WO2016132885A1 - スタビリンク - Google Patents

スタビリンク Download PDF

Info

Publication number
WO2016132885A1
WO2016132885A1 PCT/JP2016/053027 JP2016053027W WO2016132885A1 WO 2016132885 A1 WO2016132885 A1 WO 2016132885A1 JP 2016053027 W JP2016053027 W JP 2016053027W WO 2016132885 A1 WO2016132885 A1 WO 2016132885A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
stud
spherical
spherical space
stabilizer link
Prior art date
Application number
PCT/JP2016/053027
Other languages
English (en)
French (fr)
Inventor
黒田 茂
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to KR1020177022834A priority Critical patent/KR101947803B1/ko
Priority to US15/551,795 priority patent/US10415633B2/en
Priority to EP16752272.1A priority patent/EP3260714A4/en
Priority to MX2017010588A priority patent/MX2017010588A/es
Priority to CN201680010453.XA priority patent/CN107429732B/zh
Publication of WO2016132885A1 publication Critical patent/WO2016132885A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0628Construction or details of the socket member with linings
    • F16C11/0633Construction or details of the socket member with linings the linings being made of plastics
    • F16C11/0638Construction or details of the socket member with linings the linings being made of plastics characterised by geometrical details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0628Construction or details of the socket member with linings
    • F16C11/0633Construction or details of the socket member with linings the linings being made of plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0647Special features relating to adjustment for wear or play; Wear indicators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0657Construction or details of the socket member the socket member being mainly made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/068Special features relating to lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/122Mounting of torsion springs
    • B60G2204/1224End mounts of stabiliser on wheel suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/416Ball or spherical joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/66Acetals, e.g. polyoxymethylene [POM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/05Vehicle suspensions, e.g. bearings, pivots or connecting rods used therein

Definitions

  • the present invention relates to a stabilizer link provided in a vehicle suspension device.
  • a vehicle is provided with a suspension device and a stabilizer device.
  • the suspension device includes an oil damper and a compression coil spring, and reduces an impact transmitted from the road surface to the vehicle body.
  • the stabilizer increases the roll rigidity (stiffness against torsion) of the vehicle body using a restoring force resulting from torsional deformation of the bar.
  • the suspension device and the stabilizer device are connected via a stabilizer link.
  • the stabilizer link is configured such that a connection portion fixed to the suspension device and a connection portion fixed to the stabilizer device are arranged at both ends of a solid or hollow support bar.
  • the connecting portions disposed at both ends of the support bar each have a ball joint structure, and include a ball stud and a housing that accommodates the ball stud.
  • the housing which comprises a connection part is integrally attached to the both ends of a support bar.
  • the housing is a cup-shaped member in which the ball stud sphere (ball portion) is slidably accommodated.
  • a resin support member (ball sheet) is accommodated inside the housing.
  • the ball seat is slidably accommodated in the ball portion of the ball stud.
  • the ball stud freely swings and rotates as the ball part freely slides inside the ball seat.
  • the suspension device and the stabilizer device are movably connected because the connecting portions at both ends of the stabilizer link have a ball joint structure.
  • the frictional force between the ball portion and the ball seat be managed at a low set value.
  • the ball sheet that accommodates the ball portion is made of resin. Therefore, the dimensional variation during molding is large, and it is not easy to manage the frictional force between the ball portion and the ball seat.
  • the operating characteristics between the suspension device and the stabilizer affect the vehicle's steering stability, steering smoothness, and riding comfort. For example, if the torque during the swinging and rotating operations of the ball stud is large, the operation between the suspension device and the stabilizer device becomes stiff, causing problems such as lack of smoothness and reduced ride comfort. Further, when the tightening allowance between the ball portion and the ball seat is small, the friction becomes small, but rattling (elastic lift) occurs between the ball portion and the ball seat. Such rattling causes noise and instability of the ride comfort, so that when the rattling occurs, the vehicle quality deteriorates.
  • the stabilizer link is a ball joint component that connects the stabilizer, the strut, the arm, and the like. As the vehicle suspension device strokes, the stabilizer link swings and its characteristics are defined as swing torque and rotational torque.
  • the ball sheet is a resin part and is manufactured by injection molding. Since the ball seat is thick in the axial direction of the ball stud and the upper meat is thin, the outer diameter of the ball seat is not constant due to the effect of heat shrinkage during molding, and the lower side narrows and the upper side widens Tapered shape. That is, the flange part is formed in a shape in which the opening side of the main body part spreads outward. On the other hand, since the inner diameter of the housing into which the ball seat is inserted is straight in the vertical direction in the axial direction of the ball stud, the contact between the ball seat and the housing is localized (local) as the tightening margin decreases. There is a problem that the elastic lift increases.
  • the ball joint portion (connecting portion) is loose, which may lead to abnormal noise during vehicle travel.
  • This play reduces the accurate dynamic characteristics of the stabilizer link system.
  • the elastic lift promotes the mutual wear of parts, and abnormal noise is generated and the dynamic characteristics of the stabilizer link system with poor accuracy are further increased. There is a limit to torque down.
  • the present invention has been devised in view of the above-described actual situation, and can effectively prevent rattling between the ball stud sphere and the support member provided in the housing and slidably receiving the sphere.
  • the purpose of the present invention is to provide a stabilizer link that can achieve low torque during the swinging and rotating operations of the stud.
  • the stabilizer link of the first aspect of the present invention has connecting portions disposed at both ends of the arm portion, and one of the connecting portions is connected to the first structure and the other of the connecting portions.
  • the stabilizer is connected to a second structure, and at least one of the connection parts has a ball joint structure, and the connection part of the ball joint structure is the first structure or the second structure.
  • the ball stud has a housing for swingably and rotatably supporting a ball stud, and the ball stud has a stud portion extending from the spherical portion, and the housing can slide the spherical portion into a spherical space.
  • the ball stud is supported by a support member that is housed in an opening, and the support member is opposed to the opening and an opening in which the spherical space is opened on the side where the stud is disposed.
  • a concave groove is formed in a circular shape on both sides or one side in the central axis direction of the maximum inner diameter portion with the central axis of the spherical space toward the center.
  • the wall surface on which the recording body portion of the spherical space of the support member slides has the central axis of the spherical space from the opening side toward the lubricant receiving portion as an axis. Since the concave grooves are formed on both sides or one side of the maximum inner diameter portion in the central axis direction, the torque of the ball stud can be reduced while supporting the ball stud.
  • the stabilizer link according to a second aspect of the present invention is the stabilizer according to the first aspect of the present invention, wherein the concave groove has a torque required for sliding the spherical portion in the spherical space except for the end portion of the wall surface. It is provided in a region larger than the wall surface region.
  • the concave groove is provided in a region where the torque required to slide the spherical body portion in the spherical space is larger than other wall surface regions except for the end of the wall surface. Even if a concave groove is formed in a narrow area, the torque can be reduced. Since the torque can be effectively reduced, the concave groove can be a relatively narrow region, and the ball stud can be reliably supported.
  • the size of the concave groove is such that the torque required to slide the spherical portion in the spherical space is 0.5 Nm or less. It is set to be.
  • the size of the concave groove is set so that the torque required to slide the spherical portion in the spherical space is 0.5 Nm or less.
  • the torque can be set to a desired low torque.
  • connection portions are disposed at both ends of the arm portion, and one of the connection portions is connected to the first structure, and the other connection portion is connected to the second structure.
  • a stabilizer link that is connected and at least one of the connection portions has a ball joint structure, and the connection portion of the ball joint structure includes a ball stud connected to the first structure body or the second structure body.
  • the ball stud has a housing that is swingably and rotatably supported.
  • the ball stud has a stud that extends from the sphere, and the housing has a support member that slidably accommodates the sphere in the spherical space.
  • the ball stud is supported, and the support member has a concave shape formed in an opening portion where the spherical space is opened on a side where the stud portion is disposed, and a bottom portion facing the opening portion.
  • a wall surface on which the spherical space of the support member is formed and the spherical body portion slides, and a central axis of the spherical space from the opening side toward the lubricant receiving part side A concave groove is formed in a circular shape near the maximum inner diameter portion with the axis as the axis, and the size of the concave groove is such that the torque required to slide the spherical portion in the spherical space is 0.5 Nm. It is set to be as follows.
  • the wall surface on which the spherical portion of the spherical space of the support member slides has a maximum inner diameter portion about the central axis of the spherical space from the opening side toward the lubricant receiving portion.
  • a concave groove is formed in the vicinity, and the size of the groove is set so that the torque required to slide the spherical portion in the spherical space is set to 0.5 Nm or less.
  • the swinging torque and rotational torque of the stud can be set to a desired low torque.
  • the sliding area with the body portion of the wall surface forming the spherical space is 38.about the area where the spherical space is a total of 63 to 75 degrees around the center of the spherical space. Since the region is 5% or more, the ball stud can be reliably supported.
  • the stabilizer link according to the sixth aspect of the present invention is the distance between the concave edge and the edge of the spherical space on which the spherical body part slides in the first, second, or fourth aspect of the present invention. Is 0.5 mm or more.
  • the sixth aspect of the present invention it is possible to reliably support the spherical portion of the ball stud with the support member. Further, when the die is removed from the spherical space of the support member, it is possible to suppress the lack of the support member that forms the spherical space.
  • the stabilizer link according to a seventh aspect of the present invention is the stabilizer according to any one of the first, second, and fourth aspects, wherein the end of the groove is at least 50 degrees with respect to the normal of the wall surface of the spherical space. Is connected to the wall surface with a sloped surface.
  • the end of the groove is connected to the wall surface with a surface having an inclination of 50 degrees or more with respect to the normal line of the wall surface of the spherical space, when forming the support member, Die cutting can be performed smoothly.
  • the depth of the concave groove is 0.08 mm to 0.25 mm.
  • the function of the concave groove is not impaired when the support member is deformed. Moreover, the strength of the support member can be ensured.
  • the stabilizer link according to a ninth aspect of the present invention is the stabilizer according to any one of the first, second, and fourth aspects, wherein the spherical portion has an axial end of the central axis of the stud portion in the spherical space. Don't get in.
  • the ball stud can smoothly operate the ball stud.
  • the stabilizer link according to a tenth aspect of the present invention is the stabilizer according to any one of the first, second, and fourth aspects, wherein the support member is made of a thermoplastic resin, the support member is injection-molded, and the injection molding is performed. Sometimes the groove is formed.
  • the support member is made of a thermoplastic resin, and the support member is injection-molded, and the groove is formed at the time of injection molding, the formation of the groove is easy.
  • rattling between the ball stud sphere portion and the support member provided in the housing and slidably receiving the ball portion can be effectively suppressed, and the ball stud swinging operation and rotation operation can be suppressed. It is possible to provide a stabilizer link that can achieve a low torque at the time.
  • the perspective view which shows the state in which a stabilizer link connects a suspension damper and a torsion bar.
  • the disassembled perspective view which shows the state which decomposed
  • the longitudinal cross-sectional view of the ball seat which shows the state by which the ball
  • the figure which shows the relationship between the diameter of the inner surface of the main-body part of a housing, and the outer diameter of a ball seat.
  • the graph which shows the relationship between the interference of the outer surface of a ball seat and the inner surface of the main-body part of a housing, and the swing torque of a ball stud.
  • the graph which shows the relationship between the fastening allowance of the outer surface of a ball seat and the inner surface of the main-body part of a housing, and an elastic lift.
  • the longitudinal cross-sectional view of the ball sheet which shows the internal structure of the ball sheet in which the grease groove
  • Sectional drawing which shows the inside of the state which the ball stud rock
  • the conceptual diagram which shows the center offset of the inner surface of a ball seat.
  • the graph which shows the relationship between the percentage which the ball
  • the schematic diagram which shows the equator, the longitude, and the latitude of the ball
  • the graph which shows the contact surface pressure per unit longitude when a ball sheet contacts the ball
  • FIG. 12 is a graph showing the contact surface pressure per unit latitude when the ball sheet is in contact with the ball portion of the ball stud shown in FIG. 11 without a gap, by integrating (adding) the angle from the equator.
  • the graph which shows qualitatively the rotational torque of each latitude of the ball
  • the longitudinal cross-sectional view which shows the internal structure of the ball seat of this embodiment.
  • FIG. 18B is a cross-sectional view taken along the line II-II in FIG. 18B showing the groove of the ball sheet.
  • FIG. 21B is a cross-sectional view taken along the line IV-IV in FIG. 21B showing the groove of the ball seat.
  • FIG. 1 is a perspective view showing a state in which a stabilizer link according to an embodiment of the present invention connects a suspension damper and a stabilizer.
  • the suspension device 3 includes a coil spring 3a and a suspension damper 3b.
  • the suspension damper 3b supports the wheel W to be rotatable.
  • the suspension damper 3b and the coil spring 3a buffer the impact applied to the vehicle body from the wheel W.
  • the suspension damper 3b is attached to a vehicle body (not shown) via a coil spring 3a. Then, the vibration transmitted to the vehicle body by the viscous damping force at the time of expansion / contraction of the suspension damper 3b and the elastic force of the coil spring 3a is attenuated by the suspension device 3.
  • a stabilizer 2 is connected between the left and right suspension devices 3.
  • the stabilizer 2 increases the roll rigidity (stiffness against torsion) of the vehicle body and suppresses rolling of the vehicle.
  • the stabilizer 2 includes a torsion bar 2a and a pair of arms 2b and 2b extending in a U-shape from both ends of the torsion bar 2a.
  • the stabilizer 2 is composed of a rod-like spring member that is appropriately bent according to the shape of the vehicle.
  • the stabilizer 2 connects the two suspension dampers 3b and 3b that respectively support the two wheels W and W facing each other via the stabilizer links 1 of the embodiment.
  • One end portion of one arm portion 2b of the stabilizer 2 is connected to one end portion of the torsion bar 2a, while the other end portion of the one arm portion 2b is connected to one connection portion 1b of the stabilizer link 1. .
  • the other connecting portion 1b of the stabilizer link 1 is connected to the suspension damper 3b.
  • one end of the other arm 2b of the stabilizer 2 is continuous with the other end of the torsion bar 2a, while the other end of the other arm 2b is connected to one connection 1b of the stabilizer link 1. Is done.
  • the other connecting portion 1b of the stabilizer link 1 is connected to the suspension damper 3b.
  • the torsion bar 2a extends in a direction from one suspension damper 3b toward the other suspension damper 3b.
  • the arm portion 2b is displaced and twisted via the stabilizer link 1 due to a difference in expansion / contraction amount of the two suspension dampers 3b and 3b, such as when the vehicle turns.
  • the torsion bar 2a is restrained from rolling by a torsional elastic force that acts to restore the twist.
  • FIG. 2 is an exploded perspective view showing a state in which the part I of FIG. 1 is disassembled.
  • the stabilizer link 1 includes a rod-like support bar 1a and a connecting portion 1b. Two connecting portions 1b are disposed at both ends of the support bar 1a.
  • the support bar 1a is a bar-shaped member made of, for example, solid bar steel.
  • FIG. 3 is a longitudinal cross-sectional view of a connecting portion of the stabilizer link.
  • a ball stud 10 is supported on the connecting portion 1b so as to be swingable and rotatable.
  • the ball stud 10 is accommodated in the housing 11 of the connecting portion 1b.
  • the connecting portion 1 b is provided with a dust boot 13 for preventing foreign matter from entering the housing 11.
  • the ball stud 10 supported by one connection part 1b is fastened and fixed to the bracket 3c of the suspension damper 3b (refer FIG. 2). Further, the ball stud 10 provided in the other connecting portion 1b is fastened and fixed to the arm portion 2b of the stabilizer 2.
  • the bracket 3c is attached to the suspension damper 3b by spot welding or the like.
  • the bracket 3c has a fixing flat portion extending to face the arm portion 2b side of the stabilizer 2 (the center side of the vehicle (not shown)).
  • a mounting hole 3c2 is opened in the flat surface portion 3c1 of the bracket 3c.
  • the stud portion 10 s of the ball stud 10 is formed with a flange portion 10 a spreading around. Further, a male screw 10n is formed on the tip side of the stud portion 10s from the flange portion 10a. Therefore, in the ball stud 10, the stud portion 10s is inserted through the mounting hole 3c2 of the bracket 3c up to the position of the flange portion 10a spreading around. Then, the nut N1 is screwed into the male screw 10n screwed into the stud portion 10s of the ball stud 10 inserted through the mounting hole 3c2, and the ball stud 10 is fixed to the suspension damper 3b.
  • the vicinity of the distal end portion 2b1 of the arm portion 2b of the stabilizer link 1 is plastically deformed into a flat shape, and an attachment hole 2b2 is provided therethrough.
  • the tip 2b1 of the arm portion 2b of the stabilizer link 1 and the vicinity thereof are plastically deformed in a planar shape facing the suspension damper 3b, and a mounting hole 2b2 is opened in the tip 2b1.
  • the stud portion 10s is inserted through the mounting hole 2b2 of the arm portion 2b of the stabilizer 2 up to the position of the flange portion 10a.
  • the nut N2 is screwed into the male screw 10n screwed into the stud portion 10s of the ball stud 10 inserted through the mounting hole 2b2, and the ball stud 10 is fixed to the arm portion 2b of the stabilizer 2.
  • the stabilizer link 1 is fixed to the suspension damper 3b and the arm portion 2b of the stabilizer 2 via the ball studs 10 provided at both ends of the support bar 1a.
  • the ball stud 10 is supported by the connecting portion 1b of the stabilizer link 1 so as to be swingable and rotatable. Therefore, the stabilizer link 1 is movable with respect to the suspension damper 3b and the torsion bar 2a.
  • the stabilizer link 1 is a member connected to the stabilizer 2 and the suspension device 3.
  • the stabilizer link 1 has the connecting portions 1b disposed at both ends of the support bar 1a.
  • the connecting portion 1b has a cup-shaped housing 11 in which the ball portion 10b of the ball stud 10 is accommodated.
  • the housing 11 is attached to both ends of the support bar 1a by resistance welding or the like.
  • the housing 11 is made of a steel material such as carbon steel for mechanical structure as a material, and a ball sheet 12 of a resin support member is accommodated inside.
  • the ball stud 10 has a substantially spherical ball portion 10b and a stud portion 10s extending in one direction from the ball portion 10b.
  • ball part 10b is stored in ball sheet 12 of connecting part 1b.
  • the ball portion 10b of the ball stud 10 is a true sphere or a shape close to a true sphere.
  • the upper part of the ball part 10b is connected to the ball stud 10s, and the lower part of the ball part 10b is limited in shape by securing the volume of the grease chamber 12c.
  • the ball portion 10b of the ball stud 10 is formed into a true sphere or a shape close to a true sphere within an allowable range.
  • FIG. 4 is a longitudinal sectional view of the ball sheet 12 showing a state in which the ball portion of the ball stud 10 is inserted into the ball sheet 12.
  • the ball sheet 12 is formed by injection molding using a resin.
  • the ball sheet 12 is made of a thermoplastic resin such as POM (Polyacetal), PA6 (Polyamide6), PA66 (Polyamide66).
  • the ball sheet 12 is formed into a tapered shape in which the outer diameter of the flange portion 12b is larger than the outer diameter of the main body portion 12a by molding shrinkage.
  • the resin ball sheet 12 has a main body portion 12a and a flange portion 12b.
  • the main body 12a is accommodated in the housing 11 (see FIG. 3).
  • the main body portion 12a of the ball seat 12 has a cup shape in which the ball portion 10b of the ball stud 10 is tightly fitted.
  • the main body 12a of the resin ball sheet 12 is fixed to the housing 11 by heat caulking. That is, the fixing boss 12o is formed on the main body 12a. The boss 12 o passing through the hole at the bottom of the housing 11 is melted to fix the ball seat 12 in the housing 11. The boss 12o is pressurized and welded in a heated state.
  • a spherical space 12k of a spherical space is formed inside the main body portion 12a of the ball seat 12.
  • the ball portion 10b of the ball stud 10 is slidably accommodated in the spherical space 12k.
  • a stud portion 10s formed integrally with the ball portion 10b operates together with the ball portion 10b.
  • the stud portion 10s is subjected to a sliding torque accompanying the sliding of the ball portion 10b in the spherical space 12k. Therefore, in the ball stud 10 accommodated in the ball seat 12, the stud portion 10s can swing and / or rotate as the ball portion 10b slides.
  • the housing 11 supports the ball stud 10 so as to be swingable and / or rotatable.
  • the ball stud 10 having the stud portion 10s and the ball portion 10b is provided in the connection portion 1b so as to be swingable and rotatable, thereby forming a ball joint structure.
  • a swinging torque is applied to the stud portion 10s
  • a rotational torque is applied to the stud portion 10s. That is, rocking torque and rotational torque are one aspect of sliding torque.
  • the ball portion 12b is configured such that axial ends (edges 12n1, 12n2) of the central axis of the stud portion 12s do not enter the spherical space.
  • the direction in which the stud portion 10s extends in the stabilizer link 1 is appropriately determined according to the positional relationship between the suspension damper 3b (see FIG. 2) and the arm portion 2b of the stabilizer 2.
  • the housing 11 has a flange portion 11a and a cup-shaped main body portion 11b.
  • the flange portion 11a is formed such that the opening side of the housing 11 spreads outward.
  • the flange portion 11a of the housing 11 and the flange portion 12b of the ball seat 12 face each other.
  • the edge side of the dust boot 13 is clamped by the flange parts 11a and 12b which mutually oppose.
  • the dust boot 13 is a hollow member made of an elastic body such as rubber.
  • the dust boot 13 prevents foreign matter (dust etc.) from entering the housing 11 or the ball seat 12.
  • the dust boot 13 is disposed around the ball stud 10 between the flange portion 10 a and the flange portion 11 a of the housing 11.
  • the dust boot 13 has two openings 13a1 and 13a2 at opposing positions.
  • One opening 13a1 is formed with its periphery bent inward, and this part is sandwiched between opposing flanges 11a and 12b.
  • the other opening 13 a 2 of the dust boot 13 is fixed in close contact with the stud portion 10 s of the ball stud 10.
  • the dust boot 13 has a shape that does not hinder the movement of the stud portion 10s swinging and rotating.
  • the dust boot 13 preferably has a shape that bulges outward.
  • the dust boot 13 has a shape that bulges outward and covers the stud portion 10s with a deformation allowance. Therefore, the dust boot 13 is easily deformed according to the operation of the swinging and / or rotating stud portion 10s. Thereby, the ball stud 10 can perform a smooth swinging operation and rotating operation without being obstructed by the dust boot 13.
  • FIG. 5 is a diagram showing the relationship between the diameter of the inner surface 11b1 (see FIG. 3) of the main body 11b of the housing 11 and the outer diameter of the ball seat 12.
  • the horizontal axis in FIG. 5 indicates the diameter dimension
  • the vertical axis in FIG. 5 indicates the height dimension from the bottom surface 11 b 2 of the housing 11.
  • the solid line indicates the position of the inner surface 11 b 1 of the main body portion 11 b of the housing 11
  • the broken line indicates a ball seat having a large tightening margin between the inner surface 11 b 1 of the main body portion 11 b of the conventional housing 11 and the outer surface 12 g of the ball seat 12.
  • the outer diameter is shown, and the thick solid line shows the outer diameter of the low-torque ball seat 12 with less interference between the inner surface 11b1 of the main body 11b of the housing 11 and the outer surface 12g (see FIG. 3) of the ball seat 12.
  • the diameter (inner diameter) of the inner surface 11b1 of the main body 11b of the housing 11 is a straight shape
  • the contact between the inner surface 11b1 of the housing 11 and the outer surface of the ball seat becomes local as the tightening margin decreases.
  • the interference between the inner surface 11b1 of the main body 11b of the housing 11 and the outer surface 12g of the ball seat 12 is increased (broken line in FIG. 5)
  • the contact between the inner surface 11b1 of the housing 11 and the outer surface of the ball seat is improved. Since the ratio that the ball seat 12 is pressed inward increases, the torque when the ball stud 10 swings increases.
  • FIG. 6 is a graph showing the relationship between the tightening allowance between the outer surface of the ball seat 12 and the inner surface of the main body of the housing and the swing torque of the ball stud.
  • the horizontal axis represents the allowance between the outer surface 12g of the ball seat 12 and the inner surface 11b1 of the main body 11b of the housing 11, and the vertical axis represents the swing torque of the ball stud 10.
  • the swing torque of the ball stud 10 decreases.
  • FIG. 7 is a graph showing the relationship between the elastic lift and the tightening allowance between the outer surface of the ball seat and the inner surface of the main body of the housing.
  • the elastic lift that is, the elastic lift (backlash) of the ball seat 12 with respect to the inner surface 11b1 of the main body portion 11b of the housing 11 increases. To do.
  • FIGS. 8A and 8B are diagrams showing the presence or absence of an elastic lift before and after the durability test.
  • FIG. 8A shows the relationship between the deflection of the outer surface of the ball sheet before the durability test and the load
  • FIG. 8B shows the relationship between the deflection of the outer surface of the ball sheet after the durability test and the load.
  • 8A and 8B indicate the amount of deflection of the outer surface 12g of the ball seat 12
  • the vertical axes in FIGS. 8A and 8B indicate the load.
  • the broken lines in FIGS. 8A and 8B indicate the case where the allowance between the inner surface 11b1 of the body 11b of the housing 11 and the outer surface 12g of the ball seat 12 is normal, that is, the swing torque and rotational torque of the ball stud 10 are normal. Show.
  • FIGS. 8A and 8B show the case where the allowance between the inner surface 11b1 of the main body 11b of the housing 11 and the outer surface 12g of the ball seat 12 is small, that is, the swing torque and rotational torque of the ball stud 10 are low. .
  • FIG. 9 is a longitudinal sectional view of the ball sheet showing the internal structure of the ball sheet in which grease grooves are formed.
  • the ball sheet 12 is formed with eight grease grooves 12r in which grease stays in the direction of the axis J1 of the ball sheet 12.
  • the width of the grease groove 12r is about 2 mm.
  • An opening 12 i is provided above the inside of the ball seat 12 so that the ball stud 10 can swing and rotate.
  • the opening 12i is at a position where the angle ⁇ 0 from the horizontal center line J2 of the ball seat 12 is, for example, about 23 ° to about 30 °.
  • a grease chamber 12 c is provided below the inside of the ball seat 12.
  • the grease chamber 12c is at a position where the angle ⁇ 1 from the center line J2 of the ball seat 12 is about 40 ° to about 45 °.
  • FIG. 10 is a cross-sectional view showing the inside of the connecting portion of the stabilizer link in which the ball stud is in an equilibrium state (set state).
  • FIG. 11 is a cross-sectional view showing the inside of the ball stud swinging state at the stabilizer link connecting portion. 10 and 11, the housing 11, the ball seat 12, and the dust boot 13 are shown in cross section.
  • the ball portion 10b of the ball stud 10 receives a surface pressure as indicated by a plurality of arrows from the inner surface 12n of the ball sheet 12 that comes into contact.
  • the ball stud 10 swings as shown in FIG. 11 with respect to the stabilizer link 1 due to the sliding force acting between the ball portion 10b of the ball stud 10 and the inner surface 12n of the ball seat 12 that contacts the ball stud 10.
  • this frictional force becomes a swing torque when the ball stud 10 swings and a rotational torque when it rotates.
  • the sliding torque generated by the frictional force appears as swinging torque and rotational torque.
  • FIG. 12 is a conceptual diagram showing the center offset of the inner surface of the ball seat.
  • the inner surface 12nu on the opening side has the center O1 on the lower side
  • the lower inner surface 12ns located on the opposite side of the opening has the center O2 on the upper side.
  • the inner surface 12n of the ball seat 12 has an end portion side (the opening side of the ball seat 12 or the opposite side of the opening) on the equator (the opening portion 12i (see FIG. 10) side of the ball seat 12) and the grease chamber on the opposite side. 12c (refer to FIG. 10)
  • the internal pressure is higher than the point where the diameter with respect to the axis J1 that connects 12c is maximum.
  • the maximum surface pressure distribution is given to the upper and lower ends by the center offset of FIG.
  • the surface pressure on the ball portion 10b generated by the tightening allowance above the equator is generated as a reaction force on the lower portion of the ball seat 12 from the balance of static force, and the edge 12n1 (
  • the ball position is determined by the surface pressure distribution having the maximum surface pressure at the upper and lower two lines of the grease chamber edge 12n2 (see FIG. 9).
  • FIG. 13 is a graph showing the relationship between the percentage of contact between the ball portion of the ball stud and the inner surface of the ball seat, and the swing torque and elastic lift when the ball stud swings.
  • the horizontal axis in FIG. 13 represents the percentage of the contact ratio between the ball portion 10b of the ball stud 10 and the inner surface 12n of the ball seat 12, and the vertical axis in FIG. 10 represents the swing torque and the magnitude of the elastic lift. Note that the percentage of 100% on the horizontal axis is a case where there is no space area (including the grease groove 12r) in the area where the inner surface 12n of the ball seat 12 and the ball portion 10b are in contact with each other, as shown in FIG.
  • the elastic lift decreases as the swing torque of the ball stud 10 increases due to an increase in the ratio (percentage) of contact between the ball portion 10b of the ball stud 10 and the inner surface 12n of the ball seat 12.
  • the elastic lift increases when the swinging torque of the ball stud 10 decreases due to the decrease in the contact ratio.
  • FIG. 14 is a schematic diagram showing the equator, longitude, and latitude of the ball portion of the ball stud.
  • the equator of the ball portion 10b of the ball stud 10 refers to a circumferential portion connecting the portions having the longest radius in the direction perpendicular to the stud portion 10s of the spherical ball portion 10b.
  • the longitude of the ball portion 10b is a circumferential line perpendicular to the equator of the ball portion 10b and corresponds to the longitude set with respect to the earth.
  • the latitude of the ball portion 10b is a circumferential line parallel to the equator of the ball portion 10b and corresponds to the latitude set with respect to the earth.
  • FIG. 15 is a graph showing the contact surface pressure per unit longitude when the ball sheet contacts the ball portion of the ball stud shown in FIG.
  • the horizontal axis of FIG. 15 takes the equator at 90 degrees, the angle decreases as it approaches the center of the opening 12 i at 0 degrees, and 48 degrees indicates the upper end contact point with the ball seat 12.
  • the angle increases as the distance from the center of the opening 12i increases, and 115 degrees indicates the lower end contact point with the ball seat 12.
  • the vertical axis in FIG. 15 indicates the level of surface pressure.
  • the contact surface pressure per unit longitude was almost “0” at the equator. As the distance from the equator approaches the stud portion 10s, the line increases almost linearly. On the other hand, the distance from the equator increases to 100 degrees as the distance from the stud section 10s increases.
  • FIG. 16 is a graph showing the contact surface pressure per unit latitude when the ball sheet contacts the ball portion of the ball stud shown in FIG. 10 without a gap, integrated (added) for each latitude.
  • the horizontal axis of FIG. 16 shows the equator at 90 degrees, the angle decreases as it approaches the center of the opening 12i at 0 degrees, and 48 degrees indicates the upper end contact point (edge 12n1 in FIG. 9) to the ball seat 12.
  • the angle increases as the distance from the center of the opening 12i increases, and 115 degrees indicates the lower end contact portion (edge 12n2 in FIG. 9) with the ball seat 12.
  • the vertical axis in FIG. 16 indicates the level of surface pressure.
  • the integrated value of the surface pressure at the unit latitude was almost “0” at the equator latitude.
  • the curve increases in a substantially quadratic curve.
  • the distance from the equator increases to 100 degrees as the distance from the stud section 10s increases.
  • friction force on the outer surface of the ball portion 10b surface pressure ⁇ friction coefficient (1) It can be expressed as Also, Rotational torque of ball stud 10 ⁇ Friction force around axis J1 on outer surface of ball part 10b (2) Oscillating torque ⁇ Friction force of the axis J1 in the falling direction on the outer surface of the ball part 10b There is a relationship.
  • FIG. 17 is a graph qualitatively showing the rotational torque and swing torque at each latitude of the ball portion of the ball stud shown in FIG.
  • the horizontal axis in FIG. 17 indicates the latitude of the ball portion 10b of the ball stud 10 in FIG. 14, and the vertical axis in FIG. 17 indicates the level of torque.
  • the swing torque when the stud portion 10s of the ball stud 10 swings is represented by the product of the surface pressure and the radius r (see FIG. 14) of the ball portion 10b.
  • the rotational torque when the ball stud 10 rotates around the axis J1 (see FIG. 14) of the stud portion 10s is the product of the surface pressure and the radius ri (see FIG. 14) from the axis J1 of the stud portion 10s to each latitude. It is expressed as an integral value.
  • the swing torque (solid line) is almost “0” at 90 degrees on the equator. Then, the swing torque increases from the equator 90 degrees toward the stud portion 10s of the ball stud 10. On the other hand, the swing torque increases from 90 degrees on the equator to approximately 102 degrees as it moves away from the ball stud 10, and rapidly increases after exceeding approximately 102 degrees.
  • the rotational torque (broken line) is almost “0” at 90 degrees on the equator. Then, the rotational torque increases from 90 degrees on the equator as it approaches the stud portion 10s of the ball stud 10. On the other hand, the rotational torque increases from 90 degrees on the equator to approximately 102 degrees as the distance from the ball stud 10 increases, and rapidly increases after exceeding approximately 102 degrees.
  • both the swing torque and the rotational torque increase as the distance from the equator 90 degrees increases, so that the ball sheet 12 is removed at a position away from the equator 90 degrees, When a space is created between them, the torque of the ball stud 10 can be effectively reduced.
  • FIG. 18A and 18B are views showing the structure of the ball seat 12 of the present embodiment.
  • FIG. 18A is a longitudinal sectional view showing the internal structure of the ball seat of the embodiment
  • FIG. 18B is a bottom view of the ball seat of the embodiment.
  • 19 is a cross-sectional view taken along the line II-II of FIG. 18B showing the groove of the ball sheet.
  • the groove portions 12m1 and 12m2 are formed at the two locations away from the equator 90 degrees by making the ball seat 12 thin at the contact portions with the ball portion 10b of the ball stud 10 to create a space. Then, the torque of the ball stud 10 is reduced.
  • the recessed groove portions 12m1 and 12m2 are formed by offsets in which the center C of the ball portion 10b of the ball stud 10 is shifted.
  • the ball sheet 12 is formed by injection molding.
  • the grooves 12m1 and 12m2 are formed at the time of injection molding.
  • the bottom portions 12mt of the groove portions 12m1 and 12m2 have substantially the same curvature as the ball portion 10b of the ball stud 10, and the center of curvature is deviated from the center of the ball portion 10b. Therefore, even when the inner surface 12n of the ball seat 12 is deformed, a space can be maintained between the ball portions 10b of the ball stud 10 by the groove portions 12m1 and 12m2.
  • the grooves 12m1 and 12m2 may adopt a shape other than a rectangular cross section as long as the space can be maintained when the ball seat 12 is deformed.
  • the sliding area of the inner surface 12n that forms the spherical space 12k excluding the grooves 12m1 and 12m2 with the ball portion 12b is around the center C of the spherical space 12k, and the spherical space 12k is a total area of 63 to 75 degrees. On the other hand, it is good to set it as a 38.5% or more area
  • the sliding area is limited by the set torque value and the elastic lift.
  • the ball sheet 12 has a cup-shaped main body 12a and a flange 12b formed around the opening of the main body 12a. Below the main body 12a, three bosses 12o for heat caulking the housing 11 are extended. On the inner surface 12n of the main body 12a, as shown in FIG. 15 (b), eight grease grooves 12r in which grease is retained are formed in the direction of the axis J1 of the ball seat 12. For example, the width of the grease groove 12r is about 2 mm.
  • circumferentially recessed grooves 12m1 and 12m2 for reducing the torque of the ball stud 10 are disposed at the upper and lower positions across the equator of the inner surface 12n of the main body 12a.
  • the grooves 12m1 and 12m2 are shaped to circulate around the axis J1 of the ball seat 12.
  • the grooves 12m1 and 12m2 may be provided intermittently.
  • the surface pressure distribution Pai by latitude when the ball sheet 12 does not have the grooves 12m1 and 12m2 is as shown in FIG. From FIG. 16, the rotational torque Tr is multiplied by the radius ri (see FIG. 14) for each latitude.
  • Tri Pai ⁇ ri (5) It is expressed as The swing torque To is multiplied by the radius r of the ball 10b.
  • Toi Pai ⁇ r (6) It is expressed as
  • the rotational torque distribution Tri and the swing torque distribution Toi are as shown in FIG.
  • the size s1 of the upper and lower ends of the ball seat 12 (see FIG. 19) is such that the end portions 12t1 and 12t2 are about 1 mm from the viewpoint of supporting the ball portion 10b of the ball stud 10 by injection molding and the upper and lower end line contact surface pressure. Leave a face.
  • the size s1 of the upper and lower ends of the ball seat 12 is preferably 0.5 mm or more.
  • FIG. 20 is a diagram showing the locations where the grooves of the present embodiment are provided for the rotational torque and swing torque of each ball latitude of the ball portion of FIGS. 18A and 18B.
  • the groove 12m1 is a region from 56 ° to 76 °
  • the groove 12m2 is a region from 99 ° to 107 °.
  • the groove parts 12m1 and 12m2 shall represent a groove part area
  • the depth f of the groove portions 12m1 and 12m2 is 0 from the internal pressure when the ball portion 10b of the ball stud 10 is inserted into the ball seat 12 during assembly, the tensile load due to male mold release during molding, and the ease of male male mold release. It is set to about 1mm to 0.2mm.
  • the depth f of the grooves 12m1 and 12m2 may be 0.08 mm to 0.25 mm, but is most preferably about 0.1 mm to 0.2 mm.
  • the upper and lower end portions of the groove portions 12m1 and 12m2 are formed on the spherical inner surface of the ball seat 12 due to the ease of male mold removal during molding and the contact continuity of the groove portions 12m1 and 12m2 from the spherical surface portion (inner surface 12n).
  • the angle ⁇ 3 with respect to the normal line of 12n is continuous with the grooves 12m1 and 12m2 with a taper (inclined surface) having an inclination of at least 50 degrees or more.
  • a taper (inclined) surface having an inclination of an angle ⁇ 3 of about 50 degrees or more with respect to a tangential perpendicular to the ball part 10b is formed. Since the ball sheet 12 is formed by injection molding, the taper (inclined) surface is provided for removing the mold from the opening of the ball sheet 12, and the angle ⁇ 3 is preferably 50 degrees or more.
  • the swing torque of the ball stud 10 with respect to the stabilizer link 1 is set to 0.5 Nm or less, and the rotational torque is set to 0.5 Nm or less.
  • the ball seat 12 of the embodiment By adopting the ball seat 12 of the embodiment, the ball seat 12 in the region effective for the rotational torque and swing torque is adjusted so that the swing torque and rotational torque of the ball stud are adjusted to desired values. can do.
  • the ball seat 12 of the reference example is a connecting portion of the stabilizer link 1 when a space is formed in the vicinity of the equator of the ball portion 10b of the ball stud 10 as shown in FIGS. 21A and 21B.
  • 21A and 21B are diagrams showing the structure of the ball seat 12 of the reference example.
  • FIG. 21A is a longitudinal sectional view showing the internal structure of the ball seat of the reference example
  • FIG. 21B is a bottom view of the ball seat.
  • 22 is a cross-sectional view taken along the line IV-IV in FIG. 21B showing the groove of the ball sheet.
  • FIG. 23 is a diagram showing a location where a groove of a reference example is provided with respect to the rotational torque and swing torque of each latitude of the ball portion of the ball stud of FIGS. 21A and 21B.
  • the ball sheet 12 of the reference example has a groove 12m3 near the equator of the inner surface 12n of the spherical portion of the ball sheet 12 (the place having the maximum diameter with respect to the axis J1 connecting the opening 12i of the ball sheet 12 and the center of the grease chamber 12c). Is formed in a circular shape. Specifically, the groove 12m3 is an area of 78 ° to 103 ° when the opening 12i side is 0 ° (see FIG. 23). The groove 12m3 is formed in the same manner as the grooves 12m1 and 12m2 of the embodiment. That is, the ball sheet 12 is formed by injection molding. The groove 12m3 is formed at the time of injection molding.
  • the sliding area of the inner surface 12n that forms the spherical space 12k excluding the groove 12m3 with the ball portion 12b is around the center C of the spherical space 12k, and the spherical space 12k has a total area of 63 to 75 degrees. 38.5% or more of the region.
  • the sliding area is limited by the set torque value and the elastic lift.
  • the depth f of the groove portion 12m3 is 0.1 mm to 0 in view of the insertion internal pressure of the ball portion 10b of the ball stud 10 to the ball seat 12 during assembly, the tensile load due to male mold release during molding, and the ease of mold male mold release. It is set to about 2 mm.
  • the depth f of the groove 12m3 may be 0.08 mm to 0.25 mm. The range of about 0.1 mm to 0.2 mm is most desirable.
  • the upper and lower ends of the groove 12m3 are normal to the spherical inner surface 12n of the ball sheet 12 because of the ease of male mold removal during molding and the contact continuity from the spherical surface (inner surface 12n) to the groove 12m.
  • the angle ⁇ 4 with respect to is continuous with the groove 12m with a taper (inclined surface) having an inclination of at least 50 degrees or more. Since the ball sheet 12 is formed by injection molding, the taper (inclined) surface is provided for removing the mold from the opening of the ball sheet 12, and the angle ⁇ 4 is preferably 50 degrees or more.
  • the swing torque of the ball stud 10 with respect to the stabilizer link 1 is set to 0.5 Nm or less, and the rotational torque is set to 0.5 Nm or less.
  • Table 1 shows that when no groove including the grease groove 12r of Comparative Example 1 is provided between the ball sheet 12 and the ball portion 10b of the ball stud 10, when the grease groove 12r of Comparative Example 2 is provided, the grease of the reference example When providing a groove near the equator to reduce the contact area with the groove (see FIGS. 21A and 21B), when disposing two grooves above and below the equator to reduce the contact area with the grease groove of this embodiment (see FIG. 18A).
  • Comparative Example 1 is a case where the grease groove 12r in the axial direction and the circumferential grooves 12m1, 12m2, and 12m3 of this embodiment are not provided.
  • the contact surface area between the ball portion 10b of the ball stud 10 of Comparative Example 1 and the ball sheet 12 is 438.8 mm 2 .
  • Comparative Example 2 is a case where eight grease grooves 12r with a width of 2 mm are provided, and the axially circumferential grooves 12m1, 12m2, and 12m3 of the present embodiment are not provided.
  • the contact surface area between the ball portion 10b of the ball stud 10 of Comparative Example 2 and the ball sheet 12 is 288.4 mm 2 .
  • the rotational torque around the axis of the ball stud 10 of Comparative Example 2 is 383.9 Nmm, and the swing torque at which the ball stud 10 swings is 423.1 Nmm.
  • the equator of the ball sheet 12 (the equator at the point where the diameter around the axis of the axis J1 connecting the opening 12i of the ball sheet 12 and the grease chamber 12c is the largest).
  • a circular equator groove (groove 12m3) is provided nearby.
  • the equator groove of the reference example is formed in a region of 78 ° to 103 ° (see FIG. 23) when the direction of the opening 12i of the axis J1 is 0 degree and the direction of the grease chamber 12c is 180 degrees.
  • the rotational torque around the axis of the ball stud 10 of the reference example is 331.1 Nmm, which is 14% lower than the rotational torque 383.9 Nmm of the comparative example 2.
  • the swing torque at which the ball stud 10 of the reference example swings is 369.6 Nmm, which is 13% lower than the swing torque 423.1 Nmm of the comparative example 2.
  • the equator of the ball sheet 12 (the equator at the largest diameter around the axis of the axis J1 connecting the opening 12i of the ball sheet 12 and the grease chamber 12c).
  • the grooves 12m1 and 12m2 in the embodiment have a region of 56 ° to 76 ° and a region of 99 ° to 107 ° (FIG. 20) when the direction of the opening 12i of the axis J1 is 0 degrees latitude and the direction of the grease chamber 12c is 180 degrees. 2).
  • the rotational torque around the axis of the ball stud 10 of the embodiment is 214.1 Nmm, which is 44% lower than the rotational torque 383.9 Nmm of the comparative example 2, and 35% lower than the rotational torque 331.1 Nmm of the reference example. Is done.
  • the swing torque at which the ball stud 10 of the embodiment swings is 238.3 Nmm, which is 44% lower than the swing torque 423.1 Nmm of Comparative Example 2, and compared with the swing torque 369.6 Nmm of the reference example. Reduced by 35%.
  • the torque and the elastic lift it is possible to suppress the acceleration of wear between components around the stabilizer link 1 during market use. Therefore, the use of a stabilizer link system with poor dynamic characteristics can be suppressed, and a stabilizer link with good dynamic characteristics can be realized. Furthermore, the generation of abnormal noise from around the stabilizer link 1 can be suppressed. As described above, rattling between the ball portion 10b of the ball stud 10 and the ball sheet 12 provided in the housing 11 and slidably receiving the ball portion 10b can be effectively suppressed. The stabilizer link 1 that can achieve a low torque during the dynamic operation and the rotational operation can be realized.
  • the cross-sectional shape may be any cross-sectional shape such as a rectangle or a shape with an arbitrary curvature.
  • the groove portions 12m1, 12m2 of the embodiment and the groove portion 12m3 of the reference example have been described as being formed continuously, but may be provided intermittently (intermittently).
  • the ball seat 12 is accommodated in the housing 11 of the present embodiment, and a spherical space 12 k is formed in the ball seat 12.
  • the spherical space 121 may be formed in the housing 11, and the ball portion 10 b of the ball stud 10 may be accommodated in the spherical space 121. That is, a configuration without the ball seat 12 may be used. If it is such a structure, it can be set as the housing 11 of a simple structure.
  • the stabilizer link 1 (see FIG. 3) is not limited to the configuration in which the support bar 1a is provided with the connection portion 1b having the ball joint structure at both ends.
  • a configuration in which a connection portion 1b having a ball joint structure is provided only at one end of the support bar 1a may be employed.
  • the other end may be provided with a connecting portion of another structure (for example, a ball bush structure).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 本発明のスタビリンク(1)は、接続部(10b)が、第1・第2構造体(2、3b)に連結されるボールスタッド(10)を揺動可能および回転可能に支持するハウジング(11)を有し、ボールスタッド(10)は、球体部(10b)からスタッド部(10s)が延設され、ハウジング(11)は、球形空間(10k)に球体部(10b)を摺動可能に支持部材(12)を有してボールスタッド(10)を支持し、支持部材(12)は、スタッド部(10s)側で球形空間(10k)が開口される開口部(12i)と、開口部(12i)と対向する凹状の潤滑剤受け部(12c)とを有し、支持部材(12)の球形空間(12k)が形成され球体部(10b)が摺動する壁面(12n)には、開口部(12i)の側から潤滑剤受け部(12c)の側への球形空間(12k)の中心軸(J1)を軸とする最大内径部の両側又は片側に、凹溝(12m1、12m2)が形成される。

Description

スタビリンク
 本発明は、車両のサスペンション装置に備わるスタビリンクに関する。
 従来、特許文献1に示すように、車両には、サスペンション装置とスタビライザ装置が備わっている。
 サスペンション装置は、オイルダンパ、圧縮コイルバネを有し、路面から車体に伝わる衝撃を軽減する。
 スタビライザは、バーの捩り変形に起因する復元力を用いて車体のロール剛性(捩れに対する剛性)を高める。
 サスペンション装置とスタビライザ装置は、スタビリンクを介して連結される。スタビリンクは、サスペンション装置に固定される接続部と、スタビライザ装置に固定される接続部とが、中実または中空のサポートバーの両端に配置されて構成される。
 サポートバーの両端に配設される接続部は、それぞれボールジョイント構造であり、ボールスタッドと、このボールスタッドを収容するハウジングとを有している。
 接続部を構成するハウジングは、サポートバーの両端に一体に取り付けられる。ハウジングはカップ状の部材でボールスタッドの球体部(ボール部)が摺動自在に収容される。ハウジングの内側には樹脂製の支持部材(ボールシート)が収容されている。ボールシートは、ボールスタッドのボール部が摺動自在に収容される。
 ボール部がボールシートの内部を自在に摺動することによりボールスタッドが自在に揺動および回転する。このように、スタビリンクの両端の接続部がボールジョイント構造を有することでサスペンション装置とスタビライザ装置が移動自在に接続される。
 ボールスタッドの滑らかな揺動動作および回転動作を確保するためには、ボール部とボールシートの摩擦力が、低い設定値に管理されることが好ましい。ここで、ボール部を収容するボールシートは樹脂製である。したがって、成形に際しての寸法の変動が大きく、ボール部とボールシートの摩擦力を管理することが容易でない。
特開2011-247338号公報
 サスペンション装置とスタビライザとの間の動作特性は車両の操舵安定性や操舵の円滑さ、乗り心地などに影響を与える。例えば、ボールスタッドの揺動動作および回転動作の際のトルクが大きいと、サスペンション装置とスタビライザ装置の間の動作が硬くなり、動きが円滑さに欠ける、乗り心地が低下するなどの問題が生じる。また、ボール部とボールシートの締め代が小さい場合、摩擦は小さくなるが、ボール部とボールシートの間にガタつき(弾性リフト)が発生する。このようなガタつきは騒音、乗り心地の不安定性の要因となるため、ガタつきが発生すると車両品質が低下する。
 スタビリンクは、スタビライザとストラットやアーム類等を連結するボールジョイント部品である。
 車両のサスペンション装置がストロークするのに伴い、スタビリンクは揺回動され、その特性は、揺動トルク、回転トルクと定義づけられる。
 近年、車両乗心地向上を目的として、サスペンションフリクション(サスペンション摩擦)を低減するニーズが高まっている。そのため、サスペンション部品であるスタビリンクの揺動トルク、回転トルクの低トルク化が求められている。
 ボールシートとハウジングの締め代を減少させると、トルクを下げることができるが、同時に、弾性リフトは上昇する問題がある。
 ボールシートは樹脂部品であり、射出成形にて製造される。ボールシートは、ボールスタッドの軸方向に、下側の肉が厚く上側の肉が薄いことから、成形時の熱収縮の影響によりボールシートの外径は一定にならず、下側が狭まり上側が広がるテーパ形状になる。つまり、フランジ部は、本体部の開口側が外方に周囲に広がる形状に形成される。
 一方、ボールシートが内部に嵌入されるハウジングの内径は、ボールスタッドの軸方向に、上下方向にストレート形状であるため、締め代減少に伴い、ボールシートとハウジングの当たりが局部的(局所的)になり、弾性リフトが増大する問題がある。
 これにより、ボールジョイント部(接続部)にガタが発生し、車両走行中の異音につながるおそれがある。このガタは、スタビリンク系の精度のよい動特性を低下させる。また、弾性リフトにより部品相互の損耗が促進され、異音の発生、精度が悪いスタビリンク系の動特性がますます増長される
 そのため、トルクダウンに相反する弾性リフト量の増加により、ボールスタッドのトルクダウンには限界がある。
 本発明は上記実状に鑑み創案されたものであり、ボールスタッドの球体部と、ハウジングに備わって球体部を摺動可能に収容する支持部材との間のガタつきを効果的に抑制でき、ボールスタッドの揺動動作、回転動作の際の低トルクを達成できるスタビリンクの提供を目的とする。
 前記課題を解決するため、第1の本発明のスタビリンクは、アーム部の両端に接続部が配設されて、一方の前記接続部が第1構造体に連結されるとともに、他方の前記接続部が第2構造体に連結され、前記接続部の少なくとも一方がボールジョイント構造になっているスタビリンクであって、前記ボールジョイント構造の接続部は、前記第1構造体又は前記第2構造体に連結されるボールスタッドを揺動可能および回転可能に支持するハウジングを有し、前記ボールスタッドは、球体部からスタッド部が延設され、前記ハウジングは、球形空間に前記球体部を摺動可能に収容する支持部材を有して前記ボールスタッドを支持し、前記支持部材は、前記スタッド部が配置される側で前記球形空間が開口される開口部と、前記開口部と対向する底部に形成される凹状の潤滑剤受け部とを有し、前記支持部材の前記球形空間が形成され前記球体部が摺動する壁面には、前記開口部の側から前記潤滑剤受け部の側に向かう前記球形空間の中心軸を軸とする最大内径部の前記中心軸方向の両側または片側に、凹んだ凹溝が周回状に形成されている。
 第1の本発明によれば、支持部材の球形空間の記球体部が摺動する壁面には、前記開口部の側から前記潤滑剤受け部の側に向かう前記球形空間の中心軸を軸とする最大内径部の前記中心軸方向の両側または片側に、凹んだ凹溝が形成されるので、ボールスタッドを支持しつつ、ボールスタッドの低トルク化が可能である。
 第2の本発明のスタビリンクは、第1の本発明において、前記凹溝は、前記球体部を前記球形空間内で摺動させるのに要するトルクが、前記壁面の端部を除いて他の壁面領域より大きい領域に設けられている。
 第2の本発明によれば、凹溝は、前記球体部を前記球形空間内で摺動させるのに要するトルクが、前記壁面の端部を除いて他の壁面領域より大きい領域に設けられるので、狭い領域に凹溝を形成しても、低トルク化することができる。低トルク化が効果的に図れるので、凹溝は、相対的に狭い領域とでき、ボールスタッドの支持を確実に行うことができる。
 第3の本発明のスタビリンクは、第1または第2の本発明において、前記凹溝の大きさは、前記球体部を前記球形空間内で摺動させるのに要するトルクが、0.5Nm以下になるように設定されている。
 第3の本発明によれば、凹溝の大きさは、前記球体部を前記球形空間内で摺動させるのに要するトルクが、0.5Nm以下になるように設定されるので、ボールスタッドのトルクを所望の低トルクに設定できる。
 第4の本発明のスタビリンクは、アーム部の両端に接続部が配設されて、一方の前記接続部が第1構造体に連結されるとともに、他方の前記接続部が第2構造体に連結され、前記接続部の少なくとも一方がボールジョイント構造になっているスタビリンクであって、前記ボールジョイント構造の接続部は、前記第1構造体又は前記第2構造体に連結されるボールスタッドを揺動可能および回転可能に支持するハウジングを有し、前記ボールスタッドは、球体部からスタッド部が延設され、前記ハウジングは、球形空間に前記球体部を摺動可能に収容する支持部材を有して前記ボールスタッドを支持し、前記支持部材は、前記スタッド部が配置される側で前記球形空間が開口される開口部と、前記開口部と対向する底部に形成される凹状の潤滑剤受け部とを有し、前記支持部材の前記球形空間が形成され前記球体部が摺動する壁面には、前記開口部の側から前記潤滑剤受け部の側に向かう前記球形空間の中心軸を軸とする最大内径部近くに、凹んだ凹溝が周回状に形成され、前記凹溝の大きさは、前記球体部を前記球形空間内で摺動させるのに要するトルクが、0.5Nm以下になるように設定されている。
 第4の本発明によれば、支持部材の球形空間の球体部が摺動する壁面には、開口部の側から潤滑剤受け部の側に向かう球形空間の中心軸を軸とする最大内径部近くに、凹んだ凹溝が周回状に形成され、凹溝の大きさは、前記球体部を前記球形空間内で摺動させるのに要するトルクが、0.5Nm以下に設定されるので、ボールスタッドの揺動トルク、回転トルクを所望の低トルクにできる。
 第5の本発明のスタビリンクは、第1または第2または第4の何れか一つの本発明において、前記球形空間を形成する壁面の前記球体部との摺動領域は、前記球形空間の中心周りに、前記球形空間がトータル63度~75度の領域に対して、38.5%以上の領域である。
 第5の本発明によれば、球形空間を形成する壁面の体部との摺動領域は、球形空間の中心周りに、前記球形空間がトータル63度~75度の領域に対して、38.5%以上の領域であるので、ボールスタッドを確実に支持できる。
 第6の本発明のスタビリンクは、第1または第2または第4の何れか一つの本発明において、前記球体部が摺動する前記球形空間の端縁と、前記凹溝との間の距離は、0.5mm以上ある。
 第6の本発明によれば、支持部材でのボールスタッドの球体部の支持を確実に行える。また、支持部材の球形空間から型抜きする際、球形空間を形成する支持部材が欠けることが抑制される。 
 第7の本発明のスタビリンクは、第1または第2または第4の何れか一つの本発明において、前記凹溝の端部は、前記球形空間の壁面の法線に対して、50度以上の傾斜を有する面をもって前記壁面に接続されている。
 第7の本発明によれば、凹溝の端部は、球形空間の壁面の法線に対して、50度以上の傾斜を有する面をもって壁面に接続されるので、支持部材を成形する際、型抜きが円滑に行える。
 第8の本発明のスタビリンクは、第1または第2または第4の何れか一つの本発明において、前記凹溝の深さが0.08mm~0.25mmである。
 第8の本発明によれば、凹溝の深さが0.08mm~0.25mmであるので、支持部材が変形した際に、凹溝が機能を損なわれることがない。また、支持部材の強度を確保できる。
 第9の本発明のスタビリンクは、第1または第2または第4の何れか一つの本発明において、前記球体部は、前記スタッド部の中心軸の軸方向の端部が、前記球形空間に入り込まない。
 第9の本発明によれば、球体部は、前記スタッド部の中心軸の軸方向の端部が、前記球形空間に入り込まないので、ボールスタッドの動作が円滑に行える。
 第10の本発明のスタビリンクは、第1または第2または第4の何れか一つの本発明において、前記支持部材が熱可塑性の樹脂製であり、当該支持部材が射出成形され、前記射出成形時に前記凹溝が形成されている。
 第10の本発明によれば、支持部材が熱可塑性の樹脂製であり、当該支持部材が射出成形され、射出成形時に凹溝が形成されるので、凹溝の形成が容易である。
 本発明によれば、ボールスタッドの球体部と、ハウジングに備わって球体部を摺動可能に収容する支持部材との間のガタつきを効果的に抑制でき、ボールスタッドの揺動動作、回転動作の際の低トルクを達成できるスタビリンクを提供することができる。
スタビリンクがサスペンションダンパとトーションバーを連結する状態を示す斜視図。 図1のI部を分解した状態を示す分解斜視図。 スタビリンクの接続部の縦断面図。 ボールシート内にボールスタッドのボール部が嵌入されている状態を示すボールシートの縦断面図。 ハウジングの本体部の内面の径とボールシートの外径の関係を示す図。 ボールシートの外面とハウジングの本体部の内面との締め代と、ボールスタッドの揺動トルクとの関係を示すグラフ。 ボールシートの外面とハウジングの本体部の内面との締め代と、弾性リフトとの関係を示すグラフ。 耐久試験前のボールシートの外面のたわみと荷重との関係を示す図。 耐久試験後のボールシートの外面のたわみと荷重との関係を示す図。 グリース溝が形成されたボールシートの内部構造を示すボールシートの縦断面図。 ボールスタッドが平衡状態(セット状態)のスタビリンクの接続部の内部を示す断面図。 スタビリンクの接続部において、ボールスタッドが揺動した状態の内部を示す断面図。 ボールシートの内面のセンターオフセットを示す概念図。 ボールスタッドのボール部と、ボールシートの内面とが接触する百分率と、ボールスタッドが揺動する際の揺動トルクおよび弾性リフト(ガタ)との関係を示すグラフ。 ボールスタッドのボール部の赤道、経度、緯度を示す模式図。 図11に示すボールスタッドのボール部にボールシートが空隙なく接触する際の単位経度当たりの接触面圧を赤道からの角度で示すグラフ。 図11に示すボールスタッドのボール部にボールシートが空隙なく接触する際の単位緯度当たりの接触面圧を、赤道からの角度のものを積分して(足して)示すグラフ。 図14に示すボールスタッドのボール部の各緯度の回転トルク、揺動トルクを定性的に示すグラフ。 本実施形態のボールシートの内部構造を示す縦断面図。 ボールシートの下面図。 ボールシートの溝を示す図18BのII-II断面図。 図18Aのボールスタッドのボール部の各緯度の回転トルク、揺動トルクに対して、本実施形態の溝を設けた箇所を示す図。 参考例のボールシートの内部構造を示す縦断面図。 ボールシートの下面図。 ボールシートの溝を示す図21BのIV-IV断面図。 図21A、図21Bのボールスタッドのボール部の各緯度の回転トルク、揺動トルクに対して、参考例の溝を設けた箇所を示す図。
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 図1は、本発明に係る実施形態のスタビリンクがサスペンションダンパとスタビライザを連結する状態を示す斜視図である。
 車両(図示せず)の走行に使用される車輪Wは、サスペンション装置3を介して車体(図示せず)に取り付けられている。サスペンション装置3は、コイルスプリング3aと、サスペンションダンパ3bとを有する。サスペンションダンパ3bは、車輪Wを回転可能に支持する。サスペンションダンパ3b、コイルスプリング3aは、車輪Wから車体に加わる衝撃を緩衝する。
 サスペンションダンパ3bはコイルスプリング3aを介して車体(図示せず)に取り付けられる。そして、サスペンションダンパ3bの伸縮の際の粘性減衰力とコイルスプリング3aの弾性力によって車体に伝わる振動が、サスペンション装置3で減衰される。
 左右のサスペンション装置3の間にはスタビライザ2が連結されている。スタビライザ2は、車体のロール剛性(捩れに対する剛性)を高めて車両のローリングを抑制する。スタビライザ2は、トーションバー2aと、トーションバー2aの両端からコの字状に延びる一対のアーム部2b、2bとを有している。
 スタビライザ2は、車両の形状に合わせて適宜折り曲げられた棒状のばね部材で構成されている。スタビライザ2は、対向する2つの車輪W,Wをそれぞれ支持する2つのサスペンションダンパ3b、3bを、実施形態のスタビリンク1を、それぞれ介して連結する。
 スタビライザ2の一方のアーム部2bの一端部は、トーションバー2aの一方端部に連続される一方、一方のアーム部2bの他端部は、スタビリンク1の一方の接続部1bに接続される。スタビリンク1の他方の接続部1bは、サスペンションダンパ3bに接続される。
 同様に、スタビライザ2の他方のアーム部2bの一端部は、トーションバー2aの他方端部に連続する一方、他方のアーム部2bの他端部は、スタビリンク1の一方の接続部1bに接続される。スタビリンク1の他方の接続部1bは、サスペンションダンパ3bに接続される。
 トーションバー2aは、一方のサスペンションダンパ3bから他方のサスペンションダンパ3bに向かう方向に延設される。
 トーションバー2aは、車両が旋回するときなど、2つのサスペンションダンパ3b,3bの伸縮量の違いによって、スタビリンク1を介して、アーム部2bが偏移して捩れる。トーションバー2aは、その捩れを復元するように作用するねじり弾性力で車両のローリングが抑制される。
<スタビリンク1>
 図2は図1のI部を分解した状態を示す分解斜視図である。
 スタビリンク1は、棒状のサポートバー1aと接続部1bとを含んで構成される。サポートバー1aの両端に、接続部1bが2つ配設される。サポートバー1aは、例えば中実の棒鋼を素材とする棒状部材である。
 図3は、スタビリンクの接続部の縦断面図である。
 接続部1bには、ボールスタッド10が揺動および回転可能に支持されている。ボールスタッド10は、接続部1bのハウジング11に収容されている。接続部1bには、ハウジング11内への異物の侵入を防止するためのダストブーツ13が備わっている。
 そして、一方の接続部1bに支持されるボールスタッド10がサスペンションダンパ3bのブラケット3cに締結され固定される(図2参照)。また、他方の接続部1bに備わるボールスタッド10がスタビライザ2のアーム部2bに締結され固定される。
 ブラケット3cは、スポット溶接等でサスペンションダンパ3bに取り付けられている。ブラケット3cは、スタビライザ2のアーム部2bの側(図示しない車両の中心側)に対向して延在する固定用の平面部を有する。ブラケット3cの平面部3c1には、取付孔3c2が開口されている。
 一方、ボールスタッド10のスタッド部10sには、周囲に広がった鍔部10aが形成されている。また、スタッド部10sの鍔部10aよりも先端側には、雄ねじ10nが形成されている。
 そこで、ボールスタッド10は、周囲に広がる鍔部10aの位置までスタッド部10sが、ブラケット3cの取付孔3c2に挿通される。そして、取付孔3c2を挿通したボールスタッド10のスタッド部10sに螺刻されている雄ねじ10nにナットN1が螺合され、ボールスタッド10がサスペンションダンパ3bに固定される。
 一方、スタビリンク1のアーム部2bの先端部2b1近傍は扁平状に塑性変形され、取付孔2b2が貫設されている。例えば、図2に示すように、スタビリンク1のアーム部2bの先端部2b1及びその近傍がサスペンションダンパ3bの側に対向して平面状に塑性変形され、先端部2b1に取付孔2b2が開口されている。
 他方のボールスタッド10は鍔部10aの位置までスタッド部10sが、スタビライザ2のアーム部2bの取付孔2b2に挿通される。そして、取付孔2b2を挿通したボールスタッド10のスタッド部10sに螺刻されている雄ねじ10nにナットN2が螺合して、ボールスタッド10が、スタビライザ2のアーム部2bに固定される。
 上述の如く、スタビリンク1は、サポートバー1aの両端に備わるボールスタッド10を介してサスペンションダンパ3bと、スタビライザ2のアーム部2bとに固定される。ボールスタッド10は、揺動および回転可能にスタビリンク1の接続部1bに支持されている。そのため、スタビリンク1は、サスペンションダンパ3b及びトーションバー2aに対して可動な構成である。
 このように、スタビリンク1は、スタビライザ2と、サスペンション装置3とに連結される部材である。
 上述したように、スタビリンク1は、接続部1bが、サポートバー1aの両端に配設されている。
 接続部1bは、ボールスタッド10のボール部10bが収容されるカップ状のハウジング11を有する。ハウジング11は、サポートバー1aの両端に抵抗溶接等で取り付けられている。ハウジング11は機械構造用炭素鋼などの鋼材が素材として用いられ、内側に樹脂製の支持部材のボールシート12が収容されている。
<ボールスタッド10>
 図3に示すように、ボールスタッド10は、略球体状のボール部10bと、ボール部10bから一方向に延設されるスタッド部10sとを有する。ボールスタッド10は、ボール部10bが、接続部1bのボールシート12に収容される。
 ボールスタッド10のボール部10bは、真球または真球に近い形状とされている。ボール部10bの上部は、ボールスタッド10sと接続し、ボール部10bの下部は、グリース室12cの体積確保により形状的に制限を受ける。ボールスタッド10のボール部10bは、許容される範囲において真球または真球に近い形状に形成されている。
<ボールシート12>
 図4は、ボールシート12内にボールスタッド10のボール部が嵌入されている状態を示すボールシート12の縦断面図である。
 ボールシート12は、樹脂を用いて射出成形で形成される。ボールシート12は、POM(Polyacetal)、PA6(Polyamide6)、PA66(Polyamide66)などの熱可塑性樹脂が素材とされる。
 ボールシート12は、成形収縮により、フランジ部12bの外径が本体部12aの外径より大きいテーパ形状に形成される。
 樹脂製のボールシート12は、本体部12aとフランジ部12bとを有する。本体部12aは、ハウジング11内に収容される(図3参照)。ボールシート12の本体部12aは、内部にボールスタッド10のボール部10bが締り嵌めされるカップ状を呈している。
 また、樹脂製のボールシート12の本体部12aは、熱カシメでハウジング11に固定される。つまり、本体部12aに固定用のボス12oが形成される。ハウジング11の底部の孔を貫通するボス12oが溶融されてボールシート12がハウジング11内に固定される。ボス12oは、加熱された状態で加圧されて溶着される。
 ボールシート12の本体部12aは、内側に球形の空間の球形空間12kが形成されている。そして、ボールスタッド10のボール部10bが球形空間12k内に摺動自在に収容される。また、ボールスタッド10は、ボール部10bと一体に形成されるスタッド部10sが、ボール部10bとともに動作する。この際、スタッド部10sには、ボール部10bの球形空間12k内の摺動に伴う摺動トルクがかかることとなる。
 そのため、ボールシート12に収容されたボールスタッド10は、ボール部10bの摺動に従いスタッド部10sが揺動可能および/または回転可能になる。
 換言すれば、ハウジング11は、ボールスタッド10を揺動可能および/または回転可能に支持する。このように、接続部1bには、スタッド部10sとボール部10bとを有するボールスタッド10が揺動可能、回転可能に備わり、ボールジョイント構造が構成されている。この際、スタッド部10sが揺動する際には、スタッド部10sに揺動トルクがかかり、スタッド部10sが回転する際には、スタッド部10sに回転トルクがかかる。つまり、揺動トルク、回転トルクは、摺動トルクの一態様である。
 ボール部12bは、スタッド部12sの中心軸の軸方向の端部(エッジ12n1、12n2)が、前記球形空間に入り込まないように構成される。
 なお、スタビリンク1においてスタッド部10sが延出する方向は、サスペンションダンパ3b(図2参照)とスタビライザ2のアーム部2bの位置関係に応じて適宜決定される。
 図3に示すように、ハウジング11は、フランジ部11aとカップ状の本体部11bとを有する。フランジ部11aは、ハウジング11の開口側が外方に広がって形成される。ハウジング11の本体部11bにボールシート12の本体部12aが収容された状態で、ハウジング11のフランジ部11aとボールシート12のフランジ部12bが互いに対向する。そして、互いに対向するフランジ部11a、12bでダストブーツ13の端辺が挟持される。
<ダストブーツ13>
 ダストブーツ13は、ゴムなどの弾性体からなる中空の部材である。ダストブーツ13によって、ハウジング11内やボールシート12内への異物(ゴミなど)の侵入が防止される。
 ダストブーツ13は、鍔部10aとハウジング11のフランジ部11aとの間のボールスタッド10の周囲に配設される。ダストブーツ13は、対向する位置に2つの開口部13a1、13a2を有する。一方の開口部13a1は周囲が内側に向かって折れ曲がって形成され、この部分が対向するフランジ部11a,12bで挟持される。ダストブーツ13の他方の開口部13a2は、ボールスタッド10のスタッド部10sに密着して固定されている。
 ダストブーツ13は、スタッド部10sが揺動、回転する動作を妨げない形状とされている。例えば、ダストブーツ13は、大きく外方に膨らんだ形状であることが好ましい。ダストブーツ13は、大きく外方に膨らんだ形状であることで、変形代を持ってスタッド部10sを覆う。そのため、ダストブーツ13は、揺動および/または回転するスタッド部10sの動作に応じて容易に変形する。これにより、ボールスタッド10は、ダストブーツ13に妨げられることなく、円滑な揺動動作、回転動作を行える。
<ボールシート12とハウジング11>
 図5は、ハウジング11の本体部11bの内面11b1(図3参照)の径とボールシート12の外径の関係を示す図である。図5の横軸は径寸法を示し、図5の縦軸は、ハウジング11の底面11b2からの高さ寸法を示す。図5において、実線は、ハウジング11の本体部11bの内面11b1の位置を示し、破線は従来のハウジング11の本体部11bの内面11b1とボールシート12の外面12gとの締め代が大きいボールシートの外径を示し、太実線はハウジング11の本体部11bの内面11b1とボールシート12の外面12g(図3参照)の締め代が少ない低トルクのボールシート12の外径を示す。 
 ハウジング11の本体部11bの内面11b1の径(内径)がストレート形状の場合、締め代の減少に伴い、ハウジング11の内面11b1と、ボールシートの外面の当たりが局部的になる。
 また、ハウジング11の本体部11bの内面11b1とボールシート12の外面12gとの締め代を大きくすると(図5の破線)、ハウジング11の内面11b1と、ボールシートの外面の当たりが改善されるものの、ボールシート12が内方に向けて押圧される割合が大きくなるので、ボールスタッド10の揺動に際してのトルクが大きくなる。
 一方、ハウジング11の本体部11bの内面11b1とボールシート12の外面12gとの締め代を小さくすると(図5の太実線)、ボールシート12が内方に向けて押圧される合が小さくなるので、ボールスタッド10の揺動に際してのトルクが小さくなる。しかし、弾性リフト、つまり、ハウジング11の本体部11bの内面11b1とボールシート12の外面12gとのガタが大きくなる。
<ボールシート12とハウジングの本体部との締め代>
 図6は、ボールシート12の外面とハウジングの本体部の内面との締め代と、ボールスタッドの揺動トルクとの関係を示すグラフである。横軸に、ボールシート12の外面12gと、ハウジング11の本体部11bの内面11b1との締め代をとり、縦軸に、ボールスタッド10の揺動トルクをとっている。
 ボールシート12の外面12gとハウジング11の本体部11bの内面11b1との締め代の減少に伴い、ボールスタッド10の揺動トルクは下降する。
 これは、締め代が大きい場合、ボールシート12はハウジング11の内面11b1により強く内側に押圧されるので、ボールシート12の内面12nがボールスタッド10のボール部10bを押す際の押圧力が大きくなる。一方、締め代が小さい場合、ボールシート12はハウジング11の内面11b1により内側に押圧される力が弱くなるので、ボールシート12の内面12nがボールスタッド10のボール部10bを押す際の押圧力が小さくなると考えられる。
 図7は、ボールシートの外面とハウジングの本体部の内面との締め代と、弾性リフトとの関係を示すグラフである。
 ボールシート12の外面12gとハウジング11の本体部11bの内面11b1との締め代の減少に伴い、弾性リフト、つまりボールシート12のハウジング11の本体部11bの内面11b1に対する弾性リフト(ガタ)は増大する。
 これは、締め代が大きい場合、ボールシート12はハウジング11の内面11b1により強く内側に押圧されるので、ボールシート12のハウジング11の本体部11bの内面11b1に対する弾性リフトは小さくなる。一方、締め代が小さい場合、ボールシート12はハウジング11の内面11b1により内側に押圧される力が弱いので、ボールシート12のハウジング11の本体部11bの内面11b1に対する弾性リフトは大きくなる。
 図8A、図8Bは、耐久試験前後での弾性リフトの有無を示す図である。図8Aは、耐久試験前のボールシートの外面のたわみと荷重との関係を示し、図8Bは、耐久試験後のボールシートの外面のたわみと荷重との関係を示す。図8A、図8Bの横軸はボールシート12の外面12gのたわみ量を示し、図8A、図8Bの縦軸は荷重を示す。図8A、図8Bの破線は、ハウジング11の本体部11bの内面11b1とボールシート12の外面12gとの締め代が通常の場合、つまりボールスタッド10の揺動トルク、回転トルクが通常の場合を示す。図8A、図8Bの実線は、ハウジング11の本体部11bの内面11b1とボールシート12の外面12gとの締め代が小さい、つまりボールスタッド10の揺動トルク、回転トルクが低トルクの場合を示す。
 耐久試験前では、図8Aに示すように、通常トルク(破線)と低トルク(実線)とも、荷重を“0”とすると、たわみが “0”となり、ヒステリシスは観察されない。
 前記したように、低トルクの場合は締め代が小さく、通常トルクの場合は締め代が大きい。そのため、荷重をかけた場合、低トルクの場合は締め代が小さいので、たわみ量が大きく、通常トルクの場合は締め代が大きいので、たわみ量が小さい。
 耐久試験後では、図8Bに示すように、通常トルク(破線)で、少しのヒステリシスが観察された。低トルク(実線)では、通常トルクよりも大きなヒステリシスが観察された。そして、荷重を“0”にしても、たわみが “0”とならず、ガタが発生した。
 図8Bからは、低トルクとした場合、ボールシート12の外面12gのたわみ量が大きくなり、ボールシート12のたわみ量としては、好ましい特性とは言えないことが判明した。
 図6~図8A、図8Bの結果から、ボールシート12の外面12gと、ハウジング11の本体部11bの内面11b1との締め代が大きいと弾性リフトは小さくなるものの、ボールスタッド10の揺動トルクは大きくなる。一方、ボールシート12の外面12gと、ハウジング11の本体部11bの内面11b1との締め代が小さいと弾性リフトは大きくなるものの、ボールスタッド10の揺動トルクは小さくなる関係にある。
 図9は、グリース溝が形成されたボールシートの内部構造を示すボールシートの縦断面図である。
 ボールシート12にはグリースが滞留される8本のグリース溝12rが、ボールシート12の軸J1方向に形成されている。例えば、グリース溝12rの幅は約2mmである。
 ボールシート12の内部の上方には、ボールスタッド10が揺動、回転するために開口部12iが設けられている。例えば、開口部12iはボールシート12の水平方向の中心線J2からの角度θ0が、例えば約23°から約30°の位置である。
 ボールシート12の内部の下方にグリース室12cが設けられている。例えば、グリース室12cはボールシート12の中心線J2からの角度θ1が、約40°から約45°の位置である。
 図10は、ボールスタッドが平衡状態(セット状態)のスタビリンクの接続部の内部を示す断面図である。図11は、スタビリンクの接続部において、ボールスタッドが揺動した状態の内部を示す断面図である。図10、図11では、ハウジング11とボールシート12とダストブーツ13の断面をとって示している。
 図11に示すように、ボールスタッド10をスタビリンク1の接続部1bにセットした状態では、ボールスタッド10はスタビリンク1の接続部1bのボールシート12に対して直立した状態にある。
 図10に示すように、ボールスタッド10のボール部10bは、接触するボールシート12の内面12nから複数の矢印で示すような面圧を受けることとなる。このボールスタッド10のボール部10bと、接触するボールシート12の内面12nとの間に働く摺動に伴う摩擦力が、ボールスタッド10がスタビリンク1に対して、図11に示す揺動する際の摩擦力および回転する際の摩擦力となる。従って、この摩擦力が、ボールスタッド10が揺動する際の揺動トルク、回転する際の回転トルクとなる。換言すれば、摩擦力により発生する摺動トルクが揺動トルク、回転トルクとなって現れる。
 図12は、ボールシートの内面のセンターオフセットを示す概念図である。
 ボールシート12の内面は開口側の上内面12nuが下側に中心O1を有し、開口の反対側に位置する下内面12nsが上側に中心O2を有している。これにより、ボールシート12の内面12nは、端部側(ボールシート12の開口側または開口の反対側)が赤道(ボールシート12の開口部12i(図10参照)側とその反対側のグリース室12c(図10参照)を結ぶ軸J1に対する径が最大な箇所)よりも内圧が高くなる構成である。つまり、図12のセンターオフセットにより上下端部を最大の面圧分布をもたせるようにしている。
 赤道より上部の締め代により発生するボール部10bへの面圧は、静的な力の釣り合いから、ボールシート12の下部にも反力として発生し、ボールシート12の開口部12iのエッジ12n1(図9参照)とグリース室際エッジ12n2(図9参照)の上下2線を最大面圧とする面圧分布によってボール位置が決められる。
 図13は、ボールスタッドのボール部と、ボールシートの内面とが接触する百分率と、ボールスタッドが揺動する際の揺動トルクおよび弾性リフトとの関係を示すグラフである。図13の横軸はボールスタッド10のボール部10bと、ボールシート12の内面12nとの接触率の百分率をとり、図10の縦軸は揺動トルクおよび弾性リフトの大きさを示す。なお、横軸の百分率100%とは、図10に示すように、ボールシート12の内面12nとボール部10bとが接触する領域において、空間領域(グリース溝12rを含む)がない場合である。
 図13から、ボールスタッド10のボール部10bと、ボールシート12の内面12nとが接触する割合(百分率)の増加によって、ボールスタッド10の揺動トルクが増加すると弾性リフトが減少する。一方、接触する割合の減少によって、ボールスタッド10の揺動トルクが減少すると弾性リフトが増加する関係にある。
 そこで、実線と破線で挟まれる領域の百分率にすると、ボールスタッド10の揺動トルクと弾性リフトとが、共に好ましい低い値となる。
 図14は、ボールスタッドのボール部の赤道、経度、緯度を示す模式図である。
 ボールスタッド10のボール部10bの赤道とは、球状のボール部10bのスタッド部10sに垂直な方向の最も半径が長い箇所を結んだ周状の箇所をいう。
 ボール部10bの経度とは、ボール部10bの赤道に垂直な周線であり、地球に対して設定される経度に相当する。
 ボール部10bの緯度とは、ボール部10bの赤道に平行な周線であり、地球に対して設定される緯度に相当する。
 図15は、図11に示すボールスタッドのボール部にボールシートが空隙なく接触する際の単位経度当たりの接触面圧を赤道からの角度で示すグラフである。図15の横軸は、赤道を90度にとり、0度の開口部12iの中心に近づくに従って角度が減少し、48度がボールシート12への上端接触箇所を示す。そして、開口部12iの中心から離れるに従って角度が増加し、115度がボールシート12への下端接触箇所を示す。図15の縦軸は、面圧の高低を示す。
 単位経度当たりの接触面圧は、赤道ではほぼ“0”であった。
 そして、赤道からスタッド部10sに近づくに従ってほぼリニアに増加する一方、赤道からスタッド部10sより離れるに従って100度強まで増加して100度強を超えると急激に増加する結果となった。
 図16は、図10に示すボールスタッドのボール部にボールシートが空隙なく接触する際の単位緯度当たりの接触面圧を、緯度毎に積分して(足して)示すグラフである。
 図16の横軸は、赤道を90度にとり、0度の開口部12iの中心に近付くに従って角度が減少し、48度がボールシート12への上端接触箇所(図9のエッジ12n1)を示す。そして、開口部12iの中心から離れるに従って角度が増加し、115度がボールシート12への下端接触箇所(図9のエッジ12n2)を示す。図16の縦軸は、面圧の高低を示す。
 単位緯度の面圧の積分値は、赤道の緯度ではほぼ“0”であった。
 そして、赤道からスタッド部10sに近付くに従ってほぼ二次曲線的に増加する一方、赤道からスタッド部10sより離れるに従って100度強まで増加して100度強を超えると急激に増加する結果となった。
 ここで、 ボール部10b外面での摩擦力 = 面圧 × 摩擦係数   (1)
 と表わせる。
 また、
 ボールスタッド10の回転トルク ∝ ボール部10b外面での軸J1周りの摩擦力     (2)
         揺動トルク ∝ ボール部10b外面での軸J1の倒れ方向の摩擦力  (3)
の関係がある。
 図17は、図14に示すボールスタッドのボール部の各緯度の回転トルク、揺動トルクを定性的に示すグラフである。図17の横軸は、図14のボールスタッド10のボール部10bの緯度を示し、図17の縦軸は、トルクの高低を示す。
 ボールスタッド10のスタッド部10sが揺動する際の揺動トルクは、面圧とボール部10bの半径r(図14参照)との積で表わされる。
 ボールスタッド10がスタッド部10sの軸J1(図14参照)周りに回転する際の回転トルクは、面圧とスタッド部10sの軸J1から各緯度までの半径ri(図14参照)との積の積分値で表わされる。
 図17に示すように、揺動トルク(実線)は、赤道での90度でほぼ“0”である。そして、揺動トルクは、赤道90度からボールスタッド10のスタッド部10sに近つくに従って増加する。一方、揺動トルクは、赤道90度から、ボールスタッド10に対して離れるに従ってほぼ102度まで増加し、ほぼ102度程度を超えてから急激に増加する。
 同様に、回転トルク(破線)は、赤道での90度でほぼ“0”である。そして、回転トルクは、赤道90度からボールスタッド10のスタッド部10sに近つくに従って増加する。一方、回転トルクは、赤道90度から、ボールスタッド10に対して離れるに従ってほぼ102度まで増加し、ほぼ102度程度を超えてから急激に増加する。
 図17の結果から、揺動トルク、回転トルクともに、赤道90度から離れるに従って増加するので、赤道90度から離れた箇所でボールシート12の肉抜きを行い、ボールスタッド10のボール部10bとの間に空間を作る場合、ボールスタッド10のトルク減少を効果的に図ることができる。
<実施形態のボールシート12の構造>
 図18A、図18Bは、本実施形態のボールシート12の構造を示す図である。図18Aは実施形態のボールシートの内部構造を示す縦断面図であり、図18Bは実施形態のボールシートの下面図である。図19は、ボールシートの溝を示す図18BのII-II断面図である。
  前記の結果より、本実施形態では、赤道90度から離れた2箇所で、ボールスタッド10のボール部10bとの接触箇所でボールシート12の肉抜きを行って空間を作る溝部12m1、12m2を形成し、ボールスタッド10のトルク減少を図る。凹んだ形状の溝部12m1、12m2は、ボールスタッド10のボール部10bの中心Cをずらしたオフセットにより形成している。
 ボールシート12は、射出成形により成形される。溝部12m1、12m2は射出成形時に形成される。
 つまり、溝部12m1、12m2の底部12mtは、ボールスタッド10のボール部10bと略同じ曲率を有しており、曲率中心がボール部10bの中心からずれている。そのため、ボールシート12の内面12nが変形した場合も、溝部12m1、12m2でボールスタッド10のボール部10bとの間で空間を維持することができる。
 なお、溝部12m1、12m2は、ボールシート12が変形した際に空間を維持できれば、断面矩形状など以外の形状を採用してもよい。
 そして、溝部12m1、12m2を除いた球形空間12kを形成する内面12nのボール部12bとの摺動領域は、球形空間12kの中心C周りに、球形空間12kがトータル63度~75度の領域に対して、38.5%以上の領域とするとよい。ボールスタッド10のボール部10bの支持のためである。なお、当該摺動領域は、設定トルク値と弾性リフトとからの制限を受ける。
 図18Aに示すように、ボールシート12は、カップ状の本体部12aと、本体部12aの開口周りに形成されるフランジ部12bとを有する。
 本体部12aの下方には、ハウジング11に熱かしめするための3本のボス12oが延出されている。
 本体部12aの内面12nには、 図15(b)に示すように、グリースが滞留される8本のグリース溝12rが、ボールシート12の軸J1方向に形成されている。例えば、グリース溝12rの幅は約2mmである。
 また、本体部12aの内面12nの赤道をはさんだ上下位置に、ボールスタッド10のトルク減少を図るための周回状の凹んだ形状の溝12m1、12m2が配置される。溝12m1、12m2は、ボールシート12の軸J1周りに周回する形状である。なお、溝12m1、12m2は断続的に設けてもよい。
 ボールシート12内に嵌入されるボールスタッド10のボール部10bは、ボールシート12の面圧Poによって支えられる。ボールシート12に溝12m1、12m2が無い場合、単位経度当たりの面圧Poiの分布は、前記の図15の通りである。
 そして、ボールシート12に溝12mが無い場合、ボールスタッド10のボール10bの緯度別の面圧分布Paiは、
     Pai = Poi×2π×ri    (4)
 と表わせる。
 ボールシート12に溝12m1、12m2が無い場合の緯度別の面圧分布Paiは、前記の図16に示す通りである。
 図16から、回転トルクTrは各緯度別の半径ri(図14参照)を乗じた
     Tri=Pai×ri      (5)
 と表わされる。また、揺動トルクToは、ボール10bの半径rを乗じて
     Toi=Pai×r      (6)
 と表わされる。
 回転トルク分布Tri、揺動トルク分布Toiは、前記の図17に示す通りである。
 ボールスタッド10を回転させる回転トルクTrは、
     Tr=ΣTri    (7)
 と表わせ、ボールスタッド10を揺動させる揺動トルクToは、
     To=ΣToi    (8)
 と表わせる。
  図18A、18Bに示すように、ボールシート12の内面12nには8本の2mm幅のグリース溝12rが形成されている。
 ボールシート12の上下端の寸法s1(図19参照)は、射出成形上、および、上下端線接触面圧によるボールスタッド10のボール部10bを支持する観点から端部12t1、12t2を1mm程度の面を残す。ボールシート12の上下端の寸法s1は、0.5mm以上とするとよい。
 そして、最もトルク低減に効果的な端部12t1、12t2に近い領域に2つの溝部12m1、12m2を周回状に形成する。
 図20は、図18A、18Bのボールスタッドのボール部の各緯度の回転トルク、揺動トルクに対して、本実施形態の溝を設けた箇所を示す図である。 例えば、開口12i側を0°とした場合、溝部12m1は56°から76°の領域であり、溝部12m2は99°から107°の領域である。なお、溝部12m1、12m2は、その底部で溝部領域を表わすものとする。
 溝部12m1、12m2の深さfは、アッセンブリ時のボールスタッド10のボール部10bのボールシート12への挿入時の内圧、成形時の雄型離脱による引張荷重、成形雄型離脱容易性から、0.1mm~0.2mm程度と設定している。なお、溝部12m1、12m2の深さfは、0.08mm~0.25mmとしてもよいが0.1mm~0.2mm程度が最も望ましい。
 図19に示すように、溝部12m1、12m2の上下端部は、成形時の雄型離脱容易さ、球面部(内面12n)から溝部12m1、12m2の接触連続性から、ボールシート12の球状の内面12nの法線に対する角度θ3が、少なくとも50度以上の傾斜を有したテーパ(傾斜面)で溝12m1、12m2に連続している。
 ボールシート12の内面12nから溝部12m1、12m2へは、ボール部10bの接線の垂線に対して角度θ3が約50度以上の傾斜を有したテーパ(傾斜)面が形成されている。このテーパ(傾斜)面は、ボールシート12が射出成形で形成されることから、型をボールシート12の開口から抜くために設けられるものであり、角度θ3が50度以上が好ましい。
 実施形態では、溝部12m1、12m2の大きさと位置を調整することで、ボールスタッド10のスタビリンク1に対する揺動トルクを0.5Nm以下に設定するとともに、回転トルクを0.5Nm以下に設定している。
 実施形態のボールシート12とすることで、回転トルク、揺動トルクに効く領域のボールシート12の肉抜きをすることで、ボールスタッドの揺動トルクおよび回転トルクを所望の値になるように調整することができる。
<参考例のボールシート12の構造>
 参考例のボールシート12は、図21A、図21Bに示すように、ボールスタッド10のボール部10bの赤道部近傍に空間を形成した場合のスタビリンク1の接続部である。
 図21A、図21Bは、参考例のボールシート12の構造を示す図である。図21Aは参考例のボールシートの内部構造を示す縦断面図であり、図21Bは、ボールシートの下面図である。図22は、ボールシートの溝を示す図21BのIV-IV断面図である。図23は、図21A、図21Bのボールスタッドのボール部の各緯度の回転トルク、揺動トルクに対して、参考例の溝を設けた箇所を示す図である。
 参考例のボールシート12は、ボールシート12の球体部の内面12nの赤道(ボールシート12の開口12iとグリース室12cの各中心を結ぶ軸J1に対して最大径をなす箇所)近くに溝部12m3を周回状に形成する。具体的には、溝部12m3は開口部12i側を0°とした場合、溝部12m3は78°から103°の領域である(図23参照)。溝部12m3は、実施形態の溝部12m1、12m2と同様にして形成される。
 つまり、ボールシート12は、射出成形により成形される。溝部12m3は射出成形時に形成される。
 そして、溝部12m3を除いた球形空間12kを形成する内面12nのボール部12bとの摺動領域は、球形空間12kの中心C周りに、球形空間12kがトータル63度~75度の領域に対して、38.5%以上の領域とするとよい。なお、当該摺動領域は、設定トルク値と弾性リフトとから制限を受ける。
 溝部12m3の深さfは、アッセンブリ時のボールシート12へのボールスタッド10のボール部10bの挿入内圧、成形時の雄型離脱による引張荷重、成形雄型離脱容易性から、0.1mm~0.2mm程度と設定している。なお、溝部12m3の深さfは、0.08mm~0.25mmとしてもよい。0.1mm~0.2mm程度が最も望ましい。
 図22に示すように、溝部12m3の上下端部は、成形時の雄型離脱容易さ、球面部(内面12n)から溝部12mの接触連続性から、ボールシート12の球状の内面12nの法線に対する角度θ4は、少なくとも50度以上の傾斜を有したテーパ(傾斜面)で溝12mに連続している。テーパ(傾斜)面は、ボールシート12が射出成形で形成されることから、型をボールシート12の開口から抜くために設けられるものであり、角度θ4が50度以上が好ましい。
 参考例では、ボールスタッド10のスタビリンク1に対する揺動トルクを0.5Nm以下に設定するとともに、回転トルクを0.5Nm以下に設定している。
<比較例1、2、参考例、実施形態の比較> 
Figure JPOXMLDOC01-appb-T000001
 表1は、ボールシート12とボールスタッド10のボール部10bとの間に、比較例1のグリース溝12rを含む溝を設けない場合、比較例2のグリース溝12rを設ける場合、参考例のグリース溝と接触面積低減のために赤道近くに溝を設ける場合(図21A、図21B参照)、本実施形態のグリース溝と接触面積低減のために赤道の上下に2つの溝を配置する場合(図18A参照)を比較した表である。
 比較例1は、本実施形態の軸方向のグリース溝12rおよび周回状の溝12m1、12m2、12m3を設けない場合である。比較例1のボールスタッド10のボール部10bとボールシート12との接触表面積は、438.8mmである。比較例1のボールスタッド10の軸周りの回転トルクは623.3Nmm(=10-3×Nm(ニュートン・メートル))であり、ボールスタッド10が揺動する揺動トルクは689.1Nmmである。
 比較例2は、幅2mmで8本のグリース溝12rを設けるとともに、本実施形態の軸方向の周回状の溝12m1、12m2、12m3を設けない場合である。比較例2のボールスタッド10のボール部10bとボールシート12との接触表面積は、288.4mmである。比較例2の接触表面積288.4mmは、比較例1の438.8mmに対して、接触表面積が34.3%削減される。比較例2のボールスタッド10の軸周りの回転トルクは383.9Nmmであり、ボールスタッド10が揺動する揺動トルクは423.1Nmmである。
 参考例は、幅2mmで8本のグリース溝12rを設けるとともに、ボールシート12の赤道(ボールシート12の開口部12iとグリース室12cを結ぶ軸J1の軸線周りの径が最も大きい箇所の赤道)近くに周回状の赤道溝(溝12m3)を設けた場合である。参考例の赤道溝は、軸J1の開口部12i方向を0度とし、グリース室12c方向を180度とすると、78°~103°の領域(図23参照)に形成される。参考例の接触表面積169.2mmは、比較例2の288.4mmに対して、接触表面積が61.4%削減される。
 参考例のボールスタッド10の軸周りの回転トルクは331.1Nmmであり、 比較例2の回転トルク383.9Nmmに比べ、14%低減された。参考例のボールスタッド10が揺動する揺動トルクは369.6Nmmであり、比較例2の揺動トルク423.1Nmmに比べ、13%低減された。
 実施形態は、幅2mmで8本のグリース溝12rを設けるとともに、ボールシート12の赤道(ボールシート12の開口部12iとグリース室12cを結ぶ軸J1の軸線周りの径が最も大きい箇所の赤道)の上下に2本の溝12m1、12m2を設けた場合である。実施形態の溝12m1、12m2は、軸J1の開口部12i方向を緯度0度とし、グリース室12c方向を180度とすると、56°~76°の領域と99°~107°の領域(図20参照)との2つの領域に形成される。
 実施形態の接触表面積169.3mmは、比較例2の288.4mmに対して、接触表面積が61.4%削減される。
 実施形態のボールスタッド10の軸周りの回転トルクは214.1Nmmであり、比較例2の回転トルク383.9Nmmに比べ、44%低減され、参考例の回転トルク331.1Nmmに比べ、35%低減される。
 実施形態のボールスタッド10が揺動する揺動トルクは238.3Nmmであり、比較例2の揺動トルク423.1Nmmに比べ、44%低減され、参考例の揺動トルク369.6Nmmに比べ、35%低減される。
 上記構成によれば、ボールスタッド10がスタビリンク1を揺動する揺動トルクを0.5Nm以下に設定するとともに、回転する回転トルクを0.5Nm以下に設定する。したがって、ボールスタッド10がスタビリンク1に対して、揺動する際の揺動トルクまたは回転する際の回転トルクが低トルクにされ、スタビリンク1を用いる車両の乗り心地、動特性、耐久性が向上する。
 また、溝12m1、12m2や溝12m3を適宜調整することで、ボールスタッド10を支持しつつ、所望の揺動トルク、回転トルクに調整することができる。
 従って、トルク、弾性リフトを適正に調整することにより、市場使用時のスタビリンク1周りの部品相互の損耗促進等を抑えることができる。そのため、動特性が悪いスタビリンク系の市場での使用が抑えられ、動特性が良好なスタビリンクを実現することができる。
 さらに、スタビリンク1周りからの異音の発生を抑制することができる。
 以上のことから、ボールスタッド10のボール部10bと、ハウジング11に備わってボール部10bを摺動可能に収容するボールシート12との間のガタつきを効果的に抑制でき、ボールスタッド10の揺動動作および回転動作の際の低トルクを達成できるスタビリンク1を実現できる。
 なお、本発明は、前記した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
<<その他の実施形態>>
1.実施形態、参考例で説明した溝部12m1、12m2、12m3は、凹形状であれば、その断面形状は、矩形、任意の曲率の形状等、任意の断面形状でもよい。
2.実施形態の溝部12m1、12m2は、ボールシート12の内面12nの赤道の両側に一つづつ配置される場合を示したが、その数は2つ以上でもよい。
 また、実施形態の溝部12m1、12m2は、ボールシート12の内面12nの赤道の片側に単数または複数設けてもよい。
3.実施形態の溝部12m1、12m2と参考例の溝部12m3は、それぞれ連続して形成する場合を説明したが、間欠的に(とぎれとぎれに)設けてもよい。
4.また、図3に示すように、本実施形態のハウジング11にはボールシート12が収容され、ボールシート12に球形空間12kが形成されている。しかしながら、ハウジング11に球形空間121が形成され、この球形空間121にボールスタッド10のボール部10bが収容される構成であってもよい。つまり、ボールシート12が備わらない構成であってもよい。このような構成であれば、簡素な構造のハウジング11とすることができる。
5.また、スタビリンク1(図3参照)は、サポートバー1aの両端にボールジョイント構造の接続部1bが備わる構成に限定されない。例えば、サポートバー1aの一端のみにボールジョイント構造の接続部1bが備わる構成であってもよい。この場合、他端には別の構造(例えば、ボールブッシュ構造)の接続部が備わる構成であってもよい。
6.実施形態、参考形態で説明した各構成を適宜組み合わせて構成してもよい。
 1   スタビリンク
 1b  接続部
 2   スタビライザ(第1構造体)
 2b  アーム部
 3b  サスペンションダンパ(第2構造体)
 10  ボールスタッド
 10b ボール部(球体部)
 10s  スタッド部
 11  ハウジング
 12  ボールシート(支持部材)
 12i  開口部
 12c グリース室(潤滑剤受け部)
 12n 内面(壁面)
 12m1、12m2、12m3 溝(凹溝)
 12n1 開口部エッジ(端縁)
 12n2 グリース室際エッジ(端縁)
 12r グリース溝(潤滑剤用の溝)

Claims (10)

  1.  アーム部の両端に接続部が配設されて、一方の前記接続部が第1構造体に連結されるとともに、他方の前記接続部が第2構造体に連結され、
     前記接続部の少なくとも一方がボールジョイント構造になっているスタビリンクであって、
     前記ボールジョイント構造の接続部は、前記第1構造体又は前記第2構造体に連結されるボールスタッドを揺動可能および回転可能に支持するハウジングを有し、
     前記ボールスタッドは、球体部からスタッド部が延設され、
     前記ハウジングは、球形空間に前記球体部を摺動可能に収容する支持部材を有して前記ボールスタッドを支持し、
     前記支持部材は、前記スタッド部が配置される側で前記球形空間が開口される開口部と、前記開口部と対向する底部に形成される凹状の潤滑剤受け部とを有し、
     前記支持部材の前記球形空間が形成され前記球体部が摺動する壁面には、前記開口部の側から前記潤滑剤受け部の側に向かう前記球形空間の中心軸を軸とする最大内径部の前記中心軸方向の両側または片側に、凹んだ凹溝が周回状に形成されている
     ことを特徴とするスタビリンク。
  2.  前記凹溝は、
     前記球体部を前記球形空間内で摺動させるのに要するトルクが、前記壁面の端部を除いて他の壁面領域より大きい領域に設けられている
     ことを特徴とする請求項1に記載のスタビリンク。
  3.  前記凹溝の大きさは、前記球体部を前記球形空間内で摺動させるのに要するトルクが、0.5Nm以下になるように設定されている
     ことを特徴とする請求項1または請求項2に記載のスタビリンク。
  4.  アーム部の両端に接続部が配設されて、一方の前記接続部が第1構造体に連結されるとともに、他方の前記接続部が第2構造体に連結され、
     前記接続部の少なくとも一方がボールジョイント構造になっているスタビリンクであって、
     前記ボールジョイント構造の接続部は、前記第1構造体又は前記第2構造体に連結されるボールスタッドを揺動可能および回転可能に支持するハウジングを有し、
     前記ボールスタッドは、球体部からスタッド部が延設され、
     前記ハウジングは、球形空間に前記球体部を摺動可能に収容する支持部材を有して前記ボールスタッドを支持し、
     前記支持部材は、前記スタッド部が配置される側で前記球形空間が開口される開口部と、前記開口部と対向する底部に形成される凹状の潤滑剤受け部とを有し、
     前記支持部材の前記球形空間が形成され前記球体部が摺動する壁面には、前記開口部の側から前記潤滑剤受け部の側に向かう前記球形空間の中心軸を軸とする最大内径部近くに、凹んだ凹溝が周回状に形成され、
     前記凹溝の大きさは、前記球体部を前記球形空間内で摺動させるのに要するトルクが、0.5Nm以下になるように設定されている
     ことを特徴とするスタビリンク。
  5.  前記球形空間を形成する壁面の前記球体部との摺動領域は、前記球形空間の中心周りに、前記球形空間がトータル63度~75度の領域に対して、38.5%以上の領域である
     ことを特徴とする請求項1または請求項2または請求項4のうちの何れか一項に記載のスタビリンク。
  6.  前記球体部が摺動する前記球形空間の端縁と、前記凹溝との間の距離は、0.5mm以上ある
     ことを特徴とする請求項1または請求項2または請求項4のうちの何れか一項に記載のスタビリンク。
  7.  前記凹溝の端部は、前記球形空間の壁面の法線に対して、50度以上の傾斜を有する面をもって前記壁面に接続されている
     ことを特徴とする請求項1または請求項2または請求項4のうちの何れか一項に記載のスタビリンク。
  8.  前記凹溝の深さが0.08mm~0.25mmである
     ことを特徴とする請求項1または請求項2または請求項4のうちの何れか一項に記載のスタビリンク。
  9.  前記球体部は、前記スタッド部の中心軸の軸方向の端部が、前記球形空間に入り込まない
     ことを特徴とする請求項1または請求項2または請求項4のうちの何れか一項に記載のスタビリンク。
  10.  前記支持部材が熱可塑性の樹脂製であり、当該支持部材が射出成形され、前記射出成形時に前記凹溝が形成される
     ことを特徴とする請求項1または請求項2または請求項4のうちの何れか一項に記載のスタビリンク。
PCT/JP2016/053027 2015-02-17 2016-02-02 スタビリンク WO2016132885A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177022834A KR101947803B1 (ko) 2015-02-17 2016-02-02 스테비 링크
US15/551,795 US10415633B2 (en) 2015-02-17 2016-02-02 Stabilizer link
EP16752272.1A EP3260714A4 (en) 2015-02-17 2016-02-02 Stabilizer link
MX2017010588A MX2017010588A (es) 2015-02-17 2016-02-02 Articulación del estabilizador.
CN201680010453.XA CN107429732B (zh) 2015-02-17 2016-02-02 平衡杆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015028402A JP5923189B1 (ja) 2015-02-17 2015-02-17 スタビリンク
JP2015-028402 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016132885A1 true WO2016132885A1 (ja) 2016-08-25

Family

ID=56015172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053027 WO2016132885A1 (ja) 2015-02-17 2016-02-02 スタビリンク

Country Status (7)

Country Link
US (1) US10415633B2 (ja)
EP (1) EP3260714A4 (ja)
JP (1) JP5923189B1 (ja)
KR (1) KR101947803B1 (ja)
CN (1) CN107429732B (ja)
MX (1) MX2017010588A (ja)
WO (1) WO2016132885A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648001B2 (ja) 2016-11-02 2020-02-14 日本発條株式会社 スタビリンク
DE102018220954B4 (de) * 2018-12-04 2020-06-25 Zf Friedrichshafen Ag Kugelgelenk
DE102019204659A1 (de) * 2019-04-02 2020-10-08 Zf Friedrichshafen Ag Kugelgelenk für ein Fahrwerk eines Fahrzeugs und Verfahren zum Herstellen eines solchen Kugelgelenks
JP7175856B2 (ja) * 2019-07-17 2022-11-21 日本発條株式会社 ボールシート、ボールジョイント及びボールジョイントの製造方法
JP7185293B2 (ja) * 2019-10-29 2022-12-07 株式会社ソミックマネージメントホールディングス ボールジョイント
CN111137098A (zh) * 2019-12-23 2020-05-12 宁波拓普汽车电子有限公司 一种汽车的稳定杆连接杆结构
CN111267959B (zh) * 2020-03-11 2020-12-22 河南工学院 用于提高汽车nvh性能的减振车身
US11859658B2 (en) * 2021-08-17 2024-01-02 Cnh Industrial America Llc Steering sensor drive for articulating ball joint
CN113978169B (zh) * 2021-10-31 2022-04-26 中建四局建设发展有限公司 一种军吏俑加工用外形支架装置的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127745U (ja) * 1974-08-21 1976-02-28
JPS5824614A (ja) * 1981-07-24 1983-02-14 ガルフ・アンド・ウエスタン・マニフアクチユア・リング・カンパニ− 密封軸受
JPH0118886Y2 (ja) * 1982-07-09 1989-06-01
JPH068337Y2 (ja) * 1987-12-25 1994-03-02 武蔵精密工業株式会社 テンションタイプのボールジョイント
JP4097118B2 (ja) * 2001-10-29 2008-06-11 武蔵精密工業株式会社 ボールジョイント
JP2011169353A (ja) * 2010-02-16 2011-09-01 Nhk Spring Co Ltd ボールジョイント装置
JP2012077841A (ja) * 2010-10-01 2012-04-19 Jtekt Corp 樹脂シート製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344980B2 (ja) 1973-11-06 1978-12-02
DE4211897C2 (de) * 1992-04-09 1996-05-30 Daimler Benz Ag Kugelgelenk für Teile der Lenkung oder Radaufhängung von Kraftfahrzeugen
US6254114B1 (en) * 1998-11-09 2001-07-03 American Axle & Manufacturing, Inc. Composite stabilizer bar link
DE10328109B4 (de) * 2003-06-20 2005-12-29 ZF Lemförder Metallwaren AG Kugelgelenk
JP2008057761A (ja) * 2006-09-04 2008-03-13 Somic Ishikawa Inc ボールジョイント及びそのベアリングシート
JP5284018B2 (ja) * 2008-09-09 2013-09-11 日本発條株式会社 ボールジョイント
JP2011247338A (ja) * 2010-05-26 2011-12-08 Nhk Spring Co Ltd スタビリンクおよびその製造方法
JP5541010B2 (ja) * 2010-09-01 2014-07-09 オイレス工業株式会社 合成樹脂製のボールシート及びこれを用いたボールジョイント
JP2012189146A (ja) * 2011-03-10 2012-10-04 Somic Ishikawa Inc ボールジョイント、そのベアリングシート及びボールジョイントのベアリングシートの製造方法
CN202768622U (zh) * 2012-08-21 2013-03-06 绍兴金江机械有限公司 一种汽车摆臂球接头总成中的球座结构
JP5728103B1 (ja) * 2014-02-18 2015-06-03 日本発條株式会社 リンクアーム部材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127745U (ja) * 1974-08-21 1976-02-28
JPS5824614A (ja) * 1981-07-24 1983-02-14 ガルフ・アンド・ウエスタン・マニフアクチユア・リング・カンパニ− 密封軸受
JPH0118886Y2 (ja) * 1982-07-09 1989-06-01
JPH068337Y2 (ja) * 1987-12-25 1994-03-02 武蔵精密工業株式会社 テンションタイプのボールジョイント
JP4097118B2 (ja) * 2001-10-29 2008-06-11 武蔵精密工業株式会社 ボールジョイント
JP2011169353A (ja) * 2010-02-16 2011-09-01 Nhk Spring Co Ltd ボールジョイント装置
JP2012077841A (ja) * 2010-10-01 2012-04-19 Jtekt Corp 樹脂シート製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260714A4 *

Also Published As

Publication number Publication date
EP3260714A1 (en) 2017-12-27
JP2016151303A (ja) 2016-08-22
CN107429732A (zh) 2017-12-01
KR20170117426A (ko) 2017-10-23
US20180252258A1 (en) 2018-09-06
US10415633B2 (en) 2019-09-17
KR101947803B1 (ko) 2019-02-13
EP3260714A4 (en) 2018-10-31
MX2017010588A (es) 2019-09-23
CN107429732B (zh) 2020-11-20
JP5923189B1 (ja) 2016-05-24

Similar Documents

Publication Publication Date Title
WO2016132885A1 (ja) スタビリンク
JP5728103B1 (ja) リンクアーム部材
EP1566293B1 (en) Suspension system
RU2617243C2 (ru) Резинометаллический шарнир для подвески колес автомобиля, трапециевидный рычаг подвески и подвеска колес
US8882092B2 (en) Mount bushing of stabilizer bar for vehicle
US8985604B2 (en) Cross axis joint with elastomeric isolation
WO2017057371A1 (ja) ボールジョイント
US8408559B1 (en) Active geometry control suspension system
WO2017159822A1 (ja) ボールジョイント、及びこれを用いたスタビリンク
JP4258514B2 (ja) インホイールサスペンション
JP6223052B2 (ja) ダンパ取付装置
JP2008302709A (ja) 車両のサスペンション装置
WO2021152941A1 (ja) ボールジョイント
KR100542899B1 (ko) 볼조인트형 자동차용 부시
JP7185293B2 (ja) ボールジョイント
JP2018076882A (ja) 車両のサスペンション構造
WO2020116483A1 (ja) ストラットマウント
JP6543068B2 (ja) 車両のサスペンション装置
JP5876267B2 (ja) スタビライザブッシュおよび軸受装置
JP5860273B2 (ja) スタビライザブッシュおよび軸受装置
KR20170065378A (ko) 필로우 볼 조인트 어셈블리
KR20170068325A (ko) 필로우 볼 조인트 어셈블리
JP2019211058A (ja) ボールジョイント
JP2017206175A (ja) 車両のサスペンション装置
JP2011255797A (ja) フロント用ダブルウィッシュボーンサスペンション

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177022834

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016752272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15551795

Country of ref document: US

Ref document number: MX/A/2017/010588

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE