WO2016134803A1 - Mems-bauelement mit hoher integrationsdichte - Google Patents

Mems-bauelement mit hoher integrationsdichte Download PDF

Info

Publication number
WO2016134803A1
WO2016134803A1 PCT/EP2015/080544 EP2015080544W WO2016134803A1 WO 2016134803 A1 WO2016134803 A1 WO 2016134803A1 EP 2015080544 W EP2015080544 W EP 2015080544W WO 2016134803 A1 WO2016134803 A1 WO 2016134803A1
Authority
WO
WIPO (PCT)
Prior art keywords
structures
component
layer
wafer
thin
Prior art date
Application number
PCT/EP2015/080544
Other languages
English (en)
French (fr)
Inventor
Thomas Metzger
Jürgen PORTMANN
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to US15/546,229 priority Critical patent/US10680159B2/en
Priority to CN201580075070.6A priority patent/CN107207245B/zh
Priority to JP2017545341A priority patent/JP6873908B2/ja
Priority to EP15813073.2A priority patent/EP3262755A1/de
Publication of WO2016134803A1 publication Critical patent/WO2016134803A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/105Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the BAW device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/095Feed-through, via through the lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0136Growing or depositing of a covering layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0154Moulding a cap over the MEMS device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the invention relates to MEMS components, eg electroacoustic filters, in which MEMS structures are arranged protected in cavities, wherein the number of MEMS structures per base area is increased.
  • MEMS devices include MEMS structures that generally require isolation from harmful environmental influences. Such MEMS structures are, for example, SAW structures, BAW structures or MEMS switches. MEMS devices are subject to the trend towards size and height reduction and cost reduction. At the same time, despite decreasing dimensions, the signal quality should not be deteriorated. Therefore, the packaging technology used makes an ent ⁇ distinctive contribution to the reduction of the base area, height and cost of corresponding components.
  • WLP Wafer Level Packages
  • CSP chip scale package
  • DSP die-Sized Package
  • a MEMS component comprises a base wafer and a cover wafer arranged above it.
  • the device further comprises a first cavity between the base wafer and the lid wafer and first device structures in the first cavity.
  • the device further comprises a second cavity over the de ckelwafer and second device structures in the second cavity.
  • the MEMS device has a frame laterally surrounding the first cavity and a thin film cover covering the second cavity.
  • the component ⁇ structures both under the lid wafer as well as over the De wafers wafer has.
  • the device structure are at least partially functional MEMS structures so that the structures in ⁇ tegrations ashamed is increased.
  • the component ⁇ structures are each angeord ⁇ net in at least one cavity and thus protected from harmful environmental influences.
  • first component structures are arranged directly on the base wafer or that the second construction element structures are arranged directly on the lid wafer.
  • further layers or further structures are arranged between the component structures and the corresponding wafers.
  • the base wafer or lidwafe may comprise a piezoelectric material.
  • the construction element may include structures comb-shaped electrode structures that are disposed directly on the piezoelectric material of the entspre ⁇ sponding wafer.
  • Zvi ⁇ rule can acoustic mirror layers or piezoelectric layers may be arranged to the corresponding wafer which need not be piezoelectric, and the structures of further layers, for example.
  • the base wafer, the lid wafer, and the frame enclose the first, lower cavity, wherein the first device structures in the first cavity may be hermetically sealed from the environment of the MEMS device.
  • the first component structures are sensor structures and should detect properties of the environment. Then it is possible that the first cavity is connected at least via a small opening with the environment of the compo ⁇ element.
  • the thin-film cover differs here in Wesent ⁇ union of conventional coverings like lids, caps, spanned laminate films, etc. in that its material is thinner than the material of conventional covers and was applied as a cavity cover by a layer deposition process.
  • PVD physical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • PLD Pulse Laser Deposition
  • MBE Molecular Beam Epitaxy
  • ALD atomic layer depositon
  • the thickness and shape of the thin film cover and other properties such as e.g. Hermeticity, mechanical stability, etc. individually adjusted.
  • the thin layer of the thin-film Abde ⁇ ckung already the complete coverage of the second cavity represents.
  • the thin ⁇ layer cover is part of a multi-layer cover. Then, the cover of the second cavity, in addition to the thin-film cover, still comprises at least one further layer of another material.
  • the MEMS device also comprises as part of the Cover B ⁇ ckung of the second cavity, a sealing layer.
  • the thin film cover has at least one hole and the sealing layer is disposed over the thin-film from ⁇ cover and seals the hole.
  • a hole in the thin film cover may be advantageous to simplify a method of making a corresponding MEMS device.
  • the sealing layer seals the hole (s) in the thin film cover.
  • the MEMS device has as part of Cover B ⁇ ckung a reinforcing layer.
  • the gain layer is disposed over or on the thin film cover and mechanically strengthens the thin film cover.
  • the reinforcing layer serves as part of the cover in We ⁇ sentlichen to obtain a mechanically stable cover.
  • the MEMS device has, as part of Cover B ⁇ ckung of the second cavity, a planarization layer on ⁇ .
  • the planarization layer is over or directly on the thin-film cover disposed and has a flat top.
  • a planar upper side over the second cavity is advantageous if on the upper side of the component wei ⁇ tere structures, such as signal conductors and / or Wegungsele- elements and / or pads are to be arranged for an external interconnection.
  • the MEMS device has a redistribution layer as part of the cover.
  • the redistribution layer is disposed above or on the thin layer ⁇ cover and comprises at least one layer of a dielectric material and a signal conductor.
  • the MEMS device has a passivation layer as part of the cover.
  • the passivation layer is arranged above or directly on the thin-film cover.
  • the passivation layer can serve to provide a chemically inert surface and improve the tightness of the cover.
  • the sealing layer, the reinforcing layer Plana ⁇ rleiters slaughter, the redistribution layer and the passivation ⁇ nieungs harsh can each, individually or form the cover of the second hollow space in combination with the thin-film cover. It is possible that a layer above or on the thin-film cover fulfills several of the above-mentioned objects and thus represents, for example, a planarization layer and at the same time a passivation layer.
  • a circuit element can be integrally arranged ⁇ , which is selected from a passive scarf ⁇ processing element, an inductive element, a capacitive element, a resistive element and a strip line.
  • the circuit element preferably comprises electrically lei ⁇ tend structures that are embedded in the dielectric material of the redistribution drahtungstik.
  • the MEMS component further comprises a first electrical connection area on the upper side of the component.
  • a signal conductor which connects the first component structures to the first connection area.
  • the signal conductor in this case runs at least from ⁇ cut, on an outer side surface of the component.
  • a MEMS device is obtained in which a signal conductor is not guided through a via through the lid wafer but around the lid wafer.
  • wafer vias are possible in principle but present technical problems.
  • creating holes in a wafer is relatively expensive and results in mechanical weakening of the wafer.
  • suitable materials for example, highly conductive metals such as copper, silver or gold (geeig ⁇ net) to provide an acceptable volume resistivity in the large ⁇ zowskiowski of about 10 mQ for the realization RF appropriate vias.
  • material of the signal conductor from the first component ⁇ structures between frame and material of the base wafer or between the frame and material of the lid wafer can be led out laterally from the first cavity.
  • the MEMS device has a second on ⁇ connecting surface on the upper side of the device.
  • the MEMS component comprises a via, which interconnects the second component structures with the second connection area.
  • the via needs as ⁇ at not pass through a wafer material. It suffices to guide the via through a material of the thin-film cover and / or the material of a further layer of the cover or of the layer stack of the cover of the second cavity.
  • the MEMS component does not contain through-plating through the material of the lid wafer.
  • the first and second device structures may be selected from SAW structures, BAW structures, GBAW structures, microphone membranes, microphone backplates, and MEMS structures.
  • the MEMS component comprises a sealing layer
  • its material may be wholly or at least partially selected from a dielectric material, an organic material, a silicon nitride, eg S1 3 N 4 , a silicon oxide, eg S1O 2 , an aluminum oxide, eg Al 2 O 3 ,
  • the MEMS component comprises a reinforcing layer
  • its material may be wholly or at least partially selected from a dielectric material, an organic material, a polymer, BCB (benzocyclobutene), an inorganic material, a silicon nitride, eg S1 3 N 4 , a silicide zium oxide, for example S1O 2 , an aluminum oxide, for example Al 2 O 3 .
  • the component comprises a planarization layer, de ⁇ ren material may be entirely or at least partly selected from a dielectric material, an organic material, a polymer, BCB, a laminate, an inorganic material, a silicon nitride, for example, S1 3 N 4, a silicon oxide, for example, SiO 2 , an aluminum oxide, for example Al 2 O 3 .
  • the MEMS device has in addition to the thin layer ⁇ cover in the cover of the upper cavity, a sealing layer, a reinforcement layer, a Planari ⁇ s réelles slaughter, a passivation layer and a redistribution drahtungstik.
  • the cover in addition to the thin-film cover, also has only one further, two further, three further or four further layers of the abovementioned layers. It is possible that the base wafer and the lid wafer of the component consist of the same material or of materials with almost identical coefficients of thermal expansion.
  • a method of fabricating a MEMS device with increased integration density may include the following steps
  • the steps for forming the thin-film Abde ⁇ ckung can the following sub-steps
  • FIG. 1 shows another embodiment of the component with connection possibilities on its upper side
  • 3 shows a first intermediate step in the manufacture of a component
  • FIG. 4 shows a second intermediate step in the production of a component
  • FIG. 7 shows a further intermediate step
  • FIG. 8 shows a further intermediate step
  • Fig. 13 A further intermediate step
  • Fig. 14 As a result, finished components after herstel ⁇ lung
  • FIG. 15 Another embodiment of the MEMS device.
  • Figure 1 shows a possible embodiment of the device, wherein the BAW component structures as the first Bauelementstruktu ⁇ ren Hl in the first cavity and other BAW component structures are arranged as a second component structures in the second cavity H2.
  • a frame R serves as Ab ⁇ spacers and - z.
  • the first component structures are arranged directly on the base wafer BW. More Zvi ⁇ rule the BAW structures St. and the base wafer BW in the first cavity arranged acoustic mirror layers are also possible but not shown ⁇ ge for a simplified overview.
  • a thin film cover DSA bounds the second cavity H2 upwardly and covers the second device structures.
  • a planarization layer PS is arranged with a flat top.
  • a signal conductor SL extends at least in sections on the outside of the component MB.
  • the signal conductors SL guided on the outside of the component MB avoid the disadvantages associated with plated-through holes by the cover wafer DW.
  • Figure 2 shows an embodiment of the device in which the side surfaces of the component bevelled and disposed on the slanted side faces from ⁇ signal conductor SL, interconnect the component structures with contact surfaces KF on the upper side of the component.
  • Exemplary the ers ⁇ th component structures BS1 BAW component structures and the second component structures BS2 are shown as BAW component structures.
  • further component structures are contained in the first cavity.
  • a rewiring layer US is arranged above the planarization layer PS. In it pass sections of signal conductors which are interconnected via contact holes DK with contact surfaces KF.
  • Figure 3 shows a first intermediate step for producing a corresponding MEMS device, here shown as an example in which first Bauele ⁇ management structures BS1 as a BAW device structures on a large-area base wafer BW are arranged.
  • FIG. 4 shows a further intermediate step, in which additional frame structures R are arranged on the upper side of the base wafer BW.
  • the first component structures BS1 and the frame structures can be created in multiple use, ie before the separation of the base wafer into a plurality of individual component sections.
  • FIG. 5 shows a further intermediate step, wherein second component structures are arranged on the upper side of the lid wafer DW.
  • the second component structures are covered by a thin-film cover, so that no frame structures at the top of the lid wafer DW are necessary.
  • a sacrificial material OM is formed and formed over the second device structures.
  • the shape of the sacrificial material OM determines in ⁇ We sentlichen the shape of the cavity later H2.
  • FIG. 8 shows a further intermediate step, wherein holes L have been structured in the thin-film cover DSA.
  • Figure 9 shows a further intermediate step, wherein the Op ⁇ fermaterial OM has been removed by the holes in the thin film cover.
  • Figure 10 shows a further intermediate step, wherein the Lö ⁇ cher sealed in the thin film cover for example by a sealing layer VS and reinforces the thin-film cover DSA by a reinforcing layer and VST are covered by a planarization layer PS.
  • a sealing layer VS and reinforces the thin-film cover DSA by a reinforcing layer and VST are covered by a planarization layer PS.
  • Planarleiterstik PS has been arranged a redistribution layer US.
  • DK vias connect through the material of the planarization layer PS signal conductor at the top of the cap wafer with DW signal conductors on the upper surface of the planarization layer PS, that is embedded in the Umverdrah ⁇ tung US layer signal conductors.
  • the component structures can be interconnected with contact surfaces on the upper side of the component.
  • the component may have a passivation layer PAS.
  • Passivation layer PAS can be an additional layer and one of the topmost layers.
  • the passivation layer may also be mixed with one of the remaining layers, e.g. B. the
  • Redistribution layer US match.
  • FIG. 11 shows a further intermediate step, in which the upper parts of the component (see FIGS. 5 to 10) are already singulated and connected to the frame structures R on the base wafer BW. Over the frames R, lid wafers DW and base wafers BW, e.g. be connected via the usual bonding methods.
  • FIG. 12 shows a further intermediate step, in which sections of the side surfaces ASF of the components are chamfered.
  • material of the lid wafer and the planarization layer is removed so that signal conductors are exposed at the top of the base wafer.
  • Figure 13 shows correspondingly how the exposed Signallei ⁇ ter are connected to each other by depositing a conductive material.
  • FIG. 14 shows finished components in which finally the base wafer is also cut along the separating lines provided for this purpose.
  • the contact surfaces at the top of the components are filled with solder balls, so that a connection to external circuit environments via bump connections BU is possible.
  • FIG. 15 shows an embodiment of a MEMS component which receives an inductive element IE as an example embedded within the redistribution layer US.
  • Other scarves ⁇ processing elements, in particular passive circuit elements within ⁇ half of rewiring US are also possible.
  • the device and the method for forming the device is not be limited to the embodiments shown ⁇ . Components with additional cavities, more
  • Wafers or other thin-film covers or manufacturing methods for correspondingly more complex components are also covered by the claims.
  • PAS passivation layer
  • VST reinforcing layer

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Es wird ein MEMS-Bauelement mit erhöhter Integrationsdichte und ein Verfahren zur Herstellung eines solchen Bauelements angegeben. Das Bauelement umfasst einen Basiswafer und einen darüber angeordneten Deckelwafer. Zwischen dem Basiswafer und dem Deckelwafer ist ein erster Hohlraum angeordnet. Über dem Deckelwafer ist ein zweiter Hohlraum unter einer Dünnschicht-Abdeckung angeordnet. Die Hohlräume enthalten Bauelementstrukturen.

Description

Beschreibung
MEMS-Bauelement mit hoher Integrationsdichte Die Erfindung betrifft MEMS-Bauelemente, z.B. elektroakusti- sche Filter, bei denen MEMS-Strukturen geschützt in Hohlräumen angeordnet sind, wobei die Zahl der MEMS-Strukturen pro Grundfläche vergrößert ist. MEMS-Bauelemente umfassen MEMS-Strukturen, die im Allgemeinen einer Abkapselung gegenüber schädlichen Umwelteinflüssen bedürfen. Solche MEMS-Strukturen sind z.B. SAW-Strukturen, BAW- Strukturen oder MEMS-Schalter . MEMS-Bauelemente unterliegen dem Trend zur Größen- und Höhenreduzierung und zur Kostenreduzierung. Gleichzeitig soll trotz kleiner werdender Abmessungen die Signalqualität nicht verschlechtert sein. Die verwendete Gehäusetechnologie leistet deshalb einen ent¬ scheidenden Beitrag zur Reduzierung der Grundfläche, der Höhe und der Herstellungskosten entsprechender Bauelemente.
Es gibt so genannte Wafer Level Packages (WLP) . Dabei werden die Elemente des Gehäuses noch auf dem Wafer, d.h. vor dem Vereinzeln der späteren Bauelemente, erzeugt. Ein Beispiel für ein WLP ist ein Chip-Scale-Package (CSP) , bei dem sich die Grundflächen des fertigen Bauelements und des darin ent¬ haltenen Chips um nicht mehr als etwa 20 % unterscheiden. Beim sogenannten Die-Sized-Package (DSP) stimmen die Grund¬ flächen von Chip und dem gesamten Bauelement im Wesentlichen überein . Es ist eine Aufgabe der vorliegenden Erfindung, MEMS- Bauelemente anzugeben, die gegenüber bekannten Bauelementen eine höhere Integrationsdichte der funktionalen Elemente auf weisen, gute elektrische Eigenschaften haben und kostengüns¬ tig herstellbar sind.
Ein solches Bauelement und ein Verfahren zur Herstellung ei- nes solchen Bauelements werden in den unabhängigen Ansprüche angegeben. Abhängige Ansprüche geben vorteilhafte Ausgestal- tungen an.
Ein MEMS-Bauelement umfasst einen Basiswafer und einen darüber angeordneten Deckelwafer. Das Bauelement umfasst ferner einen ersten Hohlraum zwischen dem Basiswafer und dem Deckel wafer und erste Bauelementstrukturen im ersten Hohlraum. Das Bauelement umfasst ferner einen zweiten Hohlraum über dem De ckelwafer und zweite Bauelementstrukturen im zweiten Hohlraum. Zusätzlich hat das MEMS-Bauelement einen Rahmen, der den ersten Hohlraum seitlich umgibt, sowie eine Dünnschicht- Abdeckung, die den zweiten Hohlraum abdeckt.
Damit wird ein MEMS-Bauelement angegeben, das Bauelement¬ strukturen sowohl unter dem Deckelwafer als auch über dem De ckelwafer aufweist. Die Bauelementstruktur sind dabei zumindest teilweise funktionale MEMS-Strukturen, so dass die In¬ tegrationsdichte der Strukturen erhöht ist. Die Bauelement¬ strukturen sind jeweils in zumindest einem Hohlraum angeord¬ net und somit vor schädlichen Umwelteinflüssen geschützt.
Es ist möglich, dass die ersten Bauelementstrukturen direkt auf dem Basiswafer angeordnet sind bzw. dass die zweiten Bau elementstrukturen direkt auf dem Deckelwafer angeordnet sind Es ist allerdings auch möglich, dass weitere Schichten oder weitere Strukturen zwischen den Bauelementstrukturen und den entsprechenden Wafern angeordnet sind.
Insbesondere im Fall von SAW-Strukturen (SAW = Surface A- coustic Wave = akustische Oberflächenwelle) oder von GBAW- Strukturen (GBAW = Guided Bulk Acoustic Wave = geführte akus tische Volumenwelle) kann der Basiswafer bzw. der Deckelwafe ein piezoelektrisches Material umfassen. Dann können die Bau elementstrukturen kammförmige Elektrodenstrukturen umfassen, die direkt auf dem piezoelektrischen Material des entspre¬ chenden Wafers angeordnet sind.
Umfassen die Bauelementstrukturen BAW-Strukturen (BAW = Bulk Acoustic Wave = akustische Volumenwelle) , dann können zwi¬ schen dem entsprechenden Wafer, der nicht piezoelektrisch zu sein braucht, und den Strukturen weitere Schichten, z.B. akustische Spiegelschichten oder piezoelektrische Schichten, angeordnet sein.
Der Basiswafer, der Deckelwafer und der Rahmen umschließen den ersten, unteren Hohlraum, wobei die ersten Bauelementstrukturen im ersten Hohlraum hermetisch von der Umgebung de MEMS-Bauelements abgedichtet sein können. Es ist allerdings auch möglich, dass die ersten Bauelementstrukturen Sensor- Strukturen sind und Eigenschaften der Umgebung detektieren sollen. Dann ist es möglich, dass der erste Hohlraum zumindest über eine kleine Öffnung mit der Umgebung des Bauele¬ ments verbunden ist.
Insbesondere, wenn der Bond mit einem Metallrahmen erfolgt, ist ein hermetischer Hohlraum möglich; ein metallischer Bond rahmen ist allerdings problematisch, wenn lateral metalli¬ schen Signalleitungen herausgeführt werden sollen. Dann wird eine zusätzliche elektrische Isolierung, z. B. in Form einer dielektrischen Schicht zwischen Rahmen und Leitung, benötigt. Parasitäre Kapazitäten, falls eine derartige Isolations¬ schicht eingeführt wird, könnten durch zusätzliche Schal- tungskomponenten kompensiert werden. Rein dielektrische Bond¬ rahmen, z.B. mit Siliziumnitrid, können hermetisch sein. Polymere können bevorzugt als Bondmaterial verwendet werden, wenn keine absolute Hermetizität benötigt wird. Die Dünnschicht-Abdeckung, die den zweiten, oberen Hohlraum abdeckt, schützt die zweiten Bauelementstrukturen vor schädlichen Einwirkungen. Auch der zweite Hohlraum kann hermetisch gegenüber der Umgebung des Bauelements abgeschlossen sein o- der, z.B. über eine oder mehrere Öffnungen, mit der Umgebung verbunden sein.
Die Dünnschicht-Abdeckung unterscheidet sich dabei im Wesent¬ lichen von konventionellen Abdeckungen wie z.B. Deckeln, Kappen, überspannten Laminatfolien, usw. dadurch, dass ihr Mate- rial dünner als das Material konventioneller Abdeckungen ist und mittels eines Schichtabscheidungsverfahrens als Hohlraum- Abdeckung aufgebracht wurde. Durch die Verwendung eines
Schichtabscheidungsverfahrens , z.B. Sputtern (PVD = physical vapor deposition) , PECVD (plasma-enhanced chemical vapor de- position) PLD (Puls Laser Deposition) , MBE (Molecular Beam Epitaxie), ALD (atomic layer depositon) , usw., ist die Zahl der möglichen Materialien nahezu unbegrenzt. Entsprechend können die Dicke und die Form der Dünnschicht-Abdeckung und andere Eigenschaften wie z.B. Hermetizität, mechanische Sta- bilität, usw. individuell eingestellt sein.
Es ist möglich, dass die dünne Schicht der Dünnschicht-Abde¬ ckung schon die vollständige Abdeckung des zweiten Hohlraums darstellt. Es ist allerdings auch möglich, dass die Dünn¬ schicht-Abdeckung Teil einer mehrschichtigen Abdeckung ist. Dann umfasst die Abdeckung des zweiten Hohlraums neben der Dünnschicht-Abdeckung noch zumindest eine weitere Schicht ei- nes weiteren Materials.
Es ist möglich, dass das MEMS-Bauelement als Teil der Abde¬ ckung des zweiten Hohlraums noch eine Versiegelungsschicht umfasst. Die Dünnschicht-Abdeckung weist zumindest ein Loch auf und die Versiegelungsschicht ist über der Dünnschicht-Ab¬ deckung angeordnet und dichtet das Loch ab.
Ein Loch in der Dünnschicht-Abdeckung kann vorteilhaft sein, um ein Verfahren zur Herstellung eines entsprechenden MEMS- Bauelements zu vereinfachen. So ist es möglich, das Material der Dünnschicht-Abdeckung auf eine Opferschicht aufzubringen, die nach der Fertigstellung der Dünnschicht-Abdeckung durch das Loch in der Dünnschicht-Abdeckung wieder entfernt wird. Um eine hermetisch dichte Abkapselung des zweiten Hohlraums zu erhalten, dichtet die Versiegelungsschicht das Loch bzw. alle Löcher in der Dünnschicht-Abdeckung ab.
Es ist möglich, dass das MEMS-Bauelement als Teil der Abde¬ ckung eine Verstärkungsschicht aufweist. Die Verstärkungs- schicht ist über oder auf der Dünnschicht-Abdeckung angeordnet und verstärkt die Dünnschicht-Abdeckung mechanisch. So dient die Verstärkungsschicht als Teil der Abdeckung im We¬ sentlichen dazu eine mechanisch stabile Abdeckung zu erhalten .
Es ist möglich, dass das MEMS-Bauelement als Teil der Abde¬ ckung des zweiten Hohlraums eine Planarisierungsschicht auf¬ weist. Die Planarisierungsschicht ist über oder direkt auf der Dünnschicht-Abdeckung angeordnet und weist eine ebene Oberseite auf. Eine ebene Oberseite über dem zweiten Hohlraum ist vorteilhaft, wenn auf der Oberseite des Bauelements wei¬ tere Strukturen, z.B. Signalleiter und/oder Schaltungsele- mente und/oder Anschlussflächen für eine externe Verschaltung angeordnet sein sollen.
Entsprechend ist es möglich, dass das MEMS-Bauelement als Teil der Abdeckung eine Umverdrahtungsschicht aufweist. Die Umverdrahtungsschicht ist über oder direkt auf der Dünn¬ schicht-Abdeckung angeordnet und umfasst zumindest eine Lage eines dielektrischen Materials sowie einen Signalleiter.
Es ist möglich, dass das MEMS-Bauelement als Teil der Abde- ckung eine Passivierungsschicht aufweist. Die Passivierungs- schicht ist über oder direkt auf der Dünnschicht-Abdeckung angeordnet. Die Passivierungsschicht kann dazu dienen, eine chemisch inerte Oberfläche zur Verfügung zu stellen und die Dichtigkeit der Abdeckung zu verbessern.
Die Versiegelungsschicht, die Verstärkungsschicht, die Plana¬ risierungsschicht, die Umverdrahtungsschicht und die Passi¬ vierungsschicht können jeweils einzeln oder in Kombination mit der Dünnschicht-Abdeckung die Abdeckung des zweiten Hohl- raums bilden. Es ist möglich, dass eine Schicht über oder auf der Dünnschicht-Abdeckung mehrere der oben genannten Aufgaben erfüllt und so beispielsweise eine Planarisierungsschicht und gleichzeitig eine Passivierungsschicht darstellt. In der Umverdrahtungsschicht kann ein Schaltungselement ange¬ ordnet sein, das ausgewählt ist aus einem passiven Schal¬ tungselement, einem induktiven Element, einem kapazitiven Element, einem resistiven Element und einer Streifenleitung. Das Schaltungselement umfasst vorzugsweise elektrisch lei¬ tende Strukturen, die im dielektrischen Material der Umver- drahtungsschicht eingebettet sind.
Es ist möglich, dass das MEMS-Bauelement ferner eine erste elektrische Anschlussfläche auf der Oberseite des Bauelements umfasst. Dazu gibt es ferner einen Signalleiter, der die ersten Bauelementstrukturen mit der ersten Anschlussfläche ver- schaltet. Der Signalleiter verläuft dabei zumindest ab¬ schnittsweise an einer äußeren Seitenfläche des Bauelements.
Dadurch wird ein MEMS-Bauelement erhalten, in welchem ein Signalleiter nicht durch eine Durchkontaktierung durch den Deckelwafer sondern um den Deckelwafer herum geführt ist. Es wurde erkannt, dass Durchkontaktierungen durch Wafer prinzipiell möglich sind, dabei aber technische Probleme aufwerfen. So ist das Erzeugen von Löchern in einem Wafer relativ teuer und führt zu einer mechanischen Schwächung des Wafers . Außer- dem ist für die Realisierung HF-geeigneter Durchkontaktierungen nur eine geringe Auswahl geeigneter Materialien (z.B. hoch leitende Metalle wie Kupfer, Silber oder Gold (geeig¬ net) , um einen akzeptablen Durchgangswiderstand in der Grö¬ ßenordnung von etwa 10 mQ zu ermöglichen. Für diese Materia- lien ist ferner die Kompatibilität mit den Wafermaterialien insbesondere hinsichtlich thermischer Ausdehnungskoeffizienten oder ihres Diffusionsverhaltens nicht immer gegeben. So ist für die Realisierung von HF-geeigneten Durchkontaktierungen ein relativ großer Durchmesser, z.B. 30 ym oder mehr, notwendig, um einen niedrigen Widerstand zu erreichen. Insbe¬ sondere, wenn eine Diffusionsbarriere zwischen dem Wafermate- rial und dem Material der Durchkontaktierung erforderlich wird, was z.B. bei Kupfer als Material der Durchkontaktierung und Silizium als Material des Wafers notwendig ist, wird das Herstellungsverfahren sehr aufwändig. Im Übrigen kann eine vollständig mit Metall gefüllte Durchkontaktierung aufgrund unterschiedlicher thermischer Ausdehnungskoeffizienten zu mechanischen Spannungen im Materialsystem führen, was letztendlich auch Chip- bzw. Waferbruch zur Folge haben kann. Alternativ zu massiv gefüllten Durchkontaktierungen sind Durchkon- taktierungen möglich, bei denen nur die Lochwand mit Metall beschichtet wird. Hierfür wäre allerdings ein noch aufwändi¬ geres Abscheideverfahren erforderlich.
Durch das Führen des Signalleiters außen am Material des De- ckelwafers vorbei können diese Probleme umgangen werden. Dazu kann Material des Signalleiters von den ersten Bauelement¬ strukturen zwischen Rahmen und Material des Basiswafers oder zwischen Rahmen und Material des Deckelwafers seitlich aus dem ersten Hohlraum herausgeführt werden.
Es ist möglich, dass das MEMS-Bauelement eine zweite An¬ schlussfläche auf der Oberseite des Bauelements aufweist. Ferner umfasst das MEMS-Bauelement eine Durchkontaktierung, die die zweiten Bauelementstrukturen mit der zweiten Anschlussfläche verschaltet. Die Durchkontaktierung braucht da¬ bei nicht durch ein Wafermaterial geführt werden. Es genügt, die Durchkontaktierung durch ein Material der Dünnschicht-Abdeckung und/oder das Material einer weiteren Schicht der Abdeckung bzw. des Schichtstapels der Abdeckung des zweiten Hohlraums zu führen.
Es ist somit insbesondere möglich, dass das MEMS-Bauelement keine Durchkontaktierung durch das Material des Deckelwafers enthält . Die ersten und die zweiten Bauelementstrukturen können ausgewählt sein aus SAW-Strukturen, BAW-Strukturen, GBAW- Strukturen, Mikrofonmembranen, Mikrofonrückplatten und MEMS- Strukturen .
Umfasst das MEMS-Bauelement eine Versiegelungsschicht, kann deren Material ganz oder zumindest teilweise ausgewählt sein aus einem dielektrischen Material, einem organischen Material, einem Siliziumnitrid, z.B. S13N4, einem Siliziumoxid, z.B. S1O2, einem Aluminiumoxid, z.B. AI2O3.
Umfasst das MEMS-Bauelement eine Verstärkungsschicht, kann deren Material ganz oder zumindest teilweise ausgewählt sein aus einem dielektrischen Material, einem organischen Material, einem Polymer, BCB (Benzocyclobuten) , einem anorganischen Material, einem Siliziumnitrid, z.B. S13N4, einem Sili¬ ziumoxid, z.B. S1O2, einem Aluminiumoxid, z.B. AI2O3.
Umfasst das Bauelement eine Planarisierungsschicht, kann de¬ ren Material ganz oder zumindest teilweise ausgewählt sein aus einem dielektrischen Material, einem organischen Material, einem Polymer, BCB, einem Laminat, einem anorganischen Material, einem Siliziumnitrid, z.B. S13N4, einem Siliziumoxid, z.B. S1O2, einem Aluminiumoxid, z.B. AI2O3.
Umfasst das MEMS-Bauelement eine Passivierungsschicht
und/oder eine Umverdrahtungsschicht , so kann deren Material ganz oder zumindest teilweise ausgewählt sein aus einem die¬ lektrischen, einem organischen Material, einem Polymer, BCB, einem Lötstopplack, einem anorganischen Material, einem Siliziumnitrid, z.B. S13N4, einem Siliziumoxid, z.B. S1O2, einem Aluminiumoxid, z.B. AI2O3. Es ist möglich, dass das MEMS-Bauelement neben der Dünn¬ schicht-Abdeckung in der Abdeckung des oberen Hohlraums eine Versiegelungsschicht, eine Verstärkungsschicht, eine Planari¬ sierungsschicht, eine Passivierungsschicht und eine Umver- drahtungsschicht aufweist. Es ist ferner möglich, dass die Abdeckung neben der Dünnschicht-Abdeckung auch lediglich nur eine weitere, zwei weitere, drei weitere oder vier weitere Schichten der oben genannten Schichten aufweist. Es ist möglich, dass der Basiswafer und der Deckelwafer des Bauelements aus dem gleichen Material oder aus Materialien mit nahezu gleichen Wärmeausdehnungskoeffizienten bestehen.
Dies vermeidet oder vermindert thermisch induzierte Spannun- gen während der Herstellung oder während des Betriebs des Bauelements. Dehnt sich ein Material des Deckelwafers oder ein Material des Basiswafers in verschiedenen Raumrichtungen unterschiedlich stark aus, so ist es vorteilhaft, die Aus¬ richtungen der Materialien so zu wählen, dass Ausdehnungen in gleiche Richtungen im Wesentlichen gleich stark sind. Umfassen die Wafer beispielsweise die gleichen Materialien, so ist es bevorzugt, die Kristallachsen der Wafer parallel auszu¬ richten . Die Seiten des MEMS-Bauelements können abgeschrägt sein. D.h. der Querschnitt des Bauelements nimmt nach oben hin ab.
Ein Verfahren zur Herstellung eines MEMS-Bauelements mit erhöhter Integrationsdichte kann die folgenden Schritte
- Bereitstellen eines Basiswafers,
- Erzeugen erster Bauelementstrukturen und eines Rahmens auf dem Basiswafer,
- Bereitstellen eines Deckelwafers, - Erzeugen zweiter Bauelementstrukturen auf dem Deckelwafer,
- Anordnen des Deckelwafers auf dem Rahmen und Ausbilden eines ersten Hohlraums zwischen Basiswafer, Deckelwafer und Rahmen,
- Ausbilden einer Dünnschicht-Abdeckung über den zweiten Bauelementstrukturen
umfassen .
Insbesondere die Schritte zum Ausbilden der Dünnschicht-Abde¬ ckung können die folgenden Teilschritte
- Aufbringen eines Opfermaterials auf den zweiten Bauelement¬ strukturen,
- Abscheiden einer Dünnschicht-Abdeckung in Form einer dünnen Schicht mittels eines Schichtabscheidungsverfahrens auf das Opfermaterial ,
- Strukturieren zumindest eines Loches in der Dünnschicht-Ab¬ deckung,
- Entfernen des Opfermaterials unter der Dünnschicht-Abde¬ ckung
umfassen .
Dem MEMS-Bauelement bzw. dem Verfahren zur Herstellung eines solchen Bauelements zugrunde liegende Ideen und Funktions¬ prinzipien sowie beispielhafte Ausgestaltungen und Ausführungsformen werden anhand der schematischen Figuren näher erläutert .
Es zeigen:
Fig. 1: Eine einfache Ausführungsform des MEMS-Bauelements ,
Fig. Eine weitere Ausführungsform des Bauelements mit An- Schlussmöglichkeiten an seiner Oberseite, Fig. 3: Einen ersten Zwischenschritt bei der Herstellung eines Bauelements, Fig. 4: Einen zweiten Zwischenschritt bei der Herstellung eines Bauelements,
Fig. 5: Einen weiteren Zwischenschritt bei der Herstellung eines Bauelements,
Fig. 6: Einen weiteren Zwischenschritt,
Fig. 7: Einen weiteren Zwischenschritt, Fig. 8: Einen weiteren Zwischenschritt,
Fig. 9: Einen weiteren Zwischenschritt,
Fig. 10: Einen weiteren Zwischenschritt beim Herstellen des oberen Teils des Bauelements,
Fig. 11: Einen weiteren Zwischenschritt, bei dem der obere
Teil des Bauelements und der untere Teil des Bauele¬ ments zusammengefügt sind,
Fig. 12: Einen weiteren Zwischenschritt,
Fig. 13: Einen weiteren Zwischenschritt, Fig. 14: Als Ergebnis fertige Bauelemente nach der Herstel¬ lung,
Fig. 15: Eine weitere Ausführungsform des MEMS-Bauelements. Figur 1 zeigt eine mögliche Ausführungsform des Bauelements, bei der BAW-Bauelementstrukturen als erste Bauelementstruktu¬ ren im ersten Hohlraum Hl und weitere BAW- Bauelementstrukturen als zweite Bauelementstrukturen im zweiten Hohlraum H2 angeordnet sind. Ein Rahmen R dient als Ab¬ standshalter und - z. B. bei Verwendung von Metall als Rahmenmaterial hermetische - Abdichtung zwischen dem Deckelwafer DW und dem Basiswafer BW. Die ersten Bauelementstrukturen sind direkt auf dem Basiswafer BW angeordnet. Weitere zwi¬ schen den BAW-Strukturen im ersten Hohlraum Hl und dem Basiswafer BW angeordnete akustische Spiegelschichten sind ebenfalls möglich aber für eine vereinfachte Übersicht nicht ge¬ zeigt. Auf dem Deckelwafer DW und unter den zweiten Bauelementstrukturen können ebenfalls akustische Spiegelschichten angeordnet sein. Eine Dünnschicht-Abdeckung DSA begrenzt den zweiten Hohlraum H2 nach oben und bedeckt die zweiten Bauelementstrukturen. Auf der Dünnschicht-Abdeckung DSA ist eine Planarisierungsschicht PS mit ebener Oberseite angeordnet. Ein Signalleiter SL verläuft zumindest abschnittsweise an der Außenseite des Bauelements MB. Durch einen solchen Signallei¬ ter SL können die verschiedenen Bauelementstrukturen miteinander und gegebenenfalls mit Anschlusspads an der Außen¬ seite, z.B. auf der Oberseite des Bauelements MB, verschaltet sein .
Insbesondere werden durch an der Außenseite des Bauelements MB geführte Signalleiter SL die mit Durchkontaktierungen durch den Deckelwafer DW verbundenen Nachteile vermieden.
Figur 2 zeigt eine Ausführungsform des Bauelements, bei der die Seitenflächen des Bauelements abgeschrägt und auf den ab¬ geschrägten Seitenflächen Signalleiter SL angeordnet sind, die Bauelementstrukturen mit Kontaktflächen KF auf der Oberseite des Bauelements verschalten. Exemplarisch sind die ers¬ ten Bauelementstrukturen BS1 als BAW-Bauelementstrukturen und die zweiten Bauelementstrukturen BS2 als BAW- Bauelementstrukturen gezeigt. Neben den ersten Bauelementstrukturen BS1 sind weitere Bauelementstrukturen im ersten Hohlraum enthalten. Über dem Deckelwafer DW existiert ein weiterer Hohlraum neben dem zweiten Hohlraum H2, der im Wesentlichen einen ähnlichen Aufbau wie der zweite Hohlraum H2 aufweist. Über der Planarisierungsschicht PS ist eine Umver- drahtungsschicht US angeordnet. Darin verlaufen Abschnitte von Signalleitern, die über Durchkontaktierungen DK mit Kontaktflächen KF verschaltet sind. Durch die Umverdrahtungs- schicht US ist es im Wesentlichen möglich, die Lage der Kon- taktflächen KF so zu wählen, dass das Bauelement direkt mit vorgegebenen Kontaktflächen einer externen Schaltungsumgebung verschaltet werden kann und die Lage der Bauelementstrukturen im Bauelement dennoch frei gewählt werden kann. Figur 3 zeigt einen ersten Zwischenschritt zur Herstellung eines entsprechenden MEMS-Bauelements , bei dem erste Bauele¬ mentstrukturen BS1, hier exemplarisch als BAW- Bauelementstrukturen gezeigt, auf einem großflächigen Basis- wafer BW angeordnet sind.
Figur 4 zeigt einen weiteren Zwischenschritt, bei dem zusätzliche Rahmenstrukturen R an der Oberseite des Basiswafers BW angeordnet sind. Die ersten Bauelementstrukturen BS1 und die Rahmenstrukturen können dabei im Vielfachnutzen, d.h. vor der Vereinzelung des Basiswafers in eine Vielzahl einzelner Bauelement-Abschnitte erstellt werden. Figur 5 zeigt einen weiteren Zwischenschritt, wobei zweite Bauelementstrukturen an der Oberseite des Deckelwafers DW angeordnet sind. Die zweiten Bauelementstrukturen werden durch eine Dünnschicht-Abdeckung abgedeckt, so dass keine Rahmen- strukturen an der Oberseite des Deckelwafers DW notwendig sind. Stattdessen wird - wie in Figur 6 gezeigt - ein Opfermaterial OM über den zweiten Bauelementstrukturen erzeugt und geformt. Die Form des Opfermaterials OM bestimmt dabei im We¬ sentlichen die Form des späteren Hohlraumes H2.
Auf das Material der Opferschicht OM wird das Material der Dünnschicht-Abdeckung DSA - wie in Figur 7 gezeigt - abgeschieden . Figur 8 zeigt einen weiteren Zwischenschritt, wobei Löcher L in die Dünnschicht-Abdeckung DSA strukturiert worden sind.
Figur 9 zeigt einen weiteren Zwischenschritt, wobei das Op¬ fermaterial OM durch die Löcher in der Dünnschicht-Abdeckung entfernt worden ist.
Figur 10 zeigt einen weiteren Zwischenschritt, wobei die Lö¬ cher in der Dünnschicht-Abdeckung z.B. durch eine Versiegelungsschicht VS abgedichtet und die Dünnschicht-Abdeckung DSA durch eine Verstärkungsschicht VST verstärkt und von einer Planarisierungsschicht PS bedeckt sind. Über der
Planarisierungsschicht PS wurde eine Umverdrahtungsschicht US angeordnet. Durchkontaktierungen DK durch das Material der Planarisierungsschicht PS verbinden Signalleiter an der Ober- seite des Deckelwafers DW mit Signalleitern an der Oberseite der Planarisierungsschicht PS, d.h. mit in der Umverdrah¬ tungsschicht US eingebetteten Signalleitern. Durch eine weitere Durchkontaktierung durch die Umverdrahtungsschicht US können die Bauelementstrukturen mit Kontaktflächen an der Oberseite des Bauelements verschaltet sein. Das Bauelement kann eine Passivierungsschicht PAS aufweisen. Die
Passivierungsschicht PAS kann eine zusätzliche Schicht und eine der obersten Schichten sein. Die Passivierungsschicht kann auch mit einer der übrigen Schichten, z. B. der
Umverdrahtungsschicht US, übereinstimmen.
Figur 11 zeigt einen weiteren Zwischenschritt, bei dem die oberen Teile des Bauelements (vgl. Figuren 5 - 10) bereits vereinzelt und mit den Rahmenstrukturen R auf dem Basiswafer BW verbunden sind. Über die Rahmen R können Deckelwafer DW und Basiswafer BW z.B. über die üblichen Bondverfahren verbunden werden.
Figur 12 zeigt einen weiteren Zwischenschritt, bei dem Ab¬ schnitt der Seitenflächen ASF der Bauelemente abgeschrägt sind. Beim Abschrägen wird Material des Deckelwafers und der Planarisierungsschicht entfernt, so dass Signalleiter an der Oberseite des Basiswafers freiliegen.
Figur 13 zeigt entsprechend, wie die freiliegenden Signallei¬ ter durch Abscheiden eines leitenden Materials miteinander verschaltet sind.
Figur 14 zeigt fertige Bauelemente, bei denen schließlich auch der Basiswafer entlang der dafür vorgesehenen Vereinzelungslinien durchtrennt ist. Die Kontaktflächen an der Oberseite der Bauelemente sind mit Lotkugeln besetzt, so dass eine Verschaltung mit externen Schaltungsumgebungen über Bump-Verbindungen BU möglich ist. Figur 15 zeigt eine Ausführungsform eines MEMS-Bauelements, welche innerhalb der Umverdrahtungsschicht US exemplarisch ein induktives Element IE eingebettet erhält. Andere Schal¬ tungselemente, insbesondere passive Schaltungselemente inner¬ halb der Umverdrahtungsschicht US sind ebenfalls möglich.
Das Bauelement bzw. das Verfahren zur Herstellung des Bauelements ist nicht auf die gezeigten Ausführungsbeispiele be¬ schränkt. Bauelemente mit weiteren Hohlräumen, weiteren
Wafern oder weiteren Dünnschicht-Abdeckungen bzw. Herstellungsverfahren für entsprechend komplexere Bauelemente werden ebenfalls durch die Ansprüche abgedeckt.
Bezugs zeichenliste
ASF: abgeschrägte Seitenfläche
BS1 : erste Bauelementstrukturen
BS2 : zweite Bauelementstrukturen
BU: Bump-Verbindung
BW: Basiswafer
DK: Durchkontaktierung
DSA: Dünnschicht-Abdeckung
DW: Deckelwafer
Hl : erster Hohlraum
H2 : zweiter Hohlraum
IE : induktives Element
KF: Kontaktfläche
L: Loch
MB: MEMS-Bauelement
OM: Opfermaterial
PAS : Passivierungsschicht
PS : PIanarisierungsschicht
R: Rahmen
SL: Signalleiter
US : Umverdrahtungsschicht
VS : Versiegelungsschicht
VST: Verstärkungsschicht

Claims

Patentansprüche
1. MEMS-Bauelement (MB), umfassend
- einen Basiswafer (BW) und einen darüber angeordneten
Deckelwafer (DW) ,
- einen ersten Hohlraum (Hl) zwischen dem Basiswafer (BW) und dem Deckelwafer (DW) und erste Bauelementstrukturen (BS1) im ersten Hohlraum (Hl),
- einen zweiten Hohlraum (H2) über dem Deckelwafer (DW) und zweite Bauelementstrukturen (BS2) im zweiten Hohlraum (H2),
- einen Rahmen (R) , der den ersten Hohlraum (Hl) seitlich umgibt und
- eine Dünnschicht-Abdeckung (DSA) , die den zweiten Hohlraum (H2) abdeckt.
2. MEMS-Bauelement nach dem vorherigen Anspruch, ferner umfassend eine Versiegelungsschicht (VS) , wobei die
Dünnschicht-Abdeckung (DSA) ein Loch (L) enthält und die Versiegelungsschicht (VS) über der Dünnschicht-Abdeckung (DSA) angeordnet ist und das Loch (L) abdichtet.
3. MEMS-Bauelement nach einem der vorherigen Ansprüche, ferner umfassend eine Verstärkungsschicht (VST) , die über der Dünnschicht-Abdeckung (DSA) angeordnet ist und diese
mechanisch verstärkt.
4. MEMS-Bauelement nach einem der vorherigen Ansprüche, ferner umfassend eine Planarisierungsschicht (PS) , die über der Dünnschicht-Abdeckung (DSA) angeordnet ist eine ebene Oberseite aufweist.
5. MEMS-Bauelement nach einem der vorherigen Ansprüche, ferner umfassend eine Umverdrahtungsschicht (US) , die ein dielektrisches Material sowie einen Signalleiter (SL) enthält und über der Dünnschicht-Abdeckung (DSA) angeordnet ist.
6. MEMS-Bauelement nach dem vorherigen Anspruch, ferner umfassend ein Schaltungselement, das in der
Umverdrahtungsschicht angeordnet und ausgewählt ist aus:
einem passiven Schaltungselement, einem induktiven Element, einem kapazitiven Element, einem resistiven Element und einer Streifenleitung .
7. MEMS-Bauelement nach einem der vorherigen Ansprüche, ferner umfassend eine Passivierungsschicht (PAS) , die über der Dünnschicht-Abdeckung (DSA) angeordnet ist.
8. MEMS-Bauelement nach einem der vorherigen Ansprüche, ferner umfassend eine erste elektrische Anschlussfläche auf der Oberseite des Bauelements (MB) und einen Signalleiter (SL) , der die ersten Bauelementstrukturen (BS1) mit der ersten Anschlussfläche verschaltet und zumindest
abschnittsweise an einer äußeren Seitenfläche (ASF) des Bauelements (MB) verläuft.
9. MEMS-Bauelement nach einem der vorherigen Ansprüche, ferner umfassend eine zweite Anschlussfläche auf der
Oberseite des Bauelements (MB) und eine Durchkontaktierung (DK), die die zweiten Bauelementstrukturen (BS2) mit der zweiten Anschlussfläche verschaltet.
10. MEMS-Bauelement nach einem der vorherigen Ansprüche, das keine Durchkontaktierung (DK) durch den Deckelwafer (DW) enthält .
11. MEMS-Bauelement nach einem der vorherigen Ansprüche, wobei die ersten (BS1) und zweiten (BS2) Bauelementstrukturen ausgewählt sind aus: SAW-Strukturen, BAW-Strukturen, GBAW- Strukturen, Mikrofon-Membranen, MEMS-Strukturen .
12. MEMS-Bauelement nach einem der vorherigen Ansprüche, umfassend
- eine Versiegelungsschicht (VS) , deren Material ausgewählt ist aus: einem dielektrischen Material, einem organischen Material, einem Polymer, BCB, einem anorganischen Material, einem Siliziumnitrid, einem Siliziumoxid, einem
Aluminiumoxid;
- eine Verstärkungsschicht (VST) , deren Material ausgewählt ist aus: einem dielektrischen Material, einem organischen Material, einem Polymer, BCB, einem anorganischen Material, einem Siliziumnitrid, einem Siliziumoxid, einem
Aluminiumoxid;
- eine Planarisierungsschicht (PS) , deren Material ausgewählt ist aus: einem dielektrischen Material, einem organischen Material, einem Polymer, BCB, einem Laminat, einem
anorganischen Material, einem Siliziumnitrid, einem
Siliziumoxid, einem Aluminiumoxid;
- eine Passivierungsschicht (PAS) und/oder eine
Umverdrahtungsschicht (US), deren Material jeweils ausgewählt ist aus: einem dielektrischen Material, einem organischen Material, einem Polymer, BCB, einem Lötstoplack, einem anorganischen Material, einem Siliziumnitrid, einem
Siliziumoxid, einem Aluminiumoxid.
13. MEMS-Bauelement nach einem der vorherigen Ansprüche, wobei der Basiswafer (BW) und der Deckelwafer (DW) aus dem gleichen Material oder aus Materialien mit nahezu gleichen Wärmeausdehnungskoeffizienten bestehen .
14. Verfahren zur Herstellung eines MEMS-Bauelements (MB), umfassend die Schritte:
- Bereitstellen eines Basiswafers (BW) ,
- Erzeugen erster Bauelementstrukturen (BS1) und eines Rahmens (R) auf dem Basiswafer (BW) ,
- Bereitstellen eines Deckelwafers (DW) ,
- Erzeugen zweiter Bauelementstrukturen (BS2) auf dem
Deckelwafer (DW) ,
- Anordnen des Deckelwafers (DW) auf dem Rahmen (R) und
Ausbilden eines ersten Hohlraums (Hl) zwischen Basiswafer (BW) , Deckelwafer (DW) und Rahmen (R) ,
- Ausbilden einer Dünnschicht-Abdeckung (DSA) über den zweiten Bauelementstrukturen (BS2).
15. Verfahren nach dem vorherigen Anspruch, wobei die
Schritte zum Ausbilden der Dünnschicht-Abdeckung (DSA) die folgenden Teilschritte umfassen:
- Aufbringen eines Opfermaterials (OM) auf den zweiten
Bauelementstrukturen (BS2),
- Abscheiden einer Dünnschicht-Abdeckung (DSA) in Form einer dünnen Schicht mittels eines Schichtabscheidungsverfahrens auf das Opfermaterial (OM) ,
- Strukturieren zumindest eines Loches (L) in der
Dünnschicht-Abdeckung (DSA) ,
- Entfernen des Opfermaterials (OM) unter der Dünnschicht- Abdeckung (DSA) .
PCT/EP2015/080544 2015-02-27 2015-12-18 Mems-bauelement mit hoher integrationsdichte WO2016134803A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/546,229 US10680159B2 (en) 2015-02-27 2015-12-18 MEMS component having a high integration density
CN201580075070.6A CN107207245B (zh) 2015-02-27 2015-12-18 具有高集成密度的mems器件
JP2017545341A JP6873908B2 (ja) 2015-02-27 2015-12-18 高集積密度を有するmems部品
EP15813073.2A EP3262755A1 (de) 2015-02-27 2015-12-18 Mems-bauelement mit hoher integrationsdichte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015102869.7A DE102015102869B4 (de) 2015-02-27 2015-02-27 MEMS-Bauelement mit hoher Integrationsdichte und Verfahren zu seiner Herstellung
DE102015102869.7 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016134803A1 true WO2016134803A1 (de) 2016-09-01

Family

ID=54884067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/080544 WO2016134803A1 (de) 2015-02-27 2015-12-18 Mems-bauelement mit hoher integrationsdichte

Country Status (6)

Country Link
US (1) US10680159B2 (de)
EP (1) EP3262755A1 (de)
JP (1) JP6873908B2 (de)
CN (1) CN107207245B (de)
DE (1) DE102015102869B4 (de)
WO (1) WO2016134803A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005351A1 (en) * 2016-06-29 2018-01-04 Snaptrack, Inc. Component with a thin-layer covering and method for its production
WO2019044178A1 (ja) * 2017-08-31 2019-03-07 株式会社村田製作所 弾性波装置およびそれを備えた弾性波モジュール
US11437563B2 (en) * 2017-07-17 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Acoustic wave device and method of manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110308A1 (ja) * 2015-12-21 2017-06-29 株式会社村田製作所 弾性波装置
JP6547617B2 (ja) * 2015-12-22 2019-07-24 株式会社村田製作所 電子部品
DE102016111911A1 (de) * 2016-06-29 2018-01-04 Snaptrack, Inc. Bauelement mit Dünnschicht-Abdeckung und Verfahren zur Herstellung
DE102018108611B4 (de) * 2018-04-11 2019-12-12 RF360 Europe GmbH Gehäuse für elektrische Vorrichtung und Verfahren zum Herstellen des Gehäuses
US11174157B2 (en) * 2018-06-27 2021-11-16 Advanced Semiconductor Engineering Inc. Semiconductor device packages and methods of manufacturing the same
JP7222838B2 (ja) * 2019-07-22 2023-02-15 株式会社東芝 センサ
CN112039489B (zh) * 2020-01-22 2022-08-05 中芯集成电路(宁波)有限公司 一种薄膜压电声波滤波器及其制造方法
CN112039491B (zh) * 2020-03-31 2022-08-05 中芯集成电路(宁波)有限公司 一种薄膜压电声波滤波器及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112476A1 (de) * 2011-09-05 2013-03-07 Epcos Ag Bauelement und Verfahren zum Herstellen eines Bauelements
US8786130B1 (en) * 2013-08-23 2014-07-22 Inoso, Llc Method of forming an electromechanical power switch for controlling power to integrated circuit devices and related devices
DE102013102206A1 (de) * 2013-03-06 2014-09-11 Epcos Ag Bauelement mit gestapelten funktionalen Strukturen und Verfahren zur Herstellung
DE102013102210A1 (de) * 2013-03-06 2014-09-11 Epcos Ag Zur Minaturisierung geeignetes elektrisches Bauelement mit verringerter Verkopplung

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498198B1 (de) * 1991-02-04 1995-11-22 Motorola, Inc. Hermetische Verpackung für frequenzselektive Mikroelektronikteile
JP3332823B2 (ja) 1997-09-26 2002-10-07 三洋電機株式会社 弾性表面波素子の製造方法
CA2315417A1 (en) * 1999-08-11 2001-02-11 Hiroshi Une Electret capacitor microphone
US20050250253A1 (en) * 2002-10-23 2005-11-10 Cheung Kin P Processes for hermetically packaging wafer level microscopic structures
DE102005008512B4 (de) * 2005-02-24 2016-06-23 Epcos Ag Elektrisches Modul mit einem MEMS-Mikrofon
KR100611204B1 (ko) * 2005-05-10 2006-08-10 삼성전자주식회사 멀티 스택 패키징 칩 및 그 제조방법
DE102005026243B4 (de) * 2005-06-07 2018-04-05 Snaptrack, Inc. Elektrisches Bauelement und Herstellungsverfahren
JP4760222B2 (ja) 2005-08-26 2011-08-31 セイコーエプソン株式会社 弾性表面波デバイス
DE102005053765B4 (de) * 2005-11-10 2016-04-14 Epcos Ag MEMS-Package und Verfahren zur Herstellung
CN101309854A (zh) * 2005-11-17 2008-11-19 皇家飞利浦电子股份有限公司 包括mems元件的电子器件
TW200938479A (en) * 2007-10-22 2009-09-16 Toshiba Kk Micromachine device and method of manufacturing the same
DE102007058951B4 (de) * 2007-12-07 2020-03-26 Snaptrack, Inc. MEMS Package
FR2955999B1 (fr) * 2010-02-04 2012-04-20 Commissariat Energie Atomique Procede d'encapsulation d'un microcomposant par un capot renforce mecaniquement
US9171964B2 (en) * 2010-11-23 2015-10-27 Honeywell International Inc. Systems and methods for a three-layer chip-scale MEMS device
JP5561254B2 (ja) 2011-07-29 2014-07-30 株式会社村田製作所 回路モジュール及び複合回路モジュール
DE102012108106B4 (de) * 2012-08-31 2016-06-16 Epcos Ag MEMS Bauteil und Verfahren zur Herstellung eines mit akustischen Wellen arbeitenden MEMS Bauteils
JP2014120966A (ja) 2012-12-18 2014-06-30 Nippon Dempa Kogyo Co Ltd 圧電部品
DE102013102213B4 (de) 2013-03-06 2020-01-02 Snaptrack, Inc. Miniaturisiertes Bauelement mit Dünnschichtabdeckung und Verfahren zur Herstellung
JP2014184513A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 電気部品およびその製造方法
FR3008965B1 (fr) * 2013-07-26 2017-03-03 Commissariat Energie Atomique Structure d'encapsulation comprenant un capot renforce mecaniquement et a effet getter
ITTO20130651A1 (it) * 2013-07-31 2015-02-01 St Microelectronics Srl Procedimento di fabbricazione di un dispositivo incapsulato, in particolare un sensore micro-elettro-meccanico incapsulato, dotato di una struttura accessibile, quale un microfono mems e dispositivo incapsulato cosi' ottenuto
DE102013112476A1 (de) 2013-11-13 2015-05-13 Mhwirth Gmbh Heißschlammpumpe
EP3077325B1 (de) * 2013-12-06 2018-03-21 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Verfahren zum verpacken einer mikroelektronischen vorrichtung in einem hermetisch abgedichteten hohlraum und verwaltung der atmosphäre im hohlraum mit einer eigenen öffnung
JP6547617B2 (ja) * 2015-12-22 2019-07-24 株式会社村田製作所 電子部品
US10656255B2 (en) * 2016-05-04 2020-05-19 Invensense, Inc. Piezoelectric micromachined ultrasonic transducer (PMUT)
JP6942983B2 (ja) * 2017-03-17 2021-09-29 セイコーエプソン株式会社 発振器、電子機器および移動体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112476A1 (de) * 2011-09-05 2013-03-07 Epcos Ag Bauelement und Verfahren zum Herstellen eines Bauelements
DE102013102206A1 (de) * 2013-03-06 2014-09-11 Epcos Ag Bauelement mit gestapelten funktionalen Strukturen und Verfahren zur Herstellung
DE102013102210A1 (de) * 2013-03-06 2014-09-11 Epcos Ag Zur Minaturisierung geeignetes elektrisches Bauelement mit verringerter Verkopplung
US8786130B1 (en) * 2013-08-23 2014-07-22 Inoso, Llc Method of forming an electromechanical power switch for controlling power to integrated circuit devices and related devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005351A1 (en) * 2016-06-29 2018-01-04 Snaptrack, Inc. Component with a thin-layer covering and method for its production
US11296673B2 (en) 2016-06-29 2022-04-05 Snaptrack, Inc. Component with a thin-layer covering and method for its production
US11437563B2 (en) * 2017-07-17 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Acoustic wave device and method of manufacturing the same
WO2019044178A1 (ja) * 2017-08-31 2019-03-07 株式会社村田製作所 弾性波装置およびそれを備えた弾性波モジュール
US11489509B2 (en) 2017-08-31 2022-11-01 Murata Manufacturing Co., Ltd. Acoustic wave device and acoustic wave module including the same

Also Published As

Publication number Publication date
CN107207245B (zh) 2020-02-14
DE102015102869A1 (de) 2016-09-01
JP2018509305A (ja) 2018-04-05
US20180013055A1 (en) 2018-01-11
CN107207245A (zh) 2017-09-26
DE102015102869B4 (de) 2017-05-11
JP6873908B2 (ja) 2021-05-19
US10680159B2 (en) 2020-06-09
EP3262755A1 (de) 2018-01-03

Similar Documents

Publication Publication Date Title
DE102015102869B4 (de) MEMS-Bauelement mit hoher Integrationsdichte und Verfahren zu seiner Herstellung
DE102005026243B4 (de) Elektrisches Bauelement und Herstellungsverfahren
DE102004005668B4 (de) Elektrisches Bauelement und Herstellungsverfahren
DE102005053767B4 (de) MEMS-Mikrofon, Verfahren zur Herstellung und Verfahren zum Einbau
EP2170763B1 (de) Verfahren zur herstellung von leiterbahnbrücken und bauteil mit leitfähiger schicht
EP2287916A2 (de) Verfahren zum Kontaktieren und Gehäusen von integrierten Schaltungen
DE102012112058B4 (de) MEMS-Bauelement und Verfahren zur Verkapselung von MEMS-Bauelementen
EP2576429B1 (de) Bauelement mit einer durchkontaktierung und verfahren zu dessen herstellung
WO2009071637A2 (de) Mems package und verfahren zur herstellung
DE10005555A1 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE102012208033A1 (de) Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
DE10146655B4 (de) Oberflächenakustikwellenvorrichtung
DE102008032319B4 (de) Verfahren zur Herstellung eines MST Bauteils
DE102011086765A1 (de) Chip mit mikro-elektromechanischer Struktur und Verfahren zum Herstellen eines Chips mit mikro-elektromechanischer Struktur
DE102007030284A1 (de) Verfahren zum Verpacken von Halbleiter-Bauelementen und verfahrensgemäß hergestellten Erzeugnis
EP2331455B1 (de) Kontaktanordnung zur herstellung einer beabstandeten, elektrisch leitfähigen verbindung zwischen mikrostrukturierten bauteilen
DE102004028927A1 (de) Beschleunigungssensor
DE102012210033B4 (de) Bauelement mit Durchkontaktierung und Verfahren zur Herstellung
DE10225373A1 (de) Verfahren zum Kontaktieren und Gehäusen von integrierten Schaltungen
WO2005006432A2 (de) Elektronisches bauelement und verfahren zur herstellung
DE102007001290A1 (de) Halbleitermodul
DE10035564A1 (de) Mikromechanisches Gehäuse
DE102009036033B4 (de) Durchkontaktierung für Halbleiterwafer und Herstellungsverfahren
WO2004051745A2 (de) Elektronisches bauelement mit mehreren chips und verfahren zur herstellung
WO2017108306A1 (de) Mems bauelement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15813073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546229

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017545341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015813073

Country of ref document: EP