WO2015045200A1 - Photocurable resin composition and cured film thereof - Google Patents

Photocurable resin composition and cured film thereof Download PDF

Info

Publication number
WO2015045200A1
WO2015045200A1 PCT/JP2013/085176 JP2013085176W WO2015045200A1 WO 2015045200 A1 WO2015045200 A1 WO 2015045200A1 JP 2013085176 W JP2013085176 W JP 2013085176W WO 2015045200 A1 WO2015045200 A1 WO 2015045200A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
group
particles
resin composition
Prior art date
Application number
PCT/JP2013/085176
Other languages
French (fr)
Japanese (ja)
Inventor
雅雄 木口
慎司 足立
亮一 中井
Original Assignee
ハリマ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社 filed Critical ハリマ化成株式会社
Priority to KR1020167007041A priority Critical patent/KR101751372B1/en
Priority to JP2015538834A priority patent/JP6031195B2/en
Priority to CN201380079762.9A priority patent/CN105579481B/en
Publication of WO2015045200A1 publication Critical patent/WO2015045200A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00

Definitions

  • the present invention relates to a photocurable resin composition suitably used for forming a hard coat layer and a cured film thereof.
  • information terminal devices such as mobile phones, personal digital assistants (PDAs), portable game machines, digital cameras, personal computers, and televisions are known.
  • PDAs personal digital assistants
  • a touch panel is mounted on the front surface of the display panel.
  • the touch panel can input necessary information such as data information to the information terminal device by pressing the surface panel with a finger or a pen.
  • Touch panel classifications include optical, ultrasonic, capacitive, and resistive film systems.
  • a laminated film having a transparent base material and a transparent conductive layer having a pattern shape such as a stripe shape disposed on the transparent base material is used.
  • a hard coat layer is formed by applying a coating agent on the surface of the transparent substrate, and a transparent conductive layer is disposed on the hard coat layer.
  • a transparent conductive layer is disposed on the hard coat layer via an adhesive layer. According to the hard coat layer, scratch resistance can be imparted to the surface of the transparent substrate.
  • Such a hard coat layer is required to have high transparency in order to ensure the visibility of the touch panel.
  • Patent Document 1 A photocurable hydrophilic coating agent containing a resin component containing 55 to 95% by mass of a photopolymerizable polyfunctional compound having a polymerizable group is disclosed.
  • Patent Document 2 a reaction obtained by adding a carboxyl group-containing (meth) acrylic compound (a2) to a polymer obtained by polymerizing a polymerization component (a1) containing a vinyl compound having an epoxy group in the molecule.
  • a mold resin composition is disclosed.
  • Patent Document 3 discloses an optical sheet that has a functional layer on at least one surface of a transparent substrate, and the functional layer is made by dispersing translucent inorganic particles and / or translucent organic particles in a transparent resin. ing.
  • the hard coat layer formed using the photocurable hydrophilic coating agent of Patent Document 1 has low blocking resistance. Therefore, when the transparent base material which has a hard-coat layer is wound up in roll shape or stored, it will become difficult for the transparent base materials to adhere and peel.
  • the active energy ray-curable resin composition of Patent Document 2 contains colloidal silica as inorganic particles. Concavities and convexities are formed by inorganic particles on the surface of the hard coat layer formed using the active energy ray-curable resin composition, thereby imparting blocking resistance to the hard coat layer.
  • the use of only inorganic particles can not only sufficiently improve the blocking resistance of the hard coat layer, but also lowers the transparency of the hard coat layer.
  • irregularities are formed on the surface of the functional layer by translucent inorganic particles and / or translucent organic particles.
  • such irregularities are formed in order to impart antiglare properties to the optical sheet.
  • translucent inorganic particles and translucent organic particles having a large particle diameter are used. Use of such translucent inorganic particles and translucent organic particles reduces the transparency of the functional layer.
  • the formation of the transparent conductive layer or the adhesive layer on the hard coat layer can be performed by, for example, applying an ink such as a composition containing a conductive paste or an adhesive to the hard coat layer.
  • an ink such as a composition containing a conductive paste or an adhesive
  • the hard coat layer repels the ink. Therefore, ink cannot be printed with high accuracy, and a transparent conductive layer or adhesive layer having a desired pattern shape or uniform thickness cannot be formed on the hard coat layer. Therefore, it is also necessary to improve the printability of the hard coat layer.
  • an object of the present invention is to provide a photocurable resin composition capable of forming a hard coat layer that has improved blocking resistance without lowering transparency and also has excellent printability. Is to provide.
  • the photocurable resin composition of the present invention is The hydroxyl value is 10 to 350 mg KOH / g, the (meth) acryl equivalent is 100 to 800 g / eq, the weight average molecular weight is 10,000 to 200,000, and the glass transition point is 50 to 110 ° C.
  • the (meth) acrylic polymer (A) preferably contains 10 to 90% by weight of an alkyl (meth) acrylate component.
  • the inorganic particles (B) are preferably at least one of metal particles and metal oxide particles.
  • the organic particles (C) are preferably (meth) acrylic resin particles.
  • the photocurable resin composition preferably contains a photopolymerization initiator.
  • the cured film of the present invention is characterized by curing the photocurable resin composition.
  • the photocurable resin composition of the present invention it is possible to form a hard coat layer having improved blocking resistance without lowering transparency and also having excellent printability.
  • the photocurable resin composition of the present invention has a (meth) acrylic polymer (A), an inorganic particle (B), an organic particle (C), and one molecule having a photopolymerizable group and a hydroxyl group in the side chain.
  • a photopolymerizable polyfunctional compound (D) having two or more photopolymerizable groups is contained therein.
  • the photocurable resin composition of the present invention contains at least one (meth) acrylic polymer (A) having a photopolymerizable group and a hydroxyl group in the side chain.
  • the (meth) acrylic polymer (A) can be radically polymerized with a photopolymerizable polyfunctional compound (D) and a photopolymerizable group to form a crosslinked structure. Thereby, a hard coat layer having high hardness and excellent scratch resistance can be formed.
  • the (meth) acrylic polymer (A) may have at least one photopolymerizable group and a hydroxyl group in the side chain, but the (meth) acrylic polymer (A) is photopolymerizable in the side chain. It is preferable that each group has two or more hydroxyl groups.
  • (meth) acryl means acryl or methacryl.
  • the photopolymerizable group of the (meth) acrylic polymer (A) has an ethylenically unsaturated double bond capable of radical polymerization with the photopolymerizable group of the photopolymerizable polyfunctional compound (D) described later.
  • the photopolymerizable group include an acryloyl group, a methacryloyl group, a styryl group, a vinyl group, and an allyl group, and an acryloyl group and a methacryloyl group are preferable.
  • Preferred examples of the (meth) acrylic polymer (A) include the following (meth) acrylic polymers (A1) to (A3).
  • a polymer having a glycidyl group obtained by radical polymerization of a monomer composition (I) containing a radically polymerizable monomer having a glycidyl group and, if necessary, an alkyl (meth) acrylate having no glycidyl group.
  • the (meth) acrylic polymers (A1) to (A3) can be produced, for example, by the following methods (1) to (3).
  • a method comprising the steps of: (2) Radical polymerization of a radical polymerizable monomer having a hydroxyl group and, if necessary, a monomer composition (II) containing an alkyl (meth) acrylate having no hydroxyl group in the presence of a radical polymerization initiator.
  • a specific example of the production method (1) of the (meth) acrylic polymer (A1) will be described below.
  • a polymer (I ′) having a glycidyl group is produced.
  • a compound having a carboxyl group and a photopolymerizable group and, if necessary, a catalyst are added to the reaction vessel.
  • a polymerization inhibitor such as p-methoxyphenol or hydroquinone (HQ) may be added to the reaction vessel. Thereafter, while allowing oxygen to be blown into the reaction vessel as necessary, for example, by allowing the reaction solution to react at 30 to 150 ° C. for 6 to 12 hours, photopolymerization is performed on the side chain.
  • a (meth) acrylic polymer (A1) having a functional group and a hydroxyl group can be produced.
  • radical polymerizable monomer having a glycidyl group examples include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and allyl glycidyl ether, with glycidyl (meth) acrylate being preferred.
  • the radically polymerizable monomer which has a glycidyl group may be used independently, or 2 or more types may be used together.
  • (meth) acrylate means an acrylate or a methacrylate.
  • the content of the radically polymerizable monomer having a glycidyl group in the monomer composition (I) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • the content of the radical polymerizable monomer having a glycidyl group is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • the monomer composition (I) preferably contains an alkyl (meth) acrylate having no glycidyl group.
  • the alkyl (meth) acrylate having no glycidyl group preferably has no hydroxyl group.
  • Such alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) ) Acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, etc.
  • methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate are preferable, and methyl (meth) acrylate is more preferable.
  • alkyl (meth) acrylate may be used independently or 2 or more types may be used together.
  • the content of the alkyl (meth) acrylate having no glycidyl group in the monomer composition (I) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • content of the alkyl (meth) acrylate which does not have a glycidyl group more than the said lower limit, gelatinization at the time of the synthesis
  • combination of a (meth) acrylic-type polymer can be suppressed.
  • a hard coat layer having a high crosslink density and excellent hardness can be formed.
  • the monomer composition (I) may contain an alkyl (meth) acrylate having a hydroxyl group.
  • an alkyl (meth) acrylate having a hydroxyl group By using an alkyl (meth) acrylate having a hydroxyl group, the hydroxyl value of the (meth) acrylic polymer (A1) can be adjusted.
  • alkyl (meth) acrylate having a hydroxyl group examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate and the like.
  • 2-hydroxyethyl (meth) acrylate is preferable.
  • the alkyl (meth) acrylate which has a hydroxyl group may be used independently, or 2 or more types may be used together.
  • the content of the alkyl (meth) acrylate having a hydroxyl group in the monomer composition (I) is preferably 80% by weight or less, and more preferably 60% by weight or less.
  • the monomer composition (I) may contain a (meth) acrylate having an alicyclic group.
  • the (meth) acrylate having an alicyclic group include cyclohexyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopenta Examples include dienyl (meth) acrylate, isobornyl (meth) acrylate, and tricyclodecanyl (meth) acrylate.
  • the content of the (meth) acrylate having an alicyclic group in the monomer composition (I) is preferably 80% by weight or less, and more preferably 60% by weight or less.
  • a compound having a carboxyl group and a photopolymerizable group is added to the polymer (I ′) having a glycidyl group.
  • the compound having a carboxyl group and a photopolymerizable group include an ethylenically unsaturated carboxylic acid or an anhydride thereof. Specific examples include acrylic acid, methacrylic acid, ⁇ -carboxy-polycaprolactone monoacrylate, monohydroxyethyl acrylate phthalate and the like, and acrylic acid and methacrylic acid are preferable.
  • the compound which has a carboxyl group and a photopolymerizable group may be used independently, or 2 or more types may be used together.
  • the carboxyl group possessed by these compounds reacts with the glycidyl group possessed by the polymer (I ′) to form an ester bond and generate a new hydroxyl group.
  • the photopolymerizable group can be introduced.
  • the (meth) acrylic-type polymer (A1) which has a photopolymerizable group and a hydroxyl group in a side chain is obtained.
  • the glycidyl group in the radical polymerizable monomer having a glycidyl group used for the production of the polymer (I ′) is preferably 0.3 to 1.5, preferably 0.5 to 1.2. Is more preferable, and 1.0 is particularly preferable.
  • the molar ratio is too low, the number of side chain photopolymerizable groups decreases, which may reduce the hardness of the hard coat layer. If the molar ratio is too high, unreacted acid remains, and the water resistance of the hard coat layer may be lowered. Further, as described above, the glycidyl group reacts with the carboxyl group to form an ester bond and generate a hydroxyl group. Therefore, the hydroxyl value of the (meth) acrylic polymer (A1) can be adjusted by adjusting the molar ratio.
  • a polymerization inhibitor such as p-methoxyphenol or hydroquinone (HQ) may be added to the reaction vessel. Thereafter, while allowing oxygen to be blown into the reaction vessel as necessary, for example, by allowing the reaction solution to react at 30 to 150 ° C. for 6 to 12 hours, photopolymerization is performed on the side chain.
  • a (meth) acrylic polymer (A2) having a functional group and a hydroxyl group can be produced.
  • radical polymerizable monomer having a hydroxyl group examples include alkyl (meth) acrylate having a hydroxyl group, acrylic acid N-hydroxymethylamide, methacrylic acid N-hydroxymethylamide, 4-hydroxymethylcyclohexyl (meth) acrylate, and the like.
  • An alkyl (meth) acrylate having an alkyl group is preferred, and an alkyl (meth) acrylate having a hydroxyl group in the alkyl group is more preferred.
  • alkyl (meth) acrylate having a hydroxyl group examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate and the like.
  • the radically polymerizable monomer which has a hydroxyl group may be used independently, or 2 or more types may be used together.
  • radical polymerizable monomer having a hydroxyl group 2-hydroxyethyl (meth) acrylate is preferable, and 2-hydroxyethyl methacrylate (2-HEMA) is more preferable.
  • 2-hydroxyethyl (meth) acrylate is preferable, and 2-hydroxyethyl methacrylate (2-HEMA) is more preferable.
  • the content of the radically polymerizable monomer having a hydroxyl group in the monomer composition (II) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • a hard coat layer having a high crosslinking density and excellent hardness can be formed.
  • the inorganic particles (B) and the organic particles (C) are highly dispersed, and thereby the transparency and printability of the hard coat layer. Can also be improved.
  • the content of the radical polymerizable monomer having a hydroxyl group is set to the upper limit value or less, it is possible to suppress a decrease in the transparency of the hard coat layer due to aggregation of the inorganic particles (B) and the organic particles (C). .
  • the monomer composition (II) preferably further contains an alkyl (meth) acrylate having no hydroxyl group.
  • alkyl (meth) acrylate not having a hydroxyl group include the same alkyl (meth) acrylates having no glycidyl group in the method (1) described above. Of these, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate are preferable.
  • the content of the alkyl (meth) acrylate having no hydroxyl group in the monomer composition (II) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • the inorganic particles (B) and the organic particles (C) are highly dispersed by setting the content of the alkyl (meth) acrylate having no hydroxyl group to the upper limit value or less, and the transparency of the hard coat layer can be increased. Printability can be improved. Further, by setting the content of alkyl (meth) acrylate having no hydroxyl group to the upper limit value or less, a hard coat layer having a high crosslinking density and excellent hardness can be formed.
  • the monomer composition (II) may contain a (meth) acrylate having an alicyclic group.
  • Specific examples of the (meth) acrylate having an alicyclic group include those similar to the (meth) acrylate having an alicyclic group in the method (1) described above.
  • the content of the (meth) acrylate having an alicyclic group in the monomer composition (II) is preferably 80% by weight or less, and more preferably 60% by weight or less.
  • a compound having an isocyanate group and a photopolymerizable group is added to the polymer (II ′).
  • a compound having an isocyanate group and a photopolymerizable group is added to a part of the hydroxyl group of the polymer (II ′).
  • the side chain has a hydroxyl group and a photopolymerizable group (meth)
  • An acrylic polymer (A2) is obtained.
  • Examples of the compound having an isocyanate group and a photopolymerizable group include 2-isocyanatoethyl methacrylate (for example, trade name “Karenz MOI” manufactured by Showa Denko KK), 1,1- (bisacryloyloxymethyl) Ethyl isocyanate (for example, trade name “Karenz BEI” manufactured by Showa Denko KK), 2-isocyanatoethyl acrylate (for example, trade name “Karenz AOI” manufactured by Showa Denko KK), (Meta) Examples thereof include (meth) acryloyl isocyanate in which an acryloyl group is bonded to an isocyanate group via an alkylene group having 2 to 6 carbon atoms, and derivatives thereof. Examples of (meth) acryloyl isocyanate include 2-methacryloyloxyethyl isocyanate.
  • Examples of the derivative include (meth) acrylate having an isocyanate group masked with a blocking agent.
  • Specific examples include 2- (O- [1′-methylpropylideneamino] carboxyamino) ethyl methacrylate (for example, trade name “Karenz MOI-BM” manufactured by Showa Denko KK), 2-[( 3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate (for example, trade name “Karenz MOI-BP” manufactured by Showa Denko KK) and the like.
  • the compound which has an isocyanate group and a photopolymerizable group may be used independently, or 2 or more types may be used together. Of these, 2-isocyanatoethyl methacrylate is preferable.
  • the hydroxyl group (—OH) in the radical polymerizable monomer having a hydroxyl group used in the production of the polymer (II ′) is used.
  • the ratio of the number of moles of isocyanate groups (—NCO) to the number of moles (—NCO / —OH) is preferably 0.05 to 0.9, more preferably 0.1 to 0.9.
  • the hydroxyl value of the (meth) acrylic polymer (A2) can also be adjusted by adjusting the molar ratio.
  • Polymer (III ′) is produced by polymerization.
  • a compound having a glycidyl group and a photopolymerizable group and, if necessary, a catalyst are added to the reaction vessel.
  • a polymerization inhibitor such as p-methoxyphenol or hydroquinone (HQ) may be added to the reaction vessel.
  • a (meth) acrylic polymer (A3) having a functional group and a hydroxyl group can be produced.
  • Examples of the radical polymerizable monomer having a carboxyl group used in the method (3) include an ethylenically unsaturated carboxylic acid or an anhydride thereof.
  • ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid or salts thereof; ⁇ -carboxy-polycaprolactone monoacrylate, phthalic acid monohydroxyethyl acrylate, etc.
  • Acrylic acid and methacrylic acid are preferred.
  • the radically polymerizable monomer which has a carboxyl group may be used independently, or 2 or more types may be used together.
  • the content of the radical polymerizable monomer having a carboxyl group in the monomer composition (III) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • a hard coat layer having a high crosslinking density and excellent hardness can be formed.
  • combination of a (meth) acrylic-type polymer can be suppressed by making content of the radically polymerizable monomer which has a carboxyl group below into the said upper limit.
  • the monomer composition (III) preferably further contains an alkyl (meth) acrylate having no carboxyl group.
  • alkyl (meth) acrylate having no carboxyl group include the same alkyl (meth) acrylates having no glycidyl group in the above-described method (1).
  • the content of the alkyl (meth) acrylate having no carboxyl group in the monomer composition (III) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • the monomer composition (III) may contain an acrylic (meth) acrylate having a hydroxyl group.
  • Specific examples of the acrylic (meth) acrylate having a hydroxyl group include those similar to the alkyl (meth) acrylate having a hydroxyl group in the method (1) described above.
  • the hydroxyl value of the (meth) acrylic polymer (A3) can be adjusted.
  • the content of the alkyl (meth) acrylate having a hydroxyl group in the monomer composition (III) is preferably 90% by weight or less, more preferably 80% by weight or less, particularly preferably 10 to 90% by weight, and 20 to 80% by weight. Is most preferred.
  • the inorganic particles (B) and the organic particles (C) are highly dispersed to improve the transparency and printability of the hard coat layer. be able to.
  • the content of the alkyl (meth) acrylate having a hydroxyl group is equal to or lower than the above upper limit value, it is possible to suppress a decrease in transparency of the hard coat layer due to aggregation of the inorganic particles (B) and the organic particles (C). it can.
  • the monomer composition (III) may contain a (meth) acrylate having an alicyclic group.
  • Specific examples of the (meth) acrylate having an alicyclic group include those similar to the (meth) acrylate having an alicyclic group in the method (1) described above.
  • the content of the (meth) acrylate having an alicyclic group in the monomer composition (III) is preferably 80% by weight or less, and more preferably 60% by weight or less.
  • a compound having a glycidyl group and a photopolymerizable group is added to the polymer (III ′).
  • the carboxyl group possessed by the polymer (III ′) reacts with the glycidyl group possessed by the compound, thereby forming an ester bond and generating a new hydroxyl group.
  • the photopolymerizable group can be introduced.
  • a (meth) acrylic polymer (A3) having a photopolymerizable group such as a vinyl group and a hydroxyl group in the side chain is obtained.
  • the compound having a glycidyl group and a photopolymerizable group examples include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and allyl glycidyl ether. preferable.
  • the compound which has a glycidyl group and a photopolymerizable group may be used independently, or 2 or more types may be used together.
  • the carboxyl group in the radical polymerizable monomer having a carboxyl group used for the production of the polymer (III ′) is preferably 0.3 to 1.5, preferably 0.5 to 1.2. Is more preferable, and 1.0 is more preferable.
  • the glycidyl group reacts with the carboxyl group to form an ester bond and generate a hydroxyl group. Therefore, the hydroxyl value of the (meth) acrylic polymer (A3) can be adjusted by adjusting the molar ratio.
  • the monomer composition (I), (II) or (III) is radically polymerized in the presence of a radical polymerization initiator.
  • a radical polymerization initiator those generally used in radical polymerization are used.
  • radical polymerization initiators include organic peroxides such as benzoyl peroxide, lauroyl peroxide, caproyl peroxide, t-hexyl peroxyneodecanate, and t-butyl peroxybivalate; 2,2-azobis- Isobutyronitrile, 2,2-azobis-2,4-dimethylvaleronitrile, 2,2-azobis-4-methoxy-2,4-dimethylvaleronitrile, azobis-2-methylbutyronitrile (Nippon Hydrazine Industry ( An azo compound such as a trade name “ABN-E”) manufactured by Co., Ltd. is preferable, and an azo compound is preferable.
  • a radical polymerization initiator may be used
  • the monomer composition (I), (II) or (III) is polymerized in a solvent.
  • the solvent is not particularly limited as long as it is stable with respect to each of the above-mentioned monomers.
  • petroleum hydrocarbon solvents such as hexane and mineral spirit; aromatic hydrocarbon solvents such as benzene, toluene and xylene; acetone, Ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone; ester solvents such as methyl acetate, ethyl acetate, butyl acetate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate; N, N-dimethylformamide, N, N -Aprotic polar solvents such as dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone and pyridine.
  • a solvent may be used independently and 2 or more types may be used together.
  • the mixing ratio of the solvent is not particularly limited and is appropriately set according to the purpose and application.
  • a commercial item can also be used for a solvent.
  • examples of petroleum hydrocarbon solvents include AF Solvent Nos. 4 to 7 manufactured by Nippon Oil Corporation.
  • examples of the aromatic hydrocarbon solvent include Ink Solvent No. 0 manufactured by Nippon Oil Corporation and Solvesso 100, 150, and 200 manufactured by Exxon Chemical.
  • a catalyst to each reactor.
  • the catalyst include dibutyltin dilaurate, dioctyltin laurate, dioctyltin dilaurate, triphenylphosphine, and a bismuth catalyst.
  • the hydroxyl value of the (meth) acrylic polymer (A) is limited to 10 to 350 mgKOH / g, preferably 30 to 330 mgKOH / g, more preferably 50 to 300 mgKOH / g. According to the (meth) acrylic polymer (A) having a hydroxyl value equal to or higher than the above lower limit, excellent printability can be imparted to the hard coat layer. Furthermore, according to the (meth) acrylic polymer (A) having a hydroxyl value within the above range, the inorganic particles (B) and the organic particles (C) can be highly dispersed, whereby the inorganic particles (B) and A decrease in the transparency of the hard coat layer due to the addition of the organic particles (C) can be suppressed. In addition, the hydroxyl value of (meth) acrylic-type polymer (A) can be measured by the method as described in the Example mentioned later.
  • the (meth) acrylic equivalent of the (meth) acrylic polymer (A) is limited to 100 to 800 g / eq, preferably 200 to 700 g / eq, more preferably 300 to 600 g / eq. According to the (meth) acrylic polymer (A) whose (meth) acrylic equivalent is not more than the above upper limit value, a hard coat layer having high hardness can be formed. Furthermore, according to the (meth) acrylic polymer (A) having a (meth) acrylic equivalent within the above range, the inorganic particles (B) and the organic particles (C) can be highly dispersed. The decrease in the transparency of the hard coat layer due to the addition of B) or the organic particles (C) can be suppressed.
  • the (meth) acrylic equivalent of (meth) acrylic polymer (A) is the (meth) acrylic polymer (A) per mole of (meth) acryloyl group possessed by (meth) acrylic polymer (A). Means the number of grams.
  • the (meth) acrylic equivalent of the (meth) acrylic polymer (A) can be calculated from the monomer composition that is the raw material of the (meth) acrylic polymer (A) by the following formula (I).
  • the total amount (g) of monomers used as the raw material for the (meth) acrylic polymer (A) is “W”
  • the weight average molecular weight of the (meth) acrylic polymer (A) is limited to 10,000 to 200,000, preferably 30,000 to 170,000, more preferably 50,000 to 150,000, 65 150,000 to 150,000 is particularly preferable.
  • the (meth) acrylic polymer (A) having a weight average molecular weight within the above range can disperse the inorganic particles (B) and the organic particles (C) highly, and has excellent blocking resistance and transparency.
  • a code layer can be formed.
  • the weight average molecular weight of the (meth) acrylic polymer (A) can be measured in terms of polystyrene using a gel permeation chromatograph (GPC). Specifically, the measurement of the weight average molecular weight using GPC can be performed as follows. First, the molecular weight distribution of the (meth) acrylic polymer (A) is measured by a gel permeation chromatograph (GPC) equipped with a differential refractive index detector (RID) to obtain a chromatogram (chart). From this chromatogram, the weight average molecular weight of the (meth) acrylic polymer (A) can be calculated using standard polystyrene as a calibration curve. In addition, the weight average molecular weight of a (meth) acrylic-type polymer (A) can be measured by the method as described in the Example mentioned later.
  • GPC gel permeation chromatograph
  • the glass transition point (Tg) of the (meth) acrylic polymer (A) is limited to 50 to 110 ° C., preferably 55 to 107 ° C., more preferably 60 to 105 ° C. According to the (meth) acrylic polymer (A) having a glass transition point equal to or higher than the above lower limit, a hard coat layer having high hardness and excellent scratch resistance and blocking resistance can be formed. Moreover, according to the (meth) acrylic polymer (A) having a glass transition point within the above range, the inorganic particles (B) and the organic particles (C) can be highly dispersed, and the blocking resistance and transparency can be improved. An excellent hard code layer can be formed. The glass transition point of the (meth) acrylic polymer (A) can be calculated by Fox's equation.
  • the (meth) acrylic polymer (A) preferably contains 10 to 90% by weight of an alkyl (meth) acrylate component as a monomer component.
  • Such a (meth) acrylic polymer (A) can be obtained by radical polymerization of a monomer composition containing 10 to 90% by weight of alkyl (meth) acrylate.
  • the organic particles (C) can be highly dispersed, whereby the transparency of the hard coat layer can be improved.
  • the alkyl (meth) acrylate used as the monomer component preferably has no glycidyl group or hydroxyl group.
  • Specific examples of the alkyl (meth) acrylate include ethyl (meth) acrylate, methyl (meth) acrylate, n-butyl (meth) acrylate, hexyl acrylate, 2-ethylbutyl (meth) acrylate, isooctyl (meth) acrylate, 2 -Ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate and the like.
  • methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate are preferable, and methyl (meth) acrylate is more preferable.
  • methyl (meth) acrylate not only can the organic particles (C) be highly dispersed, but also a hard coat layer having high hardness can be formed.
  • the content of the alkyl (meth) acrylate component in the (meth) acrylic polymer (A) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, particularly preferably 30 to 80% by weight, 70% by weight is most preferred. That is, the content of the alkyl (meth) acrylate in the monomer composition is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, particularly preferably 30 to 80% by weight, most preferably 40 to 70% by weight. preferable.
  • a hard coat layer excellent in transparency and hardness can be formed.
  • the content of the (meth) acrylic polymer (A) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable multifunctional.
  • the amount is limited to 10 to 40% by weight based on the total weight of the compound (D), but is preferably 12 to 37% by weight, and more preferably 15 to 35% by weight.
  • an inorganic particle (B) and organic particle (C) can be disperse
  • An excellent hard code layer can be formed.
  • high hardness of the hard coat layer can be ensured.
  • the photocurable resin composition of the present invention contains at least one kind of inorganic particles (B). According to the inorganic particles (B), a hard coat layer having high hardness and excellent scratch resistance and blocking resistance can be formed. Furthermore, polar groups such as hydroxyl groups are often present on the surface of the inorganic particles (B).
  • the (meth) acrylic polymer (A) having a predetermined hydroxyl value described above also has a hydroxyl group in the side chain. Therefore, the inorganic particles (B) and the (meth) acrylic polymer (A) are close in polarity to each other, and electrostatic repulsion is suppressed.
  • the inorganic particles (B) can be highly dispersed by using the (meth) acrylic polymer (A), thereby suppressing the decrease in the transparency of the hard coat layer due to the addition of the inorganic particles (B).
  • the scratch resistance and blocking resistance of the hard coat layer can be improved.
  • the said mechanism is guessed by this inventor etc., Therefore, this invention is not limited to the said mechanism.
  • Examples of the inorganic particles (B) include metal particles, metal oxide particles, metal sulfate particles, metal silicate particles, metal phosphate particles, metal carbonate particles, metal hydroxide particles, and fluorine compound particles. It is done. Among these, metal particles and metal oxide particles are preferable, and metal oxide particles are more preferable. The metal particles and the metal oxide particles are close in polarity to the (meth) acrylic polymer (A), and thus can be highly dispersed by the (meth) acrylic polymer (A).
  • An inorganic particle (B) may be used individually by 1 type, and 2 or more types may be used together.
  • Examples of the metal contained in the metal particles include Si, Ti, Mg, Ca, Zr, Sn, Sb, As, Zn, Nb, In, and Al.
  • Examples of the metal oxide contained in the metal oxide particles include oxides of metals such as Si, Ti, Mg, Ca, Zr, Sn, Sb, As, Zn, Nb, In, and Al.
  • Specific examples of the metal oxide particles include silicon oxide particles, titanium oxide particles, aluminum oxide particles, tin oxide particles, indium oxide particles, ITO particles, zinc oxide particles, zirconium oxide particles, and magnesium oxide particles.
  • fine particles of a different element doped metal oxide in which a different element such as Ab, Sn, F, P, Al or the like is doped into these metal oxide particles may be used.
  • silicon oxide particles aluminum oxide particles, zirconium oxide particles, and titanium oxide particles are preferable, and silicon oxide particles are more preferable.
  • inorganic particles (B) inorganic particles dispersed in a colloidal form can be used.
  • the inorganic particles (B) may be surface-treated by a known method.
  • the shape of the inorganic particles (B) is not particularly limited, and examples thereof include a lump shape, a spherical shape, a hollow shape, a porous shape, a rod shape, a plate shape, a fiber shape, and an indefinite shape. You may use combining the inorganic particle (B) of a different shape.
  • the average particle diameter of the inorganic particles (B) is limited to 10 nm to 500 nm, preferably 10 nm to 400 nm, more preferably 10 nm to 200 nm.
  • the inorganic particles (B) having an average particle size of less than the lower limit it is difficult to achieve high dispersion, and the transparency and blocking resistance of the hard coat layer may be reduced.
  • the inorganic particle (B) whose average particle diameter exceeds the above upper limit there is a possibility that the transparency, hardness, blocking resistance and printability of the hard coat layer may be lowered.
  • the inorganic particles (B) exist as aggregated particles such as primary particles or secondary particles. Therefore, the average particle diameter of the inorganic particles (B) is a value measured by a measurement method described later.
  • the measurement of the average particle diameter of an inorganic particle (B) can be performed as follows. First, the photocurable resin composition is diluted with methyl isobutyl ketone to obtain a diluted solution. The concentration of the inorganic particles (B) in the diluted solution is 0.1 to 1% by weight. Next, the volume particle size distribution of the inorganic particles (B) is measured using a diluting solution with a laser light diffraction / scattering particle size distribution measuring device (for example, Nanotrac UPA-EX150 manufactured by Nikkiso Co., Ltd.). The cumulative value of 50% can be calculated as the average particle diameter of the inorganic particles (B). Specific measurement conditions are as shown below.
  • the measured value of the average particle diameter of the inorganic particles obtained under the following measurement conditions is defined as the average particle diameter of the inorganic particles (B).
  • the content of inorganic particles (B) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable polyfunctional compound (D). However, it is preferably 6 to 35% by weight, more preferably 7 to 30% by weight. If the content of the inorganic particles (B) is less than the above lower limit, there is a possibility that excellent blocking resistance cannot be imparted to the hard coat layer. Moreover, when content of an inorganic particle (B) exceeds the said upper limit, there exists a possibility that the transparency and printability of a hard-coat layer may fall. Furthermore, if the content of the inorganic particles (B) exceeds the above upper limit, the hard coat layer may become too hard and cracks may easily occur.
  • the photocurable resin composition of the present invention contains at least one kind of organic particles (C).
  • the printability of the hard coat layer can be improved by using the inorganic particles (B) and the organic particles (C) in combination in the presence of the (meth) acrylic polymer (A).
  • the mechanism for obtaining such an effect is not clear, but can be estimated as follows. In addition, the following mechanism is guessed by this inventor etc., Therefore, this invention is not limited to the following mechanism.
  • the inorganic particles (B) can be highly dispersed by the hydroxyl groups of the (meth) acrylic polymer (A), but the presence of the inorganic particles (B) allows the hydroxyl groups of the (meth) acrylic polymer (A) to be dispersed. Many will exist toward the inside of the hard coat layer.
  • the organic particles (C) have hydrophobicity, and the hydrophobicity of the organic particles (C) contributes to the dispersion of the inorganic particles (B) among the hydroxyl groups of the (meth) acrylic polymer (A). Unexposed hydroxyl groups can be present toward the outside of the hard coat layer.
  • the inorganic particles (B) and the organic particles (C) in combination in the presence of the (meth) acrylic polymer (A) the number of hydroxyl groups existing on the outer surface of the hard coat layer is increased. be able to. Since such a hard coat layer has a large number of hydroxyl groups on the surface thereof, the conformability to ink is improved, thereby enabling printing with high accuracy without repelling the ink.
  • Organic particles (C) include particles containing a synthetic resin.
  • Synthetic resins include polyamide resins, polyamideimide resins, polyacetal resins, (meth) acrylic resins, melamine resins, (meth) acrylic-styrene copolymers, polycarbonate resins, styrene resins, polyvinyl chloride resins. Examples include resins, benzoguanamine-melamine formaldehyde, silicone resins, fluorine resins, polyester resins, cross-linked (meth) acrylic resins, cross-linked polystyrene resins, cross-linked polyurethane resins, and epoxy resins.
  • An organic particle (C) may be used individually by 1 type, and 2 or more types may be used together.
  • (meth) acrylic resin particles are preferable, and polyalkyl (meth) acrylate particles are more preferable. Since the (meth) acrylic resin particles have low polarity, many hydroxyl groups of the (meth) acrylic polymer (A) can be present on the hard coat layer surface.
  • polyalkyl (meth) acrylate particles polymethyl (meth) acrylate particles, polyethyl (meth) acrylate particles, polypropyl (meth) acrylate particles, polybutyl (meth) acrylate particles, polypentyl (meth) acrylate particles, polyhexyl (meth) Acrylate particles, polyheptyl (meth) acrylate particles, polyoctyl (meth) acrylate particles, poly-2-ethylhexyl (meth) acrylate particles, polynonyl (meth) acrylate particles, polydecyl (meth) acrylate particles, polybenzyl (meth) acrylate particles, And polydicyclopentadienyl (meth) acrylate particles.
  • polymethyl (meth) acrylate particles are preferable.
  • the average particle diameter of the organic particles (C) is limited to 10 nm to 500 nm, but is preferably 10 nm to 400 nm, and more preferably 50 nm to 300 nm.
  • the organic particles (C) having an average particle diameter within the above range are hardly dispersed in the hydroxyl groups of the (meth) acrylic polymer (A) that do not contribute to the dispersion of the inorganic particles (B). It can exist toward the outer side of a coating layer. Thereby, a hard coat layer having many hydroxyl groups on the surface can be formed. Further, the organic particles (C) having an average particle diameter exceeding the above upper limit may reduce the transparency and hardness of the hard coat layer.
  • the measurement of the average particle diameter of the organic particles (C) can be performed in the same manner as the method for measuring the average particle diameter of the inorganic particles (B) described above.
  • the organic particles (C) are present as aggregated particles such as primary particles or secondary particles. Therefore, let the average particle diameter of organic particle (C) be the value measured by the same method as the measuring method of the average particle diameter of inorganic particle (B) mentioned above.
  • the concentration of the organic particles (C) in the diluted solution is 0.1 to 1% by weight.
  • the content of the organic particles (C) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable polyfunctional compound (D).
  • the total weight is limited to 0.5 to 10% by weight, preferably 0.7 to 9% by weight, and more preferably 1 to 8% by weight.
  • the photocurable resin composition of the present invention contains at least one photopolymerizable polyfunctional compound (D) having two or more photopolymerizable groups in one molecule.
  • the photopolymerizable polyfunctional compound (D) can be radically polymerized with the (meth) acrylic polymer (A).
  • the photopolymerizable polyfunctional compound (D) can crosslink between the molecular chains of the (meth) acrylic polymer (A) to form a dense network structure.
  • Inorganic particles (B) and organic particles (C) can be taken into such a dense network structure, whereby inorganic particles (B) and organic particles (C) are highly dispersed while suppressing their aggregation.
  • a hard coat layer can be formed. Such a hard coat layer is excellent in transparency, blocking resistance, and printability because the inorganic particles (B) and the organic particles (C) are highly dispersed.
  • the photopolymerizable group contained in the photopolymerizable polyfunctional compound (D) has an ethylenically unsaturated double bond capable of radical polymerization with the photopolymerizable group of the (meth) acrylic polymer (A).
  • an acryloyl group, a methacryloyl group, a styryl group, a vinyl group, an allyl group, etc. are mentioned, and an acrylolyl group and a methacryloyl group are preferable.
  • Examples of the photopolymerizable polyfunctional compound (D) having two photopolymerizable groups in one molecule include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and neopentyl glycol di (meth).
  • Alkylene glycol di (meth) acrylate such as acrylate; polyalkylene glycol di (meth) acrylate such as diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate (Meth) acrylate; 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentadiene di (meth) Acrylate, neopentyl glycol adipate di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate;
  • Examples of the photopolymerizable polyfunctional compound (D) having three photopolymerizable groups in one molecule include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol tri (meta).
  • Acrylate tris (acryloxyethyl) isocyanurate, or their modified alkylene oxide, and isocyanuric acid alkylene oxide modified tri (meth) acrylate.
  • Examples of the photopolymerizable polyfunctional compound (D) having four photopolymerizable groups in one molecule include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and their alkylene oxide modified products. Etc.
  • Examples of the photopolymerizable polyfunctional compound (D) having five photopolymerizable groups in one molecule include dipentaerythritol penta (meth) acrylate or their modified alkylene oxides.
  • Examples of the photopolymerizable polyfunctional compound (D) having six photopolymerizable groups in one molecule include dipentaerythritol hexa (meth) acrylate, pentaerythritol triacrylate hexamethylene diisocyanate urethane oligomer (Kyoeisha Chemical Co., Ltd.) Trade name “UA-306H”), caprolactone-modified dipentaerythritol hexa (meth) acrylate, or an alkylene oxide-modified product thereof.
  • an oligomer having two or more photopolymerizable groups in one molecule is preferable.
  • the oligomer include urethane (meth) acrylate, polyester (meth) acrylate, and epoxy (meth) acrylate. Of these, urethane (meth) acrylate oligomers are more preferable.
  • the urethane (meth) acrylate oligomer is obtained by reacting an isocyanate group-terminated urethane prepolymer obtained by reacting polyols and polyisocyanate with a (meth) acrylate monomer having at least one hydroxyl group in one molecule. .
  • the number of photopolymerizable groups contained in the molecule of the photopolymerizable polyfunctional compound (D) is preferably 3 to 20, more preferably 4 to 20, and particularly preferably 5 to 15. According to the photopolymerizable polyfunctional compound (D) in which the number of photopolymerizable groups is within the above range, a dense cross-linked structure can be formed, thereby improving transparency, hardness, blocking resistance and printability. An excellent hard coat layer can be provided.
  • the content of the photopolymerizable polyfunctional compound (D) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable polyfunctional. Although it is limited to 20 to 70% by weight relative to the total weight of compound (D), it is preferably 23 to 65% by weight, more preferably 25 to 60% by weight. By setting the content of the photopolymerizable polyfunctional compound (D) to the above lower limit value or more, excellent hardness of the hard coat layer can be ensured.
  • an inorganic particle (B) and an organic particle (C) are highly dispersed, Thereby, transparency and blocking resistance
  • a hard coat layer excellent in printability can be formed.
  • photopolymerization initiators oxime ester photopolymerization initiators, diazophenylamine photopolymerization initiators, naphthoquinone diazosulfonic acid photopolymerization initiators, and dimethylaminobenzoic acid photopolymerization initiators.
  • a photoinitiator may be used independently or 2 or more types may be used together.
  • benzoin ether photopolymerization initiator examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether.
  • benzophenone photopolymerization initiator examples include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, 2,4,6-trimethylbenzophenone, and the like.
  • thioxanthone photopolymerization initiator examples include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like.
  • alkylphenone photopolymerization initiator examples include 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 1-hydroxy.
  • -Cyclohexyl-phenyl-ketone 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) Chill] -1- [4- (4-morpholinyl) phenyl] -1-butanone and the
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like.
  • titanocene photopolymerization initiators include bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium. Etc.
  • oxime ester photopolymerization initiator examples include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone-1- [9-ethyl-6- ( 2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), oxy-phenyl-acetic acid 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, oxy-phenyl -Acetic acid 2- (2-hydroxyethoxy) ethyl ester and the like.
  • the content of the photopolymerization initiator in the photocurable resin composition is preferably 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer (A). Is more preferable, and 1 to 5 parts by weight is particularly preferable.
  • the photocurable resin composition of the present invention may contain a photopolymerizable monofunctional compound having one photopolymerizable group in one molecule.
  • the photopolymerizable monofunctional compound is used for adjusting the viscosity of the photocurable resin composition and improving the drying property of the photocurable resin composition by increasing the solid content concentration.
  • Examples of the photopolymerizable monofunctional compound include aliphatic (meth) acrylates, alicyclic (meth) acrylates, aromatic (meth) acrylates, ether (meth) acrylates, vinyl monomers, (meth) Examples include acrylamides.
  • (meth) acrylamide means acrylamide or methacrylamide.
  • Examples of the photopolymerizable monofunctional compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) ) Acrylate, isooctyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) acrylate, isobornyl (meth) acrylate, ethoxy-diethylene glycol (meth) acrylate, 2-ethylhexyl-carbitol (meth) acrylate, neopentyl Glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, ECH modified phenoxy (meth) acrylate, phenoxyethyl ( Data) acrylate, p-cum
  • the photocurable resin composition of the present invention may contain a surfactant. By using the surfactant, the printability of the hard coat layer can be improved.
  • the surfactant examples include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. It is preferable that the surfactant has a functional group having active hydrogen. Examples of the functional group having active hydrogen include a hydroxyl group, a carboxyl group, an amino group, and an amide group.
  • anionic surfactant examples include castor oil monosulfate, castor oil monophosphate, sorbitan fatty acid ester sulfate, sorbitan fatty acid ester phosphate, polyoxyalkylene glycerin ether monosulfate, polyoxyalkylene glycerin ether monophosphate, perfluoroalkyl ester.
  • examples include phosphate.
  • cationic surfactant examples include dialkanolamine salts, polyoxyalkylene alkylamine ether salts, polyoxyalkylene alkylammonium salts, polyoxyalkylene dialkanolamine ether salts, and the like.
  • nonionic surfactants include polyoxyethylene polyoxypropylene block polymers, sorbitan fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, and polyglycerin fatty acid esters.
  • amphoteric surfactants include N, N-di ( ⁇ -hydroxyalkyl) N-hydroxyethyl-N-carboxyalkylammonium betaine, N, N-di (polyoxyethylene) -N-alkyl-N-sulfo.
  • alkyl ammonium betaine and perfluoroalkyl betaine examples include alkyl ammonium betaine and perfluoroalkyl betaine.
  • the photocurable resin composition of the present invention may contain a silane coupling agent.
  • a silane coupling agent By using a silane coupling agent, the printability of the hard coat layer can be improved.
  • silane coupling agent examples include epoxy group-containing silane coupling agents such as glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane; aminopropyltrimethoxysilane, N-2- (aminoethyl) -3 -Amino group-containing silane coupling agents such as aminopropyltriethoxysilane and aminopropyltriethoxysilane; Mercapto group-containing silane coupling agents such as mercaptopropyltrimethoxysilane; Urethane group-containing silane couplings such as ureidopropyltriethoxysilane Agents; isocyanate group-containing silane coupling agents such as isocyanatepropyltriethoxysilane.
  • epoxy group-containing silane coupling agents such as glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane
  • the photocurable resin composition of the present invention may contain a solvent.
  • the solvent By using the solvent, the viscosity of the photocurable resin composition can be adjusted, and thereby the handleability and coating properties of the photocurable resin composition can be improved.
  • the solvent is not particularly limited, and examples thereof include the same solvents as those used for the polymerization of the monomer composition in the above-described emulsion polymerization and solution polymerization.
  • additives may be added as necessary within the range not impairing the physical properties.
  • examples of other additives include antioxidants, light stabilizers, heat stabilizers, antistatic agents, and antifoaming agents.
  • the photocurable composition of the present invention is preferably used for forming a cured film on one surface of a substrate.
  • a cured film obtained by curing the photocurable composition is excellent in transparency, hardness, scratch resistance, blocking resistance, and printability. Therefore, such a cured film can be used as a hard coat layer.
  • the active energy ray include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays, and ultraviolet rays and electron beams are preferable.
  • an electron beam is preferably used as the active energy ray.
  • the ultraviolet irradiation can be performed using an ultraviolet irradiation apparatus having a light source such as a xenon lamp, a high-pressure mercury lamp, and a metal halide lamp.
  • a high pressure mercury lamp is used as the light source
  • the substrate coated with the photocurable resin composition may be conveyed to a single high pressure mercury lamp at a conveyance speed of 5 to 50 m / min and irradiated with ultraviolet rays. preferable.
  • the light intensity of the high pressure mercury lamp is preferably 80 to 160 W / cm.
  • the substrate coated with the photocurable resin composition is preferably transported at 5 to 50 m / min using an electron beam accelerator having an acceleration voltage of 10 to 300 kV. It is preferable that the electron beam is irradiated at a speed.
  • the material of the substrate is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resins, polyacrylic resins, styrene resins, ABS resins, triacetyl cellulose, and olefin resins. And synthetic resins such as glass, inorganic materials such as glass, and metals such as stainless steel, steel, and aluminum.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • polycarbonate resins polyacrylic resins, styrene resins, ABS resins, triacetyl cellulose, and olefin resins.
  • synthetic resins such as glass, inorganic materials such as glass, and metals such as stainless steel, steel, and aluminum.
  • a coating method such as a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a screen printing method, a bar coater, an applicator or the like is used. Casting that had been mentioned.
  • the film thickness of the coating film after drying of the photocurable resin composition coated on the substrate is not particularly limited, but is preferably 2 to 90 ⁇ m, more preferably 5 to 50 ⁇ m.
  • the coated photocurable resin composition Before the light irradiation, the coated photocurable resin composition may be heated to remove the solvent contained in the photocurable resin composition.
  • the cured film of the photocurable resin composition can be used in combination with inorganic particles (B) and organic particles (C), such as hardness, scratch resistance, blocking resistance, transparency, and printability. Physical properties have been improved.
  • the inorganic particles and the organic particles have different refractive indexes, and when the inorganic particles and the organic particles are used in combination, the inorganic particles and the organic particles are likely to aggregate due to electrostatic repulsion between them. As a result, the combined use of inorganic particles and organic particles reduces the transparency of the cured film.
  • the inorganic particles (B) and the organic particles (C) are used in combination by highly dispersing the inorganic particles (B) and the organic particles (C) using the (meth) acrylic polymer (A). It is possible to reduce the decrease in transparency of the cured film due to high.
  • the cured film of the photocurable resin composition has excellent transparency.
  • the haze of the cured film of the photocurable resin composition is preferably 1.0% or less, and more preferably 0.8% or less.
  • the haze of the cured film is a value measured according to JIS K 7136 (2000).
  • the cured film of the photocurable resin composition has excellent hardness.
  • the hardness of the cured film of the photocurable resin composition is preferably H or higher, more preferably 2H or higher, as pencil hardness.
  • the pencil hardness is a value measured by a pencil hardness test in accordance with JIS K 5600-5-4 (1999).
  • the cured film of the photo-curable resin composition has a low coefficient of dynamic friction and excellent blocking resistance.
  • the dynamic friction coefficient of the cured film of the photocurable resin composition is preferably 0.6 N or less, and more preferably 0.5 N or less.
  • the dynamic friction coefficient is a value measured according to JIS K 7125 (1999).
  • the cured film of the photocurable resin composition has excellent compatibility with ink and has improved printability. 35 dyn / cm or more is preferable and, as for the wetting tension of the cured film surface of a photocurable resin composition, 40 dyn / cm or more is more preferable. In addition, let the wetting tension
  • the thickness of the cured film of the photocurable resin composition is preferably 2 to 90 ⁇ m and more preferably 5 to 50 ⁇ m from the viewpoint of obtaining a cured film having excellent hardness, scratch resistance, blocking resistance, and printability.
  • the cured film of the photocurable resin composition of the present invention is suitably used as a hard coat layer to protect the substrate surface. It is preferable that functional layers other than the hard coat layer are laminated and integrated on the cured film. Since the cured film of the photocurable resin composition has excellent printability, a functional layer having a desired pattern shape and uniform thickness can be formed on the cured film.
  • the functional layer examples include an electromagnetic wave shielding layer, a heat ray reflective layer, an ultraviolet shielding layer, a gas barrier layer, an antireflection layer, a conductive layer, a hard coat protective layer, an antiglare layer, an adhesive layer, and an antistatic layer. These functional layers can be formed by a known method.
  • a conductive laminated film in which a transparent conductive layer is laminated and integrated on a cured film of a photocurable resin composition is suitably used for a touch panel. Since the cured film of the photocurable resin composition of the present invention is excellent not only in printability but also in transparency, it has a fine pattern shape on such a cured film and has excellent transparency.
  • the transparent conductive layer can be formed, thereby providing a conductive laminated film in which the transparent conductive layer is hardly visible and has high visible light transmittance.
  • the conductive laminated film includes a transparent substrate, a cured film of a photocurable resin composition laminated and integrated on one surface of the transparent substrate, and a transparent conductive layer laminated and integrated on one surface of the cured film. Including.
  • the transparent substrate contains a transparent synthetic resin.
  • Transparent synthetic resins include polyester resins, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, polyvinyl chloride resins, poly Examples thereof include vinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and the like.
  • the thickness of the transparent substrate is preferably 2 to 200 ⁇ m, more preferably 2 to 100 ⁇ m.
  • the transparent conductive layer may be laminated and integrated on the cured film of the photocurable resin composition via an adhesive layer.
  • the adhesive layer contains a known adhesive.
  • the adhesive for example, an acrylic adhesive, a silicone adhesive, a polyester adhesive, or the like is used.
  • the constituent material of the transparent conductive layer is, for example, at least one selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, and tungsten. Examples include metal oxides.
  • the transparent conductive layer has a pattern shape such as a stripe shape depending on the application in which the conductive laminated film is used.
  • the transparent conductive layer As a method for forming the transparent conductive layer, a known method is used. For example, a method of printing a conductive paste is preferable. As described above, the cured film of the photocurable resin composition has high polarity due to the presence of many hydroxyl groups on the surface. Thereby, the cured film of a photocurable resin composition and a transparent conductive layer can be firmly laminated and integrated. Therefore, the method for forming the transparent conductive layer is not limited to the printing method, and an evaporation method, a sputtering method, and the like are also preferably used.
  • the conductive laminated film is suitably used for a capacitive touch panel.
  • the touch panel is not particularly limited, but is disposed on the front surface of the display panel of the information terminal device.
  • Examples of the information terminal device include a mobile phone, a personal digital assistant (PDA), a portable game machine, a digital camera, a personal computer, and a television.
  • Example Synthesis Examples 1 to 9 and Comparative Synthesis Examples 1 to 8) Synthesis of (meth) acrylic polymer
  • MIBK methyl isobutyl ketone
  • Methyl methacrylate (MMA), isobornyl methacrylate (IBXMA), glycidyl methacrylate (GMA), 2-hydroxyethyl methacrylate (2-HEMA), butyl acrylate (BA), and azobis-2-methylbutyroyl as radical polymerization initiator Nitrile (ABN-E) was mixed in the blending amounts shown in Tables 1 and 2 to obtain a monomer composition.
  • the monomer composition is gradually dropped into the reaction vessel over 2 hours, mixed, allowed to stand for 4 hours, and then heated at 120 ° C. for 1 hour for radical polymerization. To obtain a polymer.
  • acrylic acid AA
  • 2-isocyanatoethyl methacrylate MOI
  • paramethoxyphenol MQ
  • triphenylphosphine TPP
  • dibutyltin dilaurate DBTDL
  • hydroxyl value The hydroxyl value of the (meth) acrylic polymer is determined by the method of 4.2 B of JIS K1557-1: 2007 (ISO 14900: 2001) “Plastics—Polyurethane raw material polyol test method—Part 1: Determination of hydroxyl value”. Measured in conformity.
  • the hydroxyl value of a (meth) acrylic-type polymer means the hydroxyl value of solid content.
  • ((Meth) acrylic equivalent) The (meth) acrylic equivalent of the (meth) acrylic polymer was calculated by the above formula (I) from the monomer composition that is the raw material of the (meth) acrylic polymer.
  • inorganic particles silicon oxide particles (B1) having an average particle size (MD) of 10 nm, silicon oxide particles (B2) having an average particle size of 100 nm, average Silicon oxide particles (B3) having a particle diameter of 400 nm, titanium oxide particles (B4) having an average particle diameter of 100 nm, zirconium oxide particles (B5) having an average particle diameter of 100 nm, silicon oxide having an average particle diameter of 1000 nm As particles (B6) and organic particles (C), polymethyl methacrylate (PMMA) particles (C1) having an average particle size of 20 nm, polymethyl methacrylate (PMMA) particles (C2) having an average particle size of 100 nm, average particles Polymethylmethacrylate (PMMA) particles (C3) having a diameter of 400 nm, styrene type having an average particle diameter of 100 nm Fatty particles (C4), melamine resin
  • the (meth) acrylic polymer produced in Examples Synthesis Examples 1 to 9 and Comparative Synthesis Examples 1 to 8 was added for 10 minutes so that the blending amounts shown in Tables 3 to 7 were obtained in terms of solid content. It was dripped gradually over the time. After completion of the dropping, the premixed solution was stirred at 30 ° C. for 30 to 60 minutes.
  • Tables 3 to 7 show 2-hydroxy-2-methyl-1-phenyl-propan-1-one (BASF product name “DAROCUR 1173”) as a photopolymerization initiator in the stirred premixed solution.
  • a photo-curable resin composition was obtained by adding them in a blended amount and mixing them.
  • the average particle diameter of the inorganic particles (B1) to (B6) and the organic particles (C1) to (C6) in the obtained photocurable resin composition was measured by the measurement method described above. The measured value of the diameter was the same value as the above-mentioned average particle diameter of the inorganic particles (B1) to (B6) and the organic particles (C1) to (C6) used for the preparation of the premixed liquid.
  • the photocurable resin composition was applied onto a polyethylene terephthalate (PET) film using a bar coater so that the dry film thickness was 5 ⁇ m. Thereafter, the photocurable resin composition was heated at 80 ° C. for 2 minutes to remove the solvent, and then the photocurable resin composition was integrated at 500 mJ / cm 2 using a high-pressure mercury lamp (light quantity 120 W / cm). The photocurable resin composition was photocured by irradiating ultraviolet rays with a light amount to form a cured film (thickness 5 ⁇ m).
  • Two PET films on which a cured film was formed were prepared. These PET films were laminated so that the cured films faced to obtain a laminate. The laminated body was heated at 80 ° C. for 12 hours while applying a 5 kg load on the laminated body. Thereafter, one PET film was pulled in a direction parallel to the cured film surface at a tensile speed of 10 mm / min, and the dynamic friction coefficient (N) at this time was measured according to JIS K 7125 (1999).
  • Printability The printability of the cured film was evaluated by measuring the wetting tension (dyn / cm) of the cured film surface in accordance with JIS K 6768 (1999).
  • a photocurable resin composition capable of forming a hard coat layer having improved blocking resistance without lowering transparency and also having excellent printability. can do.

Abstract

Provided are: a photocurable resin composition, which is capable of forming a hard coat layer, in which blocking resistance has been improved without reduced transparency, and which also has excellent printability; and a cured film thereof. A photocurable resin composition characterized in comprising: a (meth)acrylic polymer (A) in which the hydroxyl value is 10-350 mg KOH/g, the (meth)acrylic equivalent is 100-800 g/eq, the weight average molecular weight is 10,000-200,000, the glass transition point is 50-110°C, and which has a photocurable group and a hydroxyl group on the side chain; inorganic particles (B) for which the mean particle size is 10 nm - 500 nm; organic particles (C) for which the mean particle size is 10 nm - 500 nm; and a photocurable multifunctional compound (D) having two or more photocurable groups in a single molecule.

Description

光硬化性樹脂組成物及びその硬化膜Photocurable resin composition and cured film thereof
 本発明は、ハードコート層の形成に好適に用いられる光硬化性樹脂組成物及びその硬化膜に関する。 The present invention relates to a photocurable resin composition suitably used for forming a hard coat layer and a cured film thereof.
 従来から、携帯電話、携帯情報端末(PDA)、携帯型ゲーム機、デジタルカメラ、パーソナルコンピュータ、及びテレビなどの情報端末装置が知られている。近年、このような情報端末装置では、表示パネルの前面にタッチパネルが搭載されている。タッチパネルは、指やペンなどにより表面パネルを押圧することによって、データ情報など必要な情報を情報端末装置に入力することができる。 Conventionally, information terminal devices such as mobile phones, personal digital assistants (PDAs), portable game machines, digital cameras, personal computers, and televisions are known. In recent years, in such information terminal devices, a touch panel is mounted on the front surface of the display panel. The touch panel can input necessary information such as data information to the information terminal device by pressing the surface panel with a finger or a pen.
 タッチパネルの分類としては、光学方式、超音波方式、静電容量方式、及び抵抗膜方式などが挙げられる。静電容量方式のタッチパネルでは、透明基材と、この透明基材上に配設された、ストライプ形状などのパターン形状を有する透明導電層とを有する積層フィルムが用いられている。 Touch panel classifications include optical, ultrasonic, capacitive, and resistive film systems. In the capacitive touch panel, a laminated film having a transparent base material and a transparent conductive layer having a pattern shape such as a stripe shape disposed on the transparent base material is used.
 透明基材表面に傷が付くと透明性が低下する。そのため、透明基材表面にコーティング剤を塗工することによってハードコート層が形成されており、このハードコート層上に透明導電層が配設されている。また、ハードコート層と透明導電層との密着性が低い場合には、透明導電層はハードコート層上に接着層を介して配設される。ハードコート層によれば、透明基材表面に耐傷付き性を付与することができる。このようなハードコート層では、タッチパネルの視認性を確保するために、高い透明性を有していることが必要とされる。 If the surface of the transparent substrate is scratched, the transparency decreases. Therefore, a hard coat layer is formed by applying a coating agent on the surface of the transparent substrate, and a transparent conductive layer is disposed on the hard coat layer. When the adhesion between the hard coat layer and the transparent conductive layer is low, the transparent conductive layer is disposed on the hard coat layer via an adhesive layer. According to the hard coat layer, scratch resistance can be imparted to the surface of the transparent substrate. Such a hard coat layer is required to have high transparency in order to ensure the visibility of the touch panel.
 従来から、ハードコート層の形成に用いられるコーティング剤について様々な検討がされている。特許文献1では、(A)アクリル樹脂3~40質量%、(B)ポリオキシエチレン-ポリオキシプロピレンブロック共重合体0.1~5質量%、および(C)1分子中に2以上の光重合性基を有する光重合性多官能化合物55~95質量%を含む樹脂成分を含有する光硬化型親水性コーティング剤が開示されている。 Conventionally, various investigations have been made on coating agents used for forming a hard coat layer. In Patent Document 1, (A) acrylic resin 3 to 40% by mass, (B) polyoxyethylene-polyoxypropylene block copolymer 0.1 to 5% by mass, and (C) two or more lights in one molecule A photocurable hydrophilic coating agent containing a resin component containing 55 to 95% by mass of a photopolymerizable polyfunctional compound having a polymerizable group is disclosed.
 特許文献2では、分子中にエポキシ基を有するビニル化合物を含有する重合成分(a1)を重合して得られた重合体にカルボキシル基含有(メタ)アクリル化合物(a2)を付加反応させてなる反応生成物(A)、コロイダルシリカ(B)、分子中に1または2個のビニル基を含有するリン酸化合物(C)、および多官能(メタ)アクリル化合物(D)を含有する活性エネルギー線硬化型樹脂組成物が開示されている。 In Patent Document 2, a reaction obtained by adding a carboxyl group-containing (meth) acrylic compound (a2) to a polymer obtained by polymerizing a polymerization component (a1) containing a vinyl compound having an epoxy group in the molecule. Active energy ray curing containing product (A), colloidal silica (B), phosphoric acid compound (C) containing 1 or 2 vinyl groups in the molecule, and polyfunctional (meth) acrylic compound (D) A mold resin composition is disclosed.
 特許文献3では、透明基材の少なくとも一方の面に機能層を有し、機能層が、透明樹脂に透光性無機粒子及び/又は透光性有機粒子を分散させてなる光学シートが開示されている。 Patent Document 3 discloses an optical sheet that has a functional layer on at least one surface of a transparent substrate, and the functional layer is made by dispersing translucent inorganic particles and / or translucent organic particles in a transparent resin. ing.
国際公開第2011/013497号明細書International Publication No. 2011/013497 Specification 特開2009-286972号公報JP 2009-286972 A 特開2010-66549号公報JP 2010-66549 A
 特許文献1の光硬化型親水性コーティング剤を用いて形成されたハードコート層は耐ブロッキング性が低い。そのため、ハードコート層を有する透明基材をロール状に巻き取ったり、重ねたりして保管した場合、透明基材同士が密着して剥がれ難くなる。 The hard coat layer formed using the photocurable hydrophilic coating agent of Patent Document 1 has low blocking resistance. Therefore, when the transparent base material which has a hard-coat layer is wound up in roll shape or stored, it will become difficult for the transparent base materials to adhere and peel.
 特許文献2の活性エネルギー線硬化型樹脂組成物は、無機粒子としてコロイダルシリカを含んでいる。活性エネルギー線硬化型樹脂組成物を用いて形成されたハードコート層の表面には無機粒子により凹凸が形成されており、これによりハードコート層に耐ブロッキング性が付与されている。しかしながら、無機粒子のみの使用ではハードコート層の耐ブロッキング性を十分に向上させることができないだけでなく、ハードコート層の透明性を低下させる。 The active energy ray-curable resin composition of Patent Document 2 contains colloidal silica as inorganic particles. Concavities and convexities are formed by inorganic particles on the surface of the hard coat layer formed using the active energy ray-curable resin composition, thereby imparting blocking resistance to the hard coat layer. However, the use of only inorganic particles can not only sufficiently improve the blocking resistance of the hard coat layer, but also lowers the transparency of the hard coat layer.
 特許文献3の光学シートでは、機能層の表面に透光性無機粒子及び/又は透光性有機粒子により凹凸が形成される。しかしながら、このような凹凸の形成は光学シートに防眩性を付与するために行われており、そのためには大きな粒子径を有する透光性無機粒子及び透光性有機粒子が用いられる。このような透光性無機粒子及び透光性有機粒子の使用は、機能層の透明性を低下させる。 In the optical sheet of Patent Document 3, irregularities are formed on the surface of the functional layer by translucent inorganic particles and / or translucent organic particles. However, such irregularities are formed in order to impart antiglare properties to the optical sheet. For this purpose, translucent inorganic particles and translucent organic particles having a large particle diameter are used. Use of such translucent inorganic particles and translucent organic particles reduces the transparency of the functional layer.
 また、ハードコート層上への透明導電層や接着層の形成には、例えば、導電ペーストや接着剤を含有する組成物などのインクをハードコート層に塗工することにより行うことができる。しかしながら、ハードコート層はインクとの馴染み性が低いため、ハードコート層上にインクを塗工すると、ハードコート層がインクをはじいてしまう。そのため、インクを精度良く印刷することができず、所望のパターン形状や均一な厚みを有する透明導電層や接着層をハードコート層上に形成することができない。したがって、ハードコート層の印刷性の向上も必要とされている。 Further, the formation of the transparent conductive layer or the adhesive layer on the hard coat layer can be performed by, for example, applying an ink such as a composition containing a conductive paste or an adhesive to the hard coat layer. However, since the hard coat layer has low compatibility with ink, when the ink is applied on the hard coat layer, the hard coat layer repels the ink. Therefore, ink cannot be printed with high accuracy, and a transparent conductive layer or adhesive layer having a desired pattern shape or uniform thickness cannot be formed on the hard coat layer. Therefore, it is also necessary to improve the printability of the hard coat layer.
 そこで、本発明の目的は、透明性を低下させずに耐ブロッキング性が向上されており、さらに優れた印刷性も有しているハードコート層を形成することが可能な光硬化性樹脂組成物を提供することである。 Therefore, an object of the present invention is to provide a photocurable resin composition capable of forming a hard coat layer that has improved blocking resistance without lowering transparency and also has excellent printability. Is to provide.
 本発明の光硬化性樹脂組成物は、
 水酸基価が10~350mgKOH/gであり、(メタ)アクリル当量が100~800g/eqであり、重量平均分子量が10,000~200,000であり、ガラス転移点が50~110℃であり、且つ側鎖に光重合性基及び水酸基を有している(メタ)アクリル系ポリマー(A)と、
 平均粒子径が10nm~500nmである無機粒子(B)と、
 平均粒子径が10nm~500nmである有機粒子(C)と、
 1分子中に2個以上の光重合性基を有している光重合性多官能化合物(D)と、
を含んでおり、且つ
 上記(メタ)アクリル系ポリマー(A)、上記無機粒子(B)、上記有機粒子(C)、及び上記光重合性多官能化合物(D)の総重量に対して、
 上記(メタ)アクリル系ポリマー(A)の含有量が10~40重量%であり、
 上記無機粒子(B)の含有量が5~40重量%であり、
 上記有機粒子(C)の含有量が0.5~10重量%であり、
 上記光重合性多官能化合物(D)の含有量が20~70重量%であることを特徴とする。
The photocurable resin composition of the present invention is
The hydroxyl value is 10 to 350 mg KOH / g, the (meth) acryl equivalent is 100 to 800 g / eq, the weight average molecular weight is 10,000 to 200,000, and the glass transition point is 50 to 110 ° C. (Meth) acrylic polymer (A) having a photopolymerizable group and a hydroxyl group in the side chain;
Inorganic particles (B) having an average particle diameter of 10 nm to 500 nm;
Organic particles (C) having an average particle diameter of 10 nm to 500 nm;
A photopolymerizable polyfunctional compound (D) having two or more photopolymerizable groups in one molecule;
And the total weight of the (meth) acrylic polymer (A), the inorganic particles (B), the organic particles (C), and the photopolymerizable polyfunctional compound (D),
The content of the (meth) acrylic polymer (A) is 10 to 40% by weight,
The content of the inorganic particles (B) is 5 to 40% by weight,
The content of the organic particles (C) is 0.5 to 10% by weight,
The content of the photopolymerizable polyfunctional compound (D) is 20 to 70% by weight.
 上記(メタ)アクリル系ポリマー(A)は、アルキル(メタ)アクリレート成分を10~90重量%含有していることが好ましい。 The (meth) acrylic polymer (A) preferably contains 10 to 90% by weight of an alkyl (meth) acrylate component.
 上記無機粒子(B)は金属粒子及び金属酸化物粒子のうちの少なくとも一種であることが好ましい。 The inorganic particles (B) are preferably at least one of metal particles and metal oxide particles.
 上記有機粒子(C)は(メタ)アクリル系樹脂粒子であることが好ましい。 The organic particles (C) are preferably (meth) acrylic resin particles.
 上記光硬化性樹脂組成物は、光重合開始剤を含んでいることが好ましい。 The photocurable resin composition preferably contains a photopolymerization initiator.
 また、本発明の硬化膜は、上記光硬化性樹脂組成物を硬化させてなることを特徴とする。 Further, the cured film of the present invention is characterized by curing the photocurable resin composition.
 本発明の光硬化性樹脂組成物によれば、透明性を低下させずに耐ブロッキング性が向上されており、さらに優れた印刷性も有しているハードコート層を形成することができる。 According to the photocurable resin composition of the present invention, it is possible to form a hard coat layer having improved blocking resistance without lowering transparency and also having excellent printability.
 [光硬化性樹脂組成物]
 本発明の光硬化性樹脂組成物は、側鎖に光重合性基及び水酸基を有している(メタ)アクリル系ポリマー(A)、無機粒子(B)、有機粒子(C)、及び1分子中に2個以上の光重合性基を有している光重合性多官能化合物(D)を含んでいる。
[Photocurable resin composition]
The photocurable resin composition of the present invention has a (meth) acrylic polymer (A), an inorganic particle (B), an organic particle (C), and one molecule having a photopolymerizable group and a hydroxyl group in the side chain. A photopolymerizable polyfunctional compound (D) having two or more photopolymerizable groups is contained therein.
 ((メタ)アクリル系ポリマー(A))
 本発明の光硬化性樹脂組成物は、側鎖に光重合性基及び水酸基を有している(メタ)アクリル系ポリマー(A)を少なくとも一種含んでいる。(メタ)アクリル系ポリマー(A)を用いることにより、透明性に優れているハードコート層を形成することができる。また、(メタ)アクリル系ポリマー(A)は、光重合性多官能化合物(D)と光重合性基によりラジカル重合して架橋構造を形成することができる。これにより、高い硬度を有し、耐傷付き性にも優れているハードコート層を形成することができる。
((Meth) acrylic polymer (A))
The photocurable resin composition of the present invention contains at least one (meth) acrylic polymer (A) having a photopolymerizable group and a hydroxyl group in the side chain. By using the (meth) acrylic polymer (A), a hard coat layer having excellent transparency can be formed. The (meth) acrylic polymer (A) can be radically polymerized with a photopolymerizable polyfunctional compound (D) and a photopolymerizable group to form a crosslinked structure. Thereby, a hard coat layer having high hardness and excellent scratch resistance can be formed.
 (メタ)アクリル系ポリマー(A)は、側鎖に光重合性基及び水酸基をそれぞれ少なくとも1個有していればよいが、(メタ)アクリル系ポリマー(A)は、側鎖に光重合性基及び水酸基をそれぞれ2個以上有していることが好ましい。なお、本発明において、(メタ)アクリルとは、アクリル又はメタクリルを意味する。 The (meth) acrylic polymer (A) may have at least one photopolymerizable group and a hydroxyl group in the side chain, but the (meth) acrylic polymer (A) is photopolymerizable in the side chain. It is preferable that each group has two or more hydroxyl groups. In the present invention, (meth) acryl means acryl or methacryl.
 (メタ)アクリル系ポリマー(A)の光重合性基は、後述する光重合性多官能化合物(D)の光重合性基とラジカル重合可能なエチレン性不飽和二重結合を有していればよい。光重合性基としては、アクリロイル基、メタクリロイル基、スチリル基、ビニル基、アリル基などが挙げられ、アクリロイル基、メタクリロイル基が好ましい。 If the photopolymerizable group of the (meth) acrylic polymer (A) has an ethylenically unsaturated double bond capable of radical polymerization with the photopolymerizable group of the photopolymerizable polyfunctional compound (D) described later. Good. Examples of the photopolymerizable group include an acryloyl group, a methacryloyl group, a styryl group, a vinyl group, and an allyl group, and an acryloyl group and a methacryloyl group are preferable.
 (メタ)アクリル系ポリマー(A)としては、下記の(メタ)アクリル系ポリマー(A1)~(A3)が好ましく挙げられる。
 グリシジル基を有するラジカル重合性モノマー、及び必要に応じてグリシジル基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(I)をラジカル重合させることにより得られるグリシジル基を有する重合体(I')に、カルボキシル基及び光重合性基を有する化合物を付加することにより得られる(メタ)アクリル系ポリマー(A1);
 水酸基を有するラジカル重合性モノマー、及び必要に応じて水酸基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(II)をラジカル重合させることにより得られる水酸基を有する重合体(II')に、イソシアネート基及び光重合性基を有する化合物を付加させることにより得られる(メタ)アクリル系ポリマー(A2);及び
 カルボキシル基を有するラジカル重合性モノマー、及び必要に応じてカルボキシル基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(III)をラジカル重合させることにより得られるカルボキシル基を有する重合体(III')に、グリシジル基及び光重合性基を有する化合物を付加させることにより得られる(メタ)アクリル系ポリマー(A3)。
Preferred examples of the (meth) acrylic polymer (A) include the following (meth) acrylic polymers (A1) to (A3).
A polymer having a glycidyl group obtained by radical polymerization of a monomer composition (I) containing a radically polymerizable monomer having a glycidyl group and, if necessary, an alkyl (meth) acrylate having no glycidyl group. (Meth) acrylic polymer (A1) obtained by adding a compound having a carboxyl group and a photopolymerizable group to I ′);
Polymer (II ′) having a hydroxyl group obtained by radical polymerization of a radically polymerizable monomer having a hydroxyl group and, if necessary, a monomer composition (II) containing an alkyl (meth) acrylate not having a hydroxyl group (Meth) acrylic polymer (A2) obtained by adding a compound having an isocyanate group and a photopolymerizable group to the above, and a radical polymerizable monomer having a carboxyl group, and optionally having a carboxyl group By adding a compound having a glycidyl group and a photopolymerizable group to a polymer (III ′) having a carboxyl group obtained by radical polymerization of a monomer composition (III) containing no alkyl (meth) acrylate The resulting (meth) acrylic polymer (A3).
 (メタ)アクリル系ポリマー(A1)~(A3)は、例えば、下記(1)~(3)の方法によって製造することができる。
 (1)グリシジル基を有するラジカル重合性モノマー、及び必要に応じてグリシジル基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(I)をラジカル重合開始剤の存在下にてラジカル重合させることによってグリシジル基を有する重合体(I')を得る工程と、この重合体(I')にカルボキシル基及び光重合性基を有する化合物を付加させることによって(メタ)アクリル系ポリマー(A1)得る工程とを有する方法、
 (2)水酸基を有するラジカル重合性モノマー、及び必要に応じて水酸基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(II)をラジカル重合開始剤の存在下にてラジカル重合させることによって水酸基を有する重合体(II')を得る工程と、この重合体(II')にイソシアネート基及び光重合性基を有する化合物を付加させることによって(メタ)アクリル系ポリマー(A2)得る工程とを有する方法、及び
 (3)カルボキシル基を有するラジカル重合性モノマー、及び必要に応じてカルボキシル基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(III)をラジカル重合開始剤の存在下にてラジカル重合させることによってカルボキシル基を有する重合体(III')を得る工程と、この重合体(III')にグリシジル基及び光重合性基を有する化合物を付加させることによって(メタ)アクリル系ポリマー(A3)得る工程とを有する方法。
The (meth) acrylic polymers (A1) to (A3) can be produced, for example, by the following methods (1) to (3).
(1) Radical polymerization of a monomer composition (I) containing a radically polymerizable monomer having a glycidyl group and, if necessary, an alkyl (meth) acrylate having no glycidyl group in the presence of a radical polymerization initiator (Meth) acrylic polymer (A1) by adding a compound having a carboxyl group and a photopolymerizable group to the polymer (I ′) and obtaining a polymer (I ′) having a glycidyl group A method comprising the steps of:
(2) Radical polymerization of a radical polymerizable monomer having a hydroxyl group and, if necessary, a monomer composition (II) containing an alkyl (meth) acrylate having no hydroxyl group in the presence of a radical polymerization initiator. A step of obtaining a polymer (II ′) having a hydroxyl group by the step, and a step of obtaining a (meth) acrylic polymer (A2) by adding a compound having an isocyanate group and a photopolymerizable group to the polymer (II ′). And (3) a radically polymerizable monomer having a carboxyl group, and if necessary, a monomer composition (III) containing an alkyl (meth) acrylate having no carboxyl group, the presence of a radical polymerization initiator A step of obtaining a polymer (III ′) having a carboxyl group by radical polymerization under the following conditions; And (1) adding a compound having a glycidyl group and a photopolymerizable group to obtain a (meth) acrylic polymer (A3).
 (メタ)アクリル系ポリマー(A1)の製造方法(1)について具体的な一例を以下に説明する。グリシジル基を有するラジカル重合性モノマー、及び必要に応じてグリシジル基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(I)をラジカル重合開始剤の存在下にて反応容器中でラジカル重合することによって、グリシジル基を有する重合体(I')を製造する。次に、カルボキシル基及び光重合性基を有する化合物、及び必要に応じて触媒を反応容器中に添加する。なお、必要に応じて、反応容器中にp-メトキシフェノール、ハイドロキノン(HQ)などの重合禁止剤を添加してもよい。しかる後、反応容器中に必要に応じて酸素を吹き込みながら、例えば、反応液を30~150℃となるように制御しながら、6~12時間に亘って反応させることにより、側鎖に光重合性基及び水酸基を有する(メタ)アクリル系ポリマー(A1)を製造することができる。 A specific example of the production method (1) of the (meth) acrylic polymer (A1) will be described below. A radically polymerizable monomer having a glycidyl group and, if necessary, a monomer composition (I) containing an alkyl (meth) acrylate not having a glycidyl group in a reaction vessel in the presence of a radical polymerization initiator. By polymerizing, a polymer (I ′) having a glycidyl group is produced. Next, a compound having a carboxyl group and a photopolymerizable group and, if necessary, a catalyst are added to the reaction vessel. If necessary, a polymerization inhibitor such as p-methoxyphenol or hydroquinone (HQ) may be added to the reaction vessel. Thereafter, while allowing oxygen to be blown into the reaction vessel as necessary, for example, by allowing the reaction solution to react at 30 to 150 ° C. for 6 to 12 hours, photopolymerization is performed on the side chain. A (meth) acrylic polymer (A1) having a functional group and a hydroxyl group can be produced.
 グリシジル基を有するラジカル重合性モノマーとしては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、及びアリルグリシジルエーテルなどが挙げられるが、グリシジル(メタ)アクリレートが好ましい。なお、グリシジル基を有するラジカル重合性モノマーは、単独で用いられても二種以上が併用されてもよい。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。 Examples of the radical polymerizable monomer having a glycidyl group include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and allyl glycidyl ether, with glycidyl (meth) acrylate being preferred. In addition, the radically polymerizable monomer which has a glycidyl group may be used independently, or 2 or more types may be used together. In addition, (meth) acrylate means an acrylate or a methacrylate.
 モノマー組成物(I)中におけるグリシジル基を有するラジカル重合性モノマーの含有量は、10~90重量%が好ましく、20~80重量%がより好ましい。グリシジル基を有するラジカル重合性モノマーの含有量を上記下限値以上とすることにより、架橋密度が高く且つ優れた硬度を有するハードコート層を形成することができる。また、グリシジル基を有するラジカル重合性モノマーの含有量を上記上限値以下とすることにより、(メタ)アクリル系ポリマーの合成時におけるゲル化を抑制することができる。 The content of the radically polymerizable monomer having a glycidyl group in the monomer composition (I) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. By setting the content of the radical polymerizable monomer having a glycidyl group to be equal to or higher than the above lower limit value, a hard coat layer having a high crosslinking density and excellent hardness can be formed. Moreover, gelatinization at the time of the synthesis | combination of a (meth) acrylic-type polymer can be suppressed by making content of the radically polymerizable monomer which has a glycidyl group below into the said upper limit.
 モノマー組成物(I)は、グリシジル基を有していないアルキル(メタ)アクリレートを含んでいることが好ましい。グリシジル基を有していないアルキル(メタ)アクリレートは、水酸基も有していないことが好ましい。このようなアルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレートなどが挙げられる。なかでも、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、及びブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレートがより好ましい。なお、アルキル(メタ)アクリレートは、単独で用いられても二種以上が併用されてもよい。 The monomer composition (I) preferably contains an alkyl (meth) acrylate having no glycidyl group. The alkyl (meth) acrylate having no glycidyl group preferably has no hydroxyl group. Such alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) ) Acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, etc. . Of these, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate are preferable, and methyl (meth) acrylate is more preferable. In addition, alkyl (meth) acrylate may be used independently or 2 or more types may be used together.
 モノマー組成物(I)中におけるグリシジル基を有していないアルキル(メタ)アクリレートの含有量は、10~90重量%が好ましく、20~80重量%がより好ましい。グリシジル基を有していないアルキル(メタ)アクリレートの含有量を上記下限値以上とすることにより、(メタ)アクリル系ポリマーの合成時におけるゲル化を抑制することができる。また、グリシジル基を有していないアルキル(メタ)アクリレートの含有量を上記上限値以下とすることにより、架橋密度が高く且つ優れた硬度を有するハードコート層を形成することができる。 The content of the alkyl (meth) acrylate having no glycidyl group in the monomer composition (I) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. By making content of the alkyl (meth) acrylate which does not have a glycidyl group more than the said lower limit, gelatinization at the time of the synthesis | combination of a (meth) acrylic-type polymer can be suppressed. Moreover, by setting the content of the alkyl (meth) acrylate having no glycidyl group to be the upper limit value or less, a hard coat layer having a high crosslink density and excellent hardness can be formed.
 モノマー組成物(I)は、水酸基を有するアルキル(メタ)アクリレートを含んでいてもよい。水酸基を有するアルキル(メタ)アクリレートを用いることにより、(メタ)アクリル系ポリマー(A1)の水酸基価を調整することができる。水酸基を有するアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレートなどが挙げられる。なかでも、2-ヒドロキシエチル(メタ)アクリレートが好ましい。なお、水酸基を有するアルキル(メタ)アクリレートは、単独で用いられても二種以上が併用されてもよい。 The monomer composition (I) may contain an alkyl (meth) acrylate having a hydroxyl group. By using an alkyl (meth) acrylate having a hydroxyl group, the hydroxyl value of the (meth) acrylic polymer (A1) can be adjusted. Examples of the alkyl (meth) acrylate having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate and the like. Of these, 2-hydroxyethyl (meth) acrylate is preferable. In addition, the alkyl (meth) acrylate which has a hydroxyl group may be used independently, or 2 or more types may be used together.
 モノマー組成物(I)中における水酸基を有するアルキル(メタ)アクリレートの含有量は、80重量%以下が好ましく、60重量%以下がより好ましい。水酸基を有するアルキル(メタ)アクリレートの含有量を上記上限値以下とすることにより、無機粒子(B)及び有機粒子(C)の凝集によるハードコート層の透明性の低下を抑制することができる。 The content of the alkyl (meth) acrylate having a hydroxyl group in the monomer composition (I) is preferably 80% by weight or less, and more preferably 60% by weight or less. By making content of the alkyl (meth) acrylate which has a hydroxyl group below the said upper limit, the transparency fall of the hard-coat layer by aggregation of an inorganic particle (B) and organic particle (C) can be suppressed.
 モノマー組成物(I)は、脂環基を有している(メタ)アクリレートを含んでいてもよい。脂環基を有している(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレートなどが挙げられる。 The monomer composition (I) may contain a (meth) acrylate having an alicyclic group. Examples of the (meth) acrylate having an alicyclic group include cyclohexyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopenta Examples include dienyl (meth) acrylate, isobornyl (meth) acrylate, and tricyclodecanyl (meth) acrylate.
 モノマー組成物(I)中における脂環基を有している(メタ)アクリレートの含有量は、80重量%以下が好ましく、60重量%以下がより好ましい。脂環基を有している(メタ)アクリレートの含有量を上記上限値以下とすることにより、(メタ)アクリル系ポリマー(A1)の分子量の低下を抑制して、これにより耐ブロッキング性や透明性に優れているハードコート層を形成することができる。 The content of the (meth) acrylate having an alicyclic group in the monomer composition (I) is preferably 80% by weight or less, and more preferably 60% by weight or less. By making content of (meth) acrylate which has an alicyclic group below the said upper limit, the fall of the molecular weight of (meth) acrylic-type polymer (A1) is suppressed, and, thereby, blocking resistance and transparency A hard coat layer having excellent properties can be formed.
 グリシジル基を有する重合体(I')にカルボキシル基及び光重合性基を有する化合物を付加する。カルボキシル基及び光重合性基を有する化合物としては、エチレン性不飽和カルボン酸又はその無水物が挙げられる。具体的には、アクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトンモノアクリレート、フタル酸モノヒドロキシエチルアクリレートなどが挙げられ、アクリル酸、メタクリル酸が好ましい。なお、カルボキシル基及び光重合性基を有する化合物は、単独で用いられても二種以上が併用されてもよい。これらの化合物が有しているカルボキシル基と重合体(I')が有しているグリシジル基とが反応して、エステル結合を形成すると共に新たな水酸基を生成させることができる。これと同時に、光重合性基の導入を行うことができる。これにより側鎖に光重合性基及び水酸基を有する(メタ)アクリル系ポリマー(A1)が得られる。 A compound having a carboxyl group and a photopolymerizable group is added to the polymer (I ′) having a glycidyl group. Examples of the compound having a carboxyl group and a photopolymerizable group include an ethylenically unsaturated carboxylic acid or an anhydride thereof. Specific examples include acrylic acid, methacrylic acid, ω-carboxy-polycaprolactone monoacrylate, monohydroxyethyl acrylate phthalate and the like, and acrylic acid and methacrylic acid are preferable. In addition, the compound which has a carboxyl group and a photopolymerizable group may be used independently, or 2 or more types may be used together. The carboxyl group possessed by these compounds reacts with the glycidyl group possessed by the polymer (I ′) to form an ester bond and generate a new hydroxyl group. At the same time, the photopolymerizable group can be introduced. Thereby, the (meth) acrylic-type polymer (A1) which has a photopolymerizable group and a hydroxyl group in a side chain is obtained.
 グリシジル基を有する重合体(I')にカルボキシル基及び光重合性基を有する化合物を付加させる際、重合体(I')の製造に用いたグリシジル基を有するラジカル重合性モノマー中のグリシジル基に対する、カルボキシル基及び光重合性基を有する化合物中のカルボキシル基のモル比(カルボキシル基のモル数/グリシジル基のモル数)は、0.3~1.5が好ましく、0.5~1.2がより好ましく、1.0が特に好ましい。モル比が低過ぎると、側鎖の光重合性基が少なくなり、そのためハードコート層の硬度が低下する虞れがある。モル比が高過ぎると、未反応の酸が残存し、そのためハードコート層の耐水性が低下することがある。また、上述したように、グリシジル基はカルボキシル基と反応してエステル結合を形成すると共に水酸基を生成する。したがって、モル比を調整することによって(メタ)アクリル系ポリマー(A1)の水酸基価を調整することができる。 When a compound having a carboxyl group and a photopolymerizable group is added to the polymer (I ′) having a glycidyl group, the glycidyl group in the radical polymerizable monomer having a glycidyl group used for the production of the polymer (I ′) The molar ratio of the carboxyl groups in the compound having a carboxyl group and a photopolymerizable group (number of moles of carboxyl group / number of moles of glycidyl group) is preferably 0.3 to 1.5, preferably 0.5 to 1.2. Is more preferable, and 1.0 is particularly preferable. If the molar ratio is too low, the number of side chain photopolymerizable groups decreases, which may reduce the hardness of the hard coat layer. If the molar ratio is too high, unreacted acid remains, and the water resistance of the hard coat layer may be lowered. Further, as described above, the glycidyl group reacts with the carboxyl group to form an ester bond and generate a hydroxyl group. Therefore, the hydroxyl value of the (meth) acrylic polymer (A1) can be adjusted by adjusting the molar ratio.
 (メタ)アクリル系ポリマー(A2)の製造方法(2)についてより具体的な製造方法の一例を説明する。水酸基を有するラジカル重合性モノマー、及び必要に応じて水酸基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(II)をラジカル重合開始剤の存在下にて反応容器中でラジカル重合することによって、水酸基を有する重合体(II')を製造する。次に、イソシアネート基及び光重合性基を有する化合物、及び必要に応じて触媒を反応容器中に添加する。なお、必要に応じて、反応容器中にp-メトキシフェノール、ハイドロキノン(HQ)などの重合禁止剤を添加してもよい。しかる後、反応容器中に必要に応じて酸素を吹き込みながら、例えば、反応液を30~150℃となるように制御しながら、6~12時間に亘って反応させることにより、側鎖に光重合性基及び水酸基を有する(メタ)アクリル系ポリマー(A2)を製造することができる。 An example of a more specific production method for the production method (2) of the (meth) acrylic polymer (A2) will be described. Radical polymerization of a radically polymerizable monomer having a hydroxyl group and, if necessary, a monomer composition (II) containing an alkyl (meth) acrylate having no hydroxyl group in a reaction vessel in the presence of a radical polymerization initiator. Thus, a polymer (II ′) having a hydroxyl group is produced. Next, a compound having an isocyanate group and a photopolymerizable group and, if necessary, a catalyst are added to the reaction vessel. If necessary, a polymerization inhibitor such as p-methoxyphenol or hydroquinone (HQ) may be added to the reaction vessel. Thereafter, while allowing oxygen to be blown into the reaction vessel as necessary, for example, by allowing the reaction solution to react at 30 to 150 ° C. for 6 to 12 hours, photopolymerization is performed on the side chain. A (meth) acrylic polymer (A2) having a functional group and a hydroxyl group can be produced.
 水酸基を有するラジカル重合性モノマーとしては、水酸基を有するアルキル(メタ)アクリレート、アクリル酸N-ヒドロキシメチルアミド、メタクリル酸N-ヒドロキシメチルアミド、4-ヒドロキシメチルシクロヘキシル(メタ)アクリレートなどが挙げられ、水酸基を有するアルキル(メタ)アクリレートが好ましく、アルキル基に水酸基を有するアルキル(メタ)アクリレートがより好ましい。水酸基を有するアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレートなどが挙げられる。なお、水酸基を有するラジカル重合性モノマーは、単独で用いられても二種以上が併用されてもよい。 Examples of the radical polymerizable monomer having a hydroxyl group include alkyl (meth) acrylate having a hydroxyl group, acrylic acid N-hydroxymethylamide, methacrylic acid N-hydroxymethylamide, 4-hydroxymethylcyclohexyl (meth) acrylate, and the like. An alkyl (meth) acrylate having an alkyl group is preferred, and an alkyl (meth) acrylate having a hydroxyl group in the alkyl group is more preferred. Examples of the alkyl (meth) acrylate having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate and the like. In addition, the radically polymerizable monomer which has a hydroxyl group may be used independently, or 2 or more types may be used together.
 水酸基を有するラジカル重合性モノマーとしては、2-ヒドロキシエチル(メタ)アクレートが好ましく、2-ヒドロキシエチルメタクリレート(2-HEMA)がより好ましい。水酸基を有するラジカル重合性モノマーを用いることにより、(メタ)アクリル系ポリマー(A2)の水酸基価を容易に調整することができる。 As the radical polymerizable monomer having a hydroxyl group, 2-hydroxyethyl (meth) acrylate is preferable, and 2-hydroxyethyl methacrylate (2-HEMA) is more preferable. By using a radically polymerizable monomer having a hydroxyl group, the hydroxyl value of the (meth) acrylic polymer (A2) can be easily adjusted.
 モノマー組成物(II)中における水酸基を有するラジカル重合性モノマーの含有量は、10~90重量%が好ましく、20~80重量%がより好ましい。水酸基を有するラジカル重合性モノマーの含有量を上記下限値以上とすることにより、架橋密度が高く且つ優れた硬度を有するハードコート層を形成することができる。また、水酸基を有するラジカル重合性モノマーの含有量を上記下限値以上とすることにより、無機粒子(B)や有機粒子(C)を高分散させて、これによりハードコート層の透明性や印刷性を向上させることもできる。一方、水酸基を有するラジカル重合性モノマーの含有量を上記上限値以下とすることにより、無機粒子(B)や有機粒子(C)の凝集によるハードコート層の透明性の低下を抑制することができる。 The content of the radically polymerizable monomer having a hydroxyl group in the monomer composition (II) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. By setting the content of the radical polymerizable monomer having a hydroxyl group to the above lower limit value or more, a hard coat layer having a high crosslinking density and excellent hardness can be formed. Further, by setting the content of the radical polymerizable monomer having a hydroxyl group to the above lower limit value or more, the inorganic particles (B) and the organic particles (C) are highly dispersed, and thereby the transparency and printability of the hard coat layer. Can also be improved. On the other hand, by setting the content of the radical polymerizable monomer having a hydroxyl group to the upper limit value or less, it is possible to suppress a decrease in the transparency of the hard coat layer due to aggregation of the inorganic particles (B) and the organic particles (C). .
 モノマー組成物(II)は、水酸基を有していないアルキル(メタ)アクリレートをさらに含んでいることが好ましい。水酸基を有していないアルキル(メタ)アクリレートとして、具体的には、上述した(1)の方法におけるグリシジル基を有していないアルキル(メタ)アクリレートと同様のものが挙げられる。なかでも、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、及びブチル(メタ)アクリレートが好ましい。 The monomer composition (II) preferably further contains an alkyl (meth) acrylate having no hydroxyl group. Specific examples of the alkyl (meth) acrylate not having a hydroxyl group include the same alkyl (meth) acrylates having no glycidyl group in the method (1) described above. Of these, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate are preferable.
 モノマー組成物(II)中における水酸基を有していないアルキル(メタ)アクリレートの含有量は、10~90重量%が好ましく、20~80重量%がより好ましい。水酸基を有していないアルキル(メタ)アクリレートの含有量を上記下限値以上とすることにより、無機粒子(B)や有機粒子(C)の凝集によるハードコート層の透明性の低下を抑制することができる。一方、水酸基を有していないアルキル(メタ)アクリレートの含有量を上記上限値以下とすることにより、無機粒子(B)や有機粒子(C)を高分散させて、ハードコート層の透明性や印刷性を向上させることができる。また、水酸基を有していないアルキル(メタ)アクリレートの含有量を上記上限値以下とすることにより、架橋密度が高く且つ優れた硬度を有するハードコート層を形成することができる。 The content of the alkyl (meth) acrylate having no hydroxyl group in the monomer composition (II) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. By suppressing the content of the alkyl (meth) acrylate having no hydroxyl group to the above lower limit or more, the decrease in the transparency of the hard coat layer due to the aggregation of the inorganic particles (B) and the organic particles (C) is suppressed. Can do. On the other hand, the inorganic particles (B) and the organic particles (C) are highly dispersed by setting the content of the alkyl (meth) acrylate having no hydroxyl group to the upper limit value or less, and the transparency of the hard coat layer can be increased. Printability can be improved. Further, by setting the content of alkyl (meth) acrylate having no hydroxyl group to the upper limit value or less, a hard coat layer having a high crosslinking density and excellent hardness can be formed.
 モノマー組成物(II)は、脂環基を有している(メタ)アクリレートを含んでいてもよい。脂環基を有している(メタ)アクリレートとして具体的には、上述した(1)の方法における脂環基を有している(メタ)アクリレートと同様のものが挙げられる。 The monomer composition (II) may contain a (meth) acrylate having an alicyclic group. Specific examples of the (meth) acrylate having an alicyclic group include those similar to the (meth) acrylate having an alicyclic group in the method (1) described above.
 モノマー組成物(II)中における脂環基を有している(メタ)アクリレートの含有量は、80重量%以下が好ましく、60重量%以下がより好ましい。脂環基を有している(メタ)アクリレートの含有量を上記上限値以下とすることにより、(メタ)アクリル系ポリマー(A2)の分子量の低下を抑制して、これにより耐ブロッキング性や透明性に優れているハードコート層を形成することができる。 The content of the (meth) acrylate having an alicyclic group in the monomer composition (II) is preferably 80% by weight or less, and more preferably 60% by weight or less. By making content of (meth) acrylate which has an alicyclic group below the said upper limit, the fall of the molecular weight of (meth) acrylic-type polymer (A2) is suppressed, and, thereby, blocking resistance and transparency A hard coat layer having excellent properties can be formed.
 重合体(II')にイソシアネート基及び光重合性基を有する化合物を付加させる。重合体(II')が有している水酸基の一部に、イソシアネート基及び光重合性基を有する化合物を付加することによって、側鎖に水酸基及び光重合性基を有している(メタ)アクリル系ポリマー(A2)が得られる。 A compound having an isocyanate group and a photopolymerizable group is added to the polymer (II ′). By adding a compound having an isocyanate group and a photopolymerizable group to a part of the hydroxyl group of the polymer (II ′), the side chain has a hydroxyl group and a photopolymerizable group (meth) An acrylic polymer (A2) is obtained.
 イソシアネート基及び光重合性基を有する化合物としては、例えば、2-イソシアナトエチルメタクリレート(例えば、昭和電工(株)製の商品名「カレンズMOI」など)、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート(例えば、昭和電工(株)製の商品名「カレンズBEI」など)、2-イソシアナトエチルアクリラート(例えば、昭和電工(株)製の商品名「カレンズAOI」など)、(メタ)アクリロイル基が炭素数2~6のアルキレン基を介してイソシアネート基と結合した(メタ)アクリロイルイソシアネート、及びこれらの誘導体などが挙げられる。(メタ)アクリロイルイソシアネートとしては、例えば、2-メタクリロイルオキシエチルイソシアネートなどが挙げられる。 Examples of the compound having an isocyanate group and a photopolymerizable group include 2-isocyanatoethyl methacrylate (for example, trade name “Karenz MOI” manufactured by Showa Denko KK), 1,1- (bisacryloyloxymethyl) Ethyl isocyanate (for example, trade name “Karenz BEI” manufactured by Showa Denko KK), 2-isocyanatoethyl acrylate (for example, trade name “Karenz AOI” manufactured by Showa Denko KK), (Meta) Examples thereof include (meth) acryloyl isocyanate in which an acryloyl group is bonded to an isocyanate group via an alkylene group having 2 to 6 carbon atoms, and derivatives thereof. Examples of (meth) acryloyl isocyanate include 2-methacryloyloxyethyl isocyanate.
 誘導体としては、例えば、ブロック剤でマスキングしたイソシアネート基を有する(メタ)アクリレートなどが挙げられる。具体例としては、メタクリル酸2-(O-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル(例えば、昭和電工(株)製の商品名「カレンズMOI-BM」など)、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(例えば、昭和電工(株)製の商品名「カレンズMOI-BP」など)等が挙げられる。なお、イソシアネート基及び光重合性基を有する化合物は、単独で用いられても二種以上が併用されてもよい。なかでも、2-イソシアナトエチルメタクリレートが好ましい。 Examples of the derivative include (meth) acrylate having an isocyanate group masked with a blocking agent. Specific examples include 2- (O- [1′-methylpropylideneamino] carboxyamino) ethyl methacrylate (for example, trade name “Karenz MOI-BM” manufactured by Showa Denko KK), 2-[( 3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate (for example, trade name “Karenz MOI-BP” manufactured by Showa Denko KK) and the like. In addition, the compound which has an isocyanate group and a photopolymerizable group may be used independently, or 2 or more types may be used together. Of these, 2-isocyanatoethyl methacrylate is preferable.
 水酸基を有する重合体(II')に、イソシアネート基及び光重合性基を有する化合物を添加するにあたって、重合体(II')の製造に用いた水酸基を有するラジカル重合性モノマー中の水酸基(-OH)のモル数に対する、イソシアネート基(-NCO)のモル数の割合(-NCO/-OH)は、0.05~0.9が好ましく、0.1~0.9がより好ましい。また、モル比を調整することによっても、(メタ)アクリル系ポリマー(A2)の水酸基価を調整することができる。 When a compound having an isocyanate group and a photopolymerizable group is added to the polymer (II ′) having a hydroxyl group, the hydroxyl group (—OH) in the radical polymerizable monomer having a hydroxyl group used in the production of the polymer (II ′) is used. ) The ratio of the number of moles of isocyanate groups (—NCO) to the number of moles (—NCO / —OH) is preferably 0.05 to 0.9, more preferably 0.1 to 0.9. The hydroxyl value of the (meth) acrylic polymer (A2) can also be adjusted by adjusting the molar ratio.
 (メタ)アクリル系ポリマー(A3)の製造方法(3)についてより具体的な製造方法の一例を説明する。カルボキシル基を有するラジカル重合性モノマー、及び必要に応じてカルボキシル基を有していないアルキル(メタ)アクリレートを含有するモノマー組成物(III)をラジカル重合開始剤の存在下にて反応容器中でラジカル重合することによって、重合体(III')を製造する。次に、グリシジル基及び光重合性基を有する化合物、並びに必要に応じて触媒を反応容器中に添加する。なお、必要に応じて、反応容器中にp-メトキシフェノール、ハイドロキノン(HQ)などの重合禁止剤を添加してもよい。しかる後、反応容器中に必要に応じて酸素を吹き込みながら、例えば、反応液を30~150℃となるように制御しながら、6~12時間に亘って反応させることにより、側鎖に光重合性基及び水酸基を有する(メタ)アクリル系ポリマー(A3)を製造することができる。 An example of a more specific production method for the production method (3) of the (meth) acrylic polymer (A3) will be described. A radical polymerizable monomer having a carboxyl group and, if necessary, a monomer composition (III) containing an alkyl (meth) acrylate having no carboxyl group in a reaction vessel in the presence of a radical polymerization initiator. Polymer (III ′) is produced by polymerization. Next, a compound having a glycidyl group and a photopolymerizable group and, if necessary, a catalyst are added to the reaction vessel. If necessary, a polymerization inhibitor such as p-methoxyphenol or hydroquinone (HQ) may be added to the reaction vessel. Thereafter, while allowing oxygen to be blown into the reaction vessel as necessary, for example, by allowing the reaction solution to react at 30 to 150 ° C. for 6 to 12 hours, photopolymerization is performed on the side chain. A (meth) acrylic polymer (A3) having a functional group and a hydroxyl group can be produced.
 上記(3)の方法において用いられるカルボキシル基を有するラジカル重合性モノマーとしては、エチレン性不飽和カルボン酸又はその無水物が挙げられる。具体的には、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などのα,β-不飽和カルボン酸またはその塩;ω-カルボキシ-ポリカプロラクトンモノアクリレート、フタル酸モノヒドロキシエチルアクリレートなどが挙げられ、アクリル酸及びメタクリル酸が好ましい。なお、カルボキシル基を有するラジカル重合性モノマーは、単独で用いられても二種以上が併用されてもよい。 Examples of the radical polymerizable monomer having a carboxyl group used in the method (3) include an ethylenically unsaturated carboxylic acid or an anhydride thereof. Specifically, α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid or salts thereof; ω-carboxy-polycaprolactone monoacrylate, phthalic acid monohydroxyethyl acrylate, etc. Acrylic acid and methacrylic acid are preferred. In addition, the radically polymerizable monomer which has a carboxyl group may be used independently, or 2 or more types may be used together.
 モノマー組成物(III)中におけるカルボキシル基を有するラジカル重合性モノマーの含有量は、10~90重量%が好ましく、20~80重量%がより好ましい。カルボキシル基を有するラジカル重合性モノマーの含有量を上記下限値以上とすることにより、架橋密度が高く且つ優れた硬度を有するハードコート層を形成することができる。また、カルボキシル基を有するラジカル重合性モノマーの含有量を上記上限値以下とすることにより、(メタ)アクリル系ポリマーの合成時におけるゲル化を抑制することができる。 The content of the radical polymerizable monomer having a carboxyl group in the monomer composition (III) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. By setting the content of the radical polymerizable monomer having a carboxyl group to the above lower limit value or more, a hard coat layer having a high crosslinking density and excellent hardness can be formed. Moreover, gelatinization at the time of the synthesis | combination of a (meth) acrylic-type polymer can be suppressed by making content of the radically polymerizable monomer which has a carboxyl group below into the said upper limit.
 モノマー組成物(III)は、カルボキシル基を有していないアルキル(メタ)アクリレートをさらに含んでいることが好ましい。カルボキシル基を有していないアルキル(メタ)アクリレートとして、具体的には、上述した(1)の方法におけるグリシジル基を有していないアルキル(メタ)アクリレートと同様のものが挙げられる。 The monomer composition (III) preferably further contains an alkyl (meth) acrylate having no carboxyl group. Specific examples of the alkyl (meth) acrylate having no carboxyl group include the same alkyl (meth) acrylates having no glycidyl group in the above-described method (1).
 モノマー組成物(III)中におけるカルボキシル基を有していないアルキル(メタ)アクリレートの含有量は、10~90重量%が好ましく、20~80重量%がより好ましい。カルボキシル基を有していないアルキル(メタ)アクリレートの含有量を上記下限値以上とすることにより、(メタ)アクリル系ポリマーの合成時におけるゲル化を抑制することができる。また、カルボキシル基を有していないアルキル(メタ)アクリレートの含有量を上記上限値以下とすることにより、架橋密度が高く且つ優れた硬度を有するハードコート層を形成することができる。 The content of the alkyl (meth) acrylate having no carboxyl group in the monomer composition (III) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight. By making content of the alkyl (meth) acrylate which does not have a carboxyl group more than the said lower limit, gelatinization at the time of the synthesis | combination of a (meth) acrylic-type polymer can be suppressed. Moreover, by setting the content of the alkyl (meth) acrylate having no carboxyl group to the upper limit value or less, a hard coat layer having a high crosslinking density and excellent hardness can be formed.
 モノマー組成物(III)は、水酸基を有しているアクリル(メタ)アクリレートを含んでいてもよい。水酸基を有しているアクリル(メタ)アクリレートとして具体的には、上述した(1)の方法における水酸基を有するアルキル(メタ)アクリレートと同様のものが挙げられる。水酸基を有するアルキル(メタ)アクリレートを用いることにより、(メタ)アクリル系ポリマー(A3)の水酸基価を調整することができる。 The monomer composition (III) may contain an acrylic (meth) acrylate having a hydroxyl group. Specific examples of the acrylic (meth) acrylate having a hydroxyl group include those similar to the alkyl (meth) acrylate having a hydroxyl group in the method (1) described above. By using an alkyl (meth) acrylate having a hydroxyl group, the hydroxyl value of the (meth) acrylic polymer (A3) can be adjusted.
 モノマー組成物(III)中における水酸基を有するアルキル(メタ)アクリレートの含有量は、90重量%以下が好ましく、80重量%以下がより好ましく、10~90重量%が特に好ましく、20~80重量%が最も好ましい。水酸基を有するアルキル(メタ)アクリレートの含有量を上記下限値以上とすることにより、無機粒子(B)や有機粒子(C)を高分散させて、ハードコート層の透明性や印刷性を向上させることができる。一方、水酸基を有するアルキル(メタ)アクリレートの含有量を上記上限値以下とすることにより、無機粒子(B)及び有機粒子(C)の凝集によるハードコート層の透明性の低下を抑制することができる。 The content of the alkyl (meth) acrylate having a hydroxyl group in the monomer composition (III) is preferably 90% by weight or less, more preferably 80% by weight or less, particularly preferably 10 to 90% by weight, and 20 to 80% by weight. Is most preferred. By setting the content of the alkyl (meth) acrylate having a hydroxyl group to the above lower limit or more, the inorganic particles (B) and the organic particles (C) are highly dispersed to improve the transparency and printability of the hard coat layer. be able to. On the other hand, by controlling the content of the alkyl (meth) acrylate having a hydroxyl group to be equal to or lower than the above upper limit value, it is possible to suppress a decrease in transparency of the hard coat layer due to aggregation of the inorganic particles (B) and the organic particles (C). it can.
 モノマー組成物(III)は、脂環基を有している(メタ)アクリレートを含んでいてもよい。脂環基を有している(メタ)アクリレートとして具体的には、上述した(1)の方法における脂環基を有している(メタ)アクリレートと同様のものが挙げられる。 The monomer composition (III) may contain a (meth) acrylate having an alicyclic group. Specific examples of the (meth) acrylate having an alicyclic group include those similar to the (meth) acrylate having an alicyclic group in the method (1) described above.
 モノマー組成物(III)中における脂環基を有している(メタ)アクリレートの含有量は、80重量%以下が好ましく、60重量%以下がより好ましい。脂環基を有している(メタ)アクリレートの含有量を上記上限値以下とすることにより、(メタ)アクリル系ポリマー(A3)の分子量の低下を抑制して、これにより耐ブロッキング性や透明性に優れているハードコート層を形成することができる。 The content of the (meth) acrylate having an alicyclic group in the monomer composition (III) is preferably 80% by weight or less, and more preferably 60% by weight or less. By making content of (meth) acrylate which has an alicyclic group below the said upper limit, the fall of the molecular weight of (meth) acrylic-type polymer (A3) is suppressed, and, thereby, blocking resistance and transparency A hard coat layer having excellent properties can be formed.
 重合体(III')にグリシジル基及び光重合性基を有する化合物を付加させる。重合体(III')が有しているカルボキシル基と、上記化合物が有しているグリシジル基とが反応して、エステル結合を形成すると共に新たな水酸基を生成させることができる。これと同時に、光重合性基の導入を行うことができる。これにより側鎖にビニル基などの光重合性基及び水酸基を有する(メタ)アクリル系ポリマー(A3)が得られる。 A compound having a glycidyl group and a photopolymerizable group is added to the polymer (III ′). The carboxyl group possessed by the polymer (III ′) reacts with the glycidyl group possessed by the compound, thereby forming an ester bond and generating a new hydroxyl group. At the same time, the photopolymerizable group can be introduced. Thereby, a (meth) acrylic polymer (A3) having a photopolymerizable group such as a vinyl group and a hydroxyl group in the side chain is obtained.
 グリシジル基及び光重合性基を有する化合物として、具体的には、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、及びアリルグリシジルエーテルなどが挙げられるが、グリシジル(メタ)アクリレートが好ましい。なお、グリシジル基及び光重合性基を有する化合物は、単独で用いられても二種以上が併用されてもよい。 Specific examples of the compound having a glycidyl group and a photopolymerizable group include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and allyl glycidyl ether. preferable. In addition, the compound which has a glycidyl group and a photopolymerizable group may be used independently, or 2 or more types may be used together.
 グリシジル基を有する重合体(III')にグリシジル基及び光重合性基を有する化合物を付加させる際、重合体(III')の製造に用いたカルボキシル基を有するラジカル重合性モノマー中のカルボキシル基に対する、グリシジル基及び光重合性基を有する化合物中のグリシジル基のモル比(グリシジル基のモル数/カルボキシル基のモル数)は、0.3~1.5が好ましく、0.5~1.2がより好ましく、1.0がさらに好ましい。上述したように、グリシジル基は、カルボキシル基と反応して、エステル結合を形成すると共に水酸基を生成する。したがって、上記モル比を調整することによって(メタ)アクリル系ポリマー(A3)の水酸基価を調整することができる。 When a compound having a glycidyl group and a photopolymerizable group is added to the polymer (III ′) having a glycidyl group, the carboxyl group in the radical polymerizable monomer having a carboxyl group used for the production of the polymer (III ′) The molar ratio of glycidyl groups in the compound having a glycidyl group and a photopolymerizable group (number of moles of glycidyl group / number of moles of carboxyl group) is preferably 0.3 to 1.5, preferably 0.5 to 1.2. Is more preferable, and 1.0 is more preferable. As described above, the glycidyl group reacts with the carboxyl group to form an ester bond and generate a hydroxyl group. Therefore, the hydroxyl value of the (meth) acrylic polymer (A3) can be adjusted by adjusting the molar ratio.
 上述した(1)~(3)の方法では、モノマー組成物(I)、(II)又は(III)を、ラジカル重合開始剤の存在下で、ラジカル重合させる。ラジカル重合開始剤としては、ラジカル重合において汎用されるものが用いられる。ラジカル重合開始剤として、例えば、ベンゾイルパーオキシド、ラウロイルパーオキシド、カプロイルパーオキシド、t-ヘキシルパーオキシネオデカネート、t-ブチルパーオキシビバレートなどの有機過酸化物;2,2-アゾビス-イソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、2,2-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、アゾビス-2-メチルブチロニトリル(日本ヒドラジン工業(株)製の商品名「ABN-E」)などのアゾ化合物が挙げられ、アゾ化合物が好ましい。なお、ラジカル重合開始剤は、単独で用いられても二種以上が併用されてもよい。 In the methods (1) to (3) described above, the monomer composition (I), (II) or (III) is radically polymerized in the presence of a radical polymerization initiator. As the radical polymerization initiator, those generally used in radical polymerization are used. Examples of radical polymerization initiators include organic peroxides such as benzoyl peroxide, lauroyl peroxide, caproyl peroxide, t-hexyl peroxyneodecanate, and t-butyl peroxybivalate; 2,2-azobis- Isobutyronitrile, 2,2-azobis-2,4-dimethylvaleronitrile, 2,2-azobis-4-methoxy-2,4-dimethylvaleronitrile, azobis-2-methylbutyronitrile (Nippon Hydrazine Industry ( An azo compound such as a trade name “ABN-E”) manufactured by Co., Ltd. is preferable, and an azo compound is preferable. In addition, a radical polymerization initiator may be used independently or 2 or more types may be used together.
 モノマー組成物(I)、(II)及び(III)の各重合方法としては、汎用の方法が用いられるが、乳化重合(懸濁重合を含む)及び溶液重合が好ましい。 As each polymerization method of the monomer compositions (I), (II) and (III), general-purpose methods are used, but emulsion polymerization (including suspension polymerization) and solution polymerization are preferred.
 乳化重合及び溶液重合では、溶剤中でモノマー組成物(I)、(II)又は(III)を重合させる。溶剤としては、上記した各モノマーに対して安定であれば特に制限されず、例えば、ヘキサン、ミネラルスピリットなどの石油系炭化水素溶剤;ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、γ―ブチロラクトン、プロピレングリコールモノメチルエーテルアセテートなどのエステル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、ピリジンなどの非プロトン性極性溶剤などが挙げられる。溶剤は、単独で用いられてもよく、二種以上が併用されてもよい。なお、溶剤の配合割合は、特に制限されず、目的および用途に応じて、適宜設定される。 In emulsion polymerization and solution polymerization, the monomer composition (I), (II) or (III) is polymerized in a solvent. The solvent is not particularly limited as long as it is stable with respect to each of the above-mentioned monomers. For example, petroleum hydrocarbon solvents such as hexane and mineral spirit; aromatic hydrocarbon solvents such as benzene, toluene and xylene; acetone, Ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone; ester solvents such as methyl acetate, ethyl acetate, butyl acetate, γ-butyrolactone, propylene glycol monomethyl ether acetate; N, N-dimethylformamide, N, N -Aprotic polar solvents such as dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone and pyridine. A solvent may be used independently and 2 or more types may be used together. The mixing ratio of the solvent is not particularly limited and is appropriately set according to the purpose and application.
 また、溶剤は、市販品を用いることもできる。具体的には、石油系炭化水素溶剤としては、新日本石油社製 AFソルベント4~7号などが挙げられる。芳香族炭化水素系溶剤として、新日本石油社製 インキソルベント0号、エクソン化学社製のソルベッソ100、150、200などが挙げられる。 Moreover, a commercial item can also be used for a solvent. Specifically, examples of petroleum hydrocarbon solvents include AF Solvent Nos. 4 to 7 manufactured by Nippon Oil Corporation. Examples of the aromatic hydrocarbon solvent include Ink Solvent No. 0 manufactured by Nippon Oil Corporation and Solvesso 100, 150, and 200 manufactured by Exxon Chemical.
 上述した(1)~(3)の方法では、各反応器中に触媒を添加することが好ましい。触媒としては、例えば、ジブチル錫ジラウレート、ジオクチル錫ラウレート、ジオクチル錫ジラウレート、トリフェニルホスフィン、ビスマス系触媒などが挙げられる。 In the methods (1) to (3) described above, it is preferable to add a catalyst to each reactor. Examples of the catalyst include dibutyltin dilaurate, dioctyltin laurate, dioctyltin dilaurate, triphenylphosphine, and a bismuth catalyst.
 (メタ)アクリル系ポリマー(A)の水酸基価は、10~350mgKOH/gに限定されるが、30~330mgKOH/gが好ましく、50~300mgKOH/gがより好ましい。水酸基価が上記下限値以上である(メタ)アクリル系ポリマー(A)によれば、ハードコート層に優れた印刷性を付与することができる。さらに、水酸基価が上記範囲内である(メタ)アクリル系ポリマー(A)によれば、無機粒子(B)や有機粒子(C)を高く分散させることができ、これにより無機粒子(B)や有機粒子(C)の添加によるハードコート層の透明性の低下を抑制することができる。なお、(メタ)アクリル系ポリマー(A)の水酸基価は、後述する実施例に記載の方法により測定することができる。 The hydroxyl value of the (meth) acrylic polymer (A) is limited to 10 to 350 mgKOH / g, preferably 30 to 330 mgKOH / g, more preferably 50 to 300 mgKOH / g. According to the (meth) acrylic polymer (A) having a hydroxyl value equal to or higher than the above lower limit, excellent printability can be imparted to the hard coat layer. Furthermore, according to the (meth) acrylic polymer (A) having a hydroxyl value within the above range, the inorganic particles (B) and the organic particles (C) can be highly dispersed, whereby the inorganic particles (B) and A decrease in the transparency of the hard coat layer due to the addition of the organic particles (C) can be suppressed. In addition, the hydroxyl value of (meth) acrylic-type polymer (A) can be measured by the method as described in the Example mentioned later.
 (メタ)アクリル系ポリマー(A)の(メタ)アクリル当量は、100~800g/eqに限定されるが、200~700g/eqが好ましく、300~600g/eqがより好ましい。(メタ)アクリル当量が上記上限値以下である(メタ)アクリル系ポリマー(A)によれば、高い硬度を有するハードコート層を形成することができる。さらに、(メタ)アクリル当量が上記範囲内である(メタ)アクリル系ポリマー(A)によれば、無機粒子(B)や有機粒子(C)を高く分散させることができ、これにより無機粒子(B)や有機粒子(C)の添加によるハードコート層の透明性の低下を抑制することができる。 The (meth) acrylic equivalent of the (meth) acrylic polymer (A) is limited to 100 to 800 g / eq, preferably 200 to 700 g / eq, more preferably 300 to 600 g / eq. According to the (meth) acrylic polymer (A) whose (meth) acrylic equivalent is not more than the above upper limit value, a hard coat layer having high hardness can be formed. Furthermore, according to the (meth) acrylic polymer (A) having a (meth) acrylic equivalent within the above range, the inorganic particles (B) and the organic particles (C) can be highly dispersed. The decrease in the transparency of the hard coat layer due to the addition of B) or the organic particles (C) can be suppressed.
 (メタ)アクリル系ポリマー(A)の(メタ)アクリル当量とは、(メタ)アクリル系ポリマー(A)が有している(メタ)アクリロイル基1モルあたりの(メタ)アクリル系ポリマー(A)のグラム数を意味する。 The (meth) acrylic equivalent of (meth) acrylic polymer (A) is the (meth) acrylic polymer (A) per mole of (meth) acryloyl group possessed by (meth) acrylic polymer (A). Means the number of grams.
 (メタ)アクリル系ポリマー(A)の(メタ)アクリル当量は、(メタ)アクリル系ポリマー(A)の原料であるモノマー組成から、下記式(I)により算出することができる。 The (meth) acrylic equivalent of the (meth) acrylic polymer (A) can be calculated from the monomer composition that is the raw material of the (meth) acrylic polymer (A) by the following formula (I).
Figure JPOXMLDOC01-appb-M000001

[式中、
 (メタ)アクリル系ポリマー(A)の原料に用いたモノマーの全使用量(g)を「W」とし、
 (メタ)アクリル系ポリマー(A)の合成時において、最終的に得られる(メタ)アクリル系ポリマー(A)の主鎖に側鎖として(メタ)アクリロイル基を導入するために用いられたモノマーのうちから、任意に選択されたモノマーのモル数(mol)を「M」とし、任意に選択された上記モノマー1分子あたりの(メタ)アクリロイル基の個数を「N」とし、
 (メタ)アクリル系ポリマー(A)の合成時において、最終的に得られる(メタ)アクリル系ポリマー(A)の主鎖に側鎖として(メタ)アクリロイル基を導入するために用いられたモノマー種の数を「k」とする。]
Figure JPOXMLDOC01-appb-M000001

[Where:
The total amount (g) of monomers used as the raw material for the (meth) acrylic polymer (A) is “W”,
In the synthesis of the (meth) acrylic polymer (A), the monomer used to introduce the (meth) acryloyl group as a side chain into the main chain of the (meth) acrylic polymer (A) finally obtained Among them, the number of moles (mol) of an arbitrarily selected monomer is “M”, the number of (meth) acryloyl groups per one molecule of the arbitrarily selected monomer is “N”,
Monomer species used to introduce a (meth) acryloyl group as a side chain into the main chain of the (meth) acrylic polymer (A) finally obtained during the synthesis of the (meth) acrylic polymer (A) Is the number “k”. ]
 (メタ)アクリル系ポリマー(A)の重量平均分子量は、10,000~200,000に限定されるが、30,000~170,000が好ましく、50,000~150,000がより好ましく、65,000~150,000が特に好ましい。重量平均分子量が上記範囲内である(メタ)アクリル系ポリマー(A)は、無機粒子(B)及び有機粒子(C)を高く分散させることができ、耐ブロッキング性及び透明性に優れているハードコード層を形成することができる。 The weight average molecular weight of the (meth) acrylic polymer (A) is limited to 10,000 to 200,000, preferably 30,000 to 170,000, more preferably 50,000 to 150,000, 65 150,000 to 150,000 is particularly preferable. The (meth) acrylic polymer (A) having a weight average molecular weight within the above range can disperse the inorganic particles (B) and the organic particles (C) highly, and has excellent blocking resistance and transparency. A code layer can be formed.
 (メタ)アクリル系ポリマー(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)を用いてポリスチレン換算により測定することができる。GPCを用いた重量平均分子量の測定は、具体的には、次の通りにして行うことができる。先ず、示差屈折率検出器(RID)を装備したゲルパーミエーションクロマトグラフ(GPC)によって、(メタ)アクリル系ポリマー(A)の分子量分布を測定しクロマトグラム(チャート)を得る。そして、このクロマトグラムから、標準ポリスチレンを検量線として、(メタ)アクリル系ポリマー(A)の重量平均分子量を算出することができる。なお、(メタ)アクリル系ポリマー(A)の重量平均分子量は、後述する実施例に記載の方法により測定することができる。 The weight average molecular weight of the (meth) acrylic polymer (A) can be measured in terms of polystyrene using a gel permeation chromatograph (GPC). Specifically, the measurement of the weight average molecular weight using GPC can be performed as follows. First, the molecular weight distribution of the (meth) acrylic polymer (A) is measured by a gel permeation chromatograph (GPC) equipped with a differential refractive index detector (RID) to obtain a chromatogram (chart). From this chromatogram, the weight average molecular weight of the (meth) acrylic polymer (A) can be calculated using standard polystyrene as a calibration curve. In addition, the weight average molecular weight of a (meth) acrylic-type polymer (A) can be measured by the method as described in the Example mentioned later.
 (メタ)アクリル系ポリマー(A)のガラス転移点(Tg)は、50~110℃に限定されるが、55~107℃が好ましく、60~105℃がより好ましい。ガラス転移点が上記下限値以上である(メタ)アクリル系ポリマー(A)によれば、硬度が高く、耐傷付き性及び耐ブロッキング性に優れているハードコート層を形成することができる。また、ガラス転移点が上記範囲内である(メタ)アクリル系ポリマー(A)によれば、無機粒子(B)及び有機粒子(C)を高く分散させることができ、耐ブロッキング性及び透明性に優れているハードコード層を形成することができる。(メタ)アクリル系ポリマー(A)のガラス転移点は、フォックスの式により算出することができる。 The glass transition point (Tg) of the (meth) acrylic polymer (A) is limited to 50 to 110 ° C., preferably 55 to 107 ° C., more preferably 60 to 105 ° C. According to the (meth) acrylic polymer (A) having a glass transition point equal to or higher than the above lower limit, a hard coat layer having high hardness and excellent scratch resistance and blocking resistance can be formed. Moreover, according to the (meth) acrylic polymer (A) having a glass transition point within the above range, the inorganic particles (B) and the organic particles (C) can be highly dispersed, and the blocking resistance and transparency can be improved. An excellent hard code layer can be formed. The glass transition point of the (meth) acrylic polymer (A) can be calculated by Fox's equation.
 (メタ)アクリル系ポリマー(A)は、モノマー成分としてアルキル(メタ)アクリレート成分を10~90重量%含有していることが好ましい。このような(メタ)アクリル系ポリマー(A)は、アルキル(メタ)アクリレートを10~90重量%含むモノマー組成物をラジカル重合させることにより得られる。アルキル(メタ)アクリレート成分によれば、有機粒子(C)を高分散させることができ、これによりハードコート層の透明性を向上させることができる。 The (meth) acrylic polymer (A) preferably contains 10 to 90% by weight of an alkyl (meth) acrylate component as a monomer component. Such a (meth) acrylic polymer (A) can be obtained by radical polymerization of a monomer composition containing 10 to 90% by weight of alkyl (meth) acrylate. According to the alkyl (meth) acrylate component, the organic particles (C) can be highly dispersed, whereby the transparency of the hard coat layer can be improved.
 モノマー成分として用いられるアルキル(メタ)アクリレートは、グリシジル基や水酸基を有していないことが好ましい。アルキル(メタ)アクリレートとして、具体的には、エチル(メタ)アクリレート、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシルアクリレート、2-エチルブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレートなどが挙げられる。なかでも、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、及びブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレートがより好ましい。メチル(メタ)アクリレートによれば、有機粒子(C)を高分散させることができるだけでなく、高い硬度を有しているハードコート層を形成することができる。 The alkyl (meth) acrylate used as the monomer component preferably has no glycidyl group or hydroxyl group. Specific examples of the alkyl (meth) acrylate include ethyl (meth) acrylate, methyl (meth) acrylate, n-butyl (meth) acrylate, hexyl acrylate, 2-ethylbutyl (meth) acrylate, isooctyl (meth) acrylate, 2 -Ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate and the like. Of these, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate are preferable, and methyl (meth) acrylate is more preferable. According to methyl (meth) acrylate, not only can the organic particles (C) be highly dispersed, but also a hard coat layer having high hardness can be formed.
 (メタ)アクリル系ポリマー(A)中におけるアルキル(メタ)アクリレート成分の含有量は、10~90重量%が好ましく、20~80重量%がより好ましく、30~80重量%が特に好ましく、40~70重量%が最も好ましい。すなわち、モノマー組成物中におけるアルキル(メタ)アクリレートの含有量は、10~90重量%が好ましく、20~80重量%がより好ましく、30~80重量%が特に好ましく、40~70重量%が最も好ましい。アルキル(メタ)アクリレート成分の含有量を上記範囲内とすることにより、透明性及び硬度に優れているハードコート層を形成することができる。 The content of the alkyl (meth) acrylate component in the (meth) acrylic polymer (A) is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, particularly preferably 30 to 80% by weight, 70% by weight is most preferred. That is, the content of the alkyl (meth) acrylate in the monomer composition is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, particularly preferably 30 to 80% by weight, most preferably 40 to 70% by weight. preferable. By setting the content of the alkyl (meth) acrylate component within the above range, a hard coat layer excellent in transparency and hardness can be formed.
 光硬化性樹脂組成物中における(メタ)アクリル系ポリマー(A)の含有量は、(メタ)アクリル系ポリマー(A)、無機粒子(B)、有機粒子(C)、及び光重合性多官能化合物(D)の総重量に対して、10~40重量%に限定されるが、12~37重量%が好ましく、15~35重量%がより好ましい。(メタ)アクリル系ポリマー(A)の含有量を上記下限値以上とすることによって、無機粒子(B)や有機粒子(C)を高く分散させることができ、これにより耐ブロッキング性及び透明性に優れているハードコード層を形成することができる。(メタ)アクリル系ポリマー(A)の含有量を上記上限値以下とすることによって、ハードコート層の高い硬度を確保することができる。 The content of the (meth) acrylic polymer (A) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable multifunctional. The amount is limited to 10 to 40% by weight based on the total weight of the compound (D), but is preferably 12 to 37% by weight, and more preferably 15 to 35% by weight. By making content of (meth) acrylic-type polymer (A) more than the said lower limit, an inorganic particle (B) and organic particle (C) can be disperse | distributed highly, and, thereby, it becomes blocking resistance and transparency. An excellent hard code layer can be formed. By setting the content of the (meth) acrylic polymer (A) to the upper limit value or less, high hardness of the hard coat layer can be ensured.
 (無機粒子(B))
 本発明の光硬化性樹脂組成物は、少なくとも一種の無機粒子(B)を含んでいる。無機粒子(B)によれば、硬度が高く、耐傷つき性及び耐ブロッキング性に優れているハードコート層を形成することができる。さらに、無機粒子(B)の表面には水酸基などの極性基が存在していることが多い。上述した所定の水酸基価を有する(メタ)アクリル系ポリマー(A)も側鎖に水酸基を有している。したがって、無機粒子(B)と(メタ)アクリル系ポリマー(A)とは、相互に極性が近く、静電気的な反発が抑制されている。そのため、(メタ)アクリル系ポリマー(A)を用いることによって、無機粒子(B)を高度に分散させることができ、これにより無機粒子(B)の添加によるハードコート層の透明性の低下を抑制しながら、ハードコート層の耐傷つき性及び耐ブロッキング性を向上させることができる。なお、上記メカニズムは本発明者等により推測されたものであり、したがって、本発明は上記メカニズムに限定されない。
(Inorganic particles (B))
The photocurable resin composition of the present invention contains at least one kind of inorganic particles (B). According to the inorganic particles (B), a hard coat layer having high hardness and excellent scratch resistance and blocking resistance can be formed. Furthermore, polar groups such as hydroxyl groups are often present on the surface of the inorganic particles (B). The (meth) acrylic polymer (A) having a predetermined hydroxyl value described above also has a hydroxyl group in the side chain. Therefore, the inorganic particles (B) and the (meth) acrylic polymer (A) are close in polarity to each other, and electrostatic repulsion is suppressed. Therefore, the inorganic particles (B) can be highly dispersed by using the (meth) acrylic polymer (A), thereby suppressing the decrease in the transparency of the hard coat layer due to the addition of the inorganic particles (B). However, the scratch resistance and blocking resistance of the hard coat layer can be improved. In addition, the said mechanism is guessed by this inventor etc., Therefore, this invention is not limited to the said mechanism.
 無機粒子(B)としては、金属粒子、金属酸化物粒子、金属硫酸塩粒子、金属珪酸塩粒子、金属リン酸塩粒子、金属炭酸塩粒子、金属水酸化物粒子、及びフッ素化合物粒子などが挙げられる。なかでも、金属粒子及び金属酸化物粒子が好ましく、金属酸化物粒子がより好ましい。金属粒子及び金属酸化物粒子は、(メタ)アクリル系ポリマー(A)と極性が近く、したがって、(メタ)アクリル系ポリマー(A)により高度に分散させることができる。無機粒子(B)は、一種単独で用いられてもよく、二種以上が併用されてもよい。 Examples of the inorganic particles (B) include metal particles, metal oxide particles, metal sulfate particles, metal silicate particles, metal phosphate particles, metal carbonate particles, metal hydroxide particles, and fluorine compound particles. It is done. Among these, metal particles and metal oxide particles are preferable, and metal oxide particles are more preferable. The metal particles and the metal oxide particles are close in polarity to the (meth) acrylic polymer (A), and thus can be highly dispersed by the (meth) acrylic polymer (A). An inorganic particle (B) may be used individually by 1 type, and 2 or more types may be used together.
 金属粒子に含まれている金属としては、Si、Ti、Mg、Ca、Zr、Sn、Sb、As、Zn、Nb、In、及びAlなどが挙げられる。金属酸化物粒子に含まれている金属酸化物としては、Si、Ti、Mg、Ca、Zr、Sn、Sb、As、Zn、Nb、In、及びAlなどの金属の酸化物が挙げられる。金属酸化物粒子として、具体的には、酸化ケイ素粒子、酸化チタン粒子、酸化アルミニウム粒子、酸化スズ粒子、酸化インジウム粒子、ITO粒子、酸化亜鉛粒子、酸化ジルコニウム粒子、及び酸化マグネシウム粒子が挙げられる。また、これら金属酸化物粒子に、例えば、Ab、Sn、F、P、Alなどの異種元素がドープされた異種元素ドープ金属酸化物の微粒子なども挙げられる。 Examples of the metal contained in the metal particles include Si, Ti, Mg, Ca, Zr, Sn, Sb, As, Zn, Nb, In, and Al. Examples of the metal oxide contained in the metal oxide particles include oxides of metals such as Si, Ti, Mg, Ca, Zr, Sn, Sb, As, Zn, Nb, In, and Al. Specific examples of the metal oxide particles include silicon oxide particles, titanium oxide particles, aluminum oxide particles, tin oxide particles, indium oxide particles, ITO particles, zinc oxide particles, zirconium oxide particles, and magnesium oxide particles. In addition, for example, fine particles of a different element doped metal oxide in which a different element such as Ab, Sn, F, P, Al or the like is doped into these metal oxide particles may be used.
 無機粒子(B)としては、酸化ケイ素粒子、酸化アルミニウム粒子、酸化ジルコニウム粒子、及び酸化チタン粒子が好ましく、酸化ケイ素粒子がより好ましい。 As the inorganic particles (B), silicon oxide particles, aluminum oxide particles, zirconium oxide particles, and titanium oxide particles are preferable, and silicon oxide particles are more preferable.
 無機粒子(B)は、コロイド状に分散されている無機粒子を用いることができる。また、無機粒子(B)は公知の方法により表面処理されていてもよい。 As the inorganic particles (B), inorganic particles dispersed in a colloidal form can be used. The inorganic particles (B) may be surface-treated by a known method.
 無機粒子(B)の形状としては、特に制限されず、例えば、塊状、球状、中空状、多孔質状、棒状、板状、繊維状、及び不定形状などが挙げられる。異なる形状の無機粒子(B)を組合せて用いてもよい。 The shape of the inorganic particles (B) is not particularly limited, and examples thereof include a lump shape, a spherical shape, a hollow shape, a porous shape, a rod shape, a plate shape, a fiber shape, and an indefinite shape. You may use combining the inorganic particle (B) of a different shape.
 無機粒子(B)の平均粒子径は、10nm~500nmに限定されるが、10nm~400nmが好ましく、10nm~200nmがより好ましい。平均粒子径が上記下限値未満である無機粒子(B)では、高分散させることが困難となり、ハードコート層の透明性や耐ブロッキング性を低下させる虞れがある。また、平均粒子径が上記上限値を超過する無機粒子(B)では、ハードコート層の透明性、硬度、耐ブロッキング性及び印刷性を低下させる虞れがある。なお、光硬化性樹脂組成物中では、無機粒子(B)は一次粒子又は二次粒子などの凝集粒子として存在している。したがって、無機粒子(B)の平均粒子径とは、後述する測定方法によって測定された値とする。 The average particle diameter of the inorganic particles (B) is limited to 10 nm to 500 nm, preferably 10 nm to 400 nm, more preferably 10 nm to 200 nm. In the inorganic particles (B) having an average particle size of less than the lower limit, it is difficult to achieve high dispersion, and the transparency and blocking resistance of the hard coat layer may be reduced. Moreover, in the inorganic particle (B) whose average particle diameter exceeds the above upper limit, there is a possibility that the transparency, hardness, blocking resistance and printability of the hard coat layer may be lowered. In the photocurable resin composition, the inorganic particles (B) exist as aggregated particles such as primary particles or secondary particles. Therefore, the average particle diameter of the inorganic particles (B) is a value measured by a measurement method described later.
 なお、無機粒子(B)の平均粒子径の測定は、次の通りにして行うことができる。まず、光硬化性樹脂組成物をメチルイソブチルケトンで希釈して希釈液を得る。なお、希釈液中における無機粒子(B)の濃度は0.1~1重量%とする。次に、希釈液を用いて、レーザー光回折・散乱式粒度分布測定装置(例えば、日機装社製 Nanotrac UPA-EX150)により、無機粒子(B)の体積粒度分布を測定し、この体積粒度分布の累積50%の値を無機粒子(B)の平均粒子径として算出することができる。具体的な測定条件は下記に示す通りである。下記測定条件により得られた無機粒子の平均粒子径の測定値を、無機粒子(B)の平均粒子径とする。
  測定回数:1回
  測定時間:180秒
  測定温度:23℃
  測定溶媒:メチルイソブチルケトン
  CI値:0.4~0.8
  粒子透過性:透過
  感度:スタンダード
  フィルタ:Stand:Norm
  ナノレンジ補正:無効
In addition, the measurement of the average particle diameter of an inorganic particle (B) can be performed as follows. First, the photocurable resin composition is diluted with methyl isobutyl ketone to obtain a diluted solution. The concentration of the inorganic particles (B) in the diluted solution is 0.1 to 1% by weight. Next, the volume particle size distribution of the inorganic particles (B) is measured using a diluting solution with a laser light diffraction / scattering particle size distribution measuring device (for example, Nanotrac UPA-EX150 manufactured by Nikkiso Co., Ltd.). The cumulative value of 50% can be calculated as the average particle diameter of the inorganic particles (B). Specific measurement conditions are as shown below. The measured value of the average particle diameter of the inorganic particles obtained under the following measurement conditions is defined as the average particle diameter of the inorganic particles (B).
Number of measurements: 1 Measurement time: 180 seconds Measurement temperature: 23 ° C
Measuring solvent: methyl isobutyl ketone CI value: 0.4 to 0.8
Particle permeability: Transmission Sensitivity: Standard Filter: Stand: Norm
Nano range correction: Invalid
 光硬化性樹脂組成物中における無機粒子(B)の含有量は、(メタ)アクリル系ポリマー(A)、無機粒子(B)、有機粒子(C)、及び光重合性多官能化合物(D)の総重量に対して、5~40重量%に限定されるが、6~35重量%が好ましく、7~30重量%がより好ましい。無機粒子(B)の含有量が上記下限値未満であると、ハードコート層に優れた耐ブロッキング性を付与できない虞れがある。また、無機粒子(B)の含有量が上記上限値を超過すると、ハードコート層の透明性や印刷性が低下する虞れがある。さらに、無機粒子(B)の含有量が上記上限値を超過すると、ハードコート層が硬くなり過ぎて、ひび割れが発生し易くなる虞れもある。 The content of inorganic particles (B) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable polyfunctional compound (D). However, it is preferably 6 to 35% by weight, more preferably 7 to 30% by weight. If the content of the inorganic particles (B) is less than the above lower limit, there is a possibility that excellent blocking resistance cannot be imparted to the hard coat layer. Moreover, when content of an inorganic particle (B) exceeds the said upper limit, there exists a possibility that the transparency and printability of a hard-coat layer may fall. Furthermore, if the content of the inorganic particles (B) exceeds the above upper limit, the hard coat layer may become too hard and cracks may easily occur.
 (有機粒子(C))
 本発明の光硬化性樹脂組成物は、少なくとも一種の有機粒子(C)を含んでいる。本発明では、(メタ)アクリル系ポリマー(A)の存在下に、無機粒子(B)及び有機粒子(C)を組み合わせて用いることによって、ハードコート層の印刷性を向上させることができる。このような効果が得られるメカニズムは明らかではないが、以下の通り推測することができる。なお、下記メカニズムは本発明者等により推測されたものであり、したがって、本発明は下記メカニズムに限定されない。
(Organic particles (C))
The photocurable resin composition of the present invention contains at least one kind of organic particles (C). In the present invention, the printability of the hard coat layer can be improved by using the inorganic particles (B) and the organic particles (C) in combination in the presence of the (meth) acrylic polymer (A). The mechanism for obtaining such an effect is not clear, but can be estimated as follows. In addition, the following mechanism is guessed by this inventor etc., Therefore, this invention is not limited to the following mechanism.
 上述した通り、(メタ)アクリル系ポリマー(A)の水酸基によって無機粒子(B)を高分散させることができるが、無機粒子(B)の存在によって(メタ)アクリル系ポリマー(A)の水酸基の多くは、ハードコート層の内側に向かって存在することとなる。有機粒子(C)は疎水性を有しており、このような有機粒子(C)の疎水性によって、(メタ)アクリル系ポリマー(A)の水酸基のうち無機粒子(B)の分散に寄与していない水酸基をハードコート層の外側に向けて存在させることができる。したがって、(メタ)アクリル系ポリマー(A)の存在下に、無機粒子(B)及び有機粒子(C)を組み合わせて用いることによって、ハードコート層表面にその外側に向かって存在する水酸基を多くすることができる。このようなハードコート層は、表面に多くの水酸基が存在していることによって、インクに対する馴染み性が向上されており、これによりインクをはじくことなく精度良く印刷することが可能となる。 As described above, the inorganic particles (B) can be highly dispersed by the hydroxyl groups of the (meth) acrylic polymer (A), but the presence of the inorganic particles (B) allows the hydroxyl groups of the (meth) acrylic polymer (A) to be dispersed. Many will exist toward the inside of the hard coat layer. The organic particles (C) have hydrophobicity, and the hydrophobicity of the organic particles (C) contributes to the dispersion of the inorganic particles (B) among the hydroxyl groups of the (meth) acrylic polymer (A). Unexposed hydroxyl groups can be present toward the outside of the hard coat layer. Therefore, by using the inorganic particles (B) and the organic particles (C) in combination in the presence of the (meth) acrylic polymer (A), the number of hydroxyl groups existing on the outer surface of the hard coat layer is increased. be able to. Since such a hard coat layer has a large number of hydroxyl groups on the surface thereof, the conformability to ink is improved, thereby enabling printing with high accuracy without repelling the ink.
 有機粒子(C)としては、合成樹脂を含む粒子が挙げられる。合成樹脂としては、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアセタール系樹脂、(メタ)アクリル系樹脂、メラミン樹脂、(メタ)アクリル-スチレン共重合体、ポリカーボネート系樹脂、スチレン系樹脂、ポリ塩化ビニル系樹脂、ベンゾグアナミン-メラミンホルムアルデヒド、シリコーン系樹脂、フッ素系樹脂、ポリエステル系樹脂、架橋(メタ)アクリル系樹脂、架橋ポリスチレン系樹脂、架橋ポリウレタン系樹脂、及びエポキシ樹脂などが挙げられる。有機粒子(C)は、一種単独で用いられてもよく、二種以上が併用されてもよい。 Organic particles (C) include particles containing a synthetic resin. Synthetic resins include polyamide resins, polyamideimide resins, polyacetal resins, (meth) acrylic resins, melamine resins, (meth) acrylic-styrene copolymers, polycarbonate resins, styrene resins, polyvinyl chloride resins. Examples include resins, benzoguanamine-melamine formaldehyde, silicone resins, fluorine resins, polyester resins, cross-linked (meth) acrylic resins, cross-linked polystyrene resins, cross-linked polyurethane resins, and epoxy resins. An organic particle (C) may be used individually by 1 type, and 2 or more types may be used together.
 なかでも、有機粒子(C)としては、(メタ)アクリル系樹脂粒子が好ましく、ポリアルキル(メタ)アクリレート粒子がより好ましい。(メタ)アクリル系樹脂粒子は、低い極性を有するため、(メタ)アクリル系ポリマー(A)が有する水酸基をハードコート層表面に多く存在させることができる。ポリアルキル(メタ)アクリレート粒子としては、ポリメチル(メタ)アクリレート粒子、ポリエチル(メタ)アクリレート粒子、ポリプロピル(メタ)アクリレート粒子、ポリブチル(メタ)アクリレート粒子、ポリペンチル(メタ)アクリレート粒子、ポリヘキシル(メタ)アクリレート粒子、ポリヘプチル(メタ)アクリレート粒子、ポリオクチル(メタ)アクリレート粒子、ポリ2-エチルへキシル(メタ)アクリレート粒子、ポリノニル(メタ)アクリレート粒子、ポリデシル(メタ)アクリレート粒子、ポリベンジル(メタ)アクリレート粒子、及びポリジシクロペンタジエニル(メタ)アクリレート粒子が挙げられる。なかでも、ポリメチル(メタ)アクリレート粒子が好ましい。 Among these, as the organic particles (C), (meth) acrylic resin particles are preferable, and polyalkyl (meth) acrylate particles are more preferable. Since the (meth) acrylic resin particles have low polarity, many hydroxyl groups of the (meth) acrylic polymer (A) can be present on the hard coat layer surface. As polyalkyl (meth) acrylate particles, polymethyl (meth) acrylate particles, polyethyl (meth) acrylate particles, polypropyl (meth) acrylate particles, polybutyl (meth) acrylate particles, polypentyl (meth) acrylate particles, polyhexyl (meth) Acrylate particles, polyheptyl (meth) acrylate particles, polyoctyl (meth) acrylate particles, poly-2-ethylhexyl (meth) acrylate particles, polynonyl (meth) acrylate particles, polydecyl (meth) acrylate particles, polybenzyl (meth) acrylate particles, And polydicyclopentadienyl (meth) acrylate particles. Of these, polymethyl (meth) acrylate particles are preferable.
 有機粒子(C)の平均粒子径は、10nm~500nmに限定されるが、10nm~400nmが好ましく、50nm~300nmがより好ましい。平均粒子径が上記範囲内である有機粒子(C)は、高度に分散して、(メタ)アクリル系ポリマー(A)の水酸基のうち無機粒子(B)の分散に寄与していない水酸基をハードコート層の外側に向けて存在させることができる。これにより表面に水酸基が多く存在しているハードコート層を形成することができる。また、平均粒子径が上記上限値を超過する有機粒子(C)は、ハードコート層の透明性、硬度を低下させる虞れがある。 The average particle diameter of the organic particles (C) is limited to 10 nm to 500 nm, but is preferably 10 nm to 400 nm, and more preferably 50 nm to 300 nm. The organic particles (C) having an average particle diameter within the above range are hardly dispersed in the hydroxyl groups of the (meth) acrylic polymer (A) that do not contribute to the dispersion of the inorganic particles (B). It can exist toward the outer side of a coating layer. Thereby, a hard coat layer having many hydroxyl groups on the surface can be formed. Further, the organic particles (C) having an average particle diameter exceeding the above upper limit may reduce the transparency and hardness of the hard coat layer.
 なお、有機粒子(C)の平均粒子径の測定は、上述した無機粒子(B)の平均粒子径の測定方法と同様の要領にて行うことができる。なお、光硬化性樹脂組成物中では、有機粒子(C)は一次粒子又は二次粒子などの凝集粒子として存在している。したがって、有機粒子(C)の平均粒子径とは、上述した無機粒子(B)の平均粒子径の測定方法と同じ方法によって測定された値とする。なお、希釈液中における有機粒子(C)の濃度は0.1~1重量%とする。 In addition, the measurement of the average particle diameter of the organic particles (C) can be performed in the same manner as the method for measuring the average particle diameter of the inorganic particles (B) described above. In the photocurable resin composition, the organic particles (C) are present as aggregated particles such as primary particles or secondary particles. Therefore, let the average particle diameter of organic particle (C) be the value measured by the same method as the measuring method of the average particle diameter of inorganic particle (B) mentioned above. The concentration of the organic particles (C) in the diluted solution is 0.1 to 1% by weight.
 光硬化性樹脂組成物中における有機粒子(C)の含有量は、(メタ)アクリル系ポリマー(A)、無機粒子(B)、有機粒子(C)、及び光重合性多官能化合物(D)の総重量に対して、0.5~10重量%に限定されるが、0.7~9重量%が好ましく、1~8重量%がより好ましい。有機粒子(C)の含有量を上記下限値以上とすることによって、耐ブロッキング性及び印刷性に優れているハードコート層を形成することができる。また、有機粒子(C)の含有量を上記上限値以下とすることにより、ハードコート層の優れた透明性を確保することができる。 The content of the organic particles (C) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable polyfunctional compound (D). The total weight is limited to 0.5 to 10% by weight, preferably 0.7 to 9% by weight, and more preferably 1 to 8% by weight. By setting the content of the organic particles (C) to the above lower limit value or more, a hard coat layer excellent in blocking resistance and printability can be formed. Moreover, the outstanding transparency of a hard-coat layer is securable by making content of an organic particle (C) below into the said upper limit.
 (光重合性多官能化合物(D))
 本発明の光硬化性樹脂組成物は、1分子中に2個以上の光重合性基を有する光重合性多官能化合物(D)を少なくとも一種含んでいる。光重合性多官能化合物(D)は、(メタ)アクリル系ポリマー(A)とラジカル重合することができる。これにより光重合性多官能化合物(D)が(メタ)アクリル系ポリマー(A)の分子鎖間を架橋して、緻密な網目構造を形成することができる。このような緻密な網目構造中に無機粒子(B)や有機粒子(C)を取り込むことができ、これにより無機粒子(B)や有機粒子(C)がこれらの凝集を抑制して高分散されているハードコート層を形成することができる。このようなハードコート層は、無機粒子(B)及び有機粒子(C)が高分散されていることによって、透明性、耐ブロッキング性及び印刷性に優れている。
(Photopolymerizable polyfunctional compound (D))
The photocurable resin composition of the present invention contains at least one photopolymerizable polyfunctional compound (D) having two or more photopolymerizable groups in one molecule. The photopolymerizable polyfunctional compound (D) can be radically polymerized with the (meth) acrylic polymer (A). As a result, the photopolymerizable polyfunctional compound (D) can crosslink between the molecular chains of the (meth) acrylic polymer (A) to form a dense network structure. Inorganic particles (B) and organic particles (C) can be taken into such a dense network structure, whereby inorganic particles (B) and organic particles (C) are highly dispersed while suppressing their aggregation. A hard coat layer can be formed. Such a hard coat layer is excellent in transparency, blocking resistance, and printability because the inorganic particles (B) and the organic particles (C) are highly dispersed.
 光重合性多官能化合物(D)に含まれている光重合性基としては、(メタ)アクリル系ポリマー(A)の光重合性基とラジカル重合可能なエチレン性不飽和二重結合を有していればよく、アクリロイル基、メタクリロイル基、スチリル基、ビニル基、アリル基などが挙げられ、アクリロリル基、メタクリロイル基が好ましい。 The photopolymerizable group contained in the photopolymerizable polyfunctional compound (D) has an ethylenically unsaturated double bond capable of radical polymerization with the photopolymerizable group of the (meth) acrylic polymer (A). And an acryloyl group, a methacryloyl group, a styryl group, a vinyl group, an allyl group, etc. are mentioned, and an acrylolyl group and a methacryloyl group are preferable.
 1分子中に二個の光重合性基を有する光重合性多官能化合物(D)としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートなどのアルキレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどのポリアルキレングリコールジ(メタ)アクリレート;1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジシクロペンタジエンジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート;ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAEO付加ジアクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート又はそれらのアルキレンオキシド変性体、ジビニルベンゼン、ブタンジオール-1,4-ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテルジプロピレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリエチレングリコールジビニルエーテル、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンオリゴマー(共栄社化学(株)製の商品名「AH-600」)、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンオリゴマー(共栄社化学(株)製の商品名「AT-600」)などが挙げられる。なお、光重合性多官能化合物(D)は、単独で用いられても二種以上が併用されてもよい。 Examples of the photopolymerizable polyfunctional compound (D) having two photopolymerizable groups in one molecule include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and neopentyl glycol di (meth). Alkylene glycol di (meth) acrylate such as acrylate; polyalkylene glycol di (meth) acrylate such as diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate (Meth) acrylate; 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentadiene di (meth) Acrylate, neopentyl glycol adipate di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate; pentaerythritol di (meth) ) Acrylate, bisphenol AEO addition diacrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate or alkylene thereof Modified oxide, divinylbenzene, butanediol-1,4-divinyl ether, cyclohexanedimethanol divinyl ether, diethylene glycol Divinyl ether, dipropylene glycol divinyl ether, dipropylene glycol divinyl ether, hexanediol divinyl ether, triethylene glycol divinyl ether, phenylglycidyl ether acrylate hexamethylene diisocyanate urethane oligomer (trade name “AH-600” manufactured by Kyoeisha Chemical Co., Ltd.) ), Phenyl glycidyl ether acrylate toluene diisocyanate urethane oligomer (trade name “AT-600” manufactured by Kyoeisha Chemical Co., Ltd.), and the like. In addition, a photopolymerizable polyfunctional compound (D) may be used independently, or 2 or more types may be used together.
 1分子中に三個の光重合性基を有する光重合性多官能化合物(D)としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、又はそれらのアルキレンオキシド変性体、イソシアヌル酸アルキレンオキシド変性体のトリ(メタ)アクリレートなどが挙げられる。 Examples of the photopolymerizable polyfunctional compound (D) having three photopolymerizable groups in one molecule include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol tri (meta). ) Acrylate, tris (acryloxyethyl) isocyanurate, or their modified alkylene oxide, and isocyanuric acid alkylene oxide modified tri (meth) acrylate.
 1分子中に四個の光重合性基を有する光重合性多官能化合物(D)としては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート又はそれらのアルキレンオキシド変性体などが挙げられる。 Examples of the photopolymerizable polyfunctional compound (D) having four photopolymerizable groups in one molecule include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and their alkylene oxide modified products. Etc.
 1分子中に五個の光重合性基を有する光重合性多官能化合物(D)としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート又はそれらのアルキレンオキシド変性体などが挙げられる。 Examples of the photopolymerizable polyfunctional compound (D) having five photopolymerizable groups in one molecule include dipentaerythritol penta (meth) acrylate or their modified alkylene oxides.
 1分子中に六個の光重合性基を有する光重合性多官能化合物(D)としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンオリゴマー(共栄社化学(株)製の商品名「UA-306H」)、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート又はそれらのアルキレンオキシド変性体などが挙げられる。 Examples of the photopolymerizable polyfunctional compound (D) having six photopolymerizable groups in one molecule include dipentaerythritol hexa (meth) acrylate, pentaerythritol triacrylate hexamethylene diisocyanate urethane oligomer (Kyoeisha Chemical Co., Ltd.) Trade name “UA-306H”), caprolactone-modified dipentaerythritol hexa (meth) acrylate, or an alkylene oxide-modified product thereof.
 光重合性多官能化合物(D)としては、1分子中に2個以上の光重合性基を有するオリゴマーが好ましい。オリゴマーとしては、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。なかでも、ウレタン(メタ)アクリレートオリゴマーがより好ましい。ウレタン(メタ)アクリレートオリゴマーは、ポリオール類及びポリイソシアネートを反応させて得られるイソシアネート基末端ウレタンプレポリマーを、1分子中に少なくとも1個の水酸基を有する(メタ)アクリレートモノマーと反応させることにより得られる。 As the photopolymerizable polyfunctional compound (D), an oligomer having two or more photopolymerizable groups in one molecule is preferable. Examples of the oligomer include urethane (meth) acrylate, polyester (meth) acrylate, and epoxy (meth) acrylate. Of these, urethane (meth) acrylate oligomers are more preferable. The urethane (meth) acrylate oligomer is obtained by reacting an isocyanate group-terminated urethane prepolymer obtained by reacting polyols and polyisocyanate with a (meth) acrylate monomer having at least one hydroxyl group in one molecule. .
 ウレタン(メタ)アクリレートオリゴマーとしては、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンオリゴマー、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンオリゴマー、及びペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンオリゴマーなどが挙げられる。 Examples of the urethane (meth) acrylate oligomer include phenyl glycidyl ether acrylate hexamethylene diisocyanate urethane oligomer, phenyl glycidyl ether acrylate toluene diisocyanate urethane oligomer, and pentaerythritol triacrylate hexamethylene diisocyanate urethane oligomer.
 光重合性多官能化合物(D)が1分子中に有している光重合性基の数は、3~20個が好ましく、4~20個がより好ましく、5~15個が特に好ましい。光重合性基の数が上記範囲内である光重合性多官能化合物(D)によれば、緻密な架橋構造を形成することができ、これにより透明性、硬度、耐ブロッキング性及び印刷性に優れているハードコート層を提供することができる。 The number of photopolymerizable groups contained in the molecule of the photopolymerizable polyfunctional compound (D) is preferably 3 to 20, more preferably 4 to 20, and particularly preferably 5 to 15. According to the photopolymerizable polyfunctional compound (D) in which the number of photopolymerizable groups is within the above range, a dense cross-linked structure can be formed, thereby improving transparency, hardness, blocking resistance and printability. An excellent hard coat layer can be provided.
 光硬化性樹脂組成物中における光重合性多官能化合物(D)の含有量は、(メタ)アクリル系ポリマー(A)、無機粒子(B)、有機粒子(C)、及び光重合性多官能化合物(D)の総重量に対して、20~70重量%に限定されるが、23~65重量%が好ましく、25~60重量%がより好ましい。光重合性多官能化合物(D)の含有量を上記下限値以上とすることによって、ハードコート層の優れた硬度を確保することができる。また、光重合性多官能化合物(D)の含有量を上記上限値以下とすることにより、無機粒子(B)及び有機粒子(C)が高分散されており、これにより透明性、耐ブロッキング性及び印刷性に優れているハードコート層を形成することができる。 The content of the photopolymerizable polyfunctional compound (D) in the photocurable resin composition is (meth) acrylic polymer (A), inorganic particles (B), organic particles (C), and photopolymerizable polyfunctional. Although it is limited to 20 to 70% by weight relative to the total weight of compound (D), it is preferably 23 to 65% by weight, more preferably 25 to 60% by weight. By setting the content of the photopolymerizable polyfunctional compound (D) to the above lower limit value or more, excellent hardness of the hard coat layer can be ensured. Moreover, by making content of a photopolymerizable polyfunctional compound (D) below the said upper limit, an inorganic particle (B) and an organic particle (C) are highly dispersed, Thereby, transparency and blocking resistance In addition, a hard coat layer excellent in printability can be formed.
 (光重合開始剤)
 本発明の光硬化性樹脂組成物は、光重合開始剤をさらに含んでいることが好ましい。光重合開始剤としては、例えば、ベンゾインエーテル系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤、オキシムエステル系光重合開始剤、ジアゾフェニルアミン系光重合開始剤、ナフトキノンジアゾスルホン酸系光重合開始剤、ジメチルアミノ安息香酸系光重合開始剤などが挙げられる。なお、光重合開始剤は、単独で用いられても二種以上が併用されてもよい。
(Photopolymerization initiator)
It is preferable that the photocurable resin composition of the present invention further contains a photopolymerization initiator. Examples of photopolymerization initiators include benzoin ether photopolymerization initiators, benzophenone photopolymerization initiators, thioxanthone photopolymerization initiators, alkylphenone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and titanocenes. And photopolymerization initiators, oxime ester photopolymerization initiators, diazophenylamine photopolymerization initiators, naphthoquinone diazosulfonic acid photopolymerization initiators, and dimethylaminobenzoic acid photopolymerization initiators. In addition, a photoinitiator may be used independently or 2 or more types may be used together.
 ベンゾインエーテル系光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどが挙げられる。 Examples of the benzoin ether photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether.
 ベンゾフェノン系光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4'-メチル-ジフェニルサルファイド、2,4,6-トリメチルベンゾフェノンなどが挙げられる。 Examples of the benzophenone photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, 2,4,6-trimethylbenzophenone, and the like.
 チオキサントン系光重合開始剤としては、例えば、2-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントンなどが挙げられる。 Examples of the thioxanthone photopolymerization initiator include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like.
 アルキルフェノン系光重合開始剤としては、例えば、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンなどが挙げられる。 Examples of the alkylphenone photopolymerization initiator include 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 1-hydroxy. -Cyclohexyl-phenyl-ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) Chill] -1- [4- (4-morpholinyl) phenyl] -1-butanone and the like.
 アシルフォスフィンオキサイド系光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどが挙げられる。 Examples of the acylphosphine oxide photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like.
 チタノセン系光重合開始剤としては、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。 Examples of titanocene photopolymerization initiators include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium. Etc.
 オキシムエステル系光重合開始剤としては、例えば、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル、オキシ-フェニル-アセチックアシッド2-(2-ヒドロキシエトキシ)エチルエステルなどが挙げられる。 Examples of the oxime ester photopolymerization initiator include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone-1- [9-ethyl-6- ( 2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), oxy-phenyl-acetic acid 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, oxy-phenyl -Acetic acid 2- (2-hydroxyethoxy) ethyl ester and the like.
 光硬化性樹脂組成物中における光重合開始剤の含有量は、(メタ)アクリル系ポリマー(A)100重量部に対して、0.1~20重量部が好ましく、0.1~10重量部がより好ましく、1~5重量部が特に好ましい。光重合開始剤の含有量を上記下限値以上とすることによって、光硬化性樹脂組成物の光硬化を十分に進行させることができる。また、光重合開始剤の含有量を上記上限値以下とすることによって、光重合開始剤の分解物によるハードコート層の硬度の低下を抑制することができる。 The content of the photopolymerization initiator in the photocurable resin composition is preferably 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer (A). Is more preferable, and 1 to 5 parts by weight is particularly preferable. By making content of a photoinitiator more than the said lower limit, photocuring of a photocurable resin composition can fully be advanced. Moreover, the fall of the hardness of the hard-coat layer by the decomposition product of a photoinitiator can be suppressed by making content of a photoinitiator below the said upper limit.
 (光重合性単官能化合物)
 本発明の光硬化性樹脂組成物は、1分子中に光重合性基を1個有する光重合性単官能化合物を含んでいてもよい。光重合性単官能化合物は、光硬化性樹脂組成物の粘度を調整すると共に、固形分濃度を高めることにより光硬化性樹脂組成物の乾燥性を向上させるために用いられる。
(Photopolymerizable monofunctional compound)
The photocurable resin composition of the present invention may contain a photopolymerizable monofunctional compound having one photopolymerizable group in one molecule. The photopolymerizable monofunctional compound is used for adjusting the viscosity of the photocurable resin composition and improving the drying property of the photocurable resin composition by increasing the solid content concentration.
 光重合性単官能化合物としては、例えば、脂肪族系(メタ)アクリレート、脂環式系(メタ)アクリレート、芳香族系(メタ)アクリレート、エーテル系(メタ)アクリレート、ビニル系モノマー、(メタ)アクリルアミド類などが挙げられる。なお、本発明において、(メタ)アクリルアミドは、アクリルアミド又はメタクリルアミドを意味する。 Examples of the photopolymerizable monofunctional compound include aliphatic (meth) acrylates, alicyclic (meth) acrylates, aromatic (meth) acrylates, ether (meth) acrylates, vinyl monomers, (meth) Examples include acrylamides. In the present invention, (meth) acrylamide means acrylamide or methacrylamide.
 光重合性単官能化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシ(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、2-エチルヘキシル-カルビトール(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ECH変性フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、パラクミルフェノールエチレンオキサイド変性(メタ)アクリレート、ビニルピロリドン、ビニルカプロラクタム、アクリロイルモルフォリンなどが挙げられる。 Examples of the photopolymerizable monofunctional compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) ) Acrylate, isooctyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) acrylate, isobornyl (meth) acrylate, ethoxy-diethylene glycol (meth) acrylate, 2-ethylhexyl-carbitol (meth) acrylate, neopentyl Glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, ECH modified phenoxy (meth) acrylate, phenoxyethyl ( Data) acrylate, p-cumylphenol ethylene oxide-modified (meth) acrylate, vinyl pyrrolidone, vinyl caprolactam, and the like acryloyl morpholine.
 (界面活性剤)
 本発明の光硬化性樹脂組成物は、界面活性剤を含んでいてもよい。界面活性剤を用いることにより、ハードコート層の印刷性を向上させることができる。
(Surfactant)
The photocurable resin composition of the present invention may contain a surfactant. By using the surfactant, the printability of the hard coat layer can be improved.
 界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、及び両性界面活性剤が挙げられる。界面活性剤は活性水素を有する官能基を有していることが好ましい。活性水素を有する官能基としては、水酸基、カルボキシル基、アミノ基、及びアミド基等が挙げられる。 Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. It is preferable that the surfactant has a functional group having active hydrogen. Examples of the functional group having active hydrogen include a hydroxyl group, a carboxyl group, an amino group, and an amide group.
 アニオン系界面活性剤としては、例えば、ヒマシ油モノサルフェート、ヒマシ油モノホスフェート、ソルビタン脂肪酸エステルサルフェート、ソルビタン脂肪酸エステルホスフェート、ポリオキシアルキレングリセリンエーテルモノサルフェート、ポリオキシアルキレングリセリンエーテルモノホスフェート、パーフルオロアルキルエステルホスフェートなどが挙げられる。 Examples of the anionic surfactant include castor oil monosulfate, castor oil monophosphate, sorbitan fatty acid ester sulfate, sorbitan fatty acid ester phosphate, polyoxyalkylene glycerin ether monosulfate, polyoxyalkylene glycerin ether monophosphate, perfluoroalkyl ester. Examples include phosphate.
 カチオン系界面活性剤としては、例えば、ジアルカノールアミン塩、ポリオキシアルキレンアルキルアミンエーテル塩、ポリオキシアルキレンアルキルアンモニウム塩、ポリオキシアルキレンジアルカノールアミンエーテル塩などが挙げられる。 Examples of the cationic surfactant include dialkanolamine salts, polyoxyalkylene alkylamine ether salts, polyoxyalkylene alkylammonium salts, polyoxyalkylene dialkanolamine ether salts, and the like.
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ソルビタン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステルなどが挙げられる。 Examples of nonionic surfactants include polyoxyethylene polyoxypropylene block polymers, sorbitan fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, and polyglycerin fatty acid esters.
 両性界面活性剤としては、例えば、N,N-ジ(β-ヒドロキシアルキル)N-ヒドロキシエチル-N-カルボキシアルキルアンモニウムベタイン、N,N-ジ(ポリオキシエチレン)-N-アルキル-N-スルホアルキルアンモニウムベタイン、パーフルオロアルキルベタインなどが挙げられる。 Examples of amphoteric surfactants include N, N-di (β-hydroxyalkyl) N-hydroxyethyl-N-carboxyalkylammonium betaine, N, N-di (polyoxyethylene) -N-alkyl-N-sulfo. Examples include alkyl ammonium betaine and perfluoroalkyl betaine.
 (シランカップリング剤)
 本発明の光硬化性樹脂組成物は、シランカップリング剤を含んでいてもよい。シランカップリング剤を用いることにより、ハードコート層の印刷性を向上させることができる。
(Silane coupling agent)
The photocurable resin composition of the present invention may contain a silane coupling agent. By using a silane coupling agent, the printability of the hard coat layer can be improved.
 シランカップリング剤としては、例えば、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシランなどのエポキシ基含有シランカップリング剤;アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、アミノプロピルトリエトキシシランなどのアミノ基含有シランカップリング剤;メルカプトプロピルトリメトキシシランなどのメルカプト基含有シランカップリング剤;ウレイドプロピルトリエトキシシランなどのウレタン基含有シランカップリング剤;イソシアネートプロピルトリエトキシシランなどのイソシアネート基含有シランカップリング剤などが挙げられる。 Examples of the silane coupling agent include epoxy group-containing silane coupling agents such as glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane; aminopropyltrimethoxysilane, N-2- (aminoethyl) -3 -Amino group-containing silane coupling agents such as aminopropyltriethoxysilane and aminopropyltriethoxysilane; Mercapto group-containing silane coupling agents such as mercaptopropyltrimethoxysilane; Urethane group-containing silane couplings such as ureidopropyltriethoxysilane Agents; isocyanate group-containing silane coupling agents such as isocyanatepropyltriethoxysilane.
 本発明の光硬化性樹脂組成物は、溶剤を含んでいてもよい。溶剤を用いることにより、光硬化性樹脂組成物の粘度を調整でき、これにより光硬化性樹脂組成物の取り扱い性や塗工性を向上させることができる。溶剤としては、特に制限されず、上述した乳化重合及び溶液重合においてモノマー組成物の重合に用いられる溶剤と同様のものが挙げられる。 The photocurable resin composition of the present invention may contain a solvent. By using the solvent, the viscosity of the photocurable resin composition can be adjusted, and thereby the handleability and coating properties of the photocurable resin composition can be improved. The solvent is not particularly limited, and examples thereof include the same solvents as those used for the polymerization of the monomer composition in the above-described emulsion polymerization and solution polymerization.
 本発明の光硬化性樹脂組成物は、その物性を損なわない範囲内において、必要に応じて他の添加剤が添加されていてもよい。他の添加剤としては、例えば、酸化防止剤、光安定剤、耐熱安定剤、帯電防止剤、消泡剤などが挙げられる。 In the photo-curable resin composition of the present invention, other additives may be added as necessary within the range not impairing the physical properties. Examples of other additives include antioxidants, light stabilizers, heat stabilizers, antistatic agents, and antifoaming agents.
 本発明の光硬化性組成物は、基材の一面に硬化膜を形成するために好ましく用いられる。光硬化性組成物を硬化させてなる硬化膜は、透明性、硬度、耐傷付き性、耐ブロッキング性、及び印刷性に優れている。したがって、このような硬化膜は、ハードコート層として用いることができる。 The photocurable composition of the present invention is preferably used for forming a cured film on one surface of a substrate. A cured film obtained by curing the photocurable composition is excellent in transparency, hardness, scratch resistance, blocking resistance, and printability. Therefore, such a cured film can be used as a hard coat layer.
 光硬化性樹脂組成物の硬化膜の形成方法としては、光硬化性樹脂組成物を基材の少なくとも一面に塗工する工程と、塗工した光硬化性樹脂組成物に活性エネルギー線を照射することにより光硬化させて硬化膜を得る工程とを有する方法が用いられる。活性エネルギー線としては、紫外線、電子線、α線、β線、及びγ線などが挙げられるが、紫外線及び電子線が好ましい。光重合開始剤を含まない光硬化性樹脂組成物に活性エネルギー線を照射する場合、活性エネルギー線として電子線が好ましく用いられる。 As a method for forming a cured film of the photocurable resin composition, a step of applying the photocurable resin composition to at least one surface of the substrate and irradiating the applied photocurable resin composition with active energy rays And a step of photocuring to obtain a cured film. Examples of the active energy ray include ultraviolet rays, electron beams, α rays, β rays, and γ rays, and ultraviolet rays and electron beams are preferable. When irradiating an active energy ray to the photocurable resin composition which does not contain a photopolymerization initiator, an electron beam is preferably used as the active energy ray.
 紫外線の照射は、キセノンランプ、高圧水銀灯、及びメタルハライドランプなどの光源を有する紫外線照射装置を用いて行うことができる。光源として高圧水銀灯を用いる場合には、光硬化性樹脂組成物が塗工された基材を、高圧水銀灯1灯に対して5~50m/分の搬送速度で搬送させて紫外線を照射することが好ましい。この時、高圧水銀灯の光量は80~160W/cmが好ましい。 The ultraviolet irradiation can be performed using an ultraviolet irradiation apparatus having a light source such as a xenon lamp, a high-pressure mercury lamp, and a metal halide lamp. When a high pressure mercury lamp is used as the light source, the substrate coated with the photocurable resin composition may be conveyed to a single high pressure mercury lamp at a conveyance speed of 5 to 50 m / min and irradiated with ultraviolet rays. preferable. At this time, the light intensity of the high pressure mercury lamp is preferably 80 to 160 W / cm.
 光源として電子線を用いる場合には、光硬化性樹脂組成物が塗工された基材を、好ましくは10~300kVの加速電圧を有する電子線加速装置を用いて、5~50m/分の搬送速度で搬送させて電子線を照射することが好ましい。 When an electron beam is used as the light source, the substrate coated with the photocurable resin composition is preferably transported at 5 to 50 m / min using an electron beam accelerator having an acceleration voltage of 10 to 300 kV. It is preferable that the electron beam is irradiated at a speed.
 基材の材質としては、特に限定されず、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ポリカーボネート系樹脂、ポリアクリル系樹脂、スチレン系樹脂、ABS樹脂、トリアセチルセルロース、及びオレフィン系樹脂などの合成樹脂、ガラスなどの無機材料、ステンレス、鋼、アルミニウムなどの金属などが挙げられる。 The material of the substrate is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resins, polyacrylic resins, styrene resins, ABS resins, triacetyl cellulose, and olefin resins. And synthetic resins such as glass, inorganic materials such as glass, and metals such as stainless steel, steel, and aluminum.
 光硬化性樹脂組成物を基材に塗工する方法としては、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、スクリーン印刷法などによる塗布方法、バーコーター、アプリケーターなどを用いたキャスティングなどが挙げられる。 As a method for applying the photocurable resin composition to the substrate, for example, a coating method such as a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a screen printing method, a bar coater, an applicator or the like is used. Casting that had been mentioned.
 基材上に塗工した光硬化性樹脂組成物の乾燥後の塗膜の膜厚は、特に限定されないが、2~90μmが好ましく、5~50μmがより好ましい。 The film thickness of the coating film after drying of the photocurable resin composition coated on the substrate is not particularly limited, but is preferably 2 to 90 μm, more preferably 5 to 50 μm.
 塗工された光硬化性樹脂組成物を、光照射前に、加熱することにより光硬化性樹脂組成物に含まれている溶剤などを除去してもよい。 Before the light irradiation, the coated photocurable resin composition may be heated to remove the solvent contained in the photocurable resin composition.
 光硬化性樹脂組成物の硬化膜は、上述した通り、無機粒子(B)及び有機粒子(C)を組み合わせて用いることによって、硬度、耐傷付き性、耐ブロッキング性、透明性、印刷性などの物性が向上されている。本来、無機粒子と有機粒子とは屈折率が異なる上、無機粒子と有機粒子とを組み合わせて用いると、両者の静電気的な反発により無機粒子同士及び有機粒子同士が凝集しやすくなる。その結果、無機粒子と有機粒子との併用は、硬化膜の透明性を低下させる。しかしながら、本発明では、(メタ)アクリル系ポリマー(A)を用いて無機粒子(B)及び有機粒子(C)を高分散させることによって、無機粒子(B)と有機粒子(C)との併用による硬化膜の透明性の低下を高く低減することができる。 As described above, the cured film of the photocurable resin composition can be used in combination with inorganic particles (B) and organic particles (C), such as hardness, scratch resistance, blocking resistance, transparency, and printability. Physical properties have been improved. Originally, the inorganic particles and the organic particles have different refractive indexes, and when the inorganic particles and the organic particles are used in combination, the inorganic particles and the organic particles are likely to aggregate due to electrostatic repulsion between them. As a result, the combined use of inorganic particles and organic particles reduces the transparency of the cured film. However, in the present invention, the inorganic particles (B) and the organic particles (C) are used in combination by highly dispersing the inorganic particles (B) and the organic particles (C) using the (meth) acrylic polymer (A). It is possible to reduce the decrease in transparency of the cured film due to high.
 光硬化性樹脂組成物の硬化膜は優れた透明性を有している。光硬化性樹脂組成物の硬化膜のヘーズは、1.0%以下が好ましく、0.8%以下がより好ましい。なお、硬化膜のヘーズは、JIS K 7136(2000)に準拠して測定される値である。 The cured film of the photocurable resin composition has excellent transparency. The haze of the cured film of the photocurable resin composition is preferably 1.0% or less, and more preferably 0.8% or less. The haze of the cured film is a value measured according to JIS K 7136 (2000).
 光硬化性樹脂組成物の硬化膜は優れた硬度を有している。光硬化性樹脂組成物の硬化膜の硬度は、鉛筆硬度として、H以上が好ましく、2H以上がより好ましい。なお、鉛筆硬度は、JIS K 5600-5-4(1999)に準拠して、鉛筆硬度試験により測定された値をいう。 The cured film of the photocurable resin composition has excellent hardness. The hardness of the cured film of the photocurable resin composition is preferably H or higher, more preferably 2H or higher, as pencil hardness. The pencil hardness is a value measured by a pencil hardness test in accordance with JIS K 5600-5-4 (1999).
 光硬化性樹脂組成物の硬化膜は、動摩擦係数が低く、優れた耐ブロッキング性を有している。光硬化性樹脂組成物の硬化膜の動摩擦係数は、0.6N以下が好ましく、0.5N以下がより好ましい。なお、動摩擦係数は、JIS K 7125(1999)に準拠して測定された値をいう。 The cured film of the photo-curable resin composition has a low coefficient of dynamic friction and excellent blocking resistance. The dynamic friction coefficient of the cured film of the photocurable resin composition is preferably 0.6 N or less, and more preferably 0.5 N or less. The dynamic friction coefficient is a value measured according to JIS K 7125 (1999).
 光硬化性樹脂組成物の硬化膜は、インキに対する馴染み性に優れており、印刷性が向上されている。光硬化性樹脂組成物の硬化膜表面のぬれ張力は、35dyn/cm以上が好ましく、40dyn/cm以上がより好ましい。なお、光硬化性樹脂組成物の硬化膜表面のぬれ張力は、JIS K 6768(1999)に準拠して測定された値とする。 The cured film of the photocurable resin composition has excellent compatibility with ink and has improved printability. 35 dyn / cm or more is preferable and, as for the wetting tension of the cured film surface of a photocurable resin composition, 40 dyn / cm or more is more preferable. In addition, let the wetting tension | tensile_strength of the cured film surface of a photocurable resin composition be a value measured based on JISK6768 (1999).
 光硬化性樹脂組成物の硬化膜の厚みは、硬度、耐傷付き性、耐ブロッキング性、及び印刷性に優れている硬化膜を得る観点から、2~90μmが好ましく、5~50μmがより好ましい。 The thickness of the cured film of the photocurable resin composition is preferably 2 to 90 μm and more preferably 5 to 50 μm from the viewpoint of obtaining a cured film having excellent hardness, scratch resistance, blocking resistance, and printability.
 本発明の光硬化性樹脂組成物の硬化膜は、ハードコート層として基材表面を保護するために好適に用いられる。硬化膜上には、ハードコート層以外の機能層が積層一体化されていることが好ましい。光硬化性樹脂組成物の硬化膜は、優れた印刷性を有していることから、硬化膜上に所望のパターン形状や均一な厚みを有する機能層を形成することができる。 The cured film of the photocurable resin composition of the present invention is suitably used as a hard coat layer to protect the substrate surface. It is preferable that functional layers other than the hard coat layer are laminated and integrated on the cured film. Since the cured film of the photocurable resin composition has excellent printability, a functional layer having a desired pattern shape and uniform thickness can be formed on the cured film.
 機能層としては、例えば、電磁波シールド層、熱線反射層、紫外線遮蔽層、ガスバリア層、反射防止層、導電層、ハードコート保護層、防眩層、接着層、帯電防止層などが挙げられる。これらの機能層は、公知の方法により形成できる。 Examples of the functional layer include an electromagnetic wave shielding layer, a heat ray reflective layer, an ultraviolet shielding layer, a gas barrier layer, an antireflection layer, a conductive layer, a hard coat protective layer, an antiglare layer, an adhesive layer, and an antistatic layer. These functional layers can be formed by a known method.
 例えば、光硬化性樹脂組成物の硬化膜上に透明導電層が積層一体化されている導電性積層フィルムは、タッチパネルに好適に用いられる。本発明の光硬化性樹脂組成物の硬化膜は、印刷性だけでなく、透明性にも優れていることから、このような硬化膜上に微細なパターン形状を有し且つ優れた透明性を有する透明導電層を形成することができ、これにより透明導電層が視認され難く且つ可視光の透過率が高い導電性積層フィルムを提供することができる。 For example, a conductive laminated film in which a transparent conductive layer is laminated and integrated on a cured film of a photocurable resin composition is suitably used for a touch panel. Since the cured film of the photocurable resin composition of the present invention is excellent not only in printability but also in transparency, it has a fine pattern shape on such a cured film and has excellent transparency. The transparent conductive layer can be formed, thereby providing a conductive laminated film in which the transparent conductive layer is hardly visible and has high visible light transmittance.
 導電性積層フィルムは、透明基材と、この透明基材の一面に積層一体化されている光硬化性樹脂組成物の硬化膜と、この硬化膜の一面に積層一体化されている透明導電層とを含んでいる。 The conductive laminated film includes a transparent substrate, a cured film of a photocurable resin composition laminated and integrated on one surface of the transparent substrate, and a transparent conductive layer laminated and integrated on one surface of the cured film. Including.
 透明基材は、透明合成樹脂を含んでいる。透明合成樹脂としては、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂などが挙げられる。透明基材の厚みは、2~200μmが好ましく、2~100μmがより好ましい。 The transparent substrate contains a transparent synthetic resin. Transparent synthetic resins include polyester resins, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, polyvinyl chloride resins, poly Examples thereof include vinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and the like. The thickness of the transparent substrate is preferably 2 to 200 μm, more preferably 2 to 100 μm.
 透明導電層は、光硬化性樹脂組成物の硬化膜上に接着層を介して積層一体化されていてもよい。接着層は、公知の接着剤を含んでいる。接着剤としては、例えば、アクリル系接着剤、シリコーン系接着剤、ポリエステル系接着剤などが用いられる。硬化膜上に接着剤を含有する組成物を塗布することにより、均一な厚みを有する接着剤層を形成することができる。 The transparent conductive layer may be laminated and integrated on the cured film of the photocurable resin composition via an adhesive layer. The adhesive layer contains a known adhesive. As the adhesive, for example, an acrylic adhesive, a silicone adhesive, a polyester adhesive, or the like is used. By applying a composition containing an adhesive on the cured film, an adhesive layer having a uniform thickness can be formed.
 透明導電層の構成材料としては、例えば、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、及びタングステンからなる群より選択される少なくとも1種の金属の酸化物が挙げられる。透明導電層は、導電性積層フィルムが用いられる用途に応じて、ストライプ状などのパターン形状を有する。 The constituent material of the transparent conductive layer is, for example, at least one selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, and tungsten. Examples include metal oxides. The transparent conductive layer has a pattern shape such as a stripe shape depending on the application in which the conductive laminated film is used.
 透明導電層の形成方法としては、公知の方法が用いられる。例えば、導電ペーストを印刷する方法が好ましい。光硬化性樹脂組成物の硬化膜は、上述した通り、表面に水酸基が多く存在していることによって、高い極性を有している。これにより、光硬化性樹脂組成物の硬化膜と、透明導電層とを強固に積層一体化させることができる。したがって、透明導電層の形成方法としては、印刷法に限定されず、蒸着法やスパッタリング法なども好適に用いられる。 As a method for forming the transparent conductive layer, a known method is used. For example, a method of printing a conductive paste is preferable. As described above, the cured film of the photocurable resin composition has high polarity due to the presence of many hydroxyl groups on the surface. Thereby, the cured film of a photocurable resin composition and a transparent conductive layer can be firmly laminated and integrated. Therefore, the method for forming the transparent conductive layer is not limited to the printing method, and an evaporation method, a sputtering method, and the like are also preferably used.
 導電性積層フィルムは、静電容量方式のタッチパネルに好適に用いられる。タッチパネルは、特に制限されないが、情報端末装置の表示パネルの前面に配設される。情報端末装置としては、例えば、携帯電話、携帯情報端末(PDA)、携帯型ゲーム機、デジタルカメラ、パーソナルコンピュータ、及びテレビなどが挙げられる。 The conductive laminated film is suitably used for a capacitive touch panel. The touch panel is not particularly limited, but is disposed on the front surface of the display panel of the information terminal device. Examples of the information terminal device include a mobile phone, a personal digital assistant (PDA), a portable game machine, a digital camera, a personal computer, and a television.
 以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
 (実施合成例1~9及び比較合成例1~8)
 (メタ)アクリル系ポリマーの合成
 反応容器中に、溶剤としてメチルイソブチルケトン(MIBK)400重量部を供給して90℃まで加熱し維持した。
(Example Synthesis Examples 1 to 9 and Comparative Synthesis Examples 1 to 8)
Synthesis of (meth) acrylic polymer In a reaction vessel, 400 parts by weight of methyl isobutyl ketone (MIBK) was supplied as a solvent and heated to 90 ° C. and maintained.
 メチルメタクリレート(MMA)、イソボルニルメタクリレート(IBXMA)、グリシジルメタクリレート(GMA)、2-ヒドロキシエチルメタクリレート(2-HEMA)、ブチルアクリレート(BA)、及びラジカル重合開始剤としてアゾビス-2-メチルブチロニトリル(ABN-E)を、表1及び2に示した配合量で混合し、モノマー組成物を得た。 Methyl methacrylate (MMA), isobornyl methacrylate (IBXMA), glycidyl methacrylate (GMA), 2-hydroxyethyl methacrylate (2-HEMA), butyl acrylate (BA), and azobis-2-methylbutyroyl as radical polymerization initiator Nitrile (ABN-E) was mixed in the blending amounts shown in Tables 1 and 2 to obtain a monomer composition.
 次に、モノマー組成物を2時間に亘って徐々に反応容器中に滴下しながら混合し、4時間に亘って放置した後、120℃で1時間に亘って加熱することにより、ラジカル重合させることにより重合体を得た。 Next, the monomer composition is gradually dropped into the reaction vessel over 2 hours, mixed, allowed to stand for 4 hours, and then heated at 120 ° C. for 1 hour for radical polymerization. To obtain a polymer.
 次に、重合体を60℃まで冷却した後、重合体に、アクリル酸(AA)、2-イソシアナトエチルメタクリレート(MOI)、重合禁止剤としてパラメトキシフェノール(MQ)、触媒としてトリフェニルホスフィン(TPP)及びジブチル錫ジラウレート(DBTDL)を、それぞれ表1及び2に示した配合量で混合し、混合物を得た。その後、反応容器中に酸素を吹き込みながら、混合物を110℃で8時間に亘って加熱して、重合体にアクリル酸(AA)又は2-イソシアナトエチルメタクリレート(MOI)を付加させ、これにより側鎖に光重合性基及び水酸基を有している(メタ)アクリル系ポリマーを製造した。 Next, after the polymer was cooled to 60 ° C., acrylic acid (AA), 2-isocyanatoethyl methacrylate (MOI), paramethoxyphenol (MQ) as a polymerization inhibitor, and triphenylphosphine ( TPP) and dibutyltin dilaurate (DBTDL) were mixed in the blending amounts shown in Tables 1 and 2, respectively, to obtain a mixture. Thereafter, the mixture was heated at 110 ° C. for 8 hours while blowing oxygen into the reaction vessel to add acrylic acid (AA) or 2-isocyanatoethyl methacrylate (MOI) to the polymer. A (meth) acrylic polymer having a photopolymerizable group and a hydroxyl group in the chain was produced.
 得られた(メタ)アクリル系ポリマーの水酸基価、(メタ)アクリル当量、重量平均分子量、及びガラス転移点を下記要領で測定した。その結果を表1及び2に示した。 The hydroxyl value, (meth) acrylic equivalent, weight average molecular weight, and glass transition point of the (meth) acrylic polymer obtained were measured as follows. The results are shown in Tables 1 and 2.
 (水酸基価)
 (メタ)アクリル系ポリマーの水酸基価は、JIS K 1557-1:2007(ISO 14900:2001)「プラスチック-ポリウレタン原料ポリオール試験方法-第1部:水酸基価の求め方」の4.2 B法に準拠して測定した。なお、(メタ)アクリル系ポリマーの水酸基価は、固形分の水酸基価をいう。
(Hydroxyl value)
The hydroxyl value of the (meth) acrylic polymer is determined by the method of 4.2 B of JIS K1557-1: 2007 (ISO 14900: 2001) “Plastics—Polyurethane raw material polyol test method—Part 1: Determination of hydroxyl value”. Measured in conformity. In addition, the hydroxyl value of a (meth) acrylic-type polymer means the hydroxyl value of solid content.
 ((メタ)アクリル当量)
 (メタ)アクリル系ポリマーの(メタ)アクリル当量は、(メタ)アクリル系ポリマーの原料であるモノマー組成から、上記式(I)により算出した。
((Meth) acrylic equivalent)
The (meth) acrylic equivalent of the (meth) acrylic polymer was calculated by the above formula (I) from the monomer composition that is the raw material of the (meth) acrylic polymer.
 (重量平均分子量)
 (メタ)アクリル系ポリマーからサンプルとして0.2mgを採取し、これをテトラヒドロフラン10ミリリットルに溶解させ、示差屈折率検出器(RID)を装備したゲルパーミエーションクロマトグラフ(GPC)によってサンプルの分子量分布を測定し、クロマトグラム(チャート)を得た。
(Weight average molecular weight)
A 0.2 mg sample was taken from a (meth) acrylic polymer, dissolved in 10 ml of tetrahydrofuran, and the molecular weight distribution of the sample was determined by gel permeation chromatography (GPC) equipped with a differential refractive index detector (RID). Measurement was performed to obtain a chromatogram (chart).
 次に、得られたクロマトグラム(チャート)から、標準ポリスチレンを検量線として、サンプルの重量平均分子量及び数平均分子量を算出した。測定装置及び測定条件を以下に示す。
  データ処理装置:製品名 HLC-8220GPC(東ソー社製)
  示差屈折率検出器:製品名 HLC-8220GPCに内蔵されたRI検出器
  カラム:製品名 TSKgel GMHXL(東ソー社製)3本
  移動相:テトラヒドロフラン
  カラム流量:0.5mL/min
  注入量:20μL
  測定温度:40℃
  標準ポリスチレン分子量:1250、3250、9200、28500、68000、165000、475000、950000、1900000
Next, the weight average molecular weight and number average molecular weight of the sample were calculated from the obtained chromatogram (chart) using standard polystyrene as a calibration curve. The measurement apparatus and measurement conditions are shown below.
Data processor: Product name HLC-8220GPC (manufactured by Tosoh Corporation)
Differential refractive index detector: Product name RI detector built in HLC-8220GPC Column: Product name TSKgel GMH XL (manufactured by Tosoh Corporation) 3 Mobile phase: Tetrahydrofuran Column flow rate: 0.5 mL / min
Injection volume: 20 μL
Measurement temperature: 40 ° C
Standard polystyrene molecular weight: 1250, 3250, 9200, 28500, 68000, 165000, 475000, 950,000, 1900000
 (ガラス転移点)
 (メタ)アクリル系ポリマーのガラス転移点は、フォックスの式により算出した。
(Glass transition point)
The glass transition point of the (meth) acrylic polymer was calculated by Fox's formula.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例1~25及び比較例1~20)
 表3~7に示した配合量で、無機粒子(B)として、平均粒子径(MD)が10nmである酸化ケイ素粒子(B1)、平均粒子径が100nmである酸化ケイ素粒子(B2)、平均粒子径が400nmである酸化ケイ素粒子(B3)、平均粒子径が100nmである酸化チタン粒子(B4)、平均粒子径が100nmである酸化ジルコニウム粒子(B5)、平均粒子径が1000nmである酸化ケイ素粒子(B6)、有機粒子(C)として、平均粒子径が20nmであるポリメチルメタクリレート(PMMA)粒子(C1)、平均粒子径が100nmであるポリメチルメタクリレート(PMMA)粒子(C2)、平均粒子径が400nmであるポリメチルメタクリレート(PMMA)粒子(C3)、平均粒子径が100nmであるスチレン系樹脂粒子(C4)、平均粒子径が100nmであるメラミン樹脂粒子(C5)、平均粒子径が1000nmであるポリメチルメタクリレート(PMMA)粒子(C6)、光重合性多官能化合物(D)としてペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンオリゴマー(共栄社化学(株)の商品名「UA-306H」)、及びメチルイソブチルケトンを均一に混合して予備混合液を作製した。
(Examples 1 to 25 and Comparative Examples 1 to 20)
With the blending amounts shown in Tables 3 to 7, as inorganic particles (B), silicon oxide particles (B1) having an average particle size (MD) of 10 nm, silicon oxide particles (B2) having an average particle size of 100 nm, average Silicon oxide particles (B3) having a particle diameter of 400 nm, titanium oxide particles (B4) having an average particle diameter of 100 nm, zirconium oxide particles (B5) having an average particle diameter of 100 nm, silicon oxide having an average particle diameter of 1000 nm As particles (B6) and organic particles (C), polymethyl methacrylate (PMMA) particles (C1) having an average particle size of 20 nm, polymethyl methacrylate (PMMA) particles (C2) having an average particle size of 100 nm, average particles Polymethylmethacrylate (PMMA) particles (C3) having a diameter of 400 nm, styrene type having an average particle diameter of 100 nm Fatty particles (C4), melamine resin particles (C5) having an average particle size of 100 nm, polymethyl methacrylate (PMMA) particles (C6) having an average particle size of 1000 nm, and pentaerythritol as a photopolymerizable polyfunctional compound (D) Triacrylate hexamethylene diisocyanate urethane oligomer (trade name “UA-306H” from Kyoeisha Chemical Co., Ltd.) and methyl isobutyl ketone were uniformly mixed to prepare a premixed solution.
 予備混合液に、実施合成例1~9及び比較合成例1~8で製造した(メタ)アクリル系ポリマーを、固形分換算で、表3~7に示した配合量となるように、10分かけて徐々に滴下した。滴下が終了した後、予備混合液を30℃で30~60分間に亘って攪拌した。 In the pre-mixed solution, the (meth) acrylic polymer produced in Examples Synthesis Examples 1 to 9 and Comparative Synthesis Examples 1 to 8 was added for 10 minutes so that the blending amounts shown in Tables 3 to 7 were obtained in terms of solid content. It was dripped gradually over the time. After completion of the dropping, the premixed solution was stirred at 30 ° C. for 30 to 60 minutes.
 次に、攪拌した予備混合液に、光重合開始剤として2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASF社の製品名「DAROCUR 1173」)を表3~7に示した配合量で添加し、これらを混合することによって光硬化性樹脂組成物を得た。なお、得られた光硬化性樹脂組成物中の無機粒子(B1)~(B6)及び有機粒子(C1)~(C6)の各平均粒子径を上述した測定方法により測定したところ、各平均粒子径の測定値は予備混合液の作製に用いた無機粒子(B1)~(B6)及び有機粒子(C1)~(C6)の上記した各平均粒子径と同一の値であった。 Next, Tables 3 to 7 show 2-hydroxy-2-methyl-1-phenyl-propan-1-one (BASF product name “DAROCUR 1173”) as a photopolymerization initiator in the stirred premixed solution. A photo-curable resin composition was obtained by adding them in a blended amount and mixing them. The average particle diameter of the inorganic particles (B1) to (B6) and the organic particles (C1) to (C6) in the obtained photocurable resin composition was measured by the measurement method described above. The measured value of the diameter was the same value as the above-mentioned average particle diameter of the inorganic particles (B1) to (B6) and the organic particles (C1) to (C6) used for the preparation of the premixed liquid.
 光硬化性樹脂組成物を、乾燥膜厚が5μmになるように、バーコーターを用いてポリエチレンテレフタレート(PET)フィルム上に塗布した。その後、光硬化性樹脂組成物を80℃で2分に亘って加熱して溶剤を除去した後、光硬化性樹脂組成物に高圧水銀灯(光量120W/cm)を用いて500mJ/cm2の積算光量で紫外線を照射して、光硬化性樹脂組成物を光硬化させて硬化膜(厚み5μm)を形成した。 The photocurable resin composition was applied onto a polyethylene terephthalate (PET) film using a bar coater so that the dry film thickness was 5 μm. Thereafter, the photocurable resin composition was heated at 80 ° C. for 2 minutes to remove the solvent, and then the photocurable resin composition was integrated at 500 mJ / cm 2 using a high-pressure mercury lamp (light quantity 120 W / cm). The photocurable resin composition was photocured by irradiating ultraviolet rays with a light amount to form a cured film (thickness 5 μm).
 [評価]
 硬化膜の外観、鉛筆硬度、ヘーズ、耐ブロッキング性、及び印刷性を下記要領に従って評価した。これらの結果を表3~7に示した配合量に示した。
[Evaluation]
The appearance, pencil hardness, haze, blocking resistance, and printability of the cured film were evaluated according to the following procedures. These results are shown in the blending amounts shown in Tables 3-7.
 (外観)
 硬化膜の外観を、JIS K 5600-1-1の4.4「塗膜の外観」の試験法に準拠して評価した。表3~7において「優」及び「劣」はそれぞれ下記に示す通りである。
 優:硬化膜が、無色透明であり且つクラックの発生がなかった。
 劣:硬化膜において、白濁の発生及びクラックの発生のうち少なくとも一方が発生していた。
(appearance)
The appearance of the cured film was evaluated according to the test method of 4.4 “Appearance of coating film” of JIS K 5600-1-1. In Tables 3 to 7, “excellent” and “inferior” are as shown below.
Excellent: The cured film was colorless and transparent, and no crack was generated.
Inferior: In the cured film, at least one of occurrence of white turbidity and occurrence of cracks occurred.
 (鉛筆硬度)
 硬化膜の鉛筆硬度を、JIS K 5600-5-4(1999)に準拠した鉛筆硬度試験により測定した。
(Pencil hardness)
The pencil hardness of the cured film was measured by a pencil hardness test according to JIS K 5600-5-4 (1999).
 (ヘーズ)
 硬化膜のヘーズ(%)を、JIS K 7136(2000)に準拠して、ヘーズメーターにより測定した。
(Haze)
The haze (%) of the cured film was measured with a haze meter in accordance with JIS K 7136 (2000).
 (耐ブロッキング性)
 硬化膜が形成されているPETフィルムを2枚用意した。これらのPETフィルムを、硬化膜が対向するようにして積層して積層体を得た。この積層体上に5kg荷重をかけながら、積層体を80℃で12時間に亘って加熱した。その後、一方のPETフィルムを、硬化膜表面に対して平行方向に引張速度10mm/分で引っ張り、この時の動摩擦係数(N)をJIS K 7125(1999)に準拠して測定した。
(Blocking resistance)
Two PET films on which a cured film was formed were prepared. These PET films were laminated so that the cured films faced to obtain a laminate. The laminated body was heated at 80 ° C. for 12 hours while applying a 5 kg load on the laminated body. Thereafter, one PET film was pulled in a direction parallel to the cured film surface at a tensile speed of 10 mm / min, and the dynamic friction coefficient (N) at this time was measured according to JIS K 7125 (1999).
 (印刷性)
 硬化膜の印刷性を、硬化膜表面のぬれ張力(dyn/cm)を、JIS K 6768(1999)に準拠して測定することにより評価した。
(Printability)
The printability of the cured film was evaluated by measuring the wetting tension (dyn / cm) of the cured film surface in accordance with JIS K 6768 (1999).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明によれば、透明性を低下させずに耐ブロッキング性が向上されており、さらに優れた印刷性も有しているハードコート層を形成することが可能な光硬化性樹脂組成物を提供することができる。 According to the present invention, there is provided a photocurable resin composition capable of forming a hard coat layer having improved blocking resistance without lowering transparency and also having excellent printability. can do.

Claims (6)

  1.  水酸基価が10~350mgKOH/gであり、(メタ)アクリル当量が100~800g/eqであり、重量平均分子量が10,000~200,000であり、ガラス転移点が50~110℃であり、且つ側鎖に光重合性基及び水酸基を有している(メタ)アクリル系ポリマー(A)と、
     平均粒子径が10nm~500nmである無機粒子(B)と、
     平均粒子径が10nm~500nmである有機粒子(C)と、
     1分子中に2個以上の光重合性基を有している光重合性多官能化合物(D)と、
    を含んでおり、且つ
     上記(メタ)アクリル系ポリマー(A)、上記無機粒子(B)、上記有機粒子(C)、及び上記光重合性多官能化合物(D)の総重量に対して、
     上記(メタ)アクリル系ポリマー(A)の含有量が10~40重量%であり、
     上記無機粒子(B)の含有量が5~40重量%であり、
     上記有機粒子(C)の含有量が0.5~10重量%であり、
     上記光重合性多官能化合物(D)の含有量が20~70重量%であることを特徴とする光硬化性樹脂組成物。
    The hydroxyl value is 10 to 350 mg KOH / g, the (meth) acryl equivalent is 100 to 800 g / eq, the weight average molecular weight is 10,000 to 200,000, and the glass transition point is 50 to 110 ° C. (Meth) acrylic polymer (A) having a photopolymerizable group and a hydroxyl group in the side chain;
    Inorganic particles (B) having an average particle diameter of 10 nm to 500 nm;
    Organic particles (C) having an average particle diameter of 10 nm to 500 nm;
    A photopolymerizable polyfunctional compound (D) having two or more photopolymerizable groups in one molecule;
    And the total weight of the (meth) acrylic polymer (A), the inorganic particles (B), the organic particles (C), and the photopolymerizable polyfunctional compound (D),
    The content of the (meth) acrylic polymer (A) is 10 to 40% by weight,
    The content of the inorganic particles (B) is 5 to 40% by weight,
    The content of the organic particles (C) is 0.5 to 10% by weight,
    A photocurable resin composition, wherein the content of the photopolymerizable polyfunctional compound (D) is 20 to 70% by weight.
  2.  上記(メタ)アクリル系ポリマー(A)は、アルキル(メタ)アクリレート成分を10~90重量%含有していることを特徴とする請求項1に記載の光硬化性樹脂組成物。 2. The photocurable resin composition according to claim 1, wherein the (meth) acrylic polymer (A) contains 10 to 90% by weight of an alkyl (meth) acrylate component.
  3.  上記無機粒子(B)が金属粒子及び金属酸化物粒子のうちの少なくとも一種であることを特徴とする請求項1に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, wherein the inorganic particles (B) are at least one of metal particles and metal oxide particles.
  4.  上記有機粒子(C)が(メタ)アクリル系樹脂粒子であることを特徴とする請求項1に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, wherein the organic particles (C) are (meth) acrylic resin particles.
  5.  光重合開始剤を含んでいることを特徴とする請求項1に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, comprising a photopolymerization initiator.
  6.  請求項1に記載の光硬化性樹脂組成物を硬化させてなることを特徴とする硬化膜。 A cured film obtained by curing the photocurable resin composition according to claim 1.
PCT/JP2013/085176 2013-09-25 2013-12-27 Photocurable resin composition and cured film thereof WO2015045200A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167007041A KR101751372B1 (en) 2013-09-25 2013-12-27 Photocurable resin composition and cured film thereof
JP2015538834A JP6031195B2 (en) 2013-09-25 2013-12-27 Photocurable resin composition and cured film thereof
CN201380079762.9A CN105579481B (en) 2013-09-25 2013-12-27 Photocurable resin composition and its cured film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199047 2013-09-25
JP2013-199047 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045200A1 true WO2015045200A1 (en) 2015-04-02

Family

ID=52742388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085176 WO2015045200A1 (en) 2013-09-25 2013-12-27 Photocurable resin composition and cured film thereof

Country Status (5)

Country Link
JP (1) JP6031195B2 (en)
KR (1) KR101751372B1 (en)
CN (1) CN105579481B (en)
TW (1) TWI612110B (en)
WO (1) WO2015045200A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944608B1 (en) * 2015-09-29 2016-07-05 帝国インキ製造株式会社 Resin composition for coating
JP2018184583A (en) * 2017-02-07 2018-11-22 Dicグラフィックス株式会社 Coating composition, and decorative sheet prepared therewith
US20190003032A1 (en) * 2016-03-04 2019-01-03 Mitsubishi Chemical Corporation Actinic-ray-curable coating material composition and layered product
WO2020031967A1 (en) * 2018-08-08 2020-02-13 三菱瓦斯化学株式会社 Hard-coat composition, laminate film, and curable film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690208A (en) * 2017-03-07 2018-10-23 宁波惠之星新材料科技有限公司 A kind of cured film with high tenacity and high-wearing feature
CN113939550A (en) * 2019-06-19 2022-01-14 住友电气工业株式会社 Resin composition, secondary coating material for optical fiber, and method for producing optical fiber
KR20230066542A (en) * 2020-09-14 2023-05-16 세키스이가가쿠 고교가부시키가이샤 Resin composition, method for producing resin composition, and cured product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075835A (en) * 2003-08-29 2005-03-24 Sanyo Chem Ind Ltd Electron radiation curing composition for coating
JP2007225774A (en) * 2006-02-22 2007-09-06 Mitsui Chemicals Inc Liquid crystal sealing agent and liquid crystal display panel using the same
JP2007289943A (en) * 2006-03-30 2007-11-08 Arakawa Chem Ind Co Ltd Reactive dispersing agent for metal oxide fine particle, reactive dispersion, method for preparing the dispersion, active energy ray-curable coating agent composition and cured coating film
JP2010132895A (en) * 2008-10-31 2010-06-17 Sanyo Chem Ind Ltd Active energy line curing resin composition
WO2013047590A1 (en) * 2011-09-30 2013-04-04 Dic株式会社 Active energy beam-curable resin composition, method for producing thereof, coating, coating film, and film
JP2013072076A (en) * 2011-09-29 2013-04-22 Nissha Printing Co Ltd Hard coat resin composition having excellent adhesiveness to article to be transferred

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875514B2 (en) * 2003-03-21 2005-04-05 E. I. Du Pont De Nemours And Company Coating composition containing polytrimethylene ether diol useful as a primer composition
CN101657478B (en) * 2007-03-08 2011-07-27 Dic株式会社 Active energy ray-curable resin composition, active energy ray-curable coating material, and method for forming protective layer
US8404797B2 (en) * 2008-03-04 2013-03-26 Nippon Steel Chemical Co., Ltd. Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
JP5471522B2 (en) 2010-01-29 2014-04-16 Dic株式会社 Inorganic particle dispersion and cured film
KR101802215B1 (en) * 2010-03-31 2017-11-28 디아이씨 가부시끼가이샤 Active energy ray-curable resin composition and cured product and film thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075835A (en) * 2003-08-29 2005-03-24 Sanyo Chem Ind Ltd Electron radiation curing composition for coating
JP2007225774A (en) * 2006-02-22 2007-09-06 Mitsui Chemicals Inc Liquid crystal sealing agent and liquid crystal display panel using the same
JP2007289943A (en) * 2006-03-30 2007-11-08 Arakawa Chem Ind Co Ltd Reactive dispersing agent for metal oxide fine particle, reactive dispersion, method for preparing the dispersion, active energy ray-curable coating agent composition and cured coating film
JP2010132895A (en) * 2008-10-31 2010-06-17 Sanyo Chem Ind Ltd Active energy line curing resin composition
JP2013072076A (en) * 2011-09-29 2013-04-22 Nissha Printing Co Ltd Hard coat resin composition having excellent adhesiveness to article to be transferred
WO2013047590A1 (en) * 2011-09-30 2013-04-04 Dic株式会社 Active energy beam-curable resin composition, method for producing thereof, coating, coating film, and film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944608B1 (en) * 2015-09-29 2016-07-05 帝国インキ製造株式会社 Resin composition for coating
EP3168267A4 (en) * 2015-09-29 2017-10-25 Teikoku Printing Inks Mfg. Co., Ltd Coating resin composition
US9926460B2 (en) 2015-09-29 2018-03-27 Teikoku Printing Inks Mfg. Co., Ltd. Coating resin composition
US20190003032A1 (en) * 2016-03-04 2019-01-03 Mitsubishi Chemical Corporation Actinic-ray-curable coating material composition and layered product
US11072849B2 (en) * 2016-03-04 2021-07-27 Mitsubishi Chemical Corporation Actinic-ray-curable coating material composition and layered product
JP2018184583A (en) * 2017-02-07 2018-11-22 Dicグラフィックス株式会社 Coating composition, and decorative sheet prepared therewith
WO2020031967A1 (en) * 2018-08-08 2020-02-13 三菱瓦斯化学株式会社 Hard-coat composition, laminate film, and curable film
CN112534009A (en) * 2018-08-08 2021-03-19 三菱瓦斯化学株式会社 Hard coating composition, laminate film and cured film

Also Published As

Publication number Publication date
CN105579481A (en) 2016-05-11
TW201512336A (en) 2015-04-01
CN105579481B (en) 2018-01-09
KR101751372B1 (en) 2017-07-03
TWI612110B (en) 2018-01-21
JPWO2015045200A1 (en) 2017-03-09
KR20160045095A (en) 2016-04-26
JP6031195B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6031195B2 (en) Photocurable resin composition and cured film thereof
JP6300838B2 (en) Plastic film
JP5407114B2 (en) Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film
JP6091485B2 (en) Surface protection sheet, electronic device and method for manufacturing electronic device component
WO2011013497A1 (en) Photocurable hydrophilic coating agent, hydrophilic coating film, and hydrophilically coated article
JP6505370B2 (en) Laminate and composition for forming index matching layer
JP6361506B2 (en) (Meth) acrylic polymer, (meth) acrylic resin composition, (meth) acrylic resin sheet, (meth) acrylic resin laminate and composite sheet
JP2023090792A (en) Curable composition, cured article and laminate
JP4899545B2 (en) Curable resin composition and cured film comprising the same
KR20100027075A (en) Anti-static antiglare coating composition, anti-static antiglare film and method for manufacturing the same
JP5011663B2 (en) Curable resin composition, cured film and laminate comprising the same
JP2006206832A (en) Method for producing laminate
JP5605111B2 (en) Antistatic laminate
JP2009040847A (en) Curable composition, cured film and laminated body
KR101725786B1 (en) Metal oxide composition, cured film thereof, and member with cured film attached thereto
JP2016164622A (en) Composition for antireflection layer and manufacturing method of antireflection substrate
JP2019214667A (en) Photocurable hard coat composition for plastic substrates and hard coat film
WO2015025835A1 (en) Multilayer film, optical element, polarizing plate and image display device
JP2019214670A (en) Photocurable hard coat composition for plastic substrates and hard coat film
JP6255860B2 (en) Curable resin composition, cured product, laminate, hard coat film and film laminate
JP7121351B2 (en) Transparent conductive films, optical members, and electronic devices
JP5277775B2 (en) Scratch-resistant resin plate and its use
JP2006265271A (en) Antistatic hard coating agent and hard coat film
JP2022100691A (en) Curable composition, polarizer protective film and polarizing plate
KR20220081692A (en) hard-coating composition having good adherence and anti-blocking property

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079762.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538834

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167007041

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894484

Country of ref document: EP

Kind code of ref document: A1