WO2016132680A1 - 高強度冷延薄鋼板およびその製造方法 - Google Patents

高強度冷延薄鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016132680A1
WO2016132680A1 PCT/JP2016/000339 JP2016000339W WO2016132680A1 WO 2016132680 A1 WO2016132680 A1 WO 2016132680A1 JP 2016000339 W JP2016000339 W JP 2016000339W WO 2016132680 A1 WO2016132680 A1 WO 2016132680A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cold
rolled
strength
steel sheet
Prior art date
Application number
PCT/JP2016/000339
Other languages
English (en)
French (fr)
Inventor
美絵 小幡
由康 川崎
植田 圭治
金子 真次郎
横田 毅
瀬戸 一洋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016530252A priority Critical patent/JP6237900B2/ja
Priority to EP16752073.3A priority patent/EP3228722B1/en
Priority to KR1020177022367A priority patent/KR101985123B1/ko
Priority to CN201680010057.7A priority patent/CN107250409B/zh
Priority to MX2017010539A priority patent/MX2017010539A/es
Priority to US15/551,301 priority patent/US10626485B2/en
Publication of WO2016132680A1 publication Critical patent/WO2016132680A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-strength cold-rolled thin steel sheet having a tensile strength TS: 980 MPa or more and suitable for automobile parts, and a method for producing the same, and in particular, reducing in-plane anisotropy of strength and elongation, Relates to the improvement of manufacturing stability.
  • Patent Document 1 includes mass%, C: 0.16 to 0.20%, Si: 1.0 to 2.0%, Mn: 2.5 to 3.5%, Al: 0.005 to 0.1%, N: 0.01% or less, Ti: 0.001 to A slab having a composition containing 0.050% and B: 0.0001 to 0.0050% is hot-rolled, then pickled and then cold-rolled cold-rolled sheet is annealed at 800 to 950 ° C as an annealing step.
  • Cooling stop temperature Cool to 200 to 500 ° C, then reheat to 750 to 850 ° C, then cool to 350 to 450 ° C at the cooling stop temperature range at an average cooling rate of 5 to 50 ° C / s.
  • the volume fraction includes ferrite phase: 40 to 65%, martensite phase: 30 to 55%, residual austenite phase: 5 to 15%, and the unit area in the cross section in the rolling direction: High-strength cold having a structure satisfying 0.5 to 5.0 martensite phases per 1 ⁇ m 2 , excellent ductility, tensile strength of 1180 MPa or more, and strength ductility balance TS ⁇ El of 22000 MPa% or more It is said that a rolled steel sheet can be obtained.
  • Patent Document 2 contains, in mass%, C: 0.05 to 0.12%, Si: 0.05% or less, Mn: 2.7 to 3.5%, Cr: 0.2 to 0.5%, Mo: 0.2 to 0.5%, Al : 0.10% or less, P: 0.03% or less, and S: 0.03% or less, and a composite structure mainly composed of ferrite and martensite, with a tensile strength of 780 to 1180 MPa, spot welding A high-strength hot-dip galvanized steel sheet having excellent properties and material stability is described.
  • C is reduced to 0.05 to 0.12%, spot weldability is improved, and Cr and Mo are further included as essential components, whereby variation in yield strength is 18 MPa or less.
  • Tensile strength variation is 13MPa or less, and total elongation variation is suppressed to 1.8% or less, and the steel sheet is excellent in spot weldability and material stability.
  • Patent Document 3 contains, in mass%, C: 0.10 to less than 0.4%, Si: 0.5 to 3.0%, Mn: 1.5 to 3.0%, O: 0.006% or less, P: 0.04% or less, S : 0.01% or less, Al: 2.0% or less, N: Restricted to 0.01% or less, with the balance being rolled with steel and unavoidable impurities in a temperature range of 1000-1200 ° C and a reduction rate of 40% or more
  • the first hot rolling is performed at least once, the austenite grain size is set to 200 ⁇ m or less in the first hot rolling, and the temperature range defined by the specific relational expression of the component content is T1 + 30 ° C. or more and T1 + 200 ° C. or less.
  • the second hot rolling is performed with rolling at a reduction rate of 30% or more in one pass, the total reduction rate in the second hot rolling is set to 50% or more, and the second hot rolling is performed.
  • rolling after pre-rolling with a rolling reduction of 30% or more, cooling before cold rolling is started so that the waiting time t seconds satisfies t ⁇ 2.5 ⁇ t1, and cold rolling is started.
  • heat to 750-900 °C annealing temperature cool from annealing temperature to 500 °C, 0.1-200 °C / second, hold between 500-350 °C for 10-1000 seconds
  • a method for producing a high-strength hot-dip galvanized steel sheet which is obtained by performing hot-dip galvanizing to obtain a high-strength hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more and excellent formability with little material anisotropy, is described.
  • Si which is a strengthening element, is used and consists of ferrite having a volume ratio of 40% or more, residual austenite of 8% or more and less than 60%, and the balance bainite or martensite, ⁇ 100 ⁇ ⁇ 011>- ⁇ 223 ⁇ ⁇ 110> Orientation group average density of pole density is 6.5 or less, ⁇ 332 ⁇ ⁇ 113> crystal orientation pole density is 5.0 or less, excellent formability with small material anisotropy It is said that a high-strength hot-dip galvanized steel sheet can be obtained.
  • JP 2012-153957 A Japanese Patent No. 4325998 Japanese Patent No.5321765
  • Patent Document 1 does not consider manufacturing stability and in-plane anisotropy.
  • the technique described in Patent Document 2 does not consider manufacturing stability and in-plane anisotropy.
  • the technique described in Patent Document 2 not only the tensile strength TS is 980 MPa or more and the total elongation El is less than 15%, but the ductility is not remarkably improved, and the in-plane anisotropy is not considered at all. It has not been.
  • Patent Document 3 has a problem that manufacturing stability is not considered at all.
  • the present invention advantageously solves the above-mentioned problems of the prior art, has high strength and high ductility, has little variation in strength and elongation with respect to temperature fluctuations during annealing, and has excellent manufacturing stability, and is in the plane of strength and elongation.
  • An object of the present invention is to provide a high-strength cold-rolled thin steel sheet having a small anisotropy and a method for producing the same.
  • “high strength” refers to a case where the tensile strength TS is 980 MPa or more.
  • “High ductility” means that the total elongation El (JIS No.
  • 5 tensile test piece (GL: 50 mm) used) is 20% or more for TS: 980 MPa class, 15% or more for TS: 1180 MPa class, TS: 1270 MPa class Then, it means the case of 10% or more.
  • “Excellent manufacturing stability” means that when the temperature fluctuation in the annealing process is 20 ° C., the fluctuation amount of the tensile strength TS is 25 MPa or less and the fluctuation amount of the total elongation El is 5% or less. It shall be a case.
  • ⁇ TS (TS L + TS C ⁇ 2 ⁇ TS D ) / 2 (1)
  • TS L Tensile strength (MPa) in a direction parallel to the rolling direction (L direction)
  • TS C Tensile strength (MPa) in a direction perpendicular to the rolling direction (C direction)
  • TS D Rolling Direction and 45 ° direction (D direction) tensile strength (MPa)
  • ⁇ TS defined by ## EQU2 ##
  • ⁇ El (EL L + El C ⁇ 2 ⁇ El D ) / 2 (2)
  • EL L total elongation (%) in the direction parallel to the rolling direction (L direction)
  • El C total elongation (%) in the direction perpendicular to the rolling direction (C direction)
  • El D rolling direction 45% direction (D direction) total elongation (%)
  • ⁇ El defined by is 10% or less
  • the “thin steel plate” here refers to a steel plate having a thickness of 5 mm or less.
  • the present inventors diligently studied various factors that affect strength, ductility, manufacturing stability, and in-plane anisotropy.
  • the desired high strength can be secured over a wide temperature range (700 to 840 ° C) in the annealing treatment, and the strength and It was newly found that fluctuation (elongation) in elongation can be reduced and a high-strength thin steel sheet excellent in manufacturing stability can be obtained.
  • a high-strength thin steel sheet with small in-plane anisotropy is obtained by making a structure in which an appropriate amount of acicular and fine retained austenite phase is dispersed in the ferrite phase. I found out that I can.
  • a high-strength thin steel sheet having such a structure has the above-described composition, and is subjected to an annealing treatment (first first) for heating and cooling a thin cold-rolled sheet that has been subjected to cold rolling with a reduction ratio of 30% or more.
  • Step annealing and heating to a two-phase temperature range, holding for a short time, cooling to a cooling stop temperature in a predetermined temperature range, and holding for a predetermined time in the temperature range (second stage annealing treatment) It has been found that it can be produced by a two-stage annealing treatment.
  • a thin cold-rolled annealed sheet having a structure in which the sum of the martensite phase and the bainite phase is 80% or more by volume can be obtained.
  • a high-strength cold-rolled thin steel sheet with little in-plane anisotropy can be obtained.
  • the gist of the present invention is as follows. (1) By mass, C: 0.20% to 0.45% or less, Si: 0.50 to 2.50%, Mn: 2.00% to less than 3.50%, P: 0.001 to 0.100%, S: 0.0200% or less, N: 0.0100% or less , Al: 0.01 to 0.100%, and further containing one or two selected from Ti: 0.005 to 0.100% and Nb: 0.005 to 0.100%, and the balance consisting of Fe and unavoidable impurities , 15% to 70% ferrite phase, 15% to 40% residual austenite phase, and the balance is 30% or less (not including 0%) martensite phase, or even 10% or less (Including 0%) of a pearlite phase and / or a carbide structure, and the residual austenite phase has an average crystal grain size of 2.0 ⁇ m or less and an aspect ratio of 2.0 or more, and tensile strength: Above 980 MPa, the
  • a high-strength cold-rolled thin steel sheet having either a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, or an electrogalvanized layer on the surface in (1) or (2).
  • a steel material is subjected to a hot rolling step, a pickling step, a cold rolling step, and an annealing step in order to form a cold-rolled thin steel plate.
  • the cold rolling process is a process in which the steel material is heated to obtain a hot rolled sheet having a predetermined thickness, and the cold rolling process is performed by subjecting the hot rolled sheet to a cold rolling with a reduction ratio of 30% or more, and a predetermined rolling thickness.
  • a thin cold-rolled sheet having a thickness is used, and the annealing step is performed by heating the thin cold-rolled sheet to an annealing temperature of 800 to 950 ° C., and then stopping cooling from the annealing temperature. With a cooling rate of 5 ° C / s or more on average until the temperature, cooling is performed to a cooling stop temperature in the temperature range of 350 to 500 ° C, and the total of the martensite phase and bainite phase is 80% or more in volume ratio.
  • the second stage annealing is performed at a cooling rate of 5 to 50 ° C / s on average from the cooling to the cooling stop temperature to a cooling stop temperature range of 350 to 500 ° C and held for 10 to 1800s in the cooling stop temperature range
  • a process comprising the steps of: manufacturing a high-strength cold-rolled steel sheet.
  • hot-dip galvanizing treatment hot-dip galvanizing treatment, galvanizing treatment and alloying treatment, or electrogalvanizing treatment is performed.
  • a method for producing a thin steel sheet is performed following the second-stage annealing treatment in the annealing step.
  • the tensile strength has a high strength of 980 MPa or more and a high ductility, and the amount of variation in strength and total elongation with respect to temperature variation during annealing is small, that is, in-plane anisotropy of strength and total elongation.
  • the high-strength cold-rolled thin steel sheet according to the present invention to an automobile structural member, it is possible to greatly contribute to the weight reduction of the automobile body and greatly contribute to the improvement of the fuel consumption of the automobile.
  • the high-strength cold-rolled thin steel sheet of the present invention is, in mass%, C: more than 0.20% and 0.45% or less, Si: 0.50 to 2.50%, Mn: 2.00% to less than 3.50%, P: 0.001 to 0.100%, S: 0.0200%
  • N 0.0100% or less
  • Al 0.01 to 0.100%
  • Ti 0.005 to 0.100%
  • Nb 0.005 to 0.100%
  • the balance Fe and It has a composition consisting of inevitable impurities.
  • C 0.20% to 0.45% or less
  • C has a high solid solution strengthening ability and contributes to an increase in steel sheet strength. Moreover, the retained austenite phase is stabilized, the retained austenite phase having a desired volume ratio is secured, and this contributes effectively to the improvement of ductility. In order to obtain such an effect, it is necessary to contain more than 0.20%. When C is 0.20% or less, it becomes difficult to obtain a desired amount of retained austenite phase. On the other hand, if the content exceeds 0.45%, the toughness, weldability, and delayed fracture may occur. For this reason, C was limited to 0.20% to 0.45% or less. In addition, Preferably it is 0.25% or more, More preferably, it is 0.287% or more. Preferably it is 0.40% or less, More preferably, it is 0.37% or less.
  • Si 0.50-2.50%
  • Si has a high solid solution strengthening ability in the ferrite phase and contributes to an increase in steel sheet strength. Further, it is a useful element in the present invention that suppresses the formation of carbide (cementite) and contributes to stabilization of the retained austenite phase.
  • Si has the effect
  • Si when Si exceeds 2.50%, the formation of the retained austenite phase is inhibited. For this reason, Si was limited to the range of 0.50 to 2.50%. In addition, Preferably it is 0.80% or more, More preferably, it is 1.00% or more. Preferably it is 2.00% or less, More preferably, it is 1.80% or less.
  • Mn 2.00% or more and less than 3.50%
  • Mn contributes effectively to increasing the strength of the steel sheet through solid solution strengthening or hardenability improvement. Further, it is an austenite stabilizing element and an element indispensable for securing a desired amount of retained austenite. In order to obtain such an effect, the content of 2.00% or more is required. On the other hand, when it contains excessively as 3.50% or more, it will become difficult to obtain the desired amount of retained austenite. For these reasons, Mn is limited to 2.00% or more and less than 3.50%. In addition, Preferably it is 2.30% or more. Preferably it is 3.00% or less.
  • P 0.001 to 0.100%
  • P is an element that contributes to an increase in the strength of the steel sheet by solid solution strengthening, and can be contained in an appropriate amount depending on the desired strength.
  • P is an element that has an action of promoting ferrite transformation and is effective in forming a composite structure. In order to acquire such an effect, it is necessary to contain 0.001% or more. On the other hand, if the content exceeds 0.100%, weldability is deteriorated and grain boundary fracture due to grain boundary segregation is promoted. Therefore, P is limited to the range of 0.001 to 0.100%. In addition, Preferably it is 0.005% or more. Preferably it is 0.050% or less.
  • S 0.0200% or less
  • S is an element that segregates at the grain boundaries and embrittles the steel during hot working, and also exists in the steel as a sulfide to lower the local deformability, and it is desirable to reduce it as much as possible. .
  • S was limited to 0.0200% or less.
  • excessive reduction leads to restrictions on production technology and soaring refining costs, it is desirable to make it 0.0001% or more.
  • N 0.0100% or less
  • N is an element that lowers the aging resistance of steel, and is desirably reduced as much as possible. However, if it is 0.0100% or less, the adverse effect is acceptable. For this reason, N was limited to 0.0100% or less. In addition, Preferably it is 0.0070% or less. In addition, since excessive reduction causes restrictions on production technology and soaring refining costs, it is desirable to make it 0.0005% or more.
  • Al 0.01 to 0.100%
  • Al is a ferrite-forming element and is an element that improves the balance between strength and ductility (strength ductility balance). In order to acquire such an effect, it is necessary to contain 0.01% or more. On the other hand, if the content exceeds 0.100%, the surface properties are degraded. For this reason, Al was limited to 0.01 to 0.100%. In addition, Preferably it is 0.03% or more, More preferably, it is 0.055% or more. Preferably it is 0.08% or less, More preferably, it is 0.07% or less.
  • Ti and Nb both suppress coarsening of crystal grains during heating in the annealing process, etc. It is an effective element in the present invention that contributes effectively to the refinement and homogenization of the steel sheet structure, reduces variations in strength and total elongation with respect to temperature fluctuations in the annealing process, and improves manufacturing stability. For this reason, the present invention contains one or two selected from Ti and Nb. In order to obtain the effects as described above, it is necessary to contain Ti: 0.005% or more and Nb: 0.005% or more, respectively.
  • Ti is limited to the range of 0.005 to 0.100%
  • Nb is limited to the range of 0.005 to 0.100%.
  • Ti is preferably 0.010% or more. Preferably it is 0.080% or less.
  • Nb is preferably 0.010% or more. Preferably it is 0.080% or less.
  • the above-described component composition is a basic component composition.
  • one or more groups selected from the following groups A to D are further selected as selective elements. Can be contained.
  • B is an effective element that contributes to strengthening of the steel sheet through improvement of hardenability. In order to acquire such an effect, it is necessary to contain 0.0001% or more. On the other hand, if the content exceeds 0.0050%, the content of the martensite phase is excessively increased, the increase in strength is excessively increased, and there is a concern about a decrease in ductility. Therefore, when contained, B is preferably limited to a range of 0.0001 to 0.0050%. More preferably, it is 0.0005% or more. More preferably, it is 0.0030% or less.
  • Cr contributes to the strengthening of the steel sheet by solid solution strengthening. Moreover, the austenite phase is stabilized at the time of cooling in the annealing process, and the composite of the structure is facilitated. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 1.00%, the moldability deteriorates. Therefore, when contained, Cr is preferably limited to a range of 0.05 to 1.00%.
  • Cu contributes to strengthening of steel sheet by solid solution strengthening. Moreover, the austenite phase is stabilized at the time of cooling in the annealing process, and the composite of the structure is facilitated. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 1.00%, the moldability deteriorates. Therefore, when contained, Cu is preferably limited to a range of 0.05 to 1.00%.
  • Group B One or two selected from Sb: 0.002 to 0.200%, Sn: 0.002 to 0.200%
  • Group B: Sb and Sn are elements that have the effect of suppressing surface decarburization. 1 type or 2 types can be contained as needed.
  • Sb and Sn have an action of suppressing decarburization of the steel sheet surface layer (area of about several tens of ⁇ m) caused by nitriding and oxidation of the steel sheet surface.
  • By suppressing such nitriding and oxidation of the steel sheet surface layer it is possible to prevent a decrease in the amount of martensite phase generated on the steel sheet surface, ensuring the desired steel sheet strength, and strength and elongation due to temperature fluctuations during annealing. This is effective in ensuring manufacturing stability.
  • Sb and Sn are contained excessively in amounts exceeding 0.200%, toughness is reduced. For this reason, when contained, Sb and Sn are each preferably limited to the range of 0.002 to 0.200%.
  • Group C Ta: 0.001 to 0.100%
  • Group C: Ta generates carbides and carbonitrides and contributes to increasing the strength of the steel sheet. In order to acquire such an effect, it is necessary to contain 0.001% or more. On the other hand, if the content exceeds 0.100%, the material cost increases, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when contained, Ta is preferably limited to a range of 0.001 to 0.100%.
  • Group D Ca: 0.0005 to 0.0050%, Mg: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050% or more selected from Group D: Ca, Mg and REM are all sulfides It is an element having an action of spheroidizing the shape and improving the adverse effect on the local ductility and stretch flangeability of the sulfide, and can contain one or more as required. In order to obtain such an effect, it is necessary to contain Ca, Mg, and REM at 0.0005% or more. On the other hand, if the content exceeds 0.0050%, inclusions and the like increase, and surface defects and internal defects are generated. Therefore, when contained, Ca, Mg, and REM are each preferably limited to a range of 0.0005 to 0.0050%.
  • the balance other than the above components is Fe and inevitable impurities.
  • the high-strength cold-rolled thin steel sheet of the present invention has a composite structure in which a ferrite phase is a parent phase and a residual austenite phase is dispersed in the parent phase. Specifically, at a position corresponding to 1/4 of the plate thickness from the surface in the plate thickness direction (plate thickness 1/4 position), the ferrite phase has a volume ratio of 15% or more and 70% or less and a volume ratio exceeding 15% 40 % Or less retained austenite phase and the balance is 30% or less (not including 0%) martensite phase, or even 10% or less (including 0%) pearlite phase and / or microstructure. Have an organization.
  • Ferrite phase 15% to 70% by volume
  • the ferrite phase contributes to the improvement of ductility (elongation). Therefore, in this invention, it is set as the structure
  • the “ferrite phase” includes a polygonal ferrite phase, an acicular ferrite phase, and a bainitic ferrite phase.
  • Residual austenite phase 15% to 40% or less in volume ratio
  • the retained austenite phase itself is a highly ductile phase, but it is a structure that contributes to further improving ductility by strain-induced transformation. And contribute to improving the balance of ductility.
  • the residual austenite phase needs to exceed 15% by volume.
  • the amount exceeds 40% the strength decreases, and the desired high strength cannot be ensured.
  • the residual austenite phase was limited to 15% and 40% or less in volume ratio. In addition, Preferably it is 20% or more.
  • the residual austenite phase is needle-shaped fine grains having an average crystal grain size of 2.0 ⁇ m or less and an aspect ratio of 2.0 or more.
  • Average grain size of retained austenite phase 2.0 ⁇ m or less If the average grain size of retained austenite phase exceeds 2.0 ⁇ m, stability against strain decreases, ensuring the desired high ductility (total elongation value). become unable. Therefore, the average crystal grain size of the retained austenite phase is limited to 2.0 ⁇ m or less. In addition, Preferably it is 1.5 micrometers or less. Moreover, in order to ensure desired high intensity
  • Aspect ratio of retained austenite phase 2.0 or more
  • the aspect ratio of the retained austenite phase is limited to 2.0 or more.
  • Preferably it is 2.5 or more. If the aspect ratio is greater than 5.0, the in-plane anisotropy is increased. Therefore, the aspect ratio is preferably 5.0 or less.
  • the “aspect ratio” referred to here is the ratio of the major axis and minor axis of the retained austenite grains (ratio of major axis to minor axis).
  • the balance other than the ferrite phase and the retained austenite phase is composed of a martensite phase of 30% or less (excluding 0%) in volume ratio with respect to the total amount of the structure.
  • the “martensitic phase” here includes a fresh martensite phase and a tempered martensite phase.
  • the martensite phase When the martensite phase increases in volume ratio exceeding 30%, the ductility is lowered and the desired high ductility cannot be secured. In order to secure a desired high strength, the martensite phase does not contain 0%, and preferably 3% or more.
  • the remainder other than the ferrite phase and the retained austenite phase further includes a pearlite phase and / or carbide if it is 10% or less (including 0%) in terms of the volume ratio with respect to the total amount of the structure. But you can.
  • the carbide includes cementite, Ti-based carbide, and Nb-based carbide.
  • the above structure can be provided by controlling the manufacturing conditions, particularly the first stage annealing process and the second stage annealing process. Moreover, the said structure
  • tissue can be measured by the method as described in the Example mentioned later.
  • the high-strength cold-rolled thin steel sheet having the composition and structure described above may further have a plating layer formed on the surface in order to improve corrosion resistance.
  • the plating layer is preferably any one of a hot dip galvanized layer, an alloyed hot dip galvanized layer, or an electrogalvanized layer.
  • a hot dip galvanized layer, the alloyed hot dip galvanized layer, and the electrogalvanized layer a known hot dip galvanized layer, alloyed hot dip galvanized layer, and electrogalvanized layer are all suitable.
  • the steel material having the above composition is subjected to a hot rolling step, a pickling step, a cold rolling step, and an annealing step in order to obtain a high-strength cold-rolled thin steel plate.
  • the method for producing the steel material is not particularly limited, and the molten steel having the above-described composition is melted by a conventional melting method such as a converter, and a slab such as a slab having a predetermined dimension by a conventional continuous casting method ( Steel material) is preferable. Needless to say, a steel slab (steel material) may be formed by ingot-bundling.
  • the steel material having the above composition is subjected to a hot rolling process to obtain a hot rolled sheet.
  • the hot rolling process is not particularly limited as long as the steel material having the above-described composition is heated and hot-rolled to obtain a hot-rolled sheet having a predetermined size. Either can be applied.
  • the heating temperature is heated to a temperature in the range of 1100 to 1250 ° C
  • hot rolling is performed at a hot rolling outlet temperature of 850 to 950 ° C
  • proper post-rolling cooling is performed. Is subjected to cooling after rolling at an average temperature of 450 to 950 ° C at a cooling rate in the range of 40 to 100 ° C / s.
  • Examples of the hot rolling method include hot rolling.
  • the pickling process is not particularly limited as long as the hot-rolled sheet can be pickled to such an extent that it can be cold-rolled. Any conventional pickling method using hydrochloric acid, sulfuric acid or the like can be applied.
  • the hot-rolled sheet that has undergone the pickling process is then subjected to a cold rolling process.
  • the cold rolling process is a process in which the hot-rolled sheet that has undergone the pickling process is subjected to cold rolling with a reduction ratio of 30% or more to obtain a thin cold-rolled sheet having a predetermined thickness.
  • Cold rolling reduction 30% or more Cold rolling reduction is 30% or more. If the rolling reduction is less than 30%, the processing amount is insufficient, and the recrystallization of the processed ferrite cannot be sufficiently achieved in the next annealing step, ensuring the desired high ductility and good balance between strength and ductility. It becomes difficult to do. For this reason, the rolling reduction of the cold rolling is limited to 30% or more.
  • the upper limit of the rolling reduction is determined by the capacity of the cold rolling mill, but when the rolling reduction is higher than 70%, the rolling load becomes high and the productivity is lowered. For this reason, the upper limit of the rolling reduction is preferably about 70%. Moreover, it is not necessary to specifically limit the number of rolling passes and the rolling reduction for each pass.
  • the obtained thin cold rolled sheet is then subjected to an annealing process.
  • the annealing process includes a first stage annealing process and a second stage annealing process.
  • the thin cold-rolled sheet is heated to an annealing temperature of 800 to 950 ° C, and the average cooling rate from the annealing temperature to the cooling stop temperature is 5 ° C / s or more.
  • the steel sheet is cooled to a cooling stop temperature in a temperature range of 350 to 500 ° C., and a thin cold-rolled annealed sheet having a structure in which the sum of the martensite phase and the bainite phase is 80% or more by volume ratio.
  • Annealing temperature T1 Temperature in the temperature range of 800 to 950 ° C. If the annealing temperature is less than 800 ° C., the amount of ferrite phase generated becomes too large during annealing, and the desired total amount of martensite phase and bainite phase cannot be secured. As a result, a desired amount of retained austenite phase cannot be obtained with the thin cold-rolled annealed sheet after the second stage annealing step, and it becomes difficult to ensure desired high strength and high ductility. On the other hand, if the annealing temperature exceeds 950 ° C., the austenite grains become excessively coarse and the formation of ferrite is suppressed during the second stage annealing step.
  • the thin cold-rolled annealed sheet after the second stage annealing step cannot generate a desired amount of fine retained austenite phase, making it difficult to ensure the desired high ductility and lowering the strength-ductility balance. Therefore, in the first stage annealing step, the annealing temperature Tl is limited to a temperature range of 800 to 950 ° C.
  • the upper limit of the cooling rate is not particularly limited, but is preferably 50 ° C./s or less. In order to secure a cooling rate exceeding 50 ° C./s, an excessive cooling device is required. From the viewpoint of production technology, capital investment, etc., the upper limit of the cooling rate is preferably 50 ° C./s or less on average.
  • the cooling is preferably gas cooling, but may be performed in combination with furnace cooling, mist cooling, or the like.
  • Cooling stop temperature T2 Temperature in the temperature range of 350 to 500 ° C
  • the cooling stop temperature is 350 to 500 ° C so that the total structure of the martensite phase and bainite phase is 80% or more by volume. The temperature of the area.
  • the cooling stop temperature exceeds 500 ° C.
  • the structure after cooling cannot be made the desired structure.
  • the cooling stop temperature is less than 350 ° C.
  • the second stage annealing step may be continuously performed.
  • the second stage annealing step may be performed.
  • Total of martensite phase and bainite phase 80% or more in volume ratio If the structure after the first stage annealing process is less than 80% in volume ratio in total of the martensite phase and bainite phase, it is after the second stage annealing process. In thin cold-rolled annealed plates, it becomes difficult to secure the desired fine acicular retained austenite phase, it becomes impossible to ensure the desired high ductility and good strength-ductility balance, and ensure excellent manufacturing stability It will also be difficult.
  • the above-mentioned thin cold-rolled annealed plate is further held for 10 to 900 s in the temperature range of 700 to 840 ° C, and then averaged from the annealing temperature to the cooling stop temperature. Then, it is cooled at a cooling rate of 5 to 50 ° C./s to a temperature in the cooling stop temperature range of 350 to 500 ° C., held in the cooling stop temperature range for 10 to 1800 s, and then allowed to cool.
  • Annealing temperature T3 in the second stage annealing process 700-840 °C If the annealing temperature in the second stage annealing process is less than 700 ° C., a sufficient amount of austenite phase cannot be secured during annealing, and eventually a desired amount of retained austenite phase cannot be secured, resulting in desired high ductility and good strength ductility. The balance cannot be secured. On the other hand, if the annealing temperature exceeds 840 ° C, it becomes an austenite single-phase region, so that it is impossible to finally produce a desired amount of fine acicular retained austenite phase, ensuring the desired high ductility and good strength ductility balance. It becomes difficult. Therefore, the annealing temperature in the second stage annealing process is limited to a temperature range of 700 to 840 ° C. The temperature is preferably 720 to 820 ° C.
  • Holding time at annealing temperature 10-900s If the holding time at the annealing temperature is less than 10 s, a sufficient amount of austenite phase cannot be secured at the time of annealing, and eventually a desired amount of retained austenite phase cannot be secured, resulting in a desired high ductility and good strength-ductility balance. It cannot be secured. On the other hand, if the time is longer than 900 s, the crystal grains become coarse, and a desired amount of fine acicular retained austenite phase cannot be finally produced, and the desired high ductility and good strength ductility balance can be secured. Disappear. Furthermore, productivity is inhibited. For this reason, the holding time at the annealing temperature in the second stage annealing process is limited to the range of 10 to 900 s.
  • Average cooling rate 5-50 °C / s If the cooling rate is less than 5 ° C./s on average from the annealing temperature to the cooling stop temperature, a large amount of ferrite phase is generated during cooling, and it becomes difficult to ensure a desired high strength. On the other hand, if the quenching exceeds 50 ° C./s, a low-temperature transformation phase such as a martensite phase or a bainite phase is excessively generated, and the desired high ductility and good strength ductility balance cannot be ensured. For this reason, cooling from the annealing temperature in the second stage annealing step was limited to a range of 5 to 50 ° C./s in terms of average cooling rate.
  • the cooling is preferably gas cooling, but can be performed by combining furnace cooling, mist cooling, and the like.
  • Cooling stop temperature T4 Temperature in the cooling stop temperature range of 350 to 500 ° C. If the cooling stop temperature is less than 350 ° C., a large amount of martensite phase is generated during holding after cooling stop, and the desired structure cannot be secured. As a result, the desired high ductility and good strength ductility balance cannot be ensured. On the other hand, if the cooling stop temperature exceeds 500 ° C, a large amount of ferrite phase and pearlite phase is generated during holding after cooling stop, so that the desired structure cannot be secured, and the desired high ductility and good strength ductility balance. Cannot be secured. For this reason, the cooling stop temperature in the second stage annealing step is limited to a temperature in the cooling stop temperature range of 350 to 500 ° C.
  • Holding in the cooling stop temperature range 10 to 1800 s If the holding time in the cooling stop temperature region is less than 10 s, the time for C concentration to the austenite phase is insufficient, and it becomes difficult to finally secure a desired amount of retained austenite phase. On the other hand, even if retained for longer than 1800 s, the amount of retained austenite increases little and some of the retained austenite decomposes into a ferrite phase and cementite. For this reason, the holding time in the temperature range of the cooling stop temperature is limited to the range of 10 to 1800 s.
  • “holding” includes not only isothermal holding but also slow cooling and heating in the temperature range.
  • the cooling after holding in the cooling stop temperature range does not need to be specified, and the cooling can be performed to a desired temperature such as room temperature by an arbitrary method such as cooling.
  • a plating process may be further performed to form a plating layer on the surface.
  • the plating treatment is preferably galvanizing treatment, galvanizing treatment and alloying treatment, or electrogalvanizing treatment.
  • the hot dip galvanizing treatment, hot dip galvanizing treatment and alloying treatment, and electrogalvanizing treatment all of known hot dip galvanizing treatment, hot dip galvanizing treatment and alloying treatment, and electrogalvanizing treatment are suitable. Needless to say, pretreatment such as degreasing and phosphate treatment is performed before the plating treatment.
  • a hot dip galvanizing treatment a conventional continuous hot dip galvanizing line is used to immerse a thin cold-rolled annealed plate subjected to the above-mentioned second stage annealing step in a hot dip galvanizing bath and place A treatment for forming a fixed amount of hot-dip galvanized layer is preferable.
  • the temperature of the thin cold-rolled annealed plate is within the range of (hot galvanizing bath temperature-50 ° C) to (hot galvanizing bath temperature + 80 ° C) by reheating or cooling. It is preferable to adjust.
  • the temperature of the hot dip galvanizing bath is 440 ° C. or higher, preferably 500 ° C. or lower.
  • the hot dip galvanizing bath may contain Al, Fe, Mg, Si and the like in addition to pure zinc.
  • the adhesion amount of the hot dip galvanized layer is preferably adjusted to a desired adhesion amount by adjusting gas wiping or the like, but is preferably about 45 g / m 2 per side.
  • the plating layer (hot galvanizing layer) formed by the hot dip galvanizing treatment described above may be subjected to a usual alloying treatment as necessary to form an alloyed hot dip galvanizing layer.
  • the alloying treatment is performed at 460 ° C. or higher, preferably 600 ° C. or lower.
  • an alloyed hot-dip galvanized layer it is preferable to adjust the effective Al concentration in the plating bath to a range of 0.10 to 0.22% by mass from the viewpoint of ensuring a desired plating appearance.
  • the electrogalvanizing treatment is preferably a treatment in which a predetermined amount of electrogalvanized layer is formed on the surface using a conventional electrogalvanizing line.
  • the adhesion amount of the plating layer is adjusted to a predetermined adhesion amount by adjusting the plate passing speed, current value, etc., but is preferably about 30 g / m 2 per side.
  • Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material: wall thickness 230 mm) by a continuous casting method.
  • the obtained steel material was subjected to a hot rolling process under the conditions shown in Table 2 to obtain a hot-rolled sheet having a thickness shown in Table 2.
  • the obtained hot-rolled sheet was subjected to a pickling process, and then subjected to a cold rolling process at a reduction rate shown in Tables 3 to 7, to obtain a thin cold-rolled sheet (sheet thickness: 1.4 mm).
  • hydrochloric acid was used for pickling.
  • the obtained thin cold rolled sheet was subjected to an annealing process under the conditions shown in Tables 3 to 7 to obtain a thin cold rolled annealed sheet (thin cold rolled steel sheet).
  • the annealing process was a two-stage process including a first stage annealing process and a second stage annealing process. After the first-stage annealing process, a structure observation specimen was collected and the steel sheet structure was observed.
  • Some thin cold-rolled steel sheets were further subjected to a hot dip galvanizing treatment after the annealing step to form a hot dip galvanized layer on the surface to obtain hot dip galvanized thin steel sheets (GI).
  • the hot dip galvanizing process uses a continuous hot dip galvanizing line to reheat a thin cold-rolled annealed plate that has been subjected to an annealing process to a temperature in the range of 430 to 480 ° C as necessary, Bath temperature: 470 ° C.), and the plating layer adhesion was adjusted to 45 g / m 2 per side.
  • the bath composition was Zn-0.18 mass% Al.
  • the bath composition was Zn-0.14 mass% Al, and after the plating treatment, alloying was performed at 520 ° C. to obtain alloyed hot-dip galvanized thin steel sheets (GA).
  • the Fe concentration in the plating layer was set to 9% by mass or more and 12% by mass or less.
  • some thin cold-rolled steel sheets are further subjected to electrogalvanizing treatment using an electrogalvanizing line after the annealing process so that the coating amount is 30 g / m 2 per side.
  • a galvanized sheet steel (EG) was used.
  • specimens were sampled and subjected to structure observation and tensile tests.
  • the test method was as follows. (1) Microstructure observation First, specimens for microstructural observation are collected from a thin cold-rolled steel sheet that has been subjected to an annealing process (first-stage annealing process and second-stage annealing process) or further plated, and rolling direction.
  • the cross section (L cross section) is polished and corroded (3 vol.% Nital liquid corrosion) so that the position corresponding to 1/4 of the plate thickness becomes the observation surface, and a scanning electron microscope SEM (magnification: 2000 times) is used.
  • SEM scanning electron microscope
  • the tissue was observed over 10 fields of view and imaged to obtain an SEM image.
  • the structure fraction (area ratio) of each phase was obtained by image analysis, and the value was treated as the volume fraction, which was used as the structure fraction of each phase of the steel sheet.
  • Media Cybernetics “Image-Pro” (trade name) was used as analysis software.
  • the ferrite phase is gray
  • the martensite phase and the residual austenite phase are white, so each phase is judged from its color tone
  • the retained austenite and cementite are fine dots or lines in the ferrite phase.
  • the structure observed in the shape was defined as a bainite phase.
  • the pearlite phase and the cementite phase were judged from the structure morphology.
  • required separately was subtracted from the volume ratio of the phase which exhibits white, and it was set as the volume ratio of the martensite phase.
  • a specimen for X-ray diffraction was sampled from a thin cold-rolled steel sheet that had been subjected to an annealing process (first-stage annealing process and second-stage annealing process) or further subjected to plating treatment to obtain a 1/4 of the plate thickness.
  • the amount of retained austenite was determined from the diffracted X-ray intensity by the X-ray diffraction method.
  • the incident X-ray was a CoK ⁇ ray.
  • a specimen for transmission electron microscope observation was collected from a thin cold-rolled steel sheet that had been subjected to an annealing process (first-stage annealing process and second-stage annealing process) or further subjected to plating treatment.
  • a thin film sample was obtained by grinding and polishing (mechanical polishing and electrolytic polishing) so that the position corresponding to / 4 was the observation position.
  • tissue was observed using the transmission electron microscope TEM (magnification: 15000 times), and 20 or more visual fields were imaged, and the TEM image was obtained. Using the obtained TEM image, the average crystal grain size and average aspect ratio of the retained austenite phase were determined by image analysis.
  • the average crystal grain size of the retained austenite phase is obtained by calculating the area of the crystal grains of each retained austenite phase, calculating the equivalent circle diameter from the area, arithmetically averaging those values, and the residual austenite phase of the steel sheet. The average grain size was taken. In calculating the average crystal grain size, 20 or more crystal grains of the retained austenite phase were measured in each visual field. Also, using the obtained TEM image, by image analysis, the major axis and minor axis of each residual austenite phase are obtained, the aspect ratio of each residual austenite phase is calculated, and the obtained value is arithmetically calculated. The average aspect ratio (average) of the residual austenite phase crystal grains in the steel sheet was used.
  • TS: 980 MPa class El: 20% or more, TS x El: 19600 MPa ⁇ % or more, TS: 1180 MPa class, El: 15% or more, TS x El: 17700 MPa ⁇ % or more,
  • TS: 1270MPa class El: 10% or more, TS x El: 12700MPa ⁇ % or more is considered to be a good balance of strength and ductility, respectively, evaluated as “ ⁇ ”, otherwise “ ⁇ ” .
  • the tensile direction is parallel to the rolling direction (L direction) and 45 ° direction (D direction).
  • a No. 5 tensile test piece was collected and subjected to a tensile test in accordance with JIS Z 2241 (2011), and the tensile strength TS and total elongation El were measured.
  • ⁇ TS (TS L + TS C ⁇ 2 ⁇ TS D ) / 2 (1)
  • ⁇ TS in-plane anisotropy (MPa) of tensile strength TS
  • TS L tensile strength (MPa) in a direction parallel to the rolling direction (L direction)
  • TS C direction perpendicular to the rolling direction (C direction) tensile strength (MPa)
  • TS D 45 ° direction (D direction) tensile strength (MPa) in the rolling direction
  • ⁇ El (El L + El C ⁇ 2 ⁇ El D ) / 2 (2)
  • ⁇ El in-plane anisotropy (%) of the total elongation El
  • El L total elongation (%) in a direction parallel to the rolling direction (L direction)
  • El C direction perpendicular to the rolling direction (C Direction) total elongation
  • Each of the inventive examples has a structure including an appropriate amount of ferrite phase, an appropriate amount of fine acicular retained austenite phase, and the balance including a martensite phase, and a tensile strength TS: high strength of 980 MPa or more.
  • the total elongation El is 20% or more for TS: 980MPa class, 15% or more for TS: 1180MPa class, 10% or more for TS: 1270MPa class, high ductility, and in-plane anisotropy for both strength and elongation It is a small, high-strength cold-rolled steel sheet.
  • the desired structure cannot be obtained, and the strength is insufficient, the ductility is insufficient, or the in-plane anisotropy is large.
  • the annealing temperature T1 and the cooling stop temperature T2 in the first stage annealing process, and the annealing temperature T3 and the cooling stop temperature T4 in the second stage annealing process were targeted.
  • TS and El of cold-rolled steel sheets manufactured under the same conditions other than temperature T1 in the annealing process but only under temperature T1 are compared to determine the amount of fluctuation in TS and El.
  • the amount of fluctuation ( ⁇ TS, ⁇ El) per 20 ° C. of temperature fluctuation in the annealing process was calculated from the amount.
  • the fluctuation amounts ( ⁇ TS, ⁇ El) per 20 ° C. were calculated.
  • the TS fluctuation amount per 20 ° C is 25 MPa or less
  • the El fluctuation amount is 5% or less
  • the TS fluctuation amount per 20 ° C temperature fluctuation exceeds 25 MPa
  • the El fluctuation quantity is 5%. The production stability is reduced.
  • the present invention is a high-strength cold-rolled steel sheet with high strength, high ductility, excellent strength-ductility balance, small in-plane anisotropy, and excellent material stability. Yes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

面内異方性が小さい高強度冷延薄鋼板およびその製造方法を提供する。 質量%で、C:0.20%超え0.45%以下、Si:0.50~2.50%、Mn:2.00%以上3.50%未満と、さらにTi:0.005~0.100%およびNb:0.005~0.100%のうちから選ばれた1種または2種を含有する組成の鋼素材に、熱間圧延と、圧下率:30%以上の冷間圧延とを施したのち、さらに、800~950℃の温度域に加熱したのち、5℃/s以上の冷却速度で、350~500℃の温度域の冷却停止温度まで冷却し、マルテンサイト相とベイナイト相とが合計で80体積%以上の組織を有する鋼板としたのち、さらに、700~840℃の温度域に加熱し保持したのち、5~50℃/sの冷却速度で、350~500℃の温度域の冷却停止温度まで冷却し、該温度域で10~1800s間保持する工程を施す。これにより、体積率で、15%以上70%以下のフェライト相と、15%超え40%以下の残留オーステナイト相と、30%以下のマルテンサイト相とを含む組織とし、残留オーステナイト相が、平均結晶粒径:2.0μm以下でアスペクト比が2.0以上の針状微細粒とする。これにより、製造安定性に優れ、TS:980MPa以上で、高延性および面内異方性が小さい高強度冷延薄鋼板となる。

Description

高強度冷延薄鋼板およびその製造方法
 本発明は、引張強さTS:980MPa以上を有し、自動車部品用として好適な、高強度冷延薄鋼板およびその製造方法に係り、とくに、強度および伸びの面内異方性の低減、さらには製造安定性の向上に関する。
 近年、地球環境の保全という観点から、自動車の燃費向上が要望され、車体部品等への引張強さ:980MPa以上の高強度鋼板の適用が促進されている。さらに、最近では、自動車の衝突安全性の向上に対する要求が高まり、衝突時の乗員の安全性確保という観点から、車体の骨格部分等の構造部材用として、高強度鋼板が広く採用されるようになり、引張強さが1180MPa級、1270MPa級といった極めて高い強度の高強度鋼板の適用も検討されている。
 例えば、特許文献1には、質量%で、C:0.16~0.20%、Si:1.0~2.0%、Mn:2.5~3.5%、Al:0.005~0.1%、N:0.01%以下、Ti:0.001~0.050%、B:0.0001~0.0050%を含む組成からなるスラブを、熱間圧延し、ついで、酸洗後、冷間圧延した冷延板に、焼鈍工程として、800~950℃で焼鈍したのち、冷却停止温度:200~500℃まで冷却し、ついで750~850℃に再加熱後、平均冷却速度:5~50℃/sで、350~450℃の冷却停止温度域まで冷却し、この温度域に100~1000s滞留させ、延性に優れかつ引張強さが1180MPa以上である高強度冷延鋼板とする、高強度冷延鋼板の製造方法が記載されている。特許文献1に記載された技術では、体積分率で、フェライト相:40~65%、マルテンサイト相:30~55%、残留オーステナイト相:5~15%を含み、圧延方向断面において単位面積:1μm当たりのマルテンサイト相の数が0.5~5.0個を満足する組織を有し、延性に優れ、しかも引張強さが1180MPa以上で、強度延性バランスTS×Elが22000MPa%以上を有する高強度冷延鋼板が得られるとしている。
 また、特許文献2には、質量%で、C:0.05~0.12%、Si:0.05%以下、Mn:2.7~3.5%、Cr:0.2~0.5%、Mo:0.2~0.5%を含有し、Al:0.10%以下、P:0.03%以下、S:0.03%以下に抑制された組成と、フェライトおよびマルテンサイトを主体とする複合組織と、を有し、引張強さが780~1180MPaで、スポット溶接性及び材質安定性に優れた高強度溶融亜鉛めっき鋼板が記載されている。特許文献2に記載された技術では、Cを0.05~0.12%と低減し、スポット溶接性を向上させ、さらにCrとMoとを必須成分として含有させることにより、降伏強さのバラツキが18MPa以下、引張強さのバラツキが13MPa以下、全伸びのバラツキが1.8%以下に抑えられ、スポット溶接性及び材質安定性に優れる鋼板となるとしている。
 また、特許文献3には、質量%で、C:0.10~0.4%未満、Si:0.5~3.0%、Mn:1.5~3.0%を含有し、O:0.006%以下、P:0.04%以下、S:0.01%以下、Al:2.0%以下、N:0.01%以下に制限され、残部は鉄および不可避的不純物からなる鋼片を、1000~1200℃の温度範囲で、圧下率40%以上の圧延を1回以上行う第1の熱間圧延を行い、第1の熱間圧延でオーステナイト粒径を200μm以下とし、成分含有量の特定関係式で定義される温度T1+30℃以上、T1+200℃以下の温度域で、少なくとも1回は1パスで圧下率30%以上の圧延を行う第2の熱間圧延を行い、第2の熱間圧延での合計の圧下率を50%以上とし、第2の熱間圧延において、圧下率が30%以上の最終圧下を行った後、待ち時間t秒がt≦2.5×t1を満足するように冷間圧延前冷却を開始し、冷間圧延前冷却が平均冷却速度を50℃/秒以上、温度変化が40~140℃の範囲とし、700℃以下の温度域で巻取ったのち、圧下率40~80%の冷間圧延を行い、連続溶融亜鉛めっきラインで、750~900℃の焼鈍温度まで加熱し、焼鈍温度から500℃まで、0.1~200℃/秒で冷却し、500~350℃間にて10~1000秒間で保持したのち、溶融亜鉛めっきを行い、引張強さ980MPa以上で材質異方性の少ない成形性に優れた高強度溶融亜鉛めっき鋼板とする、高強度溶融亜鉛めっき鋼板の製造方法が記載されている。特許文献3に記載された技術では、強化元素であるSiを活用し、体積率40%以上のフェライトと、8%以上60%未満の残留オーステナイトと、残部ベイナイトもしくはマルテンサイトから成り、{100}<011>~{223}<110>方位群の極密度の平均値が6.5以下、{332}<113>の結晶方位の極密度が5.0以下である、材質異方性の小さい成形性に優れる高強度溶融亜鉛めっき鋼板が得られるとしている。
特開2012-153957号公報 特許第4325998号公報 特許第5321765号公報
 しかしながら、上記したように、鋼板を高強度化して薄肉化すると、プレス成形後の形状凍結性が著しく低下する。そのため、プレス成形時に、離型後の形状変化を予め予測し、形状変化量を見込んで型を設計することが広く行われている。しかし、鋼板の強度や延性が、同一製品内でばらつくと、これらを一定として算出した見込み量からのズレが大きくなり、形状不良が発生する。そのため、プレス成形後、一個ごとに、板金加工等による手直しが不可欠となり、量産効率を著しく低下させる。このようなことから、同一製品内の強度と伸びのバラツキを可能な限り小さくできる製造安定性に優れ、かつ鋼板内の面内異方性が小さい高強度鋼板が要求されている。
 しかし、特許文献1に記載された技術では、製造安定性や面内異方性に関しては考慮されていない。また、特許文献2に記載された技術では、引張強さTSが980MPa以上で全伸びElが15%未満と、延性の顕著な向上が得られないだけでなく、面内異方性に関して全く考慮されていない。また、特許文献3に記載された技術では、製造安定性に関して、全く考慮されていないという問題があった。
 本発明は、上記した従来技術の問題を有利に解決し、高強度、高延性で、焼鈍処理時の温度変動に対する強度および伸びのばらつきが少なく製造安定性に優れ、かつ強度および伸びの面内異方性が小さい高強度冷延薄鋼板およびその製造方法を提供することを目的とする。なお、ここでいう「高強度」とは、引張強さTS:980MPa以上である場合をいう。また、「高延性」とは、全伸びEl(JIS 5号引張試験片(GL:50mm)使用)が、TS:980MPa級では20%以上、TS:1180MPa級では15%以上、TS:1270MPa級では10%以上である場合をいう。また、「製造安定性に優れる」とは、焼鈍工程での温度変動が20℃である場合の、引張強さTSの変動量が25MPa以下でかつ全伸びElの変動量が5%以下である場合をいうものとする。
 また、「面内異方性が小さい」とは、次(1)式
 δTS=(TS+TS-2×TS)/2   ‥‥(1)
 (ここで、TS:圧延方向と平行な方向(L方向)の引張強さ(MPa)、TS:圧延方向と垂直な方向(C方向)の引張強さ(MPa)、TS:圧延方向と45°の方向(D方向)の引張強さ(MPa))
で定義されるδTSが、25MPa以下であり、かつ次(2)式
 δEl=(EL+El-2×El)/2‥‥(2)
 (ここで、EL:圧延方向と平行な方向(L方向)の全伸び(%)、El:圧延方向と垂直な方向(C方向)の全伸び(%)、El:圧延方向と45°の方向(D方向)の全伸び(%))
で定義されるδElが、10%以下である場合をいうものとする。
 また、ここでいう「薄鋼板」とは、板厚:5mm以下である鋼板をいうものとする。
 本発明者らは、上記した目的を達成するために、強度、延性、さらには製造安定性、面内異方性に影響する各種要因について、鋭意研究した。その結果、C:0.20質量%超えで、Tiおよび/またはNbを含有する組成とすることにより、焼鈍処理における広い温度範囲(700~840℃)にわたり、所望の高強度を確保でき、かつ強度および伸びの変動(ばらつき)を少なくでき、製造安定性に優れた高強度薄鋼板とすることができることを新規に見出した。また、上記した組成とすることに加えて、針状で微細な残留オーステナイト相を適正量、フェライト相中に分散させた組織とすることにより面内異方性が小さい高強度薄鋼板とすることができることを見出した。
 このような組織を有する高強度薄鋼板は、上記した組成を有し、圧下率:30%以上となる冷間圧延を施されてなる薄冷延板に、加熱し冷却する焼鈍処理(第1段焼鈍処理)と、二相温度域に加熱し短時間保持後、所定の温度域の冷却停止温度まで冷却し、該温度域で所定時間保持する焼鈍処理(第2段焼鈍処理)とを施す、2段階の焼鈍処理により、製造できることを知見した。冷延板に上記した第1段焼鈍処理を施すことにより、マルテンサイト相とベイナイト相の合計が体積率で80%以上となる組織を有する薄冷延焼鈍板とすることができ、さらに該薄冷延焼鈍板に上記した第2段焼鈍処理を施すことにより、安定性の高い微細で針状の残留オーステナイト相を適正量、分散させた薄冷延焼鈍板(高強度冷延薄鋼板)とすることができ、これにより、面内異方性が少ない高強度冷延薄鋼板とすることができる。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)質量%で、C:0.20%超え0.45%以下、Si:0.50~2.50%、Mn:2.00%以上3.50%未満、P:0.001~0.100%、S:0.0200%以下、N:0.0100%以下、Al:0.01~0.100%を含み、さらに、Ti:0.005~0.100%およびNb:0.005~0.100%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成と、体積率で、15%以上70%以下のフェライト相と、15%超え40%以下の残留オーステナイト相と、残部が30%以下(0%を含まず)のマルテンサイト相、あるいはさらに10%以下(0%を含む)のパーライト相および/または炭化物からなる組織と、を有し、前記残留オーステナイト相が、平均結晶粒径:2.0μm以下でかつアスペクト比が2.0以上であり、引張強さ:980MPa以上で、次(1)式
    δTS=(TS+TS-2×TSD)/2   ‥‥(1)
(ここで、δTS:引張強さTSの面内異方性(MPa)、TS:圧延方向(L方向)と平行な方向の引張強さ(MPa)、TS:圧延方向に垂直な方向(C方向)の引張強さ(MPa)、TSD:圧延方向に45°方向(D方向)の引張強さ(MPa))
で定義される引張強さの面内異方性δTSが25MPa以下および次(2)式
    δEl=(El+El-2×ElD)/2   ‥‥(2)
(ここで、δEl:全伸びElの面内異方性(%)、El:圧延方向(L方向)と平行な方向の全伸び(%)、El:圧延方向に垂直な方向(C方向)の全伸び(%)、El D:圧延方向に45°方向(D方向)の全伸び(%))
で定義される全伸びの面内異方性δElが10%以下である高強度冷延薄鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、次A群~D群
 A群:B:0.0001~0.0050%、Cr:0.05~1.00%およびCu:0.05~1.00%のうちから選ばれた1種または2種以上、
 B群:Sb:0.002~0.200%、Sn:0.002~0.200%のうちから選ばれた1種または2種、
 C群:Ta:0.001~0.100%、
 D群:Ca:0.0005~0.0050%、Mg:0.0005~0.0050%およびREM:0.0005~0.0050%のうちから選ばれた1種または2種以上
のうちから1群または2群以上を含有する高強度冷延薄鋼板。
(3)(1)または(2)において、表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかを有する高強度冷延薄鋼板。
(4)鋼素材に、熱間圧延工程と、酸洗工程と、冷間圧延工程と、焼鈍工程とを、順次施して、冷延薄鋼板とするにあたり、前記鋼素材を、質量%で、C:0.20%超え0.45%以下、Si:0.50~2.50%、Mn:2.00%以上3.50%未満、P:0.001~0.100%、S:0.0200%以下、N:0.0100%以下、Al:0.01~0.100%を含み、さらに、Ti:0.005~0.100%およびNb:0.005~0.100%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延工程を、前記鋼素材を加熱し、所定板厚の熱延板とする工程とし、前記冷間圧延工程を、前記熱延板に圧下率:30%以上の冷間圧延を施し、所定板厚の薄冷延板とする工程とし、前記焼鈍工程を、前記薄冷延板に、焼鈍温度:800~950℃の温度域に加熱したのち、焼鈍温度から冷却停止温度までの平均で5℃/s以上の冷却速度で、350~500℃の温度域の冷却停止温度まで冷却し、マルテンサイト相とベイナイト相との合計が体積率で80%以上となる組織の薄冷延焼鈍板とする第1段焼鈍処理と、該薄冷延焼鈍板にさらに、焼鈍温度:700~840℃の温度域に加熱し該温度域で10~900s間保持したのち、焼鈍温度から冷却停止温度までの平均で5~50℃/sの冷却速度で、350~500℃の冷却停止温度域の温度まで冷却し、該冷却停止温度域で10~1800s間保持する第2段焼鈍処理と、からなる工程と、する高強度冷延薄鋼板の製造方法。
(5)(4)において、前記組成に加えてさらに、質量%で、次A群~D群
 A群:B:0.0001~0.0050%、Cr:0.05~1.00%およびCu:0.05~1.00%のうちから選ばれた1種または2種以上、
 B群:Sb:0.002~0.200%、Sn:0.002~0.200%のうちから選ばれた1種または2種、
 C群:Ta:0.001~0.100%、
 D群:Ca:0.0005~0.0050%、Mg:0.0005~0.0050%およびREM:0.0005~0.0050%のうちから選ばれた1種または2種以上
のうちから1群または2群以上を含有する高強度冷延薄鋼板の製造方法。
(6)(4)または(5)において、前記焼鈍工程の前記第2段焼鈍処理に引続き、溶融亜鉛めっき処理、あるいは溶融亜鉛めっき処理および合金化処理、または電気亜鉛めっき処理を施す高強度冷延薄鋼板の製造方法。
 本発明によれば、引張強さ:980MPa以上の高強度と高延性とを有し、焼鈍時の温度変動に対する強度および全伸びの変動量が少ない、すなわち強度および全伸びの面内異方性が小さい高強度冷延薄鋼板を安定して製造することができ、産業上格段の効果を奏する。また、本発明になる高強度冷延薄鋼板を、自動車構造部材に適用することにより、自動車車体の軽量化に大きく寄与でき、自動車の燃費向上に大きく貢献できるという効果もある。
 本発明高強度冷延薄鋼板は、質量%で、C:0.20%超え0.45%以下、Si:0.50~2.50%、Mn:2.00%以上3.50%未満、P:0.001~0.100%、S:0.0200%以下、N:0.0100%以下、Al:0.01~0.100%を含み、さらに、Ti:0.005~0.100%およびNb:0.005~0.100%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成を有する。
 まず、組成限定の理由について説明する。以下、とくに断らない限り、質量%は、単に%で記す。
 C:0.20%超え0.45%以下
 Cは、高い固溶強化能を有し、鋼板強度の増加に寄与する。また、残留オーステナイト相を安定化させ、所望の体積率の残留オーステナイト相を確保し、延性の向上に有効に寄与する。このような効果を得るためには、0.20%超えの含有を必要とする。Cが0.20%以下では、所望量の残留オーステナイト相を得ることが困難になる。一方、0.45%を超える多量の含有は、靭性の低下、溶接性の低下や遅れ破壊発生の懸念を招く。このため、Cは0.20%超え0.45%以下に限定した。なお、好ましくは0.25%以上、より好ましくは0.287%以上である。好ましくは0.40%以下、より好ましくは0.37%以下である。
 Si:0.50~2.50%
 Siは、フェライト相中で高い固溶強化能を有し、鋼板強度の増加に寄与する。また、炭化物(セメンタイト)の生成を抑制し、残留オーステナイト相の安定化に寄与する、本発明では有用な元素である。また、Siは、フェライト相中のC(固溶)をオーステナイト相へ排出させ、フェライト相を清浄化し、鋼板延性の向上に寄与する作用を有する。また、フェライト相に固溶したSiは、加工硬化能を向上させ、フェライト相自身の延性向上に寄与する。このような効果を得るためには、0.50%以上の含有を必要とする。一方、Siが2.50%を超えると、残留オーステナイト相の生成が阻害される。このため、Siは0.50~2.50%の範囲に限定した。なお、好ましくは0.80%以上、より好ましくは1.00%以上である。好ましくは2.00%以下、より好ましくは1.80%以下である。
 Mn:2.00%以上3.50%未満
 Mnは、固溶強化あるいは焼入れ性向上を介して鋼板の強度増加に有効に寄与する。また、オーステナイト安定化元素であり、所望の残留オーステナイト量の確保に必要不可欠な元素である。このような効果を得るために、2.00%以上の含有を必要とする。一方、3.50%以上と過剰に含有すると、所望の残留オーステナイト量を得ることが困難になる。このようなことから、Mnは2.00%以上3.50%未満に限定した。なお、好ましくは2.30%以上である。好ましくは3.00%以下である。
 P:0.001~0.100%
 Pは、固溶強化により、鋼板の強度増加に寄与する元素であり、所望の強度に応じて適正量含有できる。また、Pは、フェライト変態を促進する作用を有し、複合組織の形成に有効な元素である。このような効果を得るためには、0.001%以上含有する必要がある。一方、0.100%を超える含有は、溶接性の低下を招くとともに、粒界偏析による粒界破壊を助長する。このため、Pは0.001~0.100%の範囲に限定した。なお、好ましくは0.005%以上である。好ましくは0.050%以下である。
 S:0.0200%以下
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として鋼中に存在して局部変形能を低下させる元素であり、極力低減することが望ましい。しかし、0.0200%以下であれば、上記した悪影響は許容できる。このため、Sは0.0200%以下に限定した。なお、過度の低減は、生産技術上の制約や精錬コストの高騰を招くため、0.0001%以上とすることが望ましい。
 N:0.0100%以下
 Nは、鋼の耐時効性を低下させる元素であり、できるだけ低減することが望ましい。しかし、0.0100%以下であれば、その悪影響は許容できる。このため、Nは0.0100%以下に限定した。なお、好ましくは0.0070%以下である。なお、過度の低減は、生産技術上の制約や精錬コストの高騰を招くため、0.0005%以上とすることが望ましい。
 Al:0.01~0.100%
 Alは、フェライト生成元素であり、強度と延性のバランス(強度延性バランス)を向上させる元素である。このような効果を得るためには、0.01%以上含有する必要がある。一方、0.100%を超える含有は、表面性状の低下を招く。このため、Alは0.01~0.100%に限定した。なお、好ましくは0.03%以上であり、より好ましくは0.055%以上である。好ましくは0.08%以下であり、より好ましくは0.07%以下である。
 Ti:0.005~0.100%およびNb:0.005~0.100%のうちから選ばれた1種または2種
 Ti、Nbは、いずれも焼鈍工程等の加熱時における結晶粒の粗大化を抑制し、焼鈍後の鋼板組織の細粒化、均一化に有効に寄与し、焼鈍工程における温度変動に対する強度および全伸びのばらつきを低減し、製造安定性を向上させる本発明では有効な元素である。このようなことから、本発明では、Ti、Nbのうちから選ばれた1種または2種を含有することとした。上記したような効果を得るためには、それぞれ、Ti:0.005%以上、Nb:0.005%以上、の含有を必要とする。一方、それぞれ、Ti:0.100%、Nb:0.100%、を超える含有は、フェライト相中にTi系、Nb系の析出物が過度に生成するため、延性(全伸び)が低下する。このため、Tiは0.005~0.100%の範囲に、Nbは0.005~0.100%の範囲に限定した。なお、Tiは好ましくは0.010%以上である。好ましくは0.080%以下である。Nbは好ましくは0.010%以上である。好ましくは0.080%以下である。
 上記した成分組成が基本の成分組成であるが、本発明では基本の成分組成に加えてさらに、選択元素として、次に示すA群~D群のうちから選ばれた1群または2群以上を含有できる。
 A群:B:0.0001~0.0050%、Cr:0.05~1.00%およびCu:0.05~1.00%のうちから選ばれた1種または2種以上
 A群:B、Cr、Cuはいずれも、鋼板の強度増加に寄与する元素であり、必要に応じて1種または2種以上含有できる。
 Bは、焼入れ性の向上を介して、鋼板の強化に寄与する有効な元素である。このような効果を得るためには、0.0001%以上含有する必要がある。一方、0.0050%を超える含有は、マルテンサイト相の含有量が多くなりすぎ、強度増加が大きくなりすぎて、延性低下の懸念を招く。このため、含有する場合には、Bは0.0001~0.0050%の範囲に限定することが好ましい。なお、より好ましくは0.0005%以上である。より好ましくは0.0030%以下である。
 Crは、固溶強化により、鋼板の強化に寄与する。また、焼鈍工程の冷却時に、オーステナイト相を安定化し、組織の複合化を容易にする。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.00%を超えて多量に含有すると、成形性が低下する。このため、含有する場合には、Crは0.05~1.00%の範囲に限定することが好ましい。
 Cuは、固溶強化により、鋼板の強化に寄与する。また、焼鈍工程の冷却時に、オーステナイト相を安定化し、組織の複合化を容易にする。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.00%を超えて多量に含有すると、成形性が低下する。このため、含有する場合には、Cuは0.05~1.00%の範囲に限定することが好ましい。
 B群:Sb:0.002~0.200%、Sn:0.002~0.200%のうちから選ばれた1種または2種
 B群:Sb、Snはいずれも、表層の脱炭を抑制する作用を有する元素であり、必要に応じて1種または2種を含有できる。
 SbおよびSnは、鋼板表面の窒化や酸化によって生じる、鋼板表層(数十μm程度の領域)の脱炭を抑制する作用を有する。このような鋼板表層の窒化や酸化を抑制すれば、鋼板表面においてマルテンサイト相の生成量が減少するのを防止でき、所望の鋼板強度の確保や、焼鈍時の温度変動に起因する強度、伸びのばらつきを減少させることができ、製造安定性の確保にも有効となる。このような効果を得るためには、Sb、Snをそれぞれ0.002%以上含有させることを必要とする。一方、Sb、Snをそれぞれ、0.200%を超えて過剰に含有すると、靭性の低下を招く。このため、含有する場合には、Sb、Snはそれぞれ0.002~0.200%の範囲に限定することが好ましい。
 C群:Ta:0.001~0.100%
 C群:Taは、炭化物や炭窒化物を生成して、鋼板の高強度化に寄与する。このような効果を得るには、0.001%以上含有する必要がある。一方、0.100%を超えて過剰に含有すると、材料コストが増加し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、含有する場合には、Taは0.001~0.100%の範囲に限定することが好ましい。
 D群:Ca:0.0005~0.0050%、Mg:0.0005~0.0050%およびREM:0.0005~0.0050%のうちから選ばれた1種または2種以上
 D群:Ca、Mg、REMはいずれも、硫化物の形状を球状化し、硫化物の局部延性および伸びフランジ性への悪影響を改善する作用を有する元素であり、必要に応じて1種または2種以上を含有できる。このような効果を得るためには、Ca、Mg、REMは、それぞれ0.0005%以上含有する必要がある。一方、0.0050%を超えて過剰に含有すると、介在物等の増加を招き、表面欠陥および内部欠陥を発生させる。このため、含有する場合には、Ca、Mg、REMは、それぞれ、0.0005~0.0050%の範囲に限定することが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物である。
 次に、本発明の高強度冷延薄鋼板の組織限定理由について説明する。
 本発明の高強度冷延薄鋼板は、フェライト相を母相とし、該母相中に残留オーステナイト相を分散させた複合組織を有する。具体的には、表面から板厚方向に板厚の1/4に相当する位置(板厚1/4位置)で、体積率で、15%以上70%以下のフェライト相と、15%超え40%以下の残留オーステナイト相と、残部が30%以下(0%を含まず)のマルテンサイト相、あるいはさらに10%以下(0%を含む)のパーライト相および/または炭化物からなる組織である、複合組織を有する。
 フェライト相:体積率で、15%以上70%以下
 フェライト相は、延性(伸び)の向上に寄与する。そのため、本発明では、体積率で、15%以上のフェライト相を含む組織とする。フェライト相が、体積率で15%未満では、所望の延性を確保することが難しい。一方、70%を超えると、所望の高強度を確保できなくなる。このため、フェライト相は、体積率で、15%以上70%以下の範囲に限定した。なお、好ましくは、20~65%である。ここで云う「フェライト相」とは、ポリゴナルフェライト相、アシキュラーフェライト相、およびベイニティックフェライト相を含むものとする。
 残留オーステナイト相:体積率で15%超え40%以下
 残留オーステナイト相は、それ自体、延性に富む相であるが、歪誘起変態してさらに延性の向上に寄与する組織であり、延性の向上および強度と延性のバランスの向上に寄与する。このような効果を得るためには、残留オーステナイト相は、体積率で15%超えとする必要がある。一方、40%を超えて多くなると、強度が低下し、所望の高強度を確保できなくなる。このため、残留オーステナイト相は、体積率で15%超え40%以下に限定した。なお、好ましくは20%以上である。
 なお、本発明では、残留オーステナイト相は、平均結晶粒径:2.0μm以下でかつアスペクト比が2.0以上である、針状の微細粒とする。残留オーステナイト相を、このような針状の微細粒とすることにより、Cや合金元素の移動(拡散)が容易となり、より安定な残留オーステナイト相となり、延性(伸び)が顕著に向上するとともに、強度および伸びの面内異方性が小さくなる。
 残留オーステナイト相の平均結晶粒径:2.0μm以下
 残留オーステナイト相の平均結晶粒径が、2.0μmを超えて大きくなると、歪に対する安定性が低下するため、所望の高延性(全伸び値)を確保できなくなる。このため、残留オーステナイト相の平均結晶粒径は2.0μm以下に限定した。なお、好ましくは1.5μm以下である。また、所望の高強度を確保するためには、0.5μm以下とすることがより好ましい。
 残留オーステナイト相のアスペクト比:2.0以上
 残留オーステナイト相を、上記したように微細粒としたうえで、アスペクト比が2.0以上の針状とすることにより、延性(伸び)が著しく向上し、かつ強度および伸びの面内異方性がより小さくなる。このため、本発明では残留オーステナイト相のアスペクト比は2.0以上に限定した。なお、好ましくは2.5以上である。アスペクト比が5.0を超えて大きくなると、かえって面内異方性が大きくなるため、5.0以下とすることが好ましい。ここで云う「アスペクト比」とは、残留オーステナイト粒の長径と短径の比(短径に対する長径の比)である。
 本発明高強度冷延鋼板では、上記したフェライト相、残留オーステナイト相以外の残部は、組織全量に対する体積率で30%以下(0%を含まず)のマルテンサイト相からなる。ここでいう「マルテンサイト相」は、フレッシュマルテンサイト相、焼戻マルテンサイト相を含むものとする。
 マルテンサイト相が、体積率で30%を超えて多くなると、延性が低下し、所望の高延性を確保できなくなる。なお、所望の高強度を確保するためには、マルテンサイト相は、0%は含まず、好ましくは3%以上とすることが望ましい。
 なお、フェライト相、残留オーステナイト相以外の残部は、上記したマルテンサイト相以外に、さらに、組織全量に対する体積率で10%以下(0%を含む)であれば、パーライト相および/または炭化物を含んでもよい。なお、炭化物には、セメンタイト、Ti系炭化物、Nb系炭化物が含まれる。
 以上の上記組織は、製造条件、特に第1段焼鈍工程および第2段焼鈍工程を制御することにより有することができる。また、上記組織は、後述する実施例に記載の方法にて、測定することができる。
 上記した組成および組織を有する高強度冷延薄鋼板は、さらに表面に、耐食性向上のために、めっき層を形成してもよい。めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかとすることが好ましい。溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層は、公知の溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層がいずれも好適である。
 つぎに、本発明の高強度冷延薄鋼板の好ましい製造方法について説明する。
 本発明では、上記した組成の鋼素材に、熱間圧延工程と、酸洗工程と、冷間圧延工程と、焼鈍工程とを、順次施して、高強度冷延薄鋼板とする。
 鋼素材の製造方法については、とくに限定する必要はなく、転炉等の常用の溶製方法で上記した組成の溶鋼を溶製し、常用の連続鋳造法で所定寸法のスラブ等の鋳片(鋼素材)とすることが好ましい。なお、造塊-分塊圧延により鋼片(鋼素材)としてもよいことは云うまでもない。
 上記した組成の鋼素材に、ついで、熱間圧延工程を施し、熱延板とする。
 熱間圧延工程は、上記した組成の鋼素材を加熱し、熱間圧延を施して、所定寸法の熱延板とすることができればよく、とくに限定する必要はなく、常用の熱間圧延方法がいずれも適用できる。例えば、加熱温度:1100~1250℃の範囲の温度に加熱し、熱間圧延出側温度:850~950℃とする熱間圧延を施し、熱間圧延終了後、適正な圧延後冷却、具体的には、450~950℃の温度域の平均で40~100℃/sの範囲の冷却速度で冷却する圧延後冷却を施して、巻取温度:450~650℃で巻き取り、所定寸法形状の熱延板とする、熱間圧延方法が例示できる。
 ついで、得られた熱延板に、酸洗工程を施す。酸洗工程は、熱延板に冷間圧延を施すことができる程度に酸洗できればよく、とくに限定する必要はない。塩酸、硫酸等を使用する常用の酸洗方法がいずれも適用できる。
 酸洗工程を経た熱延板に、ついで冷間圧延工程を施す。
 冷間圧延工程は、酸洗工程を経た熱延板に、圧下率:30%以上の冷間圧延を施し、所定板厚の薄冷延板とする工程とする。
 冷間圧延の圧下率:30%以上
 冷間圧延の圧下率は30%以上とする。圧下率が30%未満では、加工量が不足し、次工程である焼鈍工程で、加工されたフェライトの再結晶が十分に達成できず、所望の高延性や良好な強度と延性のバランスを確保することが難しくなる。このため、冷間圧延の圧下率は30%以上に限定した。なお、圧下率の上限は、冷間圧延機の能力で決定されるが、70%を超える高い圧下率の場合、圧延荷重が高くなり、生産性が低下する。このため、圧下率の上限は70%程度とすることが好ましい。また、圧延パスの回数、パス毎の圧下率については、特に限定する必要はない。
 得られた薄冷延板は、ついで、焼鈍工程を施される。
 本発明では、焼鈍工程は、第1段焼鈍工程および第2段焼鈍工程からなる。
 第1段焼鈍工程では、薄冷延板に、焼鈍温度:800~950℃の温度域の温度に加熱したのち、焼鈍温度から冷却停止温度までの平均で5℃/s以上の冷却速度で、350~500℃の温度域の冷却停止温度まで冷却し、マルテンサイト相とベイナイト相との合計が体積率で80%以上となる組織の薄冷延焼鈍板とする。
 焼鈍温度T1:800~950℃の温度域の温度
 焼鈍温度が800℃未満では、焼鈍時にフェライト相の生成量が多くなりすぎて、所望のマルテンサイト相とベイナイト相の合計量を確保できない。その結果、第2段焼鈍工程後の薄冷延焼鈍板で、所望量の残留オーステナイト相を得ることができなくなり、所望の高強度および高延性の確保が困難となる。一方、焼鈍温度が950℃を超えると、オーステナイト粒が過度に粗大化し第2段焼鈍工程時にフェライトの生成が抑制される。そのため、第2段焼鈍工程後の薄冷延焼鈍板で、所望量の微細な残留オーステナイト相が生成できず、所望の高延性の確保が困難となり、強度延性バランスが低下する。このため、第1段焼鈍工程では、焼鈍温度Tlは800~950℃の温度域の温度に限定した。
 平均冷却速度:5℃/s以上
 焼鈍温度から冷却停止温度までの平均で、冷却速度が5℃/s未満では、冷却中にフェライト相とパーライト相が生成し、所望量のマルテンサイト相とベイナイト相の確保が困難となる。このため、焼鈍温度からの冷却は、平均で5℃/s以上の冷却速度に限定した。なお、冷却速度の上限はとくに限定する必要はないが、50℃/s以下とすることが好ましい。50℃/sを超える冷却速度を確保するためには、過大な冷却装置を必要とする。生産技術、設備投資等の観点から、冷却速度の上限は平均で50℃/s以下とすることが好ましい。なお、冷却は、ガス冷却とすることが好ましいが、炉冷、ミスト冷却などを組み合わせて行うことも可能である。
 冷却停止温度T2:350~500℃の温度域の温度
 冷却後の組織をマルテンサイト相とベイナイト相との合計で体積率で80%以上とするために、冷却停止温度を350~500℃の温度域の温度とする。冷却停止温度が、500℃超えの温度では、冷却後の組織を所望の上記した組織とすることができない。一方、冷却停止温度が350℃未満では、第2段焼鈍工程後の薄冷延焼鈍板で、残留オーステナイト相の平均結晶粒径が2μm以下、アスペクト比が2.0以上の組織を得ることが困難となり、所望の高延性を確保することが困難となり、強度延性バランスが低下する。
 なお、冷却停止後は、引き続き第2段焼鈍工程を施してもよい。また、冷却停止後、放冷し、一旦室温まで冷却したのち、第2段焼鈍工程を施してもよい。
 マルテンサイト相とベイナイト相との合計:体積率で80%以上
 第1段焼鈍工程後の組織が、マルテンサイト相とベイナイト相の合計で体積率で80%未満では、第2段焼鈍工程後の薄冷延焼鈍板において、所望の微細な針状の残留オーステナイト相を確保することが困難となり、所望の高延性および良好な強度延性バランスを確保できなくなるうえ、優れた製造安定性を確保することも困難となる。
 また、第2段焼鈍工程では、上記した薄冷延焼鈍板に、更に、焼鈍温度:700~840℃の温度域で10~900s間保持し、次いで、焼鈍温度から冷却停止温度までの平均で、5~50℃/sの冷却速度で、350~500℃の冷却停止温度域の温度まで冷却し、該冷却停止温度域で10~1800s間保持し、その後、放冷する処理を施す。
 第2段焼鈍工程における焼鈍温度T3:700~840℃
 第2段焼鈍工程における焼鈍温度が700℃未満では、焼鈍時に十分な量のオーステナイト相を確保できず、最終的に所望量の残留オーステナイト相が確保できなくなり、所望の高延性および良好な強度延性バランスを確保できなくなる。一方、焼鈍温度が840℃を超えると、オーステナイト単相域となるため、最終的に所望量の微細な針状残留オーステナイト相を生成できず、所望の高延性および良好な強度延性バランスを確保することが困難となる。このため、第2段焼鈍工程における焼鈍温度は700~840℃の温度域の温度に限定した。なお、好ましくは720~820℃である。
 焼鈍温度での保持時間:10~900s
 焼鈍温度での保持時間が、10s未満では、焼鈍時に十分な量のオーステナイト相を確保できず、最終的に所望量の残留オーステナイト相が確保できなくなり、所望の高延性および良好な強度延性バランスを確保できなくなる。一方、900sを超えて長時間となると、結晶粒の粗大化が生じ、最終的に所望量の微細な針状残留オーステナイト相を生成できず、所望の高延性および良好な強度延性バランスを確保できなくなる。さらに、生産性を阻害する。このようなことから、第2段焼鈍工程における焼鈍温度での保持時間を10~900sの範囲に限定した。
 平均冷却速度:5~50℃/s
 焼鈍温度から冷却停止温度までの平均で、冷却速度が5℃/s未満では、冷却中に多量のフェライト相が生成し、所望の高強度を確保することが困難となる。一方、50℃/sを超える急冷では、マルテンサイト相やベイナイト相などの低温変態相が過度に生成し、所望の高延性および良好な強度延性バランスを確保できなくなる。このようなことから、第2段焼鈍工程における焼鈍温度からの冷却は平均冷却速度で5~50℃/sの範囲に限定した。なお、冷却は、ガス冷却が好ましいが、炉冷、ミスト冷却などを組み合わせて行うことも可能である。
 冷却停止温度T4:350~500℃の冷却停止温度域の温度
 冷却停止温度が350℃未満では、冷却停止後の保持中に、多量のマルテンサイト相が生成し、所望の組織を確保できなくなる。その結果、所望の高延性および良好な強度延性バランスを確保できなくなる。一方、冷却停止温度が500℃を超えると、冷却停止後の保持中に、多量のフェライト相およびパーライト相が生成するため、所望の組織を確保できなくなり、所望の高延性および良好な強度延性バランスを確保できなくなる。このようなことから、第2段焼鈍工程における冷却停止温度は350~500℃の冷却停止温度域の温度に限定した。
 冷却停止温度域での保持:10~1800s
 冷却停止温度域での保持時間が10s未満では、オーステナイト相へのC濃化のための時間が不十分であり、最終的に所望量の残留オーステナイト相を確保することが困難となる。一方、1800sを超える長時間滞留させても、残留オーステナイト量の増加は少ないうえ、一部の残留オーステナイトがフェライト相とセメンタイトに分解する。このようなことから、冷却停止温度の温度域での保持時間は10~1800sの範囲に限定した。なお、ここで「保持」とは、等温保持以外に、当該温度域での徐冷、加熱をも含むものとする。
 また、冷却停止温度域での保持後の冷却は、とくに規定する必要がなく、放冷等の任意の方法で、室温等の所望の温度まで冷却することができる。
 上記した焼鈍工程における第2段焼鈍工程後に、さらに、めっき処理を施し、表面にめっき層を形成してもよい。めっき処理としては、溶融亜鉛めっき処理、あるいは溶融亜鉛めっき処理および合金化処理、または電気亜鉛めっき処理とすることが好ましい。溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、電気亜鉛めっき処理としては、公知の溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、電気亜鉛めっき処理がいずれも、好適である。なお、めっき処理の前には、脱脂、リン酸塩処理等の前処理を施すことは言うまでもない。
 例えば、溶融亜鉛めっき処理としては、常用の連続溶融亜鉛めっきラインを利用して、上記した第2段焼鈍工程を施された薄冷延焼鈍板を、溶融亜鉛めっき浴に浸漬し、表面に所定量の溶融亜鉛めっき層を形成する処理とすることが好ましい。なお、めっき浴に浸漬する際には、再加熱あるいは冷却により、薄冷延焼鈍板の温度を、(溶融亜鉛めっき浴温度-50℃)~(溶融亜鉛めっき浴温度+80℃)の範囲内に調整することが好ましい。なお、溶融亜鉛めっき浴の温度は440℃以上、好ましくは500℃以下とすることが好ましい。溶融亜鉛めっき浴は、純亜鉛に加えて、Al、Fe、Mg、Si等を含有させてもよい。なお、溶融亜鉛めっき層の付着量は、ガスワイピング等を調整して所望の付着量とすることが好ましいが、片面あたり45g/m程度とすることが好ましい。
 上記した溶融亜鉛めっき処理により形成されためっき層(溶融亜鉛めっき層)は、必要に応じて、常用の合金化処理を施され、合金化溶融亜鉛めっき層としてもよい。合金化処理は、460℃以上好ましくは600℃以下とすることが好ましい。なお、合金化溶融亜鉛めっき層とする場合には、めっき浴中の有効Al濃度を0.10~0.22質量%の範囲に調整することが、所望のめっき外観を確保する観点から好ましい。
 また、電気亜鉛めっき処理としては、常用の電気亜鉛めっきラインを利用して、表面に所定量の電気亜鉛めっき層を形成する処理とすることが好ましい。めっき層の付着量は、通板速度、電流値等を調整して所定の付着量とするが、片面あたり30g/m程度とすることが好ましい。
 以下、実施例に基づき、さらに本発明について説明する。
 表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚230mm)とした。得られた鋼素材に、表2に示す条件で熱間圧延工程を施し、表2に示す板厚の熱延板とした。得られた熱延板に、酸洗工程を施し、表3~表7に示す圧下率で冷間圧延工程を施し、薄冷延板(板厚:1.4mm)を得た。なお、酸洗は、塩酸を使用した。
 ついで、得られた薄冷延板に、表3~表7に示す条件で焼鈍工程を施し、薄冷延焼鈍板(薄冷延鋼板)とした。なお、焼鈍工程は、第1段焼鈍工程と第2段焼鈍工程からなる、2段階の工程とした。第1段焼鈍工程終了後に、組織観察用試験片を採取し、鋼板組織を観察した。
 なお、一部の薄冷延鋼板には、焼鈍工程終了後、さらに、溶融亜鉛めっき処理を施し、表面に溶融亜鉛めっき層を形成し、溶融亜鉛めっき薄鋼板(GI)とした。溶融亜鉛めっき処理は、連続溶融亜鉛めっきラインを利用して、焼鈍工程を施された薄冷延焼鈍板を必要に応じて430~480℃の範囲の温度に再加熱し、溶融亜鉛めっき浴(浴温:470℃)に浸漬し、めっき層付着量が片面あたり45g/mとなるように調整した。なお、浴組成をZn‐0.18質量%Alとした。また、一部の溶融亜鉛めっき鋼板では、浴組成をZn‐0.14質量%Alとし、めっき処理後、520℃で合金化処理を施し、合金化溶融亜鉛めっき薄鋼板(GA)とした。なお、めっき層中のFe濃度は9質量%以上、12質量%以下とした。
 また、一部の薄冷延鋼板には、焼鈍工程終了後にさらに、電気亜鉛めっきラインを利用して、めっき付着量が片面あたり30g/mとなるように、電気亜鉛めっき処理を施し、電気亜鉛めっき薄鋼板(EG)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 得られた薄冷延鋼板(溶融亜鉛めっき薄鋼板、合金化溶融亜鉛めっき薄鋼板、電気亜鉛めっき薄鋼板を含む)から、試験片を採取し、組織観察、引張試験を実施した。試験方法はつぎのとおりとした。
(1)組織観察
 まず、焼鈍工程(第1段焼鈍工程および第2段焼鈍工程)を施され、あるいはさらにめっき処理を施された薄冷延鋼板から組織観察用試験片を採取し、圧延方向断面(L断面)で板厚の1/4に相当する位置が観察面となるように、研磨し、腐食(3vol.%ナイタール液腐食)し、走査型電子顕微鏡SEM(倍率:2000倍)を用いて組織を各10視野以上観察し、撮像してSEM画像を得た。
得られたSEM画像を用いて、画像解析により、各相の組織分率(面積率)を求め、その値を体積率として扱い、当該鋼板の各相の組織分率とした。なお、画像解析では、解析ソフトとしてMedia Cybernetics社の「Image-Pro」(商品名)を使用した。なお、SEM画像では、フェライト相は灰色、マルテンサイト相および残留オーステナイト相は白色を呈するため、その色調から各相を判断し、また、フェライト相中に残留オーステナイトやセメンタイトが微細な点状または線状に観察される組織をベイナイト相とした。パーライト相、セメンタイト相は、その組織形態から判断した。そして、白色を呈する相の体積率から、別途求めた残留オーステナイト相の体積率を差し引き、マルテンサイト相の体積率とした。
 また、焼鈍工程(第1段焼鈍工程および第2段焼鈍工程)を施され、あるいはさらにめっき処理を施された薄冷延鋼板からX線回折用試験片を採取し、板厚の1/4に相当する位置が測定面となるように、研削、および研磨して、X線回折法により、回折X線強度から残留オーステナイト量を求めた。なお、入射X線は、CoKα線を用いた。残留オーステナイト量の計算に際しては、オーステナイトの{111}、{200}、{220}、{311}面と、フェライトの{110}、{200}、{211}面のピークの積分強度のすべての組み合わせについて強度比を計算し、それらの平均値を求め、当該鋼板の残留オーステナイト量(体積率)を算出した。
 また、焼鈍工程(第1段焼鈍工程および第2段焼鈍工程)を施され、あるいはさらにめっき処理を施された薄冷延鋼板から、透過電子顕微鏡観察用試験片を採取し、板厚の1/4に相当する位置が観察位置となるように、研削、研磨(機械研磨および電解研磨)し、薄膜試料を得た。得られた薄膜試料について、透過型電子顕微鏡TEM(倍率:15000倍)を用いて組織を観察し、20視野以上撮像して、TEM画像を得た。得られたTEM画像を用いて、画像解析により、残留オーステナイト相の平均結晶粒径、平均アスペクト比を求めた。なお、残留オーステナイト相の平均結晶粒径は、各残留オーステナイト相の結晶粒の面積を求め、該面積から円相当直径を算出し、それらの値を算術平均して、当該鋼板における残留オーステナイト相の平均結晶粒径とした。平均結晶粒径の算出にあたっては、各視野で20個以上の残留オーステナイト相の結晶粒について測定した。また、得られたTEM画像を用いて、画像解析により、各残留オーステナイト相の結晶粒の長径、短径を求め、各残留オーステナイト相の結晶粒のアスペクト比を算出し、得られた値を算術平均し、当該鋼板における残留オーステナイト相の結晶粒のアスペクト比(平均)とした。なお、TEM画像の画像解析に際しては、同様に、解析ソフトとしてMedia Cybernetics社の「Image-Pro」(商品名)を使用した。
(2)引張試験
 焼鈍工程(第1段焼鈍工程および第2段焼鈍工程)を施され、あるいはさらにめっき処理を施された薄冷延鋼板から、引張方向が圧延方向と垂直な方向(C方向)となるようにJIS 5号引張試験片を採取し、JIS Z 2241(2011)の規定に準拠して、引張試験を実施し、引張特性(降伏強さYS、引張強さTS、全伸びEl)を求めた。さらに、得られた引張特性から、強度延性バランスTS×Elを算出した。なお、TS:980MPa級では、El:20%以上、TS×El:19600MPa・%以上である場合、TS:1180MPa級では、El:15%以上、TS×El:17700MPa・%以上である場合、TS:1270MPa級では、El:10%以上、TS×El:12700MPa・%以上である場合を、それぞれ良好な強度延性バランスであるとし、「○」と評価し、それ以外は「×」とした。
 さらに、薄冷延鋼板から、引張方向が圧延方向と垂直な方向(C方向)に加えて、引張方向が、圧延方向と平行(L方向)、45°方向(D方向)となるようにJIS 5号引張試験片を採取し、JIS Z 2241(2011)の規定に準拠して、引張試験を実施し、引張強さTSおよび全伸びElを測定した。
 得られた引張強さTSと全伸びElから、次(1)式
    δTS=(TS+TS-2×TSD)/2   ‥‥(1)
(ここで、δTS:引張強さTSの面内異方性(MPa)、TS:圧延方向(L方向)と平行な方向の引張強さ(MPa)、TS:圧延方向に垂直な方向(C方向)の引張強さ(MPa)、TSD:圧延方向に45°方向(D方向)の引張強さ(MPa))
、次(2)式
    δEl=(El+El-2×ElD)/2   ‥‥(2)
(ここで、δEl:全伸びElの面内異方性(%)、El:圧延方向(L方向)と平行な方向の全伸び(%)、El:圧延方向に垂直な方向(C方向)の全伸び(%)、ElD:圧延方向に45°方向(D方向)の全伸び(%))
で定義されるδTS、δElを算出し、強度、伸びの面内異方性を評価した。なお、(TS+TS-2×TSD)、(El+El-2×ElD)がマイナスとなる場合は、その絶対値とした。δTS:25MPa以下、δEl:10%以下である場合を面内異方性が小さいとして、「○」と評価し、それ以外は「×」とした。
 得られた結果を表8~表12に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明例はいずれも、適正量のフェライト相と、適正量の微細な針状の残留オーステナイト相と、残部がマルテンサイト相を含む組織を有し、引張強さTS:980MPa以上の高強度と、全伸びElが、TS:980MPa級では20%以上、TS:1180MPa級では15%以上、TS:1270MPa級では10%以上を有し高延性で、かつ強度、伸びともに面内異方性が小さい、高強度冷延薄鋼板となっている。これに対し、本発明範囲を外れる比較例は、所望の組織が得られず、強度が不足しているか、延性が不足しているか、面内異方性が大きくなっている。
 次に、得られた引張特性を用いて、製造安定性について評価した。得られたTS、Elから焼鈍工程での温度変動が20℃である場合の、引張強さTSの変動量および全伸びElの変動量を算出した。焼鈍工程での温度として、第1段焼鈍工程における焼鈍温度T1および冷却停止温度T2、第2段焼鈍工程における焼鈍温度T3および冷却停止温度T4、を対象とした。
 具体的には、焼鈍工程における温度T1以外の条件が同じで温度T1だけが異なる製造条件で製造された冷延鋼板のTS、Elを比較して、TS、Elの変動量を求め、その変動量から焼鈍工程における温度変動が20℃あたりの変動量(ΔTS、ΔEl)を算出した。また、同様に、焼鈍工程における温度T2、T3、T4についても、温度変動が20℃あたりの変動量(ΔTS、ΔEl)をそれぞれ算出した。
 得られた結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 本発明例はいずれも、温度変動が20℃あたりのTS変動量が25MPa以下で、El変動量が5%以下と、焼鈍工程において温度変動しても強度および全伸びの変動量が少なく、製造安定性に優れた薄冷延鋼板であるといえる。比較例のうち、とくにTi、Nb含有量が本発明の範囲を低く外れる組成の冷延鋼板(比較例)では、温度変動20℃あたりのTS変動量が25MPaを超え、El変動量が5%を超え、製造安定性が低下している。
 このように、本発明例は、高強度で、かつ高延性で、強度延性バランスに優れるうえ、面内異方性が小さく、さらに材質安定性にも優れた高強度冷延薄鋼板となっている。

Claims (6)

  1.  質量%で、C :0.20%超え0.45%以下、Si:0.50~2.50%、Mn:2.00%以上3.50%未満、P :0.001~0.100%、S :0.0200%以下、N :0.0100%以下、Al:0.01~0.100%を含み、さらに、Ti:0.005~0.100%およびNb:0.005~0.100%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成と、体積率で、15%以上70%以下のフェライト相と、15%超え40%以下の残留オーステナイト相と、残部が30%以下(0%を含まず)のマルテンサイト相、あるいはさらに10%以下(0%を含む)のパーライト相および/または炭化物からなる組織と、を有し、
    前記残留オーステナイト相が、平均結晶粒径:2.0μm以下でかつアスペクト比が2.0以上であり、引張強さ:980MPa以上で、下記(1)式で定義される引張強さの面内異方性δTSが25MPa以下および下記(2)式で定義される全伸びの面内異方性δElが10%以下である高強度冷延薄鋼板。
                       記
        δTS=(TS+TS-2×TSD)/2   ‥‥(1)
     ここで、δTS:引張強さTSの面内異方性(MPa)、TS:圧延方向(L方向)と平行な方向の引張強さ(MPa)、TS:圧延方向に垂直な方向(C方向)の引張強さ(MPa)、TSD:圧延方向に45°方向(D方向)の引張強さ(MPa)
        δEl=(El+El-2×ElD)/2   ‥‥(2)
     ここで、δEl:全伸びElの面内異方性(%)、El:圧延方向(L方向)と平行な方向の全伸び(%)、El:圧延方向に垂直な方向(C方向)の全伸び(%)、ElD:圧延方向に45°方向(D方向)の全伸び(%)
  2.  前記組成に加えてさらに、質量%で、下記A群~D群のうちから1群または2群以上を含有する請求項1に記載の高強度冷延薄鋼板。
                      記
     A群:B:0.0001~0.0050%、Cr:0.05~1.00%およびCu:0.05~1.00%のうちから選ばれた1種または2種以上、
     B群:Sb:0.002~0.200%、Sn:0.002~0.200%のうちから選ばれた1種または2種、
     C群:Ta:0.001~0.100%、
     D群:Ca:0.0005~0.0050%、Mg:0.0005~0.0050%およびREM:0.0005~0.0050%のうちから選ばれた1種または2種以上
  3.  表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかを有する請求項1または2に記載の高強度冷延薄鋼板。
  4.  鋼素材に、熱間圧延工程と、酸洗工程と、冷間圧延工程と、焼鈍工程とを、順次施して、冷延薄鋼板とするにあたり、
     前記鋼素材を、質量%で、C :0.20%超え0.45%以下、Si:0.50~2.50%、Mn:2.00%以上3.50%未満、P :0.001~0.100%、S :0.0200%以下、N :0.0100%以下、Al:0.01~0.100%を含み、さらに、Ti:0.005~0.100%およびNb:0.005~0.100%のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
    前記熱間圧延工程を、前記鋼素材を加熱し、所定板厚の熱延板とする工程とし、
    前記冷間圧延工程を、前記熱延板に圧下率:30%以上の冷間圧延を施し、所定板厚の薄冷延板とする工程とし、
    前記焼鈍工程を、前記薄冷延板に、焼鈍温度:800~950℃の温度域に加熱したのち、焼鈍温度から冷却停止温度までの平均で5℃/s以上の冷却速度で、350~500℃の温度域の冷却停止温度まで冷却し、マルテンサイト相とベイナイト相との合計が体積率で80%以上となる組織の薄冷延焼鈍板とする第1段焼鈍処理と、該薄冷延焼鈍板にさらに、焼鈍温度:700~840℃の温度域に加熱し該温度域で10~900s間保持したのち、焼鈍温度から冷却停止温度までの平均で5~50℃/sの冷却速度で、350~500℃の冷却停止温度域の温度まで冷却し、該冷却停止温度域で10~1800s間保持する第2段焼鈍処理と、からなる工程と、
    する高強度冷延薄鋼板の製造方法。
  5.  前記組成に加えてさらに、質量%で、下記A群~D群のうちから1群または2群以上を含有する請求項4に記載の高強度冷延薄鋼板の製造方法。
                      記
     A群:B:0.0001~0.0050%、Cr:0.05~1.00%およびCu:0.05~1.00%のうちから選ばれた1種または2種以上、
     B群:Sb:0.002~0.200%、Sn:0.002~0.200%のうちから選ばれた1種または2種、
     C群:Ta:0.001~0.100%、
     D群:Ca:0.0005~0.0050%、Mg:0.0005~0.0050%およびREM:0.0005~0.0050%のうちから選ばれた1種または2種以上
  6.  前記焼鈍工程の前記第2段焼鈍処理に引続き、溶融亜鉛めっき処理、あるいは溶融亜鉛めっき処理および合金化処理、または電気亜鉛めっき処理を施す請求項4または5に記載の高強度冷延薄鋼板の製造方法。
PCT/JP2016/000339 2015-02-17 2016-01-25 高強度冷延薄鋼板およびその製造方法 WO2016132680A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016530252A JP6237900B2 (ja) 2015-02-17 2016-01-25 高強度冷延薄鋼板およびその製造方法
EP16752073.3A EP3228722B1 (en) 2015-02-17 2016-01-25 High-strength, cold-rolled, thin steel sheet and method for manufacturing the same
KR1020177022367A KR101985123B1 (ko) 2015-02-17 2016-01-25 고강도 냉연 박강판 및 그 제조 방법
CN201680010057.7A CN107250409B (zh) 2015-02-17 2016-01-25 高强度冷轧薄钢板及其制造方法
MX2017010539A MX2017010539A (es) 2015-02-17 2016-01-25 Lamina de acero delgada laminada en frio de alta resistencia y metodo para la produccion de la misma.
US15/551,301 US10626485B2 (en) 2015-02-17 2016-01-25 Thin high-strength cold-rolled steel sheet and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-028304 2015-02-17
JP2015028304 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016132680A1 true WO2016132680A1 (ja) 2016-08-25

Family

ID=56692276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000339 WO2016132680A1 (ja) 2015-02-17 2016-01-25 高強度冷延薄鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10626485B2 (ja)
EP (1) EP3228722B1 (ja)
JP (1) JP6237900B2 (ja)
KR (1) KR101985123B1 (ja)
CN (1) CN107250409B (ja)
MX (1) MX2017010539A (ja)
WO (1) WO2016132680A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196965A1 (en) * 2016-05-10 2017-11-16 United States Steel Corporation High strength steel products and annealing processes for making the same
WO2018043453A1 (ja) * 2016-08-30 2018-03-08 Jfeスチール株式会社 薄鋼板およびその製造方法
WO2018088421A1 (ja) * 2016-11-10 2018-05-17 Jfeスチール株式会社 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
WO2018186335A1 (ja) 2017-04-05 2018-10-11 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP2018162495A (ja) * 2017-03-27 2018-10-18 Jfeスチール株式会社 高強度高延性鋼板およびその製造方法
JP2018178248A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP2018178247A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP6525125B1 (ja) * 2017-12-26 2019-06-05 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
WO2019131188A1 (ja) 2017-12-26 2019-07-04 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
WO2019131189A1 (ja) 2017-12-26 2019-07-04 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
WO2019188640A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2019188642A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2019188643A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2020509204A (ja) * 2016-12-23 2020-03-26 ポスコPosco 連続生産性に優れた高強度熱延鋼板及び冷延鋼板、ならびに表面品質及びめっき密着性に優れた高強度溶融亜鉛めっき鋼板及びこれらの製造方法
WO2020174805A1 (ja) * 2019-02-25 2020-09-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2021079755A1 (ja) * 2019-10-23 2021-04-29 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2021079756A1 (ja) * 2019-10-23 2021-04-29 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP4029959A4 (en) * 2019-10-23 2023-02-15 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THE SAME

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018492A1 (ja) * 2015-07-28 2017-02-02 新日鐵住金株式会社 隅肉アーク溶接継手及びその製造方法
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
WO2019186989A1 (ja) * 2018-03-30 2019-10-03 日本製鉄株式会社 鋼板
CN111936648B (zh) 2018-03-30 2021-11-02 杰富意钢铁株式会社 高强度镀锌钢板、高强度部件及其制造方法
TWI650434B (zh) * 2018-03-30 2019-02-11 日商新日鐵住金股份有限公司 鋼板
MX2021001962A (es) * 2018-08-22 2021-04-28 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la fabricacion de la misma.
WO2020145108A1 (ja) * 2019-01-09 2020-07-16 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
TWI726777B (zh) * 2020-07-27 2021-05-01 國立陽明交通大學 大晶粒類單晶薄膜及其製造方法
TWI743525B (zh) * 2019-07-30 2021-10-21 國立陽明交通大學 類單晶薄膜及其製造方法
CA3149331A1 (en) * 2019-08-07 2021-02-11 United States Steel Corporation High ductility zinc-coated steel sheet products
CN114585765B (zh) * 2019-10-23 2023-09-19 杰富意钢铁株式会社 高强度钢板及其制造方法
JPWO2021167079A1 (ja) * 2020-02-20 2021-08-26
CN115698359B (zh) * 2020-07-20 2024-03-29 日本制铁株式会社 钢板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154283A (ja) * 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
JP2011190474A (ja) * 2010-03-11 2011-09-29 Kobe Steel Ltd 耐水素脆性に優れた超高強度薄鋼板
JP2012153957A (ja) * 2011-01-27 2012-08-16 Jfe Steel Corp 延性に優れる高強度冷延鋼板およびその製造方法
WO2013047808A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法
WO2015151419A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 高降伏比高強度冷延鋼板及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845807B2 (ja) 1976-08-12 1983-10-12 松下電器産業株式会社 無極性固体電解コンデンサの製造方法
KR101118284B1 (ko) * 2003-12-29 2012-03-20 주식회사 포스코 가공성이 우수한 강판 및 그 제조 방법
JP4325998B2 (ja) 2004-05-06 2009-09-02 株式会社神戸製鋼所 スポット溶接性及び材質安定性に優れた高強度溶融亜鉛めっき鋼板
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US8389841B1 (en) * 2011-08-29 2013-03-05 Leigh Howard Stevens Adjustable resonator stop and keyboard percussion instrument including same
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
CA2850091C (en) * 2011-09-30 2016-06-28 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 mpa or more and manufacturing method therefor
KR20140129150A (ko) 2012-02-20 2014-11-06 타타 스틸 네덜란드 테크날러지 베.뷔. 고강도 소부경화형 저밀도 강 및 상기 강의 제조방법
US10563279B2 (en) 2013-08-02 2020-02-18 Jfe Steel Corporation High strength steel sheet having high Young's modulus and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154283A (ja) * 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
JP2011190474A (ja) * 2010-03-11 2011-09-29 Kobe Steel Ltd 耐水素脆性に優れた超高強度薄鋼板
JP2012153957A (ja) * 2011-01-27 2012-08-16 Jfe Steel Corp 延性に優れる高強度冷延鋼板およびその製造方法
WO2013047808A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法
WO2015151419A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 高降伏比高強度冷延鋼板及びその製造方法

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518876A (ja) * 2016-05-10 2019-07-04 ユナイテッド ステイツ スチール コーポレイションUnited States Steel Corporation 高強度鋼製品及び該製品を製造するためのアニーリング工程
JP7186694B2 (ja) 2016-05-10 2022-12-09 ユナイテッド ステイツ スチール コーポレイション 高強度鋼製品及び該製品を製造するためのアニーリング工程
US11268162B2 (en) 2016-05-10 2022-03-08 United States Steel Corporation High strength annealed steel products
WO2017196965A1 (en) * 2016-05-10 2017-11-16 United States Steel Corporation High strength steel products and annealing processes for making the same
US10385419B2 (en) 2016-05-10 2019-08-20 United States Steel Corporation High strength steel products and annealing processes for making the same
US11220722B2 (en) 2016-08-30 2022-01-11 Jfe Steel Corporation Steel sheet and method for manufacturing the same
JP6354919B1 (ja) * 2016-08-30 2018-07-11 Jfeスチール株式会社 薄鋼板およびその製造方法
WO2018043453A1 (ja) * 2016-08-30 2018-03-08 Jfeスチール株式会社 薄鋼板およびその製造方法
JPWO2018088421A1 (ja) * 2016-11-10 2018-11-29 Jfeスチール株式会社 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
WO2018088421A1 (ja) * 2016-11-10 2018-05-17 Jfeスチール株式会社 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
JP2020509204A (ja) * 2016-12-23 2020-03-26 ポスコPosco 連続生産性に優れた高強度熱延鋼板及び冷延鋼板、ならびに表面品質及びめっき密着性に優れた高強度溶融亜鉛めっき鋼板及びこれらの製造方法
JP2018162495A (ja) * 2017-03-27 2018-10-18 Jfeスチール株式会社 高強度高延性鋼板およびその製造方法
JP2018178247A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
US11365459B2 (en) 2017-04-05 2022-06-21 Jfe Steel Corporation High strength cold rolled steel sheet and method of producing same
KR102274284B1 (ko) 2017-04-05 2021-07-06 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그의 제조 방법
WO2018186335A1 (ja) 2017-04-05 2018-10-11 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
KR20190125407A (ko) 2017-04-05 2019-11-06 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그의 제조 방법
JP2018178248A (ja) * 2017-04-05 2018-11-15 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
KR20200100164A (ko) 2017-12-26 2020-08-25 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그의 제조 방법
WO2019131189A1 (ja) 2017-12-26 2019-07-04 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
WO2019131188A1 (ja) 2017-12-26 2019-07-04 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
US11459647B2 (en) 2017-12-26 2022-10-04 Jfe Steel Corporation High-strength cold rolled steel sheet and method for manufacturing same
US11359256B2 (en) 2017-12-26 2022-06-14 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing same
CN111527223A (zh) * 2017-12-26 2020-08-11 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
KR20200097347A (ko) 2017-12-26 2020-08-18 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그의 제조 방법
CN111527223B (zh) * 2017-12-26 2021-09-21 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
JPWO2019131189A1 (ja) * 2017-12-26 2019-12-26 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
JP6525125B1 (ja) * 2017-12-26 2019-06-05 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
CN111936656A (zh) * 2018-03-30 2020-11-13 杰富意钢铁株式会社 高强度钢板及其制造方法
JPWO2019188640A1 (ja) * 2018-03-30 2020-04-30 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11788163B2 (en) 2018-03-30 2023-10-17 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
WO2019188640A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11661642B2 (en) 2018-03-30 2023-05-30 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
WO2019188642A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2019188643A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11643700B2 (en) 2018-03-30 2023-05-09 Jfe Steel Corporation High-strength steel sheet and production method thereof
JPWO2019188643A1 (ja) * 2018-03-30 2020-04-30 Jfeスチール株式会社 高強度鋼板およびその製造方法
JPWO2019188642A1 (ja) * 2018-03-30 2020-04-30 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN111936656B (zh) * 2018-03-30 2022-05-03 杰富意钢铁株式会社 高强度钢板及其制造方法
CN113454244A (zh) * 2019-02-25 2021-09-28 杰富意钢铁株式会社 高强度钢板及其制造方法
JP6809647B1 (ja) * 2019-02-25 2021-01-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2020174805A1 (ja) * 2019-02-25 2020-09-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN113454244B (zh) * 2019-02-25 2023-03-03 杰富意钢铁株式会社 高强度钢板及其制造方法
WO2021079756A1 (ja) * 2019-10-23 2021-04-29 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7164024B2 (ja) 2019-10-23 2022-11-01 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP4029959A4 (en) * 2019-10-23 2023-02-15 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THE SAME
JPWO2021079756A1 (ja) * 2019-10-23 2021-11-18 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6930682B1 (ja) * 2019-10-23 2021-09-01 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2021079755A1 (ja) * 2019-10-23 2021-04-29 Jfeスチール株式会社 高強度鋼板およびその製造方法

Also Published As

Publication number Publication date
EP3228722A1 (en) 2017-10-11
CN107250409B (zh) 2019-07-05
US20180057916A1 (en) 2018-03-01
KR101985123B1 (ko) 2019-05-31
CN107250409A (zh) 2017-10-13
KR20170102989A (ko) 2017-09-12
JPWO2016132680A1 (ja) 2017-04-27
JP6237900B2 (ja) 2017-11-29
EP3228722B1 (en) 2019-03-20
US10626485B2 (en) 2020-04-21
MX2017010539A (es) 2017-12-14
EP3228722A4 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6237900B2 (ja) 高強度冷延薄鋼板およびその製造方法
JP6179677B2 (ja) 高強度鋼板およびその製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
KR102143834B1 (ko) 강판, 도금 강판 및, 그들의 제조 방법
JP6179676B2 (ja) 高強度鋼板およびその製造方法
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP6315044B2 (ja) 高強度鋼板およびその製造方法
JP5018935B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2012147898A1 (ja) 加工性と材質安定性に優れた高強度鋼板およびその製造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
JP6597889B2 (ja) 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
JP6315160B1 (ja) 高強度鋼板およびその製造方法
WO2016031165A1 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
KR20180132889A (ko) 강판, 도금 강판 및, 그들의 제조 방법
WO2017154401A1 (ja) 高強度鋼板およびその製造方法
KR102245332B1 (ko) 고강도 강판 및 그 제조 방법
JP2009013488A (ja) 高張力冷延鋼板およびその製造方法
CN115210398B (zh) 钢板、构件和它们的制造方法
JP6210184B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP7151737B2 (ja) 高強度鋼板およびその製造方法ならびに部材およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016530252

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752073

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016752073

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177022367

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15551301

Country of ref document: US

Ref document number: MX/A/2017/010539

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE