WO2016136797A1 - 酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料 - Google Patents
酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料 Download PDFInfo
- Publication number
- WO2016136797A1 WO2016136797A1 PCT/JP2016/055405 JP2016055405W WO2016136797A1 WO 2016136797 A1 WO2016136797 A1 WO 2016136797A1 JP 2016055405 W JP2016055405 W JP 2016055405W WO 2016136797 A1 WO2016136797 A1 WO 2016136797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc oxide
- silicon oxide
- coated zinc
- mass
- oxide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/27—Zinc; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/25—Silicon; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/8141—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- A61K8/8147—Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/04—Compounds of zinc
- C09C1/043—Zinc oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/60—Particulates further characterized by their structure or composition
- A61K2800/61—Surface treated
- A61K2800/62—Coated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/60—Particulates further characterized by their structure or composition
- A61K2800/61—Surface treated
- A61K2800/62—Coated
- A61K2800/623—Coating mediated by organosilicone compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
Definitions
- the present invention relates to a silicon oxide-coated zinc oxide, a silicon oxide-coated zinc oxide-containing composition, and a cosmetic.
- This application claims priority based on Japanese Patent Application No. 2015-038674 filed in Japan on February 27, 2015, the contents of which are incorporated herein by reference.
- Cosmetics imparted with an ultraviolet shielding function are frequently used not only for leisure purposes but also on a daily basis. Therefore, emphasis is placed on cosmetics that do not feel stress so that they can be used every day. In order to obtain such a feel, cosmetics are required to be water-based with a fresh feeling of use. In recent years, water-based cosmetics are less sticky than oil-based cosmetics and provide a smooth feeling of use, and thus have recently been used as various cosmetics such as sunscreens, emulsions and creams. In this cosmetic, titanium oxide and zinc oxide are mainly used as the inorganic ultraviolet shielding agent.
- the present invention has been made in view of the above circumstances, and when applied to an aqueous material, silicon oxide-coated zinc oxide, a silicon oxide-coated zinc oxide-containing composition, and a cosmetic that can suppress a decrease in viscosity caused by a carbomer
- the purpose is to provide.
- the present inventors have found the following invention. That is, for a silicon oxide-coated zinc oxide containing zinc oxide particles and a silicon oxide film on the surface of the zinc oxide particles, if the suspended water conductivity is controlled to 120 ⁇ S / cm or less, the silicon oxide-coated zinc oxide is converted into an aqueous system. Even when applied to water-based materials such as cosmetics, it has been found that viscosity reduction due to carbomer can be suppressed and the quality stability of water-based materials can be maintained, and the present invention has been completed. It was.
- the silicon oxide-coated zinc oxide of the present invention is a silicon oxide-coated zinc oxide containing zinc oxide particles and a silicon oxide film on the surface of the zinc oxide particles, and has a suspended water conductivity of 120 ⁇ S / cm or less. It is characterized by.
- the silicon oxide-coated zinc oxide-containing composition of the present invention is characterized by containing the silicon oxide-coated zinc oxide of the present invention.
- the cosmetic of the present invention is characterized by containing the silicon oxide-coated zinc oxide-containing composition of the present invention.
- the suspended water conductivity is 120 ⁇ S / cm or less, even when applied to water-based materials such as water-based cosmetics, the decrease in viscosity due to carbomer is suppressed. And the quality stability of the water-based material can be maintained.
- the silicon oxide-coated zinc oxide-containing composition of the present invention since it contains the silicon oxide-coated zinc oxide of the present invention, even when applied to water-based materials such as water-based cosmetics, the viscosity is reduced due to the carbomer. And the quality stability of the water-based material can be maintained.
- the cosmetic of the present invention since it contains the silicon oxide-coated zinc oxide-containing composition of the present invention, there is no decrease in viscosity due to the carbomer and excellent quality stability.
- FIG. 6 is a graph showing changes in viscosity of the silicon oxide-coated zinc oxide-containing compositions of Examples 1 to 4 and Comparative Example 1 with time.
- 4 is an electron microscopic image showing the silicon oxide-coated zinc oxide of Example 3.
- the silicon oxide-coated zinc oxide of the present embodiment is a silicon oxide-coated zinc oxide containing zinc oxide particles and a silicon oxide film on the surface of the zinc oxide particles, and has a suspended water conductivity of 120 ⁇ S / cm or less. .
- the suspended water conductivity in the silicon oxide-coated zinc oxide of the present embodiment means a value measured by the following method. 10 g of silicon oxide-coated zinc oxide and 90 g of pure water are mixed, and the mixture is boiled on a hot plate for 10 minutes while stirring. Next, after the mixed solution is allowed to cool to 25 ° C., pure water is added to the mixed solution and suspended so that the total amount of silicon oxide-coated zinc oxide and pure water becomes 100 g. The conductivity of the suspended water is measured with a conductivity meter (trade name: Personal SC Meter SC72, manufactured by Yokogawa Electric Corporation).
- the suspended water conductivity of the silicon oxide-coated zinc oxide of this embodiment is preferably as low as possible, and most preferably 0 ⁇ S / cm.
- the suspended water conductivity of the silicon oxide-coated zinc oxide of this embodiment is 10 ⁇ S / cm or more and 110 ⁇ S / cm or less. It is preferably 20 ⁇ S / cm or more and 100 ⁇ S / cm or less, more preferably 30 ⁇ S / cm or more and 90 ⁇ S / cm or less.
- the method of controlling the suspended water conductivity of the silicon oxide-coated zinc oxide within the above range that is, the method of reducing the suspended water conductivity of the silicon oxide-coated zinc oxide is not particularly limited. Examples thereof include a method for enhancing the cleaning of the silicon-coated zinc oxide and a method for appropriately adjusting the production conditions so as to reduce the amount of impurities remaining in the silicon oxide-coated zinc oxide. Examples of the method for enhancing the cleaning of the silicon oxide-coated zinc oxide include a method using a device having a strong cleaning power or increasing the number of times of cleaning. Examples of the solvent used for washing include water and alcohols.
- the silicon oxide-coated zinc oxide of the present embodiment is not particularly limited as long as the suspended water conductivity is 120 ⁇ S / cm or less, and includes, for example, zinc oxide particles and a silicon oxide film on the surface of the zinc oxide particles. It is preferable to use a dense silicon oxide film or a material in which an alkali metal remaining in a silicon oxide-coated zinc oxide is substituted with at least one selected from the group consisting of Mg, Ca, and Ba. preferable.
- Example 1 of silicon oxide-coated zinc oxide An example of a silicon oxide-coated zinc oxide having a dense silicon oxide film is a silicon oxide-coated zinc oxide containing zinc oxide particles and a silicon oxide film on the surface of the zinc oxide particles, and the silicon in the silicon oxide film of Q 3 to abundance in the environment Q 3, when Q 4 abundance ratio in the environment was Q 4, Q 3 + Q 4 ⁇ 0.6 and Q 4 / (Q 3 + Q 4) ⁇ 0.5 at a silicon oxide A coated zinc oxide is mentioned. Furthermore, it is preferable that the silicon oxide film is uniformly coated on the entire zinc oxide particles such that the degradation rate of brilliant blue generated by the photocatalytic activity of the zinc oxide particles is 3% or less.
- the silicon oxide film is, when the Q 4 abundance ratio of the presence ratio in Q 3, Q 4 environment in Q 3 Environment "silicon, Q 3 + Q 4 ⁇ 0.6 and Q 4 / (Q 3 + Q 4) ⁇
- the higher the degree of condensation the higher the degree of condensation.
- the “dense” of the dense silicon oxide film referred to here means that Q 3 + Q 4 ⁇ 0.6 and Q 4 / (Q 3 + Q 4 ) ⁇ 0.5, that is, Q 3 + Q 4 As Q 4 / (Q 3 + Q 4 ) is larger than the lower limit value, it means that the silicon oxide film has a higher degree of condensation of silicon oxide.
- Q 0 , Q 1 , Q 2 , Q 3 , and Q 4 can be easily known by measuring the area ratio of signals attributed to each environment.
- Q 0, Q 1, Q 2 , Q 3, Q 4 area ratio of the signal to be attributed to each environment referred to as Q 0, Q 1, Q 2 , Q 3, Q 4.
- Q 0 + Q 1 + Q 2 + Q 3 + Q 4 1.
- the reason why the brilliant blue decomposition rate generated by the photocatalytic activity of the zinc oxide particles is preferably 3% or less will be described below. The reason is that if the decomposition rate of this brilliant blue is 3% or less, the photocatalytic activity of the zinc oxide particles is suppressed, so that the homogeneity of the silicon oxide film covering the zinc oxide particles is also high. Because it means.
- the high homogeneity of the silicon oxide film covering the zinc oxide particles indicates that there is no coating unevenness, the coating is not localized, and there are no pinholes.
- the degradation rate of brilliant blue is used as an index of the photocatalytic activity of zinc oxide particles.
- the photocatalytic reaction of zinc oxide particles basically occurs on the surface of the zinc oxide particles. That is, the low decomposition rate of brilliant blue generated by the photocatalytic activity of zinc oxide particles indicates that there are few exposed portions of zinc oxide particles on the surface of silicon oxide-coated zinc oxide.
- the method for measuring the degradation rate of brilliant blue is as follows. First, a brilliant blue aqueous solution in which brilliant blue is adjusted to a predetermined content (for example, 5 ppm) is prepared. A silicon oxide-coated zinc oxide having a mass of 1% by mass of this liquid is added and ultrasonically dispersed to prepare a suspension. Next, the suspension is irradiated with ultraviolet rays having a predetermined wavelength from a predetermined distance (for example, 10 cm) for a predetermined time (for example, 6 hours). As the ultraviolet irradiation lamp, for example, a sterilization lamp GL20 (wavelength 253.7 nm, ultraviolet output 7.5 W: manufactured by Toshiba Corporation) can be used.
- a sterilization lamp GL20 wavelength 253.7 nm, ultraviolet output 7.5 W: manufactured by Toshiba Corporation
- the decomposition rate D of brilliant blue is calculated by the following formula (1).
- D (A0 ⁇ A1) / A0 (1) (where A0 is the absorbance at the absorption maximum wavelength (630 nm) of the absorbance spectrum of the brilliant blue aqueous solution (5 ppm), and A1 is the absorbance spectrum of the above supernatant) The absorbance at the absorption maximum wavelength of.
- the average particle diameter of the silicon oxide-coated zinc oxide is preferably 3 nm or more and 2 ⁇ m or less, and the cosmetic is appropriately adjusted within the above range in order to obtain desired transparency and ultraviolet shielding properties.
- the average particle diameter of the silicon oxide-coated zinc oxide is preferably 3 nm or more and 50 nm or less.
- the average particle diameter of the silicon oxide-coated zinc oxide is preferably 50 nm or more and 2 ⁇ m or less.
- the “average particle size” in the present embodiment is a numerical value obtained by the following method. That is, when the silicon oxide-coated zinc oxide of this embodiment is observed using a transmission electron microscope (TEM) or the like, a predetermined number, for example, 200 or 100 of silicon oxide-coated zinc oxide is selected. Then, the longest straight portion (maximum major axis) of each of these silicon oxide-coated zinc oxides is measured, and these measured values are weighted averaged. When silicon oxide-coated zinc oxide is aggregated, the aggregate particle diameter of the aggregate is not measured. A predetermined number of particles (primary particles) of silicon oxide-coated zinc oxide constituting the aggregate are measured to obtain an average particle diameter.
- TEM transmission electron microscope
- the content of zinc oxide particles in the silicon oxide-coated zinc oxide is preferably 50% by mass or more and 90% by mass or less.
- a desired ultraviolet shielding effect cannot be obtained. Therefore, it is not preferable to obtain a desired ultraviolet shielding effect because a large amount of silicon oxide-coated zinc oxide must be used.
- the content of the zinc oxide particles in the silicon oxide-coated zinc oxide exceeds 90% by mass, the ratio of the zinc oxide particles in the silicon oxide-coated zinc oxide becomes too high. Is not preferable because it cannot be covered sufficiently.
- the dissolution rate of zinc eluted in the aqueous solution is 60% by mass or less. Is preferable, it is more preferable that it is 20 mass% or less, and it is further more preferable that it is 10 mass% or less.
- the reason why it is preferable that the zinc elution rate is 60% by mass or less is that if the zinc elution rate exceeds 60% by mass, the stability of the silicon oxide-coated zinc oxide itself decreases, and the silicon oxide coating
- the eluted zinc ions react with water-soluble polymers such as organic UV-screening agents and thickeners, resulting in deterioration in cosmetic performance, discoloration, and increase / decrease in viscosity. This is because it is not preferable.
- 500 ml of 0.1 M potassium hydrogen phthalate aqueous solution and 0.1 M sodium hydroxide aqueous solution A buffer solution with a total volume of 1000 ml by adding water after mixing with 226 ml is preferably used.
- the average particle diameter of the zinc oxide particles is appropriately adjusted in order for the cosmetic material to obtain desired transparency and ultraviolet shielding properties.
- the average particle diameter of the zinc oxide particles is preferably 1 nm or more and 50 nm or less.
- the average particle diameter of the zinc oxide particles is preferably 50 nm or more and 500 nm or less.
- a method for producing such silicon oxide-coated zinc oxide is described in detail in International Publication No. 2014/171322.
- zinc oxide particles are coated with a silicon oxide film on the surface of zinc oxide using alkoxysilane or sodium silicate and alkoxysilane, and fired at 200 ° C. to 600 ° C.
- a silicon oxide-coated zinc oxide is obtained.
- zinc oxide particles having an average particle diameter of 50 nm or more are used, they may be fired at 150 ° C. to 600 ° C.
- silicon oxide-coated zinc oxide Another example of the silicon oxide-coated zinc oxide is a silicon oxide-coated zinc oxide containing zinc oxide particles and a silicon oxide film on the surface of the zinc oxide particles, and selected from the group consisting of Mg, Ca and Ba And silicon oxide-coated zinc oxide containing at least one selected from the group consisting of The reason why it is preferable to use this silicon oxide-coated zinc oxide is as follows.
- a material containing alkali metal such as sodium silicate is used. It is preferable to form a silicon oxide film. However, if this alkali metal remains in the silicon oxide-coated zinc oxide, the alkali ions are eluted when the silicon oxide-coated zinc oxide is dispersed in the aqueous phase, causing the pH and viscosity to fluctuate greatly. As a result, the stability of quality is impaired.
- the silicon oxide film of the silicon oxide-coated zinc oxide by replacing the alkali metal contained in the silicon oxide film of the silicon oxide-coated zinc oxide with at least one selected from the group consisting of Mg, Ca and Ba, the silicon oxide film of the silicon oxide-coated zinc oxide The alkali metal contained therein is removed from the silicon oxide film of the silicon oxide-coated zinc oxide.
- at least one selected from the group consisting of Mg, Ca, and Ba substituted with an alkali metal contained in the silicon oxide film is present in the silicon oxide film of the silicon oxide-coated zinc oxide after the substitution.
- These substituted Mg, Ca, and Ba exist as magnesium silicate, calcium silicate, barium silicate, and the like that have low solubility in water.
- the total mass percentage of Mg, Ca, and Ba contained in the silicon oxide film of the silicon oxide-coated zinc oxide is larger than the total mass percentage of the alkali metals contained in the silicon oxide film. Therefore, even when this silicon oxide-coated zinc oxide is mixed with the aqueous phase, the elution of alkali metal is suppressed, fluctuations in pH and viscosity can be suppressed, and quality stability as a cosmetic can be maintained. .
- the average particle diameter of the silicon oxide-coated zinc oxide is selected as necessary, but is preferably 2 nm or more and 2 ⁇ m or less, more preferably 5 nm or more and 500 nm or less, and more preferably 10 nm or more and 400 nm or less. More preferably.
- the content of zinc oxide particles in the silicon oxide-coated zinc oxide is selected as necessary, but is preferably 50% by mass or more and 99% by mass or less, and 70% by mass or more and 95% by mass or less. Is more preferably 70% by mass or more and 90% by mass or less.
- a desired ultraviolet shielding effect may not be obtained.
- a cosmetic containing such a silicon oxide-coated zinc oxide in a cosmetic raw material base it is not preferable to obtain a desired ultraviolet shielding effect because a large amount of silicon oxide-coated zinc oxide must be used.
- the content rate of the zinc oxide particles in the silicon oxide-coated zinc oxide exceeds 99% by mass, the ratio of the zinc oxide particles in the silicon oxide-coated zinc oxide may become too high. As a result, the surface of the zinc oxide particles cannot be sufficiently covered with the silicon oxide film, and the photocatalytic activity of zinc oxide and elution suppression of zinc ions may be insufficient, which is not preferable.
- the silicon oxide content in the silicon oxide-coated zinc oxide is appropriately adjusted according to the average particle diameter of the zinc oxide particles.
- the silicon oxide content is preferably 3% by mass or more and 45% by mass or less.
- the content of silicon oxide is preferably 1% by mass or more and 35% by mass or less.
- the silicon oxide-coated zinc oxide contains at least one selected from the group consisting of Mg, Ca, and Ba.
- the total mass percentage of Mg, Ca and Ba contained in the silicon oxide film is preferably larger than the total mass percentage of the alkali metals contained in the silicon oxide film.
- the ratio of the total mass percentage of alkali metals contained in the silicon oxide film to the total mass percentage of Mg, Ca and Ba contained in the silicon oxide film is preferably 0.001 or more and 0.6 or less, more preferably 0.01 or more and 0.5 or less, and more preferably 0.1 or more and 0.4 or less. More preferably.
- the alkali metal refers to what is generally known, and specifically means at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and francium. .
- the reason why the total mass percentage of Mg, Ca, and Ba contained in the silicon oxide film is made larger than the total mass percentage of the alkali metals contained in the silicon oxide film is that in the initial stage of the silicon oxide-coated zinc oxide. This is because the fluctuation factor of the hydrogen ion index (pH) is not the elution of zinc ions but the elution of alkali metal ions contained in the silicon oxide film.
- the total mass percentage of alkali metals contained in the silicon oxide film in the silicon oxide-coated zinc oxide is preferably 0.2% by mass or less, and more preferably 0.15% by mass or less.
- the lower limit value of the total mass percentage of alkali metals contained in the silicon oxide film can be arbitrarily selected.
- the total mass percentage of the alkali metal may be 0% by mass, and for example, may be 0.0001% by mass or more, 0.001% by mass or more, and the like.
- the total mass percentage of Mg, Ca and Ba contained in the silicon oxide film in the silicon oxide-coated zinc oxide is preferably 0.01% by mass or more and 1% by mass or less.
- the mass percentage (mass%) of the alkali metal, Mg, Ca and Ba contained in the silicon oxide-coated zinc oxide (silicon oxide film) can be measured by atomic absorption spectrometry.
- the decomposition rate of brilliant blue generated by the photocatalytic activity of zinc oxide particles is preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less.
- a silicon oxide film of silicon oxide-coated zinc oxide "when the abundance ratio of the presence ratio in Q 3 environments of silicon in Q 3, Q 4 environment was Q 4, Q 3 + Q 4 ⁇ 0.6 and Q 4 / (Q 3 + Q 4 ) ⁇ 0.5 ”is preferable.
- the method for producing silicon oxide-coated zinc oxide in this embodiment is at least one selected from the group consisting of composite particles obtained by coating the surface of zinc oxide particles with silicon oxide containing an alkali metal, and Mg, Ca, and Ba.
- a step of mixing seeds in a solution containing water, and replacing the alkali metal contained in the silicon oxide with at least one selected from the group consisting of Mg, Ca and Ba (hereinafter referred to as “substitution”). And a baking step.
- a step of forming a high silicon oxide film may be provided. Next, a method for producing silicon oxide-coated zinc oxide will be described in detail.
- silicate containing alkali metal such as sodium silicate and zinc oxide particles are reacted to form silicon oxide on the surface of zinc oxide particles. You may use what coat
- the method of coating the surface of the zinc oxide particles with silicon oxide is selected as necessary, and examples thereof include the following methods. First, zinc oxide particles and water are mixed, and then the zinc oxide particles are ultrasonically dispersed in water to prepare a zinc oxide aqueous suspension. Next, the aqueous zinc oxide suspension is heated, and while stirring this aqueous zinc oxide suspension, an aqueous sodium silicate solution is added and aged for 10 to 60 minutes. Next, while stirring the aqueous zinc oxide suspension, an acid such as dilute sulfuric acid is added to adjust the pH to 5 to 9, and the mixture is aged for 30 minutes to 5 hours.
- this reaction solution is subjected to solid-liquid separation, and the resulting reaction product is washed with a solvent such as water, dried at about 100 ° C. to 200 ° C., and coated with silicon oxide containing an alkali metal. Zinc oxide particles are obtained.
- the replacement step needs to be performed after the step of coating the surface of the zinc oxide particles with silicon oxide containing an alkali metal.
- the reason is that when silicate containing an alkali metal and at least one selected from the group consisting of Mg, Ca and Ba are mixed in a solution containing simply water, magnesium silicate and calcium silicate are used as impurities. And at least one precipitate of barium silicate is formed. Therefore, the substitution step is preferably incorporated in any stage from the step of coating the surface of the zinc oxide particles with silicon oxide by the neutralization reaction of silicate to the step after the drying step. . According to such a method, the reaction process can be reduced, and the silicon oxide-coated zinc oxide in the present embodiment can be obtained at low cost.
- zinc oxide covered with silicon oxide containing an alkali metal and at least one selected from the group consisting of Mg, Ca and Ba are added to a solution containing water and mixed.
- a solution containing water for example, water or a solution obtained by mixing water and a solvent compatible with water is used.
- a solvent compatible with water for example, a protic polar solvent such as methanol, ethanol and 2-propanol, and an aprotic polar solvent such as acetone and tetrahydrofuran are preferable.
- protic polar solvents such as methanol, ethanol, 2-propanol are more preferable.
- the reaction temperature in this mixing process is not particularly limited, and is adjusted as necessary. What is necessary is just more than the freezing point of the solvent in the liquid mixture containing the zinc oxide by which silicon oxide was coat
- the reaction time is not particularly limited and is selected as necessary. The reaction time is preferably 1 hour or longer.
- the alkali metal in the zinc oxide coated with silicon oxide is replaced with at least one selected from the group consisting of Mg, Ca and Ba, and mixed from the zinc oxide coated with silicon oxide. Elutes in the liquid.
- at least one ion selected from the group consisting of Mg, Ca, and Ba substituted with an alkali metal is taken into the silicon oxide-coated zinc oxide by substitution with the alkali metal, and as a result, from Mg, Ca, and Ba.
- the silicon oxide-coated zinc oxide contains at least one selected from the group consisting of:
- the content of at least one selected from the group consisting of Mg, Ca and Ba contained in the mixed solution is not particularly limited and is selected as necessary.
- alkali ions such as Na and K in zinc oxide coated with silicon oxide
- at least one ion selected from the group consisting of Mg, Ca and Ba it is included in the mixed solution
- the content of at least one selected from the group consisting of Mg, Ca and Ba is preferably not less than the sum of molar equivalents of alkali metals in zinc oxide coated with silicon oxide.
- the raw material for providing at least one selected from the group consisting of Mg, Ca and Ba is not particularly limited as long as it is an inorganic salt containing these elements.
- Examples of raw materials for providing Mg include magnesium chloride, magnesium sulfate, and magnesium nitrate.
- Examples of the raw material for providing Ca include calcium chloride and calcium nitrate.
- As a raw material for providing Ba for example, barium chloride, barium nitrate or the like is preferably used. These raw materials may be used as a solid or in an aqueous solution state.
- the liquid mixture containing the silicon oxide-coated zinc oxide produced by this substitution step is subjected to solid-liquid separation by atmospheric pressure filtration, vacuum filtration, pressure filtration, centrifugation, or the like.
- the obtained solid is washed with a solvent such as water to obtain silicon oxide-coated zinc oxide.
- the obtained silicon oxide-coated zinc oxide and the group consisting of Mg, Ca and Ba are used again.
- at least one selected from the group consisting of an alkali metal in the silicon oxide-coated zinc oxide and at least one selected from the group consisting of Mg, Ca and Ba It is preferable to carry out. More preferably, this replacement step is repeated a plurality of times.
- the silicon oxide-coated zinc oxide thus obtained contains water, it is preferably dried to remove this water.
- the drying temperature is not particularly limited, but it is usually preferable to dry at a temperature of 100 ° C. or higher. Moreover, when drying at the temperature of 80 degrees C or less, reduced pressure drying is preferable.
- the silicon oxide-coated zinc oxide in the present embodiment can be produced by performing a heat treatment (baking) on the dried product at 200 ° C. or more and less than 600 ° C.
- the silicon oxide-coated zinc oxide-containing composition of the present embodiment contains the silicon oxide-coated zinc oxide of the present embodiment.
- the average particle size of the silicon oxide-coated zinc oxide can be arbitrarily selected, but is preferably 2 nm or more and 500 nm or less, more preferably 5 nm or more and 400 nm. Hereinafter, it is more preferably 10 nm or more and 400 nm or less.
- the reason why the average particle size of the silicon oxide-coated zinc oxide is limited to the above range is that when the average particle size is less than 2 nm, the particle size is too small, and thus the surface energy of the silicon oxide-coated zinc oxide is high, and therefore This is because they tend to aggregate with each other and it is difficult to maintain a desired shape and size.
- the average particle diameter exceeds 500 nm, the transparency of the silicon oxide-coated zinc oxide itself tends to decrease, and when the silicon oxide-coated zinc oxide-containing composition is used for cosmetics, etc., the transparency in the visible light region is reduced. This is because there is a risk that the feeling of use may be impaired, and a feeling of use may be deteriorated due to squeaking.
- the average dispersed particle size of the silicon oxide-coated zinc oxide in the silicon oxide-coated zinc oxide-containing composition of the present embodiment is preferably 10 nm or more and 1 ⁇ m or less. More preferably, they are 20 nm or more and 800 nm or less, More preferably, they are 25 nm or more and 500 nm or less.
- the average dispersed particle diameter of the silicon oxide-coated zinc oxide is less than 10 nm, the crystallinity of the silicon oxide-coated zinc oxide is lowered, and as a result, sufficient ultraviolet shielding properties may not be exhibited.
- the average dispersed particle size of the silicon oxide-coated zinc oxide exceeds 1 ⁇ m, glare, creaking, etc.
- the dispersed particle diameter means a particle diameter in a state where a plurality of silicon oxide-coated zinc oxide particles are gathered and dispersed.
- the content ratio of the silicon oxide-coated zinc oxide in the silicon oxide-coated zinc oxide-containing composition of the present embodiment may be appropriately adjusted to obtain a desired ultraviolet shielding performance, and is not particularly limited. Preferably they are 1 mass% or more and 80 mass% or less, More preferably, they are 5 mass% or more and 70 mass% or less, More preferably, they are 10 mass% or more and 60 mass% or less. In order to effectively utilize the characteristics of the silicon oxide-coated zinc oxide of the present invention, the content of the silicon oxide-coated zinc oxide may be 1% by mass or more and 20% by mass or less, or 2% by mass or more and 10% by mass. % Or less, or 3 mass% or more and 7 mass% or less.
- the content of the silicon oxide-coated zinc oxide is preferably 1% by mass or more and 80% by mass or less. The reason is that when the content of silicon oxide-coated zinc oxide is less than 1% by mass, the silicon oxide-coated zinc oxide-containing composition cannot exhibit a sufficient ultraviolet shielding function. As a result, when a silicon oxide-coated zinc oxide-containing composition is blended in cosmetics or the like, it is necessary to add a large amount of the silicon oxide-coated zinc oxide-containing composition in order to exhibit a desired ultraviolet shielding function, which is a manufacturing cost. This is because it is not preferable because of the risk of increasing the value.
- the content of the silicon oxide-coated zinc oxide exceeds 80% by mass, the viscosity of the silicon oxide-coated zinc oxide-containing composition increases, the dispersion stability of the silicon oxide-coated zinc oxide decreases, and the silicon oxide-coated oxide is oxidized. This is because zinc is liable to settle and is not preferable.
- the solvent used in the silicon oxide-coated zinc oxide-containing composition of the present embodiment is not particularly limited as long as it can disperse the silicon oxide-coated zinc oxide.
- These solvents
- Examples of other solvents used in the silicon oxide-coated zinc oxide-containing composition of this embodiment include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, and cyclohexanone; benzene, toluene, xylene, ethyl benzene, and the like.
- Aromatic hydrocarbons such as cyclohexane
- Amides such as dimethylformamide, N, N-dimethylacetoacetamide and N-methylpyrrolidone
- Chain polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane and diphenylpolysiloxane are also preferably used.
- cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexanesiloxane; modified polysiloxanes such as amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, and fluorine-modified polysiloxane are also preferably used. These solvents may be used alone or in combination of two or more.
- the silicon oxide-coated zinc oxide-containing composition of the present embodiment may contain commonly used additives such as a dispersant, a stabilizer, a water-soluble binder, and a thickener as long as the properties are not impaired. Good.
- Dispersants include anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, silane coupling agents such as organoalkoxysilanes and organochlorosilanes, polyether-modified silicones, amino-modified silicones, etc.
- the modified silicone is preferably used.
- the type and amount of these dispersants may be appropriately selected according to the particle diameter of the composite particles and the type of the target dispersion medium, and only one type of the above dispersants may be used, or two or more types may be used. You may mix and use.
- water-soluble binder for example, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, hydroxycellulose, polyacrylic acid and the like can be used.
- PVA polyvinyl alcohol
- polyvinyl pyrrolidone polyvinyl pyrrolidone
- hydroxycellulose hydroxycellulose
- polyacrylic acid polyacrylic acid
- the thickener when the silicon oxide-coated zinc oxide-containing composition of the present embodiment is applied to a cosmetic, it may be any thickener used in cosmetics, and is not particularly limited.
- the thickener include natural water-soluble polymers such as gelatin, casein, collagen, hyaluronic acid, albumin, starch, methyl cellulose, ethyl cellulose, methyl hydroxypropyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose.
- Semi-synthetic polymers such as sodium and propylene glycol alginate, synthetic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, carbomer (carboxyvinyl polymer), polyacrylate and polyethylene oxide, inorganic minerals such as bentonite, laponite and hectorite Are preferably used.
- These thickeners may be used alone or in combination of two or more.
- a synthetic polymer is preferable, and a carboxyvinyl polymer (carbomer) is more preferable.
- the carboxyvinyl polymer includes those obtained by modifying a part of the carboxyvinyl polymer such as an alkyl-modified carboxyvinyl polymer.
- the carbomer content in the silicon oxide-coated zinc oxide-containing composition of the present embodiment is preferably 0.0001 mass% or more and 10 mass% or less. More preferably, the content is 0.01% by mass or more and 1% by mass or less. If the carboxyvinyl polymer content in the silicon oxide-coated zinc oxide-containing composition of the present embodiment is less than 0.0001% by mass, the thickening effect may not be obtained. On the other hand, when the content of the carboxyvinyl polymer exceeds 10% by mass, the viscosity of the silicon oxide-coated zinc oxide-containing composition becomes too high, which is not preferable from the viewpoint of use.
- the content of the carboxyvinyl polymer in the silicon oxide-coated zinc oxide composition of the present invention is 0.5% by mass or more. It may be 2.5% by mass or less, 1.0% by mass to 2.0% by mass, or 1.3% by mass to 1.7% by mass.
- the hydrogen ion index (pH) in the silicon oxide-coated zinc oxide-containing composition when a carboxyvinyl polymer is used as the thickener is preferably 5 or more and 9 or less, more preferably 6 or more and 9 or less, and 7 or more and 9 or less. The following is more preferable.
- the above carboxyvinyl polymer is widely used as a thickener for water-based cosmetics.
- the presence of zinc ions destroys the network structure of the carboxyvinyl polymer, keeping the viscosity constant. Can not. Therefore, when several mass% of zinc oxide is mixed in the aqueous solution of carboxyvinyl polymer whose viscosity has been adjusted, the reduction in viscosity proceeds within a few hours. Even in the case of using zinc oxide coated with an inorganic oxide or resin to suppress surface activity, in many cases, the viscosity reduction or phase separation proceeds within a few hours to a few days. Therefore, when using together a carboxy vinyl polymer and zinc oxide, it becomes a problem to suppress or reduce the viscosity fall of the mixture containing these.
- the viscosity decreases after a certain period of time from the initial decrease in viscosity. Is often a big problem.
- the initial decrease in viscosity can be dealt with by adjusting the viscosity of the aqueous carboxyvinyl polymer solution to be high beforehand.
- the viscosity changes in the medium to long term after a certain time has elapsed, the properties of the cosmetics change at the distribution stage, and the stability over time is impaired.
- zinc oxide that has been surface-treated with an inorganic oxide or a resin has a certain elution suppressing effect, and therefore, zinc ions may be gradually eluted over the medium to long term.
- there have been few reports on the viscosity change of a composition containing a carboxyvinyl polymer and even if there is a report example, suppression has been confirmed only up to a viscosity change over time of about 7 days at room temperature. .
- the silicon oxide-coated zinc oxide according to this embodiment has excellent quality stability.
- a silicon oxide-coated zinc oxide-containing composition is obtained. That is, the silicon oxide-coated zinc oxide-containing composition of the present embodiment uses silicon oxide-coated zinc oxide, which has a higher zinc elution suppression effect than conventional zinc oxide coated with inorganic oxides or resins. Even when a carboxyvinyl polymer is used as a thickener, the composition is excellent in quality stability with little decrease in viscosity over time.
- the viscosity is preferably 5 Pa ⁇ s or more.
- the cosmetic containing the silicon oxide-coated zinc oxide-containing composition does not extend well to the skin, which is not preferable in terms of handling.
- the upper limit of the viscosity is not particularly limited, and may be appropriately adjusted according to a desired feeling of use. For example, it is preferably 100 Pa ⁇ s or less, more preferably 50 Pa ⁇ s or less, and 15 Pa ⁇ s. More preferably, it is as follows.
- the suspended water conductivity of the silicon oxide-coated zinc oxide may be 120 ⁇ S / cm or lower.
- the upper limit of the viscosity of the silicon oxide-coated zinc oxide may be adjusted by the content of the carboxyvinyl polymer. Since the viscosity increases as the content of the carboxyvinyl polymer increases, the carboxyvinyl polymer may be added by appropriately adjusting the desired feeling of use.
- the viscosity of the silicon oxide-coated zinc oxide-containing composition of the present embodiment is a value measured using a BII type rotational viscometer (manufactured by Toki Sangyo Co., Ltd.) at 20 ° C. and 30 rpm.
- the wavelength of the coating film is 450 nm.
- the transmittance for light is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more.
- This transmittance is obtained by coating a silicon oxide-coated zinc oxide-containing composition containing 15% by mass of silicon oxide-coated zinc oxide on a quartz substrate with a bar coater to form a coating film having a thickness of 32 ⁇ m.
- the spectral transmittance of the film can be determined by measuring with a SPF analyzer UV-1000S (manufactured by Labsphere).
- the component of the composition other than the silicon oxide-coated zinc oxide may be a solvent such as water, for example.
- the method for producing the silicon oxide-coated zinc oxide-containing composition of the present embodiment is not particularly limited as long as the silicon oxide-coated zinc oxide can be dispersed in the solvent.
- a dispersion method used for such dispersion a known dispersion method can be used.
- a dispersion method using a bead mill using zirconia beads, a ball mill, a homogenizer, an ultrasonic disperser, a kneader, a three-roll mill, a rotation / revolution mixer, or the like is preferably used.
- the time required for the dispersion treatment may be a time sufficient to uniformly disperse the silicon oxide-coated zinc oxide in the solvent.
- silicon oxide-coated zinc oxide-containing composition of the present embodiment (a) a silicon oxide-coated zinc oxide-containing silicone in which silicon oxide-coated zinc oxide is dispersed in a silicone resin that is a water-insoluble dispersion medium
- a silicon oxide-coated zinc oxide-containing silicone in which silicon oxide-coated zinc oxide is dispersed in a silicone resin that is a water-insoluble dispersion medium Each of the resin-based composition and (b) a silicon oxide-coated zinc oxide-containing aqueous composition in which silicon oxide-coated zinc oxide is dispersed in water will be described.
- the silicon oxide-coated zinc oxide-containing silicone resin-based composition is a silicone resin-based composition in which the above-described silicon oxide-coated zinc oxide is dispersed in a silicone resin.
- the content of silicon oxide-coated zinc oxide is preferably 1% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and further preferably 30% by mass. It is above and 60 mass% or less.
- the surface of the silicon oxide-coated zinc oxide may be treated with a silicone resin.
- Silicon oxide-coated zinc oxide has a high affinity for an oil phase, particularly silicone oil, by being surface-treated with a silicone resin. Therefore, blending into a water-in-oil type (W / O type) or an oil-in-water type (O / W) cosmetic becomes easier. That is, by adding silicon oxide-coated zinc oxide surface-treated with a silicone resin to the oil phase to form a water-in-oil or oil-in-water cosmetic, water-in-oil (W / O) or water Elution of zinc ions in oil-type (O / W) cosmetics can be suppressed.
- the silicone resin used for the surface treatment is not particularly limited as long as it can be used as a cosmetic.
- the silicone resin include methyl hydrogen polysiloxane, dimethyl polysiloxane, methicone, hydrogen dimethicone, triethoxysilylethyl polydimethylsiloxyethyl dimethicone, triethoxysilylethyl polydimethylsiloxyethylhexyl dimethicone, (acrylates / tridecyl acrylate / methacrylic acid). Acid triethoxysilylpropyl / methacrylic acid dimethicone) copolymer, triethoxycaprylylsilane and the like. Only one of these may be used alone, or a mixture of two or more of these may be used, or a copolymer thereof may be used.
- the silicone resin is not particularly limited as long as it is a cyclic silicone resin or a linear silicone resin having a structural skeleton represented by the following formula (2). (-(Si (CH 3 ) 2 O-) X (2) (In the formula (2), X is in the range of 1 to 2000.)
- This silicone resin is preferable because the mixing with the silicon oxide-coated zinc oxide is facilitated by setting the value of X in the above range.
- silicone resins include dimethylpolysiloxane, methylphenylpolysiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylpentasiloxane, and methyltrimethicone.
- the silicon oxide-coated zinc oxide-containing silicone resin-based composition may contain a dispersant.
- the dispersant include polyether-modified silicone, polyglycerin-modified silicone, amino-modified silicone, phenyl-modified silicone, alkyl-modified silicone, carbinol-modified silicone, and dimethyl silicone.
- the addition amount of a dispersing agent can be selected arbitrarily, it is the range of 1 mass% or more and 50 mass% or less with respect to the mass of the silicon oxide coating zinc oxide in a silicon oxide coating zinc oxide containing silicone resin system composition. Is preferred. For example, it may be in the range of 3% by mass to 15% by mass or 10% by mass to 30% by mass as necessary.
- the addition amount of the dispersant within the above range, even when the silicon oxide-coated zinc oxide-containing silicone resin composition is used alone or when directly mixed with cosmetics, it is applied to the skin. Transparency can be sufficiently secured when spread and applied. Further, natural oil, humectant, thickener, fragrance, preservative, and the like may be further mixed with the silicon oxide-coated zinc oxide-containing silicone resin-based composition as long as the characteristics are not impaired.
- the silicon oxide-coated zinc oxide-containing aqueous composition is an aqueous composition in which the above-mentioned silicon oxide-coated zinc oxide is dispersed in an aqueous dispersion medium or an aqueous dispersion medium containing alcohols.
- the content of silicon oxide-coated zinc oxide is preferably 1% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and further preferably 30% by mass or more and 60% by mass or less is contained.
- the content of the silicon oxide-coated zinc oxide may be 1% by mass or more and 20% by mass or less, or 2% by mass or more and 10% by mass. % Or less, or 3 mass% or more and 7 mass% or less.
- the aqueous dispersion medium or the aqueous dispersion medium containing alcohols is preferably 20% by mass to 99% by mass, more preferably 30% by mass to 80% by mass, and further preferably 40% by mass to 70% by mass. preferable.
- the water-based dispersion medium or water containing alcohols may be 80 mass% to 99 mass% or 90 mass% to 97 mass%.
- the aqueous dispersion medium means water or water whose pH is adjusted with acid or alkali.
- the aqueous dispersion medium containing alcohols is a dispersion medium containing alcohols and water. Water whose pH is adjusted with an acid or alkali may be used.
- alcohols include monovalent monovalent carbon atoms of 1 to 6 such as ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, octanol, glycerin, 1,3-butylene glycol, propylene glycol, and sorbitol.
- Alcohol or polyhydric alcohol is mentioned. Among these, monohydric alcohols are preferable, and ethanol is particularly preferable.
- the silicon oxide-coated zinc oxide-containing aqueous composition is composed of the above-described silicon oxide-coated zinc oxide and an aqueous dispersion medium containing alcohols
- the alcohol content is 5% by mass or more and 20% by mass or less.
- it is 10 mass% or more and 20 mass% or less.
- the dispersibility and stability over time of the aqueous composition of silicon oxide-coated zinc oxide can be improved.
- the water-soluble polymer is further contained in an amount of 0.001% by mass to 10% by mass, more preferably 0.005% by mass and 5% by mass, and still more preferably 0.8%. It is good also as containing from 01 mass% or more and 3 mass% or less. In this case, it is necessary to adjust the content of each component so that the total content of each of the silicon oxide-coated zinc oxide, the aqueous dispersion medium, the aqueous dispersion medium containing alcohols, and the water-soluble polymer does not exceed 100% by mass. There is.
- the water-soluble polymer contained in the aqueous composition is not particularly limited as long as it can be used for cosmetics.
- the water-soluble polymer contained in the aqueous composition is not particularly limited as long as it can be used for cosmetics.
- gum arabic, sodium alginate, casein, carrageenan, galactan, carboxyvinyl polymer, carboxymethylcellulose, sodium carboxymethylcellulose, carboxymethyl starch, agar, xanthan gum, quince seed, guar gum, collagen, gelatin, cellulose, dextran, dextrin, tragacanth gum examples include hydroxyethyl cellulose, hydroxypropyl cellulose, sodium hyaluronate pectin, pullulan, methyl cellulose, methyl hydroxypropyl cellulose, and the like.
- water-soluble polymers may be used alone or in combination of two or more.
- the content of the carboxyvinyl polymer in the silicon oxide-coated zinc oxide-containing aqueous composition of the present invention is 0.5 mass. % To 2.5% by mass, 1.0% to 2.0% by mass, or 1.3% to 1.7% by mass.
- This water-soluble polymer has a role as a dispersant and a viscosity modifier, and when added to the aqueous composition, the dispersibility and time-lapse of the silicon oxide-coated zinc oxide in the silicon oxide-coated zinc oxide-containing aqueous composition. It also has the role of improving stability.
- the alcohol content when the silicon oxide-coated zinc oxide-containing aqueous composition contains a water-soluble polymer is preferably 5% by mass or more and 20% by mass or less, more preferably 15% by mass or more and 20% by mass or less. is there. Moreover, it is not necessary to contain alcohol.
- the silicon oxide-coated zinc oxide-containing aqueous composition contains a water-soluble polymer the content of alcohols was set to 5% by mass or more and 20% by mass or less. The reason is as follows. That is, when the alcohol content is less than 5% by mass, depending on the type of water-soluble polymer, the content of alcohol is too small, so the water-soluble polymer cannot uniformly infiltrate the alcohol. Will swell unevenly with moisture.
- the dispersibility of the silicon oxide-coated zinc oxide is lowered, making it difficult to handle, and furthermore, the temporal stability of the silicon oxide-coated zinc oxide-containing aqueous composition is lowered, which is not preferable.
- a content rate exceeds 20 mass%, the viscosity of the whole silicon oxide covering zinc oxide containing aqueous composition will become high.
- the dispersion stability of the silicon oxide-coated zinc oxide is lowered, and the aging stability of the silicon oxide-coated zinc oxide-containing aqueous composition is also lowered, which is not preferable.
- a silicon oxide-coated zinc oxide-containing aqueous composition is prepared by adding an aqueous dispersion medium, an aqueous dispersion medium containing alcohols, an aqueous dispersion medium containing water-soluble polymers, or an aqueous dispersion medium containing alcohols and water-soluble polymers to the above-described aqueous dispersion medium. It is obtained by mixing silicon oxide-coated zinc oxide, and then mixing and dispersing water if necessary.
- the amount of water in the composition may be appropriately adjusted, but considering the dispersion stability and aging stability of the silicon oxide-coated zinc oxide, a range of 15% by mass to 94% by mass is preferable. What is necessary is just to select a suitable quantity from this range as needed. By adjusting the amount of water in the above range, it can be used alone or mixed with cosmetics, and it can be sufficiently applied to the skin to apply the silicon oxide-coated oxide.
- a zinc-containing aqueous composition is obtained.
- An example of the cosmetic of the present embodiment comprises the silicon oxide-coated zinc oxide of the present embodiment or the silicon oxide-coated zinc oxide-containing composition of the present embodiment.
- Another example of the cosmetic of the present embodiment is a cosmetic raw material base and the silicon oxide-coated zinc oxide of the present embodiment or the silicon oxide-coated zinc oxide-containing composition of the present embodiment dispersed in the cosmetic raw material base.
- the cosmetic base material means various raw materials forming the main body of the cosmetic, and examples thereof include an oily raw material, an aqueous raw material, a surfactant, and a powder raw material. Examples of oily raw materials include fats and oils, higher fatty acids, higher alcohols, ester oils, and the like.
- aqueous raw material examples include purified water, alcohol, and thickener.
- the powder raw material examples include colored pigments, white pigments, pearl agents, extender pigments, and the like.
- the cosmetic of the present embodiment is, for example, the silicon oxide-coated zinc oxide or silicon oxide-coated zinc oxide-containing composition of the present embodiment as a cosmetic raw material base such as an emulsion, cream, foundation, lipstick, blusher, eye shadow, It is obtained by blending as usual. Further, the silicon oxide-coated zinc oxide or silicon oxide-coated zinc oxide-containing composition of the present embodiment is blended in an oil phase or an aqueous phase to form an O / W type or W / O type emulsion, and then a cosmetic raw material base and You may mix
- the silicon oxide covering zinc oxide in cosmetics may be adjusted suitably content of the silicon oxide covering zinc oxide in cosmetics according to a desired characteristic, for example, 0.01 mass% or more may be sufficient as the minimum of content of silicon oxide covering zinc oxide, It may be 0.1% by mass or more, or 1% by mass or more.
- the upper limit of the content of silicon oxide-coated zinc oxide may be 50% by mass or less, 40% by mass or less, or 30% by mass or less.
- the upper limit value and the lower limit value of the content of the silicon oxide-coated zinc oxide in the cosmetic can be arbitrarily combined.
- the cosmetic of the present invention includes, for example, the silicon oxide-coated zinc oxide of the present invention and a cosmetic raw material base, and the cosmetic raw material base is carboxyvinyl.
- the content of silicon oxide-coated zinc oxide is 0.5% by mass or more and 20% by mass or less, preferably 2% by mass or more and 8% by mass or less, more preferably 3% by mass or more and 7% by mass or less
- the content of the carboxyvinyl polymer is 0.1% by mass or more and 10% by mass or less, preferably 0.5% by mass or more and 5% by mass or less, more preferably 1% by mass or more and 2.5% by mass or less
- the pH of the aqueous solvent Is 6.5 or more and 9 or less, preferably 7 or more and 8.5 or less, and more preferably 7 or more and 8 or less.
- the sunscreen cosmetic will be specifically described.
- the content of the silicon oxide-coated zinc oxide-containing composition in the sunscreen cosmetics is the silicon oxide contained in the silicon oxide-coated zinc oxide-containing composition.
- the content of the coated zinc oxide is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 15% by mass or less. Is more preferable.
- Sunscreen cosmetics can use hydrophobic dispersion media, inorganic fine particles and inorganic pigments other than zinc oxide particles, hydrophilic dispersion media, oils and fats, surfactants, moisturizers, thickeners, pH adjusters, nutrition Agents, antioxidants, perfumes and the like.
- hydrophobic dispersion medium include hydrocarbon oils such as liquid paraffin, squalane, isoparaffin, branched light paraffin, petrolatum, and ceresin, and ester oils such as isopropyl myristate, cetyl isooctanoate, and glyceryl trioctanoate.
- Silicone oil such as decamethylcyclopentasiloxane, dimethylpolysiloxane, methylphenylpolysiloxane, higher fatty acids such as uric acid, myristic acid, palmitic acid, stearic acid, lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyldodecanol, iso Examples include higher alcohols such as stearyl alcohol.
- inorganic fine particles and inorganic pigments other than zinc oxide particles include calcium carbonate, calcium phosphate (apatite), magnesium carbonate, calcium silicate, magnesium silicate, aluminum silicate, kaolin, talc, titanium oxide, aluminum oxide, and yellow oxide.
- examples thereof include iron, ⁇ -iron oxide, cobalt titanate, cobalt violet, and silicon oxide.
- the sunscreen cosmetic may further contain at least one organic ultraviolet absorber.
- organic UV absorbers include benzotriazole UV absorbers, benzoylmethane UV absorbers, benzoic acid UV absorbers, anthranilic acid UV absorbers, salicylic acid UV absorbers, and cinnamic acid UV absorbers. Agents, silicone-based cinnamic acid UV absorbers, organic UV absorbers other than these, and the like.
- benzotriazole ultraviolet absorber examples include 2,2′-hydroxy-5-methylphenylbenzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′- And hydroxy-5′-methylphenylbenzotriazole.
- benzoylmethane ultraviolet absorber examples include dibenzalazine, dianisoylmethane, 4-tert-butyl-4′-methoxydibenzoylmethane, 1- (4′-isopropylphenyl) -3-phenylpropane-1,3- And dione, 5- (3,3′-dimethyl-2-norbornylidene) -3-pentan-2-one, and the like.
- benzoic acid ultraviolet absorber examples include paraaminobenzoic acid (PABA), PABA monoglycerin ester, N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl PABA ethyl ester, N, N-dimethyl PABA butyl ester, N, N-dimethyl PABA methyl ester and the like can be mentioned.
- PABA paraaminobenzoic acid
- PABA monoglycerin ester N, N-dipropoxy PABA ethyl ester
- N-diethoxy PABA ethyl ester N, N-dimethyl PABA ethyl ester
- N, N-dimethyl PABA butyl ester N, N-dimethyl PABA methyl ester and the like
- anthranilic acid ultraviolet absorber examples include homomenthyl-N-acetylanthranylate.
- salicylic acid-based UV absorber examples include amyl salicylate, menthyl salicylate, homomenthyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, p-2-propanolphenyl salicylate, and the like.
- cinnamic acid-based UV absorbers examples include octylmethoxycinnamate, di-paramethoxycinnamic acid-mono-2-ethylhexanoic acid glyceryl, octylcinnamate, ethyl-4-isopropylcinnamate, methyl-2, 5-diisopropyl cinnamate, ethyl-2,4-diisopropyl cinnamate, methyl-2,4-diisopropyl cinnamate, propyl-p-methoxycinnamate, isopropyl-p-methoxycinnamate, isoamyl-p-methoxycinnamate, Octyl-p-methoxycinnamate (2-ethylhexyl-p-methoxycinnamate), 2-ethoxyethyl-p-methoxycinnamate, cyclohexyl
- silicone-based cinnamic acid ultraviolet absorber examples include [3-bis (trimethylsiloxy) methylsilyl-1-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilyl- 3-methylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methylsilylpropyl] -3,4,5-trimethoxycinnamate, [3-bis (trimethylsiloxy) methyl Silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silylbutyl] -3,4,5-trimethoxycinnamate, [3-tris (trimethylsiloxy) silyl-1-methyl Propyl] -3,4-dimethoxy
- organic ultraviolet absorbers other than the above examples include 3- (4′-methylbenzylidene) -d, l-camphor, 3-benzylidene-d, l-camphor, urocanic acid, urocanic acid ethyl ester, 2-phenyl Examples include -5-methylbenzoxazole, 5- (3,3'-dimethyl-2-norbornylidene) -3-pentan-2-one, silicone-modified UV absorber, and fluorine-modified UV absorber.
- the suspended water conductivity is 120 ⁇ S / cm or less, even when applied to an aqueous material such as an aqueous cosmetic, it is caused by carbomer.
- the decrease in viscosity can be suppressed, and the quality stability of the aqueous material can be maintained.
- the silicon oxide-coated zinc oxide-containing composition of the present embodiment since it contains the silicon oxide-coated zinc oxide of the present embodiment, the viscosity caused by the carbomer even when applied to an aqueous material such as an aqueous cosmetic. Can be suppressed, and the quality stability of the aqueous material can be maintained.
- the cosmetic of the present embodiment since it contains the silicon oxide-coated zinc oxide-containing composition of the present embodiment, there is no decrease in viscosity due to the carbomer and excellent quality stability.
- Example 1 "Silicon oxide coated zinc oxide” Zinc oxide particles (average particle size: 35 nm; manufactured by Sumitomo Osaka Cement Co., Ltd.) and water were mixed, followed by ultrasonic dispersion to prepare a zinc oxide aqueous suspension having a zinc oxide particle content of 20% by mass. Next, this zinc oxide aqueous suspension is added to a sodium silicate aqueous solution containing 20 mass% sodium silicate in terms of silicon oxide with respect to the mass of zinc oxide particles in the zinc oxide aqueous suspension and stirred. A suspension was obtained.
- the suspension was then warmed to 60 ° C., and diluted hydrochloric acid was gradually added while stirring the suspension to adjust the pH to 6.5-7. Then, after leaving still for 2 hours, the calcium chloride aqueous solution (calcium chloride dihydrate 25 mass%) of the mass same as the mass of the zinc oxide particle in this suspension was further added and stirred, and also for 2 hours. Left to stand. Subsequently, this suspension was subjected to solid-liquid separation using a centrifuge, and the obtained solid was washed with water using a filter press. Thereafter, the solid was dried at 150 ° C. and further subjected to heat treatment (firing) at 500 ° C. for 1 hour.
- the obtained solid and 2-propanol were mixed and then subjected to ultrasonic dispersion to prepare a silicon oxide-coated zinc oxide 2-propanol suspension having a silicon oxide-coated zinc oxide content of 10% by mass.
- the suspension was heated to 60 ° C., and ammonia water and water were added to the suspension while stirring to adjust the pH to 10-11. The amount of water added was 120% by mass with respect to tetraethoxysilane in the tetraethoxysilane 2-propanol solution added later.
- Silicon oxide-coated zinc oxide-containing composition Carbomer (trade name: Ultrez 10, manufactured by Nikko Chemicals) 1.5 g was dissolved in pure water, then 10% by mass aqueous sodium hydroxide solution was added dropwise to adjust the pH, and 1.5% by mass of carbomer was contained. A carbomer aqueous solution having a pH of 7.5 was prepared. Next, the carbomer aqueous solution and the silicon oxide-coated zinc oxide of Example 1 were mixed at a mass ratio of 95: 5 and then stirred to obtain the silicon oxide-coated zinc oxide-containing composition of Example 1. .
- Example 2 "Silicon oxide coated zinc oxide” Zinc oxide particles (average particle size: 35 nm; manufactured by Sumitomo Osaka Cement Co., Ltd.) and water were mixed, followed by ultrasonic dispersion to prepare a zinc oxide aqueous suspension having a zinc oxide particle content of 20% by mass. Next, this zinc oxide aqueous suspension is added to a sodium silicate aqueous solution containing 20 mass% sodium silicate in terms of silicon oxide with respect to the mass of zinc oxide particles in the zinc oxide aqueous suspension and stirred. A suspension was obtained.
- the obtained solid and 2-propanol were mixed and then subjected to ultrasonic dispersion to prepare a silicon oxide-coated zinc oxide 2-propanol suspension having a silicon oxide-coated zinc oxide content of 10% by mass.
- the suspension was heated to 60 ° C., and ammonia water and water were added to the suspension while stirring to adjust the pH to 10-11. The amount of water added was 120% by mass with respect to tetraethoxysilane in the tetraethoxysilane 2-propanol solution added later.
- Silicon oxide-coated zinc oxide-containing composition A silicon oxide-coated zinc oxide-containing composition of Example 2 was obtained in the same manner as in Example 1 except that the silicon oxide-coated zinc oxide of Example 2 was used instead of using the silicon oxide-coated zinc oxide of Example 1. It was.
- Example 3 "Silicon oxide coated zinc oxide” Zinc oxide particles (average particle size: 250 nm; manufactured by Sumitomo Osaka Cement Co., Ltd.) and water were mixed, followed by ultrasonic dispersion to prepare a zinc oxide aqueous suspension having a zinc oxide particle content of 50% by mass. Next, this zinc oxide aqueous suspension was 17.7% by mass in terms of silicon oxide with respect to the mass of zinc oxide particles in the zinc oxide aqueous suspension (15 mass of silicon oxide in silicon oxide-coated zinc oxide). %) Sodium silicate aqueous solution containing sodium silicate and stirred to obtain a suspension.
- Silicon oxide-coated zinc oxide-containing composition A silicon oxide-coated zinc oxide-containing composition of Example 3 was obtained in the same manner as in Example 1 except that the silicon oxide-coated zinc oxide of Example 3 was used instead of using the silicon oxide-coated zinc oxide of Example 1. It was.
- Example 4 Silicon oxide coated zinc oxide
- the silicon oxide-coated zinc oxide of Example 4 was produced in the same manner as in Example 3 except that the step of suspending and washing the solid in water was performed a total of 8 times.
- Na was 0.11% by mass
- Ca was 0.13% by mass.
- the presence ratio in Q 3 environments of silicon oxide, silicon in the coating constituting the silicon oxide-coated zinc oxide of Example 3 and Q 3 were calculated.
- Silicon oxide-coated zinc oxide-containing composition A silicon oxide-coated zinc oxide-containing composition of Example 4 was obtained in the same manner as in Example 1 except that the silicon oxide-coated zinc oxide of Example 4 was used instead of using the silicon oxide-coated zinc oxide of Example 1. It was.
- Example 3 Silicon oxide coated zinc oxide
- Example 3 the silicon oxide-coated zinc oxide of Comparative Example 1 was produced in the same manner as in Example 3, except that the step of suspending and washing the solid in water was performed a total of 4 times.
- the presence ratio in Q 3 environments of silicon oxide, silicon in the coating constituting the silicon oxide-coated zinc oxide of Comparative Example 1 and Q 3 the abundance ratio of Q 4 environment and Q 4, Q 3 the value of + Q 4, and calculates the value of Q 4 / (Q 3 + Q 4).
- Q 3 + Q 4 ⁇ 0.6 and Q 4 / (Q 3 + Q 4 ) ⁇ 0.5.
- Silicon oxide-coated zinc oxide-containing composition A silicon oxide-coated zinc oxide-containing composition of Comparative Example 1 was obtained in the same manner as in Example 1 except that the silicon oxide-coated zinc oxide of Comparative Example 1 was used instead of using the silicon oxide-coated zinc oxide of Example 1. It was.
- Silicon oxide-coated zinc oxide-containing composition A silicon oxide-coated zinc oxide-containing composition of Comparative Example 2 was obtained in the same manner as in Example 1 except that the silicon oxide-coated zinc oxide of Comparative Example 2 was used instead of using the silicon oxide-coated zinc oxide of Example 1. It was.
- Silicon oxide-coated zinc oxide-containing composition A silicon oxide-coated zinc oxide-containing composition of Comparative Example 3 was obtained in the same manner as in Example 1 except that the silicon oxide-coated zinc oxide of Comparative Example 3 was used instead of using the silicon oxide-coated zinc oxide of Example 1. It was.
- Silicon oxide-coated zinc oxide-containing composition A silicon oxide-coated zinc oxide-containing composition of Comparative Example 4 was obtained in the same manner as in Example 1 except that the silicon oxide-coated zinc oxide of Comparative Example 4 was used instead of using the silicon oxide-coated zinc oxide of Example 1. It was.
- the case where the viscosity of the silicon oxide-coated zinc oxide-containing composition up to 300 hours from the start of holding at 40 ° C. is 5 Pa ⁇ s or more, 300 after the start of holding at 40 ° C.
- the case where the viscosity of the silicon oxide-coated zinc oxide-containing composition up to the time was less than 5 Pa ⁇ s was evaluated as x.
- the results are shown in Table 1.
- the silicon oxide-coated zinc oxide-containing compositions of Comparative Example 2, Comparative Example 3 and Comparative Example 4 decreased in viscosity to 3 Pa ⁇ s or less immediately after mixing. There was no test to measure.
- the silicon oxide-coated zinc oxides of Examples 1 to 4 had a suspended water conductivity of 100 ⁇ S / cm or less.
- the silicon oxide-coated zinc oxide of Comparative Examples 1 to 4 was found to have a suspended water conductivity of 185 ⁇ S / cm or more.
- the silicon oxide-coated zinc oxide-containing compositions of Examples 1 to 4 have a viscosity of the silicon oxide-coated zinc oxide-containing composition up to 300 hours from the start of holding at 40 ° C. It was found to be 5 Pa ⁇ s or more.
- the silicon oxide-coated zinc oxide-containing compositions of Comparative Examples 1 to 4 have a viscosity of the silicon oxide-coated zinc oxide-containing composition of less than 5 Pa ⁇ s up to 300 hours from the start of holding at 40 ° C. I understood.
- the silicon oxide-coated zinc oxide of the present invention suppresses a decrease in viscosity caused by carbomer even when applied to an aqueous material such as an aqueous cosmetic by setting the suspended water conductivity to 120 ⁇ S / cm or less. Can do. Accordingly, since the silicon oxide-coated zinc oxide of the present invention can maintain the stability of the quality of the aqueous material, the aqueous cosmetic that requires suppression of fluctuations in the hydrogen ion index (pH) of the aqueous material. The degree of freedom of prescription when applied to can be improved, and its industrial value is great.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本願は、2015年2月27日に、日本に出願された特願2015-038674号に基づき優先権を主張し、その内容をここに援用する。
水系の化粧料は、油系の化粧料と比べてべたつきがなく、サラッとした使用感が得られることから、近年、サンスクリーン剤、乳液、クリーム等の各種化粧料として用いられている。この化粧料では、無機系紫外線遮蔽剤としては、主に酸化チタンと酸化亜鉛が用いられている。
特に最近の化粧料では、より水に近い質感にするために水の含有量を増加させる傾向がある。水の含有量を増加させた場合、化粧料の粘度の低下を抑制できず、品質の低下の問題が顕在化してきている。また、化粧料の粘度を維持するために増粘剤の含有量を増やすと、みずみずしさが失われたり、表面被覆酸化亜鉛から溶出した亜鉛イオンとカルボマーが反応して塩が生じたりして、使用感が悪くなるおそれがある。
なお、以下の実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
本実施形態の酸化ケイ素被覆酸化亜鉛は、酸化亜鉛粒子と、前記酸化亜鉛粒子の表面における酸化ケイ素被膜と、を含む酸化ケイ素被覆酸化亜鉛であって、懸濁水導電率が120μS/cm以下である。
酸化ケイ素被覆酸化亜鉛10gと、純水90gとを混合し、この混合液を撹拌しながら、ホットプレート上で10分間煮沸する。次いで、混合液を25℃まで放冷した後、酸化ケイ素被覆酸化亜鉛と純水の合計量が100gになるように、混合液に純水を加えて懸濁させる。この懸濁水の導電率を導電率計(商品名:パーソナルSCメータSC72、横河電機社製)により測定する。
酸化ケイ素被覆酸化亜鉛の洗浄を強化する方法としては、例えば、洗浄力が強い装置を用いたり、洗浄回数を増やしたりする方法等が挙げられる。
洗浄に用いる溶媒としては、例えば、水やアルコール類等が挙げられる。
酸化ケイ素被膜が緻密な酸化ケイ素被覆酸化亜鉛の一例としては、酸化亜鉛粒子と、前記酸化亜鉛粒子の表面における酸化ケイ素被膜と、を含む酸化ケイ素被覆酸化亜鉛であって、酸化ケイ素被膜中のケイ素のQ3環境における存在比をQ3、Q4環境における存在比をQ4としたとき、Q3+Q4≧0.6かつQ4/(Q3+Q4)≧0.5である酸化ケイ素被覆酸化亜鉛が挙げられる。さらに、この酸化亜鉛粒子の光触媒活性によって生じるブリリアントブルーの分解率が3%以下となるほど、酸化亜鉛粒子全体を酸化ケイ素被膜が均一に被覆していることが好ましい。
なお、緻密な酸化ケイ素被膜の「緻密さ」と酸化ケイ素の「縮合度」との間には密接な関係があり、酸化ケイ素の縮合度が高くなればなるほど酸化ケイ素被膜の緻密性が高まることとなる。
すなわち、ここでいう緻密な酸化ケイ素被膜の「緻密な」とは、Q3+Q4≧0.6かつQ4/(Q3+Q4)≧0.5を満たすほど、すなわち、Q3+Q4およびQ4/(Q3+Q4)が下限値よりも大きくなるほど、酸化ケイ素の縮合度が高い状態の酸化ケイ素被膜のことを意味する。
ここで、Qn(n=0~4)とは、酸化ケイ素の構成単位であるSiO4四面体単位の酸素原子のうちの架橋酸素原子、すなわち、2つのSiと結合している酸素原子の数に応じて決まる化学的構造のことである。
これらQ0、Q1、Q2、Q3、Q4それぞれの環境に帰属されるシグナルの面積比を、Q0、Q1、Q2、Q3、Q4と表記する。ただし、Q0+Q1+Q2+Q3+Q4=1である。
まず、ブリリアントブルーを所定の含有率(例えば、5ppm)に調整したブリリアントブルー水溶液を作製し、このブリリアントブルー水溶液からスクリュー管に所定量採取し、この採取したブリリアントブルー水溶液に、酸化亜鉛換算で、この液の質量の1質量%の酸化ケイ素被覆酸化亜鉛を投入し、超音波分散して懸濁液を調製する。次いで、この懸濁液に、所定の波長の紫外線を所定距離(例えば、10cm)から所定時間(例えば、6時間)照射する。
紫外線照射ランプとしては、例えば、殺菌ランプGL20(波長253.7nm、紫外線出力7.5W:東芝社製)を用いることができる。
D=(A0-A1)/A0 ・・・(1)(但し、A0はブリリアントブルー水溶液(5ppm)の吸光光度スペクトルの吸収極大波長(630nm)における吸光度、A1は上記の上澄み液の吸光光度スペクトルの吸収極大波長における吸光度である。)
すなわち、本実施形態の酸化ケイ素被覆酸化亜鉛を、透過型電子顕微鏡(TEM)等を用いて観察した場合に、酸化ケイ素被覆酸化亜鉛を所定数、例えば、200個、あるいは100個を選び出す。そして、これら酸化ケイ素被覆酸化亜鉛各々の最長の直線部分(最大長径)を測定し、これらの測定値を加重平均する。
酸化ケイ素被覆酸化亜鉛同士が凝集している場合には、この凝集体の凝集粒子径を測定するのではない。この凝集体を構成している酸化ケイ素被覆酸化亜鉛の粒子(一次粒子)を所定数測定し、平均粒子径とする。
ここで、亜鉛の溶出率が60質量%以下であることが好ましいとした理由は、亜鉛の溶出率が60質量%を超えると、酸化ケイ素被覆酸化亜鉛自体の安定性が低下し、酸化ケイ素被覆酸化亜鉛を化粧料に適用した場合に、溶出する亜鉛イオンが、有機系紫外線遮蔽剤、増粘剤等の水溶性高分子等と反応し、化粧料としての性能の低下、変色、粘度の増減等を生じるので好ましくないからである。
pH=5の緩衝液としては、酸化ケイ素被覆酸化亜鉛を分散させることができる緩衝液であれば特に限定されず、例えば、0.1Mフタル酸水素カリウム水溶液500mlと、0.1M水酸化ナトリウム水溶液226mlとを混合した後、水を加えて全体量を1000mlとした緩衝液が好適に用いられる。
なお、平均粒子径が50nm以上の酸化亜鉛粒子を用いる場合には、150℃~600℃で焼成してもよい。
酸化ケイ素被覆酸化亜鉛の他の例としては、酸化亜鉛粒子と、前記酸化亜鉛粒子の表面における酸化ケイ素被膜と、を含む酸化ケイ素被覆酸化亜鉛であって、Mg、Ca及びBaからなる群から選択される少なくとも1種を含有する酸化ケイ素被覆酸化亜鉛が挙げられる。この酸化ケイ素被覆酸化亜鉛を用いることが好ましい理由は、次の通りである。
一方、酸化ケイ素被膜中に含まれるアルカリ金属と置換されたMg、Ca及びBaからなる群から選択される少なくとも1種は、置換後には、酸化ケイ素被覆酸化亜鉛の酸化ケイ素被膜中に存在する。これらの置換されたMg、Ca、Baは、水への溶解度が低いケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸バリウム等として存在する。
ここで、酸化ケイ素被覆酸化亜鉛における酸化亜鉛粒子の含有率が50質量%未満では、所望の紫外線遮蔽効果を得ることができない可能性がある。そのような酸化ケイ素被覆酸化亜鉛を化粧品原料基剤中に含む化粧料において、所望の紫外線遮蔽効果を得ようとすると、大量の酸化ケイ素被覆酸化亜鉛を使用しなければならなくなるので好ましくない。
一方、酸化ケイ素被覆酸化亜鉛における酸化亜鉛粒子の含有率が99質量%を超えると、この酸化ケイ素被覆酸化亜鉛における酸化亜鉛粒子の割合が高くなり過ぎてしまう可能性がある。その結果、酸化亜鉛粒子の表面を酸化ケイ素被膜で充分に覆うことができなくなり、酸化亜鉛の光触媒活性や亜鉛イオンの溶出抑制が不充分となる可能性があるため好ましくない。
酸化ケイ素被覆酸化亜鉛における、酸化ケイ素被膜中に含まれるMg、Ca及びBaの合計の質量百分率は、酸化ケイ素被膜中に含まれるアルカリ金属の合計の質量百分率より大であることが好ましい。さらに、酸化ケイ素被膜中に含まれるアルカリ金属の合計の質量百分率の、酸化ケイ素被膜中に含まれるMg、Ca及びBaの合計の質量百分率に対する比(アルカリ金属の合計の質量百分率/(Mg、Ca及びBaの合計の質量百分率)は、0.001以上かつ0.6以下であることが好ましく、0.01以上かつ0.5以下であることがより好ましく、0.1以上かつ0.4以下であることがさらに好ましい。
本実施形態において、アルカリ金属とは、一般的に知られているものを指し、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム及びフランシウムからなる群から選択される少なくとも1種を意味する。
酸化ケイ素被膜中に含まれるアルカリ金属の合計の質量百分率の下限値は任意に選択できる。アルカリ金属の合計の質量百分率は0質量%でもよく、他の例を挙げれば、例えば、0.0001質量%以上や0.001質量%以上等であってもよい。
さらに、酸化ケイ素被覆酸化亜鉛の酸化ケイ素被膜は、「ケイ素のQ3環境における存在比をQ3、Q4環境における存在比をQ4としたとき、Q3+Q4≧0.6かつQ4/(Q3+Q4)≧0.5」を満たすことが好ましい。
本実施形態における酸化ケイ素被覆酸化亜鉛の製造方法を説明する。
本実施形態における酸化ケイ素被覆酸化亜鉛の製造方法は、酸化亜鉛粒子の表面にアルカリ金属を含有する酸化ケイ素を被覆してなる複合粒子と、Mg、Ca及びBaからなる群から選択される少なくとも1種とを、水を含む溶液中にて混合し、この酸化ケイ素中に含まれるアルカリ金属を、Mg、Ca及びBaからなる群から選択される少なくとも1種にて置換する工程(以下、「置換工程」と言う。)と、焼成工程と、を有する製造方法である。
次に、酸化ケイ素被覆酸化亜鉛の製造方法について詳細に説明する。
酸化亜鉛粒子の表面に酸化ケイ素を被覆させる方法としては、例えば、特開平03-183620号公報、特開平11-256133号公報、特開平11-302015号公報、特開2007-016111号公報等に記載されている方法を用いることができる。
まず、酸化亜鉛粒子と水を混合し、次いで、水中に酸化亜鉛粒子を超音波分散し、酸化亜鉛水系懸濁液を調製する。
次いで、酸化亜鉛水系懸濁液を加温し、この酸化亜鉛水系懸濁液を撹拌しながら、ケイ酸ソーダ水溶液を加え、10分~60分間熟成する。
次いで、酸化亜鉛水系懸濁液を撹拌しながら、希硫酸等の酸を添加してpHを5~9に調整し、30分~5時間熟成する。
次いで、この反応液を固液分離し、得られた反応物を水等の溶媒を用いて洗浄し、さらに、100℃~200℃程度にて乾燥し、アルカリ金属を含有する酸化ケイ素で被覆された酸化亜鉛粒子を得る。
置換工程は、酸化亜鉛粒子の表面を、アルカリ金属を含有する酸化ケイ素で被覆する工程の後に行う必要がある。その理由は、アルカリ金属を含むケイ酸塩と、Mg、Ca及びBaからなる群から選択される少なくとも1種とを、単に水を含む溶液中で混合すると、不純物としてケイ酸マグネシウム、ケイ酸カルシウム及びケイ酸バリウムの少なくとも1種の沈殿が生成するからである。そこで、置換工程は、ケイ酸塩を中和反応等させることによって、酸化亜鉛粒子の表面を酸化ケイ素で被覆する工程の後から、乾燥工程の後までの、いずれかの段階に組み込むことが好ましい。そのような方法によれば、反応プロセスを低減することができ、低コストにて、本実施形態における酸化ケイ素被覆酸化亜鉛を得ることができる。
水を含む溶液としては、特に限定されず、必要に応じて選択される。水を含む溶液としては、例えば、水、または、水及び水と相溶可能な溶媒を混合してなる溶液が用いられる。
水と相溶可能な溶媒としては、例えば、メタノール、エタノール、2-プロパノール等のプロトン性極性溶媒、アセトン、テトラヒドロフラン等の非プロトン性極性溶媒が好ましい。これらの中でも、メタノール、エタノール、2-プロパノール等のプロトン性極性溶媒がより好ましい。
また、混合液を静置したままでも反応は進行するが、反応効率を高めるためには、混合液を撹拌しながら反応させることが好ましい。
反応時間は、特に限定されず、必要に応じて選択される。反応時間は、1時間以上が好ましい。
これらの原料は、固体のまま用いてもよく、水溶液とした状態で用いてもよい。
なお、得られた酸化ケイ素被覆酸化亜鉛中のアルカリ金属の含有量をさらに低減させるためには、固液分離後、再度、得られた酸化ケイ素被覆酸化亜鉛と、Mg、Ca及びBaからなる群から選択される少なくとも1種とを、水を含む溶液中で混合させ、この酸化ケイ素被覆酸化亜鉛中のアルカリ金属と、Mg、Ca及びBaからなる群から選択される少なくとも1種との置換工程を行うことが好ましい。この置換工程は、複数回繰り返すことがより好ましい。
乾燥温度は、特に限定されないが、通常、100℃以上の温度にて乾燥することが好ましい。また、80℃以下の温度にて乾燥する場合には、減圧乾燥が好ましい。
本実施形態の酸化ケイ素被覆酸化亜鉛含有組成物は、本実施形態の酸化ケイ素被覆酸化亜鉛を含有してなる。
ここで、酸化ケイ素被覆酸化亜鉛の平均粒子径を上記の範囲に限定した理由は、平均粒子径が2nm未満では、粒子径が小さすぎるために、酸化ケイ素被覆酸化亜鉛の表面エネルギーが高く、したがって、互いに凝集し易く、所望の形状及びサイズを維持することが困難になるからである。一方、平均粒子径が500nmを超えると、酸化ケイ素被覆酸化亜鉛自体の透明性が低下し易くなり、酸化ケイ素被覆酸化亜鉛含有組成物を化粧料等に用いた場合に、可視光線領域の透明性を損なうおそれや、きしみ等が生じて使用感が悪化するおそれがあるからである。
ここで、酸化ケイ素被覆酸化亜鉛の含有率を1質量%以上かつ80質量%以下が好ましいとした。その理由は、酸化ケイ素被覆酸化亜鉛の含有率が1質量%未満では、酸化ケイ素被覆酸化亜鉛含有組成物が充分な紫外線遮蔽機能を示すことができなくなる。その結果、酸化ケイ素被覆酸化亜鉛含有組成物を化粧料等に配合する際に、所望の紫外線遮蔽機能を示すためには大量の酸化ケイ素被覆酸化亜鉛含有組成物を添加する必要があり、製造コストが高くなるおそれがあるので好ましくないからである。一方、酸化ケイ素被覆酸化亜鉛の含有率が80質量%を超えると、酸化ケイ素被覆酸化亜鉛含有組成物の粘性が増加して、酸化ケイ素被覆酸化亜鉛の分散安定性が低下し、酸化ケイ素被覆酸化亜鉛が沈降し易くなるおそれがあるので好ましくないからである。
例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、オクタノール、グリセリン等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;が好適に用いられる。これらの溶媒は1種のみを用いてもよく、2種以上を混合して用いてもよい。
これらの増粘剤の中でも、合成高分子が好ましく、カルボキシビニルポリマー(カルボマー)がより好ましい。なお、カルボキシビニルポリマーは、アルキル変性カルボキシビニルポリマー等、カルボキシビニルポリマーの一部を変性したものも含む。
本実施形態の酸化ケイ素被覆酸化亜鉛含有組成物におけるカルボキシビニルポリマーの含有率が0.0001質量%未満であると、増粘効果が得られないおそれがある。一方、カルボキシビニルポリマーの含有率が10質量%を超えると、酸化ケイ素被覆酸化亜鉛含有組成物の粘度が高くなり過ぎてしまい、使用上の観点から好ましくない。
また、本発明の酸化ケイ素被覆酸化亜鉛を有効に利用するために、カルボキシビニルポリマーを用いる場合、本発明の酸化ケイ素被覆酸化亜鉛組成物におけるカルボキシビニルポリマーの含有量は、0.5質量%以上2.5質量%以下、1.0質量%以上2.0質量%以下、または1.3質量%以上1.7質量%以下でもよい。
初期の粘度低下は、カルボキシビニルポリマー水溶液の粘度を予め高めに調整すること等で対応することができる。しかしながら、一定時間経過した後の中長期にて粘度が変化すると、流通段階で化粧料の性状が変化し、経時安定性を損なうこととなる。特に、無機酸化物や樹脂で表面処理を施した酸化亜鉛は、一定の溶出抑制効果を有していることから、中長期に亘って徐々に亜鉛イオンを溶出するおそれがあった。
また、従来、カルボキシビニルポリマーを含む組成物の粘度変化に関する報告例は少なく、また、報告例があったとしても、室温にて7日程度の経時による粘度変化までしか抑制が確認されていなかった。
粘度が5Pa・s未満では、酸化ケイ素被覆酸化亜鉛含有組成物を含む化粧料が肌にうまく伸びず、ハンドリングの面で好ましくない。粘度の上限値は、特に限定されず、所望の使用感に合せて適宜調整すればよく、例えば、100Pa・s以下であることが好ましく、50Pa・s以下であることがより好ましく、15Pa・s以下であることがさらに好ましい。水系化粧料に特有のみずみずしさを感じられる使用感にするためには、15Pa・s以下であることが好ましい。
酸化ケイ素被覆酸化亜鉛含有組成物の粘度を5Pa・s以上とするためには、酸化ケイ素被覆酸化亜鉛の懸濁水導電率を120μS/cm以下にすればよい。一方、酸化ケイ素被覆酸化亜鉛の粘度の上限値は、カルボキシビニルポリマーの含有量で調整すればよい。カルボキシビニルポリマーの含有量が多いほど粘度が高くなるため、所望の使用感が得られるように適宜調整して、カルボキシビニルポリマーを添加すればよい。
本実施形態の酸化ケイ素被覆酸化亜鉛含有組成物の粘度は、BII型回転粘度計(東機産業社製)を用い、20℃、30rpmの条件下で測定した値である。
この透過率は、酸化ケイ素被覆酸化亜鉛を15質量%含有する酸化ケイ素被覆酸化亜鉛含有組成物を、石英基板上にバーコーターにて塗布して、厚みが32μmの塗膜を形成し、この塗膜の分光透過率をSPFアナライザー UV-1000S(Labsphere社製)にて測定することにより求めることができる。このとき、酸化ケイ素被覆酸化亜鉛以外の組成物の成分は、例えば、水等の溶媒であってもよい。
このような分散に用いられる分散方法としては、公知の分散方法を用いることができる。例えば、攪拌機の他、ジルコニアビーズを用いたビーズミル、ボールミル、ホモジナイザー、超音波分散機、混練機、三本ロールミル、自転・公転ミキサー等を用いた分散方法が好適に用いられる。
分散処理に要する時間としては、上記の酸化ケイ素被覆酸化亜鉛を上記の溶媒中に均一に分散されるのに充分な時間であればよい。
酸化ケイ素被覆酸化亜鉛含有シリコーン樹脂系組成物は、上記の酸化ケイ素被覆酸化亜鉛をシリコーン樹脂中に分散したシリコーン樹脂系組成物である。この組成物は、酸化ケイ素被覆酸化亜鉛の含有率を1質量%以上かつ80質量%以下とすることが好ましく、より好ましくは20質量%以上かつ70質量%以下であり、さらに好ましくは30質量%以上かつ60質量%以下である。
酸化ケイ素被覆酸化亜鉛は、シリコーン樹脂にて表面処理されることにより、油相、特にシリコーン油への親和性が高くなる。よって、油中水型(W/O型)や水中油型(O/W)の化粧料への配合がより容易になる。
すなわち、シリコーン樹脂にて表面処理した酸化ケイ素被覆酸化亜鉛を油相に配合して、油中水型又は水中油型の化粧料とすることで、油中水型(W/O型)や水中油型(O/W)の化粧料における亜鉛イオンの溶出を抑制することができる。
(-(Si(CH3)2O-)X ・・・(2)
(式(2)中、Xは1~2000の範囲である。)
このシリコーン樹脂では、Xの値を上記範囲とすることにより、上記の酸化ケイ素被覆酸化亜鉛との混合が容易となるので、好ましい。
このようなシリコーン樹脂としては、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルペンタシロキサン、メチルトリメチコン等が挙げられる。
分散剤としては、例えば、ポリエーテル変性シリコーン、ポリグリセリン変性シリコーン、アミノ変性シリコーン、フェニル変性シリコーン、アルキル変性シリコーン、カルビノール変性シリコーン、ジメチルシリコーン等を挙げることができる。
分散剤の添加量を上記の範囲内で調整することにより、酸化ケイ素被覆酸化亜鉛含有シリコーン樹脂系組成物を単独で用いた場合においても、また、化粧料に直接混合した場合においても、肌に塗り広げて塗布した場合に透明性を充分に確保することができる。
また、酸化ケイ素被覆酸化亜鉛含有シリコーン樹脂系組成物に、その特性を損なわない範囲で、さらに天然オイル、保湿剤、増粘剤、香料、防腐剤等を混合させてもよい。
酸化ケイ素被覆酸化亜鉛含有水系組成物は、上記の酸化ケイ素被覆酸化亜鉛を、水系分散媒または、アルコール類を含む水系分散媒中に分散した水系組成物である。この組成物は、酸化ケイ素被覆酸化亜鉛の含有率を1質量%以上かつ80質量%以下であることが好ましく、より好ましくは20質量%以上かつ70質量%以下、さらに好ましくは30質量%以上かつ60質量%以下含有する。
また、本発明の酸化ケイ素被覆酸化亜鉛の特徴を有効に利用するために、酸化ケイ素被覆酸化亜鉛の含有率を1質量%以上かつ20質量%以下でもよく、或いは、2質量%以上かつ10質量%以下または3質量%以上かつ7質量%以下でもよい。
水系分散媒、またはアルコール類を含む水系分散媒は、20質量%~99質量%含むことが好ましく、30質量%~80質量%含むことがより好ましく、40質量%~70質量%含むことがさらに好ましい。
また、本発明の酸化ケイ素被覆酸化亜鉛の特徴を有効に利用するために、アルコール類を含む水系分散媒または水を、80質量%~99質量%または90質量%~97質量%でもよい。
ここで、アルコール類を含む水系分散媒とは、アルコール類と水とを含む分散媒である。水は、酸やアルカリによってpHが調整されたものを用いてもよい。アルコール類としては、例えば、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、オクタノール、グリセリン、1,3-ブチレングリコール、プロピレングリコール、ソルビトール等の炭素数1~6の一価アルコールまたは多価アルコールが挙げられる。これらの中でも一価アルコールが好ましく、特にエタノールが好ましい。
特に、アルコール類の含有率を5質量%以上かつ20質量%以下とした場合には、酸化ケイ素被覆酸化亜鉛の水系組成物における分散性及び経時安定性を向上させることができるので好ましい。
また、本発明の酸化ケイ素被覆酸化亜鉛を有効に利用するために、カルボキシビニルポリマーを用いる場合、本発明の酸化ケイ素被覆酸化亜鉛含有水系組成物におけるカルボキシビニルポリマーの含有量は、0.5質量%以上2.5質量%以下、1.0質量%以上2.0質量%以下、または1.3質量%以上1.7質量%以下でもよい。
この水溶性高分子は、分散剤及び粘度調整剤としての役割を有するとともに、水系組成物に添加することによって、酸化ケイ素被覆酸化亜鉛の酸化ケイ素被覆酸化亜鉛含有水系組成物中における分散性及び経時安定性も向上させるという役割も有する。
ここで、酸化ケイ素被覆酸化亜鉛含有水系組成物が水溶性高分子を含む場合のアルコール類の含有率を5質量%以上かつ20質量%以下とした。その理由は、以下の通りである。すなわち、アルコール類の含有率が5質量%未満の場合、水溶性高分子の種類によっては、アルコール類の含有量が少なすぎてしまうために、水溶性高分子がアルコール類に均一に浸潤できずに水分にて不均一に膨潤することとなる。その結果、酸化ケイ素被覆酸化亜鉛の分散性が低下して取扱いが困難となり、さらには酸化ケイ素被覆酸化亜鉛含有水系組成物の経時安定性が低下するので、好ましくないからである。また、含有率が20質量%を超えると、酸化ケイ素被覆酸化亜鉛含有水系組成物全体の粘性が高くなる。その結果、酸化ケイ素被覆酸化亜鉛の分散安定性が低下するとともに、酸化ケイ素被覆酸化亜鉛含有水系組成物の経時安定性も低下するので、好ましくないからである。
水の量を上記範囲で調整することにより、単独で用いても、あるいは化粧料に混合しても、肌に塗り広げて塗布した場合に透明性を充分に確保することができる酸化ケイ素被覆酸化亜鉛含有水系組成物が得られる。
本実施形態の化粧料の一例は、本実施形態の酸化ケイ素被覆酸化亜鉛または本実施形態の酸化ケイ素被覆酸化亜鉛含有組成物を含有してなる。
本実施形態の化粧料の他の例は、化粧品原料基剤と、化粧品原料基剤に分散される、本実施形態の酸化ケイ素被覆酸化亜鉛または本実施形態の酸化ケイ素被覆酸化亜鉛含有組成物を含有してなる。
ここで、化粧品基剤原料とは、化粧品の本体を形成する諸原料を意味し、油性原料、水性原料、界面活性剤、粉体原料等が挙げられる。
油性原料としては、例えば、油脂、高級脂肪酸、高級アルコール、エステル油類等が挙げられる。
水性原料としては、精製水、アルコール、増粘剤等が挙げられる。
粉末原料としては、有色顔料、白色顔料、パール剤、体質顔料等が挙げられる。
本実施形態の化粧料は、例えば、本実施形態の酸化ケイ素被覆酸化亜鉛または酸化ケイ素被覆酸化亜鉛含有組成物を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等の化粧品原料基剤に、従来通りに配合することにより得られる。
また、本実施形態の酸化ケイ素被覆酸化亜鉛または酸化ケイ素被覆酸化亜鉛含有組成物を油相または水相に配合して、O/W型またはW/O型のエマルションとしてから、化粧品原料基剤と配合してもよい。
化粧料における酸化ケイ素被覆酸化亜鉛の含有量は所望の特性に応じて適宜調整すればよく、例えば、酸化ケイ素被覆酸化亜鉛の含有量の下限は、0.01質量%以上であってもよく、0.1質量%以上であってもよく、1質量%以上であってもよい。また、酸化ケイ素被覆酸化亜鉛の含有量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよい。化粧料における酸化ケイ素被覆酸化亜鉛の含有量の上限値および下限値は、任意に組み合わせることができる。
また、本発明の酸化ケイ素被覆酸化亜鉛を有効に利用するために、本発明の化粧品は、例えば、本発明の酸化ケイ素被覆酸化亜鉛と化粧品原料基剤とを含み、化粧品原料基剤がカルボキシビニルポリマーと水系溶媒を含み、酸化ケイ素被覆酸化亜鉛の含有率が0.5質量%以上20質量%以下、好ましく2質量%以上8質量%以下、より好ましく3質量%以上7質量%以下であり、カルボキシビニルポリマーの含有率が0.1質量%以上10質量%以下、好ましく0.5質量%以上5質量%以下、より好ましく1質量%以上2.5質量%以下であり、前記水系溶媒のpHが6.5以上9以下、好ましく7以上8.5以下、よりこのましく7以上8以下である。
以下、日焼け止め化粧料について具体的に説明する。
疎水性分散媒としては、例えば、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等の炭化水素油、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等のエステル油、デカメチルシクロペンタシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン油、ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等の高級アルコール等が挙げられる。
有機系紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、ベンゾイルメタン系紫外線吸収剤、安息香酸系紫外線吸収剤、アントラニル酸系紫外線吸収剤、サリチル酸系紫外線吸収剤、ケイ皮酸系紫外線吸収剤、シリコーン系ケイ皮酸紫外線吸収剤、これら以外の有機系紫外線吸収剤等が挙げられる。
ベンゾイルメタン系紫外線吸収剤としては、例えば、ジベンザラジン、ジアニソイルメタン、4-tert-ブチル-4’-メトキシジベンゾイルメタン、1-(4’-イソプロピルフェニル)-3-フェニルプロパン-1,3-ジオン、5-(3,3’-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等が挙げられる。
アントラニル酸系紫外線吸収剤としては、例えば、ホモメンチル-N-アセチルアントラニレート等が挙げられる。
サリチル酸系紫外線吸収剤としては、例えば、アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-2-プロパノールフェニルサリシレート等が挙げられる。
「酸化ケイ素被覆酸化亜鉛」
酸化亜鉛粒子(平均粒子径35nm;住友大阪セメント社製)と水を混合し、次いで、超音波分散を行い、酸化亜鉛粒子の含有率が20質量%の酸化亜鉛水系懸濁液を調製した。
次いで、この酸化亜鉛水系懸濁液を、酸化亜鉛水系懸濁液中の酸化亜鉛粒子の質量に対して、酸化ケイ素換算で20質量%のケイ酸ソーダを含むケイ酸ソーダ水溶液に加え、撹拌し、懸濁液とした。
次いで、この懸濁液を遠心分離機により固液分離し、得られた固形物を、フィルタープレスを用いて水にて洗浄した。その後、この固形物を150℃にて乾燥し、さらに、500℃にて1時間、熱処理(焼成)を行った。
次いで、この懸濁液を60℃に加温し、この懸濁液を撹拌しながらアンモニア水及び水を添加して、pHを10~11に調整した。なお、水の添加量は、後に添加するテトラエトキシシラン2-プロパノール溶液中のテトラエトキシシランに対して120質量%となるようにした。
反応終了後、この懸濁液を遠心分離機により固液分離し、得られた固形物を150℃にて乾燥した。次いで、この乾燥物を500℃にて3時間、熱処理(焼成)を行い、実施例1の酸化ケイ素被覆酸化亜鉛を作製した。
また、実施例1の酸化ケイ素被覆酸化亜鉛を、固体29Siを用いたMAS-核磁気共鳴(NMR)分光法によりNMRスペクトルを測定し、このNMRスペクトルのピーク面積比から、Q0、Q1、Q2、Q3、Q4それぞれの環境に帰属されるシグナルの面積比Q0、Q1、Q2、Q3、Q4を算出した。
実施例1の酸化ケイ素被覆酸化亜鉛を構成する酸化ケイ素被膜中のケイ素のQ3環境における存在比をQ3とし、Q4環境における存在比をQ4とし、Q3+Q4の値と、Q4/(Q3+Q4)の値を算出した。その結果、Q3+Q4≧0.6であり、Q4/(Q3+Q4)≧0.5であった。
カルボマー(商品名:Ultrez10、日光ケミカルズ社製)1.5gを純水に溶解し、次いで、10質量%水酸化ナトリウム水溶液を滴下してpHを調整し、カルボマーを1.5質量%含有し、pHが7.5のカルボマー水溶液を調製した。
次いで、このカルボマー水溶液と、実施例1の酸化ケイ素被覆酸化亜鉛とを、95:5の質量比にて混合した後、撹拌して、実施例1の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛」
酸化亜鉛粒子(平均粒子径35nm;住友大阪セメント社製)と水を混合し、次いで、超音波分散を行い、酸化亜鉛粒子の含有率が20質量%の酸化亜鉛水系懸濁液を調製した。
次いで、この酸化亜鉛水系懸濁液を、酸化亜鉛水系懸濁液中の酸化亜鉛粒子の質量に対して、酸化ケイ素換算で20質量%のケイ酸ソーダを含むケイ酸ソーダ水溶液に加え、撹拌し、懸濁液とした。
次いで、この固形物中の酸化亜鉛粒子の質量と同質量の塩化カルシウム水溶液(塩化カルシウム2水和物25質量%)を加えて撹拌し、さらに、2時間静置した。その後、この懸濁液を遠心分離機により固液分離し、得られた固形物を、フィルタープレスを用いて水にて再度洗浄した。その後、この固形物を150℃にて乾燥し、さらに、500℃にて1時間、熱処理(焼成)を行った。
次いで、この懸濁液を60℃に加温し、この懸濁液を撹拌しながらアンモニア水及び水を添加して、pHを10~11に調整した。なお、水の添加量は、後に添加するテトラエトキシシラン2-プロパノール溶液中のテトラエトキシシランに対して120質量%となるようにした。
反応終了後、この懸濁液を遠心分離機により固液分離し、得られた固形物を150℃にて乾燥した。次いで、この乾燥物を500℃にて3時間、熱処理(焼成)を行い、実施例2の酸化ケイ素被覆酸化亜鉛を作製した。
また、実施例1と同様にして、実施例2の酸化ケイ素被覆酸化亜鉛を構成する酸化ケイ素被膜中のケイ素のQ3環境における存在比をQ3とし、Q4環境における存在比をQ4とし、Q3+Q4の値と、Q4/(Q3+Q4)の値を算出した。その結果、Q3+Q4≧0.6であり、Q4/(Q3+Q4)≧0.5であった。
実施例1の酸化ケイ素被覆酸化亜鉛を用いる替わりに、実施例2の酸化ケイ素被覆酸化亜鉛を用いた以外は実施例1と同様にして、実施例2の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛」
酸化亜鉛粒子(平均粒子径250nm;住友大阪セメント社製)と水を混合し、次いで、超音波分散を行い、酸化亜鉛粒子の含有率が50質量%の酸化亜鉛水系懸濁液を調製した。
次いで、この酸化亜鉛水系懸濁液を、酸化亜鉛水系懸濁液中の酸化亜鉛粒子の質量に対して、酸化ケイ素換算で17.7質量%(酸化ケイ素被覆酸化亜鉛中の酸化ケイ素が15質量%)のケイ酸ソーダを含むケイ酸ソーダ水溶液に加え、撹拌し、懸濁液とした。
次いで、この懸濁液を遠心分離機により固液分離した。得られた固形物を水に懸濁し、10分間攪拌した後、遠心分離機により固液分離した。この水に懸濁し洗浄する工程を合計5回行った。
次いで、この固形物を150℃にて乾燥し、さらに、500℃にて3時間、熱処理(焼成)を行い、実施例3の酸化ケイ素被覆酸化亜鉛を作製した。
また、実施例1と同様にして、実施例3の酸化ケイ素被覆酸化亜鉛を構成する酸化ケイ素被膜中のケイ素のQ3環境における存在比をQ3とし、Q4環境における存在比をQ4とし、Q3+Q4の値と、Q4/(Q3+Q4)の値を算出した。その結果、Q3+Q4≧0.6であり、Q4/(Q3+Q4)<0.5であった。
実施例1の酸化ケイ素被覆酸化亜鉛を用いる替わりに、実施例3の酸化ケイ素被覆酸化亜鉛を用いた以外は実施例1と同様にして、実施例3の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛」
実施例3において、固形物を水に懸濁し洗浄する工程を合計8回行った以外は実施例3と同様にして、実施例4の酸化ケイ素被覆酸化亜鉛を作製した。
原子吸光分析により、実施例4の酸化ケイ素被覆酸化亜鉛のNaとCaの含有量を測定した結果、Naは0.11質量%、Caは0.13質量%であった。
また、実施例1と同様にして、実施例3の酸化ケイ素被覆酸化亜鉛を構成する酸化ケイ素被膜中のケイ素のQ3環境における存在比をQ3とし、Q4環境における存在比をQ4とし、Q3+Q4の値と、Q4/(Q3+Q4)の値を算出した。その結果、Q3+Q4≧0.6であり、Q4/(Q3+Q4)<0.5であった。
実施例1の酸化ケイ素被覆酸化亜鉛を用いる替わりに、実施例4の酸化ケイ素被覆酸化亜鉛を用いた以外は実施例1と同様にして、実施例4の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛」
実施例3において、固形物を水に懸濁し洗浄する工程を合計4回行った以外は実施例3と同様にして、比較例1の酸化ケイ素被覆酸化亜鉛を作製した。
実施例1と同様にして、比較例1の酸化ケイ素被覆酸化亜鉛を構成する酸化ケイ素被膜中のケイ素のQ3環境における存在比をQ3とし、Q4環境における存在比をQ4とし、Q3+Q4の値と、Q4/(Q3+Q4)の値を算出した。その結果、Q3+Q4≧0.6であり、Q4/(Q3+Q4)<0.5であった。
実施例1の酸化ケイ素被覆酸化亜鉛を用いる替わりに、比較例1の酸化ケイ素被覆酸化亜鉛を用いた以外は実施例1と同様にして、比較例1の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛」
酸化亜鉛粒子(平均粒子径35nm;住友大阪セメント社製)と水を混合し、次いで、超音波分散し、酸化亜鉛粒子の含有率が50g/L(5質量%)の酸化亜鉛水系懸濁液を調製した。
次いで、この懸濁液を80℃に加温し、この懸濁液を撹拌しながら、酸化亜鉛水系懸濁液中の酸化亜鉛粒子の質量に対して、酸化ケイ素換算で10質量%のケイ酸ソーダを含むように、ケイ酸ソーダ水溶液を加え、10分間熟成した。
次いで、この懸濁液を撹拌しながら、60分かけて希硫酸を添加して、pHを6.5に調整し、30分間熟成した。
次いで、この懸濁液を撹拌しながら、10分かけて希硫酸を添加して、pHを7.0に調整し、30分間熟成した。
次いで、この懸濁液を遠心分離機により固液分離し、水にて洗浄し、得られた固形物を130℃にて5時間、加熱乾燥した。
次いで、この乾燥物を、ジェットミルを用いて粉砕し、比較例2の酸化ケイ素被覆酸化亜鉛を作製した。
実施例1の酸化ケイ素被覆酸化亜鉛を用いる替わりに、比較例2の酸化ケイ素被覆酸化亜鉛を用いた以外は実施例1と同様にして、比較例2の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛」
比較例3の酸化ケイ素被覆酸化亜鉛として、市販品の酸化ケイ素被覆酸化亜鉛(商品名:SIH20-ZnO650、平均粒子径25nm、SiO2/ZnO=17質量%、住友大阪セメント社製)を用いた。
実施例1の酸化ケイ素被覆酸化亜鉛を用いる替わりに、比較例3の酸化ケイ素被覆酸化亜鉛を用いた以外は実施例1と同様にして、比較例3の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛」
比較例4の酸化ケイ素被覆酸化亜鉛として、市販品の酸化ケイ素被覆酸化亜鉛(商品名:SIH5-ZnO650、平均粒子径25nm、SiO2/ZnO=4.77質量%、住友大阪セメント社製)を用いた。
実施例1の酸化ケイ素被覆酸化亜鉛を用いる替わりに、比較例4の酸化ケイ素被覆酸化亜鉛を用いた以外は実施例1と同様にして、比較例4の酸化ケイ素被覆酸化亜鉛含有組成物を得た。
「酸化ケイ素被覆酸化亜鉛の懸濁水導電率の評価」
実施例1~4及び比較例1~4の酸化ケイ素被覆酸化亜鉛10gを純水90gに投入し、攪拌しながら10分間煮沸し、25℃まで放冷した後、蒸発したのと同量の純水を追加して、酸化ケイ素被覆酸化亜鉛を10質量%含有する懸濁水を調製した。
この懸濁水の導電率を、導電率計(商品名:パーソナルSCメータSC72、横河電機社製)を用いて測定した。結果を表1に示す。
実施例1~4及び比較例1~4の酸化ケイ素被覆酸化亜鉛含有組成物の粘度を、BII型回転粘度計(東機産業社製)を用いて、20℃、30rpmの条件下で測定した。
また、実施例1~4及び比較例1の酸化ケイ素被覆酸化亜鉛含有組成物から所定量を採取し、この採取した試料を恒温槽にて40℃に保持し、所定の時間毎に20℃、30rpmの条件下で粘度を測定した。結果を図1に示す。また、40℃に保持するのを開始してから300時間までの酸化ケイ素被覆酸化亜鉛含有組成の粘度が5Pa・s以上であった場合を○、40℃に保持するのを開始してから300時間までの酸化ケイ素被覆酸化亜鉛含有組成の粘度が5Pa・s未満であった場合を×と評価した。結果を表1に示す。なお、比較例2、比較例3及び比較例4の酸化ケイ素被覆酸化亜鉛含有組成物は、混合直後に粘度が3Pa・s以下に低下したため、40℃に保持して、所定時間毎に粘度を測定する試験を行わなかった。
なお、実施例1の試料を、恒温槽にて40℃に780時間保持したあとのpHを20℃で測定したところ、8.9であった。
また、実施例3の試料を、恒温槽にて40℃に780時間保持したあとのpHを20℃で測定したところ、9.2であった。
一方、比較例1~4の酸化ケイ素被覆酸化亜鉛は、懸濁水導電率が185μS/cm以上であることが分かった。
一方、比較例1~4の酸化ケイ素被覆酸化亜鉛含有組成物は、40℃に保持するのを開始してから300時間までの酸化ケイ素被覆酸化亜鉛含有組成の粘度が5Pa・s未満であることが分かった。
実施例3の酸化ケイ素被覆酸化亜鉛を、電離放射型電子顕微鏡(FE-TEM)JEM-2100F(日本電子社製)を用いて、観察した。観察された顕微鏡像を図2に示す。
図2より、酸化ケイ素被膜が、酸化亜鉛粒子をだいたい均一に被覆しており、酸化ケイ素被膜の均質性が高いことが確認された。
Claims (9)
- 酸化亜鉛粒子と、前記酸化亜鉛粒子の表面における酸化ケイ素被膜と、を含む酸化ケイ素被覆酸化亜鉛であって、
懸濁水導電率が120μS/cm以下であることを特徴とする酸化ケイ素被覆酸化亜鉛。 - Mg、Ca及びBaからなる群から選択される少なくとも1種を含有してなることを特徴とする請求項1記載の酸化ケイ素被覆酸化亜鉛。
- 前記Mg、Ca及びBaの合計の質量百分率は、アルカリ金属の合計の質量百分率より大であることを特徴とする請求項2記載の酸化ケイ素被覆酸化亜鉛。
- 前記アルカリ金属の合計の質量百分率は、0.2質量%以下であることを特徴とする請求項3に記載の酸化ケイ素被覆酸化亜鉛。
- 前記アルカリ金属の合計の質量百分率は、0.0001質量%以上0.2質量%以下であり、
前記Mg、Ca及びBaの合計の質量百分率は、0.01質量%以上1質量%以下であることを特徴とする請求項3に記載の酸化ケイ素被覆酸化亜鉛。 - 請求項1~5のいずれか1項に記載の酸化ケイ素被覆酸化亜鉛を含有してなることを特徴とする酸化ケイ素被覆酸化亜鉛含有組成物。
- カルボキシビニルポリマーをさらに含有し、
粘度が5Pa・s以上であることを特徴とする請求項6に記載の酸化ケイ素被覆酸化亜鉛含有組成物。 - 請求項6または7に記載の酸化ケイ素被覆酸化亜鉛含有組成物を含むことを特徴とする化粧料。
- 請求項1~5のいずれか1項に記載の酸化ケイ素被覆酸化亜鉛と、
化粧品原料基剤と
を含むことを特徴とする化粧料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177025047A KR102475505B1 (ko) | 2015-02-27 | 2016-02-24 | 산화 규소 피복 산화 아연, 산화 규소 피복 산화 아연 함유 조성물, 화장료 |
CN201680012447.8A CN107250046B (zh) | 2015-02-27 | 2016-02-24 | 氧化硅包覆氧化锌、含有氧化硅包覆氧化锌的组合物及化妆料 |
EP16755541.6A EP3263525B1 (en) | 2015-02-27 | 2016-02-24 | Silicon oxide-coated zinc oxide, silicon oxide-coated zinc oxide-containing composition, and cosmetic product |
JP2017502417A JP6859949B2 (ja) | 2015-02-27 | 2016-02-24 | 酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料 |
US15/553,146 US20180161255A1 (en) | 2015-02-27 | 2016-02-24 | Silicon oxide-coated zinc oxide, composition containing silicon oxide-coated zinc oxide, and cosmetic product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015038674 | 2015-02-27 | ||
JP2015-038674 | 2015-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016136797A1 true WO2016136797A1 (ja) | 2016-09-01 |
Family
ID=56789010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/055405 WO2016136797A1 (ja) | 2015-02-27 | 2016-02-24 | 酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180161255A1 (ja) |
EP (1) | EP3263525B1 (ja) |
JP (1) | JP6859949B2 (ja) |
KR (1) | KR102475505B1 (ja) |
CN (1) | CN107250046B (ja) |
WO (1) | WO2016136797A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170122207A (ko) * | 2015-02-27 | 2017-11-03 | 스미토모 오사카 세멘토 가부시키가이샤 | 산화 규소 피복 산화 아연, 산화 규소 피복 산화 아연 함유 조성물, 화장료 |
WO2019026907A1 (ja) * | 2017-08-01 | 2019-02-07 | 住友大阪セメント株式会社 | 表面処理酸化亜鉛粒子の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230263708A1 (en) * | 2020-04-30 | 2023-08-24 | Sumitomo Osaka Cement Co., Ltd. | Surface-modified zinc oxide particles, dispersion solution, and cosmetic |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130021A (ja) * | 1996-08-13 | 1998-05-19 | Tioxide Specialties Ltd | 酸化亜鉛分散系 |
JPH11302015A (ja) * | 1998-02-20 | 1999-11-02 | Sakai Chem Ind Co Ltd | 表面活性を抑制した酸化亜鉛粒子組成物、その製造方法及びその組成物を含有する化粧料 |
JP2002087817A (ja) * | 2000-09-12 | 2002-03-27 | Sumitomo Osaka Cement Co Ltd | 複合酸化亜鉛分散体 |
JP2009280547A (ja) * | 2008-05-26 | 2009-12-03 | Gunma Univ | 複合体及びその製造方法並びに化粧品材料 |
JP2011102291A (ja) * | 2009-10-15 | 2011-05-26 | Sakai Chem Ind Co Ltd | 被覆酸化亜鉛粒子、水系組成物及び化粧料 |
JP2013006375A (ja) * | 2011-06-27 | 2013-01-10 | Mitsubishi Plastics Inc | 積層ポリエステルフィルム |
WO2015072499A1 (ja) * | 2013-11-13 | 2015-05-21 | 住友大阪セメント株式会社 | 酸化ケイ素被覆酸化亜鉛とその製造方法及び酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2851885B2 (ja) * | 1989-12-12 | 1999-01-27 | 住友大阪セメント株式会社 | 酸化亜鉛および化粧料 |
AU735388B2 (en) * | 1997-04-18 | 2001-07-05 | Showa Denko Kabushiki Kaisha | Cosmetics, silica-coated metal oxide powder and production method therefor |
JP3848458B2 (ja) | 1998-03-12 | 2006-11-22 | 日本電工株式会社 | 紫外線遮断剤の製造方法 |
JP4111701B2 (ja) * | 2001-10-01 | 2008-07-02 | 触媒化成工業株式会社 | 改質酸化チタン粒子 |
WO2003074012A1 (fr) * | 2002-03-07 | 2003-09-12 | Shiseido Co., Ltd. | Poudre composite, produit cosmetique contenant cette poudre et procede de production de la poudre composite |
CN1290911C (zh) * | 2002-06-05 | 2006-12-20 | 昭和电工株式会社 | 包含涂有二氧化硅的氧化锌的粉末,含有该粉末的有机聚合物组合物及其成型制品 |
JP4836232B2 (ja) | 2005-07-07 | 2011-12-14 | テイカ株式会社 | シリカ被覆微粒子酸化チタンまたはシリカ被覆微粒子酸化亜鉛の製造方法 |
JP5137503B2 (ja) * | 2006-09-15 | 2013-02-06 | 株式会社日本触媒 | 化粧料用紫外線カット剤およびそれを用いた化粧料 |
JP5872825B2 (ja) * | 2011-09-12 | 2016-03-01 | 大東化成工業株式会社 | 金属酸化物・酸化亜鉛固溶体粒子の製造方法、球状粉体の製造方法、被覆球状粉体の製造方法及び化粧料の製造方法 |
WO2014171322A1 (ja) * | 2013-04-19 | 2014-10-23 | 住友大阪セメント株式会社 | 酸化ケイ素被覆酸化亜鉛とその製造方法及び酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料 |
CN107250046B (zh) | 2015-02-27 | 2020-03-27 | 住友大阪水泥股份有限公司 | 氧化硅包覆氧化锌、含有氧化硅包覆氧化锌的组合物及化妆料 |
-
2016
- 2016-02-24 CN CN201680012447.8A patent/CN107250046B/zh active Active
- 2016-02-24 US US15/553,146 patent/US20180161255A1/en not_active Abandoned
- 2016-02-24 JP JP2017502417A patent/JP6859949B2/ja active Active
- 2016-02-24 KR KR1020177025047A patent/KR102475505B1/ko active IP Right Grant
- 2016-02-24 EP EP16755541.6A patent/EP3263525B1/en active Active
- 2016-02-24 WO PCT/JP2016/055405 patent/WO2016136797A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130021A (ja) * | 1996-08-13 | 1998-05-19 | Tioxide Specialties Ltd | 酸化亜鉛分散系 |
JPH11302015A (ja) * | 1998-02-20 | 1999-11-02 | Sakai Chem Ind Co Ltd | 表面活性を抑制した酸化亜鉛粒子組成物、その製造方法及びその組成物を含有する化粧料 |
JP2002087817A (ja) * | 2000-09-12 | 2002-03-27 | Sumitomo Osaka Cement Co Ltd | 複合酸化亜鉛分散体 |
JP2009280547A (ja) * | 2008-05-26 | 2009-12-03 | Gunma Univ | 複合体及びその製造方法並びに化粧品材料 |
JP2011102291A (ja) * | 2009-10-15 | 2011-05-26 | Sakai Chem Ind Co Ltd | 被覆酸化亜鉛粒子、水系組成物及び化粧料 |
JP2013006375A (ja) * | 2011-06-27 | 2013-01-10 | Mitsubishi Plastics Inc | 積層ポリエステルフィルム |
WO2015072499A1 (ja) * | 2013-11-13 | 2015-05-21 | 住友大阪セメント株式会社 | 酸化ケイ素被覆酸化亜鉛とその製造方法及び酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3263525A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170122207A (ko) * | 2015-02-27 | 2017-11-03 | 스미토모 오사카 세멘토 가부시키가이샤 | 산화 규소 피복 산화 아연, 산화 규소 피복 산화 아연 함유 조성물, 화장료 |
KR102475505B1 (ko) | 2015-02-27 | 2022-12-07 | 스미토모 오사카 세멘토 가부시키가이샤 | 산화 규소 피복 산화 아연, 산화 규소 피복 산화 아연 함유 조성물, 화장료 |
WO2019026907A1 (ja) * | 2017-08-01 | 2019-02-07 | 住友大阪セメント株式会社 | 表面処理酸化亜鉛粒子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180161255A1 (en) | 2018-06-14 |
JPWO2016136797A1 (ja) | 2017-12-07 |
CN107250046B (zh) | 2020-03-27 |
CN107250046A (zh) | 2017-10-13 |
EP3263525A4 (en) | 2018-08-15 |
EP3263525A1 (en) | 2018-01-03 |
EP3263525B1 (en) | 2021-03-31 |
KR20170122207A (ko) | 2017-11-03 |
KR102475505B1 (ko) | 2022-12-07 |
JP6859949B2 (ja) | 2021-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2995590B1 (en) | Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated-zinc-oxide-containing composition, and cosmetic | |
KR102176830B1 (ko) | 산화규소 피복 산화아연과 그 제조 방법 및 산화규소 피복 산화아연 함유 조성물 및 화장료 | |
KR102414297B1 (ko) | 산화 규소 피복 산화 아연과 그 제조 방법 및 산화 규소 피복 산화 아연 함유 조성물과 화장료 | |
EP3252011A1 (en) | Zinc oxide powder, dispersion, paint, cosmetic | |
EP3127869B1 (en) | Silicon oxide-coated zinc oxide, method for producing same, and composition and cosmetic including silicon oxide-coated zinc oxide | |
WO2016136797A1 (ja) | 酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料 | |
JP6349873B2 (ja) | 酸化ケイ素被覆酸化亜鉛とその製造方法及び酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料 | |
JP6349877B2 (ja) | 酸化ケイ素被覆酸化亜鉛とその製造方法及び酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料 | |
JP6349876B2 (ja) | 酸化ケイ素被覆酸化亜鉛とその製造方法及び酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料 | |
JP6349875B2 (ja) | 酸化ケイ素被覆酸化亜鉛とその製造方法及び酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料 | |
JP2000344509A (ja) | チタンシリカ複合体及びそれを配合した化粧料 | |
JP2019064936A (ja) | 酸化ケイ素被覆酸化亜鉛粒子含有水系組成物、化粧料 | |
JP2018111690A (ja) | 酸化ケイ素被覆紫外線遮蔽粒子、酸化ケイ素被覆紫外線遮蔽粒子含有水系組成物、化粧料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16755541 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017502417 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016755541 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15553146 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177025047 Country of ref document: KR Kind code of ref document: A |