JP2007084755A - Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material - Google Patents

Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material Download PDF

Info

Publication number
JP2007084755A
JP2007084755A JP2005277806A JP2005277806A JP2007084755A JP 2007084755 A JP2007084755 A JP 2007084755A JP 2005277806 A JP2005277806 A JP 2005277806A JP 2005277806 A JP2005277806 A JP 2005277806A JP 2007084755 A JP2007084755 A JP 2007084755A
Authority
JP
Japan
Prior art keywords
polishing
cerium
composite
particle
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005277806A
Other languages
Japanese (ja)
Inventor
Atsushi Hatakeyama
敦 畠山
Itaru Oshita
格 大下
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005277806A priority Critical patent/JP2007084755A/en
Publication of JP2007084755A publication Critical patent/JP2007084755A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite oxide particle for polishing, having fine particle diameter and sharp distribution of the particle diameters as a particle for polishing achieving both of high profile irregularity and high-speed polishing efficiency, and further having high crystallinity and high purity. <P>SOLUTION: The composite oxide particle for polishing comprises a composite cerium oxide particle obtained by forming a solid solution of cerium oxide and aluminum, and is regulated so that the atomic ratio ä[Al]/[Ce] (wherein, [Al] mol% is the proportion of the Al in the composite cerium particle; and [Ce] mol% is the proportion of the cerium)} of the aluminum to the cerium which are the constituent elements of the particle may be within the range of 0.01-1, and the average primary particle diameter may be within the range of 1-200 nm. The particle is produced as follows. An aqueous solution containing a cerium ion and an aluminum ion is added to an aqueous alkali solution containing a hydroxyalkylamine, and the obtained precipitate is subjected to heat treatment within a temperature range of 110-300°C in the presence of water. The resultant precipitate is subjected to heat treatment in air. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばガラス、レンズ、半導体ウエハなど、シリカを主成分とする物質からなる部材の表面研磨に好適に使用しうる研磨用複合酸化物粒子に関する。   The present invention relates to a composite oxide particle for polishing that can be suitably used for surface polishing of a member made of a substance mainly composed of silica, such as glass, a lens, and a semiconductor wafer.

近年、シリコンウエハや水晶ウエハの研削、さらにはシリコンウエハ等の表面に形成した金属膜やセラミックス膜の研磨などにアルミナ系やシリコン系のスラリーが用いられてきたが、このような高い面精度が要求される部材に対しては、酸化セリウムスラリーによるCMP(Chemical Mechanical Polishing )研磨が行われることも多い。   In recent years, alumina-based and silicon-based slurries have been used for grinding silicon wafers and quartz wafers, as well as for polishing metal films and ceramic films formed on the surface of silicon wafers. For required members, CMP (Chemical Mechanical Polishing) polishing with cerium oxide slurry is often performed.

このような精密研磨用途に使用される酸化セリウムは、モナザイト、バストネサイト等の天然鉱物を出発原料とし、これを焼成・粉砕して製造されることが多い。また、セリウムイオンを含む金属塩溶液をアルカリ水溶液に添加してセリウムの水酸化物を沈殿させ、得られた沈殿物に焼成による脱水処理を施して製造される場合もある。これらの研磨材は、研磨材成分である酸化セリウムとガラス等の被研磨材の成分であるシリカとの固相反応(すなわちケミカル作用)を利用したものであることは、現象論的ではあるが公知である。   The cerium oxide used for such precision polishing is often produced by using natural minerals such as monazite and bastonite as a starting material, and firing and pulverizing it. In some cases, a metal salt solution containing cerium ions is added to an alkaline aqueous solution to precipitate cerium hydroxide, and the resulting precipitate is subjected to dehydration treatment by baking. It is phenomenologically that these abrasives use a solid phase reaction (that is, a chemical action) between cerium oxide, which is an abrasive component, and silica, which is a component of an abrasive material such as glass. It is known.

一方、特許文献1には、研磨液や研磨シート等に用いるのに好適な粒子として、結晶性及び純度の高いナノ微粒子の板状酸化セリウム等が提案されており、併せて、このような酸化セリウム粒子等を得るための方法も開示されている。   On the other hand, Patent Document 1 proposes nanocrystalline plate-like cerium oxide having high crystallinity and purity as particles suitable for use in polishing liquids, polishing sheets, and the like. A method for obtaining cerium particles and the like is also disclosed.

特開2003−206475号公報JP 2003-206475 A

上述した焼成・粉砕あるいは沈殿物の焼成脱水処理などを経て製造される従来の酸化セリウム粒子(研磨用の酸化セリウム砥粒)には、以下に述べるように粒子径、不純物、結晶性の点でそれぞれ問題があった。   Conventional cerium oxide particles (cerium oxide abrasive grains for polishing) produced through the above-described firing / pulverization or firing dehydration treatment of precipitates, as described below, in terms of particle diameter, impurities, and crystallinity. Each had problems.

すなわち、上記従来法により得られる酸化セリウムは、粒子サイズがミクロンオーダーであったため、しばしば被研磨材にスクラッチと称される傷が残ることがあった。また、従来の製法は、基本的には微粒子化するために機械的な粉砕を採用していることから、特定の粒子形状のものを得ることはできず、粒子径分布のシャープなものを得ることも困難であった。さらに、機械的な衝撃が加わることにより、酸化セリウム粒子に歪みが入りやすく、粒子の結晶性が低下するという問題があった。この種の結晶性は、研磨材の研磨能率に影響を及ぼす極めて重要な因子であるが、これまでの製法では、X線回折などにより酸化セリウムにもとづくスペクトルを示すものであっても、研磨材としての結晶性という点で満足できるものは得られていない。   That is, since the cerium oxide obtained by the conventional method has a particle size on the order of microns, scratches often referred to as scratches may remain on the material to be polished. In addition, since the conventional manufacturing method basically employs mechanical pulverization to make fine particles, it is impossible to obtain a specific particle shape, and a sharp particle size distribution is obtained. It was also difficult. Furthermore, when mechanical impact is applied, there is a problem that the cerium oxide particles are easily distorted and the crystallinity of the particles is lowered. This kind of crystallinity is a very important factor that affects the polishing efficiency of the abrasive. However, in the conventional manufacturing method, even if a spectrum based on cerium oxide is exhibited by X-ray diffraction or the like, the abrasive As for the crystallinity, the satisfactory one has not been obtained.

加えて、酸化セリウム粒子は、その製造法にもよるが、一般に原材料に元々含まれるセリウム以外の元素がセリウムと同時に存在しやすいことから、高純度のものが得られにくいという問題があった。この純度は、酸化セリウム粒子を化学研磨液などに使用する場合には特に問題となる。   In addition, although cerium oxide particles depend on the production method, generally, elements other than cerium originally contained in the raw material are likely to be present at the same time as cerium, so that there is a problem that it is difficult to obtain high-purity particles. This purity is particularly problematic when cerium oxide particles are used in a chemical polishing liquid or the like.

これらに対し、特許文献1記載の方法によれば、結晶性および純度の高いナノ微粒子の板状酸化セリウムが得られる。しかし、得られた酸化セリウム及びその反応生成物の硬度は、ガラスの硬度と同等かそれよりも低いので、より硬度の高い被研磨材(ガラスの中でも高硬度のもの)に対しては研磨能率の点で未だ十分とは言えない。   On the other hand, according to the method described in Patent Document 1, nanoparticulate plate-like cerium oxide having high crystallinity and purity can be obtained. However, the hardness of the obtained cerium oxide and its reaction product is equal to or lower than the hardness of glass, so the polishing efficiency is higher for materials with higher hardness (higher hardness among glass). However, it is still not enough.

本発明は、このような状況に鑑みてなされたもので、高面精度と高速の研磨能率との両方を確保できる研磨用粒子として、粒子径が微細でシャープな粒度分布をもち、しかも高結晶性、高純度でもある研磨用複合酸化物粒子を実現することを目的とする。   The present invention has been made in view of such circumstances, and as a polishing particle capable of ensuring both high surface accuracy and high-speed polishing efficiency, the particle diameter is fine and has a sharp particle size distribution, and high crystallinity. The purpose is to realize composite oxide particles for polishing that are both highly resistant and highly pure.

上記の目的を達成するため、本発明の研磨用複合酸化物粒子(請求項1)は、酸化セリウムにアルミニウムを固溶、あるいは酸化セリウム粒子の表面近傍に酸化アルミニウムまたは酸化水酸化アルミニウムとして偏在させた複合酸化セリウム粒子からなり、その構成元素であるアルミニウムとセリウムとの原子比(複合酸化セリウム粒子中のAl量を〈Al〉mol%とし且つCe量を〈Ce〉mol%としたときの〈Al〉/〈Ce〉)が0.01から1の範囲にあり、かつ平均一次粒子径が1 nmから200nmの範囲にある構成としたものである。また、請求項2〜4に係る発明は、この研磨用複合酸化物粒子を、液状の媒体(請求項3に係る発明では水)に分散させてスラリー状研磨材としたものである。   In order to achieve the above object, the composite oxide particles for polishing according to the present invention (Claim 1) have aluminum dissolved in cerium oxide, or unevenly distributed as aluminum oxide or aluminum oxide hydroxide near the surface of the cerium oxide particles. The atomic ratio between the constituent elements aluminum and cerium (the amount of Al in the composite cerium oxide particles is <Al> mol% and the amount of Ce is <Ce> mol% < Al> / <Ce>) is in the range of 0.01 to 1, and the average primary particle diameter is in the range of 1 nm to 200 nm. In the inventions according to claims 2 to 4, the abrasive composite oxide particles are dispersed in a liquid medium (water in the invention according to claim 3) to form a slurry-like abrasive.

ここで、上記平均一次粒子径とは、粒子を透過型電子顕微鏡(TEM)にて観察してランダムに200個の粒子を選び出し、その粒子径を平均したものをいう。複合酸化セリウム粒子の形状は特に限定されず、例えば球状、板状、直方体状などが挙げられるが、研磨効率の面から言えば、球状であるよりもエッジによる研磨効果が期待できる板状であるのが好ましい。また、本発明の研磨用複合酸化物粒子におけるアルミニウム(複合酸化物粒子中のアルミニウム)は、必ずしも全体に均一に固溶している必要はなく、表面近傍に偏析していてもよい。   Here, the average primary particle diameter means a particle obtained by observing particles with a transmission electron microscope (TEM) and randomly selecting 200 particles and averaging the particle diameters. The shape of the composite cerium oxide particles is not particularly limited, and examples thereof include a spherical shape, a plate shape, and a rectangular parallelepiped shape. From the viewpoint of polishing efficiency, the shape is a plate shape that can be expected to have a polishing effect by an edge rather than a spherical shape. Is preferred. Further, the aluminum in the composite oxide particles for polishing of the present invention (aluminum in the composite oxide particles) does not necessarily need to be uniformly dissolved in the whole, and may be segregated in the vicinity of the surface.

上記の構成により、研磨用粒子(砥粒)の機械的硬度を上げて優れた研磨力と精密研磨能とを同時に実現することが可能となる。本発明では酸化セリウムに加えてアルミニウムを使用するが、アルミニウムは金属元素としてありふれたものであり、コストの面でも非常に優れている。   With the above-described configuration, it is possible to increase the mechanical hardness of the abrasive particles (abrasive grains) and simultaneously realize excellent polishing power and precision polishing ability. In the present invention, aluminum is used in addition to cerium oxide, but aluminum is a common metal element and is extremely excellent in terms of cost.

また、本発明の方法は、少なくとも下記の(1)〜(4)の工程を経ることによって、上記の研磨用複合酸化物粒子を製造することとしたものである。
(1) オキシアルカリアミンを含むアルカリ水溶液に、セリウムイオンとアルミニウムイオンとを含む水溶液を添加して、セリウムおよびアルミニウムを含む水酸化物あるいは水和物の沈殿を生成させる工程。
(2) (1)の工程で得られた水酸化物あるいは水和物の沈殿物を、pH7〜12に調整する工程。
(3) (2)の工程で得られたpH調整後の沈殿物を、水の存在下で110〜300℃の温度範囲で水熱処理する工程。
(4) (3)の工程で得られた処理物を、空気中300〜1200℃の温度範囲で加熱処理する工程。
Moreover, the method of this invention manufactures said composite oxide particle for grinding | polishing by passing through the process of following (1)-(4) at least.
(1) A step of adding an aqueous solution containing cerium ions and aluminum ions to an alkaline aqueous solution containing oxyalkaliamines to generate a hydroxide or hydrate precipitate containing cerium and aluminum.
(2) A step of adjusting the hydroxide or hydrate precipitate obtained in the step (1) to pH 7-12.
(3) A step of hydrothermally treating the pH-adjusted precipitate obtained in the step (2) in the temperature range of 110 to 300 ° C. in the presence of water.
(4) The process of heat-processing the processed material obtained at the process of (3) in the temperature range of 300-1200 degreeC in the air.

本発明の研磨用複合酸化物粒子(複合酸化セリウム粒子)によれば、酸化セリウムのケミカル作用による高い面精度と、複合酸化セリウムのメカノ作用による高い研磨能率とを併せ持った研磨材を実現することができる。   According to the composite oxide particles for polishing (composite cerium oxide particles) of the present invention, it is possible to realize an abrasive having both high surface accuracy due to the chemical action of cerium oxide and high polishing efficiency due to the mechano action of composite cerium oxide. Can do.

本発明方法によれば、粒子の形状を整え、水酸化物あるいは水和物から脱水するための水熱処理工程と、この工程で得られた複合酸化セリウム粒子を加熱処理する工程とによって、一次粒子径を制御できる。その結果、粒子径分布が均一で、焼結、凝集が少なく、結晶性の良好な複合酸化セリウム粒子が得られる。また、オキシアルカリアミンをアルカリ溶液に加えておくことで形状を板状化すれば、より高い研磨能率が期待できる。   According to the method of the present invention, the primary particles are prepared by a hydrothermal treatment step for adjusting the shape of the particles and dehydrating from the hydroxide or hydrate, and a step for heating the composite cerium oxide particles obtained in this step. The diameter can be controlled. As a result, composite cerium oxide particles having a uniform particle size distribution, less sintering and aggregation, and good crystallinity can be obtained. Further, if the shape is made plate-like by adding oxyalkaliamine to the alkaline solution, higher polishing efficiency can be expected.

この製造方法は、従来の固相反応製造法とは全く異なる新規な製造方法であり、水熱処理工程を経ることによって原子オーダーでアルミニウム元素が酸化セリウム中に固溶され、その結果得られる複合酸化セリウム粒子は、平均粒子径が1nmから200nmの範囲にある極めて結晶性の良好なものである。この複合酸化セリウム粒子を砥粒として用いれば同方法で作製した酸化セリウムよりも高い研磨能率が得られ、また後述する比較例2のような従来法で作られた酸化セリウムと比較しても、さらに高い研磨能率が得られる。本発明で得られた複合酸化セリウム粒子は、研磨シートや研磨液用の研磨材として特に適したものであり、その産業上の利用価値は極めて大きい。   This manufacturing method is a novel manufacturing method that is completely different from the conventional solid-phase reaction manufacturing method. By passing through a hydrothermal treatment step, aluminum element is dissolved in cerium oxide in atomic order, and the resulting composite oxidation The cerium particles have extremely good crystallinity with an average particle diameter in the range of 1 nm to 200 nm. If this composite cerium oxide particle is used as an abrasive, a polishing efficiency higher than that of cerium oxide produced by the same method can be obtained, and even compared with cerium oxide produced by a conventional method such as Comparative Example 2 described later, Higher polishing efficiency can be obtained. The composite cerium oxide particles obtained in the present invention are particularly suitable as abrasives for polishing sheets and polishing liquids, and their industrial utility value is extremely high.

本発明方法では、まずオキシアルカリアミンを含むアルカリ水溶液に、セリウムイオンとアルミニウムイオンとを含む水溶液を添加し、得られた沈殿物を、水の存在下で110〜300℃の温度範囲で加熱処理することにより、目的とする形状、粒子径に整え、次いで、この沈殿物を空気中加熱処理することにより、粒子径分布が均一で、焼結、凝集が極めて少なく、結晶性の良好な複合酸化セリウム粒子を得る。   In the method of the present invention, first, an aqueous solution containing cerium ions and aluminum ions is added to an alkaline aqueous solution containing oxyalkaliamine, and the resulting precipitate is heated in the temperature range of 110 to 300 ° C. in the presence of water. By adjusting the shape and particle size to the target, and then heat-treating this precipitate in air, the particle size distribution is uniform, sintering and agglomeration are extremely small, and the composite oxidation has good crystallinity. Obtain cerium particles.

このように複合酸化セリウム粒子の製造において、形状、粒子径を整えることを目的とする工程と、その材料が本来有する物性を最大限に引き出すことを目的とする工程とを分離することで、従来の製造方法では不可能であった、粒子の形状が板状で、かつ平均一次粒子径が1nmから200nmの範囲にある複合酸化セリウム粒子を得ることができる。このようにして得られた本発明に係る複合酸化セリウム粒子は、粒子の焼結、凝集が極めて少なく、粒子径分布がシャープで、同時に結晶性が極めて良好なため、研磨シートや研磨液用の研磨材として使用したときに、特にその威力を発揮する。   Thus, in the production of composite cerium oxide particles, by separating the process aimed at adjusting the shape and particle diameter and the process aimed at maximizing the physical properties inherent in the material, The composite cerium oxide particles having a plate shape and an average primary particle diameter in the range of 1 nm to 200 nm, which was impossible with the production method, can be obtained. The composite cerium oxide particles according to the present invention thus obtained have very little particle sintering and agglomeration, sharp particle size distribution, and at the same time extremely good crystallinity. It is especially powerful when used as an abrasive.

一般に固溶を伴う複合粒子を作製する場合には、微粒子同士を混ぜ合わせて高温で熱処理する固相反応が良く用いられるが、このような方法ではどうしても固溶の不均一性はまぬがれない。本発明の製造方法では、原子オーダーで混ざり合って結晶化するため、固溶の均一性と結晶性は極めて高い。この種の複合酸化セリウム粒子を化学研磨用の研磨材として用いる場合には純度が重要になり、高純度のものが要求される。本発明の複合酸化セリウム粒子は、純度の面においても十分に満足できるものであり、この点でも研磨材として最適である。   In general, when preparing composite particles with solid solution, a solid-phase reaction in which fine particles are mixed and heat-treated at high temperature is often used. However, such a method does not necessarily overcome the non-uniformity of solid solution. In the production method of the present invention, since it is mixed and crystallized in the atomic order, the solid solution uniformity and crystallinity are extremely high. When this type of composite cerium oxide particles is used as an abrasive for chemical polishing, purity becomes important, and high purity is required. The composite cerium oxide particles of the present invention are sufficiently satisfactory in terms of purity, and are optimal as abrasives in this respect as well.

本発明により得られる複合酸化セリウム粒子すなわち研磨用複合酸化物粒子は、半導体、光ファイバー、レンズなどを研磨するための最適な研磨材であり、広範囲の用途に適用することができるものである。   The composite cerium oxide particles obtained by the present invention, that is, the composite oxide particles for polishing, are optimum abrasives for polishing semiconductors, optical fibers, lenses, and the like, and can be applied to a wide range of applications.

以下、本発明に係る研磨用複合酸化物粒子(複合酸化セリムウ粒子)の製造方法等について、さらに詳細に説明する。本発明方法では、大略、沈殿物の作製→水熱処理→加熱処理という工程を経ることによって研磨用複合酸化物粒子を製造する。図1は、各工程をさらに詳しく示したもので、以下では、この図1に示した各工程の符号S1〜S9を適宜使用しながら説明する。   Hereinafter, the production method of the composite oxide particles for polishing (composite selenium oxide particles) according to the present invention will be described in more detail. In the method of the present invention, the composite oxide particles for polishing are produced roughly through the steps of preparation of precipitate → hydrothermal treatment → heat treatment. FIG. 1 shows each process in more detail. In the following, description will be made by appropriately using reference numerals S1 to S9 of each process shown in FIG.

(沈殿物の作製)
まず、塩化セリウム、硝酸セリウム、硫酸セリウムなどのセリウム塩を水に溶解させ、セリウムイオンを含有する水溶液を調整する(S1)。この場合、セリウムイオンを含む水溶液であればよいので炭酸セリウムを鉱酸で溶解させたものでも代用できる。これらのセリウム塩のうち、粒径分布のシャープな酸化セリウム粒子を得る上で、塩化セリウムが最も好ましい。
(Preparation of precipitate)
First, cerium salts such as cerium chloride, cerium nitrate, and cerium sulfate are dissolved in water to prepare an aqueous solution containing cerium ions (S1). In this case, an aqueous solution containing cerium ions may be used, and a solution obtained by dissolving cerium carbonate with a mineral acid can be used instead. Of these cerium salts, cerium chloride is most preferred for obtaining cerium oxide particles having a sharp particle size distribution.

次いで、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウムなどのアルミニウム塩を前記水溶液に加えて溶解させる(S1)。この場合、セリウムイオンを含む水溶液とは別にアルミニウムイオンを含む水溶液を混合しても良い。   Next, an aluminum salt such as aluminum chloride, aluminum nitrate, or aluminum sulfate is added to the aqueous solution and dissolved (S1). In this case, an aqueous solution containing aluminum ions may be mixed in addition to the aqueous solution containing cerium ions.

これらとは別に、結晶成長制御剤であるアルキルアミンを添加したアルカリ水溶液を調整する(S2)。このアルキルアミンを入れなければ粒子は板状にならず、多面体になる。多面体粒子でも十分な性能は期待できるが、板状であれば研磨能率の面でなお期待できる。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水溶液など、またアルキルアミンとしてはモノエタノールアミン、トリエタノールアミン、イソブタノールアミン、プロパノールアミン等が挙げられるが、中でも結晶性の良好な複合酸化セリウム粒子を得る上で、モノエタノールアミンが最適である。   Apart from these, an alkaline aqueous solution to which alkylamine as a crystal growth controlling agent is added is prepared (S2). If this alkylamine is not added, the particles will not be plate-like and will be polyhedral. Even with polyhedral particles, sufficient performance can be expected, but if it is plate-like, it can still be expected in terms of polishing efficiency. Examples of the alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide, and an aqueous ammonia solution, and examples of the alkylamine include monoethanolamine, triethanolamine, isobutanolamine, and propanolamine. Monoethanolamine is most suitable for obtaining complex composite cerium oxide particles.

次に、前記セリウム塩水溶液とアルミニウム塩水溶液、または両方を含む水溶液を、前記結晶成長制御剤(アルキルアミン)を添加したアルカリ水溶液中に滴下して、セリウムおよびアルミニウムを含む水酸化物あるいは水和物の沈殿物を生成させる(S3)。この沈殿物を含む懸濁液のpHは、7〜12の範囲に調整する(S4)。また、この懸濁液を室温において1日程度熟成することが好ましい。このpH調整および熟成は、この後の工程の加熱処理において、比較的低い温度で、より結晶性の高い複合酸化セリウム粒子を得る上で効果的である。   Next, an aqueous solution containing the cerium salt aqueous solution and the aluminum salt aqueous solution or both is dropped into the alkaline aqueous solution to which the crystal growth control agent (alkylamine) is added, and the hydroxide or hydration containing cerium and aluminum is added. A precipitate of the product is generated (S3). The pH of the suspension containing the precipitate is adjusted to a range of 7 to 12 (S4). The suspension is preferably aged at room temperature for about 1 day. This pH adjustment and aging are effective in obtaining composite cerium oxide particles having higher crystallinity at a relatively low temperature in the heat treatment in the subsequent step.

(水熱処理)
セリウムの水酸化物あるいは水和物の上記沈殿物を含む懸濁液に対し、オートクレーブ等を用いて水熱処理を行う(S5)。この場合、上記の沈殿物を含む懸濁液についてそのまま水熱処理を行っても構わないが、水洗(S3−2)により、上記沈殿物以外の生成物や残存物を除去し、その後NaOHなどにより再度pH調整することが好ましい。この時のpHの値は、先に述べたように7〜12の範囲となるように調整する。このpHより低いと、水熱処理時に結晶成長が不十分になり、また高すぎると、粒子径分布が広くなり、また目的とする粒子径の小さい粒子を得ることが困難になる。
(Hydrothermal treatment)
Hydrothermal treatment is performed on the suspension containing the cerium hydroxide or hydrate precipitate using an autoclave or the like (S5). In this case, the suspension containing the precipitate may be subjected to hydrothermal treatment as it is, but the product and the residue other than the precipitate are removed by washing with water (S3-2), and then NaOH or the like is used. It is preferable to adjust the pH again. The pH value at this time is adjusted to be in the range of 7 to 12 as described above. If it is lower than this pH, crystal growth becomes insufficient during hydrothermal treatment, and if it is too high, the particle size distribution becomes wide and it becomes difficult to obtain particles with a desired small particle size.

水熱処理温度は、110℃から300℃の範囲とする。この温度より低いと、特定の形状を有する複合酸化セリウムが得られにくく、またこの温度より高いと発生圧力が高くなるため、装置が高価なものとなり、メリットはない。水熱処理時間は、1時間から4時間の範囲が好ましい。水熱処理時間が短すぎると、特定の形状への成長が不十分になり、水熱時間が長すぎても特に問題となることはないが、製造コストが高くなるだけで、意味がない。   The hydrothermal treatment temperature is in the range of 110 ° C to 300 ° C. If the temperature is lower than this temperature, it is difficult to obtain a composite cerium oxide having a specific shape. If the temperature is higher than this temperature, the generated pressure becomes high, so that the apparatus becomes expensive and has no merit. The hydrothermal treatment time is preferably in the range of 1 hour to 4 hours. If the hydrothermal treatment time is too short, the growth to a specific shape becomes insufficient, and even if the hydrothermal time is too long, there is no particular problem, but only the production cost becomes high and is meaningless.

(加熱処理)
水熱処理後の複合酸化セリウム粒子は、洗浄・ろ過(S6)、乾燥(S7)した後、加熱処理(S8)を行うことによって研磨材として最適な粒径にする。この場合の加熱は、最も製造コストがかからないとの理由から空気中加熱とする。なお、加熱処理を行わなければ1nmからの超微粒が得られる。加熱処理後、ろ過する前に、排水の簡単のため及び後述するように最終的に高純度の複合酸化セリウム粒子が得られるようにするため、水洗(S9)によりpHを6〜9の付近の中性領域に調整しておくことが好ましい。
(Heat treatment)
The composite cerium oxide particles after the hydrothermal treatment are washed, filtered (S6), dried (S7), and then subjected to heat treatment (S8) to obtain an optimum particle size as an abrasive. The heating in this case is in-air heating because it is the least expensive to manufacture. If heat treatment is not performed, ultrafine particles from 1 nm can be obtained. After the heat treatment, before filtration, in order to simplify drainage and to finally obtain high-purity composite cerium oxide particles as described later, the pH is adjusted to around 6-9 by washing with water (S9). It is preferable to adjust to the neutral region.

加熱処理温度は、300℃から1200℃の範囲とする。この温度より低いと、結晶性の複合酸化セリウム微粒子が得られにくく、高すぎると焼結により粒子径が大きくなりすぎ、さらに粒子径分布が広くなる。この熱処理によって一次粒子同士がネックを形成する程度に焼結を起こさせるために、加熱温度は600度から1200℃の範囲がより好ましい。この場合、焼結による一次粒子の凝集体が0.2〜5μmの範囲になるようにすれば研磨効率の面でよい。   The heat treatment temperature is in the range of 300 ° C to 1200 ° C. If it is lower than this temperature, crystalline composite cerium oxide fine particles are difficult to obtain, and if it is too high, the particle size becomes too large due to sintering, and the particle size distribution becomes wider. In order to cause sintering to such an extent that primary particles form a neck by this heat treatment, the heating temperature is more preferably in the range of 600 ° C. to 1200 ° C. In this case, if the aggregate of primary particles obtained by sintering is in the range of 0.2 to 5 μm, the polishing efficiency may be improved.

この加熱処理により複合酸化セリウム粒子が得られるが、さらに水洗などにより未反応物を除去すると、より高純度の酸化セリウム粒子が得られるため、化学研磨用などの研磨材として使用するためには、最終工程で先に述べた水洗(S9)を行うことが好ましい。   Composite cerium oxide particles can be obtained by this heat treatment, but if unreacted substances are further removed by washing or the like, higher purity cerium oxide particles can be obtained, so that it can be used as an abrasive for chemical polishing, etc. It is preferable to perform the water washing (S9) described above in the final step.

以上のようにして得られた複合酸化セリウム粒子は、粒子径が1nmから200nmの範囲であり、また仕上げ研磨用のシートや研磨液用の研磨材として特に好ましい範囲である。X線回折スペクトルを測定すると、ほぼCaF2 構造をもつCeO2 の結晶構造位置に対応するピークが明瞭に観察されるが、アルミニウム化合物に対応するピークは見られない。また電子顕微鏡観察においても晶癖が明瞭に観察され、これまでの製造法では得られなかった極めて良好な結晶性を有することが確認された。 The composite cerium oxide particles obtained as described above have a particle diameter in the range of 1 nm to 200 nm, and are particularly preferable as a polishing sheet for finish polishing or polishing liquid. When the X-ray diffraction spectrum is measured, a peak corresponding to the crystal structure position of CeO 2 having a substantially CaF 2 structure is clearly observed, but a peak corresponding to the aluminum compound is not observed. Also, the crystal habit was clearly observed in the electron microscope observation, and it was confirmed that the crystal had extremely good crystallinity that could not be obtained by the conventional production methods.

以下、本発明の実施例および比較例について説明する。   Examples of the present invention and comparative examples will be described below.

〈実施例1〉
0.075モルの水酸化ナトリウムと10mlの2−アミノエタノールとを80mlの水に溶解して、アルカリ水溶液を調整した。これとは別に、0.0067モルの塩化セリウム(III)七水和物と0.00075モルの塩化アルミニウム(III)六水和物を40mlの水に溶解して調整した。Alに対するCeの原子比Al:Ceは10:90になる。前者のアルカリ水溶液に、後者の塩化セリウム塩化アルミニウム混合水溶液を滴下して、沈殿物を得た。このときのpHは10.8であった。
<Example 1>
An alkaline aqueous solution was prepared by dissolving 0.075 mol of sodium hydroxide and 10 ml of 2-aminoethanol in 80 ml of water. Separately, 0.0061 mol of cerium (III) chloride heptahydrate and 0.000007 mol of aluminum (III) chloride hexahydrate were dissolved in 40 ml of water to prepare. The atomic ratio of Ce to Al is 10:90. The latter cerium aluminum chloride mixed aqueous solution was dropped into the former alkaline aqueous solution to obtain a precipitate. The pH at this time was 10.8.

前記沈殿物を含んだ懸濁液を2時間撹拌後pHが8になるまで水酸化ナトリウム水溶液にて調製し、この沈殿物を懸濁液の状態で20時間熟成させた後、上澄み液を除去し、当該沈殿物の懸濁液を、オートクレーブに仕込み、200℃で2時間、水熱処理を施した。その後、水で1000倍に水洗した。得られた生成物を、ろ過し、90℃で空気中乾燥した後、乳鉢で軽く解砕し、空気中600℃で1時間の加熱処理を行って複合酸化セリウム粒子を得た。加熱処理後、未反応物や残存物を除去するために、さらに超音波分散機を使って水洗し、ろ過乾燥した。   The suspension containing the precipitate is stirred for 2 hours and then prepared with an aqueous sodium hydroxide solution until the pH is 8. The precipitate is aged in the state of suspension for 20 hours, and then the supernatant is removed. Then, the precipitate suspension was charged into an autoclave and hydrothermally treated at 200 ° C. for 2 hours. Then, it was washed with water 1000 times. The obtained product was filtered, dried in air at 90 ° C., and then lightly crushed in a mortar, and heat-treated at 600 ° C. for 1 hour in air to obtain composite cerium oxide particles. After the heat treatment, in order to remove unreacted substances and residues, they were further washed with an ultrasonic disperser and filtered and dried.

得られた複合酸化セリウム粒子について、X線回折スペクトルを測定したところ、CaF2 構造の酸化セリウムに対応するスペクトルが観測された。この時、混合物としてのアルミニウム化合物の存在を示すピークは現れなかった。蛍光X線分析を行ったところアルミニウム原子の存在が確かめられた。酸化セリウムの(111)面に対応するピーク幅から、シェラー法を用いて結晶子サイズを算出したところ、結晶子サイズは1 5.3nmであった。透過型電子顕微鏡で形状観察を行ったところ、平均一次粒子径が22nmの板状の粒子であることがわかった。 When the X-ray diffraction spectrum of the obtained composite cerium oxide particles was measured, a spectrum corresponding to cerium oxide having a CaF 2 structure was observed. At this time, no peak indicating the presence of the aluminum compound as a mixture appeared. The presence of aluminum atoms was confirmed by fluorescent X-ray analysis. When the crystallite size was calculated from the peak width corresponding to the (111) plane of cerium oxide using the Scherrer method, the crystallite size was 15.3 nm. When the shape was observed with a transmission electron microscope, it was found to be plate-like particles having an average primary particle diameter of 22 nm.

〈実施例2〉
実施例1の塩化アルミニウムと塩化セリウムの割合に関して、0.0060モルの塩化セリウム(III)七水和物と0.0015モルの塩化アルミニウム(III)六水和物とを40mlの水に溶解して調整した。Alに対するCeの原子比Al:Ceは20:80になる。その他は実施例1と同様にして複合酸化セリウム粒子を作製した。
<Example 2>
Regarding the ratio of aluminum chloride to cerium chloride in Example 1, 0.0006 moles of cerium (III) chloride heptahydrate and 0.0015 moles of aluminum (III) chloride hexahydrate were dissolved in 40 ml of water. Adjusted. The atomic ratio of Ce to Al is 20:80. Otherwise, composite cerium oxide particles were produced in the same manner as in Example 1.

この酸化セリウム粒子について、X線回折スペクトルを測定したところ、実施例1と同じくCaF2 構造をもつ酸化セリウムに対応するスペクトルが観測された。(111)面に対応するピーク幅から、シェラー法を用いて求めた結晶子サイズは、13.6nmであった。透過型電子顕微鏡観察を行ったところ、平均一次粒子径が14nmの板状の粒子であった。 When an X-ray diffraction spectrum was measured for the cerium oxide particles, a spectrum corresponding to cerium oxide having a CaF 2 structure was observed as in Example 1. From the peak width corresponding to the (111) plane, the crystallite size determined using the Scherrer method was 13.6 nm. When observed with a transmission electron microscope, it was a plate-like particle having an average primary particle diameter of 14 nm.

〈実施例3〉
実施例1の合成法において、2−アミノエタノールをアルカリ溶液に添加しなかったこと以外は、実施例1と同様にして複合酸化セリウム粒子を作製した。この複合酸化セリウム粒子についてX線回折スペクトルを測定したところ、実施例1と同じくCaF2 構造をもつ酸化セリウムに対応するスペクトルが観測された。(111)面に対応するピーク幅から、シェラー法を用いて求めた結晶子サイズは、22.4nmであった。透過型電子顕微鏡観察を行ったところ、平均一次粒子径が25nmの多面体粒状の粒子であった。
<Example 3>
Composite cerium oxide particles were produced in the same manner as in Example 1 except that 2-aminoethanol was not added to the alkaline solution in the synthesis method of Example 1. When an X-ray diffraction spectrum was measured for the composite cerium oxide particles, a spectrum corresponding to cerium oxide having a CaF 2 structure was observed as in Example 1. From the peak width corresponding to the (111) plane, the crystallite size determined using the Scherrer method was 22.4 nm. Observation with a transmission electron microscope revealed that the particles were polyhedral granular particles having an average primary particle diameter of 25 nm.

〈実施例4〉
実施例1の塩化アルミニウムと塩化セリウムの割合に関して、0.00375モルの塩化セリウム(III)七水和物と0.00375モルの塩化アルミニウム(III)六水和物とを40mlの水に溶解して調整した。Alに対するCeの原子比Al:Ceは50:50になる。さらに加熱条件を1100℃2hにした他は実施例1と同様にして複合酸化セリムウ粒子を作製した。
<Example 4>
Regarding the ratio of aluminum chloride to cerium chloride in Example 1, 0.0000375 moles of cerium (III) chloride heptahydrate and 0.0000375 moles of aluminum (III) chloride hexahydrate were dissolved in 40 ml of water. Adjusted. The atomic ratio of Ce to Al is 50:50. Further, composite cerium oxide particles were produced in the same manner as in Example 1 except that the heating condition was 1100 ° C. for 2 hours.

この酸化セリウム粒子について、X線回折スペクトルを測定したところ、実施例1と同じくCaF2 構造をもつ酸化セリウムに対応するスペクトルが観測された。(111)面に対応するピーク幅から、シェラー法を用いて求めた結晶子サイズは、29.8nmであった。透過型電子顕微鏡観察を行ったところ、平均一次粒子径が191nmの板状の粒子であった。 When an X-ray diffraction spectrum was measured for the cerium oxide particles, a spectrum corresponding to cerium oxide having a CaF 2 structure was observed as in Example 1. From the peak width corresponding to the (111) plane, the crystallite size determined using the Scherrer method was 29.8 nm. When observed with a transmission electron microscope, it was a plate-like particle having an average primary particle diameter of 191 nm.

〈比較例1〉
実施例1の塩化アルミニウムと塩化セリウムの割合に関して、金属塩溶液として0.0075モルの塩化セリウム(III)七水和物を水に溶かし、塩化アルミニウムは添加せずに水溶液を調整した。Alに対するCeの原子比Al:Ceは0:100になる。その他は実施例1と同様にして酸化セリウム粒子を作製した。この複合酸化セリウム粒子について、X線回折スペクトルを測定したところ、CaF2 構造をもつ酸化セリウムに対応するスペクトルが観測され、また(111)面に対応するピーク幅から、シェラー法を用いて求めた結晶子サイズは38.2nmであった。さらに、透過型電子顕微鏡観察を行ったところ、平均一次粒子径41nmの板状粒子であることがわかった。
<Comparative example 1>
Regarding the ratio of aluminum chloride to cerium chloride in Example 1, 0.0075 mol of cerium (III) chloride heptahydrate was dissolved in water as a metal salt solution, and an aqueous solution was prepared without adding aluminum chloride. The atomic ratio of Ce to Al is Al: Ce is 0: 100. Other than that, cerium oxide particles were prepared in the same manner as in Example 1. When the X-ray diffraction spectrum of this composite cerium oxide particle was measured, a spectrum corresponding to cerium oxide having a CaF 2 structure was observed, and it was obtained from the peak width corresponding to the (111) plane using the Scherrer method. The crystallite size was 38.2 nm. Further, observation with a transmission electron microscope revealed that the particles were plate-like particles having an average primary particle diameter of 41 nm.

〈比較例2〉
実施例1の複合酸化セリウム粒子の合成方法において沈殿物を生成した後、水熱処理を行うことなく、実施例1と同様にして、沈殿物をそのまま水洗し、ろ過、乾燥した後、加熱処理して、複合酸化セリウム粒子を作製した。この複合酸化セリウム粒子について、X線回折スペクトルを測定したところ、CaF2 構造をもつ酸化セリウムに対応するスペクトルが観測されたが、併せてγ−アルミナと思われる混合物のピークが観察された。また透過型電子顕微鏡で観察したところ、粒子径は50〜3000nm(平均一次粒子径1240nm)と粒子径分布の極めて広い焼結体または粗大粒子であることがわかった。
<Comparative example 2>
After producing the precipitate in the method for synthesizing the composite cerium oxide particles of Example 1, the precipitate is washed as it is, filtered, dried and then heat-treated in the same manner as in Example 1 without performing hydrothermal treatment. Thus, composite cerium oxide particles were produced. When the X-ray diffraction spectrum of this composite cerium oxide particle was measured, a spectrum corresponding to cerium oxide having a CaF 2 structure was observed, but a peak of a mixture that was considered to be γ-alumina was also observed. Further, when observed with a transmission electron microscope, it was found that the particle diameter was 50 to 3000 nm (average primary particle diameter 1240 nm) and the sintered body or coarse particles had an extremely wide particle diameter distribution.

〈比較例3〉
実施例1の塩化アルミニウムと塩化セリウムの割合に関して、0.00375モルの塩化セリウム(III)七水和物と0.00375モルの塩化アルミニウム(III)六水和物とを40mlの水に溶解して調整した。Alに対するCeの原子比Al:Ceは50:50になる。さらに水熱処理温度を310℃、加熱条件を1200℃6hにした他は実施例1と同様にして複合酸化セリムウ粒子を作製した。
<Comparative Example 3>
Regarding the ratio of aluminum chloride to cerium chloride in Example 1, 0.0000375 moles of cerium (III) chloride heptahydrate and 0.0000375 moles of aluminum (III) chloride hexahydrate were dissolved in 40 ml of water. Adjusted. The atomic ratio of Ce to Al is 50:50. Further, composite cerium oxide particles were prepared in the same manner as in Example 1 except that the hydrothermal treatment temperature was 310 ° C. and the heating condition was 1200 ° C. for 6 hours.

この酸化セリウム粒子について、X線回折スペクトルを測定したところ、実施例1と同じくCaF2 構造をもつ酸化セリウムに対応するスペクトルが観測された。(111)面に対応するピーク幅から、シェラー法を用いて求めた結晶子サイズは、37.4nmであった。透過型電子顕微鏡観察を行ったところ、平均一次粒子径が209nmの板状の粒子であった。 When an X-ray diffraction spectrum was measured for the cerium oxide particles, a spectrum corresponding to cerium oxide having a CaF 2 structure was observed as in Example 1. From the peak width corresponding to the (111) plane, the crystallite size determined using the Scherrer method was 37.4 nm. When observed with a transmission electron microscope, it was a plate-like particle having an average primary particle diameter of 209 nm.

〔結晶構造、粒子形状等の評価〕
X線回折スペクトルからは各実施例および比較例のいずれの粉末においても酸化セリウムに対応する結晶構造のピークが観測された。しかし、比較例2の粉体に対してはγ−アルミナ由来の混合物相が確認でき、複合酸化セリウム粒子が作製できていないことが分かった。いずれの粉末に対してもXRF(蛍光X線分析)とIPC(Ion-Pair Chromatography )分析によりほぼ添加量同等のアルミニウム原子の存在が確認され、全ての実施例について、単相でスペクトルがほぼ酸化セリウムに対応する位置に得られていたことから、得られた粉体はいずれも複合酸化セリウム粒子であることがわかった。
[Evaluation of crystal structure, particle shape, etc.]
From the X-ray diffraction spectrum, a crystal structure peak corresponding to cerium oxide was observed in each of the powders of the examples and comparative examples. However, for the powder of Comparative Example 2, a mixture phase derived from γ-alumina was confirmed, and it was found that composite cerium oxide particles could not be produced. For all powders, XRF (fluorescence X-ray analysis) and IPC (Ion-Pair Chromatography) analysis confirmed the presence of almost the same amount of aluminum atoms, and for all the examples, the spectrum was almost oxidized in a single phase. Since it was obtained at a position corresponding to cerium, it was found that all the obtained powders were composite cerium oxide particles.

実施例1、実施例2、実施例4および比較例1、比較例3でそれぞれ得られた複合酸化セリウム粒子は、いずれも形状が板状で結晶性に優れ、かつ粒子径も研磨シートや研磨液に使用する上で最適な範囲にあることがわかる。一方、2- アミノエタノールを添加しなかった実施例3では、得られた粒子の形状が板状ではなく粒状であった。比較例2の複合酸化セリウム粒子では、粒子径が非常に大きく、かつ粒子径分布も極めて広く、研磨材としては適さないことがわかる。   The composite cerium oxide particles obtained in Example 1, Example 2, Example 4, Comparative Example 1, and Comparative Example 3 are all plate-like in shape, excellent in crystallinity, and have a particle size of an abrasive sheet or an abrasive. It turns out that it exists in the optimal range when using it for a liquid. On the other hand, in Example 3 in which 2-aminoethanol was not added, the shape of the obtained particles was not plate-like but granular. It can be seen that the composite cerium oxide particles of Comparative Example 2 have a very large particle size and an extremely wide particle size distribution and are not suitable as an abrasive.

〔研磨特性の評価〕
各実施例および比較例で得られた複合酸化物粒子について、研磨特性を評価するために以下の条件で研磨実験を行った。
(1)被研磨材:2.5インチハードディスク用ガラス基盤
(2)研磨装置:MA−200ムサシノ電子社製
(3)研磨パッド:研磨パッドSUBA800
・荷重:30g/cm2
・定盤回転数:60rpm
・研磨時間:45分
・研磨液供給量:5ml/分
・研磨液濃度:15w重量%
[Evaluation of polishing characteristics]
For the composite oxide particles obtained in each Example and Comparative Example, a polishing experiment was performed under the following conditions in order to evaluate the polishing characteristics.
(1) Material to be polished: Glass substrate for 2.5 inch hard disk (2) Polishing apparatus: MA-200 made by Musashino Electronics Co., Ltd. (3) Polishing pad: Polishing pad SUBA800
・ Load: 30 g / cm 2
・ Surface plate speed: 60rpm
Polishing time: 45 minutes Polishing liquid supply amount: 5 ml / min Polishing liquid concentration: 15% by weight

各実施例および比較例で得られた複合酸化物粒子をそれぞれ15重量%の濃度で純水に分散させ、直径1mmのYTZビーズ(ニッカトー社製)を用いて30分ペイントコンディショナーにて分散させ、KOHにてpHを11に調整したものを研磨液として評価に用いた。本発明ではpHが3〜12の範囲、好ましくは6〜12さらには9〜12の間がより望ましい。この範囲外では分散性の面、または排水する際に困難を伴う。   The composite oxide particles obtained in each Example and Comparative Example were each dispersed in pure water at a concentration of 15% by weight, and dispersed with a paint conditioner for 30 minutes using YTZ beads having a diameter of 1 mm (manufactured by Nikkato). What adjusted pH to 11 with KOH was used for evaluation as polishing liquid. In the present invention, the pH is in the range of 3 to 12, preferably 6 to 12, and more preferably 9 to 12. Outside this range, dispersibility or difficulty in draining.

研磨特性の評価は次のようにして行った。まず、ワークにガラス基盤を両面テープにて貼り付け重量を厳密に秤量し、研磨を行った。ついで、この研磨後の被比研磨材を、研磨砥粒が残らないように十分に水洗したうえで、エアーガンにて十分乾燥させた後、重量を厳密に測定し、その重量差により研磨量を評価した。この除重量分を密度と面積から研磨速度に換算した。スクラッチの有無についてはデジタルマイクロスコープにて確認した。上記実施例および比較例の複合酸化セリウム粒子の合成条件、透過電子顕微鏡写真から見積もった平均粒子径、これらサンプルによる研磨実験結果を表1にまとめて示す。   Evaluation of polishing characteristics was performed as follows. First, a glass substrate was attached to a workpiece with a double-sided tape, and the weight was precisely weighed and polished. Next, the target abrasive after polishing is thoroughly washed with water so that no abrasive grains remain, and after sufficiently drying with an air gun, the weight is strictly measured, and the polishing amount is determined by the weight difference. evaluated. This removed weight was converted from the density and area to the polishing rate. The presence or absence of scratches was confirmed with a digital microscope. Table 1 summarizes the synthesis conditions of the composite cerium oxide particles of the above Examples and Comparative Examples, the average particle diameter estimated from transmission electron micrographs, and the results of polishing experiments with these samples.

Figure 2007084755
Figure 2007084755

表1からわかるように、実施例1,2,3の複合酸化物粒子では研磨能率が70から85と比較例1の板状酸化セリウム粒子に比べてかなり良好である。比較例2では酸化セリウムとアルミニウム化合物が2相になっていると考えられるが、実際比較例1の板状酸化セリウムと比べて研磨能率は低く、これは水熱処理を施している比較例1のサンプルに比べて結晶性の面で劣るからである。また比較例2のサンプルは粒子径が数ミクロンと粗大粒子が多く、スクラッチも発生しており研磨材としては不適切である。実施例1と3を比較すると2- アミノエタノールを添加しなかった実施例3の粉体は板状ではなく粒状であるが、比較例1の酸化セリウムに対して十分な研磨能率をもつ。実施例1の板状複合酸化セリウム粒子ならその結晶性の為になお良いといえる。また実施例4と比較例3とを比較すると、実施例4の平均一次粒子径は191nmであり、比較例3のそれは209nmである。また、実施例4の研磨能率78nm/minに対して比較例3のそれは60nm/minであることから、アルミニウム添加の効果が現れるのは粒子径が200nm程度までだと言える。   As can be seen from Table 1, the composite oxide particles of Examples 1, 2, and 3 have a polishing efficiency of 70 to 85, which is considerably better than the plate-like cerium oxide particles of Comparative Example 1. In Comparative Example 2, it is considered that the cerium oxide and the aluminum compound are in two phases, but the polishing efficiency is actually lower than that of the plate-like cerium oxide of Comparative Example 1, which is the result of Comparative Example 1 subjected to hydrothermal treatment. This is because the crystallinity is inferior to the sample. In addition, the sample of Comparative Example 2 has a large particle size of several microns, and scratches are generated, which is inappropriate as an abrasive. Comparing Examples 1 and 3, the powder of Example 3 to which 2-aminoethanol was not added is granular, not plate-like, but has sufficient polishing efficiency with respect to cerium oxide of Comparative Example 1. The plate-like composite cerium oxide particles of Example 1 are still better because of their crystallinity. Moreover, when Example 4 and Comparative Example 3 are compared, the average primary particle diameter of Example 4 is 191 nm, and that of Comparative Example 3 is 209 nm. In addition, since the polishing efficiency of Example 4 is 78 nm / min and that of Comparative Example 3 is 60 nm / min, it can be said that the effect of the addition of aluminum appears up to a particle size of about 200 nm.

本発明に係る研磨用複合酸化物粒子(複合酸化セリムウ粒子)の製造工程の一例を示す工程図である。It is process drawing which shows an example of the manufacturing process of the composite oxide particle for grinding | polishing (composite cerium oxide particle) which concerns on this invention.

Claims (7)

酸化セリウムにアルミニウムを固溶させた複合酸化セリウム粒子で構成されており、当該粒子の構成元素であるアルミニウムとセリウムとの原子比(複合酸化セリウム粒子中のAl量を〈Al〉mol%とし且つCe量を〈Ce〉mol%としたときの〈Al〉/〈Ce〉)が0.01から1の範囲にあり、かつ平均一次粒子径が1 nmから200nmの範囲にある研磨用複合酸化物粒子。   It is composed of composite cerium oxide particles in which aluminum is dissolved in cerium oxide, and the atomic ratio of aluminum and cerium, which are constituent elements of the particles (the amount of Al in the composite cerium oxide particles is <Al> mol%, and Polishing composite oxide in which <Al> / <Ce>) is in the range of 0.01 to 1 and the average primary particle diameter is in the range of 1 nm to 200 nm when the Ce amount is <Ce> mol% particle. 液状の媒体中に請求項1記載の研磨用複合酸化物粒子を分散させてなるスラリー状研磨材。   A slurry-like abrasive prepared by dispersing the composite oxide particles for polishing according to claim 1 in a liquid medium. 液状の媒体が水である、請求項2記載のスラリー状研磨材。   The slurry-like abrasive according to claim 2, wherein the liquid medium is water. スラリー中には分散剤が含まれている請求項2または3記載のスラリー状研磨材。   The slurry-like abrasive according to claim 2 or 3, wherein the slurry contains a dispersant. 請求項1記載の研磨用複合酸化物粒子を製造する方法であって、下記(1)〜(3)の工程を含むことを特徴とする研磨用複合酸化物粒子の製造方法。
(1) オキシアルカリアミンを含むアルカリ水溶液に、セリウムイオンとアルミニウムイオンとを含む水溶液を添加して、セリウムおよびアルミニウムを含む水酸化物あるいは水和物の沈殿物を生成させる工程。
(2) (1)の工程で得られた水酸化物あるいは水和物の沈殿物を、pH7〜12に調整する工程。
(3) (2)の工程で得られたpH調整後の沈殿物を、水の存在下で110〜300℃の温度範囲で水熱処理する工程。
A method for producing the composite oxide particles for polishing according to claim 1, comprising the following steps (1) to (3).
(1) A step of adding an aqueous solution containing cerium ions and aluminum ions to an alkaline aqueous solution containing oxyalkaliamines to generate a hydroxide or hydrate precipitate containing cerium and aluminum.
(2) A step of adjusting the hydroxide or hydrate precipitate obtained in the step (1) to pH 7-12.
(3) A step of hydrothermally treating the pH-adjusted precipitate obtained in the step (2) in the temperature range of 110 to 300 ° C. in the presence of water.
前記(3)の工程で得られた処理物を空気中300〜1200℃の温度範囲で加熱処理する工程を含む、請求項5記載の研磨用複合酸化物粒子の製造方法。   The manufacturing method of the complex oxide particle for grinding | polishing of Claim 5 including the process of heat-processing the processed material obtained at the process of said (3) in the temperature range of 300-1200 degreeC in the air. 前記(1)の工程と(2)の工程との間に、(1)の工程で得られた水酸化物あるいは水和物の沈殿物を水洗する工程が設けられている、請求項5または6記載の研磨用複合酸化物粒子の製造方法。   The step of washing the hydroxide or hydrate precipitate obtained in the step (1) with water is provided between the step (1) and the step (2). 6. A method for producing composite oxide particles for polishing according to 6.
JP2005277806A 2005-09-26 2005-09-26 Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material Withdrawn JP2007084755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277806A JP2007084755A (en) 2005-09-26 2005-09-26 Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277806A JP2007084755A (en) 2005-09-26 2005-09-26 Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material

Publications (1)

Publication Number Publication Date
JP2007084755A true JP2007084755A (en) 2007-04-05

Family

ID=37972062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277806A Withdrawn JP2007084755A (en) 2005-09-26 2005-09-26 Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material

Country Status (1)

Country Link
JP (1) JP2007084755A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132107A (en) * 2009-12-25 2011-07-07 Jgc Catalysts & Chemicals Ltd Method of manufacturing cerium oxide fine particle
KR101589953B1 (en) * 2014-10-29 2016-01-29 한국원자력연구원 Method for removal of aluminum by precipitation and filtration in fission molybdenum production process
KR20190064245A (en) * 2017-11-30 2019-06-10 솔브레인 주식회사 Slurry composition for polishing, method for producing the same and method for polishing semiconductor thin film by using the same
WO2022050242A1 (en) * 2020-09-04 2022-03-10 Agc株式会社 Cerium oxide and polishing agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132107A (en) * 2009-12-25 2011-07-07 Jgc Catalysts & Chemicals Ltd Method of manufacturing cerium oxide fine particle
KR101589953B1 (en) * 2014-10-29 2016-01-29 한국원자력연구원 Method for removal of aluminum by precipitation and filtration in fission molybdenum production process
KR20190064245A (en) * 2017-11-30 2019-06-10 솔브레인 주식회사 Slurry composition for polishing, method for producing the same and method for polishing semiconductor thin film by using the same
KR102632104B1 (en) 2017-11-30 2024-02-02 솔브레인 주식회사 Slurry composition for polishing, method for producing the same and method for polishing semiconductor thin film by using the same
WO2022050242A1 (en) * 2020-09-04 2022-03-10 Agc株式会社 Cerium oxide and polishing agent

Similar Documents

Publication Publication Date Title
KR101585249B1 (en) Method for manufacturing boehmite particle and alumina particle
EP2260013B1 (en) Ceria material and method of forming same
RU2401856C2 (en) Abrasive powder material and abrasive suspension for semiconductor substrate selective polishing and polishing method
EP1756244B1 (en) Cerium oxide abrasive and slurry containing the same
WO2016159167A1 (en) Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion
JPH06104816B2 (en) Sintered alumina abrasive grains and method for producing the same
JP4281943B2 (en) Method for producing plate-like alumina particles
JP2012011526A (en) Abrasive and manufacturing method thereof
WO2016024624A1 (en) Polishing material, method for producing same, and polishing material composition
JP5979340B1 (en) Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
KR100560223B1 (en) Metal oxide powder for high precision polishing and preparation thereof
JP2007084755A (en) Composite oxide particle for polishing, method for producing the same and slurry-shaped polishing material
JP2017001927A (en) Composite particle for polishing, manufacturing method of composite particle for polishing and slurry for polishing
JP6371193B2 (en) Method for producing silica-based composite particle dispersion
JP7348098B2 (en) Ceria-based composite fine particle dispersion, its manufacturing method, and polishing abrasive grain dispersion containing the ceria-based composite fine particle dispersion
US20100187470A1 (en) Fine cerium oxide powder and preparing method the same and cmp slurry comprising the same
JP2005170700A (en) Zirconium oxide particle and method for producing the same
JP2017178703A (en) Method for producing silica-based composite particle dispersion liquid
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
WO2007099799A1 (en) Cerium-based abrasive material
Kim et al. Influence of physical characteristics of ceria particles on polishing rate of chemical mechanical planarization for shallow trench isolation
JP6792554B2 (en) Polishing abrasive grains, polishing slurry and hard brittle material polishing method, and hard brittle material manufacturing method
JP2018168063A (en) Method for producing silica composite particle dispersion
JP2020050571A (en) Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
WO2016136314A1 (en) Production method of composite metal oxide polishing material, and composite metal oxide polishing material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070709

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202