-25 1984-12-11 Atlantic Richfield Company Contact for solar cell
JPH06196743A (ja) * 1992-12-24 1994-07-15 Canon Inc 太陽電池モジュール
JP2006261267A (ja) * 2005-03-16 2006-09-28 Sharp Corp 検査装置及び検査方法、集積回路素子の製造方法、集積回路素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411897A (en) * 1994-02-04 1995-05-02 Mobil Solar Energy Corporation Machine and method for applying solder paste to electronic devices such as solar cells
JP5318815B2 (ja) * 2010-04-19 2013-10-16 デクセリアルズ株式会社 太陽電池モジュール、太陽電池モジュールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487989A (en) * 1983-07-25 1984-12-11 Atlantic Richfield Company Contact for solar cell
JPH06196743A (ja) * 1992-12-24 1994-07-15 Canon Inc 太陽電池モジュール
JP2006261267A (ja) * 2005-03-16 2006-09-28 Sharp Corp 検査装置及び検査方法、集積回路素子の製造方法、集積回路素子

Also Published As

Publication number Publication date
TW201342641A (zh) 2013-10-16
JP2013123009A (ja) 2013-06-20

Similar Documents

Publication Publication Date Title
CN103229308B (zh) 太阳能电池单元用输出测定装置及测定方法
WO2013054855A1 (ja) 太陽電池用測定治具及び太陽電池セルの出力測定方法
CN112289879B (zh) 光伏封装胶膜、光伏组件及其制备方法
WO2013089060A1 (ja) 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法
CN113066885A (zh) 一种串联光伏电池组件及其封装方法
WO2008044696A1 (fr) Procede de connexion de cellules de batterie solaire et module batterie solaire
TW201110360A (en) Solar cell module
KR101395486B1 (ko) 태양전지 모듈 및 태양전지 모듈의 제조 방법
JP5676944B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
US20120305048A1 (en) Solar battery cell, solar battery module and method of making solar battery module
CN103022201A (zh) 晶硅太阳能电池模块及其制造方法
US20130247958A1 (en) Solar cell module, and method of manufacturing solar cell module
US20140373339A1 (en) Method for producing solar battery module, method for measuring output of solar cell, and device for measuring output of solar cell
EP2816612A1 (en) Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module
JP6152200B2 (ja) 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法
TW201304161A (zh) 太陽電池模組、太陽電池模組之製造方法
JP2013195142A (ja) 太陽電池の出力測定方法及び出力測定治具
KR20150032889A (ko) 태양 전지 모듈 및 그의 제조 방법
WO2017043518A1 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法
JP2015233096A (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
JP6061417B2 (ja) 太陽電池モジュールの製造方法
WO2016065933A1 (en) Solar cell, solar cell module and manufacturing method thereof
WO2016065953A1 (en) Solar cell module and manufacturing method thereof
JP2015233095A (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
JP2017188620A (ja) 接続部付太陽電池セル及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858119

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858119

Country of ref document: EP

Kind code of ref document: A1