WO2016136447A1 - Negatively charged substrate polishing method and manufacturing method of negatively charged substrate with high surface smoothness - Google Patents

Negatively charged substrate polishing method and manufacturing method of negatively charged substrate with high surface smoothness Download PDF

Info

Publication number
WO2016136447A1
WO2016136447A1 PCT/JP2016/053699 JP2016053699W WO2016136447A1 WO 2016136447 A1 WO2016136447 A1 WO 2016136447A1 JP 2016053699 W JP2016053699 W JP 2016053699W WO 2016136447 A1 WO2016136447 A1 WO 2016136447A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
abrasive slurry
substrate
slurry
Prior art date
Application number
PCT/JP2016/053699
Other languages
French (fr)
Japanese (ja)
Inventor
寿夫 小泉
勇児 川▲崎▼
高橋 直人
大樹 橋本
加藤 良一
務 山本
勝 見上
瑞穂 和田
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to JP2017502041A priority Critical patent/JP6665852B2/en
Publication of WO2016136447A1 publication Critical patent/WO2016136447A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for polishing a negatively chargeable substrate and a method for producing a negatively chargeable substrate having high surface smoothness.
  • a typical example of the negatively chargeable substrate is a glass substrate.
  • the glass substrate can be polished with an abrasive to give a precise optical glass product that requires high transparency and accuracy such as a lens and a prism.
  • cerium oxide-based abrasives are produced by firing and pulverizing minerals rich in so-called rare earths (rare earths), but the demand for rare earths has increased and supply has become unstable. Therefore, development of a technique for reducing the amount of cerium oxide used and a technique using an alternative material is desired. However, such a request is required in a polishing method (for example, the method of Patent Document 1) that essentially uses cerium oxide. Can not respond to.
  • the present inventor variously studied a method for polishing a negatively chargeable substrate typified by a glass substrate, and a step of polishing under a condition in which the zeta potential of an abrasive slurry containing a predetermined oxide and zirconium oxide is positive.
  • a negatively chargeable substrate that is excellent in surface smoothness while realizing a high polishing rate by performing a and a step b in which polishing is performed under a condition in which the zeta potential of the abrasive slurry is negative at least once.
  • the present invention has been completed by conceiving that the above problems can be solved brilliantly.
  • the present invention is a method of polishing a negatively charged substrate using an abrasive slurry
  • the abrasive slurry has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one selected from the group consisting of Ti, Zr and Hf.
  • the polishing method includes a polishing step a in which a negatively chargeable substrate is polished under a condition that the zeta potential of the abrasive slurry is positive, and a negatively chargeable substrate is polished under a condition in which the zeta potential of the abrasive slurry is negative. This is a method for polishing a negatively chargeable substrate, wherein the polishing step b is performed at least once each.
  • the oxide is preferably SrZrO 3 and / or CaZrO 3 .
  • the abrasive slurry contains strontium zirconate (SrZrO 3 ) and / or calcium zirconate (CaZrO 3 ) and zirconium oxide (ZrO 2 )
  • a higher polishing rate can be realized.
  • the oxide is SrZrO 3 .
  • the polishing step a is preferably performed under conditions where the pH of the abrasive slurry is greater than the isoelectric point of the negatively chargeable substrate and less than the isoelectric point of the abrasive slurry.
  • the burden on the polishing apparatus / apparatus is reduced, so that the manufacturing method is more advantageous in terms of work and it is possible to sufficiently prevent the abrasive from dissolving under strong acid. Further, the polishing rate can be further increased.
  • the polishing step b is preferably carried out under conditions where the pH of the abrasive slurry is greater than the isoelectric point of the abrasive slurry and is 13 or less.
  • the burden on the polishing apparatus / apparatus is reduced, so that the manufacturing method is more advantageous in terms of work and the abrasive can be sufficiently prevented from dissolving under a strong base.
  • the surface smoothness of the obtained substrate can be further enhanced.
  • the negatively chargeable substrate is preferably a glass substrate. Thereby, it becomes possible to fully exhibit the effect by this invention.
  • the present invention is also a method for producing a negatively charged substrate having a high surface smoothness using the above polishing method.
  • the negatively chargeable substrate polishing method of the present invention produces a negatively chargeable substrate having excellent surface smoothness while realizing a high polishing rate only by using at least one kind of abrasive that does not contain cerium oxide as a main component. It can be given well. Therefore, the polishing method of the present invention is necessary for a conventional polishing method (a method of performing a precise polishing step using colloidal silica after a rough polishing step using a cerium oxide-based abrasive). Therefore, it can be said that it is an industrially extremely advantageous technology because it eliminates the need for switching work, cleaning work, dedicated equipment, etc., and can sufficiently cope with the recent shortage of rare earth supplies.
  • the negatively chargeable substrate polishing method of the present invention can provide a high surface smoothness negatively chargeable substrate with good productivity, the high surface smoothness negative chargeability using such a polishing method can be provided.
  • the substrate manufacturing method can be said to be an industrially extremely advantageous method.
  • FIG. 1 is an X-ray diffraction pattern of zirconium oxide which is a Zr raw material used in Production Example 1.
  • FIG. 2 is an X-ray diffraction pattern of the abrasive obtained in Production Example 1.
  • FIG. 3 is an SEM image of the abrasive obtained in Production Example 1.
  • FIG. 4 is a graph showing the relationship of the zeta potential to the pH of each abrasive slurry used in the examples or comparative examples.
  • a silicon carbide substrate is also included.
  • transparent or semi-transparent things such as soda-lime glass, an alkali free glass, borosilicate glass, quartz glass, are mentioned, for example.
  • Each of the polishing steps b to be polished is performed at least once.
  • the order of these polishing steps is not particularly limited, and the polishing step b may be performed after the polishing step a, or the polishing step a may be performed after the polishing step b.
  • each polishing step may be performed a plurality of times, or the polishing step a and the polishing step b may be performed alternately.
  • the polishing step a is performed a plurality of times, as long as the zeta potential of the abrasive slurry is positive, the zeta potential may be changed or may be changed.
  • the polishing step b is performed a plurality of times, and as long as the zeta potential of the abrasive slurry is negative, the zeta potential may be changed or may be changed.
  • “the zeta potential of the abrasive slurry” is a value obtained under the measurement conditions described in the examples described later.
  • the action due to electrostatic attraction is exhibited in the polishing step a, and the action due to electrostatic repulsion is exhibited in the polishing step b, so that these synergistic effects result in a high polishing rate and negative chargeability after polishing. It is presumed that excellent surface smoothness in the substrate will be realized.
  • the surface of the negatively chargeable substrate before polishing has a recess made of fine scratches or holes.
  • the polishing step a the substrate to be polished is negatively charged, whereas the abrasive slurry is positively charged, so that the abrasive penetrates deep into the recesses by electrostatic attraction and promotes polishing. Therefore, it is considered that the polishing rate is increased.
  • the polishing step b since the substrate to be polished and the abrasive slurry are both negatively charged, the abrasive does not penetrate deep into the recess due to electrostatic repulsion, but is applied between the polishing pad and the substrate. It is considered that a large amount of abrasive is present on the convex portion of the substrate surface due to the pressure, thereby smoothing the substrate surface. Accordingly, if the object to be polished is a negatively chargeable substrate, the same working mechanism is obtained. Therefore, the polishing method of the present invention can be applied not only to a glass substrate but also to various negatively chargeable substrates.
  • polishing method of this invention is not limited only to the method shown in this figure.
  • the abrasive slurry A obtained in Example 1 (including a composite of SrZrO 3 and ZrO 2 as an abrasive. Isoelectric point: 6.4) has a pH of 5 in the abrasive slurry A.
  • FIG. (A) the glass polishing step is performed under the condition of 0.5
  • FIG. (B) Is a conceptual diagram.
  • FIG. 6 is a graph conceptually showing the relationship between the processing time (polishing time) and the surface roughness of the object to be polished in the conventional polishing method (i) and the preferred embodiment (ii) of the polishing method of the present invention.
  • the polishing method of the present invention is not limited to the method (ii) shown in this graph.
  • the conventional polishing method (i) as in Comparative Example 1 to be described later, first, rough polishing is performed with a cerium oxide-based abrasive until reference numeral 4, and then the abrasive is switched (reference 4), and then colloidal silica.
  • the target surface roughness (symbol 6) is achieved by carrying out precision polishing.
  • the zeta potential of the abrasive slurry (preferably the pH of the abrasive slurry) is switched (
  • the target surface roughness (symbol 6) is achieved by performing precise polishing in the polishing step b).
  • the achievement time (symbol 8) is sufficiently shorter than the achievement time (symbol 5) in the conventional polishing method.
  • polishing is performed in the presence of an abrasive slurry.
  • the same abrasive slurry may be used, that is, continuously used (reused) to control only the zeta potential of the slurry, and the zeta potential may be positive or negative. It is also possible to prepare each abrasive slurry separately and switch the abrasive slurry in each polishing step. In any case, a slurry containing an oxide represented by the composition formula: ABO 3 and zirconium oxide may be used as the abrasive slurry.
  • the abrasive slurry can be continuously used (reused), and even when switching, it is not necessary to prepare abrasive slurry of greatly different types. No cleaning work or dedicated equipment is required. Moreover, since a high polishing rate and excellent surface smoothness can be realized without using cerium oxide, the polishing method of the present invention can be said to be a very advantageous method compared to conventional polishing methods.
  • the polishing step a is a step of polishing the negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is positive.
  • this polishing process it is possible to achieve a high polishing rate almost equal to that when using a conventional cerium oxide-based abrasive, and the surface of the negatively charged substrate is higher than when using a cerium oxide-based abrasive. Smoothness can also be improved.
  • the polishing step b is a step of polishing a negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is negative.
  • this polishing process while achieving a significantly higher polishing speed than the precision polishing process using conventional colloidal silica, it is possible to carry out precise polishing that is almost the same as the precision polishing process using colloidal silica. High surface smoothness can be realized in the conductive substrate.
  • the negatively chargeable substrate is polished under the condition that the zeta potential of the abrasive slurry is positive in the polishing step a and under the condition that the zeta potential of the abrasive slurry is negative in the polishing step b.
  • Each is more preferably 10 mV or more, further preferably 15 mV or more, and particularly preferably 20 mV or more.
  • the upper limit of the absolute value in each step is not particularly limited, but for example, it is easy to control (for example, if the zeta potential is too large in the polishing step a, there is a possibility that the abrasive remains on the glass substrate surface.
  • the zeta potential is too low in the polishing step b, the electrostatic repulsion between the negatively chargeable substrate and the abrasive slurry is too strong to sufficiently increase the polishing rate. From the viewpoint of preventing this, etc., it is preferably 100 mV or less.
  • the zeta potential of the abrasive slurry can be controlled by adjusting the pH of the abrasive slurry. If the abrasive slurry contains an oxide represented by the composition formula: ABO 3 and zirconium oxide, the zeta potential is positive when the pH of the abrasive slurry is adjusted to less than the isoelectric point of the abrasive slurry. On the other hand, when the pH of the abrasive slurry is adjusted to a range exceeding the isoelectric point of the abrasive slurry, the zeta potential becomes negative.
  • the abrasives emphasized increasing the polishing rate or increasing the surface smoothness, but the abrasives used in the present invention can easily control the abrasiveness only by pH. In this respect, a unique effect that cannot be conceived from the prior art can be exhibited.
  • the pH may be adjusted by adding a pH adjusting agent to the abrasive slurry, or the pH of the abrasive slurry may be adjusted using a pH buffer solution.
  • pH adjustment may not be performed.
  • An acid or an alkali can be used as the pH adjuster. If an acid is used, the pH of the abrasive slurry can be adjusted to the acidic side, and if an alkali is used, the pH of the abrasive slurry can be adjusted to the alkali side.
  • the acid is preferably, for example, an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or phosphoric acid; an organic acid such as oxalic acid or citric acid; and the alkali is, for example, an aqueous sodium hydroxide solution or potassium hydroxide.
  • Alkaline aqueous solutions such as aqueous solution, calcium hydroxide aqueous solution, sodium carbonate aqueous solution, ammonia water, sodium hydrogen carbonate aqueous solution, are preferable.
  • the polishing step a may be performed under the condition that the pH of the abrasive slurry is greater than the isoelectric point of the negatively chargeable substrate and less than the isoelectric point of the abrasive slurry. preferable. Thereby, the dissolution of the abrasive by the strong acid is sufficiently suppressed, and the polishing action by the abrasive is more exhibited, and the burden on the polishing machine / device can be reduced.
  • the lower limit of the pH of the abrasive slurry in the polishing step a is preferably 2 or more. More preferably, it is 3 or more, More preferably, it is 4 or more.
  • polishing process b on the conditions from which pH of an abrasive slurry is larger than the isoelectric point of this abrasive slurry, and is 13 or less. Thereby, it is sufficiently suppressed that the abrasive is dissolved by the strong base, and the polishing action by the abrasive is more exhibited. In addition, the burden on the polishing machine / device can be reduced.
  • the upper limit of the pH of the abrasive slurry in the polishing step b is more preferably 12 or less. More preferably, it is 11 or less.
  • the isoelectric point of the abrasive slurry (and abrasive) is the point where the algebraic sum of the charge on the abrasive grains (abrasive) in the abrasive slurry is zero, that is, the abrasive grains.
  • the point at which the positive charge and the negative charge are equal is said, and can be represented by the pH of the abrasive slurry at that point.
  • the isoelectric point of an abrasive comprising a composite of CaZrO 3 and ZrO 2 (Ca content: 27% by weight in terms of CaO) is 6.1
  • the composite of CaTiO 3 and ZrO 2 The isoelectric point of the abrasive comprising the body (Ca content: 30% by weight in terms of CaO) is 5.9
  • the composite of SrTiO 3 and ZrO 2 (Sr content: 40% by weight in terms of SrO)
  • the isoelectric point of the resulting abrasive is 5.7.
  • the abrasive slurry has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one type selected from the group consisting of Ti, Zr and Hf. And an oxide represented by (2) and zirconium oxide.
  • ABO 3 represents at least one element selected from the group consisting of Sr and Ca.
  • B represents at least one type selected from the group consisting of Ti, Zr and Hf.
  • an oxide represented by (2) and zirconium oxide an oxide represented by (2) and zirconium oxide.
  • the oxide represented by the composition formula: ABO 3 is also referred to as “ABO 3 oxide”
  • the oxide composed of ABO 3 oxide and zirconium oxide is also referred to as “abrasive”.
  • the abrasive content (total amount of ABO 3 oxide and zirconium oxide) in the abrasive slurry is preferably, for example, 0.001 to 90% by weight in 100% by weight of the abrasive slurry. More preferably, it is 0.01 to 30% by weight.
  • the abrasive slurry further contains a dispersion medium.
  • a dispersion medium For example, water, an organic solvent, or these mixtures etc. are mentioned, 1 type (s) or 2 or more types can be used.
  • the organic solvent include alcohol, acetone, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane and the like.
  • the alcohol include monovalent water-soluble alcohols such as methanol, ethanol and propanol; bivalent or more such as ethylene glycol and glycerin. Of water-soluble alcohols.
  • the dispersion medium is preferably water, and more preferably ion-exchanged water.
  • the above-mentioned abrasive slurry may also contain one or more additives as long as it does not interfere with the effects of the present invention.
  • the additive is not particularly limited, and examples thereof include pH adjusters (acids, alkalis, etc.), chelating agents, antifoaming agents, dispersants, viscosity modifiers, aggregation inhibitors, lubricants, reducing agents, rust inhibitors, A well-known polishing material etc. are mentioned.
  • the content of additives other than the pH adjuster is preferably as small as possible.
  • the content of additives other than the pH adjuster is preferably 5% by weight or less with respect to 100% by weight of the total amount of the abrasive slurry.
  • the abrasive, the dispersion medium and the pH adjuster are preferably 90% by weight or more, more preferably 95% by weight or more, and further preferably 99% by weight or more.
  • the abrasive slurry is not particularly limited as long as it contains zirconium oxide as ABO 3 oxide preferably contains a zirconium oxide and ABO 3 oxide as a composite thereof. That abrasive material composed of ABO 3 oxide and zirconium oxide is preferably a composite of the zirconium oxide and the ABO 3 oxide.
  • the abrasive slurry in the present invention has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents a group consisting of Ti, Zr and Hf. It is preferable to include a composite of an oxide represented by (2) representing at least one selected element and zirconium oxide as an abrasive.
  • the complex with the zirconium oxide and the ABO 3 oxide refers to secondary particles each of the primary particles of the zirconium oxide and the ABO 3 oxide is formed by partially sintered. For example, if elemental mapping is performed on the composite by energy dispersive X-ray spectroscopy (EDS), primary particles from which elements contained in A and B are detected and primary particles from which only Zr is detected are obtained. A state of forming secondary particles is observed.
  • EDS energy dispersive X-ray spectroscopy
  • the abrasive contains an ABO 3 oxide crystal phase and a zirconium oxide (ZrO 2 ) crystal phase. Since the crystal phase of ABO 3 oxide contained in the abrasive material is responsible for the chemical polishing action and the crystal phase of ZrO 2 is responsible for the mechanical polishing action, a better polishing rate can be exhibited. Furthermore, when the ABO 3 oxide and ZrO 2 form a composite, the chemical polishing action by the ABO 3 oxide and the mechanical polishing action by the crystal phase of ZrO 2 are more effectively exhibited.
  • the crystal phase of the ABO 3 oxide is particularly preferably a crystal phase of SrZrO 3 and / or CaZrO 3 , and most preferably a crystal phase of SrZrO 3 .
  • the half-value width of the peak derived from the (040) plane of orthorhombic SrZrO 3 and / or the peak derived from the (121) plane of CaZrO 3 in X-ray diffraction using CuK ⁇ rays as a radiation source is 0. It is preferably 1 to 3.0 °.
  • the angle is more preferably 0.1 to 1.0 °, further preferably 0.1 to 0.7 °, and particularly preferably 0.1 to 0.4 °.
  • the abrasive is preferably ratio D 10 of D 90 indicative of sharpness of volume-based particle size distribution (D 90 / D 10) is 1.5 to 50.
  • D 90 / D 10 is in the range of 1.5 to 50, the variation in the particle diameter becomes appropriate, and the polishing material and the substrate to be polished can be sufficiently brought into contact with each other, thereby realizing a better polishing rate. be able to. More preferably, it is 1.5 to 45, and still more preferably 1.5 to 40.
  • D 90 / D 10 is large, it means that the particle size distribution is broad, smaller value means that the particle size distribution is sharp.
  • D 10 and D 90 are values obtained by measuring the particle size distribution, respectively. It means 10% cumulative particle diameter on a volume basis and D 10, and D 90 refers to the 90% cumulative particle diameter on a volume basis.
  • the abrasive preferably has a specific surface area of 1.0 to 50 m 2 / g.
  • the specific surface area is 1.0 m 2 / g or more, it is possible to sufficiently contact the substrate to be polished, and thus it is possible to polish more suitably.
  • the mechanical polishing action is further enhanced. More preferably, it is 1.0 to 45 m 2 / g, and still more preferably 1.0 to 40 m 2 / g.
  • the specific surface area (also referred to as SSA) means the BET specific surface area.
  • the BET specific surface area refers to a specific surface area obtained by the BET method, which is one method for measuring the specific surface area.
  • the specific surface area refers to the surface area per unit mass of a certain object.
  • the BET method is a gas adsorption method in which gas particles such as nitrogen are adsorbed on solid particles and the specific surface area is measured from the amount adsorbed.
  • the specific surface area is determined by obtaining the monomolecular adsorption amount VM by the BET equation from the relationship between the pressure P and the adsorption amount V.
  • the abrasive preferably contains 10 to 43% by weight of the element A in the ABO 3 oxide in terms of oxide.
  • the polishing efficiency can be further increased. More preferably, it is 11 to 43% by weight, and still more preferably 12 to 43% by weight.
  • the ABO 3 oxide has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one selected from the group consisting of Ti, Zr and Hf. Represents a seed element).
  • A represents at least one element selected from the group consisting of strontium (Sr) and calcium (Ca), among which Sr is preferable.
  • B represents at least one element selected from the group consisting of titanium (Ti), zirconium (Zr), and hafnium (Hf). Among them, Ti and / or Zr are preferable, and Zr is more preferable. is there.
  • the ABO 3 oxide is, for example, at least one selected from the group consisting of strontium carbonate, strontium hydroxide, calcium carbonate and calcium hydroxide, and titanium oxide, titanium hydroxide, zirconium oxide, zirconium hydroxide, zirconium carbonate. And those obtained by reacting at least one selected from the group consisting of hafnium oxide. Since this reaction proceeds easily, ABO 3 oxide can be easily obtained.
  • the production method, shape, crystal type, particle size, etc. of titanium oxide (TiO 2 ) are not particularly limited.
  • a chlorine method may be used as a method for producing titanium oxide, or a sulfuric acid method may be used.
  • the crystal type may be a rutile type, an anatase type, a brookite type, or a mixture thereof.
  • the production method, shape, crystal type, particle diameter, etc. of hafnium oxide (HfO 2 ) are not particularly limited.
  • Zirconium oxide (ZrO 2 ) is not particularly limited, but is preferably in the same form as zirconium oxide described later.
  • the ABO 3 oxide is particularly preferably strontium zirconate (SrZrO 3 ) and / or calcium zirconate (CaZrO 3 ), and most preferably strontium zirconate (SrZrO 3 ).
  • strontium zirconate is obtained by, for example, reacting at least one selected from the group consisting of strontium carbonate and strontium hydroxide with at least one selected from the group consisting of zirconium oxide, zirconium hydroxide and zirconium carbonate. It is preferred to obtain. Since this reaction proceeds easily, strontium zirconate is likely to be generated.
  • the calcium zirconate is obtained, for example, by a reaction between at least one selected from the group consisting of calcium carbonate and calcium hydroxide and at least one selected from the group consisting of zirconium oxide, zirconium hydroxide and zirconium carbonate. It is preferred to obtain. Since this reaction proceeds easily, calcium zirconate is likely to be generated.
  • zirconium oxide (ZrO 2 ) will be described.
  • the crystal form of zirconium oxide is preferably a monoclinic, tetragonal or cubic crystal structure, or a mixed crystal of these crystal structures.
  • the zirconium oxide is not particularly limited.
  • the peak half-width ”) is preferably from 0.1 to 3.0 °.
  • the half width is 3.0 ° or less, the crystallinity of ZrO 2 contained in the abrasive slurry is increased, and a mechanical polishing action derived from ZrO 2 can be sufficiently obtained.
  • the half width is 0.1 ° or more, an abrasive slurry that is superior in polishing rate can be obtained.
  • the angle is more preferably 0.1 to 1.0 °, further preferably 0.1 to 0.7 °, and particularly preferably 0.1 to 0.4 °.
  • CuK ⁇ rays are used for all X-ray diffraction sources.
  • the abrasive slurry used in the present invention includes an abrasive comprising strontium zirconate (SrZrO 3 ) and / or calcium zirconate (CaZrO 3 ) and zirconium oxide (ZrO 2 ), and more Preferably, it contains a complex of strontium zirconate and / or calcium zirconate and zirconium oxide, and most preferably contains a complex of strontium zirconate and zirconium oxide.
  • an abrasive comprising strontium zirconate (SrZrO 3 ) and / or calcium zirconate (CaZrO 3 ) and zirconium oxide (ZrO 2 )
  • it contains a complex of strontium zirconate and / or calcium zirconate and zirconium oxide, and most preferably contains a complex of strontium zirconate and zirconium oxide.
  • This abrasive includes, for example, a mixing step of mixing a strontium compound and a zirconium compound and a baking step of baking the mixture obtained by the mixing step Is preferably obtained. Since this manufacturing method is performed by a solid-phase reaction method, the manufacturing process is simpler than that of the spray pyrolysis method, and it is possible to manufacture at a low cost without introducing special equipment.
  • a complex of calcium zirconate and zirconium oxide is also preferably obtained by a production method almost the same as that (however, a calcium compound such as calcium carbonate or calcium hydroxide is used in place of the strontium compound).
  • a calcium compound such as calcium carbonate or calcium hydroxide is used in place of the strontium compound.
  • the mixing step the strontium compound and the zirconium compound are mixed.
  • the mixing method is not particularly limited and may be wet mixing or dry mixing, but wet mixing is preferable from the viewpoint of mixing properties.
  • the dispersion medium used for wet mixing is not particularly limited, and water or lower alcohol can be used, but water is preferable and ion-exchanged water is more preferable from the viewpoint of production cost.
  • a ball mill, a paint conditioner, or a sand grinder may be used.
  • the strontium compound is not particularly limited as long as it is a compound containing a strontium atom, but among them, at least one selected from the group consisting of strontium carbonate and strontium hydroxide is preferable.
  • Strontium carbonate and strontium hydroxide easily react with the zirconium compound to easily produce strontium zirconate (SrZrO 3 ).
  • the zirconium compound is not particularly limited as long as it is a compound containing a zirconium atom, but among these, at least one selected from the group consisting of zirconium oxide, zirconium carbonate and zirconium hydroxide is preferable. These have high reactivity with the strontium compound, and can provide an abrasive having better polishing characteristics. Note that when a zirconium compound other than zirconium oxide (for example, zirconium carbonate and / or zirconium hydroxide) is used, the firing and pulverizing steps during the synthesis of zirconium oxide can be omitted. The said zirconium compound can also be used for a mixing process with the cake form obtained by the synthesis
  • the specific surface area of the zirconium oxide is preferably 2.0 to 200 m 2 / g. Thereby, it is possible to obtain an abrasive slurry superior in polishing rate. More preferably, it is 2.0 to 180 m 2 / g, and still more preferably 2.0 to 160 m 2 / g.
  • the specific surface area of the zirconium compound other than the zirconium oxide is preferably 0.1 to 250 m 2 / g. Thereby, it is possible to obtain an abrasive slurry superior in polishing rate. More preferably, it is 0.3 to 240 m 2 / g, and still more preferably 0.5 to 230 m 2 / g.
  • the SO 3 equivalent amount of the sulfur compound contained in the zirconium compound is 2.0 parts by weight or less with respect to 100 parts by weight of the zirconium compound equivalent to ZrO 2. Preferably there is. Thereby, an abrasive with an even better polishing rate can be obtained.
  • the sulfur compound content (SO 3 equivalent) is more preferably 1.5 parts by weight or less, still more preferably 1.1 parts by weight or less, and particularly preferably 0.5 parts by weight or less.
  • the SO 3 equivalent amount of the sulfur compound contained in the zirconium compound is measured on the measurement sample stage using an EZ scan which is a contained element scanning function of an X-ray fluorescence analyzer (manufactured by Rigaku Corporation: model number ZSX Primus II). It can be obtained by setting the pressed sample and selecting the following conditions (measurement range: FU, measurement diameter: 30 mm, sample form: oxide, measurement time: long, atmosphere: vacuum).
  • a drying step may be performed as necessary.
  • the dispersion medium is removed from the slurry obtained in the mixing step and dried.
  • the method for drying the slurry is not particularly limited as long as the solvent used at the time of mixing can be removed, and examples thereof include drying under reduced pressure and drying by heating. Further, the slurry may be dried as it is, or may be dried after being filtered. Note that the dry product of the mixture may be dry-pulverized.
  • the raw material mixture obtained in the mixing step (may be a dried product obtained through a further drying step) is fired. Thereby, a composite particularly suitable as an abrasive can be preferably obtained.
  • the raw material mixture may be fired as it is, or may be fired after being molded into a predetermined shape (for example, a pellet shape).
  • the firing atmosphere is not particularly limited. The firing step may be performed only once or twice or more.
  • the firing temperature in the firing step may be a temperature sufficient for the reaction between the strontium compound and the zirconium compound.
  • the temperature is preferably 700 to 1500 ° C.
  • the reaction proceeds more sufficiently, and when the firing temperature is 1500 ° C. or less, the polishing rate of the resulting abrasive is further increased.
  • the lower limit value is more preferably 730 ° C. or more, still more preferably 750 ° C. or more
  • the upper limit value is more preferably 1300 ° C. or less, still more preferably 1270 ° C. or less, and particularly preferably 1250 ° C. or less.
  • the firing temperature in the firing step means the highest temperature reached in the firing step.
  • the holding time at the firing temperature may be a time sufficient for the reaction between the strontium compound and the zirconium compound. For example, it is preferably 5 minutes to 24 hours. When the holding time is within this range, the reaction proceeds more sufficiently, and when the holding time is 24 hours or less, the generated fired product (strontium zirconate) is sufficiently suppressed from being vigorously sintered.
  • the polishing rate can be further increased. More preferably, it is 7 minutes to 22 hours, and further preferably 10 minutes to 20 hours.
  • the rate of temperature rise during the temperature rise until reaching the maximum temperature (firing temperature) is 0.2 to 15 ° C./min. If the rate of temperature increase is 0.2 ° C./min or more, the time required for temperature increase does not become too long, so that waste of energy and time can be sufficiently suppressed, and if it is 15 ° C./min or less.
  • the temperature of the furnace contents can sufficiently follow the set temperature, and firing unevenness is more sufficiently suppressed. More preferably, it is 0.5 to 12 ° C./min, and further preferably 1.0 to 10 ° C./min.
  • a pulverization step may be performed as necessary.
  • the fired product obtained in the firing step is pulverized.
  • the pulverization method and pulverization conditions are not particularly limited, and for example, a ball mill, a reiki machine, a hammer mill, a jet mill, or the like may be used.
  • the method for producing a high surface smoothness negatively charged substrate of the present invention uses the above-described method for polishing a negatively charged substrate of the present invention. That is, the manufacturing method includes a polishing step a in which a negatively chargeable substrate is polished under the condition that the zeta potential of the abrasive slurry is positive in the presence of the abrasive slurry, and the abrasive slurry in the presence of the abrasive slurry.
  • Firing step 30 g of the dried product of the mixture obtained in the above (3) drying step is placed in an alumina crucible having an outer diameter of 55 mm and a capacity of 60 mL, and an electric muffle furnace (ADVANTEC, KM-420). Was fired to obtain a fired product.
  • ADVANTEC electric muffle furnace
  • the temperature was raised from room temperature to 950 ° C. over 285 minutes, held at 950 ° C. for 180 minutes, and then the heater was turned off and cooled to room temperature. The firing was performed in the air.
  • FIG. 1 An X-ray diffraction pattern of the Zr raw material used in Production Example 1 is shown in FIG. 1, and an X-ray diffraction pattern of the obtained abrasive is shown in FIG.
  • the X-ray diffraction pattern of the abrasive shown in FIG. 2 contained both ZrO 2 and SrZrO 3 peaks in a database (JCPDS card) with known peak positions. Therefore, it was found that the abrasive obtained in Production Example 1 had a crystal phase of SrZrO 3 and a crystal phase of ZrO 2 .
  • the half-width of the maximum peak at 31.00 ° was 0.38 °.
  • a peak derived from the (040) plane of orthorhombic SrZrO 3 was confirmed in the X-ray diffraction pattern of the abrasive obtained in Production Example 1, and the half width was 0.33 °. It was.
  • Production Example 2 (Abrasive B) Production Example 1 except that 31.3 g of the zirconium hydroxide cake obtained in “(1) Zr raw material preparation step” was used as the Zr raw material in “(2) mixing step” of Production Example 1 in terms of ZrO 2.
  • an abrasive B made of a composite of SrZrO 3 and ZrO 2 was obtained. About this abrasive
  • Production Example 3 As a Ca raw material in “(2) mixing step” of Production Example 1, 22.5 g of calcium carbonate (manufactured by Sakai Chemical Industry Co., Ltd .: CWS-20) is used, and “(1) Zr raw material of Production Example 1 is used as a Zr raw material. Except that 42.4 g of zirconium oxide obtained in the “preparation step” was used, an abrasive E composed of a composite of CaZrO 3 and ZrO 2 was obtained in the same manner as in Production Example 1. About this abrasive material E, the half value width, the specific surface area, the elemental analysis, and the sharpness of the particle size distribution were measured or evaluated in the same manner as in Production Example 1. The results are shown in Table 1.
  • abrasive Slurry A An abrasive slurry A was produced using the abrasive A produced in Production Example 1. Specifically, 20.0 g of abrasive A was dispersed in 380.0 g of ion-exchanged water and stirred at 25 ° C. for 10 minutes. In this way, an abrasive slurry A was obtained.
  • the zeta potential was measured under the following conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG. Further, the isoelectric point of the abrasive slurry A was 6.4.
  • the isoelectric point is the point where the algebraic sum of the electric charge on the abrasive grains (abrasive) in the abrasive slurry is zero, that is, the point where the positive and negative charges on the abrasive grains are equal. It can be represented by the pH of the abrasive slurry at that point.
  • Measuring instrument Otsuka Electronics Co., Ltd., zeta potential measurement system, model number ELSZ-1 pH titrator: manufactured by Otsuka Electronics Co., Ltd., model number ELS-PT 6 g of the abrasive slurry was diluted 5 times with ion-exchanged water, and dispersed with an ultrasonic cleaner for 1 minute while stirring with a glass rod.
  • Acid side pH adjustment solution hydrochloric acid aqueous solution, 0.1 mol / L
  • Alkaline side pH adjustment solution sodium hydroxide aqueous solution, 1 mol / L
  • Production Example 5 An abrasive slurry B was produced in the same manner as in Production Example 4 (Abrasive Slurry A) except that the abrasive B produced in Production Example 2 was used.
  • the zeta potential was measured under the above measurement conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG.
  • the isoelectric point of the abrasive slurry B was 6.2.
  • Production Example 8 (Abrasive Slurry E) An abrasive slurry E was produced in the same manner as in Production Example 4 (Abrasive Slurry A) except that the abrasive E produced in Production Example 3 was used.
  • the zeta potential was measured under the above measurement conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG.
  • the isoelectric point of the abrasive slurry E was 6.1.
  • Example 1 (1) First Polishing Step After adjusting the pH of the slurry so that the zeta potential of the abrasive slurry A obtained in Production Example 4 has the value shown in Table 2, the following polishing conditions are satisfied in the presence of this slurry.
  • the glass substrate was polished.
  • Table 2 shows the pH value of the abrasive slurry A in this step.
  • the polishing rate in the first polishing step and the surface roughness of the glass substrate after the first polishing step were evaluated according to the following methods. The results are shown in Table 2.
  • Second polishing step The abrasive slurry A used in the first polishing step is continuously used as it is, and the pH of the slurry is adjusted so that the zeta potential becomes the value shown in Table 2, and then the presence of this slurry.
  • the glass substrate was grind
  • Table 2 shows the pH value of the abrasive slurry A in this step.
  • Glass plate used Soda lime glass (manufactured by Matsunami Glass Industry Co., Ltd., size 36 ⁇ 36 ⁇ 1.3 mm, specific gravity 2.5 g / cm 3 )
  • Polishing machine Desktop polishing machine (manufactured by MT Corporation, MAT BC-15C, polishing plate diameter 300 mm ⁇ )
  • Polishing pad Polyurethane foam pad (Nitta Haas, MHN-15A, no ceria impregnation) Polishing pressure: 101 g / cm 2 Plate rotation speed: 70rpm Abrasive slurry supply rate: 100 mL / min Polishing time: 60 min
  • ⁇ Measurement of polishing rate> The weight of the glass substrate before and after each polishing step was measured with an electronic balance. From the weight reduction amount, the area of the glass substrate, and the specific gravity of the glass substrate, the thickness reduction amount of the glass substrate was calculated, and the polishing rate ( ⁇ m / min) was calculated. Three glass substrates were polished at the same time, and after polishing for 60 minutes, the glass substrate and the abrasive slurry were exchanged. This operation was performed three times, and a value obtained by averaging the polishing rate of a total of 9 sheets was taken as the value of the polishing rate in each example and comparative example.
  • Example 2 Except that the abrasive slurry A was taken out after the first polishing step and switched to a new abrasive slurry A (however, the pH of the slurry was adjusted to the value shown in Table 2) and the second polishing step was performed. In the same manner as in Example 1, the first polishing step and the second polishing step were performed. Table 2 shows the pH of the abrasive slurry, the zeta potential, the polishing rate, and the surface roughness of the glass substrate in each step.
  • Example 3 The first polishing step and the second polishing step were performed in the same manner as in Example 2 except that the abrasive slurry B was used instead of the abrasive slurry A.
  • Table 2 shows the pH of the abrasive slurry, the zeta potential, the polishing rate, and the surface roughness of the glass substrate in each step.
  • Example 4 The first polishing step and the second polishing step were performed in the same manner as in Example 2 except that the abrasive slurry E was used instead of the abrasive slurry A.
  • Table 2 shows the pH of the abrasive slurry, the zeta potential, the polishing rate, and the surface roughness of the glass substrate in each step.
  • Comparative Example 1 (1) First polishing step After adjusting the pH of the slurry so that the zeta potential of the abrasive slurry C obtained in Production Example 6 becomes the value shown in Table 2, the same polishing as in Example 1 in the presence of this slurry The glass substrate was polished under the conditions. The pH value of the abrasive slurry C in this step is shown in Table 2. Further, the polishing rate in the first polishing step and the surface roughness of the glass substrate after the first polishing step were evaluated according to the methods described above. The results are shown in Table 2. (2) Second polishing step The abrasive slurry C used in the first polishing step was taken out from the polishing machine, and the polishing machine was cleaned.
  • Example 1 since the same type of abrasive slurry is used in the first polishing step and the second polishing step, the cleaning operation of the polishing machine is unnecessary, which is very advantageous in terms of work and equipment. It was.
  • the abrasive slurry A used in the first polishing step was continuously used as it was, whereas in the second polishing step of Example 2, the abrasive used in the first polishing step.
  • Example 1 and Example 2 are different in that polishing is performed by switching to a new abrasive slurry A. However, this difference has been found to have little effect on the polishing rate and the surface smoothness of the resulting substrate.

Abstract

A polishing method is provided which yields a negatively charged substrate with excellent surface smoothness with good productivity while achieving high polishing speeds. Also provided is a method for achieving a negatively charged substrate with high surface smoothness. In this method of manufacturing a negatively charged substrate using a polishing slurry, the polishing slurry contains an oxide represented by compositional expression ABO3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one element selected from the group consisting of Ti, Zr and Hf.) and zirconium oxide, and the polishing method involves carrying out, at least once each, a polishing step a for polishing a negatively charged substrate under conditions in which the zeta potential of the polishing slurry becomes positive, and a polishing step b for polishing the negatively charged substrate under conditions in which the zeta potential of the polishing slurry becomes negative.

Description

負帯電性基板の研磨方法、及び、高表面平滑性の負帯電性基板の製造方法Method for polishing negatively chargeable substrate and method for producing negatively chargeable substrate having high surface smoothness
本発明は、負帯電性基板の研磨方法、及び、高表面平滑性の負帯電性基板の製造方法に関する。 The present invention relates to a method for polishing a negatively chargeable substrate and a method for producing a negatively chargeable substrate having high surface smoothness.
負帯電性基板の代表例としてガラス基板がある。ガラス基板は、研磨材を用いて研磨されることにより、レンズやプリズム等の高い透明性や精度が要求される精密な光学ガラス製品を与えることができる。 A typical example of the negatively chargeable substrate is a glass substrate. The glass substrate can be polished with an abrasive to give a precise optical glass product that requires high transparency and accuracy such as a lens and a prism.
従来、ガラス基板の研磨では、まず酸化セリウム系の研磨材を用いてガラス基板を粗研磨する工程を行った後、ガラス基板表面の平滑度を高めるために、コロイダルシリカを用いて精密研磨する工程を経ることが一般的であった。また最近では、複数の研磨工程で酸化セリウムを用いる研磨方法も開発されている(特許文献1参照)。 Conventionally, in the polishing of a glass substrate, first, a step of roughly polishing the glass substrate using a cerium oxide-based abrasive, and then a step of precision polishing using colloidal silica in order to increase the smoothness of the glass substrate surface It was common to go through. Recently, a polishing method using cerium oxide in a plurality of polishing steps has also been developed (see Patent Document 1).
特開2014-83598号公報JP 2014-83598 A
上述のとおり、従来のガラス基板では、酸化セリウム系の研磨材を用いた粗研磨工程の後に、コロイダルシリカを用いた精密研磨工程を行うことが一般的であった。しかし、この手法では、研磨材を酸化セリウム系の研磨材からコロイダルシリカに切り替えるため、その切り替え作業やガラス基板の洗浄作業が必要になる他、酸化セリウム系の研磨材が茶色であることに起因して、研磨機・装置の洗浄作業や、他の材料への着色を防ぐために酸化セリウム系の研磨材を用いる場合専用の研磨機・装置が必要になることもあり、作業や設備面で課題があった。また、コロイダルシリカを用いた研磨工程は研磨速度が非常に遅いため、この点でも課題があった。 As described above, in a conventional glass substrate, it is common to perform a precision polishing process using colloidal silica after a rough polishing process using a cerium oxide-based abrasive. However, in this method, since the abrasive is switched from cerium oxide-based abrasive to colloidal silica, switching work and glass substrate cleaning work are required, and the cerium oxide-based abrasive is brown. In the case of using a cerium oxide-based abrasive to clean the polishing machine / equipment or to prevent coloring to other materials, a dedicated grinder / equipment may be required. was there. Also, the polishing process using colloidal silica has a problem in this respect because the polishing rate is very slow.
また酸化セリウム系の研磨材は、いわゆるレアアース(希土類)を多く含む鉱物を焼成して粉砕することによって製造されているが、レアアースはその需要が増大し、供給が不安定になっている。そこで、酸化セリウムの使用量を低減させる技術や代替材料を用いた技術の開発が望まれているが、酸化セリウムを必須に用いる研磨方法(例えば特許文献1の手法等)では、このような要望に応えることができない。 Further, cerium oxide-based abrasives are produced by firing and pulverizing minerals rich in so-called rare earths (rare earths), but the demand for rare earths has increased and supply has become unstable. Therefore, development of a technique for reducing the amount of cerium oxide used and a technique using an alternative material is desired. However, such a request is required in a polishing method (for example, the method of Patent Document 1) that essentially uses cerium oxide. Can not respond to.
本発明は、上記現状に鑑み、高い研磨速度を実現しながら、表面平滑性に優れる負帯電性基板を生産性良く与えることが可能な研磨方法を提供することを目的とする。また、高表面平滑性の負帯電性基板を実現するための製造方法を提供することも目的とする。 An object of the present invention is to provide a polishing method capable of providing a negatively chargeable substrate excellent in surface smoothness with high productivity while realizing a high polishing rate. Another object of the present invention is to provide a manufacturing method for realizing a negatively charged substrate having high surface smoothness.
本発明者は、ガラス基板に代表される負帯電性基板の研磨方法について種々検討するうち、所定の酸化物と酸化ジルコニウムとを含む研磨材スラリーのゼータ電位が正となる条件下で研磨する工程aと、当該研磨材スラリーのゼータ電位が負となる条件下で研磨する工程bとを、少なくとも1回ずつ実施することにより、高い研磨速度を実現しながら、表面平滑性に優れる負帯電性基板を生産性良く与えることを見いだし、上記課題をみごとに解決することができることに想到し、本発明を完成するに至った。 The present inventor variously studied a method for polishing a negatively chargeable substrate typified by a glass substrate, and a step of polishing under a condition in which the zeta potential of an abrasive slurry containing a predetermined oxide and zirconium oxide is positive. a negatively chargeable substrate that is excellent in surface smoothness while realizing a high polishing rate by performing a and a step b in which polishing is performed under a condition in which the zeta potential of the abrasive slurry is negative at least once. The present invention has been completed by conceiving that the above problems can be solved brilliantly.
すなわち本発明は、研磨材スラリーを用いて負帯電性基板を研磨する方法であって、
該研磨材スラリーは、組成式:ABO(Aは、Sr及びCaからなる群より選択される少なくとも1種の元素を表す。Bは、Ti、Zr及びHfからなる群より選択される少なくとも1種の元素を表す。)で表される酸化物と、酸化ジルコニウムとを含み、
該研磨方法は、研磨材スラリーのゼータ電位が正となる条件下で負帯電性基板を研磨する研磨工程aと、研磨材スラリーのゼータ電位が負となる条件下で負帯電性基板を研磨する研磨工程bとを、それぞれ少なくとも1回ずつ実施する負帯電性基板の研磨方法である。
That is, the present invention is a method of polishing a negatively charged substrate using an abrasive slurry,
The abrasive slurry has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one selected from the group consisting of Ti, Zr and Hf. An oxide represented by the following formula:
The polishing method includes a polishing step a in which a negatively chargeable substrate is polished under a condition that the zeta potential of the abrasive slurry is positive, and a negatively chargeable substrate is polished under a condition in which the zeta potential of the abrasive slurry is negative. This is a method for polishing a negatively chargeable substrate, wherein the polishing step b is performed at least once each.
上記酸化物は、SrZrO及び/又はCaZrOであることが好ましい。研磨材スラリーが、ジルコン酸ストロンチウム(SrZrO)及び/又はジルコン酸カルシウム(CaZrO)と、酸化ジルコニウム(ZrO)とを含むことで、より一層高い研磨速度を実現することができる。上記酸化物として最も好ましくは、SrZrOである。 The oxide is preferably SrZrO 3 and / or CaZrO 3 . When the abrasive slurry contains strontium zirconate (SrZrO 3 ) and / or calcium zirconate (CaZrO 3 ) and zirconium oxide (ZrO 2 ), a higher polishing rate can be realized. Most preferably, the oxide is SrZrO 3 .
上記研磨工程aを、研磨材スラリーのpHが、上記負帯電性基板の等電点より大きく、かつ該研磨材スラリーの等電点未満となる条件下で実施することが好ましい。これにより、研磨装置・器具への負担が小さくなるため、作業面でより有利な製造方法となる他、研磨材が強酸下で溶解してしまうことを充分に防止することができる。また、研磨速度をより高めることができる。 The polishing step a is preferably performed under conditions where the pH of the abrasive slurry is greater than the isoelectric point of the negatively chargeable substrate and less than the isoelectric point of the abrasive slurry. As a result, the burden on the polishing apparatus / apparatus is reduced, so that the manufacturing method is more advantageous in terms of work and it is possible to sufficiently prevent the abrasive from dissolving under strong acid. Further, the polishing rate can be further increased.
上記研磨工程bを、研磨材スラリーのpHが、該研磨材スラリーの等電点より大きく、かつ13以下となる条件下で実施することが好ましい。これにより、研磨装置・器具への負担が小さくなるため、作業面でより有利な製造方法となる他、研磨材が強塩基下で溶解してしまうことを充分に防止することができる。また、得られる基板の表面平滑性をより一層高めることができる。 The polishing step b is preferably carried out under conditions where the pH of the abrasive slurry is greater than the isoelectric point of the abrasive slurry and is 13 or less. As a result, the burden on the polishing apparatus / apparatus is reduced, so that the manufacturing method is more advantageous in terms of work and the abrasive can be sufficiently prevented from dissolving under a strong base. Moreover, the surface smoothness of the obtained substrate can be further enhanced.
上記負帯電性基板は、ガラス基板であることが好ましい。これにより、本発明による作用効果をより充分に発揮することが可能となる。 The negatively chargeable substrate is preferably a glass substrate. Thereby, it becomes possible to fully exhibit the effect by this invention.
本発明はまた、上記研磨方法を用いる高表面平滑性の負帯電性基板の製造方法でもある。 The present invention is also a method for producing a negatively charged substrate having a high surface smoothness using the above polishing method.
本発明の負帯電性基板の研磨方法により、酸化セリウムを主成分としない1種類の研磨材を少なくとも用いるのみで、高い研磨速度を実現しながら、表面平滑性に優れる負帯電性基板を生産性良く与えることが可能になる。それゆえ、本発明の研磨方法は、従来一般的に行われてきた研磨手法(酸化セリウム系の研磨材を用いた粗研磨工程の後に、コロイダルシリカを用いた精密研磨工程を行う手法)では必要であった研磨材の切り替え作業や洗浄作業、専用装置等を不要にするとともに、近年のレアアース供給不足にも充分に対応できるため、工業的に極めて有利な技術といえる。また、本発明の負帯電性基板の研磨方法を用いれば、高表面平滑性の負帯電性基板を生産性良く与えることができるため、このような研磨方法を用いる高表面平滑性の負帯電性基板の製造方法は、工業的に極めて有利な手法といえる。 The negatively chargeable substrate polishing method of the present invention produces a negatively chargeable substrate having excellent surface smoothness while realizing a high polishing rate only by using at least one kind of abrasive that does not contain cerium oxide as a main component. It can be given well. Therefore, the polishing method of the present invention is necessary for a conventional polishing method (a method of performing a precise polishing step using colloidal silica after a rough polishing step using a cerium oxide-based abrasive). Therefore, it can be said that it is an industrially extremely advantageous technology because it eliminates the need for switching work, cleaning work, dedicated equipment, etc., and can sufficiently cope with the recent shortage of rare earth supplies. In addition, since the negatively chargeable substrate polishing method of the present invention can provide a high surface smoothness negatively chargeable substrate with good productivity, the high surface smoothness negative chargeability using such a polishing method can be provided. The substrate manufacturing method can be said to be an industrially extremely advantageous method.
図1は、製造例1で用いたZr原料である酸化ジルコニウムのX線回折パターンである。FIG. 1 is an X-ray diffraction pattern of zirconium oxide which is a Zr raw material used in Production Example 1. 図2は、製造例1で得た研磨材のX線回折パターンである。FIG. 2 is an X-ray diffraction pattern of the abrasive obtained in Production Example 1. 図3は、製造例1で得た研磨材のSEM画像である。FIG. 3 is an SEM image of the abrasive obtained in Production Example 1. 図4は、実施例又は比較例で用いた各研磨材スラリーの、pHに対するゼータ電位の関係を示すグラフである。FIG. 4 is a graph showing the relationship of the zeta potential to the pH of each abrasive slurry used in the examples or comparative examples. 研磨材スラリーAのpHが5.5となる条件下でガラスの研磨工程aを行った場合((a))、及び、研磨工程(a)で粗研磨したガラスに対して、研磨材スラリーAのpHが10となる条件下でガラスの研磨工程bを行った場合((b))の概念図を示す図である。When the polishing step a of the glass is performed under the condition that the pH of the polishing slurry A is 5.5 ((a)), and for the glass roughly polished in the polishing step (a), the polishing slurry A It is a figure which shows the conceptual diagram when the glass grinding | polishing process b is performed on the conditions from which pH of 10 becomes ((b)). 従来の研磨方法と、本発明の研磨方法の好ましい形態とにおける、加工時間(研磨時間)と研磨対象の表面粗さとの関係を概念的に示したグラフである。It is the graph which showed notionally the relationship between the processing time (polishing time) and the surface roughness of the grinding | polishing object in the conventional grinding | polishing method and the preferable form of the grinding | polishing method of this invention.
以下、本発明の一例について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, an example of the present invention will be described in detail. However, the present invention is not limited to the following description, and can be applied as appropriate without departing from the scope of the present invention.
〔負帯電性基板の研磨方法〕
本発明の第一の態様である、負帯電性基板の研磨方法について説明する。
本明細書中、負帯電性基板とは、pHが4より大きい水溶液中で常に負に帯電している基板であることが好ましく、例えば、ガラス基板(ガラスの等電点=約2.0)が挙げられる。その他、炭化ケイ素基板(炭化ケイ素の等電点=約4.0)等も挙げられる。
なお、ガラス基板としては、例えば、ソーダライムガラス、無アルカリガラス、ホウケイ酸ガラス、石英ガラス等の透明又は半透明のものが挙げられる。
[Polishing method of negatively charged substrate]
A method for polishing a negatively chargeable substrate, which is a first aspect of the present invention, will be described.
In the present specification, the negatively chargeable substrate is preferably a substrate that is always negatively charged in an aqueous solution having a pH higher than 4, for example, a glass substrate (isoelectric point of glass = about 2.0). Is mentioned. In addition, a silicon carbide substrate (isoelectric point of silicon carbide = about 4.0) is also included.
In addition, as a glass substrate, transparent or semi-transparent things, such as soda-lime glass, an alkali free glass, borosilicate glass, quartz glass, are mentioned, for example.
本発明の研磨方法では、研磨材スラリーのゼータ電位が正となる条件下で負帯電性基板を研磨する研磨工程aと、研磨材スラリーのゼータ電位が負となる条件下で負帯電性基板を研磨する研磨工程bとを、それぞれ少なくとも1回ずつ実施する。これらの研磨工程の順序は特に限定されず、研磨工程aの後に研磨工程bを行ってもよいし、研磨工程bの後に研磨工程aを行ってもよい。中でも、表面平滑性により優れた負帯電性基板を得るには、研磨工程aを少なくとも1回行った後、研磨工程bを少なくとも1回行うことが特に好適である。また、各研磨工程を複数回行ってもよいし、研磨工程aと研磨工程bとを交互に実施してもよい。研磨工程aを複数回行う場合、研磨材スラリーのゼータ電位が正である限り、ゼータ電位を変更して実施してもよいし、変えないで実施してもよい。研磨工程bを複数回行う場合も同様であり、研磨材スラリーのゼータ電位が負である限り、ゼータ電位を変更して実施してもよいし、変えないで実施してもよい。
本明細書中、「研磨材スラリーのゼータ電位」とは、後述する実施例に記載の測定条件下で求められる値である。
In the polishing method of the present invention, a polishing step a for polishing a negatively chargeable substrate under conditions where the zeta potential of the abrasive slurry is positive, and a negatively chargeable substrate under conditions where the zeta potential of the abrasive slurry is negative. Each of the polishing steps b to be polished is performed at least once. The order of these polishing steps is not particularly limited, and the polishing step b may be performed after the polishing step a, or the polishing step a may be performed after the polishing step b. Among them, in order to obtain a negatively chargeable substrate having better surface smoothness, it is particularly preferable to perform the polishing step a at least once and then perform the polishing step b at least once. In addition, each polishing step may be performed a plurality of times, or the polishing step a and the polishing step b may be performed alternately. When the polishing step a is performed a plurality of times, as long as the zeta potential of the abrasive slurry is positive, the zeta potential may be changed or may be changed. The same applies when the polishing step b is performed a plurality of times, and as long as the zeta potential of the abrasive slurry is negative, the zeta potential may be changed or may be changed.
In the present specification, “the zeta potential of the abrasive slurry” is a value obtained under the measurement conditions described in the examples described later.
本発明では、研磨工程aにおいて静電引力による作用が発揮され、研磨工程bにおいて静電斥力による作用が発揮されることで、これらの相乗効果により、高い研磨速度と、研磨後の負帯電性基板における優れた表面平滑性とを実現することになると推測される。
通常、研磨前の負帯電性基板の表面には、微細な傷や穴等からなる凹部が存在する。研磨工程aでは、研磨対象である基板は負に帯電しているのに対し、研磨材スラリーは正に帯電しているため、静電引力により研磨材が凹部の深くまで浸透し、研磨を促進するために、研磨速度が高められると考えられる。一方、研磨工程bでは、研磨対象である基板も研磨材スラリーも負に帯電しているため、静電斥力により研磨材は凹部の深くまでは浸透しないものの、研磨パッドと基板との間にかかる圧力によって、研磨材が基板表面の凸部に多く存在することになり、これにより基板表面が平滑化されると考えられる。したがって、研磨対象が負帯電性基板であれば同様の作用機構となるため、本発明の研磨方法は、ガラス基板だけでなく、各種の負帯電性基板に適用することができる。
In the present invention, the action due to electrostatic attraction is exhibited in the polishing step a, and the action due to electrostatic repulsion is exhibited in the polishing step b, so that these synergistic effects result in a high polishing rate and negative chargeability after polishing. It is presumed that excellent surface smoothness in the substrate will be realized.
Usually, the surface of the negatively chargeable substrate before polishing has a recess made of fine scratches or holes. In the polishing step a, the substrate to be polished is negatively charged, whereas the abrasive slurry is positively charged, so that the abrasive penetrates deep into the recesses by electrostatic attraction and promotes polishing. Therefore, it is considered that the polishing rate is increased. On the other hand, in the polishing step b, since the substrate to be polished and the abrasive slurry are both negatively charged, the abrasive does not penetrate deep into the recess due to electrostatic repulsion, but is applied between the polishing pad and the substrate. It is considered that a large amount of abrasive is present on the convex portion of the substrate surface due to the pressure, thereby smoothing the substrate surface. Accordingly, if the object to be polished is a negatively chargeable substrate, the same working mechanism is obtained. Therefore, the polishing method of the present invention can be applied not only to a glass substrate but also to various negatively chargeable substrates.
ここで、図5を用いて本発明の研磨方法の好ましい形態のメカニズムを説明するが、本発明の研磨方法はこの図で示す方法のみに限定されない。
図5では、実施例1で得た研磨材スラリーA(研磨材としてSrZrOとZrOとの複合体を含む。等電点:6.4)を用いて、研磨材スラリーAのpHが5.5となる条件下でガラスの研磨工程を行った場合(図(a))、及び、研磨材スラリーAのpHが10となる条件下でガラスの研磨工程を行った場合(図(b))の概念図を示している。
まずこの研磨材スラリーAを研磨パッド(符号3)上に供給しながらガラス(符号2)の研磨工程を行った場合、pH=5.5の条件下では、研磨材A(符号1)は正に帯電するため、研磨材Aが負に帯電したガラスに吸着し、ガラス表面の微細な凹凸部の深くまで侵入することができる。つまりこの工程は粗研磨工程といえ、研磨速度は著しく大きい。
一方、上記研磨工程の後にpH=10の条件下で研磨工程を行った場合、研磨材A(符号1)は負に帯電するため、研磨材が負に帯電したガラスから反発し、研磨材がガラス表面の凸部を選択的に研磨する。つまりこの工程は精密研磨工程といえ、研磨速度は小さいものの、研磨対象物(図5ではガラス)の表面平滑性が著しく高められる。
Here, although the mechanism of the preferable form of the grinding | polishing method of this invention is demonstrated using FIG. 5, the grinding | polishing method of this invention is not limited only to the method shown in this figure.
In FIG. 5, the abrasive slurry A obtained in Example 1 (including a composite of SrZrO 3 and ZrO 2 as an abrasive. Isoelectric point: 6.4) has a pH of 5 in the abrasive slurry A. When the glass polishing step is performed under the condition of 0.5 (FIG. (A)) and when the glass polishing step is performed under the condition that the pH of the abrasive slurry A is 10 (FIG. (B)). ) Is a conceptual diagram.
First, when the polishing process of the glass (reference numeral 2) is performed while supplying the abrasive slurry A onto the polishing pad (reference numeral 3), the abrasive A (reference numeral 1) is positive under the condition of pH = 5.5. Therefore, the abrasive A is adsorbed to the negatively charged glass and can penetrate deeply into the fine irregularities on the glass surface. That is, this process is a rough polishing process, and the polishing rate is extremely high.
On the other hand, when the polishing step is performed under the condition of pH = 10 after the polishing step, the abrasive A (reference numeral 1) is negatively charged, so the abrasive repels from the negatively charged glass, and the abrasive The convex part of the glass surface is selectively polished. That is, this process can be said to be a precision polishing process, and although the polishing rate is low, the surface smoothness of the object to be polished (glass in FIG. 5) is remarkably enhanced.
また図6として、従来の研磨方法(i)と、本発明の研磨方法の好ましい形態(ii)とにおける、加工時間(研磨時間)と研磨対象物の表面粗さとの関係を概念的にグラフに示すが、本発明の研磨方法はこのグラフで示される方法(ii)のみに限定されない。
従来の研磨方法(i)では、後述の比較例1のように、まず符号4の時点まで酸化セリウム質研磨材で粗研磨を行った後、研磨材を切り替え(符号4)、その後、コロイダルシリカにより精密研磨を行うことで、目標となる表面粗さ(符号6)を達成している。
一方、本発明の研磨方法の好ましい形態(ii)では、まず符号7の時点まで研磨工程aによる粗研磨を行った後、研磨材スラリーのゼータ電位(好ましくは研磨材スラリーのpH)を切り替え(符号7)、その後、研磨工程bによる精密研磨を行うことで、目標となる表面粗さ(符号6)を達成している。その達成時間(符号8)は、従来の研磨方法における達成時間(符号5)よりも充分に短縮されることになる。
FIG. 6 is a graph conceptually showing the relationship between the processing time (polishing time) and the surface roughness of the object to be polished in the conventional polishing method (i) and the preferred embodiment (ii) of the polishing method of the present invention. As shown, the polishing method of the present invention is not limited to the method (ii) shown in this graph.
In the conventional polishing method (i), as in Comparative Example 1 to be described later, first, rough polishing is performed with a cerium oxide-based abrasive until reference numeral 4, and then the abrasive is switched (reference 4), and then colloidal silica. The target surface roughness (symbol 6) is achieved by carrying out precision polishing.
On the other hand, in the preferred embodiment (ii) of the polishing method of the present invention, first, after rough polishing by the polishing step a until the point of reference numeral 7, the zeta potential of the abrasive slurry (preferably the pH of the abrasive slurry) is switched ( The target surface roughness (symbol 6) is achieved by performing precise polishing in the polishing step b). The achievement time (symbol 8) is sufficiently shorter than the achievement time (symbol 5) in the conventional polishing method.
上記研磨工程a及び研磨工程bのいずれの工程も、研磨材スラリーの存在下で研磨を行う。研磨工程aと研磨工程bとでは、同じ研磨材スラリーを使用、すなわち連続使用(再利用)して、該スラリーのゼータ電位の制御のみを行うこととしてもよいし、ゼータ電位がを正又は負となる研磨材スラリーをそれぞれ別個に用意して、各研磨工程で研磨材スラリーを切り替えてもよい。いずれの場合も、研磨材スラリーとして、組成式:ABOで表される酸化物と酸化ジルコニウムとを含むものを用いればよい。このように本発明では、研磨材スラリーを連続使用(再利用)でき、切り替える場合でも種類が大きく異なる研磨材スラリーを用意する必要がないので、従来の手法のように研磨材切り替え時に必要となる洗浄作業や専用装置等が不要となる。また、酸化セリウムを必須に用いなくても高い研磨速度と優れた表面平滑性とを実現できるため、本発明の研磨方法は、従来の研磨方法に比べて非常に有利な手法といえる。 In both the polishing step a and the polishing step b, polishing is performed in the presence of an abrasive slurry. In the polishing step a and the polishing step b, the same abrasive slurry may be used, that is, continuously used (reused) to control only the zeta potential of the slurry, and the zeta potential may be positive or negative. It is also possible to prepare each abrasive slurry separately and switch the abrasive slurry in each polishing step. In any case, a slurry containing an oxide represented by the composition formula: ABO 3 and zirconium oxide may be used as the abrasive slurry. As described above, in the present invention, the abrasive slurry can be continuously used (reused), and even when switching, it is not necessary to prepare abrasive slurry of greatly different types. No cleaning work or dedicated equipment is required. Moreover, since a high polishing rate and excellent surface smoothness can be realized without using cerium oxide, the polishing method of the present invention can be said to be a very advantageous method compared to conventional polishing methods.
上記研磨工程aは、研磨材スラリーのゼータ電位が正となる条件下で、該研磨材スラリーを用いて負帯電性基板を研磨する工程である。この研磨工程では、従来の酸化セリウム系の研磨材を用いた場合とほぼ同等の高い研磨速度を実現することができ、しかも酸化セリウム系の研磨材を用いた場合よりも負帯電性基板の表面平滑性を高めることもできる。 The polishing step a is a step of polishing the negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is positive. In this polishing process, it is possible to achieve a high polishing rate almost equal to that when using a conventional cerium oxide-based abrasive, and the surface of the negatively charged substrate is higher than when using a cerium oxide-based abrasive. Smoothness can also be improved.
上記研磨工程bは、研磨材スラリーのゼータ電位が負となる条件下で、該研磨材スラリーを用いて負帯電性基板を研磨する工程である。この研磨工程では、従来のコロイダルシリカを用いた精密研磨工程よりも著しく高い研磨速度を実現しながら、コロイダルシリカを用いた精密研磨工程とほぼ同等の精密な研磨を実施でき、研磨後の負帯電性基板において高い表面平滑性を実現することができる。 The polishing step b is a step of polishing a negatively chargeable substrate using the abrasive slurry under conditions where the zeta potential of the abrasive slurry is negative. In this polishing process, while achieving a significantly higher polishing speed than the precision polishing process using conventional colloidal silica, it is possible to carry out precise polishing that is almost the same as the precision polishing process using colloidal silica. High surface smoothness can be realized in the conductive substrate.
上述のとおり本発明では、研磨工程aでは研磨材スラリーのゼータ電位が正となる条件下で、研磨工程bでは研磨材スラリーのゼータ電位が負となる条件下で、それぞれ負帯電性基板を研磨することになるが、研磨材スラリーのゼータ電位の絶対値がそれぞれ5mV以上となる条件下で各研磨工程を行うことが好適である。これにより、本発明の作用効果をより充分に発揮することが可能となる。それぞれ、より好ましくは10mV以上、更に好ましくは15mV以上、特に好ましくは20mV以上である。また、各工程での当該絶対値の上限は特に限定されないが、例えば制御しやすさ(例えば、研磨工程aでゼータ電位が過大すぎると、ガラス基板表面に研磨材が残留付着する可能性があるため、これを防止する等。また例えば、研磨工程bでゼータ電位が過小すぎると、負帯電性基板と研磨材スラリーの静電斥力が強く働きすぎて、研磨速度を充分に高めることができない可能性があるため、これを防止する等)の観点から、それぞれ、100mV以下であることが好ましい。 As described above, in the present invention, the negatively chargeable substrate is polished under the condition that the zeta potential of the abrasive slurry is positive in the polishing step a and under the condition that the zeta potential of the abrasive slurry is negative in the polishing step b. However, it is preferable to perform each polishing step under the condition that the absolute value of the zeta potential of the abrasive slurry is 5 mV or more. Thereby, it becomes possible to fully exhibit the effect of this invention. Each is more preferably 10 mV or more, further preferably 15 mV or more, and particularly preferably 20 mV or more. In addition, the upper limit of the absolute value in each step is not particularly limited, but for example, it is easy to control (for example, if the zeta potential is too large in the polishing step a, there is a possibility that the abrasive remains on the glass substrate surface. For example, if the zeta potential is too low in the polishing step b, the electrostatic repulsion between the negatively chargeable substrate and the abrasive slurry is too strong to sufficiently increase the polishing rate. From the viewpoint of preventing this, etc., it is preferably 100 mV or less.
研磨材スラリーのゼータ電位は、該研磨材スラリーのpHを調整することで制御することができる。研磨材スラリーが組成式:ABOで表される酸化物と酸化ジルコニウムとを含むものであれば、研磨材スラリーのpHを該研磨材スラリーの等電点未満に調整すると、そのゼータ電位は正となる一方で、研磨材スラリーのpHを該研磨材スラリーの等電点を超える範囲に調整すると、そのゼータ電位は負となる。なお、これまでの研磨材は、研磨速度を高める、又は、表面平滑性を高めるといったことを重視していたが、本発明で使用する研磨材は、pHだけで研磨性を簡単にコントロールすることができるものであり、この点で従来技術からは着想し得ない特異な効果を発揮し得るものである。 The zeta potential of the abrasive slurry can be controlled by adjusting the pH of the abrasive slurry. If the abrasive slurry contains an oxide represented by the composition formula: ABO 3 and zirconium oxide, the zeta potential is positive when the pH of the abrasive slurry is adjusted to less than the isoelectric point of the abrasive slurry. On the other hand, when the pH of the abrasive slurry is adjusted to a range exceeding the isoelectric point of the abrasive slurry, the zeta potential becomes negative. In the past, the abrasives emphasized increasing the polishing rate or increasing the surface smoothness, but the abrasives used in the present invention can easily control the abrasiveness only by pH. In this respect, a unique effect that cannot be conceived from the prior art can be exhibited.
pHの調整は、研磨材スラリーにpH調整剤を添加することで行ってもよいし、pH緩衝液を用いて研磨材スラリーのpHを調整してもよい。
なお、既に研磨材スラリーのpHが研磨に好ましい領域にある場合は、pH調整を行わなくてもよい。
The pH may be adjusted by adding a pH adjusting agent to the abrasive slurry, or the pH of the abrasive slurry may be adjusted using a pH buffer solution.
In addition, when the pH of the abrasive slurry is already in a region preferable for polishing, pH adjustment may not be performed.
上記pH調整剤としては、酸やアルカリを用いることができる。酸を用いれば研磨材スラリーのpHを酸性側に調整することができ、アルカリを用いれば研磨材スラリーのpHをアルカリ側に調整することができる。酸としては、例えば、硝酸、硫酸、塩酸、過塩素酸、リン酸等の無機酸;シュウ酸、クエン酸等の有機酸;が好ましく、アルカリとしては、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、アンモニア水、炭酸水素ナトリウム水溶液等のアルカリ性水溶液が好ましい。 An acid or an alkali can be used as the pH adjuster. If an acid is used, the pH of the abrasive slurry can be adjusted to the acidic side, and if an alkali is used, the pH of the abrasive slurry can be adjusted to the alkali side. The acid is preferably, for example, an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or phosphoric acid; an organic acid such as oxalic acid or citric acid; and the alkali is, for example, an aqueous sodium hydroxide solution or potassium hydroxide. Alkaline aqueous solutions, such as aqueous solution, calcium hydroxide aqueous solution, sodium carbonate aqueous solution, ammonia water, sodium hydrogen carbonate aqueous solution, are preferable.
本発明の研磨方法では、研磨工程aを、研磨材スラリーのpHが、上記負帯電性基板の等電点より大きく、かつ該研磨材スラリーの等電点未満となる条件下で実施することが好ましい。これにより、強酸によって研磨材が溶解することが充分に抑制されて、研磨材による研磨作用がより発揮される他、研磨機・装置への負担を軽減することもできる。研磨工程aにおける研磨材スラリーのpHの下限値として具体的には、2以上であることが好ましい。より好ましくは3以上、更に好ましくは4以上である。 In the polishing method of the present invention, the polishing step a may be performed under the condition that the pH of the abrasive slurry is greater than the isoelectric point of the negatively chargeable substrate and less than the isoelectric point of the abrasive slurry. preferable. Thereby, the dissolution of the abrasive by the strong acid is sufficiently suppressed, and the polishing action by the abrasive is more exhibited, and the burden on the polishing machine / device can be reduced. Specifically, the lower limit of the pH of the abrasive slurry in the polishing step a is preferably 2 or more. More preferably, it is 3 or more, More preferably, it is 4 or more.
また研磨工程bを、研磨材スラリーのpHが、該研磨材スラリーの等電点より大きく、かつ13以下となる条件下で実施することが好ましい。これにより、強塩基によって研磨材が溶解することが充分に抑制されて、研磨材による研磨作用がより発揮される他、研磨機・装置への負担を軽減することもできる。研磨工程bにおける研磨材スラリーのpHの上限値は、12以下であることがより好ましい。更に好ましくは11以下である。 Moreover, it is preferable to implement the grinding | polishing process b on the conditions from which pH of an abrasive slurry is larger than the isoelectric point of this abrasive slurry, and is 13 or less. Thereby, it is sufficiently suppressed that the abrasive is dissolved by the strong base, and the polishing action by the abrasive is more exhibited. In addition, the burden on the polishing machine / device can be reduced. The upper limit of the pH of the abrasive slurry in the polishing step b is more preferably 12 or less. More preferably, it is 11 or less.
本明細書中、研磨材スラリー(及び研磨材)の等電点とは、研磨材スラリー中の砥粒(研磨材)に帯びた電荷の代数和がゼロである点、すなわち砥粒に帯びた正電荷と負電荷とが等しくなる点をいい、その点における研磨材スラリーのpHで表すことができる。参考までに、例えば、CaZrOとZrOとの複合体(Ca含有量:CaO換算で27重量%)からなる研磨材の等電点は6.1であり、CaTiOとZrOとの複合体(Ca含有量:CaO換算で30重量%)からなる研磨材の等電点は5.9であり、SrTiOとZrOとの複合体(Sr含有量:SrO換算で40重量%)からなる研磨材の等電点は5.7である。 In the present specification, the isoelectric point of the abrasive slurry (and abrasive) is the point where the algebraic sum of the charge on the abrasive grains (abrasive) in the abrasive slurry is zero, that is, the abrasive grains. The point at which the positive charge and the negative charge are equal is said, and can be represented by the pH of the abrasive slurry at that point. For reference, for example, the isoelectric point of an abrasive comprising a composite of CaZrO 3 and ZrO 2 (Ca content: 27% by weight in terms of CaO) is 6.1, and the composite of CaTiO 3 and ZrO 2 The isoelectric point of the abrasive comprising the body (Ca content: 30% by weight in terms of CaO) is 5.9, and from the composite of SrTiO 3 and ZrO 2 (Sr content: 40% by weight in terms of SrO) The isoelectric point of the resulting abrasive is 5.7.
<研磨材スラリー>
次に、本発明の研磨方法で使用する研磨材スラリーについて説明する。
研磨材スラリーは、組成式:ABO(Aは、Sr及びCaからなる群より選択される少なくとも1種の元素を表す。Bは、Ti、Zr及びHfからなる群より選択される少なくとも1種の元素を表す。)で表される酸化物と、酸化ジルコニウムとを含むものである。
本明細書中、組成式:ABOで表される酸化物を「ABO酸化物」とも称し、ABO酸化物と酸化ジルコニウムとからなるものを「研磨材」とも称する。
<Abrasive slurry>
Next, the abrasive slurry used in the polishing method of the present invention will be described.
The abrasive slurry has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one type selected from the group consisting of Ti, Zr and Hf. And an oxide represented by (2) and zirconium oxide.
In this specification, the oxide represented by the composition formula: ABO 3 is also referred to as “ABO 3 oxide”, and the oxide composed of ABO 3 oxide and zirconium oxide is also referred to as “abrasive”.
上記研磨材スラリー中の研磨材の含有量(ABO酸化物と酸化ジルコニウムとの総量)は、例えば、研磨材スラリー100重量%中、0.001~90重量%であることが好ましい。より好ましくは0.01~30重量%である。 The abrasive content (total amount of ABO 3 oxide and zirconium oxide) in the abrasive slurry is preferably, for example, 0.001 to 90% by weight in 100% by weight of the abrasive slurry. More preferably, it is 0.01 to 30% by weight.
上記研磨材スラリーは、更に、分散媒を含むことが好ましい。
分散媒としては特に限定されないが、例えば、水、有機溶媒又はこれらの混合物等が挙げられ、1種又は2種以上を使用することができる。有機溶媒としては、アルコール、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン等が挙げられ、アルコールとしては、メタノール、エタノール、プロパノール等の1価の水溶性アルコール;エチレングリコール、グリセリン等の2価以上の水溶性アルコール;等が挙げられる。分散媒として好ましくは水であり、より好ましくはイオン交換水である。
It is preferable that the abrasive slurry further contains a dispersion medium.
Although it does not specifically limit as a dispersion medium, For example, water, an organic solvent, or these mixtures etc. are mentioned, 1 type (s) or 2 or more types can be used. Examples of the organic solvent include alcohol, acetone, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane and the like. Examples of the alcohol include monovalent water-soluble alcohols such as methanol, ethanol and propanol; bivalent or more such as ethylene glycol and glycerin. Of water-soluble alcohols. The dispersion medium is preferably water, and more preferably ion-exchanged water.
上記研磨材スラリーはまた、必要に応じ、本発明の効果を妨げない範囲で添加剤を1種又は2種以上含んでもよい。添加剤としては特に限定されず、例えば、pH調整剤(酸、アルカリ等)、キレート化剤、消泡剤、分散剤、粘度調整剤、凝集防止剤、潤滑剤、還元剤、防錆剤、公知の研磨材料等が挙げられる。
なお、本発明の研磨方法による効果を高める観点からは、pH調整剤以外の添加剤の含有量は少ないほど好ましい。例えば、研磨材スラリーの総量100重量%に対し、pH調整剤以外の添加剤の含有量が5重量%以下であることが好ましい。言い換えると、研磨材スラリーの総量100重量%中、研磨材、分散媒及びpH調整剤が90重量%以上であることが好ましく、より好ましくは95重量%以上、更に好ましくは99重量%以上である。
The above-mentioned abrasive slurry may also contain one or more additives as long as it does not interfere with the effects of the present invention. The additive is not particularly limited, and examples thereof include pH adjusters (acids, alkalis, etc.), chelating agents, antifoaming agents, dispersants, viscosity modifiers, aggregation inhibitors, lubricants, reducing agents, rust inhibitors, A well-known polishing material etc. are mentioned.
In addition, from the viewpoint of enhancing the effect of the polishing method of the present invention, the content of additives other than the pH adjuster is preferably as small as possible. For example, the content of additives other than the pH adjuster is preferably 5% by weight or less with respect to 100% by weight of the total amount of the abrasive slurry. In other words, in the total amount of abrasive slurry of 100% by weight, the abrasive, the dispersion medium and the pH adjuster are preferably 90% by weight or more, more preferably 95% by weight or more, and further preferably 99% by weight or more. .
上記研磨材スラリーは、ABO酸化物と酸化ジルコニウムとを含むものであれば特に限定されないが、ABO酸化物と酸化ジルコニウムとをこれらの複合体として含むことが好ましい。すなわちABO酸化物と酸化ジルコニウムとからなる研磨材は、ABO酸化物と酸化ジルコニウムとの複合体であることが好ましい。言い換えれば、本発明における研磨材スラリーは、組成式:ABO(Aは、Sr及びCaからなる群より選択される少なくとも1種の元素を表す。Bは、Ti、Zr及びHfからなる群より選択される少なくとも1種の元素を表す。)で表される酸化物と、酸化ジルコニウムとの複合体を研磨材として含むことが好適である。これにより、セリウムフリーの研磨材において高い研磨速度をより実現することができる。なお、上記ABO酸化物と酸化ジルコニウムとの複合体とは、ABO酸化物と酸化ジルコニウムとのそれぞれの一次粒子が部分的に焼結して形成された二次粒子のことを言う。例えば、複合体についてエネルギー分散X線分光法(EDS)による元素マッピングを行えば、Aに含まれる元素とBに含まれる元素とが検出される一次粒子とZrのみが検出される一次粒子とが、二次粒子を形成している様子が観察される。 The abrasive slurry is not particularly limited as long as it contains zirconium oxide as ABO 3 oxide preferably contains a zirconium oxide and ABO 3 oxide as a composite thereof. That abrasive material composed of ABO 3 oxide and zirconium oxide is preferably a composite of the zirconium oxide and the ABO 3 oxide. In other words, the abrasive slurry in the present invention has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents a group consisting of Ti, Zr and Hf. It is preferable to include a composite of an oxide represented by (2) representing at least one selected element and zirconium oxide as an abrasive. Thereby, a high polishing rate can be realized more in the cerium-free abrasive. Note that the complex with the zirconium oxide and the ABO 3 oxide refers to secondary particles each of the primary particles of the zirconium oxide and the ABO 3 oxide is formed by partially sintered. For example, if elemental mapping is performed on the composite by energy dispersive X-ray spectroscopy (EDS), primary particles from which elements contained in A and B are detected and primary particles from which only Zr is detected are obtained. A state of forming secondary particles is observed.
上記研磨材としてより好ましくは、ABO酸化物の結晶相と、酸化ジルコニウム(ZrO)の結晶相とを含むことである。研磨材に含まれるABO酸化物の結晶相が化学研磨作用を担い、ZrOの結晶相が機械研磨作用を担うことで、より良好な研磨速度を示すことができる。更に、ABO酸化物とZrOとが複合体を形成している場合には、ABO酸化物による化学研磨作用とZrOの結晶相による機械研磨作用とがより効果的に発揮される。 More preferably, the abrasive contains an ABO 3 oxide crystal phase and a zirconium oxide (ZrO 2 ) crystal phase. Since the crystal phase of ABO 3 oxide contained in the abrasive material is responsible for the chemical polishing action and the crystal phase of ZrO 2 is responsible for the mechanical polishing action, a better polishing rate can be exhibited. Furthermore, when the ABO 3 oxide and ZrO 2 form a composite, the chemical polishing action by the ABO 3 oxide and the mechanical polishing action by the crystal phase of ZrO 2 are more effectively exhibited.
上記ABO酸化物の結晶相として特に好ましくは、SrZrO及び/又はCaZrOの結晶相であり、最も好ましくはSrZrOの結晶相である。この場合、線源としてCuKα線を用いたX線回折における斜方晶SrZrOの(040)面に由来するピーク及び/又はCaZrOの(121)面に由来するピークの半価幅が0.1~3.0°であることが好ましい。半価幅がこの範囲にあると、化学研磨作用を効果的に発揮するSrZrO及び/又はCaZrOの結晶性が程よくなるため、化学研磨作用を充分に発揮することができる。より好ましくは0.1~1.0°、更に好ましくは0.1~0.7°、特に好ましくは0.1~0.4°である。 The crystal phase of the ABO 3 oxide is particularly preferably a crystal phase of SrZrO 3 and / or CaZrO 3 , and most preferably a crystal phase of SrZrO 3 . In this case, the half-value width of the peak derived from the (040) plane of orthorhombic SrZrO 3 and / or the peak derived from the (121) plane of CaZrO 3 in X-ray diffraction using CuKα rays as a radiation source is 0. It is preferably 1 to 3.0 °. When the half width is in this range, the crystallinity of SrZrO 3 and / or CaZrO 3 that effectively exhibits the chemical polishing action is improved, so that the chemical polishing action can be sufficiently exhibited. The angle is more preferably 0.1 to 1.0 °, further preferably 0.1 to 0.7 °, and particularly preferably 0.1 to 0.4 °.
上記研磨材は、体積基準粒度分布のシャープさの指標となるD90のD10に対する比(D90/D10)が1.5~50であることが好ましい。D90/D10が1.5~50の範囲にあると、粒子径のバラツキが適度なものとなり、研磨材と研磨対象の基板とが充分に接触できるため、より良好な研磨速度を実現することができる。より好ましくは1.5~45、更に好ましくは1.5~40である。
なお、D90/D10が大きい程、粒度分布がブロードであることを意味し、この値が小さい程、粒度分布がシャープであることを意味する。
10、D90はそれぞれ、粒度分布を測定することにより得られる値である。D10とは体積基準での10%積算粒径を意味し、D90とは体積基準での90%積算粒径を意味する。
The abrasive is preferably ratio D 10 of D 90 indicative of sharpness of volume-based particle size distribution (D 90 / D 10) is 1.5 to 50. FIG. When D 90 / D 10 is in the range of 1.5 to 50, the variation in the particle diameter becomes appropriate, and the polishing material and the substrate to be polished can be sufficiently brought into contact with each other, thereby realizing a better polishing rate. be able to. More preferably, it is 1.5 to 45, and still more preferably 1.5 to 40.
Incidentally, as D 90 / D 10 is large, it means that the particle size distribution is broad, smaller value means that the particle size distribution is sharp.
D 10 and D 90 are values obtained by measuring the particle size distribution, respectively. It means 10% cumulative particle diameter on a volume basis and D 10, and D 90 refers to the 90% cumulative particle diameter on a volume basis.
上記研磨材は、比表面積が1.0~50m/gであることが好ましい。比表面積が1.0m/g以上であると、研磨対象の基板に充分に接触できるため、より好適に研磨することが可能になる。また、50m/g以下では、研磨材を構成する砥粒の大きさが適度なものになるため、機械研磨作用がより高められる。より好ましくは1.0~45m/g、更に好ましくは1.0~40m/gである。 The abrasive preferably has a specific surface area of 1.0 to 50 m 2 / g. When the specific surface area is 1.0 m 2 / g or more, it is possible to sufficiently contact the substrate to be polished, and thus it is possible to polish more suitably. Further, at 50 m 2 / g or less, since the size of the abrasive grains constituting the abrasive becomes appropriate, the mechanical polishing action is further enhanced. More preferably, it is 1.0 to 45 m 2 / g, and still more preferably 1.0 to 40 m 2 / g.
本明細書中、比表面積(SSAとも称する)は、BET比表面積を意味する。
BET比表面積とは、比表面積の測定方法の一つであるBET法により得られた比表面積のことをいう。なお、比表面積とは、ある物体の単位質量あたりの表面積のことをいう。
BET法は、窒素などの気体粒子を固体粒子に吸着させ、吸着した量から比表面積を測定する気体吸着法である。具体的には、圧力Pと吸着量Vとの関係からBET式によって、単分子吸着量VMを求めることにより、比表面積を定める。
In the present specification, the specific surface area (also referred to as SSA) means the BET specific surface area.
The BET specific surface area refers to a specific surface area obtained by the BET method, which is one method for measuring the specific surface area. The specific surface area refers to the surface area per unit mass of a certain object.
The BET method is a gas adsorption method in which gas particles such as nitrogen are adsorbed on solid particles and the specific surface area is measured from the amount adsorbed. Specifically, the specific surface area is determined by obtaining the monomolecular adsorption amount VM by the BET equation from the relationship between the pressure P and the adsorption amount V.
上記研磨材はまた、ABO酸化物中の元素Aを、酸化物換算で10~43重量%含むことが好ましい。例えば、SrをSrO換算で10~43重量%含むことが好ましい。この範囲にあると、化学研磨作用及び機械研磨作用がより発揮されるため、研磨効率をより高めることができる。より好ましくは11~43重量%、更に好ましくは12~43重量%である。 The abrasive preferably contains 10 to 43% by weight of the element A in the ABO 3 oxide in terms of oxide. For example, it is preferable to contain 10 to 43% by weight of Sr in terms of SrO. In this range, since the chemical polishing action and the mechanical polishing action are more exhibited, the polishing efficiency can be further increased. More preferably, it is 11 to 43% by weight, and still more preferably 12 to 43% by weight.
まず、ABO酸化物について、以下に説明する。
ABO酸化物は、組成式:ABO(Aは、Sr及びCaからなる群より選択される少なくとも1種の元素を表す。Bは、Ti、Zr及びHfからなる群より選択される少なくとも1種の元素を表す。)で表される化合物である。
式中、Aは、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選択される少なくとも1種の元素を表すが、中でも、Srが好ましい。また、Bは、チタン(Ti)、ジルコニウム(Zr)及びハフニウム(Hf)からなる群より選択される少なくとも1種の元素を表すが、中でも、Ti及び/又はZrが好ましく、より好ましくはZrである。
First, the ABO 3 oxide will be described below.
The ABO 3 oxide has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one selected from the group consisting of Ti, Zr and Hf. Represents a seed element).
In the formula, A represents at least one element selected from the group consisting of strontium (Sr) and calcium (Ca), among which Sr is preferable. B represents at least one element selected from the group consisting of titanium (Ti), zirconium (Zr), and hafnium (Hf). Among them, Ti and / or Zr are preferable, and Zr is more preferable. is there.
上記ABO酸化物は、例えば、炭酸ストロンチウム、水酸化ストロンチウム、炭酸カルシウム及び水酸化カルシウムからなる群より選択される少なくとも1種と、酸化チタン、水酸化チタン、酸化ジルコニウム、水酸化ジルコニウム、炭酸ジルコニウム、及び酸化ハフニウムからなる群より選択される少なくとも1種とを、反応させることにより得られるものが好ましい。この反応は容易に進行するため、ABO酸化物を簡便に得ることができる。 The ABO 3 oxide is, for example, at least one selected from the group consisting of strontium carbonate, strontium hydroxide, calcium carbonate and calcium hydroxide, and titanium oxide, titanium hydroxide, zirconium oxide, zirconium hydroxide, zirconium carbonate. And those obtained by reacting at least one selected from the group consisting of hafnium oxide. Since this reaction proceeds easily, ABO 3 oxide can be easily obtained.
上記ABO酸化物の製造原料である酸化物のうち、酸化チタン(TiO)の製法、形状、結晶型、粒子径等は特に限定されない。例えば、酸化チタンの製法として塩素法を用いてもよいし、硫酸法を用いてもよい。結晶型は、ルチル型であってもよいし、アナタース型であってもよいし、ブルカイト型であってもよいし、これらの混合物であってもよい。酸化ハフニウム(HfO)の製法、形状、結晶型、粒子径等も特に限定されない。酸化ジルコニウム(ZrO)も特に限定されないが、後述する酸化ジルコニウムと同様の形態であることが好適である。 Of the oxides that are the raw materials for producing the ABO 3 oxide, the production method, shape, crystal type, particle size, etc. of titanium oxide (TiO 2 ) are not particularly limited. For example, a chlorine method may be used as a method for producing titanium oxide, or a sulfuric acid method may be used. The crystal type may be a rutile type, an anatase type, a brookite type, or a mixture thereof. The production method, shape, crystal type, particle diameter, etc. of hafnium oxide (HfO 2 ) are not particularly limited. Zirconium oxide (ZrO 2 ) is not particularly limited, but is preferably in the same form as zirconium oxide described later.
上記ABO酸化物として特に好ましくは、ジルコン酸ストロンチウム(SrZrO)及び/又はジルコン酸カルシウム(CaZrO)であり、最も好ましくはジルコン酸ストロンチウム(SrZrO)である。これにより、より一層高い研磨速度を実現することができる。
なお、ジルコン酸ストロンチウムは、例えば、炭酸ストロンチウム及び水酸化ストロンチウムからなる群より選択される少なくとも1種と、酸化ジルコニウム、水酸化ジルコニウム及び炭酸ジルコニウムからなる群より選択される少なくとも1種との反応によって得ることが好適である。この反応は容易に進行するため、ジルコン酸ストロンチウムが生成しやすい。
また、ジルコン酸カルシウムは、例えば、炭酸カルシウム及び水酸化カルシウムからなる群より選択される少なくとも1種と、酸化ジルコニウム、水酸化ジルコニウム及び炭酸ジルコニウムからなる群より選択される少なくとも1種との反応によって得ることが好適である。この反応は容易に進行するため、ジルコン酸カルシウムが生成しやすい。
The ABO 3 oxide is particularly preferably strontium zirconate (SrZrO 3 ) and / or calcium zirconate (CaZrO 3 ), and most preferably strontium zirconate (SrZrO 3 ). Thereby, an even higher polishing rate can be realized.
The strontium zirconate is obtained by, for example, reacting at least one selected from the group consisting of strontium carbonate and strontium hydroxide with at least one selected from the group consisting of zirconium oxide, zirconium hydroxide and zirconium carbonate. It is preferred to obtain. Since this reaction proceeds easily, strontium zirconate is likely to be generated.
In addition, the calcium zirconate is obtained, for example, by a reaction between at least one selected from the group consisting of calcium carbonate and calcium hydroxide and at least one selected from the group consisting of zirconium oxide, zirconium hydroxide and zirconium carbonate. It is preferred to obtain. Since this reaction proceeds easily, calcium zirconate is likely to be generated.
次に、酸化ジルコニウム(ZrO)について説明する。
酸化ジルコニウムの結晶形態としては、単斜晶、正方晶、立方晶のいずれかの結晶構造、又は、これら結晶構造の混晶であることが好ましい。
Next, zirconium oxide (ZrO 2 ) will be described.
The crystal form of zirconium oxide is preferably a monoclinic, tetragonal or cubic crystal structure, or a mixed crystal of these crystal structures.
上記酸化ジルコニウムは特に限定されないが、例えば、線源としてCuKα線を用いたX線回折における2θ=27.00~31.00°での最大ピークの半価幅(以降、単に「ZrOの最大ピークの半価幅」ともいう)が0.1~3.0°であるものが好ましい。半価幅が3.0°以下であることで、研磨材スラリーに含まれるZrOの結晶性が高くなり、ZrOに由来する機械研磨作用を充分に得ることができる。また、半価幅が0.1°以上であることで、研磨速度により優れる研磨材スラリーを得ることができる。より好ましくは0.1~1.0°、更に好ましくは0.1~0.7°、特に好ましくは0.1~0.4°である。
なお、本明細書において、X線回折の線源はすべてCuKα線を用いる。
The zirconium oxide is not particularly limited. For example, the half-value width of the maximum peak at 2θ = 27.00 to 31.00 ° in X-ray diffraction using CuKα ray as a radiation source (hereinafter simply referred to as “ZrO 2 maximum”). The peak half-width ") is preferably from 0.1 to 3.0 °. When the half width is 3.0 ° or less, the crystallinity of ZrO 2 contained in the abrasive slurry is increased, and a mechanical polishing action derived from ZrO 2 can be sufficiently obtained. In addition, when the half width is 0.1 ° or more, an abrasive slurry that is superior in polishing rate can be obtained. The angle is more preferably 0.1 to 1.0 °, further preferably 0.1 to 0.7 °, and particularly preferably 0.1 to 0.4 °.
In this specification, CuKα rays are used for all X-ray diffraction sources.
本発明で使用する研磨材スラリーとして特に好ましくは、ジルコン酸ストロンチウム(SrZrO)及び/又はジルコン酸カルシウム(CaZrO)と、酸化ジルコニウム(ZrO)とからなる研磨材を含むものであり、より好ましくは、ジルコン酸ストロンチウム及び/又はジルコン酸カルシウムと、酸化ジルコニウムとの複合体を含むものであり、最も好ましくは、ジルコン酸ストロンチウムと酸化ジルコニウムとの複合体を含むものである。この研磨材(ジルコン酸ストロンチウムと酸化ジルコニウムとの複合体)は、例えば、ストロンチウム化合物とジルコニウム化合物とを混合する混合工程と、該混合工程により得られた混合物を焼成する焼成工程とを含む製造方法により得ることが好ましい。この製造方法は、固相反応法により行われるため、噴霧熱分解法よりも製造プロセスが簡便となり、特殊な設備を導入することなく低コストでの製造が可能となる。ジルコン酸カルシウムと酸化ジルコニウムとの複合体も、これとほぼ同様の製造方法(但し、ストロンチウム化合物に代えて、例えば炭酸カルシウムや水酸化カルシウム等のカルシウム化合物を用いる。)にて得ることが好ましい。
以下、各工程について更に説明する。
Particularly preferably, the abrasive slurry used in the present invention includes an abrasive comprising strontium zirconate (SrZrO 3 ) and / or calcium zirconate (CaZrO 3 ) and zirconium oxide (ZrO 2 ), and more Preferably, it contains a complex of strontium zirconate and / or calcium zirconate and zirconium oxide, and most preferably contains a complex of strontium zirconate and zirconium oxide. This abrasive (complex of strontium zirconate and zirconium oxide) includes, for example, a mixing step of mixing a strontium compound and a zirconium compound and a baking step of baking the mixture obtained by the mixing step Is preferably obtained. Since this manufacturing method is performed by a solid-phase reaction method, the manufacturing process is simpler than that of the spray pyrolysis method, and it is possible to manufacture at a low cost without introducing special equipment. A complex of calcium zirconate and zirconium oxide is also preferably obtained by a production method almost the same as that (however, a calcium compound such as calcium carbonate or calcium hydroxide is used in place of the strontium compound).
Hereinafter, each step will be further described.
-混合工程-
混合工程では、ストロンチウム化合物とジルコニウム化合物とを混合する。混合する際の原料の割合は、酸化物換算の重量比でSrO:ZrO=10:90~43:57であることが望ましい。
混合の方法は特に限定されず、湿式混合であっても、乾式混合であってもよいが、混合性の観点から、湿式混合が好ましい。湿式混合に用いる分散媒としては、特に限定されず、水や低級アルコールを用いることができるが、製造コストの観点から、水が好ましく、イオン交換水がより好ましい。湿式混合の場合、ボールミルやペイントコンディショナー、サンドグラインダーを用いてもよい。また、分散媒を除去するために湿式混合に続いて乾燥工程を行うことが好ましい。
-Mixing process-
In the mixing step, the strontium compound and the zirconium compound are mixed. The mixing ratio of the raw materials is preferably SrO: ZrO 2 = 10: 90 to 43:57 in terms of weight ratio in terms of oxide.
The mixing method is not particularly limited and may be wet mixing or dry mixing, but wet mixing is preferable from the viewpoint of mixing properties. The dispersion medium used for wet mixing is not particularly limited, and water or lower alcohol can be used, but water is preferable and ion-exchanged water is more preferable from the viewpoint of production cost. In the case of wet mixing, a ball mill, a paint conditioner, or a sand grinder may be used. In order to remove the dispersion medium, it is preferable to perform a drying step following the wet mixing.
上記ストロンチウム化合物は、ストロンチウム原子を含む化合物である限り特に限定されないが、中でも、炭酸ストロンチウム及び水酸化ストロンチウムからなる群から選択される少なくとも1種であることが好ましい。炭酸ストロンチウム及び水酸化ストロンチウムは、ジルコニウム化合物との反応が容易に進行してジルコン酸ストロンチウム(SrZrO)を生成しやすい。 The strontium compound is not particularly limited as long as it is a compound containing a strontium atom, but among them, at least one selected from the group consisting of strontium carbonate and strontium hydroxide is preferable. Strontium carbonate and strontium hydroxide easily react with the zirconium compound to easily produce strontium zirconate (SrZrO 3 ).
上記ジルコニウム化合物は、ジルコニウム原子を含む化合物である限り特に限定されないが、中でも、酸化ジルコニウム、炭酸ジルコニウム及び水酸化ジルコニウムからなる群より選択される少なくとも1種であることが好ましい。これらは、ストロンチウム化合物との反応性が高く、研磨特性がより良好な研磨材を与えることができる。
なお、酸化ジルコニウム以外のジルコニウム化合物(例えば、炭酸ジルコニウム及び/又は水酸化ジルコニウム)を用いる場合、酸化ジルコニウム合成時の焼成・粉砕工程等を省略できる。
上記ジルコニウム化合物は、合成で得たケーキ状で混合工程に供することもできる。
The zirconium compound is not particularly limited as long as it is a compound containing a zirconium atom, but among these, at least one selected from the group consisting of zirconium oxide, zirconium carbonate and zirconium hydroxide is preferable. These have high reactivity with the strontium compound, and can provide an abrasive having better polishing characteristics.
Note that when a zirconium compound other than zirconium oxide (for example, zirconium carbonate and / or zirconium hydroxide) is used, the firing and pulverizing steps during the synthesis of zirconium oxide can be omitted.
The said zirconium compound can also be used for a mixing process with the cake form obtained by the synthesis | combination.
上記酸化ジルコニウムの比表面積は、2.0~200m/gであることが好ましい。これにより、研磨速度により優れる研磨材スラリーを得ることができる。より好ましくは2.0~180m/g、更に好ましくは2.0~160m/gである。 The specific surface area of the zirconium oxide is preferably 2.0 to 200 m 2 / g. Thereby, it is possible to obtain an abrasive slurry superior in polishing rate. More preferably, it is 2.0 to 180 m 2 / g, and still more preferably 2.0 to 160 m 2 / g.
上記酸化ジルコニウム以外のジルコニウム化合物の比表面積は、0.1~250m/gであることが好ましい。これにより、研磨速度により優れる研磨材スラリーを得ることができる。より好ましくは0.3~240m/g、更に好ましくは0.5~230m/gである。 The specific surface area of the zirconium compound other than the zirconium oxide is preferably 0.1 to 250 m 2 / g. Thereby, it is possible to obtain an abrasive slurry superior in polishing rate. More preferably, it is 0.3 to 240 m 2 / g, and still more preferably 0.5 to 230 m 2 / g.
上記ジルコニウム化合物として酸化ジルコニウム以外の化合物を用いる場合は、当該ジルコニウム化合物に含まれる硫黄化合物のSO換算量が、該ジルコニウム化合物のZrO換算量100重量部に対し、2.0重量部以下であることが好ましい。これにより、研磨速度がより一層良好な研磨材が得られる。硫黄化合物の含有量(SO換算量)は、より好ましくは1.5重量部以下、更に好ましくは1.1重量部以下、特に好ましくは0.5重量部以下である。 When a compound other than zirconium oxide is used as the zirconium compound, the SO 3 equivalent amount of the sulfur compound contained in the zirconium compound is 2.0 parts by weight or less with respect to 100 parts by weight of the zirconium compound equivalent to ZrO 2. Preferably there is. Thereby, an abrasive with an even better polishing rate can be obtained. The sulfur compound content (SO 3 equivalent) is more preferably 1.5 parts by weight or less, still more preferably 1.1 parts by weight or less, and particularly preferably 0.5 parts by weight or less.
本明細書中、ジルコニウム化合物に含まれる硫黄化合物のSO換算量は、蛍光X線分析装置(株式会社リガク製:型番 ZSX PrimusII)の含有元素スキャニング機能であるEZスキャンを用い、測定サンプル台にプレスしたサンプルをセットし、次の条件を選択する(測定範囲:F-U、測定径:30mm、試料形態:酸化物、測定時間:長い、雰囲気:真空)ことで、求めることができる。 In this specification, the SO 3 equivalent amount of the sulfur compound contained in the zirconium compound is measured on the measurement sample stage using an EZ scan which is a contained element scanning function of an X-ray fluorescence analyzer (manufactured by Rigaku Corporation: model number ZSX Primus II). It can be obtained by setting the pressed sample and selecting the following conditions (measurement range: FU, measurement diameter: 30 mm, sample form: oxide, measurement time: long, atmosphere: vacuum).
-乾燥工程-
上記混合工程の後、必要に応じて乾燥工程を行ってもよい。
乾燥工程では、混合工程で得られたスラリーから分散媒を除去して乾燥させる。スラリーを乾燥させる方法は、混合時に用いた溶媒を除去できれば特に限定されず、例えば、減圧乾燥、加熱乾燥等が挙げられる。また、スラリーをそのまま乾燥してもよく、濾過してから乾燥してもよい。
なお、混合物の乾燥物を乾式粉砕してもよい。
-Drying process-
After the mixing step, a drying step may be performed as necessary.
In the drying step, the dispersion medium is removed from the slurry obtained in the mixing step and dried. The method for drying the slurry is not particularly limited as long as the solvent used at the time of mixing can be removed, and examples thereof include drying under reduced pressure and drying by heating. Further, the slurry may be dried as it is, or may be dried after being filtered.
Note that the dry product of the mixture may be dry-pulverized.
-焼成工程-
続いて、焼成工程について説明する。
焼成工程では、混合工程により得られた原料混合物(更に乾燥工程を経て得られた乾燥物であってもよい)を焼成する。これにより、研磨材として特に好適な複合体を好ましく得ることができる。焼成工程では、原料混合物をそのまま焼成してもよいし、所定の形状(例えばペレット状)に成型してから焼成してもよい。焼成雰囲気は特に限定されない。焼成工程は1回だけ行ってもよく、2回以上行ってもよい。
-Baking process-
Then, a baking process is demonstrated.
In the firing step, the raw material mixture obtained in the mixing step (may be a dried product obtained through a further drying step) is fired. Thereby, a composite particularly suitable as an abrasive can be preferably obtained. In the firing step, the raw material mixture may be fired as it is, or may be fired after being molded into a predetermined shape (for example, a pellet shape). The firing atmosphere is not particularly limited. The firing step may be performed only once or twice or more.
上記焼成工程における焼成温度は、ストロンチウム化合物とジルコニウム化合物との反応に充分な温度であればよい。例えば、700~1500℃であることが好ましい。焼成温度がこの範囲内であると反応がより充分に進み、また焼成温度が1500℃以下であると、得られる研磨材の研磨速度がより高まる。下限値は、より好ましくは730℃以上、更に好ましくは750℃以上であり、上限値は、より好ましくは1300℃以下、更に好ましくは1270℃以下、特に好ましくは1250℃以下である。なお、特にジルコニウム化合物として酸化ジルコニウム以外の化合物を用いる場合は、焼成温度を高くすることが特に好ましく、例えば、好ましくは800℃以上、より好ましくは850℃以上、更に好ましくは900℃以上、一層好ましくは930℃以上である。
本明細書中、焼成工程における焼成温度とは、焼成工程での最高到達温度を意味する。
The firing temperature in the firing step may be a temperature sufficient for the reaction between the strontium compound and the zirconium compound. For example, the temperature is preferably 700 to 1500 ° C. When the firing temperature is within this range, the reaction proceeds more sufficiently, and when the firing temperature is 1500 ° C. or less, the polishing rate of the resulting abrasive is further increased. The lower limit value is more preferably 730 ° C. or more, still more preferably 750 ° C. or more, and the upper limit value is more preferably 1300 ° C. or less, still more preferably 1270 ° C. or less, and particularly preferably 1250 ° C. or less. In particular, when a compound other than zirconium oxide is used as the zirconium compound, it is particularly preferable to increase the firing temperature, for example, preferably 800 ° C. or higher, more preferably 850 ° C. or higher, still more preferably 900 ° C. or higher, even more preferably. Is 930 ° C. or higher.
In the present specification, the firing temperature in the firing step means the highest temperature reached in the firing step.
上記焼成温度での保持時間は、ストロンチウム化合物とジルコニウム化合物との反応に充分な時間であればよい。例えば、5分~24時間であることが好ましい。保持時間がこの範囲内であると反応がより充分に進み、また保持時間が24時間以下であると、生成した焼成物(ジルコン酸ストロンチウム)が激しく焼結することが充分に抑制されるため、研磨速度をより高めることができる。より好ましくは7分~22時間、更に好ましくは10分~20時間である。 The holding time at the firing temperature may be a time sufficient for the reaction between the strontium compound and the zirconium compound. For example, it is preferably 5 minutes to 24 hours. When the holding time is within this range, the reaction proceeds more sufficiently, and when the holding time is 24 hours or less, the generated fired product (strontium zirconate) is sufficiently suppressed from being vigorously sintered. The polishing rate can be further increased. More preferably, it is 7 minutes to 22 hours, and further preferably 10 minutes to 20 hours.
上記焼成工程では、最高温度(焼成温度)に達するまでの昇温時の昇温速度を0.2~15℃/分とすることが好ましい。昇温速度が0.2℃/分以上であると昇温にかかる時間が長時間となり過ぎることがないので、エネルギーと時間の浪費を充分に抑制でき、また、15℃/分以下であると、炉内容物の温度が設定温度に充分に追随でき、焼成むらがより充分に抑制される。より好ましくは0.5~12℃/分、更に好ましくは1.0~10℃/分である。 In the firing step, it is preferable that the rate of temperature rise during the temperature rise until reaching the maximum temperature (firing temperature) is 0.2 to 15 ° C./min. If the rate of temperature increase is 0.2 ° C./min or more, the time required for temperature increase does not become too long, so that waste of energy and time can be sufficiently suppressed, and if it is 15 ° C./min or less. The temperature of the furnace contents can sufficiently follow the set temperature, and firing unevenness is more sufficiently suppressed. More preferably, it is 0.5 to 12 ° C./min, and further preferably 1.0 to 10 ° C./min.
-粉砕工程-
上記焼成工程の後、必要に応じて粉砕工程を行ってもよい。
粉砕工程では、焼成工程により得られた焼成物を粉砕する。粉砕方法及び粉砕条件は特に限定されず、例えば、ボールミルやライカイ機、ハンマーミル、ジェットミル等を用いてもよい。
-Crushing process-
After the firing step, a pulverization step may be performed as necessary.
In the pulverization step, the fired product obtained in the firing step is pulverized. The pulverization method and pulverization conditions are not particularly limited, and for example, a ball mill, a reiki machine, a hammer mill, a jet mill, or the like may be used.
〔高表面平滑性の負帯電性基板の製造方法〕
本発明の第二の態様である、高表面平滑性の負帯電性基板の製造方法について説明する。
本発明の高表面平滑性の負帯電性基板の製造方法は、上述した本発明の負帯電性基板の研磨方法を用いる。すなわち当該製造方法は、研磨材スラリーの存在下、該研磨材スラリーのゼータ電位が正となる条件下で負帯電性基板を研磨する研磨工程aと、研磨材スラリーの存在下、該研磨材スラリーのゼータ電位が負となる条件下で負帯電性基板を研磨する研磨工程bとを、それぞれ少なくとも1回ずつ含み、該研磨材スラリーは、組成式:ABO(Aは、Sr及びCaからなる群より選択される少なくとも1種の元素を表す。Bは、Ti、Zr及びHfからなる群より選択される少なくとも1種の元素を表す。)で表される酸化物と、酸化ジルコニウムとを含む、というものである。このような製造方法を用いれば、高い研磨速度と優れた表面平滑性とを実現できるため、高表面平滑性の負帯電性基板を生産性良く与えることができる。
[Method of manufacturing negatively charged substrate with high surface smoothness]
A method for producing a negatively charged substrate having high surface smoothness, which is a second aspect of the present invention, will be described.
The method for producing a high surface smoothness negatively charged substrate of the present invention uses the above-described method for polishing a negatively charged substrate of the present invention. That is, the manufacturing method includes a polishing step a in which a negatively chargeable substrate is polished under the condition that the zeta potential of the abrasive slurry is positive in the presence of the abrasive slurry, and the abrasive slurry in the presence of the abrasive slurry. And a polishing step b for polishing the negatively chargeable substrate under a condition that the zeta potential of the substrate is negative at least once, and the abrasive slurry is composed of a composition formula: ABO 3 (A is composed of Sr and Ca). And B represents at least one element selected from the group consisting of Ti, Zr, and Hf.) And zirconium oxide. That's it. By using such a manufacturing method, a high polishing rate and excellent surface smoothness can be realized, so that a negatively chargeable substrate having high surface smoothness can be provided with high productivity.
本発明を詳細に説明するために以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。 In order to describe the present invention in detail, examples will be given below, but the present invention is not limited to these examples.
製造例1(研磨材Aの作製)
(1)Zr原料準備工程
オキシ塩化ジルコニウム8水和物(昭和化学株式会社製)3.0kgを、イオン交換水6.7Lに撹拌しながら溶解させた。この溶液を撹拌しながら25℃に調整し、この温度を維持しながら、180g/Lの水酸化ナトリウム水溶液を、pH9.5になるまで1時間かけて撹拌しながら添加し、更に1時間撹拌した。このスラリーをろ過水洗し、洗液の電気伝導度が100μS/cm以下になるまで水洗することにより、水酸化ジルコニウムケーキを得た。
この水酸化ジルコニウムケーキ500gを120℃の温度で充分に乾燥した。次いで得られた乾燥品のうち40gを、外径55mm、容量60mLのアルミナ製るつぼに入れて、電気マッフル炉(ADVANTEC社製、KM-420)を用いて焼成し、酸化ジルコニウムを得た。焼成条件は、室温から800℃まで240分間かけて昇温し、800℃で300分間保持し、その後ヒーターへの通電を中止し室温まで冷却した。なお、焼成は大気中で行った。
Production Example 1 (Production of Abrasive Material A)
(1) Zr raw material preparation step Zirconium oxychloride octahydrate (made by Showa Chemical Co., Ltd.) (3.0 kg) was dissolved in 6.7 L of ion-exchanged water with stirring. The solution was adjusted to 25 ° C. with stirring, and while maintaining this temperature, 180 g / L of an aqueous sodium hydroxide solution was added over 1 hour with stirring until pH 9.5, and the mixture was further stirred for 1 hour. . The slurry was washed with filtered water, and washed with water until the electric conductivity of the washing became 100 μS / cm or less to obtain a zirconium hydroxide cake.
500 g of this zirconium hydroxide cake was sufficiently dried at a temperature of 120 ° C. Next, 40 g of the obtained dried product was placed in an alumina crucible having an outer diameter of 55 mm and a capacity of 60 mL, and baked using an electric muffle furnace (ADVANTEC, KM-420) to obtain zirconium oxide. As firing conditions, the temperature was raised from room temperature to 800 ° C. over 240 minutes, held at 800 ° C. for 300 minutes, and then the heater was turned off and cooled to room temperature. The firing was performed in the air.
(2)混合工程
Sr原料として炭酸ストロンチウム(堺化学工業株式会社製:SW-P-N)26.1gと、Zr原料として上記(1)Zr原料準備工程により得られた酸化ジルコニウム31.3gを300mLマヨネーズ瓶に計り取り、イオン交換水172mLと1mmφジルコニアビーズ415gを添加してペイントコンディショナー(レッドデビル社製:5110型)を用いて、30分間混合した。
(2) Mixing step 26.1 g of strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd .: SW-PN) as the Sr raw material and 31.3 g of zirconium oxide obtained in the above (1) Zr raw material preparation step as the Zr raw material Weighed into a 300 mL mayonnaise bottle, added 172 mL of ion exchange water and 415 g of 1 mmφ zirconia beads, and mixed for 30 minutes using a paint conditioner (manufactured by Red Devil: Model 5110).
(3)乾燥工程
上記(2)混合工程により得られたスラリーを、400メッシュ(目開き38μm)の篩にかけてジルコニアビーズを除去し、続いて濾過して得られた混合物のケーキを120℃の温度で充分に乾燥することにより混合物の乾燥物を得た。
(3) Drying step The slurry obtained in the above (2) mixing step is passed through a sieve of 400 mesh (aperture 38 μm) to remove zirconia beads and subsequently filtered to obtain a cake of the mixture at a temperature of 120 ° C. And dried sufficiently to obtain a dry product of the mixture.
(4)焼成工程
上記(3)乾燥工程により得られた混合物の乾燥物のうち30gを、外径55mm、容量60mLのアルミナ製るつぼに入れて、電気マッフル炉(ADVANTEC社製、KM-420)を用いて焼成し、焼成物を得た。焼成条件は、室温から950℃まで285分間かけて昇温し、950℃で180分間保持し、その後ヒーターへの通電を中止し室温まで冷却した。なお、焼成は大気中で行った。
(4) Firing step 30 g of the dried product of the mixture obtained in the above (3) drying step is placed in an alumina crucible having an outer diameter of 55 mm and a capacity of 60 mL, and an electric muffle furnace (ADVANTEC, KM-420). Was fired to obtain a fired product. As firing conditions, the temperature was raised from room temperature to 950 ° C. over 285 minutes, held at 950 ° C. for 180 minutes, and then the heater was turned off and cooled to room temperature. The firing was performed in the air.
(5)粉砕工程
上記(4)焼成工程により得られた焼成物を10g、自動乳鉢(ライカイ機)(日陶科学株式会社製:ANM-150)に仕込み、10分間粉砕することにより、SrZrOとZrOとの複合体から成る研磨材を得た。これを「研磨材A」とも称す。
(5) grinding step above (4) 10 g of the obtained baked product by baking step, an automatic mortar (crusher) (Nitto Kagaku Co., Ltd.: ANM-0.99) to feed, by grinding for 10 minutes, SrZrO 3 An abrasive comprising a composite of ZrO 2 was obtained. This is also referred to as “Abrasive A”.
<研磨材及び用いたZr原料の性能評価>
製造例1で得た研磨材及び製造例1で用いたZr原料(酸化ジルコニウム)のそれぞれについて、下記(i)~(vi)に記載の方法に従って、各種物性を評価した。
<Performance evaluation of abrasive and Zr raw material used>
Various physical properties of the abrasive material obtained in Production Example 1 and the Zr raw material (zirconium oxide) used in Production Example 1 were evaluated according to the methods described in (i) to (vi) below.
(i)粉末X線回折の測定
Zr原料(酸化ジルコニウム)及び研磨材のそれぞれについて、以下の条件により粉末X線回折パターン(単にX線回折パターンともいう)を測定した。
使用機:株式会社リガク製、RINT-UltimaIII
線源:CuKα
電圧:40kV
電流:40mA
試料回転速度:回転しない
発散スリット:1.00mm
発散縦制限スリット:10mm
散乱スリット:開放
受光スリット:開放
走査モード:FT
計数時間:2.0秒
ステップ幅:0.0200°
操作軸:2θ/θ
走査範囲:10.0000~70.0000°
積算回数:1回
単斜晶ZrO:JCPDSカード 00-037-1484
正方晶ZrO:JCPDSカード 00-050-1089
立方晶ZrO:JCPDSカード 00-049-1642
斜方晶SrZrO:JCPDSカード 00-044-0161
斜方晶CaZrO:JCPDSカード 00-035-0645
(I) Measurement of powder X-ray diffraction For each of the Zr raw material (zirconium oxide) and the abrasive, a powder X-ray diffraction pattern (also simply referred to as an X-ray diffraction pattern) was measured under the following conditions.
Machine used: RINT-UltimaIII, manufactured by Rigaku Corporation
Radiation source: CuKα
Voltage: 40 kV
Current: 40 mA
Sample rotation speed: non-rotating divergent slit: 1.00 mm
Divergence length restriction slit: 10 mm
Scattering slit: Open light receiving slit: Open scanning mode: FT
Counting time: 2.0 seconds Step width: 0.0200 °
Operation axis: 2θ / θ
Scanning range: 10.000 to 70.000 °
Integration count: 1 time Monoclinic ZrO 2 : JCPDS card 00-037-1484
Tetragonal ZrO 2 : JCPDS card 00-050-1089
Cubic ZrO 2 : JCPDS card 00-049-1642
Orthorhombic SrZrO 3 : JCPDS card 00-044-0161
Orthorhombic CaZrO 3 : JCPDS card 00-035-0645
製造例1で用いたZr原料のX線回折パターンを図1に、得られた研磨材のX線回折パターンを図2に示す。
図2に示される研磨材のX線回折パターンは、ピーク位置が既知のデータベース(JCPDSカード)におけるZrOとSrZrOのピークの両方を含んでいた。そのため、製造例1で得た研磨材は、SrZrOの結晶相とZrOの結晶相を有していることが分かった。
An X-ray diffraction pattern of the Zr raw material used in Production Example 1 is shown in FIG. 1, and an X-ray diffraction pattern of the obtained abrasive is shown in FIG.
The X-ray diffraction pattern of the abrasive shown in FIG. 2 contained both ZrO 2 and SrZrO 3 peaks in a database (JCPDS card) with known peak positions. Therefore, it was found that the abrasive obtained in Production Example 1 had a crystal phase of SrZrO 3 and a crystal phase of ZrO 2 .
(ii)半価幅の測定
Zr原料のX線回折の測定により得た回折パターンからZrOの2θ=27.00~31.00°での最大ピークの半価幅を測定し、研磨材のX線回折の測定により得た回折パターンから斜方晶SrZrO(040)半価幅を測定した。結果を表1に示す。
なお、線源としてCuKα線を用いたX線回折において、単斜晶ZrOの最大ピークである(-111)面に由来するピークは2θ=28.14°付近にあり、正方晶ZrOの最大ピークである(011)面に由来するピークは2θ=30.15°付近にあり、立方晶ZrOの最大ピークである(111)面に由来するピークは2θ=30.12°付近にあり、斜方晶SrZrOの(040)面に由来するピークは2θ=44.04°付近にあり、斜方晶CaZrOの(121)面に由来するピークは2θ=31.5°付近にある。
図1に示すように、製造例1で用いたZr原料(酸化ジルコニウム)のX線回折パターンでは単斜晶ZrOの(-111)面に由来するピークが確認され、2θ=27.00~31.00°での最大ピークの半価幅は0.38°であった。
図2に示すように、製造例1で得た研磨材のX線回折パターンでは斜方晶SrZrOの(040)面に由来するピークが確認され、その半価幅は0.33°であった。
(Ii) Measurement of full width at half maximum From the diffraction pattern obtained by X-ray diffraction measurement of the Zr raw material, the full width at half maximum of ZrO 2 at 2θ = 27.00 to 31.00 ° was measured. The orthorhombic SrZrO 3 (040) half width was measured from the diffraction pattern obtained by the X-ray diffraction measurement. The results are shown in Table 1.
In the X-ray diffraction using CuKα ray as the radiation source, the peak derived from the (−111) plane, which is the maximum peak of monoclinic ZrO 2 , is in the vicinity of 2θ = 28.14 °, and the tetragonal ZrO 2 The peak derived from the (011) plane which is the maximum peak is in the vicinity of 2θ = 30.15 °, and the peak derived from the (111) plane which is the maximum peak of the cubic ZrO 2 is in the vicinity of 2θ = 30.12 °. , a peak derived from the (040) plane of orthorhombic SrZrO 3 is near 2 [Theta] = 44.04 °, peak derived from the (121) plane of orthorhombic CaZrO 3 is in the vicinity of 2 [Theta] = 31.5 ° .
As shown in FIG. 1, a peak derived from the (−111) plane of monoclinic ZrO 2 was confirmed in the X-ray diffraction pattern of the Zr raw material (zirconium oxide) used in Production Example 1, and 2θ = 27.00− The half-width of the maximum peak at 31.00 ° was 0.38 °.
As shown in FIG. 2, a peak derived from the (040) plane of orthorhombic SrZrO 3 was confirmed in the X-ray diffraction pattern of the abrasive obtained in Production Example 1, and the half width was 0.33 °. It was.
(iii)比表面積の測定
Zr原料及び研磨材のそれぞれについて、以下の条件により比表面積の測定を行った。結果を表1に示す。
使用機:マウンテック社製、Macsorb Model HM-1220
雰囲気:窒素ガス(N
外部脱気装置の脱気条件:200℃-15分
比表面積測定装置本体の脱気条件:200℃-5分
(Iii) Measurement of specific surface area The specific surface area of each of the Zr raw material and the abrasive was measured under the following conditions. The results are shown in Table 1.
Used machine: Macsorb Model HM-1220, manufactured by Mountec
Atmosphere: Nitrogen gas (N 2 )
Degassing condition of external degassing device: 200 ° C-15 minutes Degassing condition of specific surface area measuring device body: 200 ° C-5 minutes
(iv)電子顕微鏡画像の測定
研磨材について、走査型電子顕微鏡(SEM)(日本電子株式会社製:型番JSM-6510A)によりSEM画像を撮影した。製造例1で得た研磨材のSEM画像を図3に示す。
図3に示すように、製造例1で得た研磨材は、複数の一次粒子がランダムに集合した不定形の二次粒子を形成している。
(Iv) Measurement of Electron Microscope Image With respect to the abrasive, a SEM image was taken with a scanning electron microscope (SEM) (manufactured by JEOL Ltd .: model number JSM-6510A). An SEM image of the abrasive material obtained in Production Example 1 is shown in FIG.
As shown in FIG. 3, the abrasive obtained in Production Example 1 forms irregular secondary particles in which a plurality of primary particles are randomly gathered.
(v)元素分析
研磨材について、蛍光X線分析装置(株式会社リガク製:型番 ZSX PrimusII)の含有元素スキャニング機能であるEZスキャンにより元素分析を行った。測定サンプル台にプレスしたサンプルをセットし、次の条件を選択(測定範囲:F-U、測定径:30mm、試料形態:酸化物、測定時間:長い、雰囲気:真空)し、Sr含有量(SrO換算)及びCa含有量(CaO換算)を測定した。結果を表1に示す。
(V) About the elemental analysis abrasive | polishing material, the elemental analysis was performed by the EZ scan which is a contained element scanning function of a fluorescent X-ray-analysis apparatus (Rigaku Corporation make: model number ZSX PrimusII). Set the pressed sample on the measurement sample stage and select the following conditions (measurement range: FU, measurement diameter: 30 mm, sample form: oxide, measurement time: long, atmosphere: vacuum), and Sr content ( SrO conversion) and Ca content (CaO conversion) were measured. The results are shown in Table 1.
(vi)粒度分布のシャープさ(D90/D10
研磨材について、レーザー回折・散乱式粒度分析計(日機装株式会社製:型番 マイクロトラックMT3300EX)により粒度分布測定を行った。
まず、研磨材0.1gにイオン交換水60mLを加え、ガラス棒を用いて室温にてよく撹拌することにより、研磨材の懸濁液を準備した。なお、超音波を用いた分散操作は行わなかった。この後、イオン交換水180mLを試料循環器に準備し、透過率が0.71~0.94になるように上記懸濁液を滴下して、流速50%にて、超音波分散をさせずに循環させながら測定を行った。
(Vi) Sharpness of particle size distribution (D 90 / D 10 )
The abrasive was subjected to particle size distribution measurement using a laser diffraction / scattering particle size analyzer (manufactured by Nikkiso Co., Ltd .: Model No. Microtrack MT3300EX).
First, 60 mL of ion-exchanged water was added to 0.1 g of the abrasive and a suspension of the abrasive was prepared by stirring well at room temperature using a glass rod. In addition, the dispersion | distribution operation using an ultrasonic wave was not performed. Thereafter, 180 mL of ion exchange water is prepared in a sample circulator, and the suspension is dropped so that the transmittance is 0.71 to 0.94, and ultrasonic dispersion is not performed at a flow rate of 50%. The measurement was carried out while circulating.
製造例2(研磨材B)
製造例1の「(2)混合工程」におけるZr原料として、「(1)Zr原料準備工程」により得られた水酸化ジルコニウムケーキを、ZrO換算で31.3g使用した以外は、製造例1と同様にして、SrZrOとZrOとの複合体から成る研磨材Bを得た。
この研磨材Bについて、製造例1と同様に半価幅、比表面積、元素分析及び粒度分布のシャープさを測定又は評価し、製造例2で用いたZr原料(水酸化ジルコニウム)についても、製造例1と同様に、比表面積を測定した。結果を表1に示す。
Production Example 2 (Abrasive B)
Production Example 1 except that 31.3 g of the zirconium hydroxide cake obtained in “(1) Zr raw material preparation step” was used as the Zr raw material in “(2) mixing step” of Production Example 1 in terms of ZrO 2. In the same manner as above, an abrasive B made of a composite of SrZrO 3 and ZrO 2 was obtained.
About this abrasive | polishing material B, a half value width, a specific surface area, elemental analysis, and the sharpness of a particle size distribution are measured or evaluated similarly to manufacture example 1, and it manufactures also about the Zr raw material (zirconium hydroxide) used in manufacture example 2. As in Example 1, the specific surface area was measured. The results are shown in Table 1.
製造例3(研磨材E)
製造例1の「(2)混合工程」におけるCa原料として、炭酸カルシウム(堺化学工業株式会社製:CWS-20)22.5gを使用し、Zr原料として製造例1の「(1)Zr原料準備工程」により得られた酸化ジルコニウム42.4gを使用した以外は、製造例1と同様にして、CaZrOとZrOとの複合体から成る研磨材Eを得た。
この研磨材Eについて、製造例1と同様に半価幅、比表面積、元素分析及び粒度分布のシャープさを測定又は評価した。結果を表1に示す。
Production Example 3 (Abrasive E)
As a Ca raw material in “(2) mixing step” of Production Example 1, 22.5 g of calcium carbonate (manufactured by Sakai Chemical Industry Co., Ltd .: CWS-20) is used, and “(1) Zr raw material of Production Example 1 is used as a Zr raw material. Except that 42.4 g of zirconium oxide obtained in the “preparation step” was used, an abrasive E composed of a composite of CaZrO 3 and ZrO 2 was obtained in the same manner as in Production Example 1.
About this abrasive material E, the half value width, the specific surface area, the elemental analysis, and the sharpness of the particle size distribution were measured or evaluated in the same manner as in Production Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
製造例4(研磨材スラリーA)
製造例1で作製した研磨材Aを用い、研磨材スラリーAを作製した。
具体的には、研磨材A20.0gをイオン交換水380.0gに分散させ、25℃にて10分間撹拌した。このようにして研磨材スラリーAを得た。
研磨材スラリーAについて、以下の条件によりゼータ電位の測定を行った。この研磨材スラリーの、pHに対するゼータ電位の関係を図4に示す。また、研磨材スラリーAの等電点は6.4であった。ここで、等電点とは、研磨材スラリー中の砥粒(研磨材)に帯びた電荷の代数和がゼロである点、すなわち砥粒に帯びた正電荷と負電荷とが等しくなる点をいい、その点における研磨材スラリーのpHで表すことができる。
Production Example 4 (Abrasive Slurry A)
An abrasive slurry A was produced using the abrasive A produced in Production Example 1.
Specifically, 20.0 g of abrasive A was dispersed in 380.0 g of ion-exchanged water and stirred at 25 ° C. for 10 minutes. In this way, an abrasive slurry A was obtained.
For the abrasive slurry A, the zeta potential was measured under the following conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG. Further, the isoelectric point of the abrasive slurry A was 6.4. Here, the isoelectric point is the point where the algebraic sum of the electric charge on the abrasive grains (abrasive) in the abrasive slurry is zero, that is, the point where the positive and negative charges on the abrasive grains are equal. It can be represented by the pH of the abrasive slurry at that point.
<ゼータ電位の測定条件>
測定機:大塚電子株式会社製、ゼータ電位測定システム、型番ELSZ-1
pHタイトレーター:大塚電子株式会社製、型番ELS-PT
研磨材スラリー6gをイオン交換水を用いて5倍希釈し、ガラス棒で撹拌しながら超音波洗浄機にて1分間分散させた。このスラリー10ccにイオン交換水50ccを加え、超音波ホモジナイザー(US-600、日本精機製作所製)を用いて、強度をV-LEVEL3に設定して1分間分散処理を行った。このようにして得たゼータ電位測定用研磨材スラリー30ccをゼータ電位測定機に充填した。
なお、後述するコロイダルシリカを用いた研磨材スラリーDは、研磨材スラリーD60ccを超音波ホモジナイザー(US-600、日本精機製作所製)を用いて、強度をV-LEVEL3に設定して1分間分散処理を行った。このようにして得たゼータ電位測定用研磨材スラリー30ccをゼータ電位測定機に充填した。
<Conditions for measuring zeta potential>
Measuring instrument: Otsuka Electronics Co., Ltd., zeta potential measurement system, model number ELSZ-1
pH titrator: manufactured by Otsuka Electronics Co., Ltd., model number ELS-PT
6 g of the abrasive slurry was diluted 5 times with ion-exchanged water, and dispersed with an ultrasonic cleaner for 1 minute while stirring with a glass rod. 50 cc of ion-exchanged water was added to 10 cc of this slurry, and dispersion treatment was performed for 1 minute using an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Seisakusho) with the strength set to V-LEVEL3. A zeta potential measuring machine was charged with 30 cc of the abrasive slurry for zeta potential measurement thus obtained.
In addition, the abrasive slurry D using colloidal silica, which will be described later, was dispersed for 1 minute by using an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Seisakusho) for the abrasive slurry D60cc and setting the strength to V-LEVEL3. Went. A zeta potential measuring machine was charged with 30 cc of the abrasive slurry for zeta potential measurement thus obtained.
なお、研磨材スラリーのpH調整のために、必要に応じて以下のpH調整剤を用いた。
酸性側pH調整溶液:塩酸水溶液、0.1mol/L
アルカリ性側pH調整溶液:水酸化ナトリウム水溶液、1mol/L
In addition, in order to adjust the pH of the abrasive slurry, the following pH adjusters were used as necessary.
Acid side pH adjustment solution: hydrochloric acid aqueous solution, 0.1 mol / L
Alkaline side pH adjustment solution: sodium hydroxide aqueous solution, 1 mol / L
製造例5(研磨材スラリーB)
製造例2で作製した研磨材Bを用いた以外は、製造例4(研磨材スラリーA)と同様にして、研磨材スラリーBを作製した。
この研磨材スラリーBについて、上記測定条件によりゼータ電位の測定を行った。この研磨材スラリーの、pHに対するゼータ電位の関係を図4に示す。また、研磨材スラリーBの等電点は6.2であった。
Production Example 5 (Abrasive Slurry B)
An abrasive slurry B was produced in the same manner as in Production Example 4 (Abrasive Slurry A) except that the abrasive B produced in Production Example 2 was used.
For this abrasive slurry B, the zeta potential was measured under the above measurement conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG. In addition, the isoelectric point of the abrasive slurry B was 6.2.
製造例6(研磨材スラリーC)
研磨材としてガラス研磨用酸化セリウム質研磨材(昭和電工株式会社製、SHOROX(R)A-10、酸化セリウム含有量:60重量%、等電点:10.4)を用いたこと以外は、製造例4と同様にして研磨材スラリーCを作製した。この研磨材スラリーの、pHに対するゼータ電位の関係を図4に示す。
Production Example 6 (Abrasive Slurry C)
Except for using a cerium oxide abrasive for glass polishing (made by Showa Denko KK, SHOROX (R) A-10, cerium oxide content: 60 wt%, isoelectric point: 10.4) as an abrasive, An abrasive slurry C was produced in the same manner as in Production Example 4. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG.
製造例7(研磨材スラリーD)
コロイダルシリカ(扶桑化学工業株式会社、クォートロン(R)PL-7、等電点:5.8)52.2gをイオン交換水347.8gに分散させ、25℃にて10分間撹拌した。これを研磨材スラリーDとして用いた。この研磨材スラリーの、pHに対するゼータ電位の関係を図4に示す。
Production Example 7 (Abrasive Slurry D)
52.2 g of colloidal silica (Fuso Chemical Co., Ltd., Quarton (R) PL-7, isoelectric point: 5.8) was dispersed in 347.8 g of ion-exchanged water and stirred at 25 ° C. for 10 minutes. This was used as abrasive slurry D. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG.
製造例8(研磨材スラリーE)
製造例3で作製した研磨材Eを用いた以外は、製造例4(研磨材スラリーA)と同様にして、研磨材スラリーEを作製した。
この研磨材スラリーEについて、上記測定条件によりゼータ電位の測定を行った。この研磨材スラリーの、pHに対するゼータ電位の関係を図4に示す。研磨材スラリーEの等電点は6.1であった。
Production Example 8 (Abrasive Slurry E)
An abrasive slurry E was produced in the same manner as in Production Example 4 (Abrasive Slurry A) except that the abrasive E produced in Production Example 3 was used.
For this abrasive slurry E, the zeta potential was measured under the above measurement conditions. The relationship of the zeta potential with respect to pH of this abrasive slurry is shown in FIG. The isoelectric point of the abrasive slurry E was 6.1.
実施例1
(1)第1研磨工程
製造例4で得た研磨材スラリーAのゼータ電位が表2に示す値になるよう、スラリーのpHを調整した後、このスラリーの存在下で、以下の研磨条件にてガラス基板の研磨を行った。この工程での研磨材スラリーAのpH値を表2に示す。また、第1研磨工程での研磨速度、及び、第1研磨工程後のガラス基板の表面粗さを、以下の方法に従って評価した。結果を表2に示す。
(2)第2研磨工程
上記第1研磨工程で使用した研磨材スラリーAをそのまま連続使用し、そのゼータ電位が表2に示す値になるようにスラリーのpHを調整した後、このスラリーの存在下で、第1研磨工程と同じ研磨条件にてガラス基板の研磨を行った。この工程での研磨材スラリーAのpH値を表2に示す。また、第2研磨工程での研磨速度、及び、第2研磨工程後のガラス基板の表面粗さを、以下の方法に従って評価した。結果を表2に示す。
Example 1
(1) First Polishing Step After adjusting the pH of the slurry so that the zeta potential of the abrasive slurry A obtained in Production Example 4 has the value shown in Table 2, the following polishing conditions are satisfied in the presence of this slurry. The glass substrate was polished. Table 2 shows the pH value of the abrasive slurry A in this step. Moreover, the polishing rate in the first polishing step and the surface roughness of the glass substrate after the first polishing step were evaluated according to the following methods. The results are shown in Table 2.
(2) Second polishing step The abrasive slurry A used in the first polishing step is continuously used as it is, and the pH of the slurry is adjusted so that the zeta potential becomes the value shown in Table 2, and then the presence of this slurry. Below, the glass substrate was grind | polished on the same grinding | polishing conditions as a 1st grinding | polishing process. Table 2 shows the pH value of the abrasive slurry A in this step. Moreover, the polishing rate in the second polishing step and the surface roughness of the glass substrate after the second polishing step were evaluated according to the following methods. The results are shown in Table 2.
<研磨条件>
使用ガラス板:ソーダライムガラス(松浪硝子工業株式会社製、サイズ36×36×1.3mm、比重2.5g/cm
研磨機:卓上型研磨機(株式会社エム・エー・ティ製、MAT BC-15C、研磨定盤径300mmφ)
研磨パッド:発泡ポリウレタンパッド(ニッタ・ハース株式会社製、MHN-15A、セリア含浸なし)
研磨圧力:101g/cm
定盤回転数:70rpm
研磨材スラリーの供給量:100mL/min
研磨時間:60min
<Polishing conditions>
Glass plate used: Soda lime glass (manufactured by Matsunami Glass Industry Co., Ltd., size 36 × 36 × 1.3 mm, specific gravity 2.5 g / cm 3 )
Polishing machine: Desktop polishing machine (manufactured by MT Corporation, MAT BC-15C, polishing plate diameter 300 mmφ)
Polishing pad: Polyurethane foam pad (Nitta Haas, MHN-15A, no ceria impregnation)
Polishing pressure: 101 g / cm 2
Plate rotation speed: 70rpm
Abrasive slurry supply rate: 100 mL / min
Polishing time: 60 min
<研磨速度の測定>
各研磨工程前後のガラス基板の重量を電子天秤で測定した。重量減少量、ガラス基板の面積及びガラス基板の比重から、ガラス基板の厚さ減少量を算出し、研磨速度(μm/min)を算出した。
3枚のガラス基板を同時に研磨し、60分研磨後にガラス基板と研磨材スラリーを交換した。この操作を3回行い、計9枚の研磨速度を平均した値を各実施例及び比較例における研磨速度の値とした。
<Measurement of polishing rate>
The weight of the glass substrate before and after each polishing step was measured with an electronic balance. From the weight reduction amount, the area of the glass substrate, and the specific gravity of the glass substrate, the thickness reduction amount of the glass substrate was calculated, and the polishing rate (μm / min) was calculated.
Three glass substrates were polished at the same time, and after polishing for 60 minutes, the glass substrate and the abrasive slurry were exchanged. This operation was performed three times, and a value obtained by averaging the polishing rate of a total of 9 sheets was taken as the value of the polishing rate in each example and comparative example.
<ガラス基板の表面平滑性の測定>
各研磨工程後のガラス基板について、以下の条件により表面粗さの測定を行った。
測定機:ZYGO株式会社製、白色干渉顕微鏡、型番NewViewTM7100
水平解像度:<0.1nm
対物レンズ:50倍
フィルター:なし
測定視野サイズ:X=186μm、Y=139μm
評価方法:研磨後のガラス基板に対し、中心点、及び、中心点から半径6mm、12mmの同心円とガラス基板の対角線の交点の計9点のRaを測定し、平均値を算出した。この操作を上記の研磨速度の測定に用いた計9枚のガラス基板に対して行い、各ガラス基板のRaの平均値を用いて平均することにより、表面粗さを評価した。
<Measurement of surface smoothness of glass substrate>
About the glass substrate after each grinding | polishing process, the surface roughness was measured on condition of the following.
Measuring instrument: manufactured by ZYGO Corporation, white interference microscope, model number NewView 7100
Horizontal resolution: <0.1nm
Objective lens: 50 times filter: None Measurement field size: X = 186 μm, Y = 139 μm
Evaluation method: For the polished glass substrate, Ra was measured at a total of 9 points including the center point and the intersection of a concentric circle having a radius of 6 mm and 12 mm from the center point and the diagonal line of the glass substrate, and the average value was calculated. This operation was performed on a total of nine glass substrates used for the above-described polishing rate measurement, and the surface roughness was evaluated by averaging using the average value of Ra of each glass substrate.
実施例2
第1研磨工程の後に研磨材スラリーAを取り出し、新しい研磨材スラリーA(但し、当該スラリーのpHを表2に示す値に調整する)に切り替えて第2研磨工程を行ったこと以外は、実施例1と同様にして第1研磨工程及び第2研磨工程を実施した。各工程での、研磨材スラリーのpH、ゼータ電位、研磨速度及びガラス基板の表面粗さを表2に示す。
Example 2
Except that the abrasive slurry A was taken out after the first polishing step and switched to a new abrasive slurry A (however, the pH of the slurry was adjusted to the value shown in Table 2) and the second polishing step was performed. In the same manner as in Example 1, the first polishing step and the second polishing step were performed. Table 2 shows the pH of the abrasive slurry, the zeta potential, the polishing rate, and the surface roughness of the glass substrate in each step.
実施例3
研磨材スラリーAの代わりに研磨材スラリーBを用いたこと以外は、実施例2と同様にして第1研磨工程及び第2研磨工程を実施した。各工程での、研磨材スラリーのpH、ゼータ電位、研磨速度及びガラス基板の表面粗さを表2に示す。
Example 3
The first polishing step and the second polishing step were performed in the same manner as in Example 2 except that the abrasive slurry B was used instead of the abrasive slurry A. Table 2 shows the pH of the abrasive slurry, the zeta potential, the polishing rate, and the surface roughness of the glass substrate in each step.
実施例4
研磨材スラリーAの代わりに研磨材スラリーEを用いたこと以外は、実施例2と同様にして第1研磨工程及び第2研磨工程を実施した。各工程での、研磨材スラリーのpH、ゼータ電位、研磨速度及びガラス基板の表面粗さを表2に示す。
Example 4
The first polishing step and the second polishing step were performed in the same manner as in Example 2 except that the abrasive slurry E was used instead of the abrasive slurry A. Table 2 shows the pH of the abrasive slurry, the zeta potential, the polishing rate, and the surface roughness of the glass substrate in each step.
比較例1
(1)第1研磨工程
製造例6で得た研磨材スラリーCのゼータ電位が表2に示す値になるよう、スラリーのpHを調整した後、このスラリーの存在下で実施例1と同じ研磨条件にてガラス基板の研磨を行った。この工程での研磨材スラリーCのpH値を表2に示す。また、第1研磨工程での研磨速度、及び、第1研磨工程後のガラス基板の表面粗さを、上述した方法に従って評価した。結果を表2に示す。
(2)第2研磨工程
上記第1研磨工程で用いた研磨材スラリーCを研磨機から取り出し、研磨機の洗浄を行った。別途用意しておいた研磨材スラリーDのゼータ電位が表2に示す値になるようにpHを調整した後、この研磨材スラリーDの存在下で第1研磨工程と同じ研磨条件にてガラス基板の研磨を行った。この工程での研磨材スラリーDのpH値を表2に示す。また、第2研磨工程での研磨速度、及び、第2研磨工程後のガラス基板の表面粗さを、上述した方法に従って評価した。結果を表2に示す。
Comparative Example 1
(1) First polishing step After adjusting the pH of the slurry so that the zeta potential of the abrasive slurry C obtained in Production Example 6 becomes the value shown in Table 2, the same polishing as in Example 1 in the presence of this slurry The glass substrate was polished under the conditions. The pH value of the abrasive slurry C in this step is shown in Table 2. Further, the polishing rate in the first polishing step and the surface roughness of the glass substrate after the first polishing step were evaluated according to the methods described above. The results are shown in Table 2.
(2) Second polishing step The abrasive slurry C used in the first polishing step was taken out from the polishing machine, and the polishing machine was cleaned. After adjusting the pH so that the zeta potential of the separately prepared abrasive slurry D becomes the value shown in Table 2, in the presence of this abrasive slurry D, the glass substrate is subjected to the same polishing conditions as in the first polishing step. Was polished. Table 2 shows the pH value of the abrasive slurry D in this step. Further, the polishing rate in the second polishing step and the surface roughness of the glass substrate after the second polishing step were evaluated according to the methods described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
上記実施例及び比較例より以下のことが確認された。
実施例1、2と比較例1とでは、最終的に得られた基板(第2研磨工程後の基板)の表面粗さはほぼ同等であるにも関わらず、実施例1、2では、比較例1に比べて研磨速度が著しく向上されている。これとほぼ同様のことが、実施例3及び4と比較例1との対比からも確認できた。したがって、本発明の負帯電性基板の研磨方法は、セリウムフリーの研磨材料において高い研磨速度と優れた表面平滑性とを実現できることが分かった。また、比較例1においては、第1研磨工程では酸化セリウム系の研磨材を、第2研磨工程ではコロイダルシリカを使用しているため、研磨機の洗浄作業等を行う必要があったが、実施例1~4では第1研磨工程と第2研磨工程とで同種類の研磨材スラリーを使用しているため、研磨機の洗浄作業等が不要となり、作業面、設備面で非常に有利であった。
なお、実施例1の第2研磨工程では第1研磨工程で使用した研磨材スラリーAをそのまま連続使用したのに対し、実施例2の第2研磨工程では、第1研磨工程で使用した研磨材スラリーAと同じものではあるが、新しい研磨材スラリーAに切り替えて研磨を行った点において、実施例1と実施例2とは相違する。だが、この相違は、研磨速度及び得られる基板の表面平滑性に殆ど影響を与えないことが分かった。
The following was confirmed from the above Examples and Comparative Examples.
Although the surface roughness of the finally obtained substrates (substrates after the second polishing step) is almost the same in Examples 1 and 2 and Comparative Example 1, in Examples 1 and 2, Compared to Example 1, the polishing rate is significantly improved. This was almost the same as the comparison between Examples 3 and 4 and Comparative Example 1. Therefore, it has been found that the method for polishing a negatively charged substrate of the present invention can realize a high polishing rate and excellent surface smoothness in a cerium-free polishing material. Further, in Comparative Example 1, since the cerium oxide-based abrasive was used in the first polishing step and colloidal silica was used in the second polishing step, it was necessary to perform a cleaning operation of the polishing machine, etc. In Examples 1 to 4, since the same type of abrasive slurry is used in the first polishing step and the second polishing step, the cleaning operation of the polishing machine is unnecessary, which is very advantageous in terms of work and equipment. It was.
In the second polishing step of Example 1, the abrasive slurry A used in the first polishing step was continuously used as it was, whereas in the second polishing step of Example 2, the abrasive used in the first polishing step. Although it is the same as the slurry A, Example 1 and Example 2 are different in that polishing is performed by switching to a new abrasive slurry A. However, this difference has been found to have little effect on the polishing rate and the surface smoothness of the resulting substrate.
1:研磨材A
2:ガラス
3:研磨パッド
4:従来の研磨方法(i)における研磨材の切り替え時間
5:従来の研磨方法(i)において、目標の表面粗さに達する時間
6:目標の表面粗さ
7:本発明の好ましい形態の研磨方法(ii)において、研磨材スラリーのゼータ電位(好ましくは研磨材スラリーのpH)を切り替える時間
8:本発明の好ましい形態の研磨方法(ii)において、目標の表面粗さに達する時間
1: Abrasive A
2: Glass 3: Polishing pad 4: Switching time of abrasive in conventional polishing method (i) 5: Time to reach target surface roughness in conventional polishing method (i) 6: Target surface roughness 7: Time 8 for switching the zeta potential of the abrasive slurry (preferably pH of the abrasive slurry) in the polishing method (ii) of the preferred embodiment of the present invention: the target surface roughness in the polishing method (ii) of the preferred embodiment of the present invention Time to reach

Claims (6)

  1. 研磨材スラリーを用いて負帯電性基板を研磨する方法であって、
    該研磨材スラリーは、組成式:ABO(Aは、Sr及びCaからなる群より選択される少なくとも1種の元素を表す。Bは、Ti、Zr及びHfからなる群より選択される少なくとも1種の元素を表す。)で表される酸化物と、酸化ジルコニウムとを含み、
    該研磨方法は、研磨材スラリーのゼータ電位が正となる条件下で負帯電性基板を研磨する研磨工程aと、研磨材スラリーのゼータ電位が負となる条件下で負帯電性基板を研磨する研磨工程bとを、それぞれ少なくとも1回ずつ実施することを特徴とする負帯電性基板の研磨方法。
    A method of polishing a negatively charged substrate using an abrasive slurry,
    The abrasive slurry has a composition formula: ABO 3 (A represents at least one element selected from the group consisting of Sr and Ca. B represents at least one selected from the group consisting of Ti, Zr and Hf. An oxide represented by the following formula:
    The polishing method includes a polishing step a in which a negatively chargeable substrate is polished under a condition that the zeta potential of the abrasive slurry is positive, and a negatively chargeable substrate is polished under a condition in which the zeta potential of the abrasive slurry is negative. A method of polishing a negatively chargeable substrate, wherein the polishing step b is performed at least once each.
  2. 前記酸化物は、SrZrO及び/又はCaZrOであることを特徴とする請求項1に記載の負帯電性基板の研磨方法。 The method for polishing a negatively charged substrate according to claim 1, wherein the oxide is SrZrO 3 and / or CaZrO 3 .
  3. 前記研磨工程aを、研磨材スラリーのpHが、前記負帯電性基板の等電点より大きく、かつ該研磨材スラリーの等電点未満となる条件下で実施することを特徴とする請求項1又は2に記載の負帯電性基板の研磨方法。 2. The polishing step a is performed under a condition that the pH of the abrasive slurry is greater than the isoelectric point of the negatively chargeable substrate and less than the isoelectric point of the abrasive slurry. Or the method of polishing a negatively chargeable substrate according to 2.
  4. 前記研磨工程bを、研磨材スラリーのpHが、該研磨材スラリーの等電点より大きく、かつ13以下となる条件下で実施することを特徴とする請求項1~3のいずれかに記載の負帯電性基板の研磨方法。 The polishing step (b) is carried out under conditions where the pH of the abrasive slurry is greater than the isoelectric point of the abrasive slurry and is 13 or less. Polishing method of negatively chargeable substrate.
  5. 前記負帯電性基板は、ガラス基板であることを特徴とする請求項1~4のいずれかに記載の負帯電性基板の研磨方法。 The method for polishing a negatively chargeable substrate according to any one of claims 1 to 4, wherein the negatively chargeable substrate is a glass substrate.
  6. 請求項1~5のいずれかに記載の研磨方法を用いることを特徴とする高表面平滑性の負帯電性基板の製造方法。 A method for producing a negatively charged substrate having a high surface smoothness, wherein the polishing method according to any one of claims 1 to 5 is used.
PCT/JP2016/053699 2015-02-26 2016-02-08 Negatively charged substrate polishing method and manufacturing method of negatively charged substrate with high surface smoothness WO2016136447A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017502041A JP6665852B2 (en) 2015-02-26 2016-02-08 Polishing method for negatively chargeable substrate and method for producing negatively chargeable substrate with high surface smoothness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-036634 2015-02-26
JP2015036634 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136447A1 true WO2016136447A1 (en) 2016-09-01

Family

ID=56789525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053699 WO2016136447A1 (en) 2015-02-26 2016-02-08 Negatively charged substrate polishing method and manufacturing method of negatively charged substrate with high surface smoothness

Country Status (3)

Country Link
JP (1) JP6665852B2 (en)
TW (1) TWI705947B (en)
WO (1) WO2016136447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157652A (en) * 2019-03-27 2020-10-01 セイコーエプソン株式会社 Liquid discharge head and printer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566150B2 (en) * 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082050A (en) * 2011-10-12 2013-05-09 Japan Fine Ceramics Center Polishing material, polishing composition, and polishing method
JP2013188811A (en) * 2012-03-13 2013-09-26 Ujiden Chemical Industry Co Ltd Abrasive grain and method of manufacturing the same
JP2014083598A (en) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd Polishing method of glass substrate
JP2014083597A (en) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd Polishing method of glass substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251516B2 (en) * 2000-05-12 2009-04-08 花王株式会社 Polishing liquid composition
RU2356926C2 (en) * 2003-07-11 2009-05-27 У.Р. Грэйс Энд Ко.-Конн. Abrasive particles for mechanical polishing
JP2014024960A (en) * 2012-07-26 2014-02-06 Fujimi Inc Polishing composition, method for polishing oxide material, and method for producing oxide material substrate
JP6035587B2 (en) * 2012-12-28 2016-11-30 山口精研工業株式会社 Abrasive composition for glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082050A (en) * 2011-10-12 2013-05-09 Japan Fine Ceramics Center Polishing material, polishing composition, and polishing method
JP2013188811A (en) * 2012-03-13 2013-09-26 Ujiden Chemical Industry Co Ltd Abrasive grain and method of manufacturing the same
JP2014083598A (en) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd Polishing method of glass substrate
JP2014083597A (en) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd Polishing method of glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157652A (en) * 2019-03-27 2020-10-01 セイコーエプソン株式会社 Liquid discharge head and printer

Also Published As

Publication number Publication date
TWI705947B (en) 2020-10-01
JPWO2016136447A1 (en) 2017-12-07
JP6665852B2 (en) 2020-03-13
TW201641464A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP7071495B2 (en) Compositions for performing material removal operations and methods for forming them
KR102090494B1 (en) Cerium abrasive and manufacturing method
EP2669046A1 (en) Polishing material and polishing composition
JP5278631B1 (en) Composite particles for glass polishing
JP5979340B1 (en) Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
JP2012011526A (en) Abrasive and manufacturing method thereof
JP6460090B2 (en) Method for producing composite metal oxide polishing material and composite metal oxide polishing material
KR100640583B1 (en) Cerium oxide polishing particles, slurry for CMP, methods for preparing the same, and methods for polishing substrate
JP2017001927A (en) Composite particle for polishing, manufacturing method of composite particle for polishing and slurry for polishing
TW201313849A (en) Abrasive and polishing composition
WO2016136447A1 (en) Negatively charged substrate polishing method and manufacturing method of negatively charged substrate with high surface smoothness
JP5883609B2 (en) Polishing material, polishing composition and polishing method
JP6458554B2 (en) Method for producing composite metal oxide polishing material and composite metal oxide polishing material
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
WO2007099799A1 (en) Cerium-based abrasive material
KR101196757B1 (en) Method for preparing cerium oxide for high-accurate polishing
KR101701005B1 (en) Cerium oxide based polishing particle, slurry comprising the same and the manufacturing method thereof
JP6533995B2 (en) Method of manufacturing composite metal oxide polishing material and composite metal oxide polishing material
JP2015140402A (en) Free abrasive grain, abrasive material for polishing free abrasive grain and manufacturing method therefor
JP5993323B2 (en) Polishing material
JP2014084420A (en) Manganese oxide polishing agent for free abrasive grain polishing, and method for producing the agent
JP2012200832A (en) Abrasive agent
JP2014101488A (en) Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method
JP2014124721A (en) Manganese oxide abrasive for polishing glass base material and producing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755194

Country of ref document: EP

Kind code of ref document: A1