WO2016129507A1 - Curable composition, cured product, and laminate - Google Patents

Curable composition, cured product, and laminate Download PDF

Info

Publication number
WO2016129507A1
WO2016129507A1 PCT/JP2016/053418 JP2016053418W WO2016129507A1 WO 2016129507 A1 WO2016129507 A1 WO 2016129507A1 JP 2016053418 W JP2016053418 W JP 2016053418W WO 2016129507 A1 WO2016129507 A1 WO 2016129507A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
meth
curable composition
acrylate
weight
Prior art date
Application number
PCT/JP2016/053418
Other languages
French (fr)
Japanese (ja)
Inventor
洋佑 柘植
知一 岩崎
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2016129507A1 publication Critical patent/WO2016129507A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/24Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof

Definitions

  • the present invention relates to a curable composition, and a cured product and a laminate obtained using the curable composition. More specifically, the present invention is excellent in storage stability, has a high degree of freedom in coating conditions, can obtain a cured product under various coating conditions, anti-blocking properties, transparency, recoatability, A laminate having excellent scratch resistance, curl resistance and the like, and a curable composition in which the refractive index of the resulting cured product can be easily controlled, a cured product and a laminate of the curable composition, and It relates to a hard coat film.
  • thermoplastic resin film typified by a polyethylene terephthalate (PET) film
  • PET polyethylene terephthalate
  • a film on which such a hard coating has been performed may be wound into a roll during storage for the purpose of securing a storage location, operability during molding, preventing contamination, and the like.
  • a film subjected to hard coating is wound into a roll, it is required to prevent blocking between the films.
  • a hard coat layer is formed on the film surface, and irregularities are formed on the surface of the hard coat layer by blending organic fine particles having a specific particle diameter and a dispersant in the hard coat layer.
  • a method is disclosed (Patent Document 1). Further, a method is disclosed in which a hard coat layer is formed on the film surface, and irregularities are formed on the surface of the hard coat layer by adding a large amount of reactive fine particles to the hard coat layer to prevent blocking (Patent Document). 2).
  • the resin composition for forming the hard coat layer is deposited by phase separation in the drying step and the ultraviolet (UV) irradiation step after coating the substrate, and blocking is formed by forming irregularities on the surface of the hard coat layer.
  • Patent Document 3 A method for preventing this is disclosed. Furthermore, as a hard coat layer to be applied to the film surface, a method for forming large irregularities by using a polyfunctional polymerizable unsaturated compound, a radical polymerization initiator, monodispersed inorganic particles, a particle flocculant, etc. is disclosed. (Patent Document 4).
  • Japanese Unexamined Patent Publication No. 2013-75955 Japanese Unexamined Patent Publication No. 2014-16608 Japanese Unexamined Patent Publication No. 2013-209516 Japanese Unexamined Patent Publication No. 2011-29175
  • Patent Documents 1 to 4 have the following problems.
  • the mixed particles are as large as 0.5 to 1.5 ⁇ m in average primary particle size, and the internal haze increases, so that the transparency is not sufficient.
  • transparency is good because the mixed particles are small, but it contains a large amount of two types of particles having reactive groups and different shapes.
  • particles such as inorganic particles are not essential, but the shape of the irregularities on the surface of the hard coat layer changes depending on the drying conditions and UV irradiation conditions, and the coating conditions are free. There is a problem that the degree is low.
  • the technique disclosed in Patent Document 4 has a problem that the particle diameter of the aggregated particles is large and the transparency of the coating film is low.
  • the present invention aims to solve such problems of the prior art. That is, the present invention is excellent in storage stability, has a high degree of freedom in coating conditions, and can obtain a cured product under various coating conditions, and has anti-blocking properties, transparency, recoatability, and scratch resistance. It is an object of the present invention to provide a curable composition in which a laminate excellent in curling resistance and the like is obtained and the refractive index of the obtained cured product can be easily controlled.
  • a curable composition containing an ethylenically unsaturated compound and particles having a specific particle diameter and having a blending amount within a specific range solves the above problems. It has been found that it can be. That is, the gist of the present invention is as follows [1] to [17].
  • a curable composition comprising the following component (A) and component (B), comprising 0.01 to 150 parts by weight of component (B) with respect to 100 parts by weight of component (A).
  • Component (A) Compound having ethylenically unsaturated bond
  • Component (B) Particles having an average primary particle diameter of 1 to 100 nm and d90 measured by a laser diffraction particle size distribution meter of 100 to 2,000 nm group
  • Component (C) Organic polymer compound [5] having a weight average molecular weight (Mw) of 2,100 to 200,000 [5]
  • the solubility parameter (SP value) of component (C) is 9.3 to 12.6
  • the polyfunctional (meth) acrylate a polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure, a polyfunctional (meth) acrylate having a dendrimer structure, and a polyfunctional (meth) acrylate having a hyperbranched polymer structure
  • the curable composition according to [7] comprising at least one member selected from the group consisting of 1 to 65% by weight based on the total amount of component (A).
  • the organic solvent is at least one selected from the group consisting of a saturated hydrocarbon solvent, an ester solvent, an ether solvent, an alcohol solvent, and a ketone solvent. object.
  • the present invention it is excellent in storage stability, has a high degree of freedom in coating conditions, and can obtain a cured product under various coating conditions, and has anti-blocking properties, transparency, recoatability, and scratch resistance.
  • a laminate having excellent curl resistance and the like, and a curable composition in which the refractive index of the resulting cured product can be easily controlled are provided.
  • cured material and laminated body which are obtained using this curable composition, and a hard coat film are provided.
  • Component (A) used in the present invention is a compound having an ethylenically unsaturated bond.
  • the curable composition of the present invention is imparted with curability and scratch resistance by containing the component (A).
  • the type of the ethylenically unsaturated bond of the component (A) compound is not particularly limited, and examples thereof include (meth) acryloyl group, (meth) acrylamide group, styryl group, allyl group and the like.
  • the component (A) preferably includes a compound having a (meth) acryloyl group.
  • the number of ethylenically unsaturated bonds in one molecule is not particularly limited, but is usually 1 to 15.
  • two or more compounds having different numbers of ethylenically unsaturated bonds may be used.
  • the compound having a (meth) acryloyl group includes a monofunctional (meth) acrylate having one (meth) acryloyl group and a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups. Is mentioned. These may be used alone or in combination of two or more, but preferably contain a polyfunctional (meth) acrylate.
  • Examples of monofunctional (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth).
  • polyfunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, nonanediol di (meth) acrylate, Ethoxylated hexanediol di (meth) acrylate, propoxylated hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) Acrylate, neopentyl glycol di (meth) acrylate, ethoxylated neopentyl glycol di (meth) acrylate, tripropylene glycol di ( 2) Bifunctional (meth) acrylates such as acrylate
  • polyfunctional (meth) acrylates that can be used as component (A)
  • at least one of polyfunctional (meth) acrylates having a nitrogen atom-containing heterocyclic structure and polyfunctional (meth) acrylates having a multi-branched dendritic structure It is preferable to contain.
  • the polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure and the polyfunctional (meth) acrylate having a multi-branched dendritic structure have a total of these contents relative to the entire component (A).
  • the total content of these components (A) is preferably 1% by weight or more, more preferably 3% by weight or more, and more preferably 5% by weight. More preferably, it is contained above.
  • polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure examples include a (meth) acryloyl group directly or a hydrocarbon group having 1 to 10 carbon atoms or an alkylene having 1 to 10 carbon atoms in the nitrogen atom-containing heterocyclic structure.
  • Those linked through an oxide structure are preferred, and specific examples include polyfunctional (meth) acrylates having an isocyanurate structure.
  • isocyanuric acid ethylene oxide (EO) modified diacrylate for example, Aronix M-215 manufactured by Toagosei Co., Ltd.
  • EO isocyanuric acid ethylene oxide
  • ⁇ -caprolactone modified tris acryloxyethyl isocyanurate
  • isocyanuric acid EO-modified di- and triacrylates for example, Aronix M-313, Aronix M-315, A-9300 manufactured by Toagosei Co., Ltd.
  • Examples of the polyfunctional (meth) acrylate having a multibranched dendritic structure include a polyfunctional (meth) acrylate having a dendrimer structure and a polyfunctional (meth) acrylate having a hyperbranched polymer structure.
  • a polyfunctional (meth) acrylate having a dendrimer structure is a compound having a highly regular branched structure
  • a polyfunctional (meth) acrylate having a hyperbranched polymer structure is a compound having a low regular branched structure. Yes, it has low viscosity and excellent solvent solubility compared to linear polymers.
  • polyfunctional (meth) acrylate having a dendrimer structure for example, Biscoat # 1000 manufactured by Osaka Organic Chemical Industry Co., Ltd. can be used.
  • polyfunctional (meth) acrylate having a hyperbranched polymer structure examples include STAR-501, SIRIUS-501, and SUBARU-501 manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • Component (A) preferably has a weight average molecular weight (Mw) of less than 2,100 from the viewpoint of improving the handleability and coating properties of the curable composition. From the viewpoint of making this effect better, the component (A) preferably has a Mw of 1,600 or less, and more preferably 1,100 or less. On the other hand, those having a low molecular weight and usually not measuring the molecular weight as the weight average molecular weight can also be used as the component (A) used in the present invention. In the component (A), the weight average molecular weight (molecular weight) of such a low molecular weight compound is usually 50 or more.
  • the Mw of the component (A) can be measured by gel permeation chromatography method (GPC method) as shown in Examples below.
  • Component (B) used in the present invention has an average primary particle diameter of 1 to 100 nm and a d90 measured by a laser diffraction particle size distribution meter (accumulated value is 90% in the result measured by a laser analysis particle size distribution meter). (Particle diameter value) is 100 to 2,000 nm.
  • d90 being in a predetermined range different from the value of the average primary particle diameter indicates that the component (B) is an aggregate. That is, in the component (B), particles having an average primary particle diameter in a specific range are present in a specific aggregation state.
  • the component (B) mainly contributes to antiblocking properties.
  • the cured product and laminate obtained by using the curable composition of the present invention are particularly excellent in anti-blocking property and transparency because the component (B) has a specific aggregate while the average primary particle diameter is in the above range.
  • the curable composition when the curable composition is cured, it is possible to transmit light sufficiently while forming irregularities on the surface by the component (B) to develop anti-blocking properties. It is estimated that.
  • Content of a component (B) is 0.01 weight part or more with respect to 100 weight part of a component (A) from a viewpoint of the antiblocking property of a coating film, It is preferable that it is 0.5 weight part or more.
  • the amount is more preferably at least part by weight, more preferably at least 2 parts by weight, and particularly preferably at least 3 parts by weight.
  • the content of component (B) is 150 parts by weight or less, preferably 130 parts by weight or less, and 110 parts by weight or less with respect to 100 parts by weight of component (A) from the viewpoint of transparency. Is more preferably 90 parts by weight or less, particularly preferably 70 parts by weight or less, and most preferably 45 parts by weight or less.
  • the component (B) has an average primary particle diameter of 1 to 100 nm and d90 measured by a laser analysis type particle size distribution meter of 100 to 2,000 nm, whereby antiblocking properties and transparency are good.
  • the average primary particle diameter of the component (B) is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, and most preferably 30 nm from the viewpoint of antiblocking properties.
  • it is 100 nm or less, more preferably 75 nm or less, and still more preferably 50 nm or less.
  • d90 of the component (B) is 100 nm or more, preferably 150 nm or more, more preferably 200 nm or more, still more preferably 250 nm or more, particularly preferably 300 nm or more, from the viewpoint of antiblocking properties.
  • d90 of the component (B) is preferably 575 nm or less, more preferably 550 nm or less, and 525 nm or less. More preferably, it is particularly preferably 500 nm or less, and most preferably 475 nm or less.
  • the component (B) preferably has an [average primary particle size] / [d90] value of 0.01 to 0.40 from the viewpoint of improving both anti-blocking properties and transparency.
  • the value of [Average primary particle size] / [d90] is more preferably 0.02 or more, and more preferably 0.35 or less, and 0.30 or less. Is more preferably 0.25 or less, and most preferably 0.20 or less.
  • the particle diameter value (d10) at which the cumulative value becomes 10% and the particle diameter value (d50) at which the cumulative value becomes 50% are in the following ranges. Is preferable from the viewpoint of achieving both anti-blocking properties and transparency. That is, d10 of the component (B) is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, particularly preferably 40 nm or more, and 50 nm or more. On the other hand, it is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and particularly preferably 150 nm or less.
  • d50 of the component (B) is preferably 30 nm or more, more preferably 50 nm or more, further preferably 70 nm or more, particularly preferably 90 nm or more, while 1,000 nm. Is preferably 750 nm or less, more preferably 500 nm or less.
  • the average primary particle diameter of the component (B) is a value measured using a scanning electron microscope or a transmission electron microscope. When the primary particles of the component (B) are other than spherical, the average primary particle diameter is The particle diameter is obtained as an average of the major axis diameter and the minor axis diameter.
  • the particle diameter measured by a laser diffraction particle size distribution meter is specifically a value determined using [Microtrac UPA: Nikkiso Co., Ltd.].
  • the component (B) may have an average primary particle diameter and d90 within the above ranges, respectively, and the aggregated particles may be crushed to adjust the particle diameter, or aggregated using a sol-gel method or the like. Particles may be generated, or the particle diameter may be adjusted by aggregating dispersed particles using an aggregating agent.
  • the type of component (B) is not particularly limited as long as the average primary particle diameter and d90 satisfy the above ranges, and may be any of inorganic particles, organic particles, and organic-inorganic composite particles. Moreover, only one of these may be used, or two or more may be used in combination. In the case where the component (B) particles are inorganic particles, the heat resistance and hardness tend to be high when a hard coat is used, and the anti-blocking property tends to be better, which is preferable.
  • inorganic particles examples include silica, alumina, titania, zirconia, zeolite, mica, synthetic mica, calcium oxide, zirconium oxide, zinc oxide, magnesium fluoride, smectite, synthetic smectite, vermiculite, ITO (indium oxide / tin oxide).
  • Oxide particles such as ATO (antimony oxide / tin oxide), tin oxide, indium oxide, and antimony oxide.
  • at least one oxide particle selected from the group consisting of silica, alumina, titania, zirconia, zinc oxide, magnesium fluoride, ITO, tin oxide, and antimony oxide is preferable, and oxide particles containing at least silica are further included. preferable.
  • Oxide particles containing silica can be obtained as a commercial product.
  • Examples of applicable commercial products are CIR Nanotech's SIRMIBK15WT% -H58, SIRMIBK15WT% -M18, SIRMIBK15WT% -E83, SIRMIBK15WT% -M05, SIRMIBK15WT% -H84, SIRMIBK15WT% -M94, SIR15 -M06, SIRMIBK15WT% -M44, SIRMIBK15WT% -M46, SIRMIBK15WT% -M42, SIRMIBK15WT% -M47, SIRMIBK15WT% -M61, SIRMIBK15WT% -M62, and the like.
  • organic particles include organic crosslinked polymer particles.
  • organic crosslinked polymer particles For example, (meth) acrylic crosslinked polymer particles, styrene-based crosslinked polymer particles, urethane-based crosslinked polymer particles, polyester-based crosslinked polymer particles, Examples include silicone-based crosslinked polymer particles, polyimide-based crosslinked polymer particles, and fluorine-based crosslinked polymer particles.
  • acrylic cross-linked polymer particles are preferred.
  • (meth) acrylic monofunctional monomers such as methyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate
  • (meth “) Acrylic monofunctional monomer” is a general term for (meth) acrylic acid monomers, (meth) acrylate monomers having one unsaturated double bond, and (meth) acrylamide monomers having one unsaturated double bond.
  • (meth) acrylic polyfunctional monomers such as trimethylolpropane tri (meth) acrylate, allyl (meth) acrylate, and ethylene glycol di (meth) acrylate
  • (meth) acrylic polyfunctional monomer” Is a (meth) acrylate monomer having two or more unsaturated double bonds and two unsaturated double bonds
  • (Met) acrylic crosslinks obtained by polymerization methods such as suspension polymerization, emulsion polymerization, soap-free emulsion polymerization, minie
  • the (meth) acrylic crosslinked particles are styrene- (meth) acrylic crosslinked particles obtained by further copolymerizing styrene monofunctional monomers such as styrene and ⁇ -methylstyrene and styrene polyfunctional monomers such as divinylbenzene during polymerization. Polymer particles may be used.
  • organic-inorganic composite particles examples include particles having an organic polymer skeleton and a polysiloxane skeleton having an organic silicon in which a silicon atom is directly chemically bonded to at least one carbon atom in the skeleton, and (meth) acryloxy group
  • examples thereof include particles in which a vinyl polymer is contained in the structure of the polysiloxane particles having the following.
  • the shape of the aggregated state is not particularly limited, and is spherical, chain-like, needle-like, plate-like, scaly, crushed,
  • the shape may be any shape such as a shape, a bowl shape, and a confetti shape.
  • the shape of component (B) is preferably spherical or chain-like, and particularly preferably spherical. When the shape of the component (B) is spherical or chain-like, the uniformity of the anti-blocking property on the surface of the obtained cured product becomes higher, and a better anti-blocking property tends to be obtained.
  • the curable composition of the present invention may contain only one kind of the above-mentioned particles as the component (B), or may contain two or more kinds.
  • the curable composition of this invention contains the following component (C) from a viewpoint of improving antiblocking property and a coating-film external appearance more.
  • component (C) organic polymer compound having a weight average molecular weight (Mw) of 2,100 to 200,000
  • the component (C) When Mw of the component (C) is 2,100 or more, the component (C) can be prevented from bleeding out from the surface of the cured product after the curable composition is cured, and the anti-blocking property Tend to improve more. From these viewpoints, the Mw of the component (C) is preferably 2,200 or more, more preferably 2,300 or more, and further preferably 2,400 or more. On the other hand, when the Mw of the component (C) is 200,000 or less, the component (C) tends to segregate on the surface of the cured product when cured, and the antiblocking property tends to be better.
  • the Mw of the component (C) is preferably 150,000 or less, more preferably 100,000 or less, still more preferably 70,000 or less, and particularly preferably 40,000 or less.
  • Mw of the organic polymer compound of the component (C) can be measured by gel permeation chromatography method (GPC method) as shown in the examples described later.
  • the component (C) preferably has a solubility parameter (SP value) of 9.3 to 12.6.
  • SP value solubility parameter
  • the SP value is more preferably 9.4 or more, further preferably 9.5 or more, and more preferably 12.6 or less, and 12.0 or less. More preferably, it is particularly preferably 11.5 or less.
  • SP value is Solubleity Parameter. The SP value is a measure of solubility.
  • the solubility parameter (SP value) of the component (C) is a value calculated by the method proposed by Fedors et al. Specifically, it can be obtained by referring to “POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pp. 147 to 154)”.
  • the glass transition temperature (Tg) of the component (C) is 35 ° C. or lower from the viewpoint of handling properties because it can be handled in a liquid state.
  • the glass transition temperature (Tg) is more preferably 25 ° C. or less, further preferably 15 ° C. or less, and particularly preferably 0 ° C. or less.
  • the lower limit of the glass transition temperature is not particularly limited, but is usually ⁇ 125 ° C.
  • the glass transition temperature of component (C) can be measured in accordance with JIS K7121 “Method for measuring plastic transition temperature”, but when it is liquid at room temperature (23 to 25 ° C.) as in the examples described later. For example, it can be visually confirmed that the glass transition temperature is not more than room temperature.
  • Component (C) is not particularly limited as long as Mw satisfies the above range, and may be a natural polymer compound or a synthetic polymer compound.
  • the natural polymer compound include regenerated cellulose polymer compounds such as cellophane and triacetyl cellulose.
  • Synthetic polymer compounds include polyolefin resins, vinyl chloride resins, vinyl acetate resins, (meth) acrylic resins, epoxy resins, polyurethane resins, and the like; amide resins, polycarbonates And polycondensation polymer compounds such as polyester resins, polyester resins, alkyd resins and polyimide resins; addition condensation polymer compounds such as phenol resins, urea resins and melamine resins.
  • a synthetic polymer compound is preferable, an addition polymerization polymer compound is more preferable, and a polyolefin resin and a (meth) acrylic resin are further preferable.
  • the chemical structure is easy to control, and the SP value is easy to control within the above range, and (meth) acrylic resin is most preferable.
  • the organic polymer compound mentioned above may be used alone or in combination of two or more.
  • the (meth) acrylic resin is an organic polymer compound obtained by polymerizing a (meth) acrylic monomer having a radical polymerizable double bond.
  • the (meth) acrylic resin preferably has a hydrocarbon group in the side chain, and the hydrocarbon group usually has 1 to 24 carbon atoms, preferably 2 or more, and more preferably 4 or more. On the other hand, it is preferably 22 or less, more preferably 18 or less, still more preferably 12 or less, and particularly preferably 8 or less.
  • the side chain hydrocarbon group of the (meth) acrylic resin may be a linear hydrocarbon group, a chain hydrocarbon group, or a cyclic hydrocarbon group. In particular, a straight-chain hydrocarbon group is preferable.
  • the side chain hydrocarbon group in the (meth) acrylic resin means a group bonded to the carbon atom of the main chain through at least an atom other than carbon.
  • the radically polymerizable monomer used as a raw material for the (meth) acrylic resin is not particularly limited, it is preferable from the viewpoint of antiblocking property to use a compound represented by the following formula (1). That is, the (meth) acrylic resin preferably contains a structural unit derived from a compound represented by the following formula (1). By using the compound represented by the formula (1), it is possible to easily obtain a (meth) acrylic resin having a hydrocarbon group in the side chain, and the polymerization of the (meth) acrylic resin is easy. Therefore, it is preferable.
  • R 1 is more preferably a hydrogen atom or a methyl group.
  • R 2 is more preferably a hydrocarbon group having 2 or more carbon atoms, further preferably a hydrocarbon group having 4 or more carbon atoms, and more preferably a hydrocarbon group having 22 or less carbon atoms.
  • a hydrocarbon group having 18 or less carbon atoms is more preferable, a hydrocarbon group having 12 or less carbon atoms is particularly preferable, and a hydrocarbon group having 8 or less carbon atoms is most preferable.
  • the hydrocarbon group for R 2 may be a linear hydrocarbon group, a chain hydrocarbon group, or a cyclic hydrocarbon group, preferably a chain hydrocarbon group, In particular, a linear hydrocarbon group is preferable.
  • R 2 in the formula (1) has a hydroxyl group, the hydroxyl group can impart hydrophilicity to the component (C), so that the solubility parameter (SP) of the component (C) can also be controlled.
  • X is preferably —O—.
  • the compound represented by the above formula (1) may contain a plurality of types when the organic polymer compound of component (C) is produced. That is, a plurality of monomers having different structures corresponding to R 1 , R 2 and X may be used to produce the organic polymer compound of component (C).
  • Examples of the compound represented by the formula (1) include (meth) acrylate monomers in which X in the formula (1) is —O—, such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) ) Acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) ) Acrylate, alkyl (meth) acrylate such as behenyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerin (meth) acrylate, etc.
  • X in the formula (1)
  • Hydroxyalkyl (meth) ac Rate isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate.
  • Examples of the compound represented by the formula (1) include (meth) acrylamide monomers in which X in the formula (1) is —NH— such as ethyl (meth) acrylamide, n-butyl (meth) acrylamide, i -Alkyl (meth) acrylamides such as butyl (meth) acrylamide and t-butyl (meth) acrylamide; N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N, N-dihydroxyethyl (meth) acrylamide N-hydroxyalkyl (meth) acrylamide and the like.
  • the organic polymer compound of component (C) may be copolymerized with a radical polymerizable monomer other than the compound represented by formula (1).
  • a radical polymerizable monomer other than the compound represented by formula (1).
  • monomers include methoxy (poly) ethylene glycol (meth) acrylate, methoxy (poly) propylene glycol (meth) acrylate, methoxy (poly) ethylene glycol (poly) propylene glycol (meth) acrylate, and methoxytetramethylene.
  • Glycol (meth) acrylic monomer having an alkyl group at the terminal (meth) acrylic monomer having a carboxyl group such as (meth) acrylic acid, (poly) ethylene glycol (meth) acrylate, (poly) propylene glycol (meth) acrylate, (Poly) ethylene glycol / (poly) propylene glycol (meth) acrylate, (poly) alkylene glycol (meth) acrylate such as tetramethylene glycol (meth) acrylate; in molecules such as 2- (meth) acryloyloxyethyl phosphate (Meth) acrylic monomer having a phosphate ester group; (meth) acrylic monomer having an epoxy group such as glycidyl (meth) acrylate and methylglycidyl (meth) acrylate; (Meth) acrylic monomers having an oxolane group such as furyl, (meth) acryloyloxypropyl-1,3-
  • the (meth) acrylic resin that can be used for the component (C) may have an unsaturated double bond such as a (meth) acryloyl group.
  • a method of introducing a (meth) acryloyl group into a (meth) acrylic resin for example, a method of reacting a compound having a (meth) acryloyl group and a carboxyl group with a (meth) acrylic resin having an epoxy group, having a carboxyl group
  • a method of reacting a compound having a (meth) acryloyl group and an epoxy group with a (meth) acrylic resin a method of reacting a compound having a (meth) acryloyl group and a carboxyl group with a (meth) acrylic resin having a hydroxyl group, a carboxyl group
  • a method of reacting a compound having a (meth) acryloyl group and a hydroxyl group with a (meth) acrylic resin having a method
  • the amount of the (meth) acryloyl group is preferably less than 2.0 mmol / g from the viewpoint of antiblocking properties, and is 1.0 mmol / g or less. More preferably, it is more preferably 0.5 mmol / g or less.
  • the lower limit of the amount of (meth) acryloyl groups is not limited, and is usually 0, that is, those having no methacryloyl group.
  • the reaction time of the radical polymerization reaction when producing the (meth) acrylic resin is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the reaction temperature is usually 40 to 120 ° C., preferably 50 to 100 ° C.
  • Examples of the organic solvent that can be used for the radical polymerization reaction in producing the (meth) acrylic resin include ketone solvents such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK); ethanol, methanol, isopropyl alcohol (IPA), alcohol solvents such as isobutanol; ether solvents such as ethylene glycol dimethyl ether and propylene glycol monomethyl ether (PGM); ester solvents such as ethyl acetate, propylene glycol monomethyl ether acetate and 2-ethoxyethyl acetate; Aromatic hydrocarbon solvents such as toluene are exemplified. These organic solvents may be used alone or in combination of two or more. Such an organic solvent may be left as it is after the synthesis of the (meth) acrylic resin, and may be used as the organic solvent in the curable composition.
  • ketone solvents such as acetone, methyl eth
  • radical polymerization initiator that can be used in the production of the (meth) acrylic resin
  • a known radical polymerization initiator can be used, and examples thereof include organic substances such as benzoyl peroxide and di-t-butyl peroxide.
  • Peroxides 2,2′-azobisbutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • An azo compound such as These radical polymerization initiators may be used alone or in combination of two or more.
  • the radical polymerization initiator is usually used in an amount of 0.01 to 5 parts by weight with respect to a total of 100 parts by weight of the raw material radical polymerizable monomers.
  • the (meth) acrylic resin that can be used for the component (C) can be produced by using a radical polymerizable monomer as described above and using a known radical polymerization reaction.
  • the radical polymerization reaction can usually be carried out in an organic solvent in the presence of a radical polymerization initiator.
  • Mw weight average molecular weight
  • the method of controlling the polymerization conditions can be taken.
  • the chain transfer agent When obtaining the (meth) acrylic resin, it is preferable to use a chain transfer agent because the weight average molecular weight (Mw) can be easily controlled.
  • the amount of the chain transfer agent used is preferably 0.1 to 25 parts by weight, more preferably 0.5 to 20 parts by weight, and still more preferably 100 parts by weight of the total amount of radical polymerizable monomers used as raw materials. Is 1.0 to 15 parts by weight.
  • chain transfer agent that can be used for obtaining the (meth) acrylic resin
  • known ones can be used.
  • (Meth) acrylic resin that can be used as component (C) can be produced by the method described above, but commercially available products can also be used as they are. Examples of commercially available products include “Polyflow No. 75”, “Polyflow No. 77”, “Polyflow No. 90”, “Polyflow No. 50EHF”, “Polyflow No. 85HF”, “Polyflow No. 95”, “Polyflow”. No. 99C ”,“ Polyflow No. 7 ”,“ Polyflow No.
  • the content of the component (C) in the curable composition of the present invention is 0.01 parts by weight or more, preferably 0 with respect to 100 parts by weight of the component (A), from the viewpoint of improving antiblocking properties.
  • it is 20 parts by weight or less, preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the curable composition of the present invention preferably contains an organic solvent.
  • the solid content concentration is preferably 5 to 95% by weight.
  • a solid content concentration of 5% by weight or more is preferable from the viewpoint of transparency because the dispersibility of the component (B) is good, and an unintended curing reaction (such as gelation) of the curable composition. Also preferred to prevent.
  • “solid content” means a component excluding the solvent, and includes not only a solid component but also a semi-solid or viscous liquid material.
  • the kind of base material used when forming the kind of a component (A), a component (B), a component (C), and a hard-coat layer It can be appropriately selected in consideration of the above.
  • Specific examples of the organic solvent include, for example, n-hexane, n-heptane, n-octane, n-decane, n-dodecane, 2,3-dimethylhexane, 2-methylheptane, 2-methylhexane, and 3-methyl.
  • Saturated hydrocarbon solvents such as hexane and cyclohexane; aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone (MEK), acetone, methyl isobutyl ketone (MIBK), and cyclohexanone; diethyl ether, isopropyl ether, tetrahydrofuran, Ethers such as dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, anisole, and phenetole System solvents; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ethylene glycol diacetate, propylene glycol monomethyl ether acetate; amide solvents such as dimethylformamide, diethylform
  • organic solvents may be used alone or in combination of two or more.
  • the curable composition of the present invention preferably contains a polymerization initiator in order to improve curability.
  • a photopolymerization initiator is preferable.
  • the content of the polymerization initiator is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and still more preferably with respect to 100 parts by weight of the component (A). Is 0.1 parts by weight or more. Further, the content of the polymerization initiator is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, with respect to 100 parts by weight of the component (A), from the viewpoint of the stability of the curable composition. More preferably, it is 5 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • the curable composition of this invention may contain other components other than a component (A), a component (B), a component (C), an organic solvent, and a polymerization initiator in the range which does not inhibit the effect of this invention.
  • Other components include UV absorbers, hindered amine light stabilizers, fillers (excluding those that fall under component (B)), silane coupling agents (but those that fall under component (B)) ), Reactive diluents (except those corresponding to component (A)), antistatic agents, organic pigments, slip agents, dispersants, thixotropic agents (thickeners), antifoaming agents , Antioxidants, thermoplastic resins (excluding those corresponding to the component (C)), and the like.
  • the method for producing the curable composition of the present invention is not particularly limited.
  • the component (A), the component (B), the component (C) and, if necessary, an organic solvent, a polymerization initiator, other components, and the like are mixed. Can be obtained.
  • a cured product (sometimes referred to as “cured product of the present invention”) can be obtained by curing the curable composition of the present invention by irradiating active energy rays or the like. Moreover, it can be set as a laminated body by apply
  • a hard coat film can be obtained by applying the curable composition onto a substrate and curing it in a film form.
  • “application” is used as a concept including what is generally called “coating”. Further, in the present invention, the “hard coat” means a material obtained by applying and curing a curable composition.
  • plastic substrates include various synthetic resins such as acrylonitrile-butadiene-styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polymethyl methacrylate (PMMA). ) Resin, polystyrene (PS) resin, polyimide (PI) resin, polyolefin (PO) resin and the like.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • PS polyimide
  • PO polyolefin
  • a steel plate such as a hot-rolled plate or a cold-rolled plate, a hot-dip galvanized steel plate, an electrogalvanized steel plate, tinplate, tin-free steel, various other types of plating, or an alloy-plated steel plate And metal plates such as stainless steel plates and aluminum plates.
  • these may be subjected to various surface treatments such as phosphate treatment, chromate treatment, organic phosphate treatment, organic chromate treatment, heavy metal substitution treatment such as nickel.
  • As a glass substrate in addition to normal glass, glass subjected to various chemical treatments (for example, Corning Gorilla Glass (registered trademark), Asahi Glass Dragon Trail (registered trademark), etc.) and multicomponent glass. May be used.
  • the curable composition of the present invention is suitable for plastic substrates and glass substrates, particularly suitable for plastic substrates, and particularly suitable for polycarbonate resins, polyethylene terephthalate resins and polymethyl methacrylate resins among plastic substrates.
  • the base material mentioned above may use only 1 type, or may be used in combination of 2 or more type.
  • Examples of the method for coating (coating) the curable composition of the present invention on a substrate include, for example, a reverse coating method, a gravure coating method, a rod coating method, a bar coating method, a Mayer bar coating method, a die coating method, and a spray coating. Law.
  • the form of the cured product is not particularly limited. However, in the case of a cured product obtained by irradiating an active energy ray on a substrate and curing it, a cured film (cured film) is formed on at least a part of one side of the substrate. ).
  • the humidity at which the curable composition is applied (coated) on the substrate is not particularly limited, and is usually 1 to 100%, preferably 5 to 95%. Further, when obtaining a cured product, it is preferably dried in advance before irradiation with active energy rays, and the drying temperature at this time is usually 40 to 160 ° C., preferably 45 to 150 ° C.
  • Active energy rays that can be used when curing the curable composition include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays. Of these active energy rays, ultraviolet rays or electron beams are preferable from the viewpoint of curability and prevention of resin deterioration.
  • the curable composition When the curable composition is cured by ultraviolet irradiation, various ultraviolet irradiation apparatuses can be used.
  • As the light source a xenon lamp, a high-pressure mercury lamp, a metal halide lamp, an LED-UV lamp, or the like can be used.
  • the amount of ultraviolet irradiation is usually 10 to 10,000 mJ / cm 2 , and preferably 30 to 5,000 mJ / cm 2 from the viewpoint of curability of the curable composition, flexibility of the cured product (cured film), and the like. More preferably, it is 50 to 3,000 mJ / cm 2 .
  • the ultraviolet illumination is usually 50 ⁇ 1,000mW / cm 2, preferably 70 ⁇ 800mW / cm 2.
  • the irradiation amount (Mrad) of the electron beam is usually 0.5 to 20 Mrad, and preferably 1 to 15 Mrad from the viewpoint of curability of the curable composition, flexibility of the cured product, prevention of damage to the substrate, and the like. is there.
  • the curable composition of the present invention has a high degree of freedom in coating conditions, and as shown in the examples below, various conditions such as humidity during coating, drying temperature, ultraviolet irradiation amount, ultraviolet illuminance, etc. are widely used. It is possible to select. Even if these conditions are changed, the cured product and the laminate have the advantage that it is easy to obtain physical properties such as good antiblocking properties and transparency.
  • the laminated body concerning the other aspect of this invention has a base material layer and a hard-coat layer, this hard-coat layer contains the said component (B), and the haze measured according to JISK7136 (2000).
  • the value is less than 0.6%.
  • a lower haze value is preferable because transparency is better.
  • This laminate can be obtained by curing the curable composition of the present invention on a substrate.
  • the base material, curing conditions, etc. that can be used are as described above.
  • the hard coat film of the present invention contains the component (B) and the content thereof is 0.01 to 55% by weight based on the entire hard coat film.
  • the content of the component (B) in the hard coat film is preferably 0.5% by weight or more, more preferably 1% by weight or more, and further preferably 2% by weight or more.
  • it is particularly preferably 3% by weight or more, while it is preferably 48% by weight or less, more preferably 41% by weight or less, still more preferably 34% by weight or less, and 27% by weight.
  • content of said component (B) is a value with respect to the whole hard coat film.
  • This hard coat film can be obtained by curing the curable composition of the present invention. The curing conditions are as described above.
  • the thickness of the hard coat film is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the thickness of the hard coat film is 100 ⁇ m or less, more preferably 75 ⁇ m or less, further preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less, and most preferably 15 ⁇ m or less.
  • the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
  • the value of various manufacturing conditions and evaluation results in the following examples has a meaning as a preferable value of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the above-described upper limit or lower limit value.
  • a range defined by a combination of values of the following examples or values of the examples may be used.
  • ⁇ Anti-blocking property (AB property)> Two hard coat films were prepared, and the hardened film produced in each example of the hard coat film in an atmosphere of 23 ° C. and a relative humidity of 60% (the opposite side of the face coated with the clear hard coat material) After overlapping each other and applying a load of about 1 kg with finger pressure, it was confirmed whether or not the cured film surfaces had slipperiness, and the anti-blocking property was evaluated according to the following criteria. ⁇ : Can be easily slid ⁇ : Can be slid and no sound is produced ⁇ : Can be slid but produces sound ⁇ : Cured film surfaces are in close contact with each other Things that can't slide between surfaces
  • H% Haze value of cured film is less than 0.6%
  • Haze value of cured film is 0.6% or more and less than 1.0%
  • Haze value of cured film is 1.0% or more
  • ⁇ Storage stability> The curable composition was allowed to stand at 50 ° C., the time until gelation was measured, and evaluated according to the following criteria. ⁇ : not gelled after 90 days ⁇ : not gelled after 30 days, but gelled by 90 days ⁇ : gelled by 30 days
  • ⁇ Curl resistance> A curable composition (coating solution) was applied on a PET film having a thickness of 100 ⁇ m with the four corners fixed to a glass plate using a bar coater so that the coating thickness after drying was 3 to 5 ⁇ m, and 80 ° C. And heat-dried for 1 minute, and UV irradiation device manufactured by Eye Graphics Co., Ltd. so that the integrated light quantity is 500 mJ / cm 2 Model No .: UB0452-0752 [Mercury lamp (main wavelength is 365 nm, UV light with wavelengths of 254 nm, 303 nm, 313 nm) And then cured by irradiation with ultraviolet rays. Then, it cut into 10 cm x 10 cm.
  • ⁇ material ⁇ Components (A) to (C) used as raw materials for the curable composition are as follows.
  • A-2 Aronix M313 manufactured by Toa Gosei Co., Ltd. Mixture of isocyanuric acid ethylene oxide (EO) modified diacrylate (molecular weight: 369) and isocyanuric acid ethylene oxide (EO) modified triacrylate (molecular weight: 423)
  • A-3 Biscoat # 1000 manufactured by Osaka Organic Chemical Industry Co., Ltd. Dendrimer acrylate (branched polyester polyol terminal acrylate), Mw): 1,900 The method for measuring Mw of A-1 and A-3 is the same as in the case of component (C) described later.
  • Component (B) The particles used as component (B) are as shown in Table 1 below. In Table 1, “shape” and “dispersion state” were confirmed by a scanning electron microscope.
  • the particle size distribution values of b-2, b-3, and b-4 are smaller than the average primary particle size value.
  • the reason for this is that the average primary particle diameter is confirmed by a scanning electron microscope, whereas the particle size distribution is measured by an optical technique using a laser diffraction particle size distribution meter, and is caused by a difference in the method.
  • b-3 and b-4 are not in an aggregated state but in a dispersed state.
  • MEK methyl ethyl ketone DT: dodecanethiol
  • EA ethyl acrylate (in the formula (1), R 1 is a hydrogen atom and R 2 is an ethyl group)
  • BMA butyl methacrylate (compound in which R 1 is a methyl group and R 2 is a butyl group in the formula (1))
  • HEA hydroxyethyl acrylate (in the formula (1), R 1 is a hydrogen atom and R 2 is a hydroxyethyl group)
  • BA butyl acrylate (in the formula (1), R 1 is a hydrogen atom and R 2 is a butyl group)
  • LMA Lauryl methacrylate (compound in which R 1 is a methyl group and R 2 is a dodecyl group in the formula (1))
  • HEMA hydroxyethyl methacrylate (compound in which R 1 is a methyl group and R 2 is a hydroxyethyl
  • Irgacure 184 manufactured by BASF, Irgacure (trademark) 184, 1-hydroxy-cyclohexyl-phenyl-ketone
  • Example 1-1 [Base material with clear hard coat]
  • 100 parts by weight of a mixture of dipentaerythritol tetraacrylate and dipentaerythritol hexaacrylate Kayarad DPHA manufactured by Nippon Kayaku Co., Ltd.
  • acrylic polymer Polyflow No. 75 manufactured by Kyoeisha Chemical Co., Ltd.
  • 5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone Irgacure (trademark) 184 manufactured by BASF
  • 105.5 parts by weight of methyl ethyl ketone was further added.
  • a coating material was obtained.
  • the film was applied and dried by heating at 80 ° C. for 1 minute, and cured by irradiating with ultraviolet rays so as to obtain an integrated light amount of 300 mJ / cm 2 . It was applied to compensate for
  • the coating film thickness after drying using a bar coater is 1 to 2 ⁇ m on the opposite side of the PET film to which the clear hard coating material is applied (5 to 10 ⁇ m for those used for refractive index evaluation).
  • the curable composition was applied so that it was heated and dried at 80 ° C. for 1 minute.
  • Examples 1-2 to 1-51 Comparative Examples 1-1 to 1-17>
  • a curable composition was obtained in the same manner as in Example 1-1 except that the composition of the curable composition was changed as shown in Tables 2 to 9.
  • Each of the obtained curable compositions was subjected to a coating process and a curing process in the same manner as in Example 1-1 to obtain a cured film (hard coat film).
  • the resulting curable composition and hard coat film were used for evaluation of anti-blocking property (AB property), transparency, recoat property and scratch resistance, and the results are shown in Tables 2 to 9.
  • AB property anti-blocking property
  • Tables 2 to 9 For Examples 1-2 to 1-4, storage stability and curl resistance were evaluated, and the results are shown in Table 2.
  • Example 1-1 to 1-8 which corresponds to the curable composition of the present invention and further contains the component (C), has anti-blocking properties (AB properties), transparency, Both recoatability and scratch resistance were good.
  • Examples 1-1 to 1-3 are “A-2” corresponding to a polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure as component (A), a polyfunctional (meth) acrylate having a dendrimer structure. Since “A-3” corresponding to was used, the curl resistance was better than that of Example 1-4 in which these were not used.
  • Example 1-9 corresponds to the curable composition of the present invention, and the AB property, the transparency, the recoat property, and the scratch resistance were all good, but the value of d10 as the component (B) was relatively small. Since the particles were used, the AB property was slightly inferior compared with Examples 1-1 to 1-8. Further, Example 1-10 corresponds to the curable composition of the present invention, and the AB property, transparency, recoat property, and scratch resistance were all good, but the component (C) was not used. Compared with Examples 1-1 to 1-8, the AB property was slightly inferior.
  • Examples 1-11 to 1-21 shown in Table 3 are examples in which the type of the component (C) was changed with respect to Example 1-2, but all of them had AB properties, transparency, recoatability, and scratch resistance. The property was good.
  • Examples 1-22 to 1-26 shown in Table 4 are examples in which the type of component (B) was changed with respect to Example 1-4, but all of them had AB properties, transparency, recoatability, and scratch resistance. The property was good.
  • Table-6 and Table-7 the type and blending amount of each of the component (A), the component (B) and the component (C) were changed.
  • the scratch resistance was good.
  • the refractive index can be easily controlled by changing the type of component (B) and the blending amount thereof.
  • Comparative Example 1-1 was an example in which component (B) was not used as compared with Example 1-4, but the antiblocking property (AB property) was poor.
  • Comparative Example 1-2 was an example in which “B-5” corresponding to component (B) was used and the amount thereof was increased, but the transparency was poor.
  • Comparative Examples 1-3 to 1-7 are examples in which particles other than the component (B) were used in place of the component (B) used in the present invention, compared to Example 1-4. AB property was inferior to 1-4.
  • Comparative Example 1-8 is an example in which particles having a large average primary particle diameter and d90 were used as particles other than the component (B) instead of the component (B) used in the present invention, as compared to Example 1-4.
  • Comparative Example 1-9 is different from Example 1-4 in that the average primary particle size is the same as that of component (B) as particles other than component (B) instead of component (B) used in the present invention. In this example, particles having a d90 value larger than that of the component (B) were used, but the transparency was poor.
  • Example 1-10 has good AB properties. That is, even if the component (C) is not essential, by blending a predetermined amount of the component (A) and the component (B), the AB property is improved and the transparency, recoating property, and scratch resistance are also improved. I understand that.
  • Comparative Examples 1-13 to 1-15 in Table-9 do not use the component (B) used in the present invention for Example 1-30 and instead correspond to “b-1” which does not fall under the component (B) , “B-4” and “b-5” were used, but either transparency or AB property was poor. Further, Comparative Examples 1-16 and 1-17, which did not use the component (B) used in the present invention, all had poor AB properties.
  • any one of the curable compositions having the same composition as in Examples 1-1 to 1-3 and Example 1-27 The material was coated and dried on the opposite side of the surface to which the clear hard coat material was applied, using a bar coater so that the coating thickness after drying was 1 to 2 ⁇ m. Subsequently, the cured film was obtained by irradiating with ultraviolet rays. In the above operation, the humidity during coating, the drying temperature, the ultraviolet ray (UV) irradiation amount, and the ultraviolet ray (UV) illuminance were each set under the conditions shown in Table-10 to Table-13. The obtained cured film was evaluated for anti-blocking property (AB property) and transparency, and the results are shown in Tables 10 to 13.
  • AB property anti-blocking property
  • Example 1-1 is an example in which the coating conditions were changed to the same composition as the curable compositions of Example 1-2, Example 1-3, and Example 1-27. As shown in Table-10 to Table-13, it is understood that the anti-blocking property and the transparency are excellent under any coating conditions.
  • the curable composition of the present invention is excellent in storage stability, has a high degree of freedom in coating conditions, a cured product obtained under various coating conditions, and a laminate having antiblocking properties, transparency, recoatability, and scratch resistance. It has excellent properties and curling resistance. For this reason, it can be suitably used in any application where these performances are required.
  • an optical adjustment film such as a retardation film or a brightness enhancement film; a protective film used for a polarizing plate; It is suitable as an optical film such as an ITO film used for touch panels and electromagnetic wave prevention films.
  • optical films can be used in bank ATMs, vending machines, personal digital assistants (PDAs), photocopiers, facsimiles, game machines, museums, department stores, and other guidance display devices, car navigation systems, multimedia stations ( Multi-function terminals installed in convenience stores), mobile phones, railway vehicle monitoring devices, smartphones, tablets and other display devices (liquid crystal displays, light-emitting diode displays, electroluminescent displays, fluorescent displays, plasma display panels, etc.) Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a curable composition having excellent storage stability and high flexibility with respect to coating conditions, and capable of obtaining a cured product under various coating conditions. With said curable composition, it is possible to obtain a laminate having excellent antiblocking characteristics, transparency, recoatability, scratch resistance, and curling resistance, and also possible to easily control the refractive index of a cured product to be obtained. Also provided are a cured product of said curable composition, a laminate, and a hard coat film. A curable composition including component (A) and component (B) below, wherein component (B) is contained in the amount of 0.01 to 150 parts by weight with respect to 100 parts by weight of component (A). Component (A): a compound having an ethylenically unsaturated bond. Component (B): particles having an average primary particle size of 1 to 100 nm, and exhibiting a d90 value as measured by calculating particle size distribution using laser diffraction of 100 to 2,000 nm.

Description

硬化性組成物、硬化物及び積層体Curable composition, cured product and laminate
 本発明は、硬化性組成物並びに該硬化性組成物を用いて得られる硬化物及び積層体に関する。より詳細には、本発明は、保存安定性に優れ、塗工条件の自由度が高く、様々な塗工条件で硬化物を得ることが可能であり、アンチブロッキング性、透明性、リコート性、耐傷付性、耐カール性等に優れた積層体が得られ、また、得られる硬化物の屈折率の制御が容易である硬化性組成物、該硬化性組成物の硬化物及び積層体、並びにハードコートフィルムに関する。 The present invention relates to a curable composition, and a cured product and a laminate obtained using the curable composition. More specifically, the present invention is excellent in storage stability, has a high degree of freedom in coating conditions, can obtain a cured product under various coating conditions, anti-blocking properties, transparency, recoatability, A laminate having excellent scratch resistance, curl resistance and the like, and a curable composition in which the refractive index of the resulting cured product can be easily controlled, a cured product and a laminate of the curable composition, and It relates to a hard coat film.
 ポリエチレンテレフタレート(PET)フィルムに代表される熱可塑性樹脂フィルムの表面には、硬度や滑り性に優れたハードコーティングが施される場合がある。このようなハードコーティングが行われたフィルムは、保存場所の確保、成形時の操作性、汚れ防止等の目的のために、保存に際してロール状に巻回される場合がある。このように、ハードコーティングを施したフィルムをロール状に巻回する際にはフィルム同士のブロッキングを防ぐことが要求される。 The surface of a thermoplastic resin film typified by a polyethylene terephthalate (PET) film may be provided with a hard coating having excellent hardness and slipperiness. A film on which such a hard coating has been performed may be wound into a roll during storage for the purpose of securing a storage location, operability during molding, preventing contamination, and the like. As described above, when a film subjected to hard coating is wound into a roll, it is required to prevent blocking between the films.
 フィルムのブロッキングを防ぐ方法として、フィルム表面にハードコート層を形成し、このハードコート層に特定の粒子径を有する有機微粒子と分散剤とを配合することによりハードコート層の表面に凹凸を形成する方法が開示されている(特許文献1)。また、フィルム表面にハードコート層を形成し、このハードコート層に反応性微粒子を多量に配合することでハードコート層の表面に凹凸を形成し、ブロッキングを防ぐ方法が開示されている(特許文献2)。また、ハードコート層形成のための樹脂組成物を基材に塗布した後の乾燥工程、紫外線(UV)照射工程で相分離により析出させ、ハードコート層の表面に凹凸を形成することでブロッキングを防ぐ方法が開示されている(特許文献3)。更に、フィルム表面に塗布するハードコート層として、多官能重合性不飽和化合物、ラジカル重合開始剤、単分散の無機粒子、粒子凝集剤等からなるものを用いることにより大きな凹凸を形成する方法が開示されている(特許文献4)。 As a method for preventing film blocking, a hard coat layer is formed on the film surface, and irregularities are formed on the surface of the hard coat layer by blending organic fine particles having a specific particle diameter and a dispersant in the hard coat layer. A method is disclosed (Patent Document 1). Further, a method is disclosed in which a hard coat layer is formed on the film surface, and irregularities are formed on the surface of the hard coat layer by adding a large amount of reactive fine particles to the hard coat layer to prevent blocking (Patent Document). 2). In addition, the resin composition for forming the hard coat layer is deposited by phase separation in the drying step and the ultraviolet (UV) irradiation step after coating the substrate, and blocking is formed by forming irregularities on the surface of the hard coat layer. A method for preventing this is disclosed (Patent Document 3). Furthermore, as a hard coat layer to be applied to the film surface, a method for forming large irregularities by using a polyfunctional polymerizable unsaturated compound, a radical polymerization initiator, monodispersed inorganic particles, a particle flocculant, etc. is disclosed. (Patent Document 4).
日本国特開2013-75955号公報Japanese Unexamined Patent Publication No. 2013-75955 日本国特開2014-16608号公報Japanese Unexamined Patent Publication No. 2014-16608 日本国特開2013-209516号公報Japanese Unexamined Patent Publication No. 2013-209516 日本国特開2011-29175号公報Japanese Unexamined Patent Publication No. 2011-29175
 本発明者等の詳細な検討により、上記特許文献1~4において開示されている技術には以下のような問題点があることがわかった。特許文献1に開示されている技術では、混合している粒子が平均一次粒子径で0.5~1.5μmと大きく、内部ヘーズが上昇するために透明性が十分ではない。特許文献2に開示されている技術では、混合している粒子が小さいために透明性は良好であるが、反応性基を有する形状の異なる二種類の粒子を多量に含有しているため、保存安定性が悪いという問題がある。特許文献3に開示されている技術では、無機粒子等の粒子を必須に含有してはいないが、乾燥条件、UV照射条件によりハードコート層表面の凹凸の形状が変化し、塗工条件の自由度が低いという問題がある。特許文献4に開示されている技術では、凝集粒子の粒子径が大きく、塗膜の透明性が低いという問題がある。 From detailed examinations by the present inventors, it has been found that the techniques disclosed in Patent Documents 1 to 4 have the following problems. In the technique disclosed in Patent Document 1, the mixed particles are as large as 0.5 to 1.5 μm in average primary particle size, and the internal haze increases, so that the transparency is not sufficient. In the technique disclosed in Patent Document 2, transparency is good because the mixed particles are small, but it contains a large amount of two types of particles having reactive groups and different shapes. There is a problem of poor stability. In the technique disclosed in Patent Document 3, particles such as inorganic particles are not essential, but the shape of the irregularities on the surface of the hard coat layer changes depending on the drying conditions and UV irradiation conditions, and the coating conditions are free. There is a problem that the degree is low. The technique disclosed in Patent Document 4 has a problem that the particle diameter of the aggregated particles is large and the transparency of the coating film is low.
 更に、アンチブロッキング性が求められるハードコート層の前後には通常、様々な材料が積層される。この際、それぞれの層との間での屈折率を調整することが各種の光学用途において重要となる。このため、ハードコート層についてもアンチブロッキング性や透明性を損なうことなく、屈折率を幅広く制御することが求められる。 Furthermore, various materials are usually laminated before and after the hard coat layer requiring anti-blocking properties. At this time, adjusting the refractive index between each layer is important in various optical applications. For this reason, also about a hard-coat layer, it is calculated | required to control a refractive index widely, without impairing antiblocking property and transparency.
 本発明は、このような従来技術の問題点を解決することを目的とするものである。即ち、本発明は、保存安定性に優れ、塗工条件の自由度が高く、様々な塗工条件で硬化物を得ることが可能であり、アンチブロッキング性、透明性、リコート性、耐傷付性、耐カール性等に優れた積層体が得られ、また、得られる硬化物の屈折率の制御が容易である硬化性組成物を提供することを課題とする。 The present invention aims to solve such problems of the prior art. That is, the present invention is excellent in storage stability, has a high degree of freedom in coating conditions, and can obtain a cured product under various coating conditions, and has anti-blocking properties, transparency, recoatability, and scratch resistance. It is an object of the present invention to provide a curable composition in which a laminate excellent in curling resistance and the like is obtained and the refractive index of the obtained cured product can be easily controlled.
 本発明者等が上記課題を鑑みて鋭意検討した結果、エチレン性不飽和化合物及び特定の粒子径を有する粒子を含み、これらの配合量が特定の範囲である硬化性組成物が上記課題を解決し得ることを見出したものである。即ち、本発明の要旨は以下の[1]~[17]の通りである。 As a result of intensive studies by the present inventors in view of the above problems, a curable composition containing an ethylenically unsaturated compound and particles having a specific particle diameter and having a blending amount within a specific range solves the above problems. It has been found that it can be. That is, the gist of the present invention is as follows [1] to [17].
[1] 下記成分(A)及び成分(B)を含み、成分(A)の100重量部に対して成分(B)を0.01~150重量部含む硬化性組成物。
成分(A):エチレン性不飽和結合を有する化合物
成分(B):平均一次粒子径が1~100nmであり、かつレーザー回折式粒径分布計により測定したd90が100~2,000nmである粒子群
[1] A curable composition comprising the following component (A) and component (B), comprising 0.01 to 150 parts by weight of component (B) with respect to 100 parts by weight of component (A).
Component (A): Compound having ethylenically unsaturated bond Component (B): Particles having an average primary particle diameter of 1 to 100 nm and d90 measured by a laser diffraction particle size distribution meter of 100 to 2,000 nm group
[2] 成分(B)の[平均一次粒子径]/[d90]の値が0.01~0.40である、[1]に記載の硬化性組成物。
[3] 成分(B)が、レーザー回折式粒径分布計により測定したd10が10~500nmであり、d50が30~1,000nmである、[1]に記載の硬化性組成物。
[4] 成分(A)の重量平均分子量が2,100未満であり、かつ下記成分(C)を含み、その含有量が成分(A)100重量部に対して0.01~20重量部である、[1]又は[2]に記載の硬化性組成物。
  成分(C):重量平均分子量(Mw)が2,100~200,000である有機高分子化合物
[5] 成分(C)の溶解性パラメーター(SP値)が9.3~12.6である、[4]に記載の硬化性組成物。
[2] The curable composition according to [1], wherein the value of [Average primary particle diameter] / [d90] of the component (B) is 0.01 to 0.40.
[3] The curable composition according to [1], wherein the component (B) has a d10 of 10 to 500 nm and a d50 of 30 to 1,000 nm as measured with a laser diffraction particle size distribution analyzer.
[4] The weight average molecular weight of the component (A) is less than 2,100 and includes the following component (C), the content of which is 0.01 to 20 parts by weight with respect to 100 parts by weight of the component (A) The curable composition according to [1] or [2].
Component (C): Organic polymer compound [5] having a weight average molecular weight (Mw) of 2,100 to 200,000 [5] The solubility parameter (SP value) of component (C) is 9.3 to 12.6 The curable composition as described in [4].
[6] 成分(C)として(メタ)アクリル樹脂を含む、[4]又は[5]に記載の硬化性組成物。
[7] 成分(A)として多官能(メタ)アクリレートを含む、[1]乃至[6]のいずれか1つに記載の硬化性組成物。
[8] 前記多官能(メタ)アクリレートとして、窒素原子含有複素環構造を有する多官能(メタ)アクリレート、デンドリマー構造を有する多官能(メタ)アクリレート及びハイパーブランチポリマー構造を有する多官能(メタ)アクリレートからなる群のうちの少なくとも1つを含み、かつその含有量の合計が成分(A)全体に対して1~65重量%である、[7]に記載の硬化性組成物。
[6] The curable composition according to [4] or [5], which contains a (meth) acrylic resin as the component (C).
[7] The curable composition according to any one of [1] to [6], which contains a polyfunctional (meth) acrylate as the component (A).
[8] As the polyfunctional (meth) acrylate, a polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure, a polyfunctional (meth) acrylate having a dendrimer structure, and a polyfunctional (meth) acrylate having a hyperbranched polymer structure The curable composition according to [7], comprising at least one member selected from the group consisting of 1 to 65% by weight based on the total amount of component (A).
[9] 有機溶媒を含み、固形分濃度が5~95重量%である、[1]乃至[8]のいずれか1つに記載の硬化性組成物。
[10] 前記有機溶媒が、飽和炭化水素系溶媒、エステル系溶媒、エーテル系溶媒、アルコール系溶媒及びケトン系溶媒からなる群から選ばれる少なくとも1種である、[9]に記載の硬化性組成物。
[11] 重合開始剤を含み、かつその含有量が成分(A)100重量部に対して0.01~20重量部である、[1]乃至[10]のいずれか1つに記載の硬化性組成物。
[9] The curable composition according to any one of [1] to [8], which contains an organic solvent and has a solid content concentration of 5 to 95% by weight.
[10] The curable composition according to [9], wherein the organic solvent is at least one selected from the group consisting of a saturated hydrocarbon solvent, an ester solvent, an ether solvent, an alcohol solvent, and a ketone solvent. object.
[11] The curing according to any one of [1] to [10], comprising a polymerization initiator and having a content of 0.01 to 20 parts by weight relative to 100 parts by weight of component (A) Sex composition.
[12] [1]乃至[11]のいずれか1つに記載の硬化性組成物に活性エネルギー線を照射してなる硬化物。
[13] 基材とハードコート層とを有する積層体であり、該ハードコート層が請求項[1]乃至[10]のいずれか1つに記載の硬化性組成物を該基材上に塗布し、これに活性エネルギー線を照射して形成された層である積層体。
[14] 前記基材がプラスチック基材である、[13]に記載の積層体。
[12] A cured product obtained by irradiating the curable composition according to any one of [1] to [11] with active energy rays.
[13] A laminate having a substrate and a hard coat layer, and the hard coat layer is coated with the curable composition according to any one of claims [1] to [10] on the substrate. And the laminated body which is a layer formed by irradiating this with active energy rays.
[14] The laminate according to [13], wherein the substrate is a plastic substrate.
[15] 前記プラスチック基材が、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂からなる群から選ばれる1種以上である、[14]に記載の積層体。
[16] 基材層とハードコート層とを有する積層体であり、該ハードコート層が下記成分(B)を含み、かつJIS K7136(2000年)に従って測定したヘーズ値が0.6%未満である積層体。
  成分(B):平均一次粒子径が1~100nmであり、かつレーザー回折式粒径分布計により測定したd90が100~2,000nmである粒子群
[17] 下記成分(B)を含み、かつその含有量がハードコートフィルム全体に対して0.01~55重量%であるハードコートフィルム。
 成分(B):平均一次粒子径が1~100nmであり、かつレーザー回折式粒径分布計により測定したd90が100~2,000nmである粒子群
[15] The laminate according to [14], wherein the plastic substrate is at least one selected from the group consisting of polycarbonate resin, polyethylene terephthalate resin, and polymethyl methacrylate resin.
[16] A laminate having a base material layer and a hard coat layer, the hard coat layer contains the following component (B), and the haze value measured according to JIS K7136 (2000) is less than 0.6% A laminate.
Component (B): Particle group having an average primary particle size of 1 to 100 nm and a d90 measured by a laser diffraction particle size distribution analyzer of 100 to 2,000 nm [17] comprising the following component (B); A hard coat film whose content is 0.01 to 55% by weight with respect to the entire hard coat film.
Component (B): particles having an average primary particle size of 1 to 100 nm and a d90 of 100 to 2,000 nm measured by a laser diffraction particle size distribution analyzer
 本発明によれば、保存安定性に優れ、塗工条件の自由度が高く、様々な塗工条件で硬化物を得ることが可能であり、アンチブロッキング性、透明性、リコート性、耐傷付性、耐カール性等に優れた積層体が得られ、また得られる硬化物の屈折率の制御が容易である硬化性組成物が提供される。また、本発明によれば、この硬化性組成物を用いて得られる硬化物及び積層体、並びにハードコートフィルムが提供される。 According to the present invention, it is excellent in storage stability, has a high degree of freedom in coating conditions, and can obtain a cured product under various coating conditions, and has anti-blocking properties, transparency, recoatability, and scratch resistance. In addition, a laminate having excellent curl resistance and the like, and a curable composition in which the refractive index of the resulting cured product can be easily controlled are provided. Moreover, according to this invention, the hardened | cured material and laminated body which are obtained using this curable composition, and a hard coat film are provided.
 以下の説明は、本発明の実施の形態の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではない。なお、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。なお、本発明において、「(メタ)アクリレート」という表現を用いる場合、「アクリレート」及び「メタクリレート」の一方又は両方を意味するものとし、「(メタ)アクリロイル」、「(メタ)アクリル」等の表現を用いる場合についても同様である。 The following description is an example of an embodiment of the present invention, and the present invention is not limited to the following description unless it exceeds the gist. Note that when the expression “˜” is used in this specification, it is used as an expression including numerical values or physical property values before and after the expression. In the present invention, when the expression “(meth) acrylate” is used, it means one or both of “acrylate” and “methacrylate”, such as “(meth) acryloyl” and “(meth) acryl”. The same applies to the case of using expressions.
[成分(A)]
 本発明に用いる成分(A)はエチレン性不飽和結合を有する化合物である。本発明の硬化性組成物は成分(A)を含有することにより硬化性、耐傷付性が付与される。
[Component (A)]
Component (A) used in the present invention is a compound having an ethylenically unsaturated bond. The curable composition of the present invention is imparted with curability and scratch resistance by containing the component (A).
 成分(A)の化合物が有するエチレン性不飽和結合の種類は特に制限されないが、例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、スチリル基、アリル基等が挙げられる。これらの中でも成分(A)としては(メタ)アクリロイル基を有する化合物を含むことが好ましい。成分(A)において、一分子中でのエチレン性不飽和結合の数は特に制限されないが、通常、1~15である。成分(A)の化合物はエチレン性不飽和結合の数が異なるものを2種以上混合して用いてもよい。 The type of the ethylenically unsaturated bond of the component (A) compound is not particularly limited, and examples thereof include (meth) acryloyl group, (meth) acrylamide group, styryl group, allyl group and the like. Among these, the component (A) preferably includes a compound having a (meth) acryloyl group. In the component (A), the number of ethylenically unsaturated bonds in one molecule is not particularly limited, but is usually 1 to 15. As the compound of component (A), two or more compounds having different numbers of ethylenically unsaturated bonds may be used.
 成分(A)の中でも、(メタ)アクリロイル基を有する化合物としては、(メタ)アクリロイル基を1個有する単官能(メタ)アクリレート及び(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレートが挙げられる。これらは1種のみでも2種以上を組み合わせて用いることもできるが、多官能(メタ)アクリレートを含むことが好ましい。 Among the components (A), the compound having a (meth) acryloyl group includes a monofunctional (meth) acrylate having one (meth) acryloyl group and a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups. Is mentioned. These may be used alone or in combination of two or more, but preferably contain a polyfunctional (meth) acrylate.
 単官能(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、(メタ)アクリロイルモルフォリン、テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、2-アダマンタンおよびアダマンタンジオールから誘導される1価のモノ(メタ)アクリレートを有するアダマンチル(メタ)アクリレート等のアダマンタン誘導体モノ(メタ)アクリレート等が挙げられる。これらは1種をのみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of monofunctional (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth). Acrylate, t-butyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acryloylmorpholine, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate , Isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phosphoric acid (meth) acrylate, ethylene oxide modified phosphoric acid (meth) acrylate, phenoxy (meth) Acrylate, ethylene oxide modified phenoxy (meth) acrylate, propylene oxide modified phenoxy (meth) acrylate, nonylphenol (meth) acrylate, ethylene oxide modified nonylphenol (meth) acrylate, propylene oxide modified nonylphenol (meth) acrylate, methoxydiethylene glycol (meth) acrylate , Methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, 2- (meth ) Acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl hydrogen phthalate, 2- (meth) acryloyloxypropyl hydrogen phthalate, 2- (meth) ) Acryloyloxypropyl hexahydrohydrogen phthalate, 2- (meth) acryloyloxypropyl tetrahydrophthalate, dimethylaminoethyl (meth) acrylate, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) ) Acrylate, octafluoropropyl (meth) acrylate, octafluoropropyl (meth) acrylate, 2-adamantane And adamantane derivative mono (meth) acrylates such as adamantyl (meth) acrylate having a monovalent mono (meth) acrylate derived from adamantanediol. These may use only 1 type and may use it in combination of 2 or more type.
 多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2-ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート;これらの(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した多官能(メタ)アクリレート化合物の変性物;イソシアヌレート構造を有する多官能(メタ)アクリレート等の窒素原子含有複素環構造を有する多官能(メタ)アクリレート;デンドリマー構造を有する多官能(メタ)アクリレート、ハイパーブランチポリマー構造を有する多官能(メタ)アクリレート等の多分岐樹枝状構造を有する多官能(メタ)アクリレート;ジイソシアネート又はトリイソシアネートに水酸基を有する(メタ)アクリレートが付加したウレタン(メタ)アクリレート、イソシアネート化合物とジオール化合物を反応させて得られた末端にイソシアネート基を有する反応生成物に水酸基を有する(メタ)アクリレートが付加したウレタン(メタ)アクリレート等のウレタン(メタ)アクリレート等が挙げられる。これらは1種のみを用いることも2種以上を組み合わせて用いることもできる。 Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, nonanediol di (meth) acrylate, Ethoxylated hexanediol di (meth) acrylate, propoxylated hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) Acrylate, neopentyl glycol di (meth) acrylate, ethoxylated neopentyl glycol di (meth) acrylate, tripropylene glycol di ( 2) Bifunctional (meth) acrylates such as acrylate and hydroxypivalic acid neopentyl glycol di (meth) acrylate; trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (Meth) acrylate, tris 2-hydroxyethyl isocyanurate tri (meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate , Pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) Trifunctional or more polyfunctional (meth) acrylates such as acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate; Modified products of polyfunctional (meth) acrylate compounds in which a part of these (meth) acrylates is substituted with alkyl groups or ε-caprolactone; nitrogen atom-containing heterocyclic structures such as polyfunctional (meth) acrylates having an isocyanurate structure Polyfunctional (meth) acrylate having a polybranched dendritic structure such as a polyfunctional (meth) acrylate having a dendrimer structure and a polyfunctional (meth) acrylate having a hyperbranched polymer structure; Urethane (meth) acrylate in which (meth) acrylate having hydroxyl group is added to cyanate or triisocyanate, (meth) acrylate having hydroxyl group in the reaction product having isocyanate group at the terminal obtained by reacting isocyanate compound and diol compound And urethane (meth) acrylates such as urethane (meth) acrylate to which is added. These can be used alone or in combination of two or more.
 成分(A)として用いることのできる多官能(メタ)アクリレートの中でも、窒素原子含有複素環構造を有する多官能(メタ)アクリレート及び多分岐樹枝状構造を有する多官能(メタ)アクリレートのうち少なくとも一方を含むことが好ましい。窒素原子含有複素環構造を有する多官能(メタ)アクリレート及び多分岐樹枝状構造を有する多官能(メタ)アクリレートは、硬度の観点から、成分(A)全体に対してこれらの含有量の合計が、65重量%以下で含むことが好ましく、50重量%以下で含むことがより好ましく、35重量%以下で含むことが更に好ましく、20重量%以下で含むことが特に好ましく、10重量%以下で含むことが最も好ましい。一方、耐カール性を向上させる観点から、成分(A)全体に対してこれらの含有量の合計が1重量%以上で含むことが好ましく、3重量%以上で含むことがより好ましく、5重量%以上で含むことが更に好ましい。 Among polyfunctional (meth) acrylates that can be used as component (A), at least one of polyfunctional (meth) acrylates having a nitrogen atom-containing heterocyclic structure and polyfunctional (meth) acrylates having a multi-branched dendritic structure It is preferable to contain. From the viewpoint of hardness, the polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure and the polyfunctional (meth) acrylate having a multi-branched dendritic structure have a total of these contents relative to the entire component (A). , 65 wt% or less, preferably 50 wt% or less, more preferably 35 wt% or less, further preferably 20 wt% or less, particularly preferably 10 wt% or less. Most preferred. On the other hand, from the viewpoint of improving curl resistance, the total content of these components (A) is preferably 1% by weight or more, more preferably 3% by weight or more, and more preferably 5% by weight. More preferably, it is contained above.
 窒素原子含有複素環構造を有する多官能(メタ)アクリレートとしては、窒素原子含有複素環構造に(メタ)アクリロイル基が直接に又は炭素数1~10の炭化水素基や炭素数1~10のアルキレンオキサイド構造を介して連結しているものが好ましく、具体的にはイソシアヌレート構造を有する多官能(メタ)アクリレート等が挙げられる。例えば、イソシアヌル酸エチレンオキサイド(EO)変性ジアクリレート(例えば、東亞合成社製 アロニックスM-215)、ε-カプロラクトン変性トリス(アクロキシエチル)イソシアヌレート(例えば、東亞合成社製 アロニックスM-327、A-9300-1CL)、イソシアヌル酸EO変性ジ及びトリアクリレート(例えば、東亞合成社製 アロニックスM-313、アロニックスM-315、A-9300)等が挙げられる。 Examples of the polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure include a (meth) acryloyl group directly or a hydrocarbon group having 1 to 10 carbon atoms or an alkylene having 1 to 10 carbon atoms in the nitrogen atom-containing heterocyclic structure. Those linked through an oxide structure are preferred, and specific examples include polyfunctional (meth) acrylates having an isocyanurate structure. For example, isocyanuric acid ethylene oxide (EO) modified diacrylate (for example, Aronix M-215 manufactured by Toagosei Co., Ltd.), ε-caprolactone modified tris (acryloxyethyl) isocyanurate (for example, Aronix M-327 manufactured by Toagosei Co., Ltd.) -9300-1CL), isocyanuric acid EO-modified di- and triacrylates (for example, Aronix M-313, Aronix M-315, A-9300 manufactured by Toagosei Co., Ltd.) and the like.
 多分岐樹枝状構造を有する多官能(メタ)アクリレートとしては、デンドリマー構造を有する多官能(メタ)アクリレート、ハイパーブランチポリマー構造を有する多官能(メタ)アクリレートが挙げられる。デンドリマー構造を有する多官能(メタ)アクリレートは高い規則性で分岐した構造を有する化合物であり、また、ハイパーブランチポリマー構造を有する多官能(メタ)アクリレートは低い規則性で分岐した構造を有する化合物であり、直鎖状の高分子に比べ低粘度で溶剤溶解性に優れたものである。デンドリマー構造を有する多官能(メタ)アクリレートとしては、例えば、大阪有機化学工業社製のビスコート#1000等を用いることができる。ハイパーブランチポリマー構造を有する多官能(メタ)アクリレートとしては、例えば、大阪有機化学工業社製のSTAR-501、SIRIUS-501、SUBARU-501等を用いることができる。 Examples of the polyfunctional (meth) acrylate having a multibranched dendritic structure include a polyfunctional (meth) acrylate having a dendrimer structure and a polyfunctional (meth) acrylate having a hyperbranched polymer structure. A polyfunctional (meth) acrylate having a dendrimer structure is a compound having a highly regular branched structure, and a polyfunctional (meth) acrylate having a hyperbranched polymer structure is a compound having a low regular branched structure. Yes, it has low viscosity and excellent solvent solubility compared to linear polymers. As the polyfunctional (meth) acrylate having a dendrimer structure, for example, Biscoat # 1000 manufactured by Osaka Organic Chemical Industry Co., Ltd. can be used. Examples of the polyfunctional (meth) acrylate having a hyperbranched polymer structure include STAR-501, SIRIUS-501, and SUBARU-501 manufactured by Osaka Organic Chemical Industry Co., Ltd.
 成分(A)は、硬化性組成物のハンドリング性、塗工性を良好とする観点から、重量平均分子量(Mw)が2,100未満であることが好ましい。この効果をより良好なものとする観点から、成分(A)は、Mwが1,600以下のものであることが好ましく、1,100以下のものであることがより好ましい。一方、低分子量であり、通常、重量平均分子量として分子量を測定しない領域のものも本発明に用いる成分(A)として使用することが可能である。成分(A)において、このような低分子量の化合物の重量平均分子量(分子量)は通常、50以上である。成分(A)のMwは後掲の実施例に示すようにゲル・パーミエーション・クロマトグラフィー法(GPC法)により測定することができる。 Component (A) preferably has a weight average molecular weight (Mw) of less than 2,100 from the viewpoint of improving the handleability and coating properties of the curable composition. From the viewpoint of making this effect better, the component (A) preferably has a Mw of 1,600 or less, and more preferably 1,100 or less. On the other hand, those having a low molecular weight and usually not measuring the molecular weight as the weight average molecular weight can also be used as the component (A) used in the present invention. In the component (A), the weight average molecular weight (molecular weight) of such a low molecular weight compound is usually 50 or more. The Mw of the component (A) can be measured by gel permeation chromatography method (GPC method) as shown in Examples below.
[成分(B)]
 本発明に用いる成分(B)は、平均一次粒子径が1~100nmであり、かつレーザー回折式粒径分布計により測定したd90(レーザー解析式粒度分布計により測定した結果において累積値が90%になる粒子径の値)が100~2,000nmである粒子群である。ここで、d90が平均一次粒子径の値と異なる所定の範囲であることは、成分(B)が凝集体となっていることを示す。即ち、成分(B)は平均一次粒子径が特定範囲である粒子が特定の凝集状態で存在しているものである。本発明の硬化性組成物において、成分(B)は主としてアンチブロッキング性に寄与する。本発明の硬化性組成物を用いて得られる硬化物、積層体が特にアンチブロッキング性、透明性に優れるのは、成分(B)として平均一次粒子径が上記範囲でありながらも特定の凝集体となっていることにより、硬化性組成物を硬化させたときに成分(B)により表面に凹凸を形成してアンチブロッキング性を発現させながらも、光を十分に透過させることが可能であるためであると推定される。
[Component (B)]
Component (B) used in the present invention has an average primary particle diameter of 1 to 100 nm and a d90 measured by a laser diffraction particle size distribution meter (accumulated value is 90% in the result measured by a laser analysis particle size distribution meter). (Particle diameter value) is 100 to 2,000 nm. Here, d90 being in a predetermined range different from the value of the average primary particle diameter indicates that the component (B) is an aggregate. That is, in the component (B), particles having an average primary particle diameter in a specific range are present in a specific aggregation state. In the curable composition of the present invention, the component (B) mainly contributes to antiblocking properties. The cured product and laminate obtained by using the curable composition of the present invention are particularly excellent in anti-blocking property and transparency because the component (B) has a specific aggregate while the average primary particle diameter is in the above range. As a result, when the curable composition is cured, it is possible to transmit light sufficiently while forming irregularities on the surface by the component (B) to develop anti-blocking properties. It is estimated that.
 成分(B)の含有量は、成分(A)100重量部に対し、塗膜のアンチブロッキング性の観点から0.01重量部以上であり、0.5重量部以上であることが好ましく、1重量部以上であることがより好ましく、2重量部以上であることが更に好ましく、3重量部以上であることが特に好ましい。一方、成分(B)の含有量は、透明性の観点から成分(A)100重量部に対し、150重量部以下であり、130重量部以下であることが好ましく、110重量部以下であることがより好ましく、90重量部以下であることが更に好ましく、70重量部以下であることが特に好ましく、45重量部以下であることが最も好ましい。 Content of a component (B) is 0.01 weight part or more with respect to 100 weight part of a component (A) from a viewpoint of the antiblocking property of a coating film, It is preferable that it is 0.5 weight part or more. The amount is more preferably at least part by weight, more preferably at least 2 parts by weight, and particularly preferably at least 3 parts by weight. On the other hand, the content of component (B) is 150 parts by weight or less, preferably 130 parts by weight or less, and 110 parts by weight or less with respect to 100 parts by weight of component (A) from the viewpoint of transparency. Is more preferably 90 parts by weight or less, particularly preferably 70 parts by weight or less, and most preferably 45 parts by weight or less.
 成分(B)は、平均一次粒子径が1~100nmであり、かつレーザー解析式粒度分布計により測定したd90が100~2,000nmであることにより、アンチブロッキング性、透明性が良好となる。成分(B)の平均一次粒子径は、アンチブロッキング性の観点から、1nm以上であり、好ましくは5nm以上であり、より好ましくは10nm以上であり、更に好ましくは20nm以上であり、最も好ましくは30nm以上であり、一方、透明性の観点から、100nm以下であり、より好ましくは75nm以下であり、更に好ましくは50nm以下である。また、成分(B)のd90は、アンチブロッキング性の観点から、100nm以上であり、好ましくは150nm以上であり、より好ましくは200nm以上であり、更に好ましくは250nm以上であり、特に好ましくは300nm以上であり、一方、透明性の観点から、2,000nm以下であり、1,500nm以下であることが好ましく、1,000nm以下であることがより好ましい。特に、硬化性組成物を硬化させた際の屈折率を制御する観点からは、成分(B)のd90は、575nm以下であることが好ましく、550nm以下であることがより好ましく、525nm以下であることが更に好ましく、500nm以下であることが特に好ましく、475nm以下であることが最も好ましい。 The component (B) has an average primary particle diameter of 1 to 100 nm and d90 measured by a laser analysis type particle size distribution meter of 100 to 2,000 nm, whereby antiblocking properties and transparency are good. The average primary particle diameter of the component (B) is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, and most preferably 30 nm from the viewpoint of antiblocking properties. On the other hand, from the viewpoint of transparency, it is 100 nm or less, more preferably 75 nm or less, and still more preferably 50 nm or less. Further, d90 of the component (B) is 100 nm or more, preferably 150 nm or more, more preferably 200 nm or more, still more preferably 250 nm or more, particularly preferably 300 nm or more, from the viewpoint of antiblocking properties. On the other hand, from the viewpoint of transparency, it is 2,000 nm or less, preferably 1,500 nm or less, and more preferably 1,000 nm or less. In particular, from the viewpoint of controlling the refractive index when the curable composition is cured, d90 of the component (B) is preferably 575 nm or less, more preferably 550 nm or less, and 525 nm or less. More preferably, it is particularly preferably 500 nm or less, and most preferably 475 nm or less.
 また、成分(B)は[平均一次粒子径]/[d90]の値が0.01~0.40であることがアンチブロッキング性と透明性の両方を良好なものとする観点から好ましい。このような観点から[平均一次粒子径]/[d90]の値は、0.02以上であることがより好ましく、一方、0.35以下であることがより好ましく、0.30以下であることが更に好ましく、0.25以下であることが特に好ましく、0.20以下であることが最も好ましい。 The component (B) preferably has an [average primary particle size] / [d90] value of 0.01 to 0.40 from the viewpoint of improving both anti-blocking properties and transparency. From such a viewpoint, the value of [Average primary particle size] / [d90] is more preferably 0.02 or more, and more preferably 0.35 or less, and 0.30 or less. Is more preferably 0.25 or less, and most preferably 0.20 or less.
 また、上記レーザー解析式粒度分布計により測定した結果において、累積値が10%になる粒子径の値(d10)、累積値が50%になる粒子径の値(d50)が次の範囲であることがアンチブロッキング性と透明性を両立する観点から好ましい。即ち、成分(B)のd10は、10nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることが更に好ましく、40nm以上であることが特に好ましく、50nm以上であることが最も好ましく、一方、500nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることが更に好ましく、150nm以下であることが特に好ましい。また、成分(B)のd50は、30nm以上であることが好ましく、50nm以上であることがより好ましく、70nm以上であることが更に好ましく、90nm以上であることが特に好ましく、一方、1,000nm以下であることが好ましく、750nm以下であることがより好ましく、500nm以下であることが更に好ましい。 Moreover, in the result measured by the laser analysis type particle size distribution meter, the particle diameter value (d10) at which the cumulative value becomes 10% and the particle diameter value (d50) at which the cumulative value becomes 50% are in the following ranges. Is preferable from the viewpoint of achieving both anti-blocking properties and transparency. That is, d10 of the component (B) is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, particularly preferably 40 nm or more, and 50 nm or more. On the other hand, it is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and particularly preferably 150 nm or less. Further, d50 of the component (B) is preferably 30 nm or more, more preferably 50 nm or more, further preferably 70 nm or more, particularly preferably 90 nm or more, while 1,000 nm. Is preferably 750 nm or less, more preferably 500 nm or less.
 なお、成分(B)の平均一次粒子径は走査型電子顕微鏡又は透過型電子顕微鏡を用いて測定した値であり、成分(B)の一次粒子が球状以外の形状である場合には、平均一次粒子径は長軸径と短軸径の平均として求めるものとする。また、レーザー回折式粒度分布計による粒子径は具体的には[マイクロトラックUPA:日機装社製]を用いて求められる値である。 The average primary particle diameter of the component (B) is a value measured using a scanning electron microscope or a transmission electron microscope. When the primary particles of the component (B) are other than spherical, the average primary particle diameter is The particle diameter is obtained as an average of the major axis diameter and the minor axis diameter. The particle diameter measured by a laser diffraction particle size distribution meter is specifically a value determined using [Microtrac UPA: Nikkiso Co., Ltd.].
 成分(B)は平均一次粒子径及びd90がそれぞれ前記範囲であればよく、凝集しているものを解砕して粒子径を調整してもよいし、ゾル-ゲル法等を用いて凝集した粒子を生成してもよいし、凝集剤を用いて分散している粒子を凝集させて粒子径を調整してもよい。 The component (B) may have an average primary particle diameter and d90 within the above ranges, respectively, and the aggregated particles may be crushed to adjust the particle diameter, or aggregated using a sol-gel method or the like. Particles may be generated, or the particle diameter may be adjusted by aggregating dispersed particles using an aggregating agent.
 成分(B)は平均一次粒子径及びd90が上記範囲を満たすものであればその種類は特に限定されず、無機粒子、有機粒子、有機-無機複合粒子のいずれであってもよい。また、これらのうちの1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。成分(B)の粒子が無機粒子である場合、ハードコートとしたときの耐熱性、硬度が高くなる傾向にあり、アンチブロッキング性がより良好となる傾向にあるために好ましい。 The type of component (B) is not particularly limited as long as the average primary particle diameter and d90 satisfy the above ranges, and may be any of inorganic particles, organic particles, and organic-inorganic composite particles. Moreover, only one of these may be used, or two or more may be used in combination. In the case where the component (B) particles are inorganic particles, the heat resistance and hardness tend to be high when a hard coat is used, and the anti-blocking property tends to be better, which is preferable.
 無機粒子としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、ゼオライト、雲母、合成雲母、酸化カルシウム、酸化ジルコニウム、酸化亜鉛、フッ化マグネシウム、スメクタイト、合成スメクタイト、バーミキュライト、ITO(酸化インジウム/酸化錫)、ATO(酸化アンチモン/酸化錫)、酸化錫、酸化インジウム、酸化アンチモン等の酸化物粒子が挙げられる。これらの中でも、シリカ、アルミナ、チタニア、ジルコニア、酸化亜鉛、フッ化マグネシウム、ITO、酸化スズ及び酸化アンチモンからなる群より選ばれる少なくとも一種の酸化物粒子が好ましく、少なくともシリカを含む酸化物粒子が更に好ましい。 Examples of inorganic particles include silica, alumina, titania, zirconia, zeolite, mica, synthetic mica, calcium oxide, zirconium oxide, zinc oxide, magnesium fluoride, smectite, synthetic smectite, vermiculite, ITO (indium oxide / tin oxide). , Oxide particles such as ATO (antimony oxide / tin oxide), tin oxide, indium oxide, and antimony oxide. Among these, at least one oxide particle selected from the group consisting of silica, alumina, titania, zirconia, zinc oxide, magnesium fluoride, ITO, tin oxide, and antimony oxide is preferable, and oxide particles containing at least silica are further included. preferable.
 シリカを含む酸化物粒子は市販品として入手することができる。該当する市販品の例としては、CIKナノテック社のSIRMIBK15WT%-H58、SIRMIBK15WT%-M18、SIRMIBK15WT%-E83、SIRMIBK15WT%-M05、SIRMIBK15WT%-H84、SIRMIBK15WT%-H94、SIRMIBK15WT%-M36、SIRMIBK15WT%-M06、SIRMIBK15WT%-M44、SIRMIBK15WT%-M46、SIRMIBK15WT%-M42、SIRMIBK15WT%-M47、SIRMIBK15WT%-M61、SIRMIBK15WT%-M62等が挙げられる。 Oxide particles containing silica can be obtained as a commercial product. Examples of applicable commercial products are CIR Nanotech's SIRMIBK15WT% -H58, SIRMIBK15WT% -M18, SIRMIBK15WT% -E83, SIRMIBK15WT% -M05, SIRMIBK15WT% -H84, SIRMIBK15WT% -M94, SIR15 -M06, SIRMIBK15WT% -M44, SIRMIBK15WT% -M46, SIRMIBK15WT% -M42, SIRMIBK15WT% -M47, SIRMIBK15WT% -M61, SIRMIBK15WT% -M62, and the like.
 有機粒子として、具体的には有機架橋重合体粒子が挙げられ、例えば、(メタ)アクリル系架橋重合体粒子、スチレン系架橋重合体粒子、ウレタン系架橋重合体粒子、ポリエステル系架橋重合体粒子、シリコーン系架橋重合体粒子、ポリイミド系架橋重合体粒子、フッ素系架橋重合体粒子等が挙げられる。特にアクリル系架橋重合体粒子が好ましく、具体的にはメチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル系単官能モノマー(ここで、「(メタ)アクリル系単官能モノマー」は(メタ)アクリル酸モノマー、不飽和二重結合を1個有する(メタ)アクリレートモノマー及び不飽和二重結合を1個有する(メタ)アクリルアミドモノマーの総称である。)と、トリ(メタ)アクリル酸トリメチロールプロパン、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレングリコール等の(メタ)アクリル系多官能モノマー(ここで、「(メタ)アクリル系多官能モノマー」は不飽和二重結合を2個以上有する(メタ)アクリレートモノマー及び不飽和二重結合を2個以上有する(メタ)アクリルアミドモノマーの総称である。)とを、懸濁重合、乳化重合、ソープフリー乳化重合、ミニエマルジョン重合、分散重合、シード重合等の重合法により得られる(メタ)アクリル系架橋重合体粒子等が挙げられる。また、(メタ)アクリル系架橋粒子は重合時に、スチレン、α-メチルスチレン等のスチレン系単官能モノマー、ジビニルベンゼン等のスチレン系多官能モノマーをさらに共重合させたスチレン-(メタ)アクリル系架橋重合体粒子であってもよい。  Specific examples of the organic particles include organic crosslinked polymer particles. For example, (meth) acrylic crosslinked polymer particles, styrene-based crosslinked polymer particles, urethane-based crosslinked polymer particles, polyester-based crosslinked polymer particles, Examples include silicone-based crosslinked polymer particles, polyimide-based crosslinked polymer particles, and fluorine-based crosslinked polymer particles. In particular, acrylic cross-linked polymer particles are preferred. Specifically, (meth) acrylic monofunctional monomers such as methyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate (here, “(meth “) Acrylic monofunctional monomer” is a general term for (meth) acrylic acid monomers, (meth) acrylate monomers having one unsaturated double bond, and (meth) acrylamide monomers having one unsaturated double bond.) And (meth) acrylic polyfunctional monomers such as trimethylolpropane tri (meth) acrylate, allyl (meth) acrylate, and ethylene glycol di (meth) acrylate (where, “(meth) acrylic polyfunctional monomer” Is a (meth) acrylate monomer having two or more unsaturated double bonds and two unsaturated double bonds (Met) acrylic crosslinks obtained by polymerization methods such as suspension polymerization, emulsion polymerization, soap-free emulsion polymerization, miniemulsion polymerization, dispersion polymerization, seed polymerization, etc. Examples thereof include polymer particles. The (meth) acrylic crosslinked particles are styrene- (meth) acrylic crosslinked particles obtained by further copolymerizing styrene monofunctional monomers such as styrene and α-methylstyrene and styrene polyfunctional monomers such as divinylbenzene during polymerization. Polymer particles may be used.
 有機-無機複合粒子としては、例えば、有機ポリマー骨格と、該骨格中の少なくとも1個の炭素原子にケイ素原子が直接化学結合した有機ケイ素を有するポリシロキサン骨格を有する粒子や、(メタ)アクリロキシ基を有するポリシロキサン粒子の構造中にビニル系重合体が含まれてなる粒子等が挙げられる。 Examples of the organic-inorganic composite particles include particles having an organic polymer skeleton and a polysiloxane skeleton having an organic silicon in which a silicon atom is directly chemically bonded to at least one carbon atom in the skeleton, and (meth) acryloxy group Examples thereof include particles in which a vinyl polymer is contained in the structure of the polysiloxane particles having the following.
 成分(B)は平均一次粒子径及びd90が前記範囲を満たすものであれば、その凝集状態の形状は特に限定されず、球状、鎖状、針状、板状、鱗片状、破砕状、俵状、繭状、金平糖状等のいずれの形状であってもよい。成分(B)の形状は好ましくは球状又は鎖状であり、特に好ましくは球状である。成分(B)の形状が球状又は鎖状であると、得られた硬化物表面のアンチブロッキング性の均一性がより高くなり、より良好なアンチブロッキング性が得られる傾向にある。 As long as the component (B) has an average primary particle diameter and d90 satisfying the above ranges, the shape of the aggregated state is not particularly limited, and is spherical, chain-like, needle-like, plate-like, scaly, crushed, The shape may be any shape such as a shape, a bowl shape, and a confetti shape. The shape of component (B) is preferably spherical or chain-like, and particularly preferably spherical. When the shape of the component (B) is spherical or chain-like, the uniformity of the anti-blocking property on the surface of the obtained cured product becomes higher, and a better anti-blocking property tends to be obtained.
 本発明の硬化性組成物は、成分(B)として、上記のような粒子の1種のみを含むものであってもよく、また2種以上を含むものであってもよい。 The curable composition of the present invention may contain only one kind of the above-mentioned particles as the component (B), or may contain two or more kinds.
[成分(C)]
 本発明の硬化性組成物は、アンチブロッキング性、塗膜外観をより向上させる観点から、下記成分(C)を含むことが好ましい。
 成分(C):重量平均分子量(Mw)が2,100~200,000である有機高分子化合物
[Component (C)]
It is preferable that the curable composition of this invention contains the following component (C) from a viewpoint of improving antiblocking property and a coating-film external appearance more.
Component (C): organic polymer compound having a weight average molecular weight (Mw) of 2,100 to 200,000
 成分(C)のMwが2,100以上であることにより、硬化性組成物を硬化させた後に成分(C)が硬化物表面からブリードアウトすることを抑制することができ、また、アンチブロッキング性もより向上する傾向にある。これらの観点から、成分(C)のMwは、好ましくは2,200以上であり、より好ましくは2,300以上であり、更に好ましくは2,400以上である。一方、成分(C)のMwが200,000以下であることにより、硬化させた際の硬化物表面に成分(C)が偏析しやすくなり、アンチブロッキング性がより良好となる傾向にある。この観点から、成分(C)のMwは、好ましくは150,000以下であり、より好ましくは100,000以下であり、更に好ましくは70,000以下であり、特に好ましくは40,000以下である。なお、成分(C)の有機高分子化合物のMwは、後掲の実施例で示すようにゲル・パーミエーション・クロマトグラフィー法(GPC法)により測定することができる。 When Mw of the component (C) is 2,100 or more, the component (C) can be prevented from bleeding out from the surface of the cured product after the curable composition is cured, and the anti-blocking property Tend to improve more. From these viewpoints, the Mw of the component (C) is preferably 2,200 or more, more preferably 2,300 or more, and further preferably 2,400 or more. On the other hand, when the Mw of the component (C) is 200,000 or less, the component (C) tends to segregate on the surface of the cured product when cured, and the antiblocking property tends to be better. From this viewpoint, the Mw of the component (C) is preferably 150,000 or less, more preferably 100,000 or less, still more preferably 70,000 or less, and particularly preferably 40,000 or less. . In addition, Mw of the organic polymer compound of the component (C) can be measured by gel permeation chromatography method (GPC method) as shown in the examples described later.
 本発明において、成分(C)は溶解性パラメーター(SP値)の値が9.3~12.6であることが好ましい。SP値が9.3以上であると他の成分との相溶性が良好となる傾向にあり、SP値が12.6以下であると硬化性組成物を硬化させた際に硬化物表面の滑り性が良好となり、アンチブロッキング性がより良好となる傾向にある。これらの観点から、SP値は、9.4以上であることがより好ましく、9.5以上であることが更に好ましく、一方、12.6以下であることがより好ましく、12.0以下であることが更に好ましく、11.5以下であることが特に好ましい。なお、溶解性パラメーター(SP値)は、Solubility Parameterである。このSP値は溶解性の尺度となるものであり、値が大きいほど極性が高く、逆に値が小さいほど極性が低いことを示すものである。成分(C)の溶解性パラメーター(SP値)はFedors(フェドアーズ)らが提案した方法により算出される値である。具体的には「POLYMER ENGINEERING AND SCIENCE,FEBRUARY,1974,Vol.14,No.2,ROBERT F.FEDORS.(147~154頁)」を参照して求めることができる。 In the present invention, the component (C) preferably has a solubility parameter (SP value) of 9.3 to 12.6. When the SP value is 9.3 or more, the compatibility with other components tends to be good, and when the SP value is 12.6 or less, the surface of the cured product slips when the curable composition is cured. The anti-blocking properties tend to be better. From these viewpoints, the SP value is more preferably 9.4 or more, further preferably 9.5 or more, and more preferably 12.6 or less, and 12.0 or less. More preferably, it is particularly preferably 11.5 or less. In addition, a solubility parameter (SP value) is Solubleity Parameter. The SP value is a measure of solubility. The larger the value, the higher the polarity, and the smaller the value, the lower the polarity. The solubility parameter (SP value) of the component (C) is a value calculated by the method proposed by Fedors et al. Specifically, it can be obtained by referring to “POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pp. 147 to 154)”.
 本発明において、成分(C)のガラス転移温度(Tg)が35℃以下であることが液状で取り扱うことができるためにハンドリング性の観点から好ましい。この観点からガラス転移温度(Tg)は、25℃以下であることがより好ましく、15℃以下であることが更に好ましく、0℃以下であることが特に好ましい。一方、ガラス転移温度の下限は特に制限されないが、通常、-125℃である。なお、成分(C)のガラス転移温度はJIS K7121「プラスチックの転移温度測定方法」に従って測定することができるが、後掲の実施例のように、室温(23~25℃)で液状である場合等にはガラス転移温度が室温以下であることを目視で確認することもできる。 In the present invention, it is preferable that the glass transition temperature (Tg) of the component (C) is 35 ° C. or lower from the viewpoint of handling properties because it can be handled in a liquid state. From this viewpoint, the glass transition temperature (Tg) is more preferably 25 ° C. or less, further preferably 15 ° C. or less, and particularly preferably 0 ° C. or less. On the other hand, the lower limit of the glass transition temperature is not particularly limited, but is usually −125 ° C. The glass transition temperature of component (C) can be measured in accordance with JIS K7121 “Method for measuring plastic transition temperature”, but when it is liquid at room temperature (23 to 25 ° C.) as in the examples described later. For example, it can be visually confirmed that the glass transition temperature is not more than room temperature.
 成分(C)は、Mwが前記範囲を満たすものであれば、その種類は特に制限されず、天然高分子化合物であっても合成高分子化合物であってもよい。天然高分子化合物としては、セロハン、トリアセチルセルロース等の再生セルロース系高分子化合物等が挙げられる。また、合成高分子化合物としては、ポリオレフィン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、(メタ)アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂等の等の付加重合系高分子化合物;アミド系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、アルキド樹脂、ポリイミド系樹脂等の重縮合系高分子化合物;フェノール樹脂、尿素樹脂、メラミン樹脂等の付加縮合系高分子化合物等が挙げられる。これらの中でも成分(C)としては合成高分子化合物が好ましく、付加重合系高分子化合物がより好ましく、ポリオレフィン系樹脂、(メタ)アクリル樹脂が更に好ましい。特に構成モノマーの選択肢が多いために化学構造が制御し易く、SP値を前記範囲に制御し易いために(メタ)アクリル樹脂が最も好ましい。なお、以上に挙げた有機高分子化合物は1種のみを用いても2種以上を組み合わせて用いてもよい。 Component (C) is not particularly limited as long as Mw satisfies the above range, and may be a natural polymer compound or a synthetic polymer compound. Examples of the natural polymer compound include regenerated cellulose polymer compounds such as cellophane and triacetyl cellulose. Synthetic polymer compounds include polyolefin resins, vinyl chloride resins, vinyl acetate resins, (meth) acrylic resins, epoxy resins, polyurethane resins, and the like; amide resins, polycarbonates And polycondensation polymer compounds such as polyester resins, polyester resins, alkyd resins and polyimide resins; addition condensation polymer compounds such as phenol resins, urea resins and melamine resins. Among these, as the component (C), a synthetic polymer compound is preferable, an addition polymerization polymer compound is more preferable, and a polyolefin resin and a (meth) acrylic resin are further preferable. In particular, since there are many choices of constituent monomers, the chemical structure is easy to control, and the SP value is easy to control within the above range, and (meth) acrylic resin is most preferable. In addition, the organic polymer compound mentioned above may be used alone or in combination of two or more.
 成分(C)において、(メタ)アクリル樹脂はラジカル重合性二重結合を有する(メタ)アクリル系モノマーを重合することにより得られる有機高分子化合物である。(メタ)アクリル樹脂は、側鎖に炭化水素基を有するものが好ましく、この炭化水素基の炭素数は通常1~24であるが、2以上であることが好ましく、4以上であることがより好ましく、一方、22以下であることが好ましく、18以下であることがより好ましく、12以下であることが更に好ましく、8以下であることが特に好ましい。成分(C)の側鎖のアルキル基の炭素数が上記範囲内において、長鎖であるほど硬化物としたときに塗膜表面に偏析しやすくなりアンチブロッキング性は向上する傾向にあり、また、短鎖であるほど表面硬度が向上する傾向にある。(メタ)アクリル樹脂の側鎖の炭化水素基は直鎖状炭化水素基であっても、鎖状炭化水素基であっても、環状炭化水素基であってもよいが、鎖状炭化水素基であるものが好ましく、特に、直鎖状炭化水素基であることが好ましい。なお、本発明において、(メタ)アクリル樹脂における側鎖の炭化水素基とは主鎖の炭素原子に対し、少なくとも炭素以外の原子を介して結合しているものを意味する。 In component (C), the (meth) acrylic resin is an organic polymer compound obtained by polymerizing a (meth) acrylic monomer having a radical polymerizable double bond. The (meth) acrylic resin preferably has a hydrocarbon group in the side chain, and the hydrocarbon group usually has 1 to 24 carbon atoms, preferably 2 or more, and more preferably 4 or more. On the other hand, it is preferably 22 or less, more preferably 18 or less, still more preferably 12 or less, and particularly preferably 8 or less. When the carbon number of the alkyl group in the side chain of the component (C) is within the above range, the longer the chain, the easier it is to segregate on the coating film surface when it is a cured product, and the anti-blocking property tends to improve. The shorter the chain, the better the surface hardness. The side chain hydrocarbon group of the (meth) acrylic resin may be a linear hydrocarbon group, a chain hydrocarbon group, or a cyclic hydrocarbon group. In particular, a straight-chain hydrocarbon group is preferable. In the present invention, the side chain hydrocarbon group in the (meth) acrylic resin means a group bonded to the carbon atom of the main chain through at least an atom other than carbon.
 (メタ)アクリル樹脂の原料として用いるラジカル重合性モノマーは特に制限されないが、以下の式(1)で表される化合物を用いることが、アンチブロッキング性の観点から好ましい。即ち、(メタ)アクリル樹脂は下記式(1)で表される化合物に由来する構造単位を含むことが好ましい。式(1)で表される化合物を用いることにより、側鎖に炭化水素基を有する(メタ)アクリル樹脂を容易に得ることが可能であり、また、(メタ)アクリル樹脂の重合が容易であるために好ましい。
 CH=C(R)-C(O)-X-R    (1)
 (Rは水素原子又は炭素数1~3のアルキル基であり、Rは置換基として水酸基を有していてもよい炭素数1~24のアルキル基であり、Xは-O-又は-NH-である。)
Although the radically polymerizable monomer used as a raw material for the (meth) acrylic resin is not particularly limited, it is preferable from the viewpoint of antiblocking property to use a compound represented by the following formula (1). That is, the (meth) acrylic resin preferably contains a structural unit derived from a compound represented by the following formula (1). By using the compound represented by the formula (1), it is possible to easily obtain a (meth) acrylic resin having a hydrocarbon group in the side chain, and the polymerization of the (meth) acrylic resin is easy. Therefore, it is preferable.
CH 2 = C (R 1 ) -C (O) -XR 2 (1)
(R 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 24 carbon atoms which may have a hydroxyl group as a substituent, and X is —O— or — NH-)
 上記式(1)において、Rは水素原子又はメチル基であることがより好ましい。Rは、炭素数2以上の炭化水素基であることがより好ましく、炭素数4以上の炭化水素基であることが更に好ましく、一方、炭素数22以下の炭化水素基であることがより好ましく、炭素数18以下の炭化水素基であることが更に好ましく、炭素数12以下の炭化水素基であることが特に好ましく、炭素数8以下の炭化水素基であることが最も好ましい。Rの炭化水素基の炭素数が上記範囲で長鎖であるほど塗膜表面に偏析しやすくなりアンチブロッキング性がより向上する傾向にあり、また、短鎖であるほど表面硬度が向上する傾向にある。Rの炭化水素基は直鎖状炭化水素基であっても、鎖状炭化水素基であっても、環状炭化水素基であってもよいが、鎖状炭化水素基であるものが好ましく、特に、直鎖状炭化水素基であることが好ましい。また、式(1)のRが水酸基を有する場合、この水酸基により成分(C)に親水性を付与することができるため、成分(C)の溶解性パラメーター(SP)を制御することもできる。更に、式(1)において、Xは-O-であるものが好ましい。 In the above formula (1), R 1 is more preferably a hydrogen atom or a methyl group. R 2 is more preferably a hydrocarbon group having 2 or more carbon atoms, further preferably a hydrocarbon group having 4 or more carbon atoms, and more preferably a hydrocarbon group having 22 or less carbon atoms. A hydrocarbon group having 18 or less carbon atoms is more preferable, a hydrocarbon group having 12 or less carbon atoms is particularly preferable, and a hydrocarbon group having 8 or less carbon atoms is most preferable. The longer the number of carbon atoms in the hydrocarbon group of R 2 is, the easier it is to segregate on the coating surface and the anti-blocking property tends to be improved, and the shorter the chain, the more the surface hardness is improved. It is in. The hydrocarbon group for R 2 may be a linear hydrocarbon group, a chain hydrocarbon group, or a cyclic hydrocarbon group, preferably a chain hydrocarbon group, In particular, a linear hydrocarbon group is preferable. In addition, when R 2 in the formula (1) has a hydroxyl group, the hydroxyl group can impart hydrophilicity to the component (C), so that the solubility parameter (SP) of the component (C) can also be controlled. . Further, in the formula (1), X is preferably —O—.
 上記式(1)で表される化合物は、成分(C)の有機高分子化合物の製造時において、複数種類が含まれていてもよい。つまり、成分(C)の有機高分子化合物を製造するためにR、R及びXに相当する構造が異なるモノマーを複数種用いてもよい。 The compound represented by the above formula (1) may contain a plurality of types when the organic polymer compound of component (C) is produced. That is, a plurality of monomers having different structures corresponding to R 1 , R 2 and X may be used to produce the organic polymer compound of component (C).
 式(1)で表される化合物の例として、式(1)のXが-O-である(メタ)アクリレートモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等のアルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセリン(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。また、式(1)で表される化合物の例として、式(1)のXが-NH-である(メタ)アクリルアミドモノマーとしては、エチル(メタ)アクリルアミド、n-ブチル(メタ)アクリルアミド、i-ブチル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド等のアルキル(メタ)アクリルアミド;N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N,N-ジヒドロキシエチル(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミド等が挙げられる。 Examples of the compound represented by the formula (1) include (meth) acrylate monomers in which X in the formula (1) is —O—, such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) ) Acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) ) Acrylate, alkyl (meth) acrylate such as behenyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerin (meth) acrylate, etc. Hydroxyalkyl (meth) ac Rate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate. Examples of the compound represented by the formula (1) include (meth) acrylamide monomers in which X in the formula (1) is —NH— such as ethyl (meth) acrylamide, n-butyl (meth) acrylamide, i -Alkyl (meth) acrylamides such as butyl (meth) acrylamide and t-butyl (meth) acrylamide; N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N, N-dihydroxyethyl (meth) acrylamide N-hydroxyalkyl (meth) acrylamide and the like.
 成分(C)の有機高分子化合物は、式(1)で表される化合物以外のラジカル重合性モノマーと共重合したものであってもよい。このようなモノマーとしては、例えば、メトキシ(ポリ)エチレングリコール(メタ)アクリレート、メトキシ(ポリ)プロピレングリコール(メタ)アクリレート、メトキシ(ポリ)エチレングリコール(ポリ)プロピレングリコール(メタ)アクリレート、メトキシテトラメチレングリコール(メタ)アクリレート、オクトキシ(ポリ)エチレングリコール(メタ)アクリレート、オクトキシ(ポリ)プロピレングリコール(メタ)アクリレート、オクトキシ(ポリ)エチレングリコール(ポリ)プロピレングリコール(メタ)アクリレート、オクトキシテトラメチレングリコール(メタ)アクリレート、ラウロキシ(ポリ)エチレングリコール(メタ)アクリレート、ステアロキシ(ポリ)エチレングリコール(メタ)アクリレート等の末端にアルキル基を有するグリコール(メタ)アクリルモノマー;(メタ)アクリル酸等のカルボキシル基を有する(メタ)アクリルモノマー、(ポリ)エチレングリコール(メタ)アクリレート、(ポリ)プロピレングリコール(メタ)アクリレート、(ポリ)エチレングリコール/(ポリ)プロピレングリコール(メタ)アクリレート、テトラメチレングリコール(メタ)アクリレート等の(ポリ)アルキレングリコール(メタ)アクリレート;2-(メタ)アクリロイルオキシエチルフォスフェート等の分子中にリン酸エステル基を有する(メタ)アクリルモノマー;グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリロイルオキシプロピル-1,3-ジオキソラン等のオキソラン基を有する(メタ)アクリルモノマー;N-(2-(メタ)アクリロイルオキシエチル)エチレンウレア等のエチレン尿素基を有する(メタ)アクリルモノマー;ジシクロペンテニルオキシエチル(メタ)アクリレート等のジシクロペンチル基を有する(メタ)アクリルモノマー;テトラメチルピペリジニル(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド等のアミノ基を有する(メタ)アクリルモノマー;、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン等のアルコキシ基を有する(メタ)アクリルモノマー;スチレン、p-クロロスチレン、p-ブロモスチレン等のスチレン系モノマー等が挙げられる。本発明に用いる成分(C)の有機高分子化合物においては、上記の原料モノマーは単独で使用しても、2種類以上を組み合わせて使用してもよい。 The organic polymer compound of component (C) may be copolymerized with a radical polymerizable monomer other than the compound represented by formula (1). Examples of such monomers include methoxy (poly) ethylene glycol (meth) acrylate, methoxy (poly) propylene glycol (meth) acrylate, methoxy (poly) ethylene glycol (poly) propylene glycol (meth) acrylate, and methoxytetramethylene. Glycol (meth) acrylate, octoxy (poly) ethylene glycol (meth) acrylate, octoxy (poly) propylene glycol (meth) acrylate, octoxy (poly) ethylene glycol (poly) propylene glycol (meth) acrylate, octoxytetramethylene glycol ( (Meth) acrylate, lauroxy (poly) ethylene glycol (meth) acrylate, stearoxy (poly) ethylene glycol (meth) acrylate, etc. Glycol (meth) acrylic monomer having an alkyl group at the terminal; (meth) acrylic monomer having a carboxyl group such as (meth) acrylic acid, (poly) ethylene glycol (meth) acrylate, (poly) propylene glycol (meth) acrylate, (Poly) ethylene glycol / (poly) propylene glycol (meth) acrylate, (poly) alkylene glycol (meth) acrylate such as tetramethylene glycol (meth) acrylate; in molecules such as 2- (meth) acryloyloxyethyl phosphate (Meth) acrylic monomer having a phosphate ester group; (meth) acrylic monomer having an epoxy group such as glycidyl (meth) acrylate and methylglycidyl (meth) acrylate; (Meth) acrylic monomers having an oxolane group such as furyl, (meth) acryloyloxypropyl-1,3-dioxolane; having an ethylene urea group such as N- (2- (meth) acryloyloxyethyl) ethyleneurea (meth) Acrylic monomer; (meth) acrylic monomer having a dicyclopentyl group such as dicyclopentenyloxyethyl (meth) acrylate; tetramethylpiperidinyl (meth) acrylate, pentamethylpiperidinyl (meth) acrylate, N, N-dimethyl (Meth) acrylic monomers having amino groups such as aminoethyl (meth) acrylate, (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride; (Meth) acrylic monomers having an alkoxy group such as liloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane; styrene, p- And styrene monomers such as chlorostyrene and p-bromostyrene. In the organic polymer compound of the component (C) used for this invention, said raw material monomer may be used individually or may be used in combination of 2 or more types.
 更に、成分(C)に用いることのできる(メタ)アクリル樹脂は、(メタ)アクリロイル基等の不飽和二重結合を有するものであってもよい。(メタ)アクリル樹脂に(メタ)アクリロイル基を導入する方法としては、例えば、エポキシ基を有する(メタ)アクリル樹脂に(メタ)アクリロイル基及びカルボキシル基を有する化合物を反応させる方法、カルボキシル基を有する(メタ)アクリル樹脂に(メタ)アクリロイル基及びエポキシ基を有する化合物を反応させる方法、水酸基を有する(メタ)アクリル樹脂に(メタ)アクリロイル基及びカルボキシル基を有する化合物を反応させる方法、カルボキシル基を有する(メタ)アクリル樹脂に(メタ)アクリロイル基及び水酸基を有する化合物を反応させる方法、イソシアネート基を有する(メタ)アクリル樹脂に(メタ)アクリロイル基及び水酸基を有する化合物を反応させる方法、水酸基を有する(メタ)アクリル樹脂に(メタ)アクリロイル基及びイソシアネート基を有する化合物を反応させる方法等が挙げられる。 Furthermore, the (meth) acrylic resin that can be used for the component (C) may have an unsaturated double bond such as a (meth) acryloyl group. As a method of introducing a (meth) acryloyl group into a (meth) acrylic resin, for example, a method of reacting a compound having a (meth) acryloyl group and a carboxyl group with a (meth) acrylic resin having an epoxy group, having a carboxyl group A method of reacting a compound having a (meth) acryloyl group and an epoxy group with a (meth) acrylic resin, a method of reacting a compound having a (meth) acryloyl group and a carboxyl group with a (meth) acrylic resin having a hydroxyl group, a carboxyl group A method of reacting a compound having a (meth) acryloyl group and a hydroxyl group with a (meth) acrylic resin having a method, a method of reacting a compound having a (meth) acryloyl group and a hydroxyl group with a (meth) acrylic resin having an isocyanate group, having a hydroxyl group (Meth) acrylic resin ) Method or the like is reacted with a compound having an acryloyl group and an isocyanate group.
 成分(C)として用いることのできる(メタ)アクリル樹脂において、(メタ)アクリロイル基量は、アンチブロッキング性の観点から、2.0mmol/g未満であることが好ましく、1.0mmol/g以下であることがより好ましく、0.5mmol/g以下であることが更に好ましい。一方、(メタ)アクリロイル基量の下限については制限されず、通常0、即ち、メタクリロイル基を有さないものである。 In the (meth) acrylic resin that can be used as the component (C), the amount of the (meth) acryloyl group is preferably less than 2.0 mmol / g from the viewpoint of antiblocking properties, and is 1.0 mmol / g or less. More preferably, it is more preferably 0.5 mmol / g or less. On the other hand, the lower limit of the amount of (meth) acryloyl groups is not limited, and is usually 0, that is, those having no methacryloyl group.
 (メタ)アクリル樹脂を製造する際のラジカル重合反応の反応時間は通常、1~20時間であり、好ましくは3~12時間である。また、反応温度は通常、40~120℃であり、好ましくは50~100℃である。 The reaction time of the radical polymerization reaction when producing the (meth) acrylic resin is usually 1 to 20 hours, preferably 3 to 12 hours. The reaction temperature is usually 40 to 120 ° C., preferably 50 to 100 ° C.
 (メタ)アクリル樹脂を製造する際のラジカル重合反応に用いることのできる有機溶媒としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン系溶媒;エタノール、メタノール、イソプロピルアルコール(IPA)、イソブタノール等のアルコール系溶媒;エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル(PGM)等のエーテル系溶媒;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、2-エトキシエチルアセタート等のエステル系溶媒;トルエン等の芳香族炭化水素溶媒等が挙げられる。これらの有機溶媒は1種のみを用いても2種以上を組み合わせて用いてもよい。なお、このような有機溶媒は(メタ)アクリル樹脂の合成後にそのまま残留させておき、硬化性組成物における有機溶媒としてもよい。 Examples of the organic solvent that can be used for the radical polymerization reaction in producing the (meth) acrylic resin include ketone solvents such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK); ethanol, methanol, isopropyl alcohol (IPA), alcohol solvents such as isobutanol; ether solvents such as ethylene glycol dimethyl ether and propylene glycol monomethyl ether (PGM); ester solvents such as ethyl acetate, propylene glycol monomethyl ether acetate and 2-ethoxyethyl acetate; Aromatic hydrocarbon solvents such as toluene are exemplified. These organic solvents may be used alone or in combination of two or more. Such an organic solvent may be left as it is after the synthesis of the (meth) acrylic resin, and may be used as the organic solvent in the curable composition.
 (メタ)アクリル樹脂を製造する際に用いることのできるラジカル重合開始剤としては、公知のラジカル重合開始剤を用いることができるが、例えば、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキシド等の有機過酸化物;2,2’-アゾビスブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらのラジカル重合開始剤は1種のみを用いても2種以上を組み合わせて用いてもよい。ラジカル重合開始剤は原料のラジカル重合性モノマーの合計100重量部に対し、通常、0.01~5重量部で用いられる。 As the radical polymerization initiator that can be used in the production of the (meth) acrylic resin, a known radical polymerization initiator can be used, and examples thereof include organic substances such as benzoyl peroxide and di-t-butyl peroxide. Peroxides: 2,2′-azobisbutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) An azo compound such as These radical polymerization initiators may be used alone or in combination of two or more. The radical polymerization initiator is usually used in an amount of 0.01 to 5 parts by weight with respect to a total of 100 parts by weight of the raw material radical polymerizable monomers.
 成分(C)に用いることのできる(メタ)アクリル樹脂は以上に挙げたようなラジカル重合性モノマーを用い、公知のラジカル重合反応を用いて製造することができる。ラジカル重合反応は通常、有機溶媒中、ラジカル重合開始剤の存在下で実施することができる。なお、(メタ)アクリル樹脂について、重量平均分子量(Mw)を前記範囲となるようにするためには、例えば重合温度、重合開始剤量、連鎖移動剤量、固形分濃度、モノマーの添加方法等の重合条件を制御する方法を取ることができる。 The (meth) acrylic resin that can be used for the component (C) can be produced by using a radical polymerizable monomer as described above and using a known radical polymerization reaction. The radical polymerization reaction can usually be carried out in an organic solvent in the presence of a radical polymerization initiator. For the (meth) acrylic resin, in order to make the weight average molecular weight (Mw) within the above range, for example, the polymerization temperature, the amount of polymerization initiator, the amount of chain transfer agent, the solid content concentration, the method of adding monomers, etc. The method of controlling the polymerization conditions can be taken.
 (メタ)アクリル樹脂を得る際に、連鎖移動剤を用いることが重量平均分子量(Mw)の制御が容易であるために好ましい。連鎖移動剤の使用量は、原料として用いるラジカル重合性モノマーの合計100重量部に対し、好ましくは0.1~25重量部であり、より好ましくは0.5~20重量部であり、更に好ましくは1.0~15重量部である。 When obtaining the (meth) acrylic resin, it is preferable to use a chain transfer agent because the weight average molecular weight (Mw) can be easily controlled. The amount of the chain transfer agent used is preferably 0.1 to 25 parts by weight, more preferably 0.5 to 20 parts by weight, and still more preferably 100 parts by weight of the total amount of radical polymerizable monomers used as raw materials. Is 1.0 to 15 parts by weight.
 (メタ)アクリル樹脂を得る際に用いることのできる連鎖移動剤としては、公知のものを使用することが可能である。例えば、ブタンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール、シクロヘキシルメルカプタン、チオフェノール、チオグリコール酸オクチル、2-メルカプトプロピオン酸オクチル、3-メルカプトプロピオン酸オクチル、メルカプトプロピオン酸2-エチルヘキシルエステル、チオグリコール酸2-エチルへキシル、ブチル-3-メルカプトプロピオネート、メチル-3-メルカプトプロピオネート、2,2-(エチレンジオキシ)ジエタンチオール、エタンチオール、4-メチルベンゼンチオール、オクタン酸2-メルカプトエチルエステル、1,8-ジメルカプト-3,6-ジオキサオクタン、デカントリチオール、ドデシルメルカプタン、ジフェニルスルホキシド、ジベンジルスルフィド、2,3-ジメチルカプト-1-プロパノ-ル、メルカプトエタノール、チオサリチル酸、チオグリセロール、チオグリコール酸、3-メルカプトプロピオン酸、チオリンゴ酸、メルカプト酢酸、メルカプトコハク酸、2-メルカプトエタンスルホン酸、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等のチオール系化合物等が挙げられる。 As the chain transfer agent that can be used for obtaining the (meth) acrylic resin, known ones can be used. For example, butanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol, cyclohexyl mercaptan, thiophenol, octyl thioglycolate, octyl 2-mercaptopropionate, octyl 3-mercaptopropionate, 2-mercaptopropionate 2- Ethylhexyl ester, 2-ethylhexyl thioglycolate, butyl-3-mercaptopropionate, methyl-3-mercaptopropionate, 2,2- (ethylenedioxy) diethanethiol, ethanethiol, 4-methylbenzene Thiol, octanoic acid 2-mercaptoethyl ester, 1,8-dimercapto-3,6-dioxaoctane, decanetrithiol, dodecyl mercaptan, diphenyl sulfoxide Dibenzyl sulfide, 2,3-dimethylcapto-1-propanol, mercaptoethanol, thiosalicylic acid, thioglycerol, thioglycolic acid, 3-mercaptopropionic acid, thiomalic acid, mercaptoacetic acid, mercaptosuccinic acid, 2-mercaptoethane Examples thereof include thiol compounds such as sulfonic acid, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropylmethyldimethoxysilane.
 成分(C)として用いることのできる(メタ)アクリル樹脂は前記した方法により製造することができるが、市販品をそのまま用いることもできる。市販品としては例えば、「ポリフローNo.75」、「ポリフローNo.77」、「ポリフローNo.90」、「ポリフローNo.50EHF」、「ポリフローNo.85HF」、「ポリフローNo.95」、「ポリフローNo.99C」、「ポリフローNo.7」、「ポリフローNo.54N」、「ポリフローKL-800」(いずれも共栄社化学社製)、「LF1984」、「LF1983」、「LHP90」、「LHP95」、「UVX-271」、「UVX-272」、「UVX-190」、「UVX-36」、「UVX-35」、「UVX-3750」、「UVX-189」(いずれも楠本化成社製)、「BYK-350」、「BYK-352」、「BYK-354」、「BYK-356」、「BYK-361N」、「BYK-381」、「BYK-392」、「BYK-394」、「BYK-3441」、「BYK-3440」(いずれもBYK社製)等が挙げられる。 (Meth) acrylic resin that can be used as component (C) can be produced by the method described above, but commercially available products can also be used as they are. Examples of commercially available products include “Polyflow No. 75”, “Polyflow No. 77”, “Polyflow No. 90”, “Polyflow No. 50EHF”, “Polyflow No. 85HF”, “Polyflow No. 95”, “Polyflow”. No. 99C ”,“ Polyflow No. 7 ”,“ Polyflow No. 54N ”,“ Polyflow KL-800 ”(all manufactured by Kyoeisha Chemical Co., Ltd.),“ LF1984 ”,“ LF1983 ”,“ LHP90 ”,“ LHP95 ”, “UVX-271”, “UVX-272”, “UVX-190”, “UVX-36”, “UVX-35”, “UVX-3750”, “UVX-189” (all manufactured by Enomoto Kasei), “BYK-350”, “BYK-352”, “BYK-354”, “BYK-356”, “BYK-361N”, “BYK-3” 1 "," BYK-392 "," BYK-394 "," BYK-3441 "," BYK-3440 "(all manufactured by BYK Co., Ltd.).
 本発明の硬化性組成物における、成分(C)の含有量は、前記成分(A)100重量部に対し、アンチブロッキング性を向上させる観点から、0.01重量部以上であり、好ましくは0.1重量部以上であり、一方、表面硬度の低下を抑える観点から、20重量部以下であり、好ましくは10重量部以下であり、より好ましくは5重量部以下である。 The content of the component (C) in the curable composition of the present invention is 0.01 parts by weight or more, preferably 0 with respect to 100 parts by weight of the component (A), from the viewpoint of improving antiblocking properties. On the other hand, from the viewpoint of suppressing a decrease in surface hardness, it is 20 parts by weight or less, preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
[有機溶媒]
 本発明の硬化性組成物は、有機溶媒を含むことが好ましい。また、本発明の硬化性組成物が有機溶媒を含む場合、固形分濃度が5~95重量%であることが好ましい。固形分濃度が5重量%以上であることが、成分(B)の分散性を良好なものとし、透明性の観点で好ましく、また、硬化性組成物の意図しない硬化反応(ゲル化等)を防ぐためにも好ましい。また、固形分濃度が95重量%以下であることが塗工性、保存安定性の観点から好ましい。これらの観点から固形分濃度は、より好ましくは10重量%以上であり、更に好ましくは15重量%以上であり、また、より好ましくは90重量%以下であり、更に好ましくは85重量%以下であり、特に好ましくは80重量%以下である。なお、本発明において、「固形分」とは溶媒を除いた成分を意味するものであり、固体の成分のみならず、半固形や粘稠な液状物のものをも含むものとする。
[Organic solvent]
The curable composition of the present invention preferably contains an organic solvent. When the curable composition of the present invention contains an organic solvent, the solid content concentration is preferably 5 to 95% by weight. A solid content concentration of 5% by weight or more is preferable from the viewpoint of transparency because the dispersibility of the component (B) is good, and an unintended curing reaction (such as gelation) of the curable composition. Also preferred to prevent. Moreover, it is preferable from a viewpoint of coating property and storage stability that solid content concentration is 95 weight% or less. From these viewpoints, the solid content concentration is more preferably 10% by weight or more, further preferably 15% by weight or more, more preferably 90% by weight or less, and further preferably 85% by weight or less. Particularly preferably, it is 80% by weight or less. In the present invention, “solid content” means a component excluding the solvent, and includes not only a solid component but also a semi-solid or viscous liquid material.
 有機溶媒としては、特に限定されるものではなく、成分(A)、成分(B)、成分(C)の種類やハードコート層を形成する際に用いる基材の種類、基材への塗布方法等を考慮して適宜選択することができる。有機溶媒の具体例としては、例えば、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、n-ドデカン、2,3-ジメチルヘキサン、2-メチルヘプタン、2-メチルヘキサン、3-メチルヘキサン、シクロヘキサン等の飽和炭化水素系溶媒;トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン(MEK)、アセトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、フェネトール等のエーテル系溶媒;酢酸エチル、酢酸ブチル、酢酸イソプロピル、エチレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;ジメチルホルムアミド、ジエチルホルムアミド、N-メチルピロリドン等のアミド系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール系溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒等が挙げられる。 It does not specifically limit as an organic solvent, The kind of base material used when forming the kind of a component (A), a component (B), a component (C), and a hard-coat layer, The coating method to a base material It can be appropriately selected in consideration of the above. Specific examples of the organic solvent include, for example, n-hexane, n-heptane, n-octane, n-decane, n-dodecane, 2,3-dimethylhexane, 2-methylheptane, 2-methylhexane, and 3-methyl. Saturated hydrocarbon solvents such as hexane and cyclohexane; aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone (MEK), acetone, methyl isobutyl ketone (MIBK), and cyclohexanone; diethyl ether, isopropyl ether, tetrahydrofuran, Ethers such as dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, anisole, and phenetole System solvents; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ethylene glycol diacetate, propylene glycol monomethyl ether acetate; amide solvents such as dimethylformamide, diethylformamide, N-methylpyrrolidone; methyl cellosolve, ethyl cellosolve, Examples include cellosolve solvents such as butyl cellosolv; alcohol solvents such as methanol, ethanol, propanol, isopropanol, and butanol; halogen solvents such as dichloromethane and chloroform.
 これらの有機溶媒は1種を単独で使用してもよく、また2種以上を組み合わせて用いてもよい。これらの中でも、飽和炭化水素系溶剤、エステル系溶媒、エーテル系溶媒、アルコール系溶媒及びケトン系溶媒から選ばれる少なくとも1種を含むことが好ましい。 These organic solvents may be used alone or in combination of two or more. Among these, it is preferable to include at least one selected from saturated hydrocarbon solvents, ester solvents, ether solvents, alcohol solvents, and ketone solvents.
[重合開始剤]
 本発明の硬化性組成物は、硬化性を向上させるために、重合開始剤を含有することが好ましい。
 重合開始剤としては光重合開始剤が好ましく、例えば、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。これらの重合開始剤は1種のみで用いても2種以上を組み合わせて用いてもよい。
[Polymerization initiator]
The curable composition of the present invention preferably contains a polymerization initiator in order to improve curability.
As the polymerization initiator, a photopolymerization initiator is preferable. For example, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- [4 -(Methylthio) phenyl] -2-morpholinopropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino Phenyl) -butanone-1,2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2,4, Examples include 6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like. It is. These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の含有量は、硬化性を高める観点から、成分(A)100重量部に対し、好ましくは0.01重量部以上であり、より好ましくは0.05重量部以上であり、更に好ましくは0.1重量部以上である。また、重合開始剤の含有量は、硬化性組成物の安定性の観点から、成分(A)100重量部に対し、好ましくは20重量部以下であり、より好ましくは10重量部以下であり、更に好ましくは5重量部以下であり、特に好ましくは3重量部以下である。 From the viewpoint of improving curability, the content of the polymerization initiator is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and still more preferably with respect to 100 parts by weight of the component (A). Is 0.1 parts by weight or more. Further, the content of the polymerization initiator is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, with respect to 100 parts by weight of the component (A), from the viewpoint of the stability of the curable composition. More preferably, it is 5 parts by weight or less, and particularly preferably 3 parts by weight or less.
[その他の成分]
 本発明の硬化性組成物は、本発明の効果を阻害しない範囲で成分(A)、成分(B)、成分(C)、有機溶媒及び重合開始剤以外のその他の成分を含んでいてもよい。その他の成分としては、紫外線吸収剤、ヒンダードアミン系光安定剤、充填剤(ただし、成分(B)に該当するものを除く。)、シランカップリング剤(ただし、成分(B)に該当するものを除く。)、反応性希釈剤(ただし、成分(A)に該当するものを除く。)、帯電防止剤、有機顔料、スリップ剤、分散剤、チクソトロピー性付与剤(増粘剤)、消泡剤、酸化防止剤、熱可塑性樹脂(ただし、成分(C)に該当するものを除く。)等が挙げられる。
[Other ingredients]
The curable composition of this invention may contain other components other than a component (A), a component (B), a component (C), an organic solvent, and a polymerization initiator in the range which does not inhibit the effect of this invention. . Other components include UV absorbers, hindered amine light stabilizers, fillers (excluding those that fall under component (B)), silane coupling agents (but those that fall under component (B)) ), Reactive diluents (except those corresponding to component (A)), antistatic agents, organic pigments, slip agents, dispersants, thixotropic agents (thickeners), antifoaming agents , Antioxidants, thermoplastic resins (excluding those corresponding to the component (C)), and the like.
[硬化性組成物の製造方法]
 本発明の硬化性組成物の製造方法は特に制限されないが、例えば、成分(A)、成分(B)、成分(C)及び必要により適宜、有機溶媒、重合開始剤、その他の成分等を混合することにより得ることができる。各成分の混合に際しては、ディスパーザー、撹拌機等で均一に混合することが好ましい。
[Method for producing curable composition]
The method for producing the curable composition of the present invention is not particularly limited. For example, the component (A), the component (B), the component (C) and, if necessary, an organic solvent, a polymerization initiator, other components, and the like are mixed. Can be obtained. When mixing each component, it is preferable to mix uniformly with a disperser, a stirrer, or the like.
[硬化物、積層体及びハードコートフィルム]
 本発明の硬化性組成物に活性エネルギー線を照射する等して硬化させることにより硬化物(「本発明の硬化物」と称することがある。)を得ることができる。また、硬化性組成物を基材の上に塗布し、これに活性エネルギー線を照射してハードコート層を形成することにより、積層体とすることができる。特に、硬化性組成物を基材の上等に塗布し、フィルム状に硬化させることで、ハードコートフィルムを得ることができる。なお、本発明において、「塗布」とは一般的に「塗工」と呼ばれるものも含む概念として用いることとする。また、本発明において「ハードコート」とは、硬化性組成物を塗布して硬化したものを意味する。
[Hardened product, laminate and hard coat film]
A cured product (sometimes referred to as “cured product of the present invention”) can be obtained by curing the curable composition of the present invention by irradiating active energy rays or the like. Moreover, it can be set as a laminated body by apply | coating a curable composition on a base material, and irradiating an active energy ray to this and forming a hard-coat layer. In particular, a hard coat film can be obtained by applying the curable composition onto a substrate and curing it in a film form. In the present invention, “application” is used as a concept including what is generally called “coating”. Further, in the present invention, the “hard coat” means a material obtained by applying and curing a curable composition.
 積層体に用いる基材としては、プラスチック基材等の有機材料;金属基材、ガラス基材等の無機材料が挙げられる。プラスチック基材としては、各種合成樹脂、例えば、アクリロニトリル-ブタジエン-スチレン共重合(ABS)樹脂、ポリカーボネート(PC)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリスチレン(PS)樹脂、ポリイミド(PI)樹脂、ポリオレフィン(PO)樹脂等が挙げられる。金属基材としては、特に限定はないが、例えば、熱延板、冷延板等の鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、ブリキ、ティンフリースチール、その他各種のめっき、又は合金めっき鋼板、ステンレス鋼板、アルミニウム板等の金属板が挙げられる。更にはこれらをリン酸塩処理、クロメート処理、有機リン酸塩処理、有機クロメート処理、ニッケル等の重金属置換処理等、各種の表面処理を施したものであってもよい。ガラス基材としては、通常のガラスの他、各種の化学処理を施したガラス(例えば、コーニング社のゴリラガラス(登録商標)や旭硝子社のドラゴントレイル(登録商標)等)や多成分系のガラスを用いてもよい。本発明の硬化性組成物はプラスチック基材、ガラス基材に好適であり、特にプラスチック基材に適しており、プラスチック基材の中でもポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂に特に好適である。なお、以上に挙げた基材は1種のみを用いても、2種以上を組み合わせて用いてもよい。 Examples of the base material used in the laminate include organic materials such as plastic base materials; inorganic materials such as metal base materials and glass base materials. Plastic substrates include various synthetic resins such as acrylonitrile-butadiene-styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polymethyl methacrylate (PMMA). ) Resin, polystyrene (PS) resin, polyimide (PI) resin, polyolefin (PO) resin and the like. The metal substrate is not particularly limited. For example, a steel plate such as a hot-rolled plate or a cold-rolled plate, a hot-dip galvanized steel plate, an electrogalvanized steel plate, tinplate, tin-free steel, various other types of plating, or an alloy-plated steel plate And metal plates such as stainless steel plates and aluminum plates. Furthermore, these may be subjected to various surface treatments such as phosphate treatment, chromate treatment, organic phosphate treatment, organic chromate treatment, heavy metal substitution treatment such as nickel. As a glass substrate, in addition to normal glass, glass subjected to various chemical treatments (for example, Corning Gorilla Glass (registered trademark), Asahi Glass Dragon Trail (registered trademark), etc.) and multicomponent glass. May be used. The curable composition of the present invention is suitable for plastic substrates and glass substrates, particularly suitable for plastic substrates, and particularly suitable for polycarbonate resins, polyethylene terephthalate resins and polymethyl methacrylate resins among plastic substrates. . In addition, the base material mentioned above may use only 1 type, or may be used in combination of 2 or more type.
 本発明の硬化性組成物を基材上に塗布(塗工)する方法としては、例えば、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、マイヤーバーコート法、ダイコート法、スプレーコート法等が挙げられる。また、硬化物の形態は特に制限されないが、通常、基材上で活性エネルギー線を照射して硬化させて得られた硬化物の場合、基材の少なくとも片面の一部に硬化被膜(硬化膜)の状態として得ることができる。 Examples of the method for coating (coating) the curable composition of the present invention on a substrate include, for example, a reverse coating method, a gravure coating method, a rod coating method, a bar coating method, a Mayer bar coating method, a die coating method, and a spray coating. Law. In addition, the form of the cured product is not particularly limited. However, in the case of a cured product obtained by irradiating an active energy ray on a substrate and curing it, a cured film (cured film) is formed on at least a part of one side of the substrate. ).
 硬化性組成物を基材上に塗布(塗工)する際の湿度は特に制限されず、通常、1~100%であり、好ましくは5~95%である。また、硬化物を得る際、活性エネルギー線を照射する前に予め乾燥させることが好ましく、このときの乾燥温度は通常、40~160℃であり、好ましくは45~150℃である。 The humidity at which the curable composition is applied (coated) on the substrate is not particularly limited, and is usually 1 to 100%, preferably 5 to 95%. Further, when obtaining a cured product, it is preferably dried in advance before irradiation with active energy rays, and the drying temperature at this time is usually 40 to 160 ° C., preferably 45 to 150 ° C.
 硬化性組成物を硬化させる際に用いることのできる活性エネルギー線には、紫外線、電子線、X線、赤外線及び可視光線が含まれる。これらの活性エネルギー線のうち硬化性と樹脂劣化防止の観点から好ましいのは紫外線又は電子線である。 Active energy rays that can be used when curing the curable composition include ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays. Of these active energy rays, ultraviolet rays or electron beams are preferable from the viewpoint of curability and prevention of resin deterioration.
 硬化性組成物を紫外線照射により硬化させる場合には、種々の紫外線照射装置を用いることができ、その光源としてはキセノンランプ、高圧水銀灯、メタルハライドランプ、LED-UVランプ等を使用することができる。紫外線照射量は、通常10~10,000mJ/cmであり、硬化性組成物の硬化性、硬化物(硬化膜)の可撓性等の観点から好ましくは30~5,000mJ/cmであり、より好ましくは50~3,000mJ/cmである。また、紫外線照度は通常、50~1,000mW/cmであり、好ましくは70~800mW/cmである。 When the curable composition is cured by ultraviolet irradiation, various ultraviolet irradiation apparatuses can be used. As the light source, a xenon lamp, a high-pressure mercury lamp, a metal halide lamp, an LED-UV lamp, or the like can be used. The amount of ultraviolet irradiation is usually 10 to 10,000 mJ / cm 2 , and preferably 30 to 5,000 mJ / cm 2 from the viewpoint of curability of the curable composition, flexibility of the cured product (cured film), and the like. More preferably, it is 50 to 3,000 mJ / cm 2 . The ultraviolet illumination is usually 50 ~ 1,000mW / cm 2, preferably 70 ~ 800mW / cm 2.
 また、硬化性組成物を電子線照射で硬化させる場合は、種々の電子線照射装置を使用することができる。電子線の照射量(Mrad)は、通常、0.5~20Mradであり、硬化性組成物の硬化性、硬化物の可撓性、基材の損傷防止等の観点から好ましくは1~15Mradである。 Moreover, when hardening a curable composition by electron beam irradiation, various electron beam irradiation apparatuses can be used. The irradiation amount (Mrad) of the electron beam is usually 0.5 to 20 Mrad, and preferably 1 to 15 Mrad from the viewpoint of curability of the curable composition, flexibility of the cured product, prevention of damage to the substrate, and the like. is there.
 なお、本発明の硬化性組成物は塗工条件の自由度が高く、後掲の実施例に示すように、塗工時の湿度、乾燥温度、紫外線照射量、紫外線照度等の諸条件を幅広く選択することが可能である。これらの条件を変更しても硬化物、積層体が良好なアンチブロッキング性、透明性等の物性を得易いという利点をもつものである。 In addition, the curable composition of the present invention has a high degree of freedom in coating conditions, and as shown in the examples below, various conditions such as humidity during coating, drying temperature, ultraviolet irradiation amount, ultraviolet illuminance, etc. are widely used. It is possible to select. Even if these conditions are changed, the cured product and the laminate have the advantage that it is easy to obtain physical properties such as good antiblocking properties and transparency.
 また、本発明の他の態様にかかる積層体は、基材層とハードコート層とを有し、該ハードコート層が前記成分(B)を含み、かつJIS K7136(2000年)に従って測定したヘーズ値が0.6%未満であるものである。このヘーズ値が低いほど透明性が良好であるために好ましい。この積層体は本発明の硬化性組成物を基材上で硬化させることにより得ることができる。用いることのできる基材、硬化条件等は前述の通りである。 Moreover, the laminated body concerning the other aspect of this invention has a base material layer and a hard-coat layer, this hard-coat layer contains the said component (B), and the haze measured according to JISK7136 (2000). The value is less than 0.6%. A lower haze value is preferable because transparency is better. This laminate can be obtained by curing the curable composition of the present invention on a substrate. The base material, curing conditions, etc. that can be used are as described above.
 更に、本発明のハードコートフィルムは、前記成分(B)を含み、かつその含有量が、ハードコートフィルム全体に対して、0.01~55重量%であるものである。ハードコートフィルムが成分(B)を上記下限値以上含むことによりアンチブロッキング性が良好となり、また、上記上限値以下であることにより透明性が良好となる。これらの観点から、ハードコートフィルムにおける成分(B)の含有量は、0.5重量%以上であることが好ましく、1重量%以上であることがより好ましく、2重量%以上であることが更に好ましく、3重量%以上であることが特に好ましく、一方、48重量%以下であることが好ましく、41重量%以下であることがより好ましく、34重量%以下であることが更に好ましく、27重量%以下であることが特に好ましく、20重量%以下であることが最も好ましい。なお、上記の成分(B)の含有量はハードコートフィルム全体に対する値である。このハードコートフィルムは本発明の硬化性組成物を硬化させることにより得ることができる。硬化条件は前述の通りである。 Furthermore, the hard coat film of the present invention contains the component (B) and the content thereof is 0.01 to 55% by weight based on the entire hard coat film. When the hard coat film contains the component (B) above the lower limit value, the anti-blocking property becomes good, and when it is below the upper limit value, the transparency becomes good. From these viewpoints, the content of the component (B) in the hard coat film is preferably 0.5% by weight or more, more preferably 1% by weight or more, and further preferably 2% by weight or more. Preferably, it is particularly preferably 3% by weight or more, while it is preferably 48% by weight or less, more preferably 41% by weight or less, still more preferably 34% by weight or less, and 27% by weight. It is particularly preferable that the content be 20% by weight or less. In addition, content of said component (B) is a value with respect to the whole hard coat film. This hard coat film can be obtained by curing the curable composition of the present invention. The curing conditions are as described above.
 ハードコートフィルムの厚みは、好ましくは0.5μm以上であり、より好ましく1μm以上である。一方、ハードコートフィルムの厚みは、100μm以下であり、より好ましくは75μm以下であり、更に好ましくは50μm以下であり、特に好ましくは25μm以下であり、最も好ましいのは15μm以下である。 The thickness of the hard coat film is preferably 0.5 μm or more, more preferably 1 μm or more. On the other hand, the thickness of the hard coat film is 100 μm or less, more preferably 75 μm or less, further preferably 50 μm or less, particularly preferably 25 μm or less, and most preferably 15 μm or less.
 以下、本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples. In addition, the value of various manufacturing conditions and evaluation results in the following examples has a meaning as a preferable value of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the above-described upper limit or lower limit value. A range defined by a combination of values of the following examples or values of the examples may be used.
〔評価方法〕
 以下の実施例及び比較例で製造した硬化性組成物及び硬化膜(ハードコートフィルム)の評価方法は以下の通りである。
〔Evaluation methods〕
The evaluation methods of the curable compositions and cured films (hard coat films) produced in the following examples and comparative examples are as follows.
<アンチブロッキング性(AB性)>
 ハードコートフィルムを2枚用意し、23℃、相対湿度60%の雰囲気でハードコートフィルムの各実施例で製造した硬化性組成物を硬化した面(クリアハードコート材をコートした面の逆側)同士で重ね合わせ、指圧にて約1kgの荷重を負荷した後、硬化膜面同士が易滑性を有しているか否かを確認し、以下の基準でアンチブロッキング性の評価を行った。
◎:容易に滑らせることができるもの
○:滑らせることができ音が鳴ることもないもの
△:滑らせることは可能であるが音が鳴るもの
×:硬化膜面同士が密着して硬化膜面同士を滑らせることができないもの
<Anti-blocking property (AB property)>
Two hard coat films were prepared, and the hardened film produced in each example of the hard coat film in an atmosphere of 23 ° C. and a relative humidity of 60% (the opposite side of the face coated with the clear hard coat material) After overlapping each other and applying a load of about 1 kg with finger pressure, it was confirmed whether or not the cured film surfaces had slipperiness, and the anti-blocking property was evaluated according to the following criteria.
◎: Can be easily slid ○: Can be slid and no sound is produced △: Can be slid but produces sound ×: Cured film surfaces are in close contact with each other Things that can't slide between surfaces
<透明性>
 ハードコートフィルムを23℃、相対湿度60%の恒温室に12時間放置した後の透明性をJIS K7136(2000年)に従ってヘーズ値(H%)で評価し、以下の基準で評価を行った。
○:硬化膜のヘーズ値が0.6%未満
△:硬化膜のヘーズ値が0.6%以上1.0%未満
×:硬化膜のヘーズ値が1.0%以上
<Transparency>
Transparency after leaving the hard coat film in a temperature-controlled room at 23 ° C. and 60% relative humidity for 12 hours was evaluated by haze value (H%) according to JIS K7136 (2000), and evaluated according to the following criteria.
○: Haze value of cured film is less than 0.6% Δ: Haze value of cured film is 0.6% or more and less than 1.0% ×: Haze value of cured film is 1.0% or more
<リコート性>
 ハードコートフィルムの各実施例で製造した硬化性組成物を硬化した面(クリアハードコート材をコートした面の逆側)に、油性マジックマーカー(ゼブラ社製 マッキーケア極細(黒)の細)で線を描き、線を描いてから30秒後、線のはじきの有無により以下のように評価した。線のはじきが無いことがリコート性の観点で好ましい。
○:線をはじいていない
×:線をはじく
<Recoatability>
On the hardened film surface of the curable composition produced in each example (on the opposite side of the surface coated with the clear hardcoat material) with an oily magic marker (Zebra's Mackey Care Extra Fine (Black) Fine) A line was drawn, and 30 seconds after the line was drawn, the following evaluation was made depending on whether or not the line was repelled. It is preferable from the viewpoint of recoatability that there is no line repellency.
○: Line is not repelled ×: Line is repelled
<耐傷付性>
 #0000のスチールウールを使用して、加重176g/cmにて、ハードコートフィルムの各実施例で製造した硬化性組成物を硬化した面(クリアハードコート材をコートした面の逆側)を10往復擦り、それによる硬化膜の傷付きの程度を以下の通り評価した。なお、傷が少ないほど好ましい。
○:傷が0~10本
△:傷が11~100本
×:傷が101本以上
<Scratch resistance>
Using # 0000 steel wool, the surface (on the opposite side to the surface coated with the clear hard coat material) obtained by curing the curable composition produced in each example of the hard coat film at a load of 176 g / cm 2 . Ten reciprocations were rubbed, and the degree of scratches on the cured film was evaluated as follows. In addition, it is so preferable that there are few cracks.
○: 0 to 10 scratches Δ: 11 to 100 scratches ×: 101 or more scratches
<保存安定性>
 硬化性組成物を50℃に静置し、ゲル化するまでの時間を測定し、以下の基準で評価した。
◎:90日経過時にゲル化していない
○:30日経過時にはゲル化していないが、90日経過時までにゲル化する
×:30日経過時までにゲル化する
<Storage stability>
The curable composition was allowed to stand at 50 ° C., the time until gelation was measured, and evaluated according to the following criteria.
◎: not gelled after 90 days ○: not gelled after 30 days, but gelled by 90 days ×: gelled by 30 days
<耐カール性>
 四隅をガラス板に固定した厚さ100μmのPETフィルム上に、バーコーターを用いて硬化性組成物(塗液)を乾燥後の塗膜厚さが3~5μmとなるように塗布し、80℃で1分間加熱乾燥し、積算光量500mJ/cmとなるようにアイグラフィックス社製紫外線照射装置 型番:UB0452-0752[水銀ランプ(365nmを主波長とし、254nm、303nm、313nmの波長の紫外線を放射するもの)]を用い、紫外線を照射して硬化した。その後、10cm×10cmにカットした。カットした直後に四隅のカール値を机上からの高さとして測定した。測定した4点の平均値をカール値とし、以下の基準で評価した。
○:カール値が11mm未満
△:カール値が11mm以上25mm未満
×:カール値が25mm以上
 <屈折率>
 基材(PET)上の硬化膜の屈折率をATAGO社製のデジタルアッベ屈折計DR-A1を用いて測定した。
<Curl resistance>
A curable composition (coating solution) was applied on a PET film having a thickness of 100 μm with the four corners fixed to a glass plate using a bar coater so that the coating thickness after drying was 3 to 5 μm, and 80 ° C. And heat-dried for 1 minute, and UV irradiation device manufactured by Eye Graphics Co., Ltd. so that the integrated light quantity is 500 mJ / cm 2 Model No .: UB0452-0752 [Mercury lamp (main wavelength is 365 nm, UV light with wavelengths of 254 nm, 303 nm, 313 nm) And then cured by irradiation with ultraviolet rays. Then, it cut into 10 cm x 10 cm. Immediately after cutting, the curl values at the four corners were measured as the height from the desk. The average value of the four points measured was taken as the curl value and evaluated according to the following criteria.
○: Curl value is less than 11 mm Δ: Curl value is 11 mm or more and less than 25 mm ×: Curl value is 25 mm or more <Refractive index>
The refractive index of the cured film on the substrate (PET) was measured using a digital Abbe refractometer DR-A1 manufactured by ATAGO.
〔原料〕
 硬化性組成物の原料として用いた成分(A)~(C)は以下の通りである。
[成分(A)]
A-1:日本化薬社製 カヤラッドDPHA
    ジペンタエリスリトールテトラアクリレートとジペンタエリスリトールヘキサアクリレートとの混合物、重量平均分子量(Mw):700
〔material〕
Components (A) to (C) used as raw materials for the curable composition are as follows.
[Component (A)]
A-1: Nippon Kayaku Kayrad DPHA
Mixture of dipentaerythritol tetraacrylate and dipentaerythritol hexaacrylate, weight average molecular weight (Mw): 700
A-2:東亜合成社製 アロニックスM313
    イソシアヌル酸エチレンオキサイド(EO)変性ジアクリレート(分子量:369)とイソシアヌル酸エチレンオキサイド(EO)変性トリアクリレート(分子量:423)の混合物
A-2: Aronix M313 manufactured by Toa Gosei Co., Ltd.
Mixture of isocyanuric acid ethylene oxide (EO) modified diacrylate (molecular weight: 369) and isocyanuric acid ethylene oxide (EO) modified triacrylate (molecular weight: 423)
A-3:大阪有機化学工業社製 ビスコート#1000
    デンドリマーアクリレート(分岐型ポリエステルポリオール末端アクリレート)、
    Mw):1,900
 なお、上記A-1及びA-3のMwの測定方法は後掲の成分(C)の場合と同様である。
A-3: Biscoat # 1000 manufactured by Osaka Organic Chemical Industry Co., Ltd.
Dendrimer acrylate (branched polyester polyol terminal acrylate),
Mw): 1,900
The method for measuring Mw of A-1 and A-3 is the same as in the case of component (C) described later.
[成分(B)]
 成分(B)として用いた粒子は以下の表-1の通りである。なお、表-1中、「形状」及び「分散状態」は、走査型電子顕微鏡により確認したものである。
[Component (B)]
The particles used as component (B) are as shown in Table 1 below. In Table 1, “shape” and “dispersion state” were confirmed by a scanning electron microscope.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表-1中、b-2、b-3及びb-4は平均一次粒子径の値よりも粒度分布の値が小さくなっている。この理由は、平均一次粒子径が走査型電子顕微鏡により確認しているのに対し、粒度分布はレーザー回折式粒径分布計による光学的な手法により測定したものであり、方法の違いに起因するものと推定される。特に、b-2についてはある程度長い鎖状の粒子が凝集しているために粒度分布として正確な値が測定されなかったためであると推定される。また、b-3及びb-4は凝集状態ではなく、分散状態を取っていることに起因するものと推定される。 In Table 1, the particle size distribution values of b-2, b-3, and b-4 are smaller than the average primary particle size value. The reason for this is that the average primary particle diameter is confirmed by a scanning electron microscope, whereas the particle size distribution is measured by an optical technique using a laser diffraction particle size distribution meter, and is caused by a difference in the method. Estimated. Particularly, regarding b-2, it is presumed that an accurate value was not measured as a particle size distribution because chain particles having a certain length were aggregated. In addition, it is estimated that b-3 and b-4 are not in an aggregated state but in a dispersed state.
[成分(C)]
 C-1~C-5については市販品を用い、C-6~C~11については以下に記載する方法で合成したものを用いた。なお、以下において用いた略語は次の通りである。
[Component (C)]
For C-1 to C-5, commercially available products were used, and for C-6 to C-11, those synthesized by the method described below were used. The abbreviations used below are as follows.
・MEK:メチルエチルケトン
・DT:ドデカンチオール
・EA:エチルアクリレート(前記式(1)中、Rが水素原子、Rがエチル基である化合物)
・BMA:ブチルメタクリレート(前記式(1)中、Rがメチル基、Rがブチル基である化合物)
・HEA:ヒドロキシエチルアクリレート(前記式(1)中、Rが水素原子、Rがヒドロキシエチル基である化合物)
・BA:ブチルアクリレート(前記式(1)において、Rが水素原子、Rがブチル基である化合物)
・LMA:ラウリルメタクリレート(前記式(1)中、Rがメチル基、Rがドデシル基である化合物)
・HEMA:ヒドロキシエチルメタクリレート(前記式(1)中、Rがメチル基、Rがヒドロキシエチル基である化合物)
・EHA:2-エチルヘキシルアクリレート(前記式(1)中、Rが水素原子、Rが2-エチルヘキシル基である化合物)
MEK: methyl ethyl ketone DT: dodecanethiol EA: ethyl acrylate (in the formula (1), R 1 is a hydrogen atom and R 2 is an ethyl group)
BMA: butyl methacrylate (compound in which R 1 is a methyl group and R 2 is a butyl group in the formula (1))
HEA: hydroxyethyl acrylate (in the formula (1), R 1 is a hydrogen atom and R 2 is a hydroxyethyl group)
BA: butyl acrylate (in the formula (1), R 1 is a hydrogen atom and R 2 is a butyl group)
LMA: Lauryl methacrylate (compound in which R 1 is a methyl group and R 2 is a dodecyl group in the formula (1))
HEMA: hydroxyethyl methacrylate (compound in which R 1 is a methyl group and R 2 is a hydroxyethyl group in the formula (1))
EHA: 2-ethylhexyl acrylate (a compound in which R 1 is a hydrogen atom and R 2 is a 2-ethylhexyl group in the formula (1))
C-1:共栄社化学社製 ポリフローNo.36
    アクリルポリマー(室温で液状)、Mw:10,000、SP値:9.6
C-1: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 36
Acrylic polymer (liquid at room temperature), Mw: 10,000, SP value: 9.6
C-2:共栄社化学社製 ポリフローNo.50EHF
    アクリルポリマー(室温で液状)、Mw:10,000、SP値:9.7
C-2: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 50EHF
Acrylic polymer (liquid at room temperature), Mw: 10,000, SP value: 9.7
C-3:共栄社化学社製 ポリフローNo.75
    アクリルポリマー(室温で液状)、Mw:2,400、SP値:9.9
C-3: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 75
Acrylic polymer (liquid at room temperature), Mw: 2,400, SP value: 9.9
C-4:共栄社化学社製 ポリフローNo.77
     アクリルポリマー(室温で液状)、Mw:2,200、SP値:10.3
C-4: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 77
Acrylic polymer (liquid at room temperature), Mw: 2,200, SP value: 10.3
C-5:共栄社化学社製 ポリフローNo.90
    アクリルポリマー(室温で液状)、Mw:12,000、SP値:9.6
C-5: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 90
Acrylic polymer (liquid at room temperature), Mw: 12,000, SP value: 9.6
C-6:
 温度計、攪拌機及び還流冷却管を備えたフラスコに、MEK250.33g、DT15.00g、EA25.00g、BMA25.00g及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.20gを入れ、EA25.00g、BMA25.00g及びMEK10.40gの混合液を1.5時間かけて滴下しながら、65℃で3時間反応させた。その後、さらに2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.60gを加えて3時間反応させた後、MEK10.80gとp-メトキシフェノール0.50gを加え100℃まで加熱させることで(メタ)アクリル樹脂(室温で液状)を得た。
Mw:2,600、SP値:10.2
C-6:
In a flask equipped with a thermometer, stirrer and reflux condenser, put 250.33 g of MEK, 15.00 g of DT, 25.00 g of EA, 25.00 g of BMA and 1.20 g of 2,2′-azobis (2,4-dimethylvaleronitrile). , 25.00 g of EA, 25.00 g of BMA, and 10.40 g of MEK were added dropwise over 1.5 hours, and reacted at 65 ° C. for 3 hours. Thereafter, 0.62 g of 2,2′-azobis (2,4-dimethylvaleronitrile) is further added and reacted for 3 hours, and then 10.80 g of MEK and 0.50 g of p-methoxyphenol are added and heated to 100 ° C. (Meth) acrylic resin (liquid at room temperature) was obtained.
Mw: 2,600, SP value: 10.2
C-7:
 温度計、攪拌機及び還流冷却管を備えたフラスコに、MEK243.33g、DT15.00g、HEA9.00g、BA20.00g、EHA21.00g及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.20gを入れ、HEA9.00g、BA20.00g、EHA21.00g及びMEK21.40gの混合液を1.5時間かけて滴下しながら、65℃で3時間反応させた。その後、さらに2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.60gを加えて3時間反応させた後、MEK8.97gとp-メトキシフェノール0.50gを加え100℃まで加熱させることでアクリル樹脂(室温で液状)を得た。
Mw:3,400、SP値:10.8
C-7:
In a flask equipped with a thermometer, stirrer and reflux condenser, MEK 243.33 g, DT 15.00 g, HEA 9.00 g, BA 20.00 g, EHA 21.00 g and 2,2′-azobis (2,4-dimethylvaleronitrile) 1 .20 g was added, and a mixture of HEA 9.00 g, BA 20.00 g, EHA 21.00 g and MEK 21.40 g was added dropwise over 1.5 hours, and reacted at 65 ° C. for 3 hours. Thereafter, 0.62 g of 2,2′-azobis (2,4-dimethylvaleronitrile) is further added and reacted for 3 hours, and then 8.97 g of MEK and 0.50 g of p-methoxyphenol are added and heated to 100 ° C. Acrylic resin (liquid at room temperature) was obtained.
Mw: 3,400, SP value: 10.8
C-8:
 温度計、攪拌機及び還流冷却管を備えたフラスコに、MEK131.67g、DT5.00g、EA20.00g、BMA20.00g、HEMA10.00g及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.20gを入れ、EA20.00g、BMA20.00g、HEMA10.00g及びMEK21.40gの混合液を1.5時間かけて滴下しながら、65℃で3時間反応させた。その後、さらに2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.60gを加えて3時間反応させた後、MEK8.90gとp-メトキシフェノール0.50gを加え100℃まで加熱させることで(メタ)アクリル樹脂(室温で液状)を得た。
Mw:6,100、SP値:11.0
C-8:
In a flask equipped with a thermometer, stirrer and reflux condenser, MEK 131.67 g, DT 5.00 g, EA 20.00 g, BMA 20.00 g, HEMA 10.00 g and 2,2′-azobis (2,4-dimethylvaleronitrile) 1 .20 g was added, and a mixture of EA 20.00 g, BMA 20.00 g, HEMA 10.00 g and MEK 21.40 g was added dropwise over 1.5 hours, and reacted at 65 ° C. for 3 hours. Thereafter, 0.62 g of 2,2′-azobis (2,4-dimethylvaleronitrile) is further added and reacted for 3 hours, and then 8.90 g of MEK and 0.50 g of p-methoxyphenol are added and heated to 100 ° C. (Meth) acrylic resin (liquid at room temperature) was obtained.
Mw: 6,100, SP value: 11.0
C-9:
 温度計、攪拌機及び還流冷却管を備えたフラスコに、MEK131.67g、DT5.00g、EA20.00g、BMA20.00g、LMA10.00g及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.20gを入れ、EA20.00g、BMA20.00g、LMA10.00g及びMEK21.40gの混合液を1.5時間かけて滴下しながら、65℃で3時間反応させた。その後、さらに2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.60gを加えて3時間反応させた後、MEK8.90gとp-メトキシフェノール0.50gを加え100℃まで加熱させることで(メタ)アクリル樹脂(室温で液状)を得た。
Mw:6,400、SP値:10.2
C-9:
In a flask equipped with a thermometer, stirrer and reflux condenser, MEK 131.67 g, DT 5.00 g, EA 20.00 g, BMA 20.00 g, LMA 10.00 g and 2,2′-azobis (2,4-dimethylvaleronitrile) 1 .20 g was added, and a mixture of EA 20.00 g, BMA 20.00 g, LMA 10.00 g, and MEK 21.40 g was added dropwise over 1.5 hours, and reacted at 65 ° C. for 3 hours. Thereafter, 0.62 g of 2,2′-azobis (2,4-dimethylvaleronitrile) is further added and reacted for 3 hours, and then 8.90 g of MEK and 0.50 g of p-methoxyphenol are added and heated to 100 ° C. (Meth) acrylic resin (liquid at room temperature) was obtained.
Mw: 6,400, SP value: 10.2
C-10:
 温度計、攪拌機及び還流冷却管を備えたフラスコに、MEK131.67g、HEA9.00g、EHA21.00g、BA20.00g及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.20gを入れ、HEA9.00g、EHA21.00g、BA20.00g及びMEK21.40gの混合液を1.5時間かけて滴下しながら、65℃で3時間反応させた。その後、さらに2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.60gを加えて3時間反応させた後、MEK8.90gとp-メトキシフェノール0.50gを加え100℃まで加熱させることでアクリル樹脂(室温で液状)を得た。
Mw:21,600、SP値:11.1
C-10:
A flask equipped with a thermometer, stirrer and reflux condenser was charged with 131.67 g of MEK, 9.00 g of HEA, 21.00 g of EHA, 20.00 g of BA and 1.20 g of 2,2′-azobis (2,4-dimethylvaleronitrile). , HEA 9.00 g, EHA 21.00 g, BA 20.00 g and MEK 21.40 g were reacted dropwise at 65 ° C. for 3 hours while dropping over 1.5 hours. Thereafter, 0.62 g of 2,2′-azobis (2,4-dimethylvaleronitrile) is further added and reacted for 3 hours, and then 8.90 g of MEK and 0.50 g of p-methoxyphenol are added and heated to 100 ° C. Acrylic resin (liquid at room temperature) was obtained.
Mw: 21,600, SP value: 11.1
C-11:
 温度計、攪拌機及び還流冷却管を備えたフラスコに、MEK131.67g、BMA25.00g、EA25.00g及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.20gを入れ、BMA25.00g、EA25.00g及びMEK21.40gの混合液を1.5時間かけて滴下しながら、65℃で3時間反応させた。その後、さらに2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.60gを加えて3時間反応させた後、MEK8.90gとp-メトキシフェノール0.50gを加え100℃まで加熱させることで(メタ)アクリル樹脂(室温で液状)を得た。
Mw:19,900、SP値:10.4
C-11:
A flask equipped with a thermometer, stirrer and reflux condenser was charged with 131.67 g of MEK, 25.00 g of BMA, 25.00 g of EA, and 1.20 g of 2,2′-azobis (2,4-dimethylvaleronitrile), and 25.00 g of BMA The mixture was reacted at 65 ° C. for 3 hours while dropwise adding a mixture of EA 25.00 g and MEK 21.40 g over 1.5 hours. Thereafter, 0.62 g of 2,2′-azobis (2,4-dimethylvaleronitrile) is further added and reacted for 3 hours, and then 8.90 g of MEK and 0.50 g of p-methoxyphenol are added and heated to 100 ° C. (Meth) acrylic resin (liquid at room temperature) was obtained.
Mw: 19,900, SP value: 10.4
(重量平均分子量(Mw)の測定方法)
 GPC法により以下の条件で測定した。
機器 :東ソー社製「HLC-8120GPC」
カラム:東ソー社製「TSKgel Super H1000+H2000+H3000」
検出器:示差屈折率検出器(RI検出器/内蔵)
溶媒 :テトラヒドロフラン、温度 :40℃、流速 :0.5mL/分、注入量:10μL、
濃度 :0.2重量%、較正試料:単分散ポリスチレン、較正法:ポリスチレン換算
(Measurement method of weight average molecular weight (Mw))
The measurement was performed by the GPC method under the following conditions.
Equipment: “HLC-8120GPC” manufactured by Tosoh Corporation
Column: “TSKgel Super H1000 + H2000 + H3000” manufactured by Tosoh Corporation
Detector: Differential refractive index detector (RI detector / built-in)
Solvent: tetrahydrofuran, temperature: 40 ° C., flow rate: 0.5 mL / min, injection volume: 10 μL,
Concentration: 0.2% by weight, calibration sample: monodisperse polystyrene, calibration method: polystyrene conversion
[重合開始剤]
イルガキュア184:BASF社製、イルガキュア(商標)184、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
[Polymerization initiator]
Irgacure 184: manufactured by BASF, Irgacure (trademark) 184, 1-hydroxy-cyclohexyl-phenyl-ketone
〔実施例1-1〕
[クリアハードコート付基材]
 四つ口フラスコ中において、ジペンタエリスリトールテトラアクリレートとジペンタエリスリトールヘキサアクリレートとの混合物(日本化薬社製 カヤラッドDPHA)を100重量部、アクリルポリマー(共栄社化学社製 ポリフローNo.75)を0.5重量部配合した後、重合開始剤として1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製イルガキュア(商標)184)を5重量部加え、更にメチルエチルケトン105.5重量部を加えることで、クリアハードコート材を得た。厚さ125μmの透明な二軸延伸ポリエチレンテレフタレート(PET)フィルム(三菱樹脂社製 ダイアホイル(商標)O321E125に、上記のクリアハードコート材をバーコーターにより乾燥後の塗膜厚さが1~2μmとなるように塗布し、80℃で1分間加熱乾燥し、積算光量300mJ/cmとなるように紫外線を照射して硬化させた。なお、上記のクリアハードコート材は基材そのものの凹凸によるヘーズを補償するために塗布したものである。
Example 1-1
[Base material with clear hard coat]
In a four-necked flask, 100 parts by weight of a mixture of dipentaerythritol tetraacrylate and dipentaerythritol hexaacrylate (Kayarad DPHA manufactured by Nippon Kayaku Co., Ltd.), and acrylic polymer (Polyflow No. 75 manufactured by Kyoeisha Chemical Co., Ltd.) of 0. After blending 5 parts by weight, 5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure (trademark) 184 manufactured by BASF) was added as a polymerization initiator, and 105.5 parts by weight of methyl ethyl ketone was further added. A coating material was obtained. A transparent biaxially stretched polyethylene terephthalate (PET) film having a thickness of 125 μm (Diafoil (trademark) O321E125 manufactured by Mitsubishi Plastics Co., Ltd.) and the coating thickness after drying the above clear hard coat material by a bar coater is 1 to 2 μm. The film was applied and dried by heating at 80 ° C. for 1 minute, and cured by irradiating with ultraviolet rays so as to obtain an integrated light amount of 300 mJ / cm 2 . It was applied to compensate for
[硬化性組成物の製造]
 四つ口フラスコ中において、成分(A)、成分(B)、成分(C)を表-2に記載した配合量で混合した後、固形分が50重量%となるようにメチルエチルケトンで希釈することで硬化性組成物を得た。
[Production of curable composition]
In a four-necked flask, mix component (A), component (B), and component (C) in the amounts shown in Table 2, and then dilute with methyl ethyl ketone so that the solid content is 50% by weight. A curable composition was obtained.
[塗布工程]
 PETフィルムのクリアハードコート材を塗布した面とは逆側の面に、バーコーターを用いて乾燥後の塗膜厚さが1~2μm(屈折率評価に使用したものについては5~10μm)となるように硬化性組成物を塗布し、80℃で1分間加熱乾燥した。
[Coating process]
The coating film thickness after drying using a bar coater is 1 to 2 μm on the opposite side of the PET film to which the clear hard coating material is applied (5 to 10 μm for those used for refractive index evaluation). The curable composition was applied so that it was heated and dried at 80 ° C. for 1 minute.
[硬化工程]
 硬化性組成物の塗膜が形成されたPETフィルムを、出力密度120W/cmの高圧水銀灯を光源として、光源下15cmの位置で、アイグラフィック社製EYE UV METER UVPF-A1、PD365を使用して積算光量300mJ/cm(耐カール性評価に使用したものについては500mJ/cm)となるように紫外線を照射して硬化膜を得た。
[Curing process]
Using a high pressure mercury lamp with an output density of 120 W / cm as a light source, a PET film on which a coating film of the curable composition is formed, using an eye graphic EYE UV METER UVPF-A1, PD365 at a position of 15 cm under the light source A cured film was obtained by irradiating ultraviolet rays so as to obtain an integrated light amount of 300 mJ / cm 2 (500 mJ / cm 2 for the curl resistance evaluation).
[評価]
 調製した硬化性組成物と形成された硬化膜(ハードコートフィルム)について、アンチブロッキング性(AB性)、透明性、屈折率、リコート性、耐傷付性、保存安定性及び耐カール性についての評価を行い、結果を表-2に示した。
[Evaluation]
Evaluation of anti-blocking property (AB property), transparency, refractive index, recoating property, scratch resistance, storage stability and curl resistance of the prepared curable composition and the formed cured film (hard coat film) The results are shown in Table 2.
 なお、表-2において、各成分の重量部は溶媒を除いた量を示し、各原料における「―」は、その原料を使用していないことを示し、「保存安定性」及び「耐カール性」における「―」は、その評価を行っていないことを示す。表-2におけるこれらの事項は、表-3~表-9においても同じ意味を示す。 In Table 2, the weight part of each component indicates the amount excluding the solvent, “-” in each raw material indicates that the raw material is not used, “storage stability” and “curl resistance” "-" In "" indicates that the evaluation is not performed. These items in Table-2 have the same meaning in Table-3 to Table-9.
<実施例1-2~1-51、比較例1-1~1-17>
 硬化性組成物の配合組成を表-2~表-9示す通り変更した以外は実施例1-1と同様にして硬化性組成物を得た。得られた各硬化性組成物を実施例1-1と同様にして塗布工程、硬化工程を実施して硬化膜(ハードコートフィルム)を得た。得られた硬化性組成物、ハードコートフィルムを用いてアンチブロッキング性(AB性)、透明性、リコート性及び耐傷付性の評価を行い、結果を表-2~表-9に示した。なお、実施例1-2~1-4については保存安定性及び耐カール性の評価を行い、結果を表-2に示した。
<Examples 1-2 to 1-51, Comparative Examples 1-1 to 1-17>
A curable composition was obtained in the same manner as in Example 1-1 except that the composition of the curable composition was changed as shown in Tables 2 to 9. Each of the obtained curable compositions was subjected to a coating process and a curing process in the same manner as in Example 1-1 to obtain a cured film (hard coat film). The resulting curable composition and hard coat film were used for evaluation of anti-blocking property (AB property), transparency, recoat property and scratch resistance, and the results are shown in Tables 2 to 9. For Examples 1-2 to 1-4, storage stability and curl resistance were evaluated, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[評価結果(1)]
 表-2に示すように、本発明の硬化性組成物に該当し、更に成分(C)を配合した実施例1-1~1-8はいずれもアンチブロッキング性(AB性)、透明性、リコート性、耐傷付性のいずれも良好であった。また、実施例1-1~1-3は成分(A)として窒素原子含有複素環構造を有する多官能(メタ)アクリレートに該当する「A-2」、デンドリマー構造を有する多官能(メタ)アクリレートに該当する「A-3」を使用したため、これらを使用しなかった実施例1-4よりも耐カール性が良好であった。実施例1-9は本発明の硬化性組成物に該当し、AB性、透明性、リコート性、耐傷付性のいずれも良好であったが、成分(B)としてd10の値が比較的小さい粒子を使用したために実施例1-1~1~8と比較するとAB性がやや劣っていた。また、実施例1-10は本発明の硬化性組成物に該当し、AB性、透明性、リコート性、耐傷付性のいずれも良好であったが、成分(C)を使用しなかったために実施例1-1~1~8と比較するとAB性がやや劣っていた。
[Evaluation result (1)]
As shown in Table 2, each of Examples 1-1 to 1-8, which corresponds to the curable composition of the present invention and further contains the component (C), has anti-blocking properties (AB properties), transparency, Both recoatability and scratch resistance were good. Examples 1-1 to 1-3 are “A-2” corresponding to a polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure as component (A), a polyfunctional (meth) acrylate having a dendrimer structure. Since “A-3” corresponding to was used, the curl resistance was better than that of Example 1-4 in which these were not used. Example 1-9 corresponds to the curable composition of the present invention, and the AB property, the transparency, the recoat property, and the scratch resistance were all good, but the value of d10 as the component (B) was relatively small. Since the particles were used, the AB property was slightly inferior compared with Examples 1-1 to 1-8. Further, Example 1-10 corresponds to the curable composition of the present invention, and the AB property, transparency, recoat property, and scratch resistance were all good, but the component (C) was not used. Compared with Examples 1-1 to 1-8, the AB property was slightly inferior.
 表-3に示す実施例1-11~1-21は実施例1-2に対し、成分(C)の種類を変更した例であるが、いずれもAB性、透明性、リコート性、耐傷付性が良好であった。
 表-4に示す実施例1-22~1-26は実施例1-4に対し、成分(B)の種類を変更した例であるが、いずれもAB性、透明性、リコート性、耐傷付性が良好であった。
 また、表-6、表-7に示すように成分(A)、成分(B)及び成分(C)のそれぞれについて、種類、配合量を変更したが、いずれもAB性、透明性、リコー性、耐傷付性が良好であった。特に、表-7に示すように成分(B)の種類及びその配合量を変更することにより、屈折率を容易に制御することができる。
Examples 1-11 to 1-21 shown in Table 3 are examples in which the type of the component (C) was changed with respect to Example 1-2, but all of them had AB properties, transparency, recoatability, and scratch resistance. The property was good.
Examples 1-22 to 1-26 shown in Table 4 are examples in which the type of component (B) was changed with respect to Example 1-4, but all of them had AB properties, transparency, recoatability, and scratch resistance. The property was good.
In addition, as shown in Table-6 and Table-7, the type and blending amount of each of the component (A), the component (B) and the component (C) were changed. The scratch resistance was good. In particular, as shown in Table 7, the refractive index can be easily controlled by changing the type of component (B) and the blending amount thereof.
 表-8において、比較例1-1は実施例1-4に対し、成分(B)を使用しなかった例であるが、アンチブロッキング性(AB性)が悪かった。また、比較例1-2は、成分(B)に該当する「B-5」を用い、その配合量を多くした例であるが、透明性が悪かった。更に、比較例1-3~1-7は実施例1-4に対し、本発明に用いる成分(B)の代わりに成分(B)以外の粒子を使用した例であるが、いずれも実施例1-4よりもAB性が劣っていた。また、比較例1-8は実施例1-4に対し、本発明に用いる成分(B)の代わりに成分(B)以外の粒子として、平均一次粒子径及びd90が大きい粒子を用いたた例であるが、透明性が悪かった。更に、比較例1-9は実施例1-4に対し、本発明に用いる成分(B)の代わりに成分(B)以外の粒子として、平均一次粒子径は成分(B)と同等であるものの、d90の値が成分(B)よりも大きい粒子を使用した例であるが、透明性が悪かった。 In Table-8, Comparative Example 1-1 was an example in which component (B) was not used as compared with Example 1-4, but the antiblocking property (AB property) was poor. Comparative Example 1-2 was an example in which “B-5” corresponding to component (B) was used and the amount thereof was increased, but the transparency was poor. Further, Comparative Examples 1-3 to 1-7 are examples in which particles other than the component (B) were used in place of the component (B) used in the present invention, compared to Example 1-4. AB property was inferior to 1-4. Further, Comparative Example 1-8 is an example in which particles having a large average primary particle diameter and d90 were used as particles other than the component (B) instead of the component (B) used in the present invention, as compared to Example 1-4. However, the transparency was bad. Further, Comparative Example 1-9 is different from Example 1-4 in that the average primary particle size is the same as that of component (B) as particles other than component (B) instead of component (B) used in the present invention. In this example, particles having a d90 value larger than that of the component (B) were used, but the transparency was poor.
 一方、表-8において、実施例1-10に対し、本発明に用いる成分(B)を使用せず、代わりに成分(B)に該当しない「b-1」、「b-3」、「b-5」をそれぞれ使用した比較例1-10~1-12と実施例1-10とを比較すると、実施例1-10はAB性が良好であることがわかる。即ち、成分(C)を必須に使用しなくとも、成分(A)と成分(B)を所定量配合することにより、AB性が向上し、透明性、リコート性、耐傷付性も良好となることがわかる。 On the other hand, in Table-8, with respect to Example 1-10, the component (B) used in the present invention was not used, and instead “b-1”, “b-3”, “ Comparison of Comparative Examples 1-10 to 1-12 using Example 5-10 with Example 1-10 shows that Example 1-10 has good AB properties. That is, even if the component (C) is not essential, by blending a predetermined amount of the component (A) and the component (B), the AB property is improved and the transparency, recoating property, and scratch resistance are also improved. I understand that.
 表-9における比較例1-13~1-15は、実施例1-30に対し、本発明に用いる成分(B)を使用せず、代わりに成分(B)に該当しない「b-1」、「b-4」、「b-5」をそれぞれ使用した例であるが、透明性又はAB性のいずれかが悪かった。また、本発明に用いる成分(B)を使用していない比較例1-16及び1-17はいずれもAB性が悪かった。 Comparative Examples 1-13 to 1-15 in Table-9 do not use the component (B) used in the present invention for Example 1-30 and instead correspond to “b-1” which does not fall under the component (B) , “B-4” and “b-5” were used, but either transparency or AB property was poor. Further, Comparative Examples 1-16 and 1-17, which did not use the component (B) used in the present invention, all had poor AB properties.
〔実施例2-1~2-28〕
 表-10~表-13に示すように、実施例1-1~1-3、実施例1-27と同様の配合組成の硬化性組成物のいずれかを用い、前述のクリアハードコート付基材のクリアハードコート材を塗布した面の逆面に、バーコーターにより乾燥後の塗膜厚さが1~2μmとなるようにして塗布、乾燥させた。次いで、紫外線を照射して硬化膜を得た。以上の操作においては塗工時の湿度、乾燥温度、紫外線(UV)照射量、紫外線(UV)照度をそれぞれ表-10~表-13に示す条件として実施した。得られた硬化膜について、アンチブロッキング性(AB性)及び透明性の評価を行い、その結果を表-10~表-13に示した。
[Examples 2-1 to 2-28]
As shown in Table-10 to Table-13, any one of the curable compositions having the same composition as in Examples 1-1 to 1-3 and Example 1-27, The material was coated and dried on the opposite side of the surface to which the clear hard coat material was applied, using a bar coater so that the coating thickness after drying was 1 to 2 μm. Subsequently, the cured film was obtained by irradiating with ultraviolet rays. In the above operation, the humidity during coating, the drying temperature, the ultraviolet ray (UV) irradiation amount, and the ultraviolet ray (UV) illuminance were each set under the conditions shown in Table-10 to Table-13. The obtained cured film was evaluated for anti-blocking property (AB property) and transparency, and the results are shown in Tables 10 to 13.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[評価結果(2)]
 実施例2-1~2-7、実施例2-8~2-14、実施例2-15~2-21及び実施例2-22~2-28は、それぞれ、実施例1-1、実施例1-2、実施例1-3及び実施例1-27の硬化性組成物と同様の配合として塗工条件を変更した例である。表-10~表-13に示すようにいずれの塗工条件においてもアンチブロッキング性及び透明性に優れたものであることがわかる。
[Evaluation result (2)]
Examples 2-1 to 2-7, Examples 2-8 to 2-14, Examples 2-15 to 2-21, and Examples 2-22 to 2-28 are respectively Example 1-1 and Example This is an example in which the coating conditions were changed to the same composition as the curable compositions of Example 1-2, Example 1-3, and Example 1-27. As shown in Table-10 to Table-13, it is understood that the anti-blocking property and the transparency are excellent under any coating conditions.
 本発明の硬化性組成物は、保存安定性に優れ、塗工条件の自由度が高く、様々な塗工条件で得られる硬化物、積層体がアンチブロッキング性、透明性、リコート性、耐傷付性、耐カール性等に優れたものである。このため、これらの性能が要求される用途においていずれの用途においても好適に用いることが可能であり、例えば、位相差フィルム、輝度向上フィルム等の光学調整フィルム;偏光板に使用される保護フィルム;タッチパネル、電磁波防止フィルムに使用されるITOフィルム等の光学フィルムとして好適である。更に、これらの光学フィルムは銀行ATM、自動販売機、携帯情報端末(PDA)、複写機、ファクシミリ、ゲーム機、博物館及びデパート等の施設に設置される案内表示装置、カーナビゲーション、マルチメディアステーション(コンビニエンスストアに設置される多機能端末機)、携帯電話、鉄道車両のモニタ装置、スマートフォン、タブレット等の表示装置(液晶ディスプレイ、発光ダイオードディスプレイ、エレクトロルミネセンスディスプレイ、蛍光ディスプレイ、プラズマディスプレイパネル等)に用いることができる。 The curable composition of the present invention is excellent in storage stability, has a high degree of freedom in coating conditions, a cured product obtained under various coating conditions, and a laminate having antiblocking properties, transparency, recoatability, and scratch resistance. It has excellent properties and curling resistance. For this reason, it can be suitably used in any application where these performances are required. For example, an optical adjustment film such as a retardation film or a brightness enhancement film; a protective film used for a polarizing plate; It is suitable as an optical film such as an ITO film used for touch panels and electromagnetic wave prevention films. Furthermore, these optical films can be used in bank ATMs, vending machines, personal digital assistants (PDAs), photocopiers, facsimiles, game machines, museums, department stores, and other guidance display devices, car navigation systems, multimedia stations ( Multi-function terminals installed in convenience stores), mobile phones, railway vehicle monitoring devices, smartphones, tablets and other display devices (liquid crystal displays, light-emitting diode displays, electroluminescent displays, fluorescent displays, plasma display panels, etc.) Can be used.
 なお、2015年2月13日に出願された日本特許出願2015-026828号、2015年11月9日に出願された日本特許出願2015-219626号、及び2015年11月9日に出願された日本特許出願2015-219627号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Note that Japanese Patent Application No. 2015-026828 filed on February 13, 2015, Japanese Patent Application No. 2015-219626 filed on November 9, 2015, and Japanese Patent Application filed on November 9, 2015. The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2015-219627 are hereby incorporated herein by reference as the disclosure of the specification of the present invention.

Claims (17)

  1.  下記成分(A)及び成分(B)を含み、成分(A)の100重量部に対して成分(B)を0.01~150重量部含む硬化性組成物。
    成分(A):エチレン性不飽和結合を有する化合物
    成分(B):平均一次粒子径が1~100nmであり、かつレーザー回折式粒径分布計により測定したd90が100~2,000nmである粒子群
    A curable composition comprising the following component (A) and component (B), comprising 0.01 to 150 parts by weight of component (B) with respect to 100 parts by weight of component (A).
    Component (A): Compound having ethylenically unsaturated bond Component (B): Particles having an average primary particle diameter of 1 to 100 nm and d90 measured by a laser diffraction particle size distribution meter of 100 to 2,000 nm group
  2.  成分(B)の[平均一次粒子径]/[d90]の値が0.01~0.40である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the value of [Average primary particle diameter] / [d90] of component (B) is 0.01 to 0.40.
  3.  成分(B)が、レーザー回折式粒径分布計により測定したd10が10~500nmであり、かつd50が30~1,000nmである、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the component (B) has a d10 of 10 to 500 nm and a d50 of 30 to 1,000 nm as measured by a laser diffraction particle size distribution analyzer.
  4.  成分(A)の重量平均分子量が2,100未満であり、かつ下記成分(C)を含み、その含有量が成分(A)100重量部に対して0.01~20重量部である、請求項1~3のいずれか1項に記載の硬化性組成物。
      成分(C):重量平均分子量(Mw)が2,100~200,000である有機高分子化合物
    The weight average molecular weight of the component (A) is less than 2,100, and includes the following component (C), and the content thereof is 0.01 to 20 parts by weight with respect to 100 parts by weight of the component (A). Item 4. The curable composition according to any one of Items 1 to 3.
    Component (C): organic polymer compound having a weight average molecular weight (Mw) of 2,100 to 200,000
  5.  成分(C)の溶解性パラメーター(SP値)が9.3~12.6である、請求項4に記載の硬化性組成物。 The curable composition according to claim 4, wherein the solubility parameter (SP value) of component (C) is 9.3 to 12.6.
  6.  成分(C)として(メタ)アクリル樹脂を含む、請求項4または5に記載の硬化性組成物。 The curable composition according to claim 4 or 5, comprising (meth) acrylic resin as component (C).
  7.  成分(A)として多官能(メタ)アクリレートを含む、請求項1~6のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, comprising a polyfunctional (meth) acrylate as the component (A).
  8.  前記多官能(メタ)アクリレートとして、窒素原子含有複素環構造を有する多官能(メタ)アクリレート、デンドリマー構造を有する多官能(メタ)アクリレート及びハイパーブランチポリマー構造を有する多官能(メタ)アクリレートからなる群のうちの少なくとも1つを含み、かつその含有量の合計が成分(A)全体に対して1~65重量%である、請求項7に記載の硬化性組成物。 The polyfunctional (meth) acrylate is composed of a polyfunctional (meth) acrylate having a nitrogen atom-containing heterocyclic structure, a polyfunctional (meth) acrylate having a dendrimer structure, and a polyfunctional (meth) acrylate having a hyperbranched polymer structure. The curable composition according to claim 7, comprising at least one of the above components, and the total content thereof is 1 to 65% by weight based on the whole component (A).
  9.  有機溶媒を含み、固形分濃度が5~95重量%である、請求項1~8のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, comprising an organic solvent and having a solid content concentration of 5 to 95% by weight.
  10.  前記有機溶媒が、飽和炭化水素系溶媒、エステル系溶媒、エーテル系溶媒、アルコール系溶媒、及びケトン系溶媒からなる群から選ばれる少なくとも1種である、請求項9に記載の硬化性組成物。 The curable composition according to claim 9, wherein the organic solvent is at least one selected from the group consisting of a saturated hydrocarbon solvent, an ester solvent, an ether solvent, an alcohol solvent, and a ketone solvent.
  11.  重合開始剤を含み、かつその含有量が成分(A)100重量部に対して0.01~20重量部である、請求項1~10のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 10, comprising a polymerization initiator and having a content of 0.01 to 20 parts by weight based on 100 parts by weight of the component (A).
  12.  請求項1~11のいずれか1項に記載の硬化性組成物に活性エネルギー線を照射してなる硬化物。 A cured product obtained by irradiating the curable composition according to any one of claims 1 to 11 with active energy rays.
  13.  基材とハードコート層とを有する積層体であり、該ハードコート層が請求項1~11のいずれか1項に記載の硬化性組成物を該基材上に塗布し、これに活性エネルギー線を照射して形成された層である積層体。 A laminate having a substrate and a hard coat layer, the hard coat layer being coated with the curable composition according to any one of claims 1 to 11 on the substrate, and active energy rays applied thereto. A laminate that is a layer formed by irradiating the film.
  14.  前記基材がプラスチック基材である、請求項13に記載の積層体。 The laminate according to claim 13, wherein the substrate is a plastic substrate.
  15.  前記プラスチック基材が、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、及びポリメチルメタクリレート樹脂からなる群から選ばれる1種以上である、請求項14に記載の積層体。 The laminate according to claim 14, wherein the plastic substrate is at least one selected from the group consisting of a polycarbonate resin, a polyethylene terephthalate resin, and a polymethyl methacrylate resin.
  16.  基材層とハードコート層とを有する積層体であり、該ハードコート層が下記成分(B)を含み、かつJIS K7136(2000年)に従って測定したヘーズ値が0.6%未満である積層体。
      成分(B):平均一次粒子径が1~100nmであり、かつレーザー回折式粒径分布計により測定したd90が100~2,000nmである粒子群
    A laminate having a base material layer and a hard coat layer, wherein the hard coat layer contains the following component (B), and the haze value measured according to JIS K7136 (2000) is less than 0.6% .
    Component (B): particles having an average primary particle size of 1 to 100 nm and a d90 of 100 to 2,000 nm measured by a laser diffraction particle size distribution analyzer
  17.  下記成分(B)を含み、かつその含有量がハードコートフィルム全体に対して0.01~55重量%であるハードコートフィルム。
      成分(B):平均一次粒子径が1~100nmであり、かつレーザー回折式粒径分布計により測定したd90が100~2,000nmである粒子群
    A hard coat film comprising the following component (B) and having a content of 0.01 to 55% by weight based on the entire hard coat film.
    Component (B): particles having an average primary particle size of 1 to 100 nm and a d90 of 100 to 2,000 nm measured by a laser diffraction particle size distribution analyzer
PCT/JP2016/053418 2015-02-13 2016-02-04 Curable composition, cured product, and laminate WO2016129507A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015026828 2015-02-13
JP2015-026828 2015-02-13
JP2015-219626 2015-11-09
JP2015-219627 2015-11-09
JP2015219626 2015-11-09
JP2015219627 2015-11-09

Publications (1)

Publication Number Publication Date
WO2016129507A1 true WO2016129507A1 (en) 2016-08-18

Family

ID=56614421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053418 WO2016129507A1 (en) 2015-02-13 2016-02-04 Curable composition, cured product, and laminate

Country Status (3)

Country Link
JP (3) JP2017088844A (en)
TW (1) TW201639925A (en)
WO (1) WO2016129507A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064970A1 (en) * 2015-10-13 2017-04-20 Dic株式会社 Active energy ray-curable resin composition, coating material, coating film, and film
CN114316332A (en) * 2017-03-14 2022-04-12 Dic株式会社 Method for producing molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366703B1 (en) * 2018-09-14 2022-02-23 주식회사 엘지화학 Transparent conductive film comprising polycarbonate substrate
JP2022107395A (en) * 2021-01-08 2022-07-21 昭和電工マテリアルズ株式会社 Thermosetting resin composition and electronic component device
JP2023169799A (en) * 2022-05-17 2023-11-30 Toppanホールディングス株式会社 Optical film and image display device using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002245672A (en) * 2000-11-30 2002-08-30 Mitsubishi Rayon Co Ltd Optical disk
WO2008047620A1 (en) * 2006-10-10 2008-04-24 Osaka Organic Chemical Industry Co., Ltd. Hyperbranched polymer, process for production thereof, and resin composition
JP2011183644A (en) * 2010-03-08 2011-09-22 Teijin Dupont Films Japan Ltd Hard coat film
JP2012058307A (en) * 2010-09-06 2012-03-22 Jsr Corp Curable composition and antireflective laminate
JP2012066409A (en) * 2010-09-21 2012-04-05 Dainippon Printing Co Ltd Optical laminate, transparent conductive film and capacitive touch panel
JP2012208169A (en) * 2011-03-29 2012-10-25 Konica Minolta Holdings Inc Hard coat film, heat ray shielding film and organic element device using the same
JP2013035768A (en) * 2011-08-05 2013-02-21 Dic Corp New silane compound, inorganic particle with processed surface, and curable resin composition
JP2013035979A (en) * 2011-08-10 2013-02-21 Hitachi Chemical Co Ltd Photocurable resin composition and optical element using the same
JP2014199414A (en) * 2013-03-11 2014-10-23 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board having cured coating film formed by using the same
JP2014208431A (en) * 2013-03-27 2014-11-06 大日本印刷株式会社 Transfer sheet and covering member prepared using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076005A (en) * 2003-09-03 2005-03-24 Nippon Kayaku Co Ltd Photosensitive resin composition for hard coat
JP2005288490A (en) * 2004-03-31 2005-10-20 Nof Corp Flux composition for soldering and solder paste
JP4830373B2 (en) * 2004-10-27 2011-12-07 Jsr株式会社 Curable composition, cured product thereof and laminate
JP5510331B2 (en) * 2008-09-26 2014-06-04 旭硝子株式会社 Fluoropolymer composition
JP5712742B2 (en) * 2011-03-31 2015-05-07 大日本印刷株式会社 Optical laminate
JP6098225B2 (en) * 2013-02-26 2017-03-22 三菱化学株式会社 Laminate and roll laminate
WO2014192654A1 (en) * 2013-05-28 2014-12-04 Dic株式会社 Active energy ray-curable composition and film produced using same
JP6255859B2 (en) * 2013-10-02 2018-01-10 三菱ケミカル株式会社 Curable composition
JP6258012B2 (en) * 2013-11-15 2018-01-10 リンテック株式会社 Hard coat film, transparent conductive film, and capacitive touch panel
JP2015096877A (en) * 2013-11-15 2015-05-21 リンテック株式会社 Hard coat film and manufacturing method therefor
JP5697223B1 (en) * 2014-06-24 2015-04-08 アイカ工業株式会社 Ultraviolet curable resin composition and film, and conductive film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002245672A (en) * 2000-11-30 2002-08-30 Mitsubishi Rayon Co Ltd Optical disk
WO2008047620A1 (en) * 2006-10-10 2008-04-24 Osaka Organic Chemical Industry Co., Ltd. Hyperbranched polymer, process for production thereof, and resin composition
JP2011183644A (en) * 2010-03-08 2011-09-22 Teijin Dupont Films Japan Ltd Hard coat film
JP2012058307A (en) * 2010-09-06 2012-03-22 Jsr Corp Curable composition and antireflective laminate
JP2012066409A (en) * 2010-09-21 2012-04-05 Dainippon Printing Co Ltd Optical laminate, transparent conductive film and capacitive touch panel
JP2012208169A (en) * 2011-03-29 2012-10-25 Konica Minolta Holdings Inc Hard coat film, heat ray shielding film and organic element device using the same
JP2013035768A (en) * 2011-08-05 2013-02-21 Dic Corp New silane compound, inorganic particle with processed surface, and curable resin composition
JP2013035979A (en) * 2011-08-10 2013-02-21 Hitachi Chemical Co Ltd Photocurable resin composition and optical element using the same
JP2014199414A (en) * 2013-03-11 2014-10-23 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board having cured coating film formed by using the same
JP2014208431A (en) * 2013-03-27 2014-11-06 大日本印刷株式会社 Transfer sheet and covering member prepared using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064970A1 (en) * 2015-10-13 2017-04-20 Dic株式会社 Active energy ray-curable resin composition, coating material, coating film, and film
CN114316332A (en) * 2017-03-14 2022-04-12 Dic株式会社 Method for producing molded article
CN114316332B (en) * 2017-03-14 2023-08-04 Dic株式会社 Method for producing molded article

Also Published As

Publication number Publication date
JP2023090792A (en) 2023-06-29
JP2017088844A (en) 2017-05-25
JP2021169613A (en) 2021-10-28
TW201639925A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6300838B2 (en) Plastic film
JP2023090792A (en) Curable composition, cured article and laminate
JP5407114B2 (en) Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film
JP6155328B2 (en) Hard coating film
US9778398B2 (en) Hard coating film and preparation method thereof
EP2840110B1 (en) Method for manufacturing hard coating film
JP6303948B2 (en) Curable composition, cured product and laminate
WO2014030845A1 (en) Hard coating composition
CN104755540A (en) Hard coating film
JP2013173871A (en) Composition, antistatic coating agent, and antistatic laminate
JP6645316B2 (en) Curable composition, cured product and laminate
JP5958710B2 (en) Lipophilic hyperbranched polymer and photopolymerizable composition containing the same
JP6565235B2 (en) Curable composition, cured product and laminate
JP6295652B2 (en) Photocurable polymer, photocurable resin composition, cured product thereof, and cured coating film
JP6772461B2 (en) Manufacturing method of laminate and display cover
WO2015045200A1 (en) Photocurable resin composition and cured film thereof
WO2015076566A1 (en) Plastic film
WO2015019758A1 (en) Coating material composition for adjusting refractive index and laminate thereof
JP6394258B2 (en) Curable composition, cured product and laminate
JP6255860B2 (en) Curable resin composition, cured product, laminate, hard coat film and film laminate
JP6187099B2 (en) Curable resin composition, cured product, laminate, hard coat film and film laminate
JP2015199333A (en) laminate
JP2014193943A (en) Active energy ray-curable resin composition, coating agent and film, sheet and molded product containing layer obtained by curing the same
JP6311549B2 (en) Curable composition, cured product and laminate
JPWO2018212263A1 (en) Photocurable composition containing fluoropolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749151

Country of ref document: EP

Kind code of ref document: A1