WO2016132953A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2016132953A1
WO2016132953A1 PCT/JP2016/053727 JP2016053727W WO2016132953A1 WO 2016132953 A1 WO2016132953 A1 WO 2016132953A1 JP 2016053727 W JP2016053727 W JP 2016053727W WO 2016132953 A1 WO2016132953 A1 WO 2016132953A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
shift
correction
vehicle speed
coast
Prior art date
Application number
PCT/JP2016/053727
Other languages
English (en)
French (fr)
Inventor
俊介 小笠原
弘晃 塩川
優一郎 松永
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to CN201680010361.1A priority Critical patent/CN107250622B/zh
Priority to US15/551,269 priority patent/US10724630B2/en
Priority to JP2017500611A priority patent/JP6377240B2/ja
Priority to EP16752339.8A priority patent/EP3260741A4/en
Priority to KR1020177021266A priority patent/KR20170109563A/ko
Publication of WO2016132953A1 publication Critical patent/WO2016132953A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/10Controlling shift hysteresis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0096Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using a parameter map
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0223Generating of new shift maps, i.e. methods for determining shift points for a schedule by taking into account driveline and vehicle conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0232Selecting ratios for bringing engine into a particular state, e.g. for fast warming up or for reducing exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0241Adapting the ratio to special transmission conditions, e.g. shifts during warming up phase of transmission when fluid viscosity is high
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H59/78Temperature

Definitions

  • the present invention relates to a warm-up promotion control device for an automatic transmission having a plurality of shift stages including a shift stage that is engaged when a one-way clutch is driven.
  • a normal mode shift map and a warm-up promotion shift map are provided, and when the engine water temperature is low, switching to a shift using the warm-up promotion shift map is performed.
  • the shift map for warm-up promotion is set by offsetting the shift line for switching from the low speed stage to the high speed stage in order to increase the engine speed due to the tendency to expand the selection of the low speed stage.
  • a stepped transmission having a one-way clutch that is fastened at a low speed in a driving state and idles in a coasting state for example, see Patent Document 1).
  • the one-way clutch engagement shock occurs when the warm-up promotion map, that is, when the up-shift line and the down-shift line are offset to the high vehicle speed side, compared with the normal-mode shift line before the offset, The gear is not shifted to a higher vehicle speed than the vehicle speed to be shifted. For this reason, when the one-way clutch is engaged, the inertia on the driven side becomes larger than when the normal mode shift line is used, and the gap between the engine side rotational speed and the output side rotational speed becomes larger.
  • the present invention has been made paying attention to the above problem, and when the re-accelerator is depressed after releasing the accelerator while the drive source rotational speed is kept at a high rotational speed, the feeling of deterioration or the one-way clutch engagement shock is reduced. It is an object of the present invention to provide a control device for an automatic transmission that prevents generation.
  • the present invention includes a drive system including a drive source and an automatic transmission having a plurality of shift stages including a shift stage that is engaged when the one-way clutch is driven.
  • Shift control means for performing shift control of the automatic transmission according to the position of the drive point existing on the shift map using the driving point based on the vehicle speed and the accelerator opening and the shift map based on the up shift line and the down shift line is provided.
  • this automatic transmission control device when there is a shift line correction request, a shift line that corrects the up shift line and the down shift line of the shift map by a vehicle speed correction line set higher than the shift line vehicle speed before correction. Correction control means is provided.
  • This shift line correction control means among the shift lines corrected by the vehicle speed correction line, the correction amount to the high vehicle speed side in the small accelerator opening region in the up shift line of the shift stage that the one-way clutch is engaged during driving, Shift line correction is made to make the amount smaller than the correction amount to the high vehicle speed side in the large accelerator opening region where the accelerator opening is larger than the small accelerator opening region.
  • shift line correction is added by a coast correction line that projects the small accelerator opening region toward the low vehicle speed side.
  • the coast that causes the small accelerator opening area including the accelerator opening zero to protrude toward the low vehicle speed side on the up shift line of the shift stage that is engaged when the one-way clutch is driven.
  • Shift line correction by the correction line is added. That is, when the accelerator release operation is performed, the accelerator opening decreases and the coast correction line for correcting the up shift line is crossed, so that the up shift without using the one-way clutch is performed by the friction engagement element. For this reason, the one-way clutch does not run idle even when the accelerator foot release operation is performed. Even if the accelerator is depressed again from the state where the accelerator is released, the gear position after the upshift is maintained and the one-way clutch is not engaged. As a result, it is possible to prevent the deterioration of the feeling and the occurrence of the one-way clutch engagement shock when the accelerator is depressed again after the accelerator foot is released while keeping the drive source rotational speed at a high rotational speed.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of an engine vehicle equipped with an automatic transmission to which a control device of Example 1 is applied.
  • 3 is an engagement operation table showing an engagement state of each friction engagement element for each shift stage in the automatic transmission according to the first embodiment.
  • 4 is a flowchart showing a flow of shift line correction control processing executed by the automatic transmission controller according to the first embodiment.
  • FIG. 12 is an operation explanatory diagram showing a shift line correction operation for an up shift line and a down shift line with a one-way clutch in a shift map.
  • It is a shift map enlarged view showing a corrected shift line in which a low vehicle speed / small accelerator opening region is enlarged in a shift line corrected map used in shift control when the signal “X” from the engine is 8.
  • the control device of the first embodiment is applied to an engine vehicle equipped with a stepped automatic transmission of 7 forward speeds and 1 reverse speed.
  • the configuration of the control device for the automatic transmission according to the first embodiment is described as “the overall system configuration”, “the power train configuration of the automatic transmission”, “the shift control configuration of the automatic transmission”, and “the shift line correction control processing configuration”. This will be explained separately.
  • FIG. 1 shows a drive system and a control system of an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied.
  • the following is an overall system diagram.
  • the drive system of the engine vehicle is provided with an engine Eng and an automatic transmission AT as shown in FIG.
  • the automatic transmission AT is a stepped automatic transmission called step AT with 7 forward speeds and 1 reverse speed.
  • the automatic transmission AT receives the driving force of the engine Eng from the input shaft Input via the torque converter TC having the lockup clutch LU / C. Then, the rotational speed is changed by the four planetary gears and the seven frictional engagement elements, and is output from the output shaft Output to the driving wheels (not shown). Further, an oil pump OP is provided coaxially with the pump impeller of the torque converter TC, and is rotated by the driving force of the engine Eng to pressurize the oil.
  • the engine vehicle control system includes an engine controller 10 (ECU), an automatic transmission controller 20 (ATCU), and a control valve unit 30 (CVU).
  • the engine controller 10 and the automatic transmission controller 20 are connected via a CAN communication line 40, and share sensor information, control information, and the like by bidirectional communication.
  • the engine controller 10 provides the automatic transmission controller 20 via the CAN communication line 40 with a signal X representing the degree of a shift line correction request in the engine warm-up promotion control that is performed at a low temperature start.
  • the engine controller 10 is a control means for mainly controlling the driving state of the engine Eng.
  • the engine controller 10 includes an accelerator opening sensor 1 that detects an accelerator opening APO that represents the amount of accelerator pedal operation by the driver, an engine speed sensor 2 that detects an engine speed Ne, and an engine coolant temperature Teng.
  • the cooling water temperature sensor 7 is connected.
  • the engine controller 10 controls the engine speed and the engine torque by adjusting the fuel injection amount and the throttle opening based on the engine speed Ne and the accelerator opening APO.
  • the automatic transmission controller 20 is a control means for mainly performing shift control of the automatic transmission AT.
  • a first turbine rotation speed sensor 3 for detecting the rotation speed of the first carrier PC1 and a second turbine rotation speed sensor 4 for detecting the rotation speed of the first ring gear R1.
  • a signal X indicating the degree of the shift line correction request is input from the engine controller 10
  • the automatic transmission controller 20 promotes engine warm-up by increasing the engine speed by shift line correction of the shift map. Coordinated shift control is performed.
  • the control valve unit 30 is configured to have a solenoid valve and an oil passage for controlling the engagement / release of each frictional engagement element based on a control command from the automatic transmission controller 20.
  • the automatic transmission AT has a first planetary gear set GS1 and a third planetary gear by a first planetary gear G1 and a second planetary gear G2 in order on a shaft from the input shaft Input side to the output shaft Output side as a transmission gear.
  • a second planetary gear set GS2 is arranged by G3 and the fourth planetary gear G4.
  • a first clutch C1, a second clutch C2, a third clutch C3, a first brake B1, a second brake B2, a third brake B3, and a fourth brake B4 are arranged as friction engagement elements that are hydraulically controlled.
  • a first one-way clutch F1 and a second one-way clutch F2 are arranged as one-way clutches that are mechanically engaged / idly rotated.
  • the first planetary gear G1 is a single pinion planetary gear having a first sun gear S1, a first ring gear R1, and a first carrier PC1 that supports a first pinion P1 that meshes with both gears S1, R1. .
  • the second planetary gear G2 is a single pinion type planetary gear having a second sun gear S2, a second ring gear R2, and a second carrier PC2 that supports a second pinion P2 meshing with both gears S2 and R2. .
  • the third planetary gear G3 is a single pinion planetary gear having a third sun gear S3, a third ring gear R3, and a third carrier PC3 that supports a third pinion P3 that meshes with both gears S3 and R3. .
  • the fourth planetary gear G4 is a single pinion planetary gear having a fourth sun gear S4, a fourth ring gear R4, and a fourth carrier PC4 that supports a fourth pinion P4 meshing with both the gears S4 and R4. .
  • the input shaft Input is connected to the second ring gear R2 and inputs the rotational driving force from the engine Eng via the torque converter TC or the like.
  • the output shaft Output is connected to the third carrier PC3 and transmits the output rotational driving force to the driving wheels via a final gear or the like.
  • the first ring gear R1, the second carrier PC2, and the fourth ring gear R4 are integrally connected by a first connecting member M1.
  • the third ring gear R3 and the fourth carrier PC4 are integrally connected by a second connecting member M2.
  • the first sun gear S1 and the second sun gear S2 are integrally connected by a third connecting member M3.
  • the first planetary gear set GS1 includes four rotating elements by connecting the first planetary gear G1 and the second planetary gear G2 with the first connecting member M1 and the third connecting member M3. Is done. Further, the second planetary gear set GS2 is configured to have five rotating elements by connecting the third planetary gear G3 and the fourth planetary gear G4 by the second connecting member M2.
  • first planetary gear set GS1 torque is input from the input shaft Input to the second ring gear R2, and the input torque is output to the second planetary gear set GS2 via the first connecting member M1.
  • torque is directly input to the second connection member M2 from the input shaft Input, and is input to the fourth ring gear R4 via the first connection member M1, and the input torque is Output from 3 carrier PC3 to output shaft Output.
  • the first clutch C1 (input clutch I / C) is a clutch that selectively connects and disconnects the input shaft Input and the second connecting member M2.
  • the second clutch C2 (direct clutch D / C) is a clutch that selectively connects and disconnects the fourth sun gear S4 and the fourth carrier PC4.
  • the third clutch C3 (H & LSR clutch H & LR / C) is a clutch that selectively connects and disconnects the third sun gear S3 and the fourth sun gear S4.
  • the second one-way clutch F2 is disposed between the third sun gear S3 and the fourth sun gear S4.
  • the third sun gear S3 and the fourth sun gear S4 generate independent rotation speeds. Therefore, the third planetary gear G3 and the fourth planetary gear G4 are connected via the second connecting member M2, and each planetary gear achieves an independent gear ratio.
  • the first brake B1 front brake F / B is a brake that selectively stops the rotation of the first carrier PC1 with respect to the transmission case Case.
  • the first one-way clutch F1 is disposed in parallel with the first brake B1.
  • the second brake B2 (low brake LOW / B) is a brake that selectively stops the rotation of the third sun gear S3 with respect to the transmission case Case.
  • the third brake B3 (2346 brake 2-3-4-6 / B) is a brake that selectively stops the rotation of the third connecting member M3 that connects the first sun gear S1 and the second sun gear S2 with respect to the transmission case Case. It is.
  • the fourth brake B4 (reverse brake REV / B) is a brake that selectively stops the rotation of the fourth carrier PC3 with respect to the transmission case Case.
  • FIG. 2 is an engagement operation table showing the engagement state of each friction engagement element for each gear position in the automatic transmission AT according to the first embodiment.
  • a circle mark indicates that the friction engagement element is in the engaged state
  • a circle mark indicates that the friction engagement element is in the engagement state when the engine brake is coasted
  • no mark indicates that the friction engagement element is in the engagement state. It shows that the frictional engagement element is released.
  • the first one-way clutch F1 and the second one-way clutch F2 are engaged while the second brake B2 is engaged.
  • the first one-way clutch F1 and the second one-way clutch F2 are idling so that the third clutch C3, the first brake B1, and the second brake B2 It will be in a fastening state.
  • the second brake B2, the third brake B3, and the second clutch C2 are engaged regardless of whether driving or coasting.
  • fourth speed the third brake B3, the second clutch C2, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • the first clutch C1, the second clutch C2, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • 6-speed the third brake B3, the first clutch C1, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • the first brake B1, the first clutch C1, and the third clutch C3 are engaged regardless of whether driving or coasting.
  • the solid line indicates the up shift line
  • the dotted line indicates the down shift line.
  • FIG. 4 shows the flow of shift line correction control processing executed by the automatic transmission controller 20 of the first embodiment (shift line correction control means). Hereinafter, each step of FIG. 4 showing the shift line correction control processing configuration will be described.
  • the “constants a, b, c” in the equation (1) are determined based on a large number of data obtained in experiments for confirming the engine warm-up promoting effect, as shown in FIG. Then, for each of the 1 ⁇ 2 up shift line,..., 6 ⁇ 7 up shift line, and the 2 ⁇ 1 down shift line,... .
  • X in the equation (1) is a value representing the degree of shift line correction request in the engine warm-up promotion control.
  • Values up to are used.
  • step S2 following the calculation of the shift line correction vehicle speed in step S1, it is determined whether or not the current shift speed is one of the first speed, the second speed, or the third speed. . If YES (current gear is 1, 2 or 3), the process proceeds to step S3. If NO (current gear is other than 1, 2 or 3), the process proceeds to step S4.
  • the “current shift speed” is determined based on shift command information stored in the automatic transmission controller 20.
  • the “first speed, second speed and third speed” are the speed stages that are engaged when at least one of the first one-way clutch F1 and the second one-way clutch F2 is driven during upshifting or downshifting. It is.
  • step S3 following the determination that the current gear position in step S2 is the first, second, and third gear stages, a one-way clutch task response process for correcting the shift line using the small opening range coast correction line is performed. Proceed to S4.
  • the “shift line correction by the small opening area coast correction line” is, as shown in FIG. 6, the coast correction line opening degree in the small accelerator opening area with respect to the vehicle speed correction line by the corrected vehicle speed calculated in step S1. This is done by determining the coast correction line vehicle speed in the low vehicle speed range from the vehicle speed correction line. That is, the 1 ⁇ 2 up shift line is given by the coast correction line opening APOUp1 and the coast correction line vehicle speed VSPUp1, and the 2 ⁇ 3 up shift line is given by the coast correction line opening APOUp2 and the coast correction line vehicle speed VSPUp2.
  • the 2 ⁇ 1 down shift line is given by the coast correction line opening APODown1 and the coast correction line vehicle speed VSPDown1, and the 3 ⁇ 2 down shift line is given by the coast correction line opening APODown2 and the coast correction line vehicle speed VSPDown2.
  • the “one-way clutch issue” ⁇ Neutral feeling due to idling of one-way clutch ⁇
  • One-way clutch engagement shock due to accelerator depression from one-way clutch idling.
  • the “small opening range coast correction line” protrudes in a tongue shape in the low vehicle speed direction in the small opening range with respect to the corrected up shift line and the corrected down shift line corrected from the vehicle speed correction line. It becomes a shift line shape.
  • step S4 following the one-way clutch task response processing in step S3, it is determined whether or not an engine request [acceptance] determination has been made. If YES (Eng request [acceptance] determination), the process proceeds to step S5. If NO (Eng request [rejection] determination), the process proceeds to the end.
  • the “Eng request [acceptance] determination” is established by satisfying all of the following 6 acceptance conditions. 1. The elapsed time from engine start is less than the set time (for example, about several minutes). 2. The shift judgment vehicle speed is less than the set vehicle speed (for example, 40 km / h). 3. The gear is not changing. 4. The shift line mode is “NORMAL mode”. 5. Other than N, R, P range. 6. Abnormality of vehicle speed sensor 5 and inhibitor switch 6 is not detected.
  • the “Eng request [rejection] determination” is established by satisfying at least one of the following six rejection conditions. 1. The elapsed time from engine start is longer than the set time (for example, several minutes). 2. The shift determination vehicle speed is equal to or higher than the set vehicle speed (for example, 40 km / h). 3. Shifting. 4. The shift line mode is other than “NORMAL mode” (including MANUAL mode). 5. N, R and P ranges. 6. An abnormality in the vehicle speed sensor 5 or the inhibitor switch 6 was detected. Note that the Eng request [rejection] at the time of determining that the gear shift is under condition 3 holds the shift line correction map before the gear shift.
  • step S5 following the determination of the Eng request [acceptance] in step S4, the shift line corrected vehicle speed calculated in step S1 is reflected on the up shift line and the down shift line (FIG. 3) of the reference shift map. Correct the map and go to the end.
  • the current shift speed is 1, 2 or 3
  • the correction by the small opening area coast correction line is added to the shift line speed correction of the shift map (FIG. 7).
  • the current shift speed is other than the 1st, 2nd, and 3rd speeds, only the shift line vehicle speed correction of the shift map is performed.
  • Shift line correction control is a control to incorporate the shift line correction function according to the request from the engine side, but for scenes where there are concerns about drivability and automatic shift performance, a function to reject the request from the engine Eng Is also attached.
  • the operation of the shift line correction control process will be described below based on the flowchart shown in FIG.
  • step S1 the corrected vehicle speed of the up shift line and the down shift line is only calculated using equation (1).
  • step S2 the corrected vehicle speed of the upshift line and the downshift line is calculated using equation (1)
  • step S3 the one-way clutch problem handling process for correcting the shift line using the small opening area coast correction line. Is done.
  • step S4 it is determined whether or not an engine request [acceptance] determination is made. If an Eng request [rejection] determination is made, the process proceeds from step S4 to the end, and the upshift line and the downshift line are not corrected. That is, when the Eng request [rejection] determination is satisfied by satisfying at least one of the 1, 2, 4, and 6 rejection conditions, the shift control using the reference shift map shown in FIG. 3 is performed. However, if the Eng request [rejection] determination is satisfied by satisfying the refusal condition of 3 that the gear is being changed, the shift line correction map before the shift is maintained.
  • step S4 If it is determined in step S4 that the Eng request [acceptance] is determined, the process proceeds from step S4 to step S5 to end, and in step S5, the corrected vehicle speed of the shift line calculated in step S1 is set to the upshift line and downshift of the reference shift map.
  • the shift map is corrected to reflect the shift line (FIG. 3). That is, when the current shift speed is 1, 2 or 3, the correction by the small opening area coast correction line is added to the shift line speed correction of the shift map. On the other hand, when the current shift speed is other than the 1st, 2nd, and 3rd speeds, only shift line vehicle speed correction in the shift map is performed.
  • the shift line correction function according to the request from the engine side is incorporated, and the shift lines in the shift map are corrected.
  • the current shift speed is 1, 2 or 3
  • the correction by the small opening area coast correction line is added to the shift line vehicle speed correction of the shift map.
  • the six refusal conditions given by the “Eng request [refusal] judgment” are conditions that represent a scene in which there are concerns about drivability and automatic transmission performance.
  • a line obtained by drawing the corrected vehicle speed calculated in step S1 in parallel to the accelerator opening coordinate axis is defined as a vehicle speed correction line L0.
  • vehicle speed correction line L0 As shown in FIG. 6, the "coast correction line opening" in the small accelerator opening range and the “coast correction line vehicle speed” in the lower vehicle speed range than the vehicle speed correction line L0 are Given.
  • intersection P1 determined by the coast correction line opening and the coast correction line vehicle speed
  • intersection P2 where the coast correction line opening and the vehicle speed correction line L0 intersect
  • intersection P3 where the coast correction line vehicle speed and the vehicle speed coordinate axis intersect.
  • a line drawn in parallel is defined as a second coast correction line L2.
  • the correction line for correcting the shift line with the one-way clutch in the shift map is determined by the vehicle speed correction line L0, the first coast correction line L1, and the second coast correction line L2.
  • the vehicle speed correction lines L0 (u) and L0 (d) for the upshift line (solid line) and the downshift line (dashed line) are the line obtained by drawing the corrected vehicle speed parallel to the accelerator opening coordinate axis, and the shift line before correction.
  • the intersections of LS (u) and LS (d) are the intersections P4 (u) and P4 (d)
  • the intersections P2 (u) and P2 (d) and the intersections P4 (u) and P4 (d) It is considered as a connecting line segment.
  • the coast correction line opening of the down shift line (broken line) is set to be larger than the coast correction line opening of the up shift line (solid line), and has an opening deviation width ⁇ APO. Further, the coast correction line vehicle speeds of the up shift line (solid line) and the down shift line (broken line) are all matched with the vehicle speeds of the shift lines LS (u) and LS (d) before correction.
  • the corrected shift lines for the up shift line and the down shift line with the one-way clutch in the shift map are the shifts before correction that are left in the large accelerator opening range from the intersections P4 (u) and P4 (d).
  • the correction lines for the small accelerator opening range are added to the lines LS (u) and LS (d).
  • the vehicle speed correction lines L0 (u) and L0 (d) for the upshift line (solid line) and the downshift line (dashed line) are the line obtained by drawing the corrected vehicle speed parallel to the accelerator opening coordinate axis, and the shift line before correction.
  • intersections P4 (u) and P4 (d) are defined as intersections P4 (u) and P4 (d)
  • the corrected shift lines for the up shift line and the down shift line without the one-way clutch in the shift map are the shifts before correction that remain in the large accelerator opening range from the intersections P4 (u) and P4 (d).
  • the vehicle speed correction lines L0 (u) and L0 (d) in the small accelerator opening range are added to the lines LS (u) and LS (d) from the intersections P4 (u) and P4 (d).
  • the vehicle speed correction line L0 becomes higher on the higher vehicle speed side as the signal “X” from the engine increases.
  • the area to maintain has been expanded.
  • the small opening degree coast correction line correction in the shift line after correction for the up shift line and the down shift line with the one-way clutch in the shift map is also taken from the engine.
  • the reason for this is that the coast correction line vehicle speed matches the vehicle speed of the speed change lines LS (u), LS (d) before correction, and as the signal “X” from the engine increases, the vehicle speed correction lines L0 (u), L0 By setting (d) to the high vehicle speed side.
  • Shift line correction is added to the up shift line.
  • the shift line correction is configured by a first coast correction line L1 (u) and a second coast correction line L2 (u) that project a small accelerator opening region including the accelerator opening zero toward the low vehicle speed side. That is, when the accelerator release operation is performed and the operation point A is shifted from the operation point A to the operation point B in FIG. 11, the accelerator opening APO is decreased and crosses the first coast correction line L1 (u) for correcting the upshift line.
  • the 2 ⁇ 3 upshift is performed without using the second one-way clutch F2 by engaging the released second clutch C2. For this reason, even if the accelerator release operation is performed, the second one-way clutch F2 does not idle. Then, when the accelerator is released from the released state, the accelerator is depressed again, and even if the driving point C is shifted from the driving point C to the driving point D in FIG. There is no conclusion.
  • the 3 ⁇ 2 down shift line after correction by the vehicle speed correction lines L0 (u) and L0 (d) is set to the lower vehicle speed side than the 2 ⁇ 3 up shift line, and therefore crosses the 3 ⁇ 2 down shift line. The downshift is not performed unless there is such a change in the vehicle speed.
  • the engine speed can be reduced by correcting the upshift line and downshift line of the shift map with vehicle speed correction lines L0 (u), L0 (d) set to a higher vehicle speed side than the speed line speed before correction. High rotation speed is maintained.
  • the feeling is not as good as when there is no shift line correction by the first coast correction line L1 (u) and the second coast correction line L2 (u) Generation of one-way clutch engagement shock is prevented.
  • the corrected vehicle speed on the higher vehicle speed side is obtained as the value of the shift line correction request “X” increases ( S1 in FIG.
  • the upshift line and the downshift line of the shift map are configured to correct the shift line by vehicle speed correction lines L0 (u) and L0 (d) drawn in parallel from the corrected vehicle speed to the accelerator opening coordinate axis. That is, as the up shift line and the down shift line of the shift map are set to the higher vehicle speed side, the low speed stage is maintained longer as the speed stage during traveling, and the transmission input rotational speed increases.
  • the coast correction line opening in the small accelerator opening region and the coast correction line vehicle speed that is lower than the correction vehicle speed are determined.
  • a coast correction line is drawn from the coast correction line opening in parallel to the vehicle speed coordinate axis, and a first coast correction line L1 (u) drawn from the coast correction line vehicle speed in parallel to the accelerator opening coordinate axis. It was set as the correction line by the 2-coast correction line L2 (u). That is, the first coast correction line L1 (u) and the second coast correction line L2 (u) are determined by determining the coast correction line opening in the small accelerator opening region and the coast correction line vehicle speed lower than the correction vehicle speed. This is the coast correction line. Therefore, a coast correction line based on the small opening area coast correction line is drawn on the shift map by a simple process of determining the coast correction line opening and the coast correction line vehicle speed.
  • At least one of the first one-way clutch F1 and the second one-way clutch F2 among the shift lines corrected by the vehicle speed correction lines L0 (u) and L0 (d) is engaged at the time of driving.
  • the shift line correction is configured by a first coast correction line L1 (d) and a second coast correction line L2 (d) that project a small accelerator opening region including the accelerator opening zero toward the low vehicle speed side. For example, if there is no coast correction line on the down shift line, the down shift is not performed even if the depressing operation is performed again from the state where the accelerator is released, and an increase in the engine speed cannot be expected.
  • the coast correction lines of the second coast correction lines L2 (u) and L2 (d) drawn on the up shift line and the down shift line of the shift map are set to the vehicle speeds of the up shift line and the down shift line before correction. It was set as the vehicle speed. That is, the coast correction line vehicle speed for determining the second coast correction lines L2 (u) and L2 (d) can be easily set.
  • the coast-up shift by releasing the accelerator pedal and the drive-down shift by re-depressing the accelerator are the same as the shift control in the shift map before correction. Therefore, coasting up shift and drive down shifting without any sense of incongruity are realized while facilitating the setting of the coast correction line vehicle speed.
  • the coast correction line opening degree of the first coast correction line L1 (d) drawn on the down shift line of the shift map is changed to that of the first coast correction line L1 (u) drawn on the up shift line of the shift map.
  • the opening is set larger than the coast correction line opening. That is, if the coast speeds of the second coast correction lines L2 (u) and L2 (d) are the speeds of the up-shift line and the down-shift line before correction, the first coast correction line L1 (d) and the first coast line As shown in FIGS. 10 and 11, the coast correction line L1 (u) may overlap in the vehicle speed coordinate axis direction. Therefore, when the accelerator is depressed again from the release of the accelerator so that the operating point G ⁇ H ⁇ E ⁇ F in FIG.
  • the 3 ⁇ 2 down shift is performed after the 2 ⁇ 3 up shift.
  • the 2 ⁇ 3 upshift is completed.
  • a 3 ⁇ 2 downshift is started before starting.
  • the coast correction line opening degree of the first coast correction line L1 (d) is larger than the first coast correction line L1 (u)
  • a sufficient drive drive state is obtained after the 2 ⁇ 3 upshift.
  • a 3 ⁇ 2 downshift is performed. Therefore, when the accelerator is depressed again after the accelerator is released, the downshift is started following the end of the upshift.
  • the shift line correction is rejected during the shift (NO in S4 in FIG. 4), and a shift map based on the shift line before the shift is held. It was. In other words, if the shift line correction of the shift map is performed during the shift of the automatic transmission AT, the shift may intervene even if the accelerator opening APO is maintained, and there is a concern that the drivability and the shift performance may be reduced. is there. Therefore, by maintaining a shift map based on the shift line before the shift during the shift, it is possible to prevent a reduction in drivability and shift performance.
  • the drive system includes a drive source (engine Eng) and multiple shift speeds (1, 2 and 3rd speed) where the one-way clutches (first one-way clutch F1 and second one-way clutch F2) are engaged during driving.
  • Automatic transmission AT having a gear position of Using the driving point based on the vehicle speed VSP and the accelerator opening APO and the shift map based on the upshift line and downshift line, the shift control of the automatic transmission AT is performed according to the position of the driving point (VSP, APO) existing on the shift map.
  • a control device for an automatic transmission AT including a shift control means (transmission controller 20) for performing When there is a shift line correction request, the shift line for correcting the up shift line and the down shift line in the shift map by the vehicle speed correction lines L0 (u) and L0 (d) set to the higher vehicle speed side than the shift line vehicle speed before correction.
  • Correction control means (FIG. 4) is provided,
  • the shift line correction control means (FIG. 4) is configured so that the one-way clutch (the first one-way clutch F1 and the second one-way clutch F2) among the shift lines corrected by the vehicle speed correction lines L0 (u) and L0 (d) is driven.
  • the one-way clutch (the first one-way clutch F1 and the second one-way clutch F2) among the shift lines corrected by the vehicle speed correction lines L0 (u) and L0 (d) Coast correction lines (first coast correction line L1 (u), second coast correction line L2) that cause the small accelerator opening region including the accelerator opening zero to protrude toward the low vehicle speed side on the upshift line of the gear stage involved Add shift line correction according to (u)). For this reason, it is possible to prevent deterioration of feeling and occurrence of a one-way clutch engagement shock when the accelerator is stepped on again after the accelerator is released while keeping the drive source rotational speed (engine rotational speed) at a high rotational speed. .
  • the engine Eng is installed as a drive source
  • the shift line correction control means increases the shift line correction request (the value of “X”) as the vehicle speed increases.
  • the corrected vehicle speed is calculated (S1), and the upshift line and the downshift line of the shift map are shifted by vehicle speed correction lines L0 (u) and L0 (d) drawn in parallel to the accelerator opening coordinate axis from the corrected vehicle speed. Correct the line. Therefore, in addition to the effect of (1), a high engine Eng warm-up promotion effect can be obtained in response to a shift line correction request from the engine warm-up promotion control.
  • the shift line correction control means determines the coast correction line opening in the small accelerator opening region and the coast correction line vehicle speed lower than the correction vehicle speed, and opens the coast correction line. Correction by the first coast correction line L1 (u) drawn parallel to the vehicle speed coordinate axis from the degree and the second coast correction line L2 (u) drawn parallel to the accelerator opening coordinate axis from the coast correction line vehicle speed A line (FIG. 6). For this reason, in addition to the effect of (2), the coast correction line by the small opening range coast correction line can be drawn on the shift map by a simple process of determining the coast correction line opening and the coast correction line vehicle speed.
  • the shift line correction control means is a one-way clutch (first one-way clutch F1, second one-way clutch F2) among the shift lines corrected by the vehicle speed correction lines L0 (u) and L0 (d).
  • Coast correction line first coast correction
  • first coast correction that causes the small accelerator opening area including zero accelerator opening to protrude toward the low vehicle speed side on the downshift line of the gear stage (1, 2 and 3rd gear stage) that is engaged during driving Shift line correction by line L1 (d), second coast correction line L2 (d)
  • an increase in the drive source speed (engine speed) due to the downshift can be achieved.
  • the shift line correction control means calculates the coast correction line vehicle speed of the second coast correction lines L2 (u) and L2 (d) drawn on the up shift line and the down shift line of the shift map before correction. Set the vehicle speed of the upshift line and downshift line. For this reason, in addition to the effect of (4), it is possible to realize a coast-up shift and a drive-down shift without causing a sense of incongruity while easily setting the coast correction line vehicle speed.
  • the shift line correction control means sets the coast correction line opening degree of the first coast correction line L1 (d) drawn on the down shift line of the shift map to the up shift line of the shift map.
  • the opening is set larger than the coast correction line opening of the one coast correction line L1 (u).
  • the shift line correction control means rejects shift line correction during the shift (NO in S4), and the shift line correction control means (FIG. 4) uses the shift line before the shift. Holds the shift map. For this reason, in addition to the effects (1) to (6), it is possible to prevent a decrease in drivability and shift performance by maintaining a shift map based on the shift line before shifting during shifting.
  • Example 1 As mentioned above, although the control apparatus of the automatic transmission of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, It concerns on each claim of a claim Design changes and additions are allowed without departing from the scope of the invention.
  • the shift line correction control means at least one of the first one-way clutch F1 and the second one-way clutch F2 is coast-corrected to the up-shift lines and down-shift lines of the first, second, and third speed stages that are engaged during driving.
  • An example of adding a small opening range coast correction line shift line correction by lines was shown.
  • the shift line correction control means may be an example in which the small opening range coast correction line shift line correction by the coast correction line is added only to the up shift line that the one-way clutch is engaged in the driving state.
  • the shift line correction control means when there is a shift line correction request from the engine warm-up promotion control that promotes warm-up of the engine Eng, the shift line correction using the vehicle speed correction line and the coast correction line is performed.
  • a shift line correction control means when there is a shift line correction request from a vehicle control other than engine warm-up promotion control (for example, a travel mode control to switch to a sport travel mode), a shift using a vehicle speed correction line and a coast correction line is performed.
  • a shift line correction request from a vehicle control other than engine warm-up promotion control (for example, a travel mode control to switch to a sport travel mode).
  • a shift using a vehicle speed correction line and a coast correction line is performed.
  • An example of performing line correction may be used.
  • the control device of the present invention is applied to an engine vehicle equipped with a stepped automatic transmission of 7 forward speeds and 1 reverse speed.
  • the number of shift stages and the like are not limited to those of the first embodiment as long as the automatic transmission has a plurality of shift stages including a shift stage that the one-way clutch is engaged during driving.
  • the applicable vehicle can also be applied to an electric vehicle such as a hybrid vehicle or an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】駆動源回転数を高回転数に保ちつつ、アクセル足離しから再アクセル踏み込み操作を行ったとき、フィーリングの悪化やワンウェイクラッチ締結ショックの発生を防止する自動変速機の制御装置を提供することを目的とする。エンジンEngと、自動変速機ATと、変速マップ上に存在する運転点(VSP,APO)の位置によって自動変速機(AT)の変速制御を行う。変速線補正要求があるとき、変速マップのアップ変速線とダウン変速線を、補正前より高車速側に設定した車速補正線L0(u),L0(d)により補正する変速線補正制御手段を設ける。変速線補正制御手段は、車速補正後の変速線のうち、ワンウェイクラッチがドライブ時に締結する変速段のアップ変速線に、小アクセル開度領域における高車速側への補正量を、小アクセル開度領域よりアクセル開度が大きい大アクセル開度領域における高車速側への補正量より小さくする変速線補正を加える。

Description

自動変速機の制御装置
 本発明は、ワンウェイクラッチがドライブ時に締結する変速段を含めて複数の変速段を有する自動変速機の暖機促進制御装置に関する。
 従来、エンジン暖機を促進するため、通常モード用変速マップと暖機促進用変速マップを有し、エンジン水温が低温の場合、暖機促進用変速マップを用いた変速に切り替える。ここで、暖機促進用変速マップは、低速段の選択を拡大する傾向によりエンジン回転数を高くするため、低速段から高速段への切り替え変速線を高車速側にオフセットして設定している。また、ドライブ状態の低速段で締結し、コースト状態で空転するワンウェイクラッチを有する有段変速機が知られている(例えば、特許文献1参照)。
特開平6-123346号公報
 しかしながら、エンジン暖機促進制御として、変速線を高車速側にオフセットした暖機促進用変速マップを用い変速する場合、アクセル足離しから再アクセル踏み込み操作を行うと、高車速側にオフセットされた変速線を横切ることがないため、アップ変速やダウン変速が行われない。そして、アクセル足離し操作によりコースト状態になることで締結されているワンウェイクラッチが空転し、その後、再アクセル踏み込み操作によりドライブ状態に移行すると、空転していたワンウェイクラッチが急締結する。このため、ワンウェイクラッチの空転によりニュートラル感が出てフィーリングが悪化するし、ワンウェイクラッチの急締結により出力軸のG変動が大きなワンウェイクラッチ締結ショックになる、という課題がある。
ここで、ワンウェイクラッチ締結ショックが発生するのは、暖機促進用マップ、つまり、アップ変速線とダウン変速線を高車速側にオフセットすると、オフセット前の通常モード用変速線に比べ、本来ならば変速する車速より高車速側まで変速しない。このため、ワンウェイクラッチの締結時には、通常モード用変速線を用いるときより従動側のイナーシャが大きくなり、エンジン側回転数と出力側回転数のギャップが大きくなるが原因である。
 本発明は、上記問題に着目してなされたもので、駆動源回転数を高回転数に保ちつつ、アクセル足離しから再アクセル踏み込み操作を行ったとき、フィーリングの悪化やワンウェイクラッチ締結ショックの発生を防止する自動変速機の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明は、駆動系に、駆動源と、ワンウェイクラッチがドライブ時に締結する変速段を含めて複数の変速段を有する自動変速機とを備える。
車速とアクセル開度による運転点と、アップ変速線とダウン変速線による変速マップとを用い、変速マップ上に存在する運転点の位置によって自動変速機の変速制御を行う変速制御手段を備える。
この自動変速機の制御装置において、変速線補正要求があるとき、変速マップのアップ変速線とダウン変速線を、補正前の変速線車速より高車速側に設定した車速補正線により補正する変速線補正制御手段を設ける。
この変速線補正制御手段は、車速補正線による補正後の変速線のうち、ワンウェイクラッチがドライブ時に締結する変速段のアップ変速線に、小アクセル開度領域における高車速側への補正量を、小アクセル開度領域よりアクセル開度が大きい大アクセル開度領域における高車速側への補正量より小さくする変速線補正を加える。言い換えると、小アクセル開度領域を低車速側に向かって突出させるコースト補正線による変速線補正を加える。
 よって、車速補正線による補正後の変速線のうち、ワンウェイクラッチがドライブ時に締結する変速段のアップ変速線に、アクセル開度ゼロを含む小アクセル開度領域を低車速側に向かって突出させるコースト補正線による変速線補正が加えられる。
即ち、アクセル足離し操作を行うと、アクセル開度が低下してアップ変速線を補正するコースト補正線を横切るため、摩擦締結要素によりワンウェイクラッチを用いないアップ変速が行われる。このため、アクセル足離し操作を行ってもワンウェイクラッチが空転することがない。そして、アクセル足離し状態から再アクセル踏み込み操作を行っても、アップ変速後の変速段が保たれ、ワンウェイクラッチが締結することがない。
この結果、駆動源回転数を高回転数に保ちつつ、アクセル足離しから再アクセル踏み込み操作を行ったとき、フィーリングの悪化やワンウェイクラッチ締結ショックの発生を防止することができる。
実施例1の制御装置が適用された自動変速機を搭載したエンジン車の駆動系及び制御系を示す全体システム図である。 実施例1の自動変速機において変速段ごとの各摩擦締結要素の締結状態を示す締結作動表である。 実施例1の自動変速機においてエンジンからの信号“X”=0のときの変速制御で用いられる基準変速マップを示す変速マップ図である。 実施例1の自動変速機コントローラで実行される変速線補正制御処理の流れを示すフローチャートである。 変速マップのうちワンウェイクラッチ有りのアップ変速線とダウン変速線に対する変速線補正車速演算処理で用いられる定数a,b,cの値を示す定数表である。 変速マップのアップ変速線とダウン変速線に対するワンウェイクラッチ課題対応処理(小開度域コースト補正線処理)でのコースト補正線開度とコースト補正線車速の与え方の説明を示す小開度域コースト補正線説明図である。 変速マップのうちワンウェイクラッチ有りのアップ変速線とダウン変速線に対する変速線補正作用を示す作用説明図である。 実施例1の自動変速機においてエンジンからの信号“X”=8のときの変速制御で用いられる変速線補正後マップを示す変速マップ図である。 実施例1の自動変速機においてエンジンからの信号“X”=10のときの変速制御で用いられる変速線補正後マップを示す変速マップ図である。 エンジンからの信号“X”=8のときの変速制御で用いられる変速線補正後マップのうち低車速・小アクセル開度領域を拡大した補正後変速線を示す変速マップ拡大図である。 エンジンからの信号“X”=10のときの変速制御で用いられる変速線補正後マップのうち低車速・小アクセル開度領域を拡大した補正後変速線を示す変速マップ拡大図である。
 以下、本発明の自動変速機の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1の制御装置は、前進7速後退1速の有段式による自動変速機を搭載したエンジン車に適用したものである。以下、実施例1における自動変速機の制御装置の構成を、「全体システム構成」、「自動変速機のパワートレーン構成」、「自動変速機の変速制御構成」、「変速線補正制御処理構成」に分けて説明する。
 [全体システム構成]
図1は、実施例1の制御装置が適用された自動変速機を搭載したエンジン車の駆動系及び制御系を示す。以下、全体システム図である。
 エンジン車の駆動系は、図1に示すように、エンジンEngと、自動変速機ATと、を備えている。
 前記自動変速機ATは、前進7速後退1速によるステップATと呼ばれる有段式自動変速機である。この自動変速機ATには、エンジンEngの駆動力が、ロックアップクラッチLU/Cを有するトルクコンバータTCを介して入力軸Inputから入力される。そして、4つの遊星ギアと7つの摩擦締結要素とによって回転数が変速され、出力軸Outputから図外の駆動輪へ出力される。また、トルクコンバータTCのポンプインペラと同軸上にオイルポンプOPが設けられ、エンジンEngの駆動力によって回転駆動され、オイルを加圧する。
 エンジン車の制御系は、図1に示すように、エンジンコントローラ10(ECU)と、自動変速機コントローラ20(ATCU)と、コントロールバルブユニット30(CVU)と、を備えている。そして、エンジンコントローラ10と自動変速機コントローラ20は、CAN通信線40を介して接続され、センサ情報や制御情報等を双方向通信により共有している。特に、エンジンコントローラ10からは、低温始動時に行われるエンジン暖機促進制御での変速線補正要求の程度をあらわす信号Xが、CAN通信線40を介して自動変速機コントローラ20にもたらされる。
 前記エンジンコントローラ10は、主にエンジンEngの駆動状態制御を行う制御手段である。エンジンコントローラ10には、運転者のアクセルペダル操作量をあらわすアクセル開度APOを検出するアクセル開度センサ1と、エンジン回転数Neを検出するエンジン回転数センサ2と、エンジン冷却水温度Tengを検出する冷却水温センサ7と、が接続されている。このエンジンコントローラ10では、エンジン回転数Neやアクセル開度APOに基づいて燃料噴射量やスロットル開度を調整することで、エンジン回転数やエンジントルクを制御する。また、エンジン冷却水温度Tengが設定温度以下の低温域であるとき、エンジン暖機促進制御として、変速線補正要求の程度をあらわす信号X(例えば、X=1~10)を自動変速機コントローラ20に出力する。
 前記自動変速機コントローラ20は、主に自動変速機ATの変速制御を行う制御手段である。自動変速機コントローラ20には、第1キャリアPC1の回転数を検出する第1タービン回転数センサ3と、第1リングギアR1の回転数を検出する第2タービン回転数センサ4とが接続されている。さらに、出力軸Outputの回転数(=車速VSP)を検出する出力軸回転数センサ5(車速センサ)と、運転者のセレクトレバーにより選択されたレンジ位置を検出するインヒビタスイッチ6とが接続されている。変速線補正要求の程度をあらわす信号Xがエンジンコントローラ10から入力されると、自動変速機コントローラ20では、変速マップの変速線補正によりエンジン回転数を高回転にすることで、エンジン暖機を促進する協調変速制御を行う。
 前記コントロールバルブユニット30は、自動変速機コントローラ20からの制御指令に基づいて、各摩擦締結要素の締結/解放を制御するソレノイドバルブや油路を有して構成される。
 [自動変速機のパワートレーン構成]
 以下、図1に基づき、自動変速機ATのパワートレーン構成を説明する。
前記自動変速機ATは、変速ギアとして、入力軸Input側から出力軸Output側までの軸上に、順に第1遊星ギアG1と第2遊星ギアG2による第1遊星ギアセットGS1及び第3遊星ギアG3と第4遊星ギアG4による第2遊星ギアセットGS2が配置されている。また、油圧制御される摩擦締結要素として、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、第2ブレーキB2、第3ブレーキB3、第4ブレーキB4が配置されている。さらに、機械的に締結/空転するワンウェイクラッチとして、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2が配置されている。
 前記第1遊星ギアG1は、第1サンギアS1と、第1リングギアR1と、両ギアS1,R1に噛み合う第1ピニオンP1を支持する第1キャリアPC1と、を有するシングルピニオン型遊星ギアである。
 前記第2遊星ギアG2は、第2サンギアS2と、第2リングギアR2と、両ギアS2,R2に噛み合う第2ピニオンP2を支持する第2キャリアPC2と、を有するシングルピニオン型遊星ギアである。
 前記第3遊星ギアG3は、第3サンギアS3と、第3リングギアR3と、両ギアS3,R3に噛み合う第3ピニオンP3を支持する第3キャリアPC3と、を有するシングルピニオン型遊星ギアである。
 前記第4遊星ギアG4は、第4サンギアS4と、第4リングギアR4と、両ギアS4,R4に噛み合う第4ピニオンP4を支持する第4キャリアPC4と、を有するシングルピニオン型遊星ギアである。
 前記入力軸Inputは、第2リングギアR2に連結され、エンジンEngからの回転駆動力を、トルクコンバータTC等を介して入力する。前記出力軸Outputは、第3キャリアPC3に連結され、出力回転駆動力を、ファイナルギア等を介して駆動輪に伝達する。
 前記第1リングギアR1と第2キャリアPC2と第4リングギアR4とは、第1連結メンバM1により一体的に連結される。前記第3リングギアR3と第4キャリアPC4とは、第2連結メンバM2により一体的に連結される。前記第1サンギアS1と第2サンギアS2とは、第3連結メンバM3により一体的に連結される。
 前記第1遊星ギアセットGS1は、第1遊星ギアG1と第2遊星ギアG2とを、第1連結メンバM1と第3連結メンバM3とによって連結することで、4つの回転要素を有して構成される。また、第2遊星ギアセットGS2は、第3遊星ギアG3と第4遊星ギアG4とを、第2連結メンバM2によって連結することで、5つの回転要素を有して構成される。
 前記第1遊星ギアセットGS1では、トルクが入力軸Inputから第2リングギアR2に入力され、入力されたトルクは第1連結メンバM1を介して第2遊星ギアセットGS2に出力される。前記第2遊星ギアセットGS2では、トルクが入力軸Inputから直接第2連結メンバM2に入力されると共に、第1連結メンバM1を介して第4リングギアR4に入力され、入力されたトルクは第3キャリアPC3から出力軸Outputに出力される。
 前記第1クラッチC1(インプットクラッチI/C)は、入力軸Inputと第2連結メンバM2とを選択的に断接するクラッチである。第2クラッチC2(ダイレクトクラッチD/C)は、第4サンギアS4と第4キャリアPC4とを選択的に断接するクラッチである。第3クラッチC3(H&LSRクラッチH&LR/C)は、第3サンギアS3と第4サンギアS4とを選択的に断接するクラッチである。
 前記第2ワンウェイクラッチF2は、第3サンギアS3と第4サンギアS4の間に配置されている。これにより、第3クラッチC3が解放され、第3サンギアS3よりも第4サンギアS4の回転数が大きい時、第3サンギアS3と第4サンギアS4とは独立した回転数を発生する。よって、第3遊星ギアG3と第4遊星ギアG4が第2連結メンバM2を介して接続された構成となり、それぞれの遊星ギアが独立したギア比を達成する。
 前記第1ブレーキB1(フロントブレーキF/B)は、第1キャリアPC1の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。また、第1ワンウェイクラッチF1は、第1ブレーキB1と並列に配置されている。第2ブレーキB2(ローブレーキLOW/B)は、第3サンギアS3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。第3ブレーキB3(2346ブレーキ2-3-4-6/B)は、第1サンギアS1及び第2サンギアS2を連結する第3連結メンバM3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。第4ブレーキB4(リバースブレーキREV/B)は、第4キャリアPC3の回転をトランスミッションケースCaseに対し選択的に停止させるブレーキである。
 [自動変速機の変速制御構成]
 図2は、実施例1の自動変速機ATにおいて変速段ごとの各摩擦締結要素の締結状態を示す締結作動表である。なお、図2において、○印は当該摩擦締結要素が締結状態となることを示し、(○)印はエンジンブレーキが作動するコースト時に当該摩擦締結要素が締結状態となることを示し、無印は当該摩擦締結要素が解放状態となることを示す。
 自動変速機ATによる隣接する変速段間のアップ変速時やダウン変速時においては、締結していた1つの摩擦締結要素を解放し、解放していた1つの摩擦締結要素を締結するという架け替え変速を行う。この架け替え変速により、下記のように、前進7速で後退1速の変速段を実現することができる。
 即ち、アクセル踏み込みによるドライブ時の「1速段」では、第2ブレーキB2が締結状態で、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が締結する。アクセル足離しによるコースト時(エンブレ時)の「1速段」では、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が空転することで、第3クラッチC3と第1ブレーキB1と第2ブレーキB2が締結状態となる。
 アクセル踏み込みによるドライブ時の「2速段」では、第2ブレーキB2及び第3ブレーキB3が締結状態で、第2ワンウェイクラッチF2が締結する。アクセル足離しによるコースト時(エンブレ時)の「2速段」では、第2ワンウェイクラッチF2が空転することで、第3クラッチC3と第2ブレーキB2と第3ブレーキB3が締結状態となる。
 「3速段」では、ドライブ時/コースト時にかかわらず、第2ブレーキB2、第3ブレーキB3、第2クラッチC2が締結状態となる。
「4速段」では、ドライブ時/コースト時にかかわらず、第3ブレーキB3、第2クラッチC2、第3クラッチC3が締結状態となる。「5速段」では、ドライブ時/コースト時にかかわらず、第1クラッチC1、第2クラッチC2、第3クラッチC3が締結状態となる。
「6速段」では、ドライブ時/コースト時にかかわらず、第3ブレーキB3、第1クラッチC1、第3クラッチC3が締結状態となる。
「7速段」では、ドライブ時/コースト時にかかわらず、第1ブレーキB1、第1クラッチC1、第3クラッチC3が締結状態となる。
 アクセル踏み込みによるドライブ時の「後退速段」では、第4ブレーキB4が締結状態で、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が締結する。アクセル足離しによるコースト時(エンブレ時)の「後退速段」では、第1ワンウェイクラッチF1及び第2ワンウェイクラッチF2が空転することで、第3クラッチC3、第1ブレーキB1、第4ブレーキB4が締結状態となる。
 図3は、実施例1の自動変速機ATにおいてエンジンからの信号“X”=0のときの変速制御で用いられる基準変速マップを示す変速マップ図である。なお、図3に示す基準変速マップは、自動変速機コントローラ20のメモリに予め記憶設定されていて、後述する変速線補正制御を実施するとき、補正前の変速マップとして用いられる。つまり、エンジンコントローラ10からの変速線補正要求の程度をあらわす信号“X”が、“X”=0(変速線補正要求無し)のときに図3に示す基準変速マップが選択される。また、図3の基準変速マップにおいて、実線はアップ変速線を示し、点線はダウン変速線を示す。
 “X”=0であるDレンジの選択時には、出力軸回転数センサ5(=車速センサ)からの車速VSPと、アクセル開度センサ1からのアクセル開度APOに基づき決まる運転点(VSP,APO)が、変速マップ上において存在する位置を検索する。そして、運転点(VSP,APO)が動かない、或いは、運転点(VSP,APO)が動いても図3の変速マップ上で1つの変速段領域内に存在したままであれば、そのときの変速段をそのまま維持する。
 一方、運転点(VSP,APO)が動いて図3の変速マップ上でアップ変速線を横切ると、横切る前の運転点(VSP,APO)が存在する領域が示す変速段から横切った後の運転点(VSP,APO)が存在する領域が示す変速段へのアップ変速指令を出力する。また、運転点(VSP,APO)が動いて図3の変速マップ上でダウン変速線を横切ると、横切る前の運転点(VSP,APO)が存在する領域が示す変速段から横切った後の運転点(VSP,APO)が存在する領域が示す変速段へのダウン変速指令を出力する。
 [変速線補正制御処理構成]
 図4は、実施例1の自動変速機コントローラ20で実行される変速線補正制御処理の流れを示す(変速線補正制御手段)。以下、変速線補正制御処理構成をあらわす図4の各ステップについて説明する。
 ステップS1では、アップ変速線とダウン変速線の補正車速を、
補正車速=aX^2+bX+c   …(1)
の式を用いて演算し、ステップS2へ進む。
 ここで、式(1)の「定数a,b,c」は、図5に示すように、エンジン暖機促進効果を確認するための実験で得られた多数のデータに基づき決められる。そして、1→2アップ変速線、…、6→7アップ変速線、及び、2→1ダウン変速線、…、7→6段変速線のそれぞれについて、エンジン暖機促進効果が得られる値を与える。
 式(1)の“X”は、エンジン暖機促進制御における変速線補正要求の度合いをあらわす値であり、実施例1では、X=0(変速線補正要求無しを示す値)からX=10(最大の変速線補正要求を示す値)までの値を用いる。
 ステップS2では、ステップS1での変速線補正車速の演算に続き、現在の変速段が、1速段か2速段か3速段のうち、何れかの変速段であるか否かを判断する。YES(現在の変速段が1,2,3速段)の場合はステップS3へ進み、NO(現在の変速段が1,2,3速段以外)の場合はステップS4進む。
 ここで、「現在の変速段」は、自動変速機コントローラ20に有する変速指令情報により判断する。また、「1速段と2速段と3速段」は、アップ変速時、或いは、ダウン変速時、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2のうち、少なくとも一方がドライブ時に締結する変速段である。
 ステップS3では、ステップS2での現在の変速段が1,2,3速段であるとの判断に続き、小開度域コースト補正線により変速線を補正するワンウェイクラッチ課題対応処理を行い、ステップS4へ進む。
 ここで、「小開度域コースト補正線による変速線補正」は、図6に示すように、ステップS1で演算された補正車速による車速補正線に対する小アクセル開度域のコースト補正線開度と、車速補正線より低車速域のコースト補正線車速を決めることで行う。即ち、1→2アップ変速線については、コースト補正線開度APOUp1とコースト補正線車速VSPUp1で与え、2→3アップ変速線については、コースト補正線開度APOUp2とコースト補正線車速VSPUp2で与える。又、2→1ダウン変速線については、コースト補正線開度APODown1とコースト補正線車速VSPDown1で与え、3→2ダウン変速線については、コースト補正線開度APODown2とコースト補正線車速VSPDown2で与える。
 また、「ワンウェイクラッチ課題」とは、
・ワンウェイクラッチの空転によるニュートラル感
・ワンウェイクラッチ空転からのアクセル踏み込み操作によるワンウェイクラッチ締結ショック
をいう。
 なお、「小開度域コースト補正線」は、車速補正線より補正した補正後のアップ変速線と補正後のダウン変速線に対し、小開度域で低車速方向に舌状に突き出ている変速線形状になる。
 ステップS4では、ステップS3でのワンウェイクラッチ課題対応処理に続き、エンジン要求[受付]判断をしたか否かを判断する。YES(Eng要求[受付]判断)の場合はステップS5へ進み、NO(Eng要求[拒否]判断)の場合はエンドへ進む。
 ここで、「Eng要求[受付]判断」は、下記の6つの受付条件を全て満足することで成立させる。
1.エンジン始動からの経過時間が設定時間(例えば、数分程度)未満である。
2.変速判断車速が設定車速(例えば、40km/h)未満である。
3.変速中でない。
4.変速線のモードが「NORMALモード」である。
5.N,R,Pレンジ以外である。
6.車速センサ5及びインヒビタスイッチ6の異常を検知していない。
 一方、「Eng要求[拒否]判断」は、下記の6つの拒否条件のうち、少なくとも一つの条件を満足することで成立させる。
1.エンジン始動からの経過時間が設定時間(例えば、数分程度)以上である。
2.変速判断車速が設定車速(例えば、40km/h)以上である。
3.変速中である。
4.変速線のモードが「NORMALモード」以外(MANUALモードを含む)である。
5.N,R,Pレンジである。
6.車速センサ5又はインヒビタスイッチ6の異常を検知した。
なお、条件3の変速中であるとの判断時におけるEng要求[拒否]の仕方は、変速前の変速線補正マップを保持することとする。
 ステップS5では、ステップS4でのEng要求[受付]判断に続き、ステップS1で演算された変速線の補正車速を、基準変速マップのアップ変速線及びダウン変速線(図3)に反映して変速マップを補正し、エンドへ進む。
なお、現在の変速段が1,2,3速段であるときは、変速マップの変速線車速補正に、小開度域コースト補正線による補正を加える(図7)。また、現在の変速段が1,2,3速段以外であるときは、変速マップの変速線車速補正のみを行う。
 次に、作用を説明する。
実施例1の自動変速機ATの制御装置における作用を、「変速線補正制御処理作用」、「変速線補正制御作用」、「変速線補正制御の特徴作用」に分けて説明する。
 [変速線補正制御処理作用]
 変速線補正制御は、エンジン側からの要求による変速線補正機能を織り込むための制御であるが、運転性や自動変速性能に課題が懸念されるシーンについては、エンジンEngからの要求を拒否する機能も付けられている。以下、図4に示すフローチャートに基づき、変速線補正制御処理作用を説明する。
 現在の変速段が1,2,3速段以外のときは、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS4へと進む。そして、ステップS1では、アップ変速線とダウン変速線の補正車速が、式(1)を用いて演算されるだけである。一方、現在の変速段が1,2,3速段のときは、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4へと進む。そして、ステップS1では、アップ変速線とダウン変速線の補正車速が、式(1)を用いて演算され、ステップS3では、小開度域コースト補正線により変速線を補正するワンウェイクラッチ課題対応処理が行われる。
 ステップS4では、エンジン要求[受付]判断をしたか否かが判断され、Eng要求[拒否]判断の場合は、ステップS4からエンドへ進み、アップ変速線及びダウン変速線の補正が行われない。即ち、1,2,4,6の拒否条件のうち、少なくとも一つの条件を満足することでEng要求[拒否]判断が成立すると、図3に示す基準変速マップを用いた変速制御が行われる。但し、変速中であるとの3の拒否条件を満足することで、Eng要求[拒否]判断が成立すると、変速前の変速線補正マップが保持される。
 ステップS4でEng要求[受付]判断の場合は、ステップS4からステップS5→エンドへと進み、ステップS5では、ステップS1で演算された変速線の補正車速を、基準変速マップのアップ変速線及びダウン変速線(図3)に反映して変速マップが補正される。即ち、現在の変速段が1,2,3速段であるときは、変速マップの変速線車速補正に、小開度域コースト補正線による補正が加えられる。一方、現在の変速段が1,2,3速段以外であるときは、変速マップの変速線車速補正のみが行われる。
 このように、上記6つの受付条件を全て満足することで「Eng要求[受付]判断」が成立すると、エンジン側からの要求による変速線補正機能を織り込み、変速マップの変速線が補正される。特に、現在の変速段が1,2,3速段のときには、変速マップの変速線車速補正に、小開度域コースト補正線による補正が加えられる。
 しかし、上記6つの拒否条件のうち、少なくとも一つの条件を満足することで「Eng要求[拒否]判断」が成立すると、エンジン側からの要求が拒否され、変速マップの変速線が補正されない。ここで、「Eng要求[拒否]判断」で与えられる6つの拒否条件は、運転性や自動変速性能に課題が懸念されるシーンをあらわす条件とされる。
 [変速線補正制御作用]
 まず、変速マップのうちワンウェイクラッチ有りの変速線を補正する補正線の決め方を図6に基づき説明する。
ステップS1で演算された補正車速をアクセル開度座標軸に対して平行に引いた線を車速補正線L0とする。この車速補正線L0に対して、図6に示すように、小アクセル開度域の「コースト補正線開度」と、車速補正線L0よりも低車速域の「コースト補正線車速」と、が与えられる。従って、コースト補正線開度とコースト補正線車速により決まる交点P1と、コースト補正線開度と車速補正線L0とが交わる交点P2と、コースト補正線車速と車速座標軸とが交わる交点P3と、を求める。交点P1と交点P2を繋ぐ線であって、車速座標軸に対して平行に引かれる線を第1コースト補正線L1とし、交点P1と交点P3を繋ぐ線であって、アクセル開度座標軸に対して平行に引かれる線を第2コースト補正線L2とする。
このように、変速マップのうちワンウェイクラッチ有りの変速線を補正する補正線は、車速補正線L0と、第1コースト補正線L1と、第2コースト補正線L2と、によって決められる。
 次に、変速マップのうちワンウェイクラッチ有りのアップ変速線とダウン変速線に対する補正後の変速線の決め方を図7に基づき説明する。
アップ変速線(実線)とダウン変速線(破線)の車速補正線L0(u),L0(d)は、補正車速をアクセル開度座標軸に対して平行に引いた線と、補正前の変速線LS(u),LS(d)とが交わる点を交点P4(u),P4(d)としたとき、交点P2(u),P2(d)と交点P4(u),P4(d)を結ぶ線分とされる。そして、ダウン変速線(破線)のコースト補正線開度は、アップ変速線(実線)のコースト補正線開度よりも大開度に設定し、開度乖離幅ΔAPOを持たせている。さらに、アップ変速線(実線)とダウン変速線(破線)のコースト補正線車速は、何れも補正前の変速線LS(u),LS(d)の車速と一致させている。
このように、変速マップのうちワンウェイクラッチ有りのアップ変速線とダウン変速線に対する補正後の変速線は、交点P4(u),P4(d)より大アクセル開度域に残した補正前の変速線LS(u),LS(d)に、小アクセル開度域の補正線を加えたものとされる。小アクセル開度域の補正線は、車速補正線L0(u),L0(d)と、第1コースト補正線L1(u),L1(d)と、第2コースト補正線L2(u),L2(d)(=小アクセル開度域の補正前の変速線LS(u),LS(d))と、によって決められる。
 次に、変速マップのうちワンウェイクラッチ無しの変速線を補正する補正線の決め方を図8及び図9に基づき説明する。
アップ変速線(実線)とダウン変速線(破線)の車速補正線L0(u),L0(d)は、補正車速をアクセル開度座標軸に対して平行に引いた線と、補正前の変速線LS(u),LS(d)とが交わる点を交点P4(u),P4(d)としたとき、車速座標軸と交わる交点P3(u),P3(d)と、交点P4(u),P4(d)と、を結ぶ線とされる。
このように、変速マップのうちワンウェイクラッチ無しのアップ変速線とダウン変速線に対する補正後の変速線は、交点P4(u),P4(d)より大アクセル開度域に残した補正前の変速線LS(u),LS(d)に、交点P4(u),P4(d)より小アクセル開度域の車速補正線L0(u),L0(d)を加えたものとされる。そして、図8及び図9のそれぞれに示す5→6アップ変速線と6→5段変速線の対比から明らかなように、エンジンからの信号“X”が大きいほど車速補正線L0が高車速側に設定される。つまり、変速線補正要求が高いほど、車速補正線L0(u),L0(d)をより高車速側に設定することで、変速機入力回転数(=エンジン回転数)が高くなる低速段を維持する領域を拡大している。
 なお、変速マップのうちワンウェイクラッチ有りのアップ変速線とダウン変速線に対する補正後の変速線における小開度域コースト補正線補正についても、図10及び図11の対比から明らかなように、エンジンからの信号“X”が大きいほど低車速側への突出量が大きくなる。この理由は、コースト補正線車速を補正前の変速線LS(u),LS(d)の車速に一致させると共に、エンジンからの信号“X”が大きいほど、車速補正線L0(u),L0(d)を高車速側に設定することによる。
 [変速線補正制御の特徴作用]
 実施例1では、車速補正線L0(u),L0(d)による補正後の変速線のうち、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2の少なくとも一方が関与する1,2,3速段のアップ変速線に変速線補正を加える。変速線補正は、アクセル開度ゼロを含む小アクセル開度領域を低車速側に向かって突出させる第1コースト補正線L1(u)及び第2コースト補正線L2(u)による構成とした。
即ち、アクセル足離し操作を行い、図11の運転点Aから運転点Bに移行すると、アクセル開度APOが低下してアップ変速線を補正する第1コースト補正線L1(u)を横切る。よって、2→3アップ変速が、解放されている第2クラッチC2を締結することにより第2ワンウェイクラッチF2を用いないで行われる。このため、アクセル足離し操作を行っても第2ワンウェイクラッチF2が空転することがない。そして、アクセル足離し状態から再アクセル踏み込み操作を行い、図11の運転点Cから運転点Dに移行しても、2→3アップ変速後の3速段が保たれ、第2ワンウェイクラッチF2が締結することがない。なお、車速補正線L0(u),L0(d)による補正後の3→2ダウン変速線は、2→3アップ変速線より低車速側に設定されるため、3→2ダウン変速線を横切るような車速変化がない限りダウン変速は行われない。
この結果、変速マップのアップ変速線とダウン変速線を、補正前の変速線車速より高車速側に設定した車速補正線L0(u),L0(d)により補正することで、エンジン回転数が高回転数に保たれる。加えて、アクセル足離しから再アクセル踏み込み操作を行ったとき、第1コースト補正線L1(u)及び第2コースト補正線L2(u)による変速線補正が無い場合のようなフィーリングの悪化やワンウェイクラッチ締結ショックの発生が防止される。
 実施例1では、エンジンEngの暖機を促すエンジン暖機促進制御からの変速線補正要求があるとき、変速線補正要求である“X”の値が大きいほど高車速側の補正車速を求める(図4のS1)。そして、変速マップのアップ変速線とダウン変速線を、補正車速からアクセル開度座標軸に対して平行に引かれた車速補正線L0(u),L0(d)により変速線補正する構成とした。
即ち、変速マップのアップ変速線とダウン変速線を高車速側に設定するほど、走行中に変速段として低速段が長く維持され、変速機入力回転数が高くなる。変速機入力回転数が高くなると、駆動源として搭載されたエンジンEngの回転数が高くなり、よりエンジンEngの暖機が促される。
従って、エンジン暖機促進制御からの変速線補正要求に応じ、高いエンジンEngの暖機促進効果が得られる。
 実施例1では、小アクセル開度領域のコースト補正線開度と、補正車速より低車速のコースト補正線車速とを決める。そして、コースト補正線を、コースト補正線開度から車速座標軸に対して平行に引かれる第1コースト補正線L1(u)と、コースト補正線車速からアクセル開度座標軸に対して平行に引かれる第2コースト補正線L2(u)とによる補正線とする構成とした。
即ち、小アクセル開度領域のコースト補正線開度と、補正車速より低車速のコースト補正線車速とを決めることで、第1コースト補正線L1(u)と第2コースト補正線L2(u)によるコースト補正線となる。
従って、コースト補正線開度とコースト補正線車速を決めるだけの簡単な処理により、小開度域コースト補正線によるコースト補正線が変速マップに描かれる。
 実施例1では、車速補正線L0(u),L0(d)による補正後の変速線のうち、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2の少なくとも一方がドライブ時に締結される1,2,3速段のダウン変速線に変速線補正を加える。変速線補正は、アクセル開度ゼロを含む小アクセル開度領域を低車速側に向かって突出させる第1コースト補正線L1(d)及び第2コースト補正線L2(d)による構成とした。
例えば、ダウン変速線にコースト補正線がないと、アクセル足離し状態から再踏み込み操作を行ってもダウン変速が行われず、エンジン回転数の上昇を期待できない。
これに対し、ダウン変速線にコースト補正線があると、アクセル足離し状態から再踏み込み操作を行い、図11の運転点Eから運転点Fに移行すると、アクセル開度APOが上昇してダウン変速線を補正する第1コースト補正線L1(d)を横切る。よって、ドライブ状態での3→2ダウン変速が、第2クラッチC2を解放し、第2ワンウェイクラッチF2を機械的に締結することで行われる。
従って、アクセル足離し状態からの再踏み込み操作が行われるとき、ダウン変速によるエンジン回転数の上昇が達成される。そして、このエンジン回転数の上昇は、暖機促進効果をより高めることになる。
 実施例1では、変速マップのアップ変速線とダウン変速線に引いた第2コースト補正線L2(u),L2(d)のコースト補正線車速を、補正前のアップ変速線とダウン変速線の車速にする構成とした。
即ち、第2コースト補正線L2(u),L2(d)を決めるコースト補正線車速を容易に設定することができる。そして、アクセル足離しによるコーストアップ変速やアクセル再踏み込みによるドライブダウン変速が、補正前の変速マップでの変速制御と同様になる。
従って、コースト補正線車速の設定を容易にしながら、違和感のないコーストアップ変速やドライブダウン変速が実現される。
 実施例1では、変速マップのダウン変速線に引いた第1コースト補正線L1(d)のコースト補正線開度を、変速マップのアップ変速線に引いた第1コースト補正線L1(u)のコースト補正線開度よりも大きな開度に設定する構成とした。
即ち、第2コースト補正線L2(u),L2(d)のコースト補正線車速を、補正前のアップ変速線とダウン変速線の車速にすると、第1コースト補正線L1(d)と第1コースト補正線L1(u)が、図10及び図11に示すように、車速座標軸方向に重なるときがある。よって、図11の運転点G→H→E→Fに移行するように、アクセル足離しから再アクセル踏み込み操作を行うと、2→3アップ変速の後に3→2ダウン変速が行われる。このとき、第1コースト補正線L1(d)と第1コースト補正線L1(u)のコースト補正線開度を、同じ開度、或いは、近接する開度にすると、2→3アップ変速が終了する前に3→2ダウン変速が開始される。これに対し、第1コースト補正線L1(d)のコースト補正線開度を第1コースト補正線L1(u)より大きくしたことで、2→3アップ変速の後、十分な駆動ドライブ状態になってから3→2ダウン変速が行われる。
従って、アクセル足離しから再アクセル踏み込み操作を行ったとき、アップ変速の終了に続いてダウン変速が開始される。
 実施例1では、自動変速機ATが変速中であると判断されると、変速中は変速線補正を拒否し(図4のS4でNO)、変速前の変速線による変速マップを保持する構成とした。
即ち、自動変速機ATの変速中に変速マップの変速線補正を行うと、アクセル開度APOを保っているにもかかわらず変速が介入することがあり、運転性や変速性能を低下させる懸念がある。
従って、変速中は変速前の変速線による変速マップを保持することで、運転性や変速性能の低下が防止される。
 次に、効果を説明する。
実施例1の自動変速機ATの制御装置にあっては、下記に列挙する効果が得られる。
 (1) 駆動系に、駆動源(エンジンEng)と、ワンウェイクラッチ(第1ワンウェイクラッチF1、第2ワンウェイクラッチF2)がドライブ時に締結する変速段(1,2,3速段)を含めて複数の変速段を有する自動変速機ATとを備え、
 車速VSPとアクセル開度APOによる運転点と、アップ変速線とダウン変速線による変速マップとを用い、変速マップ上に存在する運転点(VSP,APO)の位置によって自動変速機ATの変速制御を行う変速制御手段(変速機コントローラ20)を備えた自動変速機ATの制御装置において、
 変速線補正要求があるとき、変速マップのアップ変速線とダウン変速線を、補正前の変速線車速より高車速側に設定した車速補正線L0(u),L0(d)により補正する変速線補正制御手段(図4)を設け、
 変速線補正制御手段(図4)は、車速補正線L0(u),L0(d)による補正後の変速線のうち、ワンウェイクラッチ(第1ワンウェイクラッチF1、第2ワンウェイクラッチF2)がドライブ時に締結する変速段(1,2,3速段)のアップ変速線に、小アクセル開度領域における高車速側への補正量を、小アクセル開度領域よりアクセル開度が大きい大アクセル開度領域における高車速側への補正量より小さくする変速線補正を加える。
 つまり、変速線補正制御手段(図4)は、車速補正線L0(u),L0(d)による補正後の変速線のうち、ワンウェイクラッチ(第1ワンウェイクラッチF1、第2ワンウェイクラッチF2)が関与する変速段のアップ変速線に、アクセル開度ゼロを含む小アクセル開度領域を低車速側に向かって突出させるコースト補正線(第1コースト補正線L1(u)、第2コースト補正線L2(u))による変速線補正を加える。
 このため、駆動源回転数(エンジン回転数)を高回転数に保ちつつ、アクセル足離しから再アクセル踏み込み操作を行ったとき、フィーリングの悪化やワンウェイクラッチ締結ショックの発生を防止することができる。
 (2) 駆動源として、エンジンEngを搭載し、
 変速線補正制御手段(図4)は、エンジンEngの暖機を促すエンジン暖機促進制御からの変速線補正要求があるとき、変速線補正要求(“X”の値)が大きいほど高車速側の補正車速を求め(S1)、変速マップのアップ変速線とダウン変速線を、補正車速からアクセル開度座標軸に対して平行に引かれた車速補正線L0(u),L0(d)により変速線補正する。
 このため、(1)の効果に加え、エンジン暖機促進制御からの変速線補正要求に応じ、高いエンジンEngの暖機促進効果を得ることができる。
 (3) 変速線補正制御手段(図4)は、小アクセル開度領域のコースト補正線開度と、補正車速より低車速のコースト補正線車速とを決め、コースト補正線を、コースト補正線開度から車速座標軸に対して平行に引かれる第1コースト補正線L1(u)と、コースト補正線車速からアクセル開度座標軸に対して平行に引かれる第2コースト補正線L2(u)とによる補正線とする(図6)。
 このため、(2)の効果に加え、コースト補正線開度とコースト補正線車速を決めるだけの簡単な処理により、小開度域コースト補正線によるコースト補正線を変速マップに描くことができる。
 (4) 変速線補正制御手段(図4)は、車速補正線L0(u),L0(d)による補正後の変速線のうち、ワンウェイクラッチ(第1ワンウェイクラッチF1、第2ワンウェイクラッチF2)がドライブ時に締結する変速段(1,2,3速段)のダウン変速線に、アクセル開度ゼロを含む小アクセル開度領域を低車速側に向かって突出させるコースト補正線(第1コースト補正線L1(d)、第2コースト補正線L2(d))による変速線補正を加える。
 このため、(1)~(3)の効果に加え、アクセル足離し状態からの再踏み込み操作が行われるとき、ダウン変速による駆動源回転数(エンジン回転数)の上昇を達成することができる。
 (5) 変速線補正制御手段(図4)は、変速マップのアップ変速線とダウン変速線に引いた第2コースト補正線L2(u),L2(d)のコースト補正線車速を、補正前のアップ変速線とダウン変速線の車速にする。
 このため、(4)の効果に加え、コースト補正線車速の設定を容易にしながら、違和感のないコーストアップ変速やドライブダウン変速を実現することができる。
 (6) 変速線補正制御手段(図4)は、変速マップのダウン変速線に引いた第1コースト補正線L1(d)のコースト補正線開度を、変速マップのアップ変速線に引いた第1コースト補正線L1(u)のコースト補正線開度よりも大きな開度に設定する。
 このため、(5)の効果に加え、アクセル足離しから再アクセル踏み込み操作を行ったとき、アップ変速の終了に続いてダウン変速を開始することができる。
 (7) 変速線補正制御手段(図4)は、自動変速機ATが変速中であると判断されると、変速中は変速線補正を拒否し(S4でNO)、変速前の変速線による変速マップを保持する。
 このため、(1)~(6)の効果に加え、変速中は変速前の変速線による変速マップを保持することで、運転性や変速性能の低下を防止することができる。
 以上、本発明の自動変速機の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、変速線補正制御手段として、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2の少なくとも一方がドライブ時に締結する1,2,3速段のアップ変速線とダウン変速線に、コースト補正線による小開度域コースト補正線変速線補正を加える例を示した。しかし、変速線補正制御手段としては、ワンウェイクラッチがドライブ状態で締結するアップ変速線のみに、コースト補正線による小開度域コースト補正線変速線補正を加える例としても良い。
 実施例1では、変速線補正制御手段として、エンジンEngの暖機を促すエンジン暖機促進制御から変速線補正要求があるとき、車速補正線とコースト補正線による変速線補正を行う例を示した。しかし、変速線補正制御手段としては、エンジン暖機促進制御以外の車両制御(例えば、スポーツ走行モードに切り替える走行モード制御等)から変速線補正要求があるとき、車速補正線とコースト補正線による変速線補正を行う例としても良い。
 実施例1では、本発明の制御装置を前進7速後退1速の有段式による自動変速機を搭載したエンジン車に適用する例を示した。しかし、自動変速機については、ワンウェイクラッチがドライブ時に締結する変速段を含めて複数の変速段を有する自動変速機であれば、変速段数等は実施例1に限られない。また、適用車両については、エンジン車以外に、ハイブリッド車や電気自動車等の電動車両に対しても適用することができる。

Claims (8)

  1.  駆動系に、駆動源と、ワンウェイクラッチがドライブ時に締結する変速段を含めて複数の変速段を有する自動変速機とを備え、
     車速とアクセル開度による運転点と、アップ変速線とダウン変速線による変速マップとを用い、前記変速マップ上に存在する運転点の位置によって前記自動変速機の変速制御を行う変速制御手段を備えた自動変速機の制御装置において、
     変速線補正要求があるとき、前記変速マップのアップ変速線とダウン変速線を、補正前の変速線車速より高車速側に設定した車速補正線により補正する変速線補正制御手段を設け、
     前記変速線補正制御手段は、前記車速補正線による補正後の変速線のうち、前記ワンウェイクラッチがドライブ時に締結する変速段のアップ変速線に、小アクセル開度領域における高車速側への補正量を、前記小アクセル開度領域よりアクセル開度が大きい大アクセル開度領域における高車速側への補正量より小さくする変速線補正を加える
     自動変速機の制御装置。
  2.  請求項1に記載された自動変速機の制御装置において、
     前記変速線補正制御手段は、前記車速補正線による補正後の変速線のうち、前記ワンウェイクラッチが関与する変速段のアップ変速線に、前記小アクセル開度領域を低車速側に向かって突出させるコースト補正線による変速線補正を加える
     自動変速機の制御装置。
  3.  請求項2に記載された自動変速機の制御装置において、
     前記駆動源として、エンジンを搭載し、
     前記変速線補正制御手段は、前記エンジンの暖機を促すエンジン暖機促進制御からの変速線補正要求があるとき、変速線補正要求が大きいほど大車速側の補正車速を求め、前記変速マップのアップ変速線とダウン変速線を、前記補正車速からアクセル開度座標軸に対して平行に引かれた車速補正線により変速線補正する
     自動変速機の制御装置。
  4.  請求項3に記載された自動変速機の制御装置において、
     前記変速線補正制御手段は、小アクセル開度領域のコースト補正線開度と、前記補正車速より低車速のコースト補正線車速とを決め、前記コースト補正線を、前記コースト補正線開度から車速座標軸に対して平行に引かれる第1コースト補正線と、前記コースト補正線車速からアクセル開度座標軸に対して平行に引かれる第2コースト補正線とによる補正線とする
     自動変速機の制御装置。
  5.  請求項1から請求項4までの何れか一項に記載された自動変速機の制御装置において、
     前記変速線補正制御手段は、前記車速補正線による補正後の変速線のうち、前記ワンウェイクラッチがドライブ時に締結する変速段のダウン変速線に、アクセル開度ゼロを含む小アクセル開度領域を低車速側に向かって突出させるコースト補正線による変速線補正を加える
     自動変速機の制御装置。
  6.  請求項5に記載された自動変速機の制御装置において、
     前記変速線補正制御手段は、前記変速マップのアップ変速線とダウン変速線に引いた前記第2コースト補正線のコースト補正線車速を、補正前のアップ変速線とダウン変速線の車速にする
     自動変速機の制御装置。
  7.  請求項6に記載された自動変速機の制御装置において、
     前記変速線補正制御手段は、前記変速マップのダウン変速線に引いた前記第1コースト補正線のコースト補正線開度を、前記変速マップのアップ変速線に引いた前記第1コースト補正線のコースト補正線開度よりも大きな開度に設定する
     自動変速機の制御装置。
  8.  請求項1から請求項7までの何れか一項に記載された自動変速機の制御装置において、
     前記変速線補正制御手段は、前記自動変速機が変速中であると判断されると、変速中は変速線補正を拒否し、変速前の変速線による変速マップを保持する
     自動変速機の制御装置。
PCT/JP2016/053727 2015-02-16 2016-02-09 自動変速機の制御装置 WO2016132953A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680010361.1A CN107250622B (zh) 2015-02-16 2016-02-09 自动变速器的控制装置
US15/551,269 US10724630B2 (en) 2015-02-16 2016-02-09 Gearshift control device of automatic transmission
JP2017500611A JP6377240B2 (ja) 2015-02-16 2016-02-09 自動変速機の制御装置
EP16752339.8A EP3260741A4 (en) 2015-02-16 2016-02-09 Device for controlling automatic transmission
KR1020177021266A KR20170109563A (ko) 2015-02-16 2016-02-09 자동 변속기의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-028008 2015-02-16
JP2015028008 2015-02-16

Publications (1)

Publication Number Publication Date
WO2016132953A1 true WO2016132953A1 (ja) 2016-08-25

Family

ID=56692162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053727 WO2016132953A1 (ja) 2015-02-16 2016-02-09 自動変速機の制御装置

Country Status (6)

Country Link
US (1) US10724630B2 (ja)
EP (1) EP3260741A4 (ja)
JP (1) JP6377240B2 (ja)
KR (1) KR20170109563A (ja)
CN (1) CN107250622B (ja)
WO (1) WO2016132953A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594404B (zh) * 2019-08-19 2021-02-12 中国第一汽车股份有限公司 车辆换挡控制方法、装置、车辆和存储介质
JP7215380B2 (ja) * 2019-09-19 2023-01-31 トヨタ自動車株式会社 車両の変速制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032959U (ja) * 1989-05-31 1991-01-11
JPH06123346A (ja) * 1991-03-18 1994-05-06 Aisin Aw Co Ltd 暖機走行用マップによる暖機促進式変速機
JP2004270814A (ja) * 2003-03-10 2004-09-30 Jatco Ltd 自動変速機の変速制御装置
JP2009250324A (ja) * 2008-04-04 2009-10-29 Toyota Motor Corp 変速機の制御装置
JP2011231907A (ja) * 2010-04-30 2011-11-17 Toyota Motor Corp 変速機の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166631A (ja) * 2001-11-29 2003-06-13 Toyota Motor Corp 車両用自動変速機の制御装置
JP3685149B2 (ja) * 2002-04-25 2005-08-17 トヨタ自動車株式会社 車両用駆動制御装置
JP5247000B2 (ja) * 2005-12-21 2013-07-24 日産自動車株式会社 車両のコースト減速制御装置
JP4529940B2 (ja) * 2006-05-02 2010-08-25 日産自動車株式会社 ハイブリッド車両の伝動状態切り替え制御装置
JP4858501B2 (ja) * 2008-07-14 2012-01-18 トヨタ自動車株式会社 車両用自動変速機の制御装置
JP2010143361A (ja) * 2008-12-18 2010-07-01 Nissan Motor Co Ltd 電動車両用自動変速機の回生制動時変速制御装置
JP2012077775A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 自動変速機の制御装置
JP5716720B2 (ja) * 2012-09-19 2015-05-13 トヨタ自動車株式会社 車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032959U (ja) * 1989-05-31 1991-01-11
JPH06123346A (ja) * 1991-03-18 1994-05-06 Aisin Aw Co Ltd 暖機走行用マップによる暖機促進式変速機
JP2004270814A (ja) * 2003-03-10 2004-09-30 Jatco Ltd 自動変速機の変速制御装置
JP2009250324A (ja) * 2008-04-04 2009-10-29 Toyota Motor Corp 変速機の制御装置
JP2011231907A (ja) * 2010-04-30 2011-11-17 Toyota Motor Corp 変速機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260741A4 *

Also Published As

Publication number Publication date
EP3260741A1 (en) 2017-12-27
US10724630B2 (en) 2020-07-28
JP6377240B2 (ja) 2018-08-22
CN107250622A (zh) 2017-10-13
US20180066749A1 (en) 2018-03-08
JPWO2016132953A1 (ja) 2017-10-19
CN107250622B (zh) 2019-06-21
KR20170109563A (ko) 2017-09-29
EP3260741A4 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6565954B2 (ja) 車両の制御装置
JP4301235B2 (ja) 自動変速機の変速制御装置
JP2008169874A (ja) 車両用駆動装置の制御装置
JP2007309475A (ja) 車両用自動変速機の変速制御装置
JP2010019407A (ja) 車両用自動変速機の制御装置
KR20090096346A (ko) 자동 변속기의 변속 제어 장치
JP4690278B2 (ja) 自動変速機の変速制御装置
JP6377240B2 (ja) 自動変速機の制御装置
JP4709240B2 (ja) 自動変速機の変速制御装置
JP4848769B2 (ja) 車両用自動変速機の油圧制御装置
JP6020430B2 (ja) 車両の制御装置
JP2019151273A (ja) 自動変速機の変速制御装置
JP2008133868A (ja) 車両用自動変速機の変速制御装置
JP4797573B2 (ja) 車両用自動変速機の変速制御装置
JP5790535B2 (ja) 車両用自動変速機の変速制御装置
JP7353719B2 (ja) 自動変速機の制御装置
JP4893168B2 (ja) 自動変速機の変速制御装置
JPH07259975A (ja) 車両用自動変速機の変速制御装置
JP4952188B2 (ja) 車両用自動変速機の変速制御装置
JP2008164158A (ja) 車両の駆動力制御装置
JP2008164121A (ja) 自動変速機の変速制御装置
WO2019176547A1 (ja) 自動変速機の制御装置及び自動変速機の制御方法
WO2017047479A1 (ja) 車両の変速制御装置
JP5104092B2 (ja) 自動変速機の変速制御装置
JP2008144737A (ja) 動力出力装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752339

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017500611

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177021266

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016752339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15551269

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE