WO2016136314A1 - Production method of composite metal oxide polishing material, and composite metal oxide polishing material - Google Patents

Production method of composite metal oxide polishing material, and composite metal oxide polishing material Download PDF

Info

Publication number
WO2016136314A1
WO2016136314A1 PCT/JP2016/050881 JP2016050881W WO2016136314A1 WO 2016136314 A1 WO2016136314 A1 WO 2016136314A1 JP 2016050881 W JP2016050881 W JP 2016050881W WO 2016136314 A1 WO2016136314 A1 WO 2016136314A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing material
metal oxide
zirconium
composite metal
Prior art date
Application number
PCT/JP2016/050881
Other languages
French (fr)
Japanese (ja)
Inventor
寿夫 小泉
啓治 小野
高橋 直人
大樹 橋本
加藤 良一
務 山本
勝 見上
瑞穂 和田
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Publication of WO2016136314A1 publication Critical patent/WO2016136314A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to a method for producing a composite metal oxide polishing material and a composite metal oxide polishing material.
  • Cerium oxide-based abrasives are used for polishing precision optical glass products that require high transparency and accuracy, such as lenses and prisms. This abrasive is produced by firing and pulverizing minerals rich in so-called rare earths (rare earths).
  • Patent Literature 1 discloses that a perovskite oxide is suitable as an abrasive
  • Patent Literature 2 discloses an iron-based perovskite-type abrasive
  • Patent Literature 3 discloses.
  • a zirconium-based perovskite-type abrasive is disclosed.
  • the abrasive described in Patent Document 2 is manufactured by spray pyrolysis, and requires special equipment and a great deal of time for manufacturing, so it is not suitable for mass production and uses rare metals such as nickel and cobalt. Therefore, there are problems such as concern about supply insecurity similar to cerium oxide.
  • the abrasive described in Patent Document 3 is also manufactured by spray pyrolysis, and is not suitable for mass production.
  • the inventor of the present invention is a method for producing a cerium-free polishing material at a low cost without introducing a special equipment with a simple manufacturing process, and polishing by mixing and baking a strontium compound and a zirconium compound.
  • a method for obtaining a material has been found, and among the polishing materials obtained by this method, those using zirconium oxide as a raw material zirconium compound have already been found to be remarkably excellent in polishing rate.
  • zirconium oxide is usually produced by firing and pulverizing zirconium hydroxide, there is room for improvement to further reduce production costs and improve production efficiency by omitting this firing and pulverization step. was there.
  • the present invention provides a polishing material that has a good polishing rate in a cerium-free polishing material and that can realize reduction in manufacturing cost and improvement in manufacturing efficiency, and the polishing material in a simple manner.
  • An object of the present invention is to provide a production method for obtaining the above.
  • the present inventor has been diligently studying in order to solve the above-mentioned problems.
  • polishing materials obtained by mixing and baking a strontium compound and a zirconium compound polishing using a zirconium compound other than zirconium oxide as a raw material. Focusing on the fact that the polishing rate of the material is not good, we have newly found that this factor is the content of the sulfur compound contained in the raw zirconium compound.
  • zirconium compounds such as zirconium hydroxide and zirconium carbonate often use substances containing sulfate ions such as sulfuric acid, ammonium sulfate, sodium sulfate, and potassium sulfate at the time of synthesis.
  • the zirconium compound obtained by the usual synthesis method contains a sulfur compound
  • the present inventor has found that the content of this sulfur compound affects the polishing rate of the polishing material after mixing and firing with the strontium compound. I found a new thing.
  • the cause is not certain, for example, it is estimated as one of the causes that the crystallinity of the obtained zirconium compound varies depending on the amount of sulfur compound added when the zirconium compound is produced.
  • the present invention is a method for producing a composite metal oxide polishing material comprising a mixing step of mixing a strontium compound and a zirconium compound, and a firing step of firing the mixture obtained by the mixing step,
  • the SO 3 equivalent of the sulfur compound contained in the zirconium compound is 2.0 parts by weight or less with respect to 100 parts by weight of the zirconium compound in terms of ZrO 2 .
  • the strontium compound in the mixing step is preferably at least one selected from the group consisting of strontium carbonate and strontium hydroxide. Since strontium carbonate and strontium hydroxide easily react with the zirconium compound to easily produce strontium zirconate (SrZrO 3 ), productivity is further improved.
  • the zirconium compound in the mixing step is preferably at least one selected from the group consisting of zirconium carbonate and zirconium hydroxide. Since zirconium carbonate and zirconium hydroxide have high reactivity with the strontium compound, a polishing material with better polishing characteristics can be provided. Moreover, if these are used, reduction of manufacturing cost and improvement of manufacturing efficiency can be realized more.
  • the firing temperature in the firing step is preferably more than 800 ° C. and 1500 ° C. or less. When the firing temperature is within this range, a polishing material with better polishing characteristics can be provided.
  • the present invention also provides a composite metal oxide polishing material comprising:
  • the SO 3 equivalent of the sulfur compound contained in the composite metal oxide polishing material is 1.2 parts by weight or less with respect to 100 parts by weight of the zirconium compound equivalent to ZrO 2 contained in the composite metal oxide polishing material. It is also a composite metal oxide polishing material.
  • a polishing material having a good polishing rate in a cerium-free polishing material can be efficiently produced. Since the production method of the present invention is performed by a solid phase reaction method, the production process is simpler than that of the spray pyrolysis method, and the production can be performed at a low cost without introducing special equipment. In addition, the composite metal oxide polishing material of the present invention can exhibit a good polishing rate, and can sufficiently cope with the recent shortage of rare earth supply, and thus can be said to be an extremely advantageous material industrially.
  • FIG. 1-1 is a graph showing the results of differential heat measurement for each zirconium compound used in Example 1 and Comparative Example 1.
  • 1-2 is a graph showing the results of thermogravimetric measurement for each zirconium compound used in Example 1 and Comparative Example 1.
  • FIG. 2-1 is a graph showing the results of differential heat measurement for each mixed powder (dried product of the mixture) according to Example 1 and Comparative Example 1.
  • FIG. 2-2 is a graph showing the results of thermogravimetric measurements on the mixed powders (dried mixture) according to Example 1 and Comparative Example 1.
  • FIG. 3 is a graph showing the relationship of zeta potential to pH for each abrasive slurry used in the Reference Example or Comparative Reference Example.
  • the method for producing a composite metal oxide polishing material of the present invention includes a mixing step of mixing a strontium compound and a zirconium compound, and a baking for baking the mixture obtained by the mixing step. Process. Therefore, the composite metal oxide polishing material can achieve a high polishing rate. As can be seen from the raw materials used, the production method of the present invention is performed by a solid phase reaction method. Therefore, the manufacturing process is simpler than that of the spray pyrolysis method, and manufacturing at a low cost is possible without introducing special equipment.
  • strontium compound one of the raw materials in the production method of the present invention.
  • the strontium compound is not particularly limited as long as it is a compound containing a strontium atom, but among them, at least one selected from the group consisting of strontium carbonate and strontium hydroxide is preferable.
  • Strontium carbonate and strontium hydroxide easily react with the zirconium compound to easily produce strontium zirconate (SrZrO 3 ).
  • zirconium compound as a raw material
  • SO 3 equivalent amount of sulfur compounds contained in this respect in terms of ZrO 2 per 100 parts by weight of said zirconium compound, using 2.0 or less part by weight compound.
  • the sulfur compound content (SO 3 equivalent) is preferably 1.5 parts by weight or less, more preferably 1.1 parts by weight or less, and even more preferably 0.5 parts by weight or less.
  • the zirconium compound is not particularly limited as long as it is a compound containing a zirconium atom, but among them, zirconium oxide, zirconium carbonate, and zirconium hydroxide are preferable. These can provide a polishing material having high reactivity with a strontium compound and better polishing characteristics. Among them, it is preferable to use a zirconium compound other than zirconium oxide, whereby the firing and pulverization steps during the synthesis of zirconium oxide can be omitted, and the manufacturing cost can be reduced and the manufacturing efficiency can be improved. That is, it is preferably at least one selected from the group consisting of zirconium carbonate and zirconium hydroxide.
  • the zirconium compound preferably has a specific surface area of 0.1 to 250 m 2 / g.
  • a specific surface area is within this range, a moderately crystalline SrZrO 3 phase is easily generated efficiently.
  • the specific surface area of the zirconium compound is 0.1 m 2 / g or more, the reactivity with the strontium compound is further increased, and when it is 250 m 2 / g or less, the reaction control with the strontium compound becomes easy. Therefore, in any case, a composite metal oxide polishing material having a good polishing rate is easily obtained. More preferably, it is 0.3 to 240 m 2 / g, and still more preferably 0.5 to 230 m 2 / g.
  • the specific surface area (also referred to as SSA) means the BET specific surface area.
  • the BET specific surface area refers to a specific surface area obtained by the BET method, which is one method for measuring the specific surface area.
  • the specific surface area refers to the surface area per unit mass of a certain object.
  • the BET method is a gas adsorption method in which gas particles such as nitrogen are adsorbed on solid particles and the specific surface area is measured from the amount adsorbed.
  • the specific surface area is determined by obtaining the monomolecular adsorption amount VM by the BET equation from the relationship between the pressure P and the adsorption amount V.
  • the production method of the present invention includes a mixing step of mixing a strontium compound and a zirconium compound.
  • the mixing method is not particularly limited, and may be wet mixing or dry mixing, but wet mixing is desirable from the viewpoint of mixing properties.
  • the dispersion medium used for wet mixing is not particularly limited, and water or lower alcohol can be used, but water is preferable from the viewpoint of production cost, and ion-exchanged water is more preferable.
  • a ball mill, a paint conditioner, or a sand grinder may be used.
  • the zirconium compound can be used for the mixing step in the form of a cake obtained by synthesis.
  • a drying step may be performed as necessary.
  • the dispersion medium is removed from the slurry obtained in the mixing step and dried.
  • the method for drying the slurry is not particularly limited as long as the solvent used at the time of mixing can be removed, and examples thereof include drying under reduced pressure and drying by heating. Further, the slurry may be dried as it is, or may be dried after being filtered. Note that the dry product of the mixture may be dry-pulverized.
  • the raw material mixture obtained in the mixing step (may be a dried product obtained through a further drying step) is fired. Thereby, a composite metal oxide polishing material can be obtained.
  • the raw material mixture may be fired as it is, or may be fired after being molded into a predetermined shape (for example, a pellet shape).
  • the firing atmosphere is not particularly limited. The firing step may be performed only once or twice or more.
  • the firing temperature in the firing step may be a temperature sufficient for the reaction between the strontium compound and the zirconium compound, but is preferably more than 800 ° C. and 1500 ° C. or less. When the firing temperature exceeds 800 ° C., the reaction proceeds more sufficiently, and the zirconium compound is easily crystallized as zirconium oxide. When the firing temperature is 1500 ° C. or less, the generated strontium zirconate may be vigorously sintered. Since it is sufficiently suppressed, the polishing rate can be further increased in any case.
  • the lower limit of the firing temperature is more preferably 850 ° C. or higher. Thereby, it becomes possible to fully exhibit the effect of this invention.
  • the firing temperature in the firing step means the highest temperature reached in the firing step.
  • a raw material zirconium compound when a compound having a sulfur compound content exceeding the range set in the present invention is used, even if the firing step is performed at the same firing temperature as in the case of using the zirconium compound of the present invention. Since the resulting polishing material does not have sufficient crystallinity, a good polishing rate cannot be obtained. Further, even if the calcination temperature is further increased so that the crystallinity of the polishing material is approximately the same, a sufficient polishing rate cannot be obtained.
  • the holding time at the firing temperature may be a time sufficient for the reaction between the strontium compound and the zirconium compound. For example, it is preferably 5 minutes to 24 hours. When the holding time is within this range, the reaction proceeds more sufficiently, and when the holding time is 24 hours or less, the generated fired product (strontium zirconate) is sufficiently suppressed from being vigorously sintered.
  • the polishing rate can be further increased. More preferably, it is 7 minutes to 22 hours, and further preferably 10 minutes to 20 hours.
  • the rate of temperature rise during the temperature rise until reaching the maximum temperature (firing temperature) is 0.2 to 15 ° C./min. If the rate of temperature increase is 0.2 ° C./min or more, the time required for temperature increase does not become too long, so that waste of energy and time can be sufficiently suppressed, and if it is 15 ° C./min or less.
  • the temperature of the furnace contents can sufficiently follow the set temperature, and firing unevenness is more sufficiently suppressed. More preferably, it is 0.5 to 12 ° C./min, and further preferably 1.0 to 10 ° C./min.
  • a pulverization step may be performed as necessary.
  • the fired product obtained in the firing step is pulverized.
  • the pulverization method and pulverization conditions are not particularly limited, and for example, a ball mill, a reiki machine, a hammer mill, a jet mill, or the like may be used.
  • the composite metal oxide polishing material of the present invention includes a sulfur compound contained in the polishing material (more specifically, a sulfur compound incorporated in the crystal of the polishing material). ) In terms of SO 3 is 1.2 parts by weight or less with respect to 100 parts by weight in terms of ZrO 2 of the zirconium compound contained in the composite metal oxide polishing material. When the content of the sulfur compound is within this range, the polishing material has a very good polishing rate.
  • the content of the sulfur compound is preferably 1.0 part by weight or less, more preferably 0.8 part by weight or less, and still more preferably 0.6 part by weight or less.
  • the abrasive material is preferably obtained by the production method of the present invention described above.
  • the polishing material preferably includes a crystal phase of ZrO 2 and a crystal phase of SrZrO 3 . Since the crystal phase of ZrO 2 contained in the polishing material is responsible for the mechanical polishing action and the crystal phase of SrZrO 3 is responsible for the chemical polishing action, a better polishing rate can be exhibited.
  • the polishing material of the present invention is preferably a composite of ZrO 2 and SrZrO 3 , but this can increase the polishing rate.
  • the composite of SrZrO 3 and ZrO 2 refers to secondary particles formed by partially sintering the primary particles of SrZrO 3 and zirconium oxide. For example, when element mapping is performed on the composite by energy dispersive X-ray spectroscopy (EDS), primary particles from which Sr and Zr are detected and primary particles from which only Zr is detected form secondary particles. The situation is observed.
  • EDS energy dispersive X-ray spectroscopy
  • the polishing material preferably has a half width of a peak derived from the (040) plane of orthorhombic SrZrO 3 in X-ray diffraction using CuK ⁇ rays as a radiation source in a range of 0.1 to 3.0 °.
  • the half width is in this range, the crystallinity of SrZrO 3 that effectively exhibits the chemical polishing action is improved, and thus the chemical polishing action can be sufficiently exhibited.
  • the half width exceeds 3.0 °, the crystallinity of SrZrO 3 is not sufficient, and when the half width is less than 0.1 °, the crystallinity of SrZrO 3 becomes too high. In some cases, the chemical polishing action derived from SrZrO 3 may not be sufficiently obtained.
  • the angle is more preferably 0.1 to 1.0 °, further preferably 0.1 to 0.7 °, and particularly preferably 0.1 to 0.4 °.
  • the polishing material is preferably ratio D 10 of D 90 indicative of sharpness of volume-based particle size distribution (D 90 / D 10) is 1.5 to 50.
  • D 90 / D 10 exceeds 50, the particle size variation is too large, so that sufficient contact between the polishing material and the object to be polished cannot be obtained, and the polishing rate may not be sufficient.
  • D 90 / D 10 is less than 1.5, the variation in particle diameter is too small, so that contact between the polishing material and the object to be polished cannot be obtained sufficiently, and the polishing rate may not be sufficient.
  • D 90 / D 10 is large, it means that the particle size distribution is broad, smaller value means that the particle size distribution is sharp.
  • D 10 and D 90 are values obtained by measuring the particle size distribution, respectively. It means 10% cumulative particle diameter on a volume basis and D 10, and D 90 refers to the 90% cumulative particle diameter on a volume basis.
  • the polishing material preferably contains 10 to 43% by weight of Sr in terms of SrO.
  • Sr content is less than 10% by weight in terms of SrO, the content of SrZrO 3 is lowered and the chemical polishing action may not be sufficiently obtained.
  • Sr content exceeds 43 wt% in terms of SrO, ZrO 2 content is relatively reduced, mechanical polishing action may not be obtained sufficiently. More preferably, it is 11 to 43% by weight, and still more preferably 12 to 43% by weight.
  • the polishing material preferably has a specific surface area of 1.0 to 50 m 2 / g.
  • the specific surface area is less than 1.0 m 2 / g, the specific surface area of the polishing material is too small to sufficiently contact the object to be polished, and may not be sufficiently polished.
  • the specific surface area exceeds 50 m 2 / g, the abrasive grains constituting the polishing material may be too small to obtain a sufficient mechanical polishing action. More preferably, it is 1.0 to 45 m 2 / g, and still more preferably 1.0 to 40 m 2 / g.
  • the polishing material of the present invention can be applied to various polishing objects.
  • the present invention can be applied to a polishing object in which cerium oxide, chromium oxide, bengara (Fe 2 O 3 ), or the like has been conventionally used as a polishing material.
  • the object to be polished is not particularly limited, and examples thereof include a glass substrate, a metal plate, a stone, sapphire, silicon nitride, silicon carbide, silicon oxide, gallium nitride, gallium arsenide, indium arsenide, and indium phosphide.
  • the polishing material may be used by appropriately mixing with other components depending on the application.
  • the polishing material of the present invention may be mixed with a dispersion medium, may be mixed with an additive, or the dispersion medium and the additive may be mixed simultaneously.
  • the form at the time of mixing with a dispersion medium and / or an additive is not specifically limited, For example, it can use in forms, such as a powder form, a paste form, and a slurry form.
  • a dispersion medium For example, water, an organic solvent, a mixture thereof, etc. are mentioned, 1 type (s) or 2 or more types can be used.
  • the organic solvent include alcohol, acetone, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane and the like.
  • the alcohol include monovalent water-soluble alcohols such as methanol, ethanol and propanol; bivalent or more such as ethylene glycol and glycerin. Of water-soluble alcohols.
  • the dispersion medium is preferably water, and more preferably ion-exchanged water.
  • the additive is not particularly limited, and examples thereof include acids, alkalis, pH adjusters, chelating agents, antifoaming agents, dispersants, viscosity modifiers, aggregation inhibitors, lubricants, reducing agents, rust inhibitors, and publicly known.
  • An abrasive material etc. are mentioned. These may be used alone or in combination of two or more, as long as the effects of the present invention are not impaired.
  • polishing method using the composite metal oxide polishing material of the present invention.
  • the composite metal oxide polishing material of the present invention can be applied to various types of polishing targets.
  • the polishing method using the composite metal oxide polishing material of the present invention is not limited only to the following polishing method.
  • a polishing method in which the polishing step b for polishing the negatively chargeable substrate under a condition where the zeta potential is negative is performed at least once each.
  • a silicon carbide substrate is also included.
  • transparent or semi-transparent things such as soda-lime glass, an alkali free glass, borosilicate glass, quartz glass, are mentioned, for example.
  • the polishing step a for polishing the negatively chargeable substrate under a condition where the zeta potential of the abrasive slurry is positive, and the negatively chargeable substrate is polished under a condition where the zeta potential of the abrasive slurry is negative.
  • Each of the polishing steps b is performed at least once.
  • the order of these polishing steps is not particularly limited, and the polishing step b may be performed after the polishing step a, or the polishing step a may be performed after the polishing step b.
  • each polishing step may be performed a plurality of times, or the polishing step a and the polishing step b may be performed alternately.
  • the polishing step a is performed a plurality of times, as long as the zeta potential of the abrasive slurry is positive, the zeta potential may be changed or may be changed.
  • the polishing step b is performed a plurality of times, and as long as the zeta potential of the abrasive slurry is negative, the zeta potential may be changed or may be changed.
  • “the zeta potential of the abrasive slurry” is a value obtained under the measurement conditions described in the examples described later.
  • the action due to electrostatic attraction is exhibited in the polishing step a, and the action due to electrostatic repulsion is exhibited in the polishing step b.
  • a high polishing rate and a negative charge after polishing due to these synergistic effects It is estimated that excellent surface smoothness in the conductive substrate will be realized.
  • the surface of the negatively chargeable substrate before polishing has a recess made of fine scratches or holes.
  • the substrate to be polished is negatively charged, whereas the abrasive slurry is positively charged, so that the abrasive penetrates deep into the recesses by electrostatic attraction and promotes polishing. Therefore, it is considered that the polishing rate is increased.
  • the polishing step b since the substrate to be polished and the abrasive slurry are both negatively charged, the abrasive does not penetrate deep into the recess due to electrostatic repulsion, but is applied between the polishing pad and the substrate. It is considered that a large amount of abrasive is present on the convex portion of the substrate surface due to the pressure, thereby smoothing the substrate surface. Therefore, if the object to be polished is a negatively chargeable substrate, the same working mechanism is obtained. Therefore, the above polishing method can be applied not only to a glass substrate but also to various negatively chargeable substrates.
  • polishing is performed in the presence of an abrasive slurry.
  • the same abrasive slurry may be used, that is, continuously used (reused) to control only the zeta potential of the slurry, and the zeta potential may be positive or negative. It is also possible to prepare each abrasive slurry separately and switch the abrasive slurry in each polishing step. In either case, a slurry containing the composite metal oxide polishing material of the present invention may be used as the abrasive slurry.
  • the abrasive slurry can be used continuously (reused), and even when switching, it is not necessary to prepare abrasive slurry of greatly different types. This eliminates the need for cleaning work and dedicated equipment.
  • the above polishing method can be said to be a very advantageous method compared to the conventional polishing method.
  • the polishing step a is a step of polishing the negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is positive.
  • this polishing process it is possible to achieve a high polishing rate almost equal to that when using a conventional cerium oxide-based abrasive, and the surface of the negatively charged substrate is higher than when using a cerium oxide-based abrasive. Smoothness can also be improved.
  • the polishing step b is a step of polishing a negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is negative.
  • this polishing process while achieving a significantly higher polishing speed than the precision polishing process using conventional colloidal silica, it is possible to carry out precise polishing that is almost the same as the precision polishing process using colloidal silica. High surface smoothness can be realized in the conductive substrate.
  • the negatively chargeable substrate is polished under the condition where the zeta potential of the abrasive slurry is positive in the polishing step a and under the condition where the zeta potential of the abrasive slurry is negative in the polishing step b.
  • Each is more preferably 10 mV or more, further preferably 15 mV or more, and particularly preferably 20 mV or more.
  • the upper limit of the absolute value in each step is not particularly limited, for example, ease of control (for example, if the zeta potential is excessively large in the polishing step a, the abrasive may adhere to the glass substrate surface, For example, if the zeta potential is too low in the polishing step b, the electrostatic repulsion between the negatively chargeable substrate and the abrasive slurry may be too strong and the polishing rate may not be sufficiently increased. Therefore, from the viewpoint of preventing this, it is preferable that the voltage is 100 mV or less.
  • the zeta potential of the abrasive slurry can be controlled by adjusting the pH of the abrasive slurry. If the abrasive slurry contains the composite metal oxide abrasive of the present invention, adjusting the pH of the abrasive slurry to less than the isoelectric point of the abrasive slurry, while its zeta potential becomes positive, When the pH of the material slurry is adjusted to a range exceeding the isoelectric point of the abrasive slurry, the zeta potential becomes negative.
  • the abrasives emphasized increasing the polishing rate or increasing the surface smoothness, but the composite metal oxide polishing material of the present invention can easily control the abrasiveness only by pH. In this respect, a unique effect that cannot be conceived from the prior art can be exhibited.
  • the pH may be adjusted by adding a pH adjusting agent to the abrasive slurry, or the pH of the abrasive slurry may be adjusted using a pH buffer solution.
  • pH adjustment may not be performed.
  • An acid or an alkali can be used as the pH adjuster. If an acid is used, the pH of the abrasive slurry can be adjusted to the acidic side, and if an alkali is used, the pH of the abrasive slurry can be adjusted to the alkali side.
  • the acid is preferably, for example, an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or phosphoric acid; an organic acid such as oxalic acid or citric acid; and the alkali is, for example, an aqueous sodium hydroxide solution or potassium hydroxide.
  • Alkaline aqueous solutions such as aqueous solution, calcium hydroxide aqueous solution, sodium carbonate aqueous solution, ammonia water, sodium hydrogen carbonate aqueous solution, are preferable.
  • the polishing step a is performed under the condition that the pH of the abrasive slurry is larger than the isoelectric point of the negatively chargeable substrate and less than the isoelectric point of the abrasive slurry.
  • the lower limit of the pH of the abrasive slurry in the polishing step a is preferably 2 or more. More preferably, it is 3 or more, More preferably, it is 4 or more.
  • the upper limit of the pH of the abrasive slurry in the polishing step b is preferably 12 or less. More preferably, it is 11 or less.
  • the isoelectric point of the abrasive slurry (and the composite metal oxide polishing material of the present invention) means that the algebraic sum of the charge on the abrasive grains (the composite metal oxide polishing material of the present invention) in the abrasive slurry is zero.
  • a certain point that is, a point at which the positive charge and negative charge on the abrasive grains become equal, can be expressed by the pH of the abrasive slurry at that point.
  • the content of the composite metal oxide polishing material of the present invention in the abrasive slurry is preferably 0.001 to 90% by weight in 100% by weight of the abrasive slurry, for example. More preferably, it is 0.01 to 30% by weight.
  • the abrasive slurry preferably further contains a dispersion medium.
  • the dispersion medium is as described above.
  • Example 1 Zr raw material preparation step Zirconium oxychloride octahydrate (made by Showa Chemical Co., Ltd.) (3.0 kg) was dissolved in 6.7 L of ion-exchanged water with stirring. The solution was adjusted to 25 ° C. with stirring, and while maintaining this temperature, 180 g / L of an aqueous sodium hydroxide solution was added over 1 hour with stirring until pH 9.5, and the mixture was further stirred for 1 hour. . The slurry was washed with filtered water, and washed with water until the electric conductivity of the washing became 100 ⁇ S / cm or less to obtain a zirconium hydroxide cake.
  • Firing step 30 g of the dried product of the mixture obtained in the above (3) drying step is placed in an alumina crucible having an outer diameter of 55 mm and a capacity of 60 mL, and an electric muffle furnace (ADVANTEC, KM-420). Was fired to obtain a fired product.
  • ADVANTEC electric muffle furnace
  • the temperature was raised from room temperature to 950 ° C. over 285 minutes, held at 950 ° C. for 180 minutes, and then the heater was turned off and cooled to room temperature. The firing was performed in the air.
  • Examples 2 and 3 A composite metal oxide polishing material was obtained in the same manner as in Example 1 except that the firing temperature in the firing step was changed to the temperature shown in Table 1.
  • Example 4 Zr raw material preparation process Zirconium oxychloride octahydrate (made by Showa Chemical Co., Ltd.) 3.0 kg and ammonium sulfate (made by Toagosei Co., Ltd.) 0.35 kg are dissolved in 6.7 L of ion-exchanged water while stirring. I let you. The solution was adjusted to 25 ° C. with stirring, and while maintaining this temperature, 180 g / L of an aqueous sodium hydroxide solution was added over 1 hour with stirring until pH 9.5, and the mixture was further stirred for 1 hour. .
  • the slurry was washed with filtered water, and washed with water until the electric conductivity of the washing became 100 ⁇ S / cm or less to obtain a zirconium hydroxide cake.
  • (2) Drying step to (5) Grinding step were performed in the same manner as in Example 1 to obtain a composite metal oxide polishing material.
  • Example 5 A composite metal oxide polishing material was obtained in the same manner as in Example 1 except that 109 g of zirconium carbonate (manufactured by Sakai Kogyo Co., Ltd.) was used as the Zr raw material in the mixing step.
  • Example 6 A composite metal oxide polishing material was obtained in the same manner as in Example 1 except that 69 g of zirconium carbonate (manufactured by Sakai Kogyo Co., Ltd.) was used as the Zr raw material in the mixing step.
  • Comparative Example 1 (1) Zr raw material preparation step Zirconium oxychloride octahydrate (produced by Showa Chemical Co., Ltd.) 3.0 kg and ammonium sulfate (produced by Toagosei Co., Ltd.) 0.70 kg are dissolved in 6.7 L of ion-exchanged water with stirring. I let you. The solution was adjusted to 25 ° C. with stirring, and while maintaining this temperature, 180 g / L of an aqueous sodium hydroxide solution was added over 1 hour with stirring until pH 9.5, and the mixture was further stirred for 1 hour. .
  • the slurry was washed with filtered water, and washed with water until the electric conductivity of the washing became 100 ⁇ S / cm or less to obtain a zirconium hydroxide cake.
  • the (2) drying step to (5) pulverization step were performed in the same manner as in Example 1 to obtain a comparative polishing material.
  • Comparative Example 2 (1) A comparative polishing material was obtained in the same manner as in Example 1 except that the zirconium hydroxide cake obtained in the Zr raw material preparation step was dried at 130 ° C. for 15 hours.
  • Comparative Examples 3 and 4 Except having changed the calcination temperature in a baking process into the temperature of Table 1, it carried out similarly to the comparative example 2, and obtained the abrasive material for a comparison.
  • Example 1 Differential thermal / thermogravimetric measurement of zirconium compound (zirconium hydroxide)
  • zirconium hydroxide zirconium hydroxide
  • TG / DTA differential thermal and thermogravimetric analysis
  • TG / DTA differential heat / thermogravimetry
  • Glass plate used Soda lime glass (manufactured by Matsunami Glass Industry Co., Ltd., size 36 ⁇ 36 ⁇ 1.3 mm, specific gravity 2.5 g / cm 3 )
  • Polishing machine Desktop polishing machine (manufactured by MT Corporation, MAT BC-15C, polishing plate diameter 300 mm ⁇ )
  • Polishing pad Polyurethane foam pad (Nitta Haas, MHN-15A, no ceria impregnation) Polishing pressure: 101 g / cm 2 Plate rotation speed: 70rpm
  • Abrasive composition supply amount 100 mL / min Polishing time: 60 min 3. The weight of the glass plate before and after the glass plate polishing test was measured with an electronic balance.
  • the polishing rate ( ⁇ m / min) was calculated.
  • Three glass plates were polished at the same time, and after polishing for 60 minutes, the glass plate and the abrasive slurry were exchanged. This operation was performed three times, and a value obtained by averaging the polishing rate of a total of 9 sheets was used as the polishing rate value in each example and comparative example.
  • the results are shown in Table 2. Very good ( ⁇ ) when the polishing rate is 0.29 ⁇ m / min or more, good ( ⁇ ) when the polishing rate is 0.22 ⁇ m / min or more and less than 0.29 ⁇ m / min, and defective ( ⁇ ). ).
  • SO 3 * 1 (parts by weight) means the SO 3 equivalent of the sulfur compound contained in the Zr raw material with respect to 100 parts by weight of the Zr raw material (zirconium compound) in terms of ZrO 2.
  • SO 3 * 2 (part by weight) means the SO 3 equivalent of the sulfur compound contained in the polishing material with respect to 100 parts by weight of the zirconium compound equivalent to ZrO 2 contained in the abrasive.
  • the zirconium compound used in Example 1 and the zirconium compound used in Comparative Example 1 are mainly different in content of sulfur compounds. Comparison of the results of differential thermal / thermogravimetric measurement under this difference shows that, from FIGS. 1-1 and 1-2, any zirconium compound (zirconium hydroxide) has an exothermic peak with no weight change. It was done. This indicates that amorphous zirconium hydroxide is a main component at a temperature below the exothermic peak, and that zirconium hydroxide crystallizes as zirconium oxide at the exothermic peak temperature.
  • the exothermic peak of zirconium hydroxide was 416 ° C., and the exothermic peak of zirconium hydroxide used in Comparative Example 1 was 506 ° C. Therefore, it was found that the zirconium hydroxide used in Comparative Example 1 had a higher temperature required for crystallization than the zirconium hydroxide used in Example 1, that is, it was difficult to crystallize at the same firing temperature.
  • FIGS. 2-1 and 2-2 show the dried product (called mixed powder) of a mixture of the zirconium compound (zirconium hydroxide) used in Example 1 or Comparative Example 1 and the strontium compound (strontium carbonate). It is a graph which shows the result of having performed differential heat and thermogravimetry. From FIG. 2, an exothermic peak without any weight change is observed in any of the mixed powders, and the mixed powder of Comparative Example 1 is necessary for crystallization compared to the mixed powder of Example 1 due to the difference in peak temperature. It has been found that crystallization is difficult at higher temperatures, ie, at the same firing temperature.
  • the reason why the temperatures of the exothermic peaks are different is that the amount of the sulfur compound contained in the zirconium hydroxide used in Comparative Example 1 exceeds the range defined in the present invention. It also affects the crystallinity of the resulting abrasive material. From Table 2, the half width of the peak derived from the (040) plane of orthorhombic SrZrO 3 of the polishing material according to Comparative Example 1 and SSA increased as compared with the composite metal oxide polishing material according to Example 1. ing. This indicates that the crystallinity of the polishing material when fired at the same 950 ° C. is low. Further, a significant difference in polishing rate was confirmed between Comparative Example 1 and Example 1. Therefore, when the content of the sulfur compound contained in the zirconium compound exceeds the range specified in the present invention, it is considered that the crystallinity of the polishing material is lowered and the polishing rate is lowered.
  • the polishing materials according to Comparative Examples 3 to 4 have higher crystallinity by increasing the firing temperature compared to Example 1.
  • the full width at half maximum of the peak derived from the (040) plane of orthorhombic SrZrO 3 of the polishing materials according to Comparative Examples 3 and 4 and SSA are those of the composite metal oxide polishing material according to Example 1.
  • the polishing rate is low. This is presumably because the particles were sintered too much, although the crystallinity of the polishing material became comparable by increasing the firing temperature.
  • the polishing material according to Comparative Example 2 was the same as the polishing material according to Example 1 in that the zirconium compound (zirconium hydroxide) was dried at 130 ° C.
  • the production method of the present invention can efficiently provide a polishing material having a good polishing rate in a cerium-free polishing material.
  • an abrasive slurry A was prepared. Specifically, 20.0 g of the abrasive was dispersed in 380.0 g of ion exchange water and stirred at 25 ° C. for 10 minutes. In this way, an abrasive slurry A was obtained.
  • the zeta potential was measured under the following conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG. Moreover, the isoelectric point of the abrasive slurry A was 6.2.
  • the isoelectric point is the point where the algebraic sum of the charge on the abrasive grains (composite metal oxide polishing material) in the abrasive slurry is zero, that is, the positive and negative charges on the abrasive grains.
  • the point which becomes equal is said and can be represented by the pH of the abrasive slurry at that point.
  • a zeta potential measuring machine was charged with 30 cc of the abrasive slurry for zeta potential measurement thus obtained.
  • the abrasive slurry C using colloidal silica, which will be described later, was dispersed for 1 minute using an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Seisakusho) for 60 cc of the abrasive slurry C and setting the strength to V-LEVEL3. Went.
  • a zeta potential measuring machine was charged with 30 cc of the abrasive slurry for zeta potential measurement thus obtained.
  • Acid side pH adjustment solution hydrochloric acid aqueous solution, 0.1 mol / L
  • Alkaline side pH adjustment solution sodium hydroxide aqueous solution, 1 mol / L
  • Comparative Reference Example 1 (1) A cerium oxide abrasive for glass polishing as an abrasive for the first polishing process (Showa Denko KK, SHOROX (R) A-10, cerium oxide content: 60% by weight, isoelectric point: 10.4) An abrasive slurry B was prepared in the same manner as in Reference Example 1 except that was used. After adjusting the pH of the slurry so that the zeta potential of this abrasive slurry B becomes the value shown in Table 3, in the presence of this slurry, polishing similar to “(vi) Glass plate polishing test” of Example 1 The glass plate was polished under the conditions, and the polishing rate was measured.
  • Table 3 shows the polishing rate and the pH value of the abrasive slurry B in this step. Furthermore, the surface roughness of the glass substrate after the first polishing step was evaluated in the same manner as in Reference Example 1. The results are shown in Table 3.
  • (2) Second polishing step The abrasive slurry B used in the first polishing step was taken out from the polishing machine, and the polishing machine was cleaned. Separately, 52.2 g of colloidal silica (Fuso Chemical Co., Ltd., Quarton (R) PL-7, isoelectric point: 5.8) was dispersed in 347.8 g of ion-exchanged water and stirred at 25 ° C. for 10 minutes. This was prepared as an abrasive slurry C.
  • the glass is subjected to the same polishing conditions as in the first polishing step in the presence of the abrasive slurry C.
  • the substrate was polished.
  • Table 3 shows the pH value of the abrasive slurry C in this step.
  • the polishing rate in the second polishing step and the surface roughness of the glass substrate after the second polishing step were evaluated in the same manner as in Reference Example 1. The results are shown in Table 3.
  • the relationship of the zeta potential with respect to pH of each of the abrasive slurry B and C is shown in FIG.
  • the preferred polishing method described above that is, the polishing step a for polishing the negatively chargeable substrate under the condition that the zeta potential of the slurry containing the composite metal oxide polishing material of the present invention is positive, and the zeta of the abrasive slurry
  • a polishing method in which the polishing step b for polishing the negatively chargeable substrate under a condition where the potential is negative is performed at least once each in a cerium-free polishing material with a high polishing rate and excellent surface smoothness. It turns out that it can be realized.
  • Comparative Reference Example 1 since a cerium oxide-based abrasive was used in the first polishing step and colloidal silica was used in the second polishing step, it was necessary to perform a cleaning operation of the polishing machine, In Reference Example 1, since the same type of abrasive slurry A is used in the first polishing step and the second polishing step, the cleaning work of the polishing machine is unnecessary, which is very advantageous in terms of work and equipment. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A cerium-free polishing material is provided which has an excellent polishing speed, and which can cut production costs and has improved production efficiency; also provided is a production method for conveniently obtaining said polishing material. This production method of the composite metal oxide polishing material involves a mixing step for mixing a strontium compound and a zirconium compound and a firing step for firing the mixture obtained in the mixing step, wherein said zirconium compound contains less than or equal to 2.0 parts by weight of a sulfur compound in terms of SO3 per 100 parts by weight of said zirconium compound in terms of ZrO2.

Description

複合金属酸化物研磨材料の製造方法及び複合金属酸化物研磨材料Method for producing composite metal oxide polishing material and composite metal oxide polishing material
本発明は、複合金属酸化物研磨材料の製造方法及び複合金属酸化物研磨材料に関する。 The present invention relates to a method for producing a composite metal oxide polishing material and a composite metal oxide polishing material.
レンズやプリズム等、高い透明性と精度を要求される精密な光学ガラス製品の研磨には、酸化セリウム系の研磨材が用いられている。この研磨材は、いわゆるレアアース(希土類)を多く含む鉱物を焼成して粉砕することによって製造される。 Cerium oxide-based abrasives are used for polishing precision optical glass products that require high transparency and accuracy, such as lenses and prisms. This abrasive is produced by firing and pulverizing minerals rich in so-called rare earths (rare earths).
しかしながら、レアアースはその需要が増大し、供給が不安定になっていることから、セリウムの使用量を低減させる技術と代替材料の開発が望まれている。このような代替研磨材として、特許文献1にはペロブスカイト型酸化物が研磨材として好適である旨が開示され、特許文献2には鉄系ペロブスカイト型の研磨材が開示され、特許文献3にはジルコニウム系ペロブスカイト型の研磨材が開示されている。 However, since the demand for rare earth has increased and the supply has become unstable, the development of technology and alternative materials that reduce the amount of cerium used is desired. As such an alternative abrasive, Patent Literature 1 discloses that a perovskite oxide is suitable as an abrasive, Patent Literature 2 discloses an iron-based perovskite-type abrasive, and Patent Literature 3 discloses. A zirconium-based perovskite-type abrasive is disclosed.
特開2001-107028号公報JP 2001-107028 A 特開2012-122042号公報JP 2012-124202 A 特開2013-82050号公報JP 2013-82050 A
しかしながら、特許文献1に開示された研磨材を用いてガラス研磨を行った場合、研磨後のガラスは平滑な表面が得られるものの、研磨速度が低いという課題があった。 However, when glass polishing is performed using the abrasive disclosed in Patent Document 1, the polished glass has a problem that the polishing rate is low although a smooth surface can be obtained.
また特許文献2に記載の研磨材は、噴霧熱分解法で製造されており、製造に特殊な設備と多大な時間を要するため大量生産に適していないことや、ニッケルやコバルト等のレアメタルを使用するため、酸化セリウムと同様の供給不安が懸念される等の課題があった。特許文献3に記載の研磨材も噴霧熱分解法で製造されており、大量生産には適していない。 In addition, the abrasive described in Patent Document 2 is manufactured by spray pyrolysis, and requires special equipment and a great deal of time for manufacturing, so it is not suitable for mass production and uses rare metals such as nickel and cobalt. Therefore, there are problems such as concern about supply insecurity similar to cerium oxide. The abrasive described in Patent Document 3 is also manufactured by spray pyrolysis, and is not suitable for mass production.
そこで、本発明者は、製造プロセスが簡便で、かつ特殊な設備を導入することなく低コストでセリウムフリーの研磨材料を製造する方法として、ストロンチウム化合物とジルコニウム化合物とを混合・焼成することで研磨材料を得る手法を見いだし、この手法で得られる研磨材料のうち、原料のジルコニウム化合物として酸化ジルコニウムを用いたものは研磨速度に際立って優れることも既に見いだしている。だが、酸化ジルコニウムは、通常、水酸化ジルコニウムを焼成・粉砕して製造されるため、この焼成・粉砕工程を省略して製造コストの削減及び製造効率の向上をより一層実現するための工夫の余地があった。 Therefore, the inventor of the present invention is a method for producing a cerium-free polishing material at a low cost without introducing a special equipment with a simple manufacturing process, and polishing by mixing and baking a strontium compound and a zirconium compound. A method for obtaining a material has been found, and among the polishing materials obtained by this method, those using zirconium oxide as a raw material zirconium compound have already been found to be remarkably excellent in polishing rate. However, since zirconium oxide is usually produced by firing and pulverizing zirconium hydroxide, there is room for improvement to further reduce production costs and improve production efficiency by omitting this firing and pulverization step. was there.
本発明は、上記現状に鑑み、セリウムフリーの研磨材料において良好な研磨速度を有し、かつ製造コストの削減及び製造効率の向上を実現することが可能な研磨材料、並びに、該研磨材料を簡便に得るための製造方法を提供することを目的とする。 In view of the above-described situation, the present invention provides a polishing material that has a good polishing rate in a cerium-free polishing material and that can realize reduction in manufacturing cost and improvement in manufacturing efficiency, and the polishing material in a simple manner. An object of the present invention is to provide a production method for obtaining the above.
本発明者は、上記課題を解決するために鋭意検討を進めていたところ、ストロンチウム化合物とジルコニウム化合物とを混合・焼成して得た研磨材料のうち、酸化ジルコニウム以外のジルコニウム化合物を原料とする研磨材料の研磨速度が良好でないことに着目し、この要因が、原料ジルコニウム化合物に含まれる硫黄化合物の含有量にあることを新たに見いだした。一般に、水酸化ジルコニウム、炭酸ジルコニウム等のジルコニウム化合物は、その合成時に、硫酸、硫酸アンモニウム、硫酸ナトリウム、硫酸カリウム等の硫酸イオンを含む物質を用いることが多い。一般的なジルコニウム化合物の合成法である、オキシ塩化ジルコニウムを用いる中和沈殿法においては、硫酸イオンを含む物質を添加することにより、先ず塩基性硫酸ジルコニウム(Zr(OH)(4-2x)(SO・nHO(但し0<x<2))を生成させ、次いでこの塩基性硫酸ジルコニウムを中和することにより、水酸化ジルコニウムや炭酸ジルコニウム等のジルコニウム化合物を得る。硫黄化合物を添加すると、得られるケーキの含水分が低減され、ハンドリング性や濾過性が良好になるためである。硫黄化合物を添加しない場合には、得られる水酸化ジルコニウムの濾過に非常に長い時間を要し、生産性が著しく低下するため工業的に不向きである。それゆえ、通常の合成手法で得たジルコニウム化合物は硫黄化合物を含むが、本発明者は、この硫黄化合物の含有量が、ストロンチウム化合物との混合・焼成後の研磨材料の研磨速度に影響を与えるということを新たに見いだした。原因は定かではないが、例えば、ジルコニウム化合物を製造する際の硫黄化合物の添加量により、得られるジルコニウム化合物の結晶性が異なることが原因の一つとして推測される。そこで、ジルコニウム化合物中の硫黄化合物の含有量を所定範囲に設定し、これとストロンチウム化合物とを混合・焼成すると、高レベルの研磨速度を有する研磨材料が容易に得られることを見いだし、上記課題をみごとに解決することができることに想到し、本発明を完成するに至った。 The present inventor has been diligently studying in order to solve the above-mentioned problems. Among the polishing materials obtained by mixing and baking a strontium compound and a zirconium compound, polishing using a zirconium compound other than zirconium oxide as a raw material. Focusing on the fact that the polishing rate of the material is not good, we have newly found that this factor is the content of the sulfur compound contained in the raw zirconium compound. In general, zirconium compounds such as zirconium hydroxide and zirconium carbonate often use substances containing sulfate ions such as sulfuric acid, ammonium sulfate, sodium sulfate, and potassium sulfate at the time of synthesis. In the neutralization precipitation method using zirconium oxychloride, which is a general method for synthesizing zirconium compounds, basic zirconium sulfate (Zr (OH) (4-2x) (4) is added by adding a substance containing sulfate ions. SO 4 ) x · nH 2 O (where 0 <x <2)) is produced, and then the basic zirconium sulfate is neutralized to obtain zirconium compounds such as zirconium hydroxide and zirconium carbonate. This is because when the sulfur compound is added, the moisture content of the resulting cake is reduced, and the handling properties and filterability are improved. When no sulfur compound is added, it takes a very long time to filter the resulting zirconium hydroxide, and the productivity is remarkably lowered, which is not industrially suitable. Therefore, although the zirconium compound obtained by the usual synthesis method contains a sulfur compound, the present inventor has found that the content of this sulfur compound affects the polishing rate of the polishing material after mixing and firing with the strontium compound. I found a new thing. Although the cause is not certain, for example, it is estimated as one of the causes that the crystallinity of the obtained zirconium compound varies depending on the amount of sulfur compound added when the zirconium compound is produced. Therefore, it has been found that if the content of the sulfur compound in the zirconium compound is set within a predetermined range, and this and the strontium compound are mixed and fired, a polishing material having a high level of polishing speed can be easily obtained. As a result, the present invention was completed.
すなわち本発明は、ストロンチウム化合物とジルコニウム化合物とを混合する混合工程と、該混合工程により得られた混合物を焼成する焼成工程とを含む複合金属酸化物研磨材料の製造方法であって、
該ジルコニウム化合物に含まれる硫黄化合物のSO換算量は、該ジルコニウム化合物のZrO換算量100重量部に対し、2.0重量部以下である、複合金属酸化物研磨材料の製造方法である。
That is, the present invention is a method for producing a composite metal oxide polishing material comprising a mixing step of mixing a strontium compound and a zirconium compound, and a firing step of firing the mixture obtained by the mixing step,
The SO 3 equivalent of the sulfur compound contained in the zirconium compound is 2.0 parts by weight or less with respect to 100 parts by weight of the zirconium compound in terms of ZrO 2 .
上記混合工程におけるストロンチウム化合物は、炭酸ストロンチウム及び水酸化ストロンチウムからなる群から選択される少なくとも1種であることが好ましい。炭酸ストロンチウム及び水酸化ストロンチウムは、ジルコニウム化合物との反応が容易に進行して、ジルコン酸ストロンチウム(SrZrO)を生成しやすいため、生産性がより一層向上される。 The strontium compound in the mixing step is preferably at least one selected from the group consisting of strontium carbonate and strontium hydroxide. Since strontium carbonate and strontium hydroxide easily react with the zirconium compound to easily produce strontium zirconate (SrZrO 3 ), productivity is further improved.
上記混合工程におけるジルコニウム化合物は、炭酸ジルコニウム及び水酸化ジルコニウムからなる群から選択される少なくとも1種であることが好ましい。炭酸ジルコニウム及び水酸化ジルコニウムは、ストロンチウム化合物との反応性が高いため、研磨特性がより良好な研磨材料を与えることができる。また、これらを用いれば、製造コストの削減及び製造効率の向上をより実現することができる。 The zirconium compound in the mixing step is preferably at least one selected from the group consisting of zirconium carbonate and zirconium hydroxide. Since zirconium carbonate and zirconium hydroxide have high reactivity with the strontium compound, a polishing material with better polishing characteristics can be provided. Moreover, if these are used, reduction of manufacturing cost and improvement of manufacturing efficiency can be realized more.
上記焼成工程における焼成温度は、800℃を超えて1500℃以下であることが好ましい。焼成温度がこの範囲であると、研磨特性がより良好な研磨材料を与えることができる。 The firing temperature in the firing step is preferably more than 800 ° C. and 1500 ° C. or less. When the firing temperature is within this range, a polishing material with better polishing characteristics can be provided.
本発明はまた、複合金属酸化物研磨材料であって、
該複合金属酸化物研磨材料に含まれる硫黄化合物のSO換算量が、該複合金属酸化物研磨材料に含まれるジルコニウム化合物のZrO換算量100重量部に対し、1.2重量部以下である、複合金属酸化物研磨材料でもある。
The present invention also provides a composite metal oxide polishing material comprising:
The SO 3 equivalent of the sulfur compound contained in the composite metal oxide polishing material is 1.2 parts by weight or less with respect to 100 parts by weight of the zirconium compound equivalent to ZrO 2 contained in the composite metal oxide polishing material. It is also a composite metal oxide polishing material.
本発明の複合金属酸化物研磨材料の製造方法により、セリウムフリーの研磨材料において良好な研磨速度を有する研磨材料を効率よく製造することができる。この本発明の製造方法は、固相反応法により行われるため、噴霧熱分解法よりも製造プロセスが簡便となり、特殊な設備を導入することなく低コストでの製造が可能となる。また、本発明の複合金属酸化物研磨材料は、良好な研磨速度を示すことができ、しかも近年のレアアース供給不足にも充分に対応できるため、工業的に極めて有利な材料といえる。 By the method for producing a composite metal oxide polishing material of the present invention, a polishing material having a good polishing rate in a cerium-free polishing material can be efficiently produced. Since the production method of the present invention is performed by a solid phase reaction method, the production process is simpler than that of the spray pyrolysis method, and the production can be performed at a low cost without introducing special equipment. In addition, the composite metal oxide polishing material of the present invention can exhibit a good polishing rate, and can sufficiently cope with the recent shortage of rare earth supply, and thus can be said to be an extremely advantageous material industrially.
図1-1は、実施例1及び比較例1で用いた各ジルコニウム化合物について、示差熱測定を行った結果を示すグラフである。FIG. 1-1 is a graph showing the results of differential heat measurement for each zirconium compound used in Example 1 and Comparative Example 1. 図1-2は、実施例1及び比較例1で用いた各ジルコニウム化合物について、熱重量測定を行った結果を示すグラフである。1-2 is a graph showing the results of thermogravimetric measurement for each zirconium compound used in Example 1 and Comparative Example 1. FIG. 図2-1は、実施例1及び比較例1に係る各混合粉(混合物の乾燥物)について、示差熱測定を行った結果を示すグラフである。FIG. 2-1 is a graph showing the results of differential heat measurement for each mixed powder (dried product of the mixture) according to Example 1 and Comparative Example 1. 図2-2は、実施例1及び比較例1に係る各混合粉(混合物の乾燥物)について、熱重量測定を行った結果を示すグラフである。FIG. 2-2 is a graph showing the results of thermogravimetric measurements on the mixed powders (dried mixture) according to Example 1 and Comparative Example 1. 図3は、参考例又は比較参考例で用いた各研磨材スラリーの、pHに対するゼータ電位の関係を示すグラフである。FIG. 3 is a graph showing the relationship of zeta potential to pH for each abrasive slurry used in the Reference Example or Comparative Reference Example.
〔複合金属酸化物研磨材料の製造方法〕
本発明の複合金属酸化物研磨材料の製造方法(「本発明の製造方法」とも称す)は、ストロンチウム化合物とジルコニウム化合物とを混合する混合工程と、該混合工程により得られた混合物を焼成する焼成工程とを含む。そのため、複合金属酸化物研磨材料が高い研磨速度を実現することができる。
なお、使用される原料からも分かるように、本発明の製造方法は、固相反応法により行われる。それゆえ、噴霧熱分解法よりも製造プロセスが簡便となり、特殊な設備を導入することなく低コストでの製造が可能となる。
[Method for producing composite metal oxide polishing material]
The method for producing a composite metal oxide polishing material of the present invention (also referred to as “the production method of the present invention”) includes a mixing step of mixing a strontium compound and a zirconium compound, and a baking for baking the mixture obtained by the mixing step. Process. Therefore, the composite metal oxide polishing material can achieve a high polishing rate.
As can be seen from the raw materials used, the production method of the present invention is performed by a solid phase reaction method. Therefore, the manufacturing process is simpler than that of the spray pyrolysis method, and manufacturing at a low cost is possible without introducing special equipment.
-原料-
まず、本発明の製造方法における原料の一つ、ストロンチウム化合物について説明する。
ストロンチウム化合物は、ストロンチウム原子を含む化合物である限り特に限定されないが、中でも、炭酸ストロンチウム及び水酸化ストロンチウムからなる群から選択される少なくとも1種であることが好ましい。炭酸ストロンチウム及び水酸化ストロンチウムは、 ジルコニウム化合物との反応が容易に進行してジルコン酸ストロンチウム(SrZrO)を生成しやすい。
-material-
First, a strontium compound, one of the raw materials in the production method of the present invention, will be described.
The strontium compound is not particularly limited as long as it is a compound containing a strontium atom, but among them, at least one selected from the group consisting of strontium carbonate and strontium hydroxide is preferable. Strontium carbonate and strontium hydroxide easily react with the zirconium compound to easily produce strontium zirconate (SrZrO 3 ).
次に、もう一つの原料であるジルコニウム化合物について説明する。
本発明の製造方法では、ジルコニウム化合物として、これに含まれる硫黄化合物のSO換算量が、該ジルコニウム化合物のZrO換算量100重量部に対し、2.0重量部以下である化合物を用いる。原料ジルコニウム化合物中の硫黄化合物の含有量がこの範囲にあると、研磨速度が極めて良好な研磨材料が得られる。硫黄化合物の含有量(SO換算量)は、好ましくは1.5重量部以下、より好ましくは1.1重量部以下、更に好ましくは0.5重量部以下である。
Next, another zirconium compound as a raw material will be described.
In the production method of the present invention, as the zirconium compound, SO 3 equivalent amount of sulfur compounds contained in this respect in terms of ZrO 2 per 100 parts by weight of said zirconium compound, using 2.0 or less part by weight compound. When the content of the sulfur compound in the raw material zirconium compound is within this range, a polishing material having a very good polishing rate can be obtained. The sulfur compound content (SO 3 equivalent) is preferably 1.5 parts by weight or less, more preferably 1.1 parts by weight or less, and even more preferably 0.5 parts by weight or less.
上記ジルコニウム化合物は、ジルコニウム原子を含む化合物である限り特に限定されないが、中でも、酸化ジルコニウム、炭酸ジルコニウム、水酸化ジルコニウムが好ましい。これらは、ストロンチウム化合物との反応性が高く、しかも研磨特性がより良好な研磨材料を与えることができる。中でも、酸化ジルコニウム以外のジルコニウム化合物を用いることが好ましく、これにより、酸化ジルコニウム合成時の焼成・粉砕工程等を省略でき、製造コストの削減及び製造効率の向上を実現することができる。すなわち、炭酸ジルコニウム及び水酸化ジルコニウムからなる群から選択される少なくとも1種であることが好ましい。 The zirconium compound is not particularly limited as long as it is a compound containing a zirconium atom, but among them, zirconium oxide, zirconium carbonate, and zirconium hydroxide are preferable. These can provide a polishing material having high reactivity with a strontium compound and better polishing characteristics. Among them, it is preferable to use a zirconium compound other than zirconium oxide, whereby the firing and pulverization steps during the synthesis of zirconium oxide can be omitted, and the manufacturing cost can be reduced and the manufacturing efficiency can be improved. That is, it is preferably at least one selected from the group consisting of zirconium carbonate and zirconium hydroxide.
上記ジルコニウム化合物は、その比表面積が0.1~250m/gであることが好ましい。比表面積がこの範囲にあると、程よい結晶性のSrZrO相を効率よく生成しやすくなる。例えば、ジルコニウム化合物の比表面積が0.1m/g以上であると、ストロンチウム化合物との反応性がより高まり、また、250m/g以下であると、ストロンチウム化合物との反応制御が容易になるので、いずれの場合も研磨速度の良好な複合金属酸化物研磨材料が得られやすい。より好ましくは0.3~240m/g、更に好ましくは0.5~230m/gである。 The zirconium compound preferably has a specific surface area of 0.1 to 250 m 2 / g. When the specific surface area is within this range, a moderately crystalline SrZrO 3 phase is easily generated efficiently. For example, when the specific surface area of the zirconium compound is 0.1 m 2 / g or more, the reactivity with the strontium compound is further increased, and when it is 250 m 2 / g or less, the reaction control with the strontium compound becomes easy. Therefore, in any case, a composite metal oxide polishing material having a good polishing rate is easily obtained. More preferably, it is 0.3 to 240 m 2 / g, and still more preferably 0.5 to 230 m 2 / g.
本明細書中、比表面積(SSAとも称する)は、BET比表面積を意味する。
BET比表面積とは、比表面積の測定方法の一つであるBET法により得られた比表面積のことをいう。なお、比表面積とは、ある物体の単位質量あたりの表面積のことをいう。
BET法は、窒素などの気体粒子を固体粒子に吸着させ、吸着した量から比表面積を測定する気体吸着法である。具体的には、圧力Pと吸着量Vとの関係からBET式によって、単分子吸着量VMを求めることにより、比表面積を定める。
In the present specification, the specific surface area (also referred to as SSA) means the BET specific surface area.
The BET specific surface area refers to a specific surface area obtained by the BET method, which is one method for measuring the specific surface area. The specific surface area refers to the surface area per unit mass of a certain object.
The BET method is a gas adsorption method in which gas particles such as nitrogen are adsorbed on solid particles and the specific surface area is measured from the amount adsorbed. Specifically, the specific surface area is determined by obtaining the monomolecular adsorption amount VM by the BET equation from the relationship between the pressure P and the adsorption amount V.
-混合工程-
次に、混合工程について説明する。
本発明の製造方法は、ストロンチウム化合物とジルコニウム化合物とを混合する混合工程を含む。混合する際の原料の割合は、酸化物換算の重量比でSrO:ZrO=10:90~43:57であることが望ましい。混合の方法は特に限定されず、湿式混合であっても、乾式混合であってもよいが、混合性の観点から、湿式混合が望ましい。湿式混合に用いる分散媒としては、特に限定されず、水や低級アルコールを用いることができるが、製造コストの観点から水が好ましく、イオン交換水がより好ましい。湿式混合の場合、ボールミルやペイントコンディショナー、サンドグラインダーを用いてもよい。また、分散媒を除去するために湿式混合に続いて乾燥工程を行うことが好ましい。
なお、ジルコニウム化合物は、合成で得たケーキ状で混合工程に供することができる。
-Mixing process-
Next, the mixing process will be described.
The production method of the present invention includes a mixing step of mixing a strontium compound and a zirconium compound. The mixing ratio of the raw materials is preferably SrO: ZrO 2 = 10: 90 to 43:57 in terms of weight ratio in terms of oxide. The mixing method is not particularly limited, and may be wet mixing or dry mixing, but wet mixing is desirable from the viewpoint of mixing properties. The dispersion medium used for wet mixing is not particularly limited, and water or lower alcohol can be used, but water is preferable from the viewpoint of production cost, and ion-exchanged water is more preferable. In the case of wet mixing, a ball mill, a paint conditioner, or a sand grinder may be used. In order to remove the dispersion medium, it is preferable to perform a drying step following the wet mixing.
The zirconium compound can be used for the mixing step in the form of a cake obtained by synthesis.
-乾燥工程-
上記混合工程の後、必要に応じて乾燥工程を行ってもよい。
乾燥工程では、混合工程で得られたスラリーから分散媒を除去して乾燥させる。スラリーを乾燥させる方法は、混合時に用いた溶媒を除去できれば特に限定されず、例えば、減圧乾燥、加熱乾燥等が挙げられる。また、スラリーをそのまま乾燥してもよく、濾過してから乾燥してもよい。
なお、混合物の乾燥物を乾式粉砕してもよい。
-Drying process-
After the mixing step, a drying step may be performed as necessary.
In the drying step, the dispersion medium is removed from the slurry obtained in the mixing step and dried. The method for drying the slurry is not particularly limited as long as the solvent used at the time of mixing can be removed, and examples thereof include drying under reduced pressure and drying by heating. Further, the slurry may be dried as it is, or may be dried after being filtered.
Note that the dry product of the mixture may be dry-pulverized.
-焼成工程-
続いて、焼成工程について説明する。
焼成工程では、混合工程により得られた原料混合物(更に乾燥工程を経て得られた乾燥物であってもよい)を焼成する。これにより、複合金属酸化物研磨材料を得ることができる。焼成工程では、原料混合物をそのまま焼成してもよいし、所定の形状(例えばペレット状)に成型してから焼成してもよい。焼成雰囲気は特に限定されない。焼成工程は1回だけ行ってもよく、2回以上行ってもよい。
-Baking process-
Then, a baking process is demonstrated.
In the firing step, the raw material mixture obtained in the mixing step (may be a dried product obtained through a further drying step) is fired. Thereby, a composite metal oxide polishing material can be obtained. In the firing step, the raw material mixture may be fired as it is, or may be fired after being molded into a predetermined shape (for example, a pellet shape). The firing atmosphere is not particularly limited. The firing step may be performed only once or twice or more.
上記焼成工程における焼成温度は、ストロンチウム化合物とジルコニウム化合物との反応に充分な温度であればよいが、800℃を超えて1500℃以下であることが好ましい。焼成温度が800℃を超えると、反応がより充分に進むとともに、ジルコニウム化合物が酸化ジルコニウムとして結晶化しやすくなり、焼成温度が1500℃以下であると、生成したジルコン酸ストロンチウムが激しく焼結することが充分に抑制されるため、いずれの場合も研磨速度をより一層高めることができる。焼成温度の下限は850℃以上がより好ましい。これにより、本発明の作用効果をより充分に発揮することが可能となる。更に好ましくは900℃以上、特に好ましくは930℃以上である。また、上限は1300℃以下がより好ましく、更に好ましくは1200℃以下である。
本明細書中、焼成工程における焼成温度とは、焼成工程での最高到達温度を意味する。
The firing temperature in the firing step may be a temperature sufficient for the reaction between the strontium compound and the zirconium compound, but is preferably more than 800 ° C. and 1500 ° C. or less. When the firing temperature exceeds 800 ° C., the reaction proceeds more sufficiently, and the zirconium compound is easily crystallized as zirconium oxide. When the firing temperature is 1500 ° C. or less, the generated strontium zirconate may be vigorously sintered. Since it is sufficiently suppressed, the polishing rate can be further increased in any case. The lower limit of the firing temperature is more preferably 850 ° C. or higher. Thereby, it becomes possible to fully exhibit the effect of this invention. More preferably, it is 900 degreeC or more, Most preferably, it is 930 degreeC or more. Further, the upper limit is more preferably 1300 ° C. or less, and still more preferably 1200 ° C. or less.
In the present specification, the firing temperature in the firing step means the highest temperature reached in the firing step.
ここで、原料のジルコニウム化合物として、硫黄化合物の含有量が本発明で設定した範囲を超える化合物を用いた場合、本発明のジルコニウム化合物を用いた場合と同じ焼成温度で焼成工程を行ったとしても、得られる研磨材料の結晶性が充分とはならないために、良好な研磨速度を得ることができない。また、焼成温度を更に高めることで研磨材料の結晶性を同程度にしても、充分な研磨速度を得ることができない。 Here, as a raw material zirconium compound, when a compound having a sulfur compound content exceeding the range set in the present invention is used, even if the firing step is performed at the same firing temperature as in the case of using the zirconium compound of the present invention. Since the resulting polishing material does not have sufficient crystallinity, a good polishing rate cannot be obtained. Further, even if the calcination temperature is further increased so that the crystallinity of the polishing material is approximately the same, a sufficient polishing rate cannot be obtained.
上記焼成温度での保持時間は、ストロンチウム化合物とジルコニウム化合物との反応に充分な時間であればよい。例えば、5分~24時間であることが好ましい。保持時間がこの範囲内であると反応がより充分に進み、また保持時間が24時間以下であると、生成した焼成物(ジルコン酸ストロンチウム)が激しく焼結することが充分に抑制されるため、研磨速度をより高めることができる。より好ましくは7分~22時間、更に好ましくは10分~20時間である。 The holding time at the firing temperature may be a time sufficient for the reaction between the strontium compound and the zirconium compound. For example, it is preferably 5 minutes to 24 hours. When the holding time is within this range, the reaction proceeds more sufficiently, and when the holding time is 24 hours or less, the generated fired product (strontium zirconate) is sufficiently suppressed from being vigorously sintered. The polishing rate can be further increased. More preferably, it is 7 minutes to 22 hours, and further preferably 10 minutes to 20 hours.
上記焼成工程では、最高温度(焼成温度)に達するまでの昇温時の昇温速度を0.2~15℃/分とすることが好ましい。昇温速度が0.2℃/分以上であると昇温にかかる時間が長時間となり過ぎることがないので、エネルギーと時間の浪費を充分に抑制でき、また、15℃/分以下であると、炉内容物の温度が設定温度に充分に追随でき、焼成むらがより充分に抑制される。より好ましくは0.5~12℃/分、更に好ましくは1.0~10℃/分である。 In the firing step, it is preferable that the rate of temperature rise during the temperature rise until reaching the maximum temperature (firing temperature) is 0.2 to 15 ° C./min. If the rate of temperature increase is 0.2 ° C./min or more, the time required for temperature increase does not become too long, so that waste of energy and time can be sufficiently suppressed, and if it is 15 ° C./min or less. The temperature of the furnace contents can sufficiently follow the set temperature, and firing unevenness is more sufficiently suppressed. More preferably, it is 0.5 to 12 ° C./min, and further preferably 1.0 to 10 ° C./min.
-粉砕工程-
上記焼成工程の後、必要に応じて粉砕工程を行ってもよい。
粉砕工程では、焼成工程により得られた焼成物を粉砕する。粉砕方法及び粉砕条件は特に限定されず、例えば、ボールミルやライカイ機、ハンマーミル、ジェットミル等を用いてもよい。
-Crushing process-
After the firing step, a pulverization step may be performed as necessary.
In the pulverization step, the fired product obtained in the firing step is pulverized. The pulverization method and pulverization conditions are not particularly limited, and for example, a ball mill, a reiki machine, a hammer mill, a jet mill, or the like may be used.
〔複合金属酸化物研磨材料〕
続いて、本発明の複合金属酸化物研磨材料について説明する。
本発明の複合金属酸化物研磨材料(以下、単に「研磨材料」とも略す)は、該研磨材料に含まれる硫黄化合物(より具体的には、該研磨材料の結晶中に取り込まれている硫黄化合物)のSO換算量が、該複合金属酸化物研磨材料に含まれるジルコニウム化合物のZrO換算量100重量部に対し、1.2重量部以下となるものである。硫黄化合物の含有量がこの範囲にあると、研磨速度が極めて良好な研磨材料となる。当該硫黄化合物の含有量として好ましくは1.0重量部以下、より好ましくは0.8重量部以下、更に好ましくは0.6重量部以下である。
上記研磨材料は、上述した本発明の製造方法によって得ることが好ましい。
[Composite metal oxide polishing material]
Next, the composite metal oxide polishing material of the present invention will be described.
The composite metal oxide polishing material of the present invention (hereinafter also simply referred to as “polishing material”) includes a sulfur compound contained in the polishing material (more specifically, a sulfur compound incorporated in the crystal of the polishing material). ) In terms of SO 3 is 1.2 parts by weight or less with respect to 100 parts by weight in terms of ZrO 2 of the zirconium compound contained in the composite metal oxide polishing material. When the content of the sulfur compound is within this range, the polishing material has a very good polishing rate. The content of the sulfur compound is preferably 1.0 part by weight or less, more preferably 0.8 part by weight or less, and still more preferably 0.6 part by weight or less.
The abrasive material is preferably obtained by the production method of the present invention described above.
上記研磨材料は、ZrOの結晶相と、SrZrOの結晶相とを含むことが好ましい。研磨材料に含まれるZrOの結晶相が機械研磨作用を担い、SrZrOの結晶相が化学研磨作用を担うことで、より良好な研磨速度を示すことができる。また、本発明の研磨材料は、ZrOとSrZrOとの複合体であることが好ましいが、これによって、研磨速度をより高めることができる。なお、SrZrOとZrOとの複合体とは、SrZrOと酸化ジルコニウムとのそれぞれの一次粒子が部分的に焼結して形成された二次粒子のことを言う。例えば、複合体についてエネルギー分散X線分光法(EDS)による元素マッピングを行えば、SrとZrが検出される一次粒子とZrのみが検出される一次粒子とが、二次粒子を形成している様子が観察される。 The polishing material preferably includes a crystal phase of ZrO 2 and a crystal phase of SrZrO 3 . Since the crystal phase of ZrO 2 contained in the polishing material is responsible for the mechanical polishing action and the crystal phase of SrZrO 3 is responsible for the chemical polishing action, a better polishing rate can be exhibited. The polishing material of the present invention is preferably a composite of ZrO 2 and SrZrO 3 , but this can increase the polishing rate. The composite of SrZrO 3 and ZrO 2 refers to secondary particles formed by partially sintering the primary particles of SrZrO 3 and zirconium oxide. For example, when element mapping is performed on the composite by energy dispersive X-ray spectroscopy (EDS), primary particles from which Sr and Zr are detected and primary particles from which only Zr is detected form secondary particles. The situation is observed.
上記研磨材料は、線源としてCuKα線を用いたX線回折における斜方晶SrZrOの(040)面に由来するピークの半価幅が0.1~3.0°であることが好ましい。半価幅がこの範囲にあると、化学研磨作用を効果的に発揮するSrZrOの結晶性が程よくなるため、化学研磨作用を充分に発揮することができる。なお、半価幅が3.0°を超えると、SrZrOの結晶性が充分ではなくなり、半価幅が0.1°未満であると、SrZrOの結晶性が高くなり過ぎるため、いずれの場合も、SrZrOに由来する化学研磨作用が充分に得られないことがある。より好ましくは0.1~1.0°、更に好ましくは0.1~0.7°、特に好ましくは0.1~0.4°である。 The polishing material preferably has a half width of a peak derived from the (040) plane of orthorhombic SrZrO 3 in X-ray diffraction using CuKα rays as a radiation source in a range of 0.1 to 3.0 °. When the half width is in this range, the crystallinity of SrZrO 3 that effectively exhibits the chemical polishing action is improved, and thus the chemical polishing action can be sufficiently exhibited. When the half width exceeds 3.0 °, the crystallinity of SrZrO 3 is not sufficient, and when the half width is less than 0.1 °, the crystallinity of SrZrO 3 becomes too high. In some cases, the chemical polishing action derived from SrZrO 3 may not be sufficiently obtained. The angle is more preferably 0.1 to 1.0 °, further preferably 0.1 to 0.7 °, and particularly preferably 0.1 to 0.4 °.
上記研磨材料は、体積基準粒度分布のシャープさの指標となるD90のD10に対する比(D90/D10)が1.5~50であることが好ましい。D90/D10が50を超える場合、粒子径のバラツキが大きすぎるため、研磨材料と研磨対象となる物体との接触が充分に得られず、研磨速度が充分とはならないことがある。D90/D10が1.5未満の場合、粒子径のバラツキが小さすぎるため、研磨材料と研磨対象となる物体との接触が充分に得られず、研磨速度が充分とはならないことがある。
なお、D90/D10が大きい程、粒度分布がブロードであることを意味し、この値が小さい程、粒度分布がシャープであることを意味する。
10、D90はそれぞれ、粒度分布を測定することにより得られる値である。D10とは体積基準での10%積算粒径を意味し、D90とは体積基準での90%積算粒径を意味する。
The polishing material is preferably ratio D 10 of D 90 indicative of sharpness of volume-based particle size distribution (D 90 / D 10) is 1.5 to 50. FIG. When D 90 / D 10 exceeds 50, the particle size variation is too large, so that sufficient contact between the polishing material and the object to be polished cannot be obtained, and the polishing rate may not be sufficient. When D 90 / D 10 is less than 1.5, the variation in particle diameter is too small, so that contact between the polishing material and the object to be polished cannot be obtained sufficiently, and the polishing rate may not be sufficient. .
Incidentally, as D 90 / D 10 is large, it means that the particle size distribution is broad, smaller value means that the particle size distribution is sharp.
D 10 and D 90 are values obtained by measuring the particle size distribution, respectively. It means 10% cumulative particle diameter on a volume basis and D 10, and D 90 refers to the 90% cumulative particle diameter on a volume basis.
上記研磨材料は、SrがSrO換算で10~43重量%含まれることが好ましい。Sr含有量がSrO換算で10重量%未満の場合、SrZrOの含有量が低下し、化学研磨作用が充分に得られないことがある。また、Sr含有量がSrO換算で43重量%を超える場合、ZrOの含有量が相対的に低下し、機械研磨作用が充分に得られないことがある。より好ましくは11~43重量%、更に好ましくは12~43重量%である。 The polishing material preferably contains 10 to 43% by weight of Sr in terms of SrO. When the Sr content is less than 10% by weight in terms of SrO, the content of SrZrO 3 is lowered and the chemical polishing action may not be sufficiently obtained. Also, if the Sr content exceeds 43 wt% in terms of SrO, ZrO 2 content is relatively reduced, mechanical polishing action may not be obtained sufficiently. More preferably, it is 11 to 43% by weight, and still more preferably 12 to 43% by weight.
上記研磨材料は、比表面積が1.0~50m/gであることが好ましい。比表面積が1.0m/g未満の場合、研磨材料の比表面積が小さすぎて、研磨対象となる物体と充分に接触できず、充分に研磨できないことがある。また、比表面積が50m/gを超える場合には、研磨材料を構成する砥粒が小さすぎて、機械研磨作用が充分に得られないことがある。より好ましくは1.0~45m/g、更に好ましくは1.0~40m/gである。 The polishing material preferably has a specific surface area of 1.0 to 50 m 2 / g. When the specific surface area is less than 1.0 m 2 / g, the specific surface area of the polishing material is too small to sufficiently contact the object to be polished, and may not be sufficiently polished. On the other hand, if the specific surface area exceeds 50 m 2 / g, the abrasive grains constituting the polishing material may be too small to obtain a sufficient mechanical polishing action. More preferably, it is 1.0 to 45 m 2 / g, and still more preferably 1.0 to 40 m 2 / g.
本発明の研磨材料は、各種の研磨対象に適用できる。例えば、従来、酸化セリウム、酸化クロム及びベンガラ(Fe)等が研磨材料として用いられていた研磨対象に適用できる。研磨対象は特に限定されず、例えば、ガラス基板、金属板、石材、サファイア、窒化ケイ素、炭化ケイ素、酸化ケイ素、窒化ガリウム、ヒ化ガリウム、ヒ化インジウム、及びリン化インジウム等が挙げられる。 The polishing material of the present invention can be applied to various polishing objects. For example, the present invention can be applied to a polishing object in which cerium oxide, chromium oxide, bengara (Fe 2 O 3 ), or the like has been conventionally used as a polishing material. The object to be polished is not particularly limited, and examples thereof include a glass substrate, a metal plate, a stone, sapphire, silicon nitride, silicon carbide, silicon oxide, gallium nitride, gallium arsenide, indium arsenide, and indium phosphide.
上記研磨材料は、用途に応じて、適宜他の成分と混合して使用してもよい。例えば、本発明の研磨材料は、分散媒と混合してもよいし、添加剤と混合してもよいし、分散媒及び添加剤を同時に混合してもよい。分散媒及び/又は添加剤と混合した際の形態は特に限定されず、例えば、粉末状、ペースト状、スラリー状等の形態で使用することができる。 The polishing material may be used by appropriately mixing with other components depending on the application. For example, the polishing material of the present invention may be mixed with a dispersion medium, may be mixed with an additive, or the dispersion medium and the additive may be mixed simultaneously. The form at the time of mixing with a dispersion medium and / or an additive is not specifically limited, For example, it can use in forms, such as a powder form, a paste form, and a slurry form.
分散媒としては特に限定されないが、例えば、水、有機溶媒及びこれらの混合物等が挙げられ、1種又は2種以上を使用することができる。有機溶媒としては、アルコール、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン等が挙げられ、アルコールとしては、メタノール、エタノール、プロパノール等の1価の水溶性アルコール;エチレングリコール、グリセリン等の2価以上の水溶性アルコール;等が挙げられる。分散媒として好ましくは水であり、より好ましくはイオン交換水である。 Although it does not specifically limit as a dispersion medium, For example, water, an organic solvent, a mixture thereof, etc. are mentioned, 1 type (s) or 2 or more types can be used. Examples of the organic solvent include alcohol, acetone, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane and the like. Examples of the alcohol include monovalent water-soluble alcohols such as methanol, ethanol and propanol; bivalent or more such as ethylene glycol and glycerin. Of water-soluble alcohols. The dispersion medium is preferably water, and more preferably ion-exchanged water.
添加剤としては特に限定されず、例えば、酸、アルカリ、pH調整剤、キレート化剤、消泡剤、分散剤、粘度調整剤、凝集防止剤、潤滑剤、還元剤、防錆剤、公知の研磨材料等が挙げられる。本発明の効果を妨げない範囲でこれらを1種又は2種以上併用してもよい。 The additive is not particularly limited, and examples thereof include acids, alkalis, pH adjusters, chelating agents, antifoaming agents, dispersants, viscosity modifiers, aggregation inhibitors, lubricants, reducing agents, rust inhibitors, and publicly known. An abrasive material etc. are mentioned. These may be used alone or in combination of two or more, as long as the effects of the present invention are not impaired.
〔研磨方法〕
次に、本発明の複合金属酸化物研磨材料を用いる研磨方法の一例を述べる。
本発明の複合金属酸化物研磨材料は、上述したように各種の研磨対象に適用できるが、このうち負帯電性基板を研磨対象とする場合は、以下の研磨方法に適用することが好適である。なお、本発明の複合金属酸化物研磨材料を用いる研磨方法は、以下の研磨方法にのみ限定されるものではない。
すなわち、本発明の複合金属酸化物研磨材料を含むスラリー(以下、研磨材スラリーとも称す)のゼータ電位が正となる条件下で負帯電性基板を研磨する研磨工程aと、該研磨材スラリーのゼータ電位が負となる条件下で負帯電性基板を研磨する研磨工程bとを、それぞれ少なくとも1回ずつ実施する研磨方法である。
[Polishing method]
Next, an example of a polishing method using the composite metal oxide polishing material of the present invention will be described.
As described above, the composite metal oxide polishing material of the present invention can be applied to various types of polishing targets. When a negatively chargeable substrate is to be polished, it is preferable to apply the polishing method described below. . The polishing method using the composite metal oxide polishing material of the present invention is not limited only to the following polishing method.
That is, a polishing step a for polishing a negatively-charged substrate under a condition in which a zeta potential of a slurry containing the composite metal oxide polishing material of the present invention (hereinafter also referred to as an abrasive slurry) is positive, and the abrasive slurry This is a polishing method in which the polishing step b for polishing the negatively chargeable substrate under a condition where the zeta potential is negative is performed at least once each.
本明細書中、負帯電性基板とは、pHが4より大きい水溶液中で常に負に帯電している基板であることが好ましく、例えば、ガラス基板(ガラスの等電点=約2.0)が挙げられる。その他、炭化ケイ素基板(炭化ケイ素の等電点=約4.0)等も挙げられる。
なお、ガラス基板としては、例えば、ソーダライムガラス、無アルカリガラス、ホウケイ酸ガラス、石英ガラス等の透明又は半透明のものが挙げられる。
In the present specification, the negatively chargeable substrate is preferably a substrate that is always negatively charged in an aqueous solution having a pH higher than 4, for example, a glass substrate (isoelectric point of glass = about 2.0). Is mentioned. In addition, a silicon carbide substrate (isoelectric point of silicon carbide = about 4.0) is also included.
In addition, as a glass substrate, transparent or semi-transparent things, such as soda-lime glass, an alkali free glass, borosilicate glass, quartz glass, are mentioned, for example.
上記研磨方法では、研磨材スラリーのゼータ電位が正となる条件下で負帯電性基板を研磨する研磨工程aと、研磨材スラリーのゼータ電位が負となる条件下で負帯電性基板を研磨する研磨工程bとを、それぞれ少なくとも1回ずつ実施する。これらの研磨工程の順序は特に限定されず、研磨工程aの後に研磨工程bを行ってもよいし、研磨工程bの後に研磨工程aを行ってもよい。中でも、表面平滑性により優れた負帯電性基板を得るには、研磨工程aを少なくとも1回行った後、研磨工程bを少なくとも1回行うことが特に好適である。また、各研磨工程を複数回行ってもよいし、研磨工程aと研磨工程bとを交互に実施してもよい。研磨工程aを複数回行う場合、研磨材スラリーのゼータ電位が正である限り、ゼータ電位を変更して実施してもよいし、変えないで実施してもよい。研磨工程bを複数回行う場合も同様であり、研磨材スラリーのゼータ電位が負である限り、ゼータ電位を変更して実施してもよいし、変えないで実施してもよい。
本明細書中、「研磨材スラリーのゼータ電位」とは、後述する実施例に記載の測定条件下で求められる値である。
In the above polishing method, the polishing step a for polishing the negatively chargeable substrate under a condition where the zeta potential of the abrasive slurry is positive, and the negatively chargeable substrate is polished under a condition where the zeta potential of the abrasive slurry is negative. Each of the polishing steps b is performed at least once. The order of these polishing steps is not particularly limited, and the polishing step b may be performed after the polishing step a, or the polishing step a may be performed after the polishing step b. Among them, in order to obtain a negatively chargeable substrate having better surface smoothness, it is particularly preferable to perform the polishing step a at least once and then perform the polishing step b at least once. In addition, each polishing step may be performed a plurality of times, or the polishing step a and the polishing step b may be performed alternately. When the polishing step a is performed a plurality of times, as long as the zeta potential of the abrasive slurry is positive, the zeta potential may be changed or may be changed. The same applies when the polishing step b is performed a plurality of times, and as long as the zeta potential of the abrasive slurry is negative, the zeta potential may be changed or may be changed.
In the present specification, “the zeta potential of the abrasive slurry” is a value obtained under the measurement conditions described in the examples described later.
上記研磨方法では、研磨工程aにおいて静電引力による作用が発揮され、研磨工程bにおいて静電斥力による作用が発揮されることで、これらの相乗効果により、高い研磨速度と、研磨後の負帯電性基板における優れた表面平滑性とを実現することになると推測される。通常、研磨前の負帯電性基板の表面には、微細な傷や穴等からなる凹部が存在する。研磨工程aでは、研磨対象である基板は負に帯電しているのに対し、研磨材スラリーは正に帯電しているため、静電引力により研磨材が凹部の深くまで浸透し、研磨を促進するために、研磨速度が高められると考えられる。一方、研磨工程bでは、研磨対象である基板も研磨材スラリーも負に帯電しているため、静電斥力により研磨材は凹部の深くまでは浸透しないものの、研磨パッドと基板との間にかかる圧力によって、研磨材が基板表面の凸部に多く存在することになり、これにより基板表面が平滑化されると考えられる。したがって、研磨対象が負帯電性基板であれば同様の作用機構となるため、上記研磨方法は、ガラス基板だけでなく、各種の負帯電性基板に適用することができる。 In the above polishing method, the action due to electrostatic attraction is exhibited in the polishing step a, and the action due to electrostatic repulsion is exhibited in the polishing step b. Thus, a high polishing rate and a negative charge after polishing due to these synergistic effects. It is estimated that excellent surface smoothness in the conductive substrate will be realized. Usually, the surface of the negatively chargeable substrate before polishing has a recess made of fine scratches or holes. In the polishing step a, the substrate to be polished is negatively charged, whereas the abrasive slurry is positively charged, so that the abrasive penetrates deep into the recesses by electrostatic attraction and promotes polishing. Therefore, it is considered that the polishing rate is increased. On the other hand, in the polishing step b, since the substrate to be polished and the abrasive slurry are both negatively charged, the abrasive does not penetrate deep into the recess due to electrostatic repulsion, but is applied between the polishing pad and the substrate. It is considered that a large amount of abrasive is present on the convex portion of the substrate surface due to the pressure, thereby smoothing the substrate surface. Therefore, if the object to be polished is a negatively chargeable substrate, the same working mechanism is obtained. Therefore, the above polishing method can be applied not only to a glass substrate but also to various negatively chargeable substrates.
上記研磨工程a及び研磨工程bのいずれの工程も、研磨材スラリーの存在下で研磨を行う。研磨工程aと研磨工程bとでは、同じ研磨材スラリーを使用、すなわち連続使用(再利用)して、該スラリーのゼータ電位の制御のみを行うこととしてもよいし、ゼータ電位がを正又は負となる研磨材スラリーをそれぞれ別個に用意して、各研磨工程で研磨材スラリーを切り替えてもよい。いずれの場合も、研磨材スラリーとして、本発明の複合金属酸化物研磨材料を含むものを用いればよい。このように上記研磨方法では、研磨材スラリーを連続使用(再利用)でき、切り替える場合でも種類が大きく異なる研磨材スラリーを用意する必要がないので、従来の手法のように研磨材切り替え時に必要となる洗浄作業や専用装置等が不要となる。また、酸化セリウムを必須に用いなくても高い研磨速度と優れた表面平滑性とを実現できるため、上記研磨方法は、従来の研磨方法に比べて非常に有利な手法といえる。 In both the polishing step a and the polishing step b, polishing is performed in the presence of an abrasive slurry. In the polishing step a and the polishing step b, the same abrasive slurry may be used, that is, continuously used (reused) to control only the zeta potential of the slurry, and the zeta potential may be positive or negative. It is also possible to prepare each abrasive slurry separately and switch the abrasive slurry in each polishing step. In either case, a slurry containing the composite metal oxide polishing material of the present invention may be used as the abrasive slurry. Thus, in the above polishing method, the abrasive slurry can be used continuously (reused), and even when switching, it is not necessary to prepare abrasive slurry of greatly different types. This eliminates the need for cleaning work and dedicated equipment. In addition, since the high polishing rate and the excellent surface smoothness can be realized without using cerium oxide, the above polishing method can be said to be a very advantageous method compared to the conventional polishing method.
上記研磨工程aは、研磨材スラリーのゼータ電位が正となる条件下で、該研磨材スラリーを用いて負帯電性基板を研磨する工程である。この研磨工程では、従来の酸化セリウム系の研磨材を用いた場合とほぼ同等の高い研磨速度を実現することができ、しかも酸化セリウム系の研磨材を用いた場合よりも負帯電性基板の表面平滑性を高めることもできる。 The polishing step a is a step of polishing the negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is positive. In this polishing process, it is possible to achieve a high polishing rate almost equal to that when using a conventional cerium oxide-based abrasive, and the surface of the negatively charged substrate is higher than when using a cerium oxide-based abrasive. Smoothness can also be improved.
上記研磨工程bは、研磨材スラリーのゼータ電位が負となる条件下で、該研磨材スラリーを用いて負帯電性基板を研磨する工程である。この研磨工程では、従来のコロイダルシリカを用いた精密研磨工程よりも著しく高い研磨速度を実現しながら、コロイダルシリカを用いた精密研磨工程とほぼ同等の精密な研磨を実施でき、研磨後の負帯電性基板において高い表面平滑性を実現することができる。 The polishing step b is a step of polishing a negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is negative. In this polishing process, while achieving a significantly higher polishing speed than the precision polishing process using conventional colloidal silica, it is possible to carry out precise polishing that is almost the same as the precision polishing process using colloidal silica. High surface smoothness can be realized in the conductive substrate.
上述のとおり研磨工程aでは研磨材スラリーのゼータ電位が正となる条件下で、研磨工程bでは研磨材スラリーのゼータ電位が負となる条件下で、それぞれ負帯電性基板を研磨することになるが、研磨材スラリーのゼータ電位の絶対値がそれぞれ5mV以上となる条件下で各研磨工程を行うことが好適である。それぞれ、より好ましくは10mV以上、更に好ましくは15mV以上、特に好ましくは20mV以上である。各工程での当該絶対値の上限は特に限定されないが、例えば制御しやすさ(例えば、研磨工程aでゼータ電位が過大すぎると、ガラス基板表面に研磨材が残留付着する可能性があるため、これを防止する等、また例えば、研磨工程bでゼータ電位が過小すぎると、負帯電性基板と研磨材スラリーの静電斥力が強く働きすぎて、研磨速度を充分に高めることができない可能性があるため、これを防止する等)の観点から、それぞれ、100mV以下であることが好ましい。 As described above, the negatively chargeable substrate is polished under the condition where the zeta potential of the abrasive slurry is positive in the polishing step a and under the condition where the zeta potential of the abrasive slurry is negative in the polishing step b. However, it is preferable to perform each polishing step under conditions where the absolute value of the zeta potential of the abrasive slurry is 5 mV or more. Each is more preferably 10 mV or more, further preferably 15 mV or more, and particularly preferably 20 mV or more. Although the upper limit of the absolute value in each step is not particularly limited, for example, ease of control (for example, if the zeta potential is excessively large in the polishing step a, the abrasive may adhere to the glass substrate surface, For example, if the zeta potential is too low in the polishing step b, the electrostatic repulsion between the negatively chargeable substrate and the abrasive slurry may be too strong and the polishing rate may not be sufficiently increased. Therefore, from the viewpoint of preventing this, it is preferable that the voltage is 100 mV or less.
研磨材スラリーのゼータ電位は、該研磨材スラリーのpHを調整することで制御することができる。研磨材スラリーが本発明の複合金属酸化物研磨材料を含むものであれば、研磨材スラリーのpHを該研磨材スラリーの等電点未満に調整すると、そのゼータ電位は正となる一方で、研磨材スラリーのpHを該研磨材スラリーの等電点を超える範囲に調整すると、そのゼータ電位は負となる。なお、これまでの研磨材は、研磨速度を高める、又は、表面平滑性を高めるといったことを重視していたが、本発明の複合金属酸化物研磨材料は、pHだけで研磨性を簡単にコントロールすることができるものであり、この点で従来技術からは着想し得ない特異な効果を発揮し得るものである。 The zeta potential of the abrasive slurry can be controlled by adjusting the pH of the abrasive slurry. If the abrasive slurry contains the composite metal oxide abrasive of the present invention, adjusting the pH of the abrasive slurry to less than the isoelectric point of the abrasive slurry, while its zeta potential becomes positive, When the pH of the material slurry is adjusted to a range exceeding the isoelectric point of the abrasive slurry, the zeta potential becomes negative. In the past, the abrasives emphasized increasing the polishing rate or increasing the surface smoothness, but the composite metal oxide polishing material of the present invention can easily control the abrasiveness only by pH. In this respect, a unique effect that cannot be conceived from the prior art can be exhibited.
pHの調整は、研磨材スラリーにpH調整剤を添加することで行ってもよいし、pH緩衝液を用いて研磨材スラリーのpHを調整してもよい。
なお、既に研磨材スラリーのpHが研磨に好ましい領域にある場合は、pH調整を行わなくてもよい。
The pH may be adjusted by adding a pH adjusting agent to the abrasive slurry, or the pH of the abrasive slurry may be adjusted using a pH buffer solution.
In addition, when the pH of the abrasive slurry is already in a region preferable for polishing, pH adjustment may not be performed.
上記pH調整剤としては、酸やアルカリを用いることができる。酸を用いれば研磨材スラリーのpHを酸性側に調整することができ、アルカリを用いれば研磨材スラリーのpHをアルカリ側に調整することができる。酸としては、例えば、硝酸、硫酸、塩酸、過塩素酸、リン酸等の無機酸;シュウ酸、クエン酸等の有機酸;が好ましく、アルカリとしては、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、アンモニア水、炭酸水素ナトリウム水溶液等のアルカリ性水溶液が好ましい。 An acid or an alkali can be used as the pH adjuster. If an acid is used, the pH of the abrasive slurry can be adjusted to the acidic side, and if an alkali is used, the pH of the abrasive slurry can be adjusted to the alkali side. The acid is preferably, for example, an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or phosphoric acid; an organic acid such as oxalic acid or citric acid; and the alkali is, for example, an aqueous sodium hydroxide solution or potassium hydroxide. Alkaline aqueous solutions, such as aqueous solution, calcium hydroxide aqueous solution, sodium carbonate aqueous solution, ammonia water, sodium hydrogen carbonate aqueous solution, are preferable.
上記研磨方法では、研磨工程aを、研磨材スラリーのpHが、上記負帯電性基板の等電点より大きく、かつ該研磨材スラリーの等電点未満となる条件下で実施することが好ましい。これにより、強酸によって本発明の複合金属酸化物研磨材料が溶解することが充分に抑制されて、該研磨材料による研磨作用がより発揮される他、研磨機・装置への負担を軽減することもできる。研磨工程aにおける研磨材スラリーのpHの下限値として具体的には、2以上であることが好ましい。より好ましくは3以上、更に好ましくは4以上である。 In the above polishing method, it is preferable that the polishing step a is performed under the condition that the pH of the abrasive slurry is larger than the isoelectric point of the negatively chargeable substrate and less than the isoelectric point of the abrasive slurry. As a result, it is sufficiently suppressed that the composite metal oxide polishing material of the present invention is dissolved by the strong acid, and the polishing action by the polishing material is further exhibited, and the burden on the polishing machine / device can be reduced. it can. Specifically, the lower limit of the pH of the abrasive slurry in the polishing step a is preferably 2 or more. More preferably, it is 3 or more, More preferably, it is 4 or more.
また研磨工程bを、研磨材スラリーのpHが、該研磨材スラリーの等電点より大きく、かつ13以下となる条件下で実施することが好ましい。これにより、強塩基によって本発明の複合金属酸化物研磨材料が溶解することが充分に抑制されて、該研磨材料による研磨作用がより発揮される他、研磨機・装置への負担を軽減することもできる。研磨工程bにおける研磨材スラリーのpHの上限値は、12以下であることが好ましい。より好ましくは11以下である。 Moreover, it is preferable to implement the grinding | polishing process b on the conditions from which pH of an abrasive slurry is larger than the isoelectric point of this abrasive slurry, and is 13 or less. As a result, dissolution of the composite metal oxide polishing material of the present invention by the strong base is sufficiently suppressed, and the polishing action by the polishing material is further exhibited, and the burden on the polishing machine / device is reduced. You can also. The upper limit of the pH of the abrasive slurry in the polishing step b is preferably 12 or less. More preferably, it is 11 or less.
研磨材スラリー(及び本発明の複合金属酸化物研磨材料)の等電点とは、研磨材スラリー中の砥粒(本発明の複合金属酸化物研磨材料)に帯びた電荷の代数和がゼロである点、すなわち砥粒に帯びた正電荷と負電荷とが等しくなる点をいい、その点における研磨材スラリーのpHで表すことができる。 The isoelectric point of the abrasive slurry (and the composite metal oxide polishing material of the present invention) means that the algebraic sum of the charge on the abrasive grains (the composite metal oxide polishing material of the present invention) in the abrasive slurry is zero. A certain point, that is, a point at which the positive charge and negative charge on the abrasive grains become equal, can be expressed by the pH of the abrasive slurry at that point.
上記研磨材スラリー中、本発明の複合金属酸化物研磨材料の含有量は、例えば、研磨材スラリー100重量%中、0.001~90重量%であることが好ましい。より好ましくは0.01~30重量%である。上記研磨材スラリーはまた、更に、分散媒を含むことが好ましい。分散媒については上述したとおりである。 The content of the composite metal oxide polishing material of the present invention in the abrasive slurry is preferably 0.001 to 90% by weight in 100% by weight of the abrasive slurry, for example. More preferably, it is 0.01 to 30% by weight. The abrasive slurry preferably further contains a dispersion medium. The dispersion medium is as described above.
本発明を詳細に説明するために以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。 In order to describe the present invention in detail, examples will be given below, but the present invention is not limited to these examples.
実施例1
(1)Zr原料準備工程
オキシ塩化ジルコニウム8水和物(昭和化学株式会社製)3.0kgを、イオン交換水6.7Lに撹拌しながら溶解させた。この溶液を撹拌しながら25℃に調整し、この温度を維持しながら、180g/Lの水酸化ナトリウム水溶液を、pH9.5になるまで1時間かけて撹拌しながら添加し、更に1時間撹拌した。このスラリーをろ過水洗し、洗液の電気伝導度が100μS/cm以下になるまで水洗することにより、水酸化ジルコニウムケーキを得た。
Example 1
(1) Zr raw material preparation step Zirconium oxychloride octahydrate (made by Showa Chemical Co., Ltd.) (3.0 kg) was dissolved in 6.7 L of ion-exchanged water with stirring. The solution was adjusted to 25 ° C. with stirring, and while maintaining this temperature, 180 g / L of an aqueous sodium hydroxide solution was added over 1 hour with stirring until pH 9.5, and the mixture was further stirred for 1 hour. . The slurry was washed with filtered water, and washed with water until the electric conductivity of the washing became 100 μS / cm or less to obtain a zirconium hydroxide cake.
(2)混合工程
Sr原料として炭酸ストロンチウム(堺化学工業株式会社製:SW-P-N)26.1gと、Zr原料として(1)Zr原料準備工程により得られた水酸化ジルコニウムケーキをZrO換算で31.3gとなるように300mLマヨネーズ瓶に計り取り、イオン交換水172mLと1mmφジルコニアビーズ415gを添加してペイントコンディショナー(レッドデビル社製:5110型)を用いて、30分間混合した。
(2) Mixing Step Sr material as strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd.: SW-P-N) 26.1g and, as Zr raw material (1) Zr raw material preparation step ZrO 2 The resulting zirconium hydroxide cake by It measured to a 300 mL mayonnaise bottle so that it might become 31.3g in conversion, 172 mL of ion-exchange water and 415 g of 1 mm diameter zirconia beads were added, and it mixed for 30 minutes using the paint conditioner (Red Devil company type: 5110 type | mold).
(3)乾燥工程
上記(2)混合工程により得られたスラリーを、400メッシュ(目開き38μm)の篩にかけてジルコニアビーズを除去し、続いて濾過して得られた混合物のケーキを120℃の温度で充分に乾燥することにより混合物の乾燥物を得た。
(3) Drying step The slurry obtained in the above (2) mixing step is passed through a sieve of 400 mesh (aperture 38 μm) to remove zirconia beads and subsequently filtered to obtain a cake of the mixture at a temperature of 120 ° C. And dried sufficiently to obtain a dry product of the mixture.
(4)焼成工程
上記(3)乾燥工程により得られた混合物の乾燥物のうち30gを、外径55mm、容量60mLのアルミナ製るつぼに入れて、電気マッフル炉(ADVANTEC社製、KM-420)を用いて焼成し、焼成物を得た。焼成条件は、室温から950℃まで285分間かけて昇温し、950℃で180分間保持し、その後ヒーターへの通電を中止し室温まで冷却した。なお、焼成は大気中で行った。
(4) Firing step 30 g of the dried product of the mixture obtained in the above (3) drying step is placed in an alumina crucible having an outer diameter of 55 mm and a capacity of 60 mL, and an electric muffle furnace (ADVANTEC, KM-420). Was fired to obtain a fired product. As firing conditions, the temperature was raised from room temperature to 950 ° C. over 285 minutes, held at 950 ° C. for 180 minutes, and then the heater was turned off and cooled to room temperature. The firing was performed in the air.
(5)粉砕工程
上記(4)焼成工程により得られた焼成物を10g、自動乳鉢(ライカイ機)(日陶科学株式会社製:ANM-150)に仕込み、10分間粉砕することにより、複合金属酸化物研磨材料を得た。
(5) Grinding step 10 g of the fired product obtained in the above (4) firing step is charged into an automatic mortar (Laikai machine) (manufactured by Nichito Kagaku Co., Ltd .: ANM-150), and ground for 10 minutes to obtain composite metal An oxide polishing material was obtained.
実施例2、3
(4)焼成工程における焼成温度を表1に記載の温度に変更した以外は、実施例1と同様にして、複合金属酸化物研磨材料を得た。
Examples 2 and 3
(4) A composite metal oxide polishing material was obtained in the same manner as in Example 1 except that the firing temperature in the firing step was changed to the temperature shown in Table 1.
実施例4
(1)Zr原料準備工程
オキシ塩化ジルコニウム8水和物(昭和化学株式会社製)3.0kgと、硫酸アンモニウム(東亞合成株式会社製)0.35kgを、イオン交換水6.7Lに撹拌しながら溶解させた。この溶液を撹拌しながら25℃に調整し、この温度を維持しながら、180g/Lの水酸化ナトリウム水溶液を、pH9.5になるまで1時間かけて撹拌しながら添加し、更に1時間撹拌した。このスラリーをろ過水洗し、洗液の電気伝導度が100μS/cm以下になるまで水洗することにより、水酸化ジルコニウムケーキを得た。
(2)乾燥工程~(5)粉砕工程は、実施例1と同様に行い、複合金属酸化物研磨材料を得た。
Example 4
(1) Zr raw material preparation process Zirconium oxychloride octahydrate (made by Showa Chemical Co., Ltd.) 3.0 kg and ammonium sulfate (made by Toagosei Co., Ltd.) 0.35 kg are dissolved in 6.7 L of ion-exchanged water while stirring. I let you. The solution was adjusted to 25 ° C. with stirring, and while maintaining this temperature, 180 g / L of an aqueous sodium hydroxide solution was added over 1 hour with stirring until pH 9.5, and the mixture was further stirred for 1 hour. . The slurry was washed with filtered water, and washed with water until the electric conductivity of the washing became 100 μS / cm or less to obtain a zirconium hydroxide cake.
(2) Drying step to (5) Grinding step were performed in the same manner as in Example 1 to obtain a composite metal oxide polishing material.
実施例5
(2)混合工程におけるZr原料として炭酸ジルコニウム(巴工業株式会社製)109gを使用した以外は、実施例1と同様にして、複合金属酸化物研磨材料を得た。
Example 5
(2) A composite metal oxide polishing material was obtained in the same manner as in Example 1 except that 109 g of zirconium carbonate (manufactured by Sakai Kogyo Co., Ltd.) was used as the Zr raw material in the mixing step.
実施例6
(2)混合工程におけるZr原料として炭酸ジルコニウム(巴工業株式会社製)69gを使用した以外は、実施例1と同様にして、複合金属酸化物研磨材料を得た。
Example 6
(2) A composite metal oxide polishing material was obtained in the same manner as in Example 1 except that 69 g of zirconium carbonate (manufactured by Sakai Kogyo Co., Ltd.) was used as the Zr raw material in the mixing step.
比較例1
(1)Zr原料準備工程
オキシ塩化ジルコニウム8水和物(昭和化学株式会社製)3.0kgと、硫酸アンモニウム(東亞合成株式会社製)0.70kgを、イオン交換水6.7Lに撹拌しながら溶解させた。この溶液を撹拌しながら25℃に調整し、この温度を維持しながら、180g/Lの水酸化ナトリウム水溶液を、pH9.5になるまで1時間かけて撹拌しながら添加し、更に1時間撹拌した。このスラリーをろ過水洗し、洗液の電気伝導度が100μS/cm以下になるまで水洗することにより、水酸化ジルコニウムケーキを得た。
(2)乾燥工程~(5)粉砕工程は、実施例1と同様に行い、比較用研磨材料を得た。
Comparative Example 1
(1) Zr raw material preparation step Zirconium oxychloride octahydrate (produced by Showa Chemical Co., Ltd.) 3.0 kg and ammonium sulfate (produced by Toagosei Co., Ltd.) 0.70 kg are dissolved in 6.7 L of ion-exchanged water with stirring. I let you. The solution was adjusted to 25 ° C. with stirring, and while maintaining this temperature, 180 g / L of an aqueous sodium hydroxide solution was added over 1 hour with stirring until pH 9.5, and the mixture was further stirred for 1 hour. . The slurry was washed with filtered water, and washed with water until the electric conductivity of the washing became 100 μS / cm or less to obtain a zirconium hydroxide cake.
The (2) drying step to (5) pulverization step were performed in the same manner as in Example 1 to obtain a comparative polishing material.
比較例2
(1)Zr原料準備工程で得られた水酸化ジルコニウムケーキを130℃で15時間乾燥させた以外は、実施例1と同様に行い、比較用研磨材料を得た。
Comparative Example 2
(1) A comparative polishing material was obtained in the same manner as in Example 1 except that the zirconium hydroxide cake obtained in the Zr raw material preparation step was dried at 130 ° C. for 15 hours.
比較例3、4
(4)焼成工程における焼成温度を表1に記載の温度に変更した以外は、比較例2と同様に行い、比較用研磨材料を得た。
Comparative Examples 3 and 4
(4) Except having changed the calcination temperature in a baking process into the temperature of Table 1, it carried out similarly to the comparative example 2, and obtained the abrasive material for a comparison.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<性能評価>
以下の手順により、各実施例及び比較例で作製した研磨材料及びその原料の性能を評価した。
<Performance evaluation>
The performance of the polishing materials and the raw materials prepared in each Example and Comparative Example was evaluated by the following procedure.
(i)半価幅の測定
Zr原料(ジルコニウム化合物)及び研磨材料の各々について、以下の条件により粉末X線回折パターン(単にX線回折パターンともいう)を測定した。
使用機:株式会社リガク製 RINT-UltimaIII
線源:CuKα
電圧:40kV
電流:40mA
試料回転速度:回転しない
発散スリット:1.00mm
発散縦制限スリット:10mm
散乱スリット:開放
受光スリット:開放
走査モード:FT
計数時間:2.0秒
ステップ幅:0.0200°
操作軸:2θ/θ
走査範囲:10.0000~70.0000°
積算回数:1回
単斜晶ZrO:JCPDSカード 00-037-1484
正方晶ZrO:JCPDSカード 00-050-1089
立方晶ZrO:JCPDSカード 00-049-1642
斜方晶SrZrO:JCPDSカード 00-044-0161
その後、各実施例及び比較例で得た研磨材料のX線回折の測定により得られた回折パターンから、斜方晶SrZrO(040)半価幅を測定した。結果を表2に示す。
なお、線源としてCuKα線を用いたX線回折において、単斜晶ZrOの最大ピークである(-111)面に由来するピークは2θ=28.14°付近にあり、正方晶ZrOの最大ピークである(011)面に由来するピークは2θ=30.15°付近にあり、立方晶ZrOの最大ピークである(111)面に由来するピークは2θ=30.12°付近にあり、斜方晶SrZrOの(040)面に由来するピークは2θ=44.04°付近にある。
(I) Measurement of full width at half maximum With respect to each of the Zr raw material (zirconium compound) and the polishing material, a powder X-ray diffraction pattern (also simply referred to as an X-ray diffraction pattern) was measured under the following conditions.
Machine used: RINT-UltimaIII, manufactured by Rigaku Corporation
Radiation source: CuKα
Voltage: 40 kV
Current: 40 mA
Sample rotation speed: non-rotating divergent slit: 1.00 mm
Divergence length restriction slit: 10 mm
Scattering slit: Open light receiving slit: Open scanning mode: FT
Counting time: 2.0 seconds Step width: 0.0200 °
Operation axis: 2θ / θ
Scanning range: 10.000 to 70.000 °
Integration count: 1 time Monoclinic ZrO 2 : JCPDS card 00-037-1484
Tetragonal ZrO 2 : JCPDS card 00-050-1089
Cubic ZrO 2 : JCPDS card 00-049-1642
Orthorhombic SrZrO 3 : JCPDS card 00-044-0161
Thereafter, the orthorhombic SrZrO 3 (040) half width was measured from the diffraction pattern obtained by the X-ray diffraction measurement of the polishing material obtained in each Example and Comparative Example. The results are shown in Table 2.
In the X-ray diffraction using CuKα ray as the radiation source, the peak derived from the (−111) plane, which is the maximum peak of monoclinic ZrO 2 , is in the vicinity of 2θ = 28.14 °, and the tetragonal ZrO 2 The peak derived from the (011) plane which is the maximum peak is in the vicinity of 2θ = 30.15 °, and the peak derived from the (111) plane which is the maximum peak of the cubic ZrO 2 is in the vicinity of 2θ = 30.12 °. The peak derived from the (040) plane of orthorhombic SrZrO 3 is in the vicinity of 2θ = 44.04 °.
(ii)元素分析
Zr原料(ジルコニウム化合物)及び研磨材料の各々について、蛍光X線分析装置(株式会社リガク製:型番 ZSX PrimusII)の含有元素スキャニング機能であるEZスキャンにより元素分析を行った。
具体的には、測定サンプル台にプレスしたサンプルをセットし、次の条件を選択(測定範囲:F-U、測定径:30mm、試料形態:酸化物、測定時間:長い、雰囲気:真空)することで、Zr原料中のSO含有量、並びに、研磨材料中のSr含有量(SrO換算)及びSO含有量を測定した。結果を表2に示す。
このようにして求めたZr原料中のSO含有量に基づき、Zr原料のZrO換算量100重量部に対するSOの含有量(重量部)を算出した。これを表2の「SO ※1(重量部)」欄に示す。
また、上記のようにして求めた研磨材料中のSO含有量に基づき、研磨材料に含まれるジルコニウム化合物のZrO換算量100重量部に対する、SOの含有量(重量部)を算出した。これを表2の「SO ※2(重量部)」欄に示す。
(Ii) Elemental analysis For each of the Zr raw material (zirconium compound) and the polishing material, elemental analysis was performed by EZ scan which is a contained element scanning function of a fluorescent X-ray analyzer (manufactured by Rigaku Corporation: model number ZSX Primus II).
Specifically, the pressed sample is set on the measurement sample stage, and the following conditions are selected (measurement range: FU, measurement diameter: 30 mm, sample form: oxide, measurement time: long, atmosphere: vacuum) Thus, the SO 3 content in the Zr raw material, the Sr content (SrO conversion) and the SO 3 content in the polishing material were measured. The results are shown in Table 2.
Based on the SO 3 content of Zr in the raw material obtained in this manner was calculated the content of SO 3 with respect to terms of ZrO 2 per 100 parts by weight of Zr raw material (parts by weight). This is shown in the column “SO 3 * 1 (parts by weight)” in Table 2.
Further, based on the SO 3 content in the polishing material obtained as described above, the SO 3 content (parts by weight) relative to 100 parts by weight of the zirconium compound equivalent in ZrO 2 contained in the polishing material was calculated. This is shown in the column “SO 3 * 2 (parts by weight)” in Table 2.
(iii)比表面積の測定
Zr原料(ジルコニウム化合物)及び研磨材料の各々について、以下の条件により比表面積の測定を行った。結果を表2に示す。
使用機:株式会社マウンテック社製 Macsorb Model HM-1220
雰囲気:窒素ガス(N
外部脱気装置の脱気条件:200℃-15分
比表面積測定装置本体の脱気条件:200℃-5分
(Iii) Measurement of specific surface area The specific surface area of each of the Zr raw material (zirconium compound) and the polishing material was measured under the following conditions. The results are shown in Table 2.
Used machine: Macsorb Model HM-1220 manufactured by Mountec Co., Ltd.
Atmosphere: Nitrogen gas (N 2 )
Degassing condition of external degassing device: 200 ° C-15 minutes Degassing condition of specific surface area measuring device body: 200 ° C-5 minutes
(iv)粒度分布のシャープさ(D90/D10
研磨材について、レーザー回折・散乱式粒度分析計(日機装株式会社製:型番 マイクロトラックMT3300EX)により粒度分布測定を行った。
まず、研磨材料0.1gにイオン交換水60mLを加え、ガラス棒を用いて室温にてよく撹拌することにより、研磨材料の懸濁液を準備した。なお、超音波を用いた分散操作は行わなかった。この後、イオン交換水180mLを試料循環器に準備し、透過率が0.71~0.94になるように上記懸濁液を滴下して、流速50%にて、超音波分散をさせずに循環させながら測定を行った。
(Iv) Sharpness of particle size distribution (D 90 / D 10 )
The abrasive was subjected to particle size distribution measurement using a laser diffraction / scattering particle size analyzer (manufactured by Nikkiso Co., Ltd .: Model No. Microtrack MT3300EX).
First, 60 mL of ion-exchanged water was added to 0.1 g of the polishing material, and a suspension of the polishing material was prepared by thoroughly stirring at room temperature using a glass rod. In addition, the dispersion | distribution operation using an ultrasonic wave was not performed. Thereafter, 180 mL of ion exchange water is prepared in a sample circulator, and the suspension is dropped so that the transmittance is 0.71 to 0.94, and ultrasonic dispersion is not performed at a flow rate of 50%. The measurement was carried out while circulating.
(v)ジルコニウム化合物(水酸化ジルコニウム)の示差熱・熱重量測定
ジルコニウム化合物に硫黄化合物が含まれる場合に研磨材料の研磨速度が低下する原因について調べるため、実施例1及び比較例1で用いたZr原料(水酸化ジルコニウム)の各々について、130℃で12時間乾燥させた後に、示差熱・熱重量分析(TG/DTA)を行った。
具体的には、以下の条件により示差熱・熱重量測定(TG/DTA)を行った。この測定結果を図1-1及び図1-2に示す。実施例1の「(3)乾燥工程」で得た混合物の乾燥物、及び、比較例1の「(3)乾燥工程」で得た混合物の乾燥物についても、同様に示差熱・熱重量測定(TG/DTA)を行った。この測定結果を図2-1及び図2-2に示す。
測定機:株式会社リガク製、示差熱・熱重量測定装置(型番:Thermo plus EVO2 TG8121)
昇温速度:10℃/分
測定温度範囲:30~1200℃
測定雰囲気:大気 200mL/分
リファレンス:Al
サンプル重量:10.0mg
試料容器:白金
(V) Differential thermal / thermogravimetric measurement of zirconium compound (zirconium hydroxide) In order to investigate the cause of the decrease in the polishing rate of the abrasive material when the zirconium compound contains a sulfur compound, it was used in Example 1 and Comparative Example 1. Each Zr raw material (zirconium hydroxide) was dried at 130 ° C. for 12 hours, and then subjected to differential thermal and thermogravimetric analysis (TG / DTA).
Specifically, differential heat / thermogravimetry (TG / DTA) was performed under the following conditions. The measurement results are shown in FIGS. 1-1 and 1-2. For the dried product of the mixture obtained in “(3) Drying step” of Example 1 and the dried product of the mixture obtained in “(3) Drying step” of Comparative Example 1, the differential thermal and thermogravimetric measurements were similarly performed. (TG / DTA) was performed. The measurement results are shown in FIGS. 2-1 and 2-2.
Measuring instrument: manufactured by Rigaku Corporation, differential thermal / thermogravimetric measuring device (model number: Thermo plus EVO2 TG8121)
Temperature increase rate: 10 ° C / min Measurement temperature range: 30-1200 ° C
Measurement atmosphere: air 200 mL / min Reference: Al 2 O 3
Sample weight: 10.0mg
Sample container: platinum
(vi)ガラス板研磨試験
1、まず各研磨材料を用いて研磨材スラリーを作製した。
具体的には、研磨材料の濃度が5.0重量%になるように、研磨材料をイオン交換水に添加した。更に、25℃にて10分間撹拌することにより分散し、水分散系の研磨材スラリーを作製した。
2、次に、以下の条件により、各研磨材スラリーを用いてガラス板の研磨を行った。
使用ガラス板:ソーダライムガラス(松浪硝子工業株式会社製、サイズ36×36×1.3mm 比重2.5g/cm
研磨機:卓上型研磨機(株式会社エム・エー・ティ製、MAT BC-15C、研磨定盤径300mmφ)
研磨パッド:発泡ポリウレタンパッド(ニッタ・ハース株式会社製、MHN-15A、セリア含浸なし)
研磨圧力:101g/cm
定盤回転数:70rpm
研磨材組成物の供給量:100mL/min
研磨時間:60min
3、ガラス板研磨試験前後のガラス板の重量を電子天秤で測定した。重量減少量、ガラス板の面積、ガラス板の比重からガラス板の厚さ減少量を算出し、研磨速度(μm/min)を算出した。
3枚のガラス板を同時に研磨し、60分研磨後にガラス板と研磨材スラリーを交換した。この操作を3回行い、計9枚の研磨速度を平均した値を各実施例及び比較例における研磨速度の値とし、結果を表2にまとめて示した。
研磨速度が0.29μm/min以上であれば極めて良好(◎)、0.22μm/min以上0.29μm/min未満であれば良好(○)、0.22μm/min未満であれば不良(×)である。
(Vi) Glass plate polishing test 1 First, an abrasive slurry was prepared using each polishing material.
Specifically, the polishing material was added to ion-exchanged water so that the concentration of the polishing material was 5.0% by weight. Furthermore, it was dispersed by stirring at 25 ° C. for 10 minutes to prepare a water-dispersed abrasive slurry.
2. Next, the glass plate was polished using each abrasive slurry under the following conditions.
Glass plate used: Soda lime glass (manufactured by Matsunami Glass Industry Co., Ltd., size 36 × 36 × 1.3 mm, specific gravity 2.5 g / cm 3 )
Polishing machine: Desktop polishing machine (manufactured by MT Corporation, MAT BC-15C, polishing plate diameter 300 mmφ)
Polishing pad: Polyurethane foam pad (Nitta Haas, MHN-15A, no ceria impregnation)
Polishing pressure: 101 g / cm 2
Plate rotation speed: 70rpm
Abrasive composition supply amount: 100 mL / min
Polishing time: 60 min
3. The weight of the glass plate before and after the glass plate polishing test was measured with an electronic balance. From the weight reduction amount, the area of the glass plate, and the specific gravity of the glass plate, the thickness reduction amount of the glass plate was calculated, and the polishing rate (μm / min) was calculated.
Three glass plates were polished at the same time, and after polishing for 60 minutes, the glass plate and the abrasive slurry were exchanged. This operation was performed three times, and a value obtained by averaging the polishing rate of a total of 9 sheets was used as the polishing rate value in each example and comparative example. The results are shown in Table 2.
Very good (◎) when the polishing rate is 0.29 μm / min or more, good (◯) when the polishing rate is 0.22 μm / min or more and less than 0.29 μm / min, and defective (<×). ).

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2中、「SO ※1(重量部)」は、Zr原料(ジルコニウム化合物)のZrO換算量100重量部に対する、該Zr原料に含まれる硫黄化合物のSO換算量を意味し、「SO ※2(重量部)」は、研磨材料に含まれるジルコニウム化合物のZrO換算量100重量部に対する、該研磨材料に含まれる硫黄化合物のSO換算量を意味する。 In Table 2, “SO 3 * 1 (parts by weight)” means the SO 3 equivalent of the sulfur compound contained in the Zr raw material with respect to 100 parts by weight of the Zr raw material (zirconium compound) in terms of ZrO 2. “SO 3 * 2 (part by weight)” means the SO 3 equivalent of the sulfur compound contained in the polishing material with respect to 100 parts by weight of the zirconium compound equivalent to ZrO 2 contained in the abrasive.
以上の実施例及び比較例より、以下のことが確認された。
実施例1で用いたジルコニウム化合物と、比較例1で用いたジルコニウム化合物とでは、主に、硫黄化合物の含有量が相違する。
この相違の下、示差熱・熱重量測定を行った結果を対比すると、図1-1及び図1-2より、いずれのジルコニウム化合物(水酸化ジルコニウム)も、重量変化を伴わない発熱ピークが観察された。このことは、発熱ピーク以下の温度では無定形の水酸化ジルコニウムが主成分であり、発熱ピークの温度を境に水酸化ジルコニウムが酸化ジルコニウムとして結晶化することを示すが、実施例1で用いた水酸化ジルコニウムの発熱ピークは416℃、比較例1で用いた水酸化ジルコニウムの発熱ピークは506℃であった。それゆえ、比較例1で用いた水酸化ジルコニウムは、実施例1で用いた水酸化ジルコニウムに比べて、結晶化に必要な温度がより高い、すなわち同じ焼成温度では結晶化しにくいことが分かった。
From the above examples and comparative examples, the following was confirmed.
The zirconium compound used in Example 1 and the zirconium compound used in Comparative Example 1 are mainly different in content of sulfur compounds.
Comparison of the results of differential thermal / thermogravimetric measurement under this difference shows that, from FIGS. 1-1 and 1-2, any zirconium compound (zirconium hydroxide) has an exothermic peak with no weight change. It was done. This indicates that amorphous zirconium hydroxide is a main component at a temperature below the exothermic peak, and that zirconium hydroxide crystallizes as zirconium oxide at the exothermic peak temperature. The exothermic peak of zirconium hydroxide was 416 ° C., and the exothermic peak of zirconium hydroxide used in Comparative Example 1 was 506 ° C. Therefore, it was found that the zirconium hydroxide used in Comparative Example 1 had a higher temperature required for crystallization than the zirconium hydroxide used in Example 1, that is, it was difficult to crystallize at the same firing temperature.
図2-1及び図2-2は、実施例1又は比較例1で用いたジルコニウム化合物(水酸化ジルコニウム)と、ストロンチウム化合物(炭酸ストロンチウム)との混合物の乾燥物(混合粉と称す)について、示差熱・熱重量測定を行った結果を示すグラフである。図2より、いずれの混合粉も、重量変化を伴わない発熱ピークが観察され、そのピーク温度の差から、比較例1の混合粉は、実施例1の混合粉に比べて、結晶化に必要な温度がより高い、すなわち同じ焼成温度では結晶化しにくいことが分かった。 FIGS. 2-1 and 2-2 show the dried product (called mixed powder) of a mixture of the zirconium compound (zirconium hydroxide) used in Example 1 or Comparative Example 1 and the strontium compound (strontium carbonate). It is a graph which shows the result of having performed differential heat and thermogravimetry. From FIG. 2, an exothermic peak without any weight change is observed in any of the mixed powders, and the mixed powder of Comparative Example 1 is necessary for crystallization compared to the mixed powder of Example 1 due to the difference in peak temperature. It has been found that crystallization is difficult at higher temperatures, ie, at the same firing temperature.
このように発熱ピークの温度が異なる原因は、比較例1で用いた水酸化ジルコニウムに含まれる硫黄化合物の量が、本発明で規定した範囲を超えるためであるが、このことは、最終的に得られる研磨材料の結晶性にも影響する。表2より、比較例1に係る研磨材料の斜方晶SrZrOの(040)面に由来するピークの半値幅とSSAは、実施例1に係る複合金属酸化物研磨材料に比べてそれぞれ増加している。これは、同じ950℃で焼成した場合の研磨材料の結晶性が低いことを示している。また、比較例1と実施例1とでは、研磨速度に著しい差が確認された。したがって、ジルコニウム化合物に含まれる硫黄化合物の含有量が本発明で規定した範囲を超えると、研磨材料の結晶性が低下し、研磨速度が低下すると考えられる。 The reason why the temperatures of the exothermic peaks are different is that the amount of the sulfur compound contained in the zirconium hydroxide used in Comparative Example 1 exceeds the range defined in the present invention. It also affects the crystallinity of the resulting abrasive material. From Table 2, the half width of the peak derived from the (040) plane of orthorhombic SrZrO 3 of the polishing material according to Comparative Example 1 and SSA increased as compared with the composite metal oxide polishing material according to Example 1. ing. This indicates that the crystallinity of the polishing material when fired at the same 950 ° C. is low. Further, a significant difference in polishing rate was confirmed between Comparative Example 1 and Example 1. Therefore, when the content of the sulfur compound contained in the zirconium compound exceeds the range specified in the present invention, it is considered that the crystallinity of the polishing material is lowered and the polishing rate is lowered.
比較例3~4に係る研磨材料は、実施例1に比べて焼成温度を増加させることで、結晶性を高めている。しかし、表2より、比較例3、4に係る研磨材料の斜方晶SrZrOの(040)面に由来するピークの半値幅とSSAは、実施例1に係る複合金属酸化物研磨材料のそれらと同程度であるにも関わらず、研磨速度が低い。これは、焼成温度を増加させることで研磨材料の結晶性は同程度となるものの、粒子が焼結しすぎたためと推測される。また、比較例2に係る研磨材料は、ジルコニウム化合物(水酸化ジルコニウム)を130℃で乾燥した後に、ストロンチウム化合物(炭酸ストロンチウム)との混合工程に供した点で、実施例1に係る研磨材料とは相違するが、表2より、この場合もジルコニウム化合物に含まれる硫黄化合物の量が本発明で規定した範囲を超えるため、研磨速度が充分なレベルに達しなかった。
以上のことから、本発明の製造方法は、セリウムフリーの研磨材料において良好な研磨速度を有する研磨材料を効率よく与えることができることが分かった。
The polishing materials according to Comparative Examples 3 to 4 have higher crystallinity by increasing the firing temperature compared to Example 1. However, from Table 2, the full width at half maximum of the peak derived from the (040) plane of orthorhombic SrZrO 3 of the polishing materials according to Comparative Examples 3 and 4 and SSA are those of the composite metal oxide polishing material according to Example 1. However, the polishing rate is low. This is presumably because the particles were sintered too much, although the crystallinity of the polishing material became comparable by increasing the firing temperature. Moreover, the polishing material according to Comparative Example 2 was the same as the polishing material according to Example 1 in that the zirconium compound (zirconium hydroxide) was dried at 130 ° C. and then subjected to a mixing step with a strontium compound (strontium carbonate). However, from Table 2, since the amount of the sulfur compound contained in the zirconium compound also exceeds the range defined in the present invention, the polishing rate did not reach a sufficient level.
From the above, it was found that the production method of the present invention can efficiently provide a polishing material having a good polishing rate in a cerium-free polishing material.
参考例1
実施例1で作製した複合金属酸化物研磨材料を用い、研磨材スラリーAを作製した。
具体的には、研磨材20.0gをイオン交換水380.0gに分散させ、25℃にて10分間撹拌した。このようにして研磨材スラリーAを得た。
研磨材スラリーAについて、以下の条件によりゼータ電位の測定を行った。この研磨材スラリーの、pHに対するゼータ電位の関係を図3に示す。また、研磨材スラリーAの等電点は6.2であった。ここで、等電点とは、研磨材スラリー中の砥粒(複合金属酸化物研磨材料)に帯びた電荷の代数和がゼロである点、すなわち砥粒に帯びた正電荷と負電荷とが等しくなる点をいい、その点における研磨材スラリーのpHで表すことができる。
Reference example 1
Using the composite metal oxide polishing material prepared in Example 1, an abrasive slurry A was prepared.
Specifically, 20.0 g of the abrasive was dispersed in 380.0 g of ion exchange water and stirred at 25 ° C. for 10 minutes. In this way, an abrasive slurry A was obtained.
For the abrasive slurry A, the zeta potential was measured under the following conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG. Moreover, the isoelectric point of the abrasive slurry A was 6.2. Here, the isoelectric point is the point where the algebraic sum of the charge on the abrasive grains (composite metal oxide polishing material) in the abrasive slurry is zero, that is, the positive and negative charges on the abrasive grains. The point which becomes equal is said and can be represented by the pH of the abrasive slurry at that point.
(ゼータ電位の測定条件)
測定機:大塚電子株式会社製、ゼータ電位測定システム、型番ELSZ-1
pHタイトレーター:大塚電子株式会社製、型番ELS-PT
研磨材スラリー6gをイオン交換水を用いて5倍希釈し、ガラス棒で撹拌しながら超音波洗浄機にて1分間分散させた。このスラリー10ccにイオン交換水50ccを加え、超音波ホモジナイザー(US-600、日本精機製作所製)を用いて、強度をV-LEVEL3に設定して1分間分散処理を行った。このようにして得たゼータ電位測定用研磨材スラリー30ccをゼータ電位測定機に充填した。
なお、後述するコロイダルシリカを用いた研磨材スラリーCは、研磨材スラリーC60ccを超音波ホモジナイザー(US-600、日本精機製作所製)を用いて、強度をV-LEVEL3に設定して1分間分散処理を行った。このようにして得たゼータ電位測定用研磨材スラリー30ccをゼータ電位測定機に充填した。
(Zeta potential measurement conditions)
Measuring instrument: Otsuka Electronics Co., Ltd., zeta potential measurement system, model number ELSZ-1
pH titrator: manufactured by Otsuka Electronics Co., Ltd., model number ELS-PT
6 g of the abrasive slurry was diluted 5 times with ion-exchanged water, and dispersed with an ultrasonic cleaner for 1 minute while stirring with a glass rod. 50 cc of ion-exchanged water was added to 10 cc of this slurry, and dispersion treatment was performed for 1 minute using an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Seisakusho) with the strength set to V-LEVEL3. A zeta potential measuring machine was charged with 30 cc of the abrasive slurry for zeta potential measurement thus obtained.
The abrasive slurry C using colloidal silica, which will be described later, was dispersed for 1 minute using an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Seisakusho) for 60 cc of the abrasive slurry C and setting the strength to V-LEVEL3. Went. A zeta potential measuring machine was charged with 30 cc of the abrasive slurry for zeta potential measurement thus obtained.
なお、研磨材スラリーのpH調整のために、必要に応じて以下のpH調整剤を用いた。
酸性側pH調整溶液:塩酸水溶液、0.1mol/L
アルカリ性側pH調整溶液:水酸化ナトリウム水溶液、1mol/L
In addition, in order to adjust the pH of the abrasive slurry, the following pH adjusters were used as necessary.
Acid side pH adjustment solution: hydrochloric acid aqueous solution, 0.1 mol / L
Alkaline side pH adjustment solution: sodium hydroxide aqueous solution, 1 mol / L
(1)第1研磨工程
上述のようにして得た研磨材スラリーAのゼータ電位が表3に示す値になるよう、スラリーのpHを調整した。このスラリーの存在下で、実施例1の「(vi)ガラス板研磨試験」と同様の研磨条件にてガラス板の研磨を行い、研磨速度を測定した。この工程での研磨速度及び研磨材スラリーAのpH値を表3に示す。更に、第1研磨工程後のガラス基板の表面粗さを、以下の方法に従って評価した。結果を表3に示す。
(2)第2研磨工程
上記第1研磨工程の後に研磨材スラリーAを取り出し、新しい研磨材スラリーAに切り替え、そのゼータ電位が表3に示す値になるようにスラリーのpHを調整した後、このスラリーの存在下で、第1研磨工程と同じ研磨条件にてガラス基板の研磨を行い、研磨速度を測定した。この工程での研磨速度及び研磨材スラリーAのpH値を表3に示す。更に、第2研磨工程後のガラス基板の表面粗さを、以下の方法に従って評価した。結果を表3に示す。
(1) First Polishing Step The pH of the slurry was adjusted so that the zeta potential of the abrasive slurry A obtained as described above became a value shown in Table 3. In the presence of this slurry, the glass plate was polished under the same polishing conditions as in “(vi) Glass plate polishing test” of Example 1, and the polishing rate was measured. Table 3 shows the polishing rate and the pH value of the abrasive slurry A in this step. Furthermore, the surface roughness of the glass substrate after the first polishing step was evaluated according to the following method. The results are shown in Table 3.
(2) Second polishing step After the first polishing step, the abrasive slurry A is taken out, switched to a new abrasive slurry A, and after adjusting the pH of the slurry so that its zeta potential becomes the value shown in Table 3, In the presence of this slurry, the glass substrate was polished under the same polishing conditions as in the first polishing step, and the polishing rate was measured. Table 3 shows the polishing rate and the pH value of the abrasive slurry A in this step. Furthermore, the surface roughness of the glass substrate after the second polishing step was evaluated according to the following method. The results are shown in Table 3.
(ガラス基板の表面平滑性の測定)
各研磨工程後のガラス板について、以下の条件により表面粗さの測定を行った。
測定機:ZYGO株式会社製、白色干渉顕微鏡、型番NewViewTM7100
水平解像度:<0.1nm
対物レンズ:50倍
フィルター:なし
測定視野サイズ:X=186μm、Y=139μm
評価方法:研磨後のガラス基板に対し、中心点、及び、中心点から半径6mm、12mmの同心円とガラス基板の対角線の交点の計9点のRaを測定し、平均値を算出した。この操作を上記の研磨速度の測定に用いた計9枚のガラス基板に対して行い、各ガラス基板のRaの平均値を用いて平均することにより、表面粗さを評価した。
(Measurement of surface smoothness of glass substrate)
About the glass plate after each grinding | polishing process, the surface roughness was measured on condition of the following.
Measuring instrument: manufactured by ZYGO Corporation, white interference microscope, model number NewView 7100
Horizontal resolution: <0.1nm
Objective lens: 50 times filter: None Measurement field size: X = 186 μm, Y = 139 μm
Evaluation method: For the polished glass substrate, Ra was measured at a total of 9 points including the center point and the intersection of a concentric circle having a radius of 6 mm and 12 mm from the center point and the diagonal line of the glass substrate, and the average value was calculated. This operation was performed on a total of nine glass substrates used for the above-described polishing rate measurement, and the surface roughness was evaluated by averaging using the average value of Ra of each glass substrate.
比較参考例1
(1)第1研磨工程
研磨材としてガラス研磨用酸化セリウム質研磨材(昭和電工株式会社製、SHOROX(R)A-10、酸化セリウム含有量:60重量%、等電点:10.4)を用いたこと以外は、参考例1と同様にして研磨材スラリーBを作製した。この研磨材スラリーBのゼータ電位が表3に示す値になるよう、スラリーのpHを調整した後、このスラリーの存在下で、実施例1の「(vi)ガラス板研磨試験」と同様の研磨条件にてガラス板の研磨を行い、研磨速度を測定した。この工程での研磨速度及び研磨材スラリーBのpH値を表3に示す。更に、第1研磨工程後のガラス基板の表面粗さを、参考例1と同様に評価した。結果を表3に示す。
(2)第2研磨工程
上記第1研磨工程で用いた研磨材スラリーBを研磨機から取り出し、研磨機の洗浄を行った。
別途、コロイダルシリカ(扶桑化学工業株式会社、クォートロン(R)PL-7、等電点:5.8)52.2gをイオン交換水347.8gに分散させ、25℃にて10分間撹拌した。これを研磨材スラリーCとして用意した。この別途用意しておいた研磨材スラリーCのゼータ電位が表3に示す値になるようにpHを調整した後、この研磨材スラリーCの存在下で第1研磨工程と同じ研磨条件にてガラス基板の研磨を行った。この工程での研磨材スラリーCのpH値を表3に示す。また、第2研磨工程での研磨速度、及び、第2研磨工程後のガラス基板の表面粗さを、参考例1と同様に評価した。結果を表3に示す。
なお、研磨材スラリーB、Cそれぞれの、pHに対するゼータ電位の関係を図3に示す。
Comparative Reference Example 1
(1) A cerium oxide abrasive for glass polishing as an abrasive for the first polishing process (Showa Denko KK, SHOROX (R) A-10, cerium oxide content: 60% by weight, isoelectric point: 10.4) An abrasive slurry B was prepared in the same manner as in Reference Example 1 except that was used. After adjusting the pH of the slurry so that the zeta potential of this abrasive slurry B becomes the value shown in Table 3, in the presence of this slurry, polishing similar to “(vi) Glass plate polishing test” of Example 1 The glass plate was polished under the conditions, and the polishing rate was measured. Table 3 shows the polishing rate and the pH value of the abrasive slurry B in this step. Furthermore, the surface roughness of the glass substrate after the first polishing step was evaluated in the same manner as in Reference Example 1. The results are shown in Table 3.
(2) Second polishing step The abrasive slurry B used in the first polishing step was taken out from the polishing machine, and the polishing machine was cleaned.
Separately, 52.2 g of colloidal silica (Fuso Chemical Co., Ltd., Quarton (R) PL-7, isoelectric point: 5.8) was dispersed in 347.8 g of ion-exchanged water and stirred at 25 ° C. for 10 minutes. This was prepared as an abrasive slurry C. After adjusting the pH so that the zeta potential of the separately prepared abrasive slurry C becomes the value shown in Table 3, the glass is subjected to the same polishing conditions as in the first polishing step in the presence of the abrasive slurry C. The substrate was polished. Table 3 shows the pH value of the abrasive slurry C in this step. Further, the polishing rate in the second polishing step and the surface roughness of the glass substrate after the second polishing step were evaluated in the same manner as in Reference Example 1. The results are shown in Table 3.
In addition, the relationship of the zeta potential with respect to pH of each of the abrasive slurry B and C is shown in FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
上記参考例1及び比較参考例1より以下のことが確認された。
参考例1と比較参考例1とでは、最終的に得られた基板(第2研磨工程後の基板)の表面粗さはほぼ同等であるにも関わらず、参考例1では、比較参考例1に比べて研磨速度が著しく向上されている。したがって、上述した好ましい研磨方法(すなわち、本発明の複合金属酸化物研磨材料を含むスラリーのゼータ電位が正となる条件下で負帯電性基板を研磨する研磨工程aと、該研磨材スラリーのゼータ電位が負となる条件下で負帯電性基板を研磨する研磨工程bとを、それぞれ少なくとも1回ずつ実施する研磨方法)は、セリウムフリーの研磨材料において高い研磨速度と優れた表面平滑性とを実現できることが分かった。また、比較参考例1においては、第1研磨工程では酸化セリウム系の研磨材を、第2研磨工程ではコロイダルシリカを使用しているため、研磨機の洗浄作業等を行う必要があったが、参考例1では第1研磨工程と第2研磨工程とで同種類の研磨材スラリーAを使用しているため、研磨機の洗浄作業等が不要となり、作業面、設備面で非常に有利であった。
From the above Reference Example 1 and Comparative Reference Example 1, the following was confirmed.
In Reference Example 1 and Comparative Reference Example 1, the surface roughness of the finally obtained substrate (the substrate after the second polishing step) is almost equal, but in Reference Example 1, Comparative Reference Example 1 The polishing rate is remarkably improved as compared with FIG. Therefore, the preferred polishing method described above (that is, the polishing step a for polishing the negatively chargeable substrate under the condition that the zeta potential of the slurry containing the composite metal oxide polishing material of the present invention is positive, and the zeta of the abrasive slurry) A polishing method in which the polishing step b for polishing the negatively chargeable substrate under a condition where the potential is negative is performed at least once each in a cerium-free polishing material with a high polishing rate and excellent surface smoothness. It turns out that it can be realized. Further, in Comparative Reference Example 1, since a cerium oxide-based abrasive was used in the first polishing step and colloidal silica was used in the second polishing step, it was necessary to perform a cleaning operation of the polishing machine, In Reference Example 1, since the same type of abrasive slurry A is used in the first polishing step and the second polishing step, the cleaning work of the polishing machine is unnecessary, which is very advantageous in terms of work and equipment. It was.
表には示していないものの、参考例1の第2研磨工程で、新しい研磨材スラリーAに切り替えず、第1研磨工程で使用した研磨材スラリーAをそのまま連続使用した場合でも、研磨速度及び得られる基板の表面平滑性に殆ど影響を与えないことを確認している。 Although not shown in the table, even when the abrasive slurry A used in the first polishing step is continuously used as it is without switching to the new abrasive slurry A in the second polishing step of Reference Example 1, the polishing rate and the gain are obtained. It has been confirmed that there is almost no influence on the surface smoothness of the substrate.

Claims (5)

  1. ストロンチウム化合物とジルコニウム化合物とを混合する混合工程と、
    該混合工程により得られた混合物を焼成する焼成工程とを含む複合金属酸化物研磨材料の製造方法であって、
    該ジルコニウム化合物に含まれる硫黄化合物のSO換算量は、該ジルコニウム化合物のZrO換算量100重量部に対し、2.0重量部以下である
    ことを特徴とする複合金属酸化物研磨材料の製造方法。
    A mixing step of mixing a strontium compound and a zirconium compound;
    A method for producing a composite metal oxide polishing material comprising a firing step of firing the mixture obtained by the mixing step,
    The amount of sulfur compound contained in the zirconium compound in terms of SO 3 is 2.0 parts by weight or less with respect to 100 parts by weight in terms of ZrO 2 of the zirconium compound. Method.
  2. 前記混合工程におけるストロンチウム化合物は、炭酸ストロンチウム及び水酸化ストロンチウムからなる群から選択される少なくとも1種である
    ことを特徴とする請求項1に記載の複合金属酸化物研磨材料の製造方法。
    The method for producing a composite metal oxide polishing material according to claim 1, wherein the strontium compound in the mixing step is at least one selected from the group consisting of strontium carbonate and strontium hydroxide.
  3. 前記混合工程におけるジルコニウム化合物は、炭酸ジルコニウム及び水酸化ジルコニウムからなる群から選択される少なくとも1種である
    ことを特徴とする請求項1又は2に記載の複合金属酸化物研磨材料の製造方法。
    The method for producing a composite metal oxide polishing material according to claim 1 or 2, wherein the zirconium compound in the mixing step is at least one selected from the group consisting of zirconium carbonate and zirconium hydroxide.
  4. 前記焼成工程における焼成温度は、800℃を超えて1500℃以下である
    ことを特徴とする請求項1~3のいずれかに記載の複合金属酸化物研磨材料の製造方法。
    The method for producing a composite metal oxide polishing material according to any one of claims 1 to 3, wherein a firing temperature in the firing step is higher than 800 ° C and not higher than 1500 ° C.
  5. 複合金属酸化物研磨材料であって、
    該複合金属酸化物研磨材料に含まれる硫黄化合物のSO換算量が、該複合金属酸化物研磨材料に含まれるジルコニウム化合物のZrO換算量100重量部に対し、1.2重量部以下である
    ことを特徴とする複合金属酸化物研磨材料。
    A composite metal oxide polishing material comprising:
    The SO 3 equivalent of the sulfur compound contained in the composite metal oxide polishing material is 1.2 parts by weight or less with respect to 100 parts by weight of the zirconium compound equivalent to ZrO 2 contained in the composite metal oxide polishing material. A composite metal oxide polishing material characterized by the above.
PCT/JP2016/050881 2015-02-26 2016-01-13 Production method of composite metal oxide polishing material, and composite metal oxide polishing material WO2016136314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-036635 2015-02-26
JP2015036635A JP6458554B2 (en) 2015-02-26 2015-02-26 Method for producing composite metal oxide polishing material and composite metal oxide polishing material

Publications (1)

Publication Number Publication Date
WO2016136314A1 true WO2016136314A1 (en) 2016-09-01

Family

ID=56789392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050881 WO2016136314A1 (en) 2015-02-26 2016-01-13 Production method of composite metal oxide polishing material, and composite metal oxide polishing material

Country Status (3)

Country Link
JP (1) JP6458554B2 (en)
TW (1) TWI678352B (en)
WO (1) WO2016136314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110256969A (en) * 2019-05-29 2019-09-20 湖南皓志科技股份有限公司 A kind of smalt fine polishing liquid and its preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075022A1 (en) * 2007-12-10 2009-06-18 Asahi Glass Company, Limited Ceria-zirconia solid solution crystal fine grain and process for producing the same
JP2013082050A (en) * 2011-10-12 2013-05-09 Japan Fine Ceramics Center Polishing material, polishing composition, and polishing method
WO2015129776A1 (en) * 2014-02-27 2015-09-03 堺化学工業株式会社 Method for producing composite metal oxide polishing material, and composite metal oxide polishing material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011229A (en) * 1983-06-27 1985-01-21 Sony Corp Manufacture of fine srzro3 particle
US5669941A (en) * 1996-01-05 1997-09-23 Minnesota Mining And Manufacturing Company Coated abrasive article
WO2015118927A1 (en) * 2014-02-06 2015-08-13 アサヒ化成工業株式会社 Polishing abrasive particle, production method therefor, polishing method, polishing device, and slurry
JP6731701B2 (en) * 2014-02-06 2020-07-29 アサヒ化成工業株式会社 Abrasive grain for polishing, its manufacturing method, polishing method, polishing apparatus and slurry
JP5997235B2 (en) * 2014-11-26 2016-09-28 アサヒ化成工業株式会社 Composite abrasive, manufacturing method thereof, polishing method and polishing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075022A1 (en) * 2007-12-10 2009-06-18 Asahi Glass Company, Limited Ceria-zirconia solid solution crystal fine grain and process for producing the same
JP2013082050A (en) * 2011-10-12 2013-05-09 Japan Fine Ceramics Center Polishing material, polishing composition, and polishing method
WO2015129776A1 (en) * 2014-02-27 2015-09-03 堺化学工業株式会社 Method for producing composite metal oxide polishing material, and composite metal oxide polishing material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONMA, T. ET AL.: "Development of SrZr03/Zr02 nano-composite abrasive for glass polishing", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 120, pages 295 - 299 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110256969A (en) * 2019-05-29 2019-09-20 湖南皓志科技股份有限公司 A kind of smalt fine polishing liquid and its preparation method

Also Published As

Publication number Publication date
JP2016155986A (en) 2016-09-01
TW201638047A (en) 2016-11-01
JP6458554B2 (en) 2019-01-30
TWI678352B (en) 2019-12-01

Similar Documents

Publication Publication Date Title
TWI554601B (en) Abrasive and polishing composition
KR102090494B1 (en) Cerium abrasive and manufacturing method
JP5979340B1 (en) Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
JP2020536992A (en) Compositions for performing material removal operations and methods for forming them
JP2012011526A (en) Abrasive and manufacturing method thereof
JP5278631B1 (en) Composite particles for glass polishing
JP6460090B2 (en) Method for producing composite metal oxide polishing material and composite metal oxide polishing material
JP2017001927A (en) Composite particle for polishing, manufacturing method of composite particle for polishing and slurry for polishing
JP5883609B2 (en) Polishing material, polishing composition and polishing method
WO2016136447A1 (en) Negatively charged substrate polishing method and manufacturing method of negatively charged substrate with high surface smoothness
JP6458554B2 (en) Method for producing composite metal oxide polishing material and composite metal oxide polishing material
JP2007061989A (en) Polishing composite-oxide particle and slurry abrasive
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
KR20170077492A (en) Method of manufacturing cerium based complex polishing particle, the cerium based complex polishing particle thereby and slurry composition comprising the cerium based complex polishing particle
JP2007084755A (en) Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material
JP5726612B2 (en) Polishing material, polishing composition and polishing method
KR101196757B1 (en) Method for preparing cerium oxide for high-accurate polishing
KR101701005B1 (en) Cerium oxide based polishing particle, slurry comprising the same and the manufacturing method thereof
JP5726501B2 (en) Polishing material, polishing composition and polishing method
JP6533995B2 (en) Method of manufacturing composite metal oxide polishing material and composite metal oxide polishing material
JP5627108B2 (en) Abrasive
JP2015140402A (en) Free abrasive grain, abrasive material for polishing free abrasive grain and manufacturing method therefor
JP2014084420A (en) Manganese oxide polishing agent for free abrasive grain polishing, and method for producing the agent
KR100697304B1 (en) Sheet-Shaped Kaolin and Cerium Oxide Complex Abrasive Material and Method for Manufacturing the same
JP2014101488A (en) Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755064

Country of ref document: EP

Kind code of ref document: A1