JP5407114B2 - Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film - Google Patents

Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film Download PDF

Info

Publication number
JP5407114B2
JP5407114B2 JP2007084661A JP2007084661A JP5407114B2 JP 5407114 B2 JP5407114 B2 JP 5407114B2 JP 2007084661 A JP2007084661 A JP 2007084661A JP 2007084661 A JP2007084661 A JP 2007084661A JP 5407114 B2 JP5407114 B2 JP 5407114B2
Authority
JP
Japan
Prior art keywords
active energy
weight
reactive
dispersion
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007084661A
Other languages
Japanese (ja)
Other versions
JP2007289943A (en
Inventor
和毅 木村
誠 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2007084661A priority Critical patent/JP5407114B2/en
Publication of JP2007289943A publication Critical patent/JP2007289943A/en
Application granted granted Critical
Publication of JP5407114B2 publication Critical patent/JP5407114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

本発明は、金属酸化物微粒子用反応性分散剤、反応性分散体、当該反応性分散体の製造方法、活性エネルギー線硬化型コーティング剤組成物および硬化被膜に関する。さらに詳しくは、各種基材(例えばプラスチック(ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ABS樹脂、AS樹脂、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、スレート等)の表面に高硬度、耐擦傷性、透明性、密着性に優れた高屈折率の塗膜を形成し得る、金属酸化物微粒子を含む反応性分散体、その製造方法、当該反応性分散体を含む活性エネルギー線硬化型コーティング剤組成物に関する。 The present invention relates to a reactive dispersant for metal oxide fine particles, a reactive dispersion, a method for producing the reactive dispersion, an active energy ray-curable coating agent composition, and a cured film. More specifically, various base materials (for example, plastic (polycarbonate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, ABS resin, AS resin, norbornene resin, etc.), metal, wood, Reactive dispersion containing metal oxide fine particles capable of forming a coating film with high refractive index excellent in high hardness, scratch resistance, transparency and adhesion on the surface of paper, glass, slate, etc., and method for producing the same And an active energy ray-curable coating composition containing the reactive dispersion.

従来、コーティング剤として、種々の反応性樹脂組成物が用いられているが、紫外線や電子線等の活性エネルギー線の照射によって瞬時に硬化する活性エネルギー線硬化性樹脂組成物は、各種基材表面に優れた硬度、耐擦傷性、耐薬品性を付与し、また、加熱等の必要がないため基材へのダメージも少なく、かつ生産性も高いために、広く用いられるようになってきている。 Conventionally, various reactive resin compositions have been used as coating agents, but active energy ray-curable resin compositions that are instantly cured by irradiation with active energy rays such as ultraviolet rays and electron beams are the surfaces of various substrates. It has become widely used because it has excellent hardness, scratch resistance and chemical resistance, and since there is no need for heating etc., there is little damage to the substrate and high productivity. .

特にプラスチックハードコーティング剤には、優れた塗工性、塗料安定性を有し、また、各種基材の表面に、硬度、耐擦傷性、密着性、透明性、耐薬品性を付与し、かつ外観に優れる硬化被膜を形成し得る活性エネルギー線硬化性樹脂組成物が求められている。また、フィルム型液晶素子、タッチパネル、レンズ、光学部品等の反射防止膜の用途においては、かかる要求に加えて、硬化被膜が透明性に優れ、また高屈折率であるものが求められている。 In particular, the plastic hard coating agent has excellent coating properties and paint stability, and imparts hardness, scratch resistance, adhesion, transparency, chemical resistance to the surface of various substrates, and There is a need for an active energy ray-curable resin composition that can form a cured coating with excellent appearance. In addition, in applications of antireflection films such as film-type liquid crystal elements, touch panels, lenses, and optical components, in addition to such requirements, a cured film having excellent transparency and a high refractive index is required.

硬化被膜を高屈折率化するには、一般に、活性エネルギー線硬化性樹脂組成物に、高屈折率材料として酸化アンチモン、酸化スズ、酸化ジルコニウム、酸化亜鉛、酸化アルミニウム、酸化チタン、酸化セリウム、酸化インジウム等の金属酸化物微粒子を分散させる方法(特許文献1参照)や、これら微粒子にアンチモン、スズ、フッ素、リン、アルミ等の異種元素をドープしてなる導電性微粒子を分散させる方法(特許文献2参照)がある。 In order to increase the refractive index of a cured film, generally, an active energy ray curable resin composition is used as an antimony oxide, tin oxide, zirconium oxide, zinc oxide, aluminum oxide, titanium oxide, cerium oxide, oxidation as a high refractive index material. A method of dispersing metal oxide fine particles such as indium (see Patent Document 1) and a method of dispersing conductive fine particles obtained by doping these fine particles with different elements such as antimony, tin, fluorine, phosphorus, and aluminum (Patent Document) 2).

しかし、これら微粒子は比重が大きいので、活性エネルギー線硬化性樹脂組成物中に安定に分散させることは一般に困難であり、通常、当該分散体は、長期間放置すると当該微粒子が凝集や沈降するなど、貯蔵安定性に劣る。また、かかる微粒子は通常、一次粒子間に働く分子間力や静電気力などにより強く凝集しており、このことも前記安定分散や貯蔵安定性に悪影響を与えていた。 However, since these fine particles have a large specific gravity, it is generally difficult to stably disperse them in the active energy ray-curable resin composition. Usually, when the dispersion is left for a long time, the fine particles aggregate or settle. Inferior in storage stability. In addition, such fine particles are usually strongly aggregated due to intermolecular force or electrostatic force acting between primary particles, and this also has an adverse effect on the stable dispersion and storage stability.

安定分散の技術としては、例えば、(i)かかる微粒子を反応性シランカップリング剤で表面処理する方法(特許文献3参照)や、(ii)分散剤を用いる方法(特許文献2参照)等が知られている。 Examples of stable dispersion techniques include (i) a method in which such fine particles are surface-treated with a reactive silane coupling agent (see Patent Document 3), and (ii) a method using a dispersant (see Patent Document 2). Are known.

しかしながら、(i)の方法は、表面処理後に副生成物を留去したり、貯蔵安定性を付与するために溶剤濃縮や溶剤置換をしたりするなど煩雑であり、経済的ではなかった。 However, the method (i) is cumbersome, such as distilling off by-products after the surface treatment, and solvent concentration and solvent replacement for imparting storage stability, and is not economical.

一方、(ii)の場合には被膜硬度や耐擦傷性が十分ではなく、また金属酸化物微粒子を分散させる為には多量の添加が必要であるため、塗膜硬度や耐擦傷性が十分でなく、また当該分散剤が被膜面にブリードアウトが生じたりするなど、被膜物性の低下を引き起こす問題があった。 On the other hand, in the case of (ii), the coating film hardness and scratch resistance are not sufficient, and since a large amount of addition is necessary to disperse the metal oxide fine particles, the coating film hardness and scratch resistance are sufficient. In addition, there is a problem that the physical properties of the coating are deteriorated, for example, the dispersant may bleed out on the coating surface.

特開2005-161111号公報JP 2005-161111 A 特開2005-187580号公報JP 2005-187580 A 特開2003-105034号公報JP 2003-105034 A

本発明は、金属酸化物微粒子を安定に分散させることができる分散剤を提供することを主たる課題とする。また、当該金属酸化物微粒子が安定に分散してなる反応性分散体、およびその製造方法を提供することを次なる課題とする。また、塗膜強度や耐擦傷性に優れ、かつブリードアウト等の問題が生じない硬化被膜を形成できる活性エネルギー線硬化性型コーティング剤組成物、ならびに当該硬化被膜を提供することを更なる課題とする。   The main object of the present invention is to provide a dispersant capable of stably dispersing metal oxide fine particles. Another object of the present invention is to provide a reactive dispersion in which the metal oxide fine particles are stably dispersed and a method for producing the same. Further, it is a further problem to provide an active energy ray-curable coating agent composition that is excellent in coating film strength and scratch resistance and that can form a cured film that does not cause problems such as bleeding out, and the cured film. To do.

本発明者は、かかる課題を解決すべく、鋭意検討した結果、当該分散剤として、特定量の(メタ)アクリル基と水酸基を有し、かつ特定の重量平均分子量を有するアクリル共重合体化合物を用いることにより、前記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明は; As a result of intensive studies to solve such problems, the present inventor has, as the dispersant, an acrylic copolymer compound having a specific amount of (meth) acrylic group and hydroxyl group and having a specific weight average molecular weight. By using it, it discovered that the said subject could be solved and came to complete this invention. That is, the present invention provides:

1.分子中にエポキシ基を有するビニル化合物の重合体にカルボキシル基含有(メタ)アクリル化合物を付加反応させてなる反応生成物であって、(メタ)アクリル当量が200〜360g/eq、水酸基価が150〜270mgKOH/g、および重量平均分子量が8,000〜50,000である、金属酸化物微粒子用反応性分散剤(A)および平均一次粒子径が200nm以下の金属酸化物微粒子(B)及び分散媒(C)のみを含有する反応性分散体、を含有する活性エネルギー線硬化型コーティング剤組成物、
1. A reaction product obtained by adding a carboxyl group-containing (meth) acrylic compound to a polymer of a vinyl compound having an epoxy group in the molecule, wherein the (meth) acrylic equivalent is 200 to 360 g / eq, and the hydroxyl value is 150. Reactive dispersant for metal oxide fine particles (A) having a weight average molecular weight of 8,000 to 50,000 and metal oxide fine particles (B) having an average primary particle size of 200 nm or less and dispersion An active energy ray-curable coating agent composition containing a reactive dispersion containing only the medium (C) ,

前記反応性分散体が、前記反応性分散剤(A)10〜99重量%および前記金属酸化物微粒子(B)90〜1重量%からなる固形分〔(A)+(B)〕を1〜50重量%含有し、かつ、当該金属酸化物微粒子(B)の平均粒子径(d50)が200nm以下であることを特徴とする、前記.に記載の活性エネルギー線硬化型コーティング剤組成物
2 . The reactive dispersion has a solid content [(A) + (B)] of 10 to 99% by weight of the reactive dispersant (A) and 90 to 1% by weight of the metal oxide fine particles (B) 1 to 1%. containing 50 wt%, and wherein the average particle size of the metal oxide fine particles (B) (d50) is 200nm or less, the 1. Active energy ray-curable coating agent composition according to claim 1 ,

.さらに多官能(メタ)アクリレートおよび/または光重合開始剤を含有する、前記1.又は2.に記載の活性エネルギー線硬化型コーティング剤組成物、
4 . Furthermore, the said 1. containing polyfunctional (meth) acrylate and / or a photoinitiator . Or 2. Active energy ray-curable coating agent composition according to claim 1,

.前記1.2.及び4のいずれかに記載の活性エネルギー線硬化型コーティング剤組成物を、活性エネルギー線を照射することにより硬化させて得られる、硬化被膜、に関する。
5 . Said 1.2. And a cured film obtained by curing the active energy ray-curable coating composition according to any one of 4 and 4 by irradiation with active energy rays.

本発明の反応性分散剤によれば、金属酸化物微粒子を分散媒や活性エネルギー線硬化性樹脂中に容易かつ安定に分散させることができる。また、当該反応性分散体は、長期間放置しても当該金属酸化物微粒子が凝集や沈降しないなど貯蔵安定性に優れており、また塗工性に長ける。また、当該反応性分散体を含む活性エネルギー線硬化性型コーティング剤組成物によれば、硬度、耐擦傷性、密着性、透明性、耐薬品性などの物性や外観に優れ、かつブリードアウト等の問題がなく、しかも高屈折率の硬化被膜を得ることができる。そのため、当該反応性分散体を用いたコーティング剤は、フィルム型液晶素子、タッチパネル、レンズ、光学部品等の反射防止膜の用途における保護コーティング剤や、特に、プラスチックハードコーティング剤として有用である。 According to the reactive dispersant of the present invention, metal oxide fine particles can be easily and stably dispersed in a dispersion medium or an active energy ray-curable resin. In addition, the reactive dispersion is excellent in storage stability such that the metal oxide fine particles do not aggregate or settle even when left for a long period of time, and has excellent coatability. In addition, according to the active energy ray-curable coating agent composition containing the reactive dispersion, it has excellent physical properties and appearance such as hardness, scratch resistance, adhesion, transparency, chemical resistance, and bleed out. In addition, a cured film having a high refractive index can be obtained. Therefore, the coating agent using the reactive dispersion is useful as a protective coating agent for use in an antireflection film such as a film type liquid crystal element, a touch panel, a lens, and an optical component, and particularly as a plastic hard coating agent.

本発明に係る、金属酸化物微粒子用反応性分散剤(A)(以下、(A)成分という)は、分子中にエポキシ基を有するビニル化合物の重合体にカルボキシル基含有(メタ)アクリル化合物を付加反応させてなる反応生成物であって、(メタ)アクリル当量が200〜360g/eq程度(好ましくは200〜280g/eq)、水酸基価が150〜270mgKOH/g程度(好ましくは200〜270mgKOH/g)、および重量平均分子量が8,000〜50,000程度(好ましくは10,000〜50,000)であることを特徴とする。 The reactive dispersant for metal oxide fine particles (A) (hereinafter referred to as the component (A)) according to the present invention is obtained by adding a carboxyl group-containing (meth) acrylic compound to a polymer of a vinyl compound having an epoxy group in the molecule. A reaction product obtained by addition reaction, having a (meth) acryl equivalent of about 200 to 360 g / eq (preferably 200 to 280 g / eq) and a hydroxyl value of about 150 to 270 mg KOH / g (preferably 200 to 270 mg KOH / g) and a weight average molecular weight of about 8,000 to 50,000 (preferably 10,000 to 50,000).

なお、本発明において、「反応性分散剤」とは、活性エネルギー線で重合反応することができる分散剤であることを意味する。また、「(メタ)アクリル当量」とは、(メタ)アクリロイル基(アクリロイル基および/またはメタクリロイル基を意味する)1モルあたりの(A)成分の固形分重量(g/eq)をいう。また、「水酸基価」とは、JIS K1557に準拠して測定した値をいう。また、「重量平均分子量」とは、ゲルパーメーションクロマトグラフィー法によるポリスチレン換算値をいう。 In the present invention, the “reactive dispersant” means a dispersant capable of undergoing a polymerization reaction with active energy rays. The “(meth) acryl equivalent” means the solid content weight (g / eq) of the component (A) per mole of (meth) acryloyl group (meaning acryloyl group and / or methacryloyl group). The “hydroxyl value” refers to a value measured according to JIS K1557. The “weight average molecular weight” refers to a polystyrene-converted value obtained by gel permeation chromatography.

前記(メタ)アクリル当量が360g/eqを超える場合には、活性エネルギー線照射後の硬化被膜の耐擦傷性が不十分となり、また200g/eq未満のものは合成が困難である。また、水酸基価が270mgKOH/gを超えるものは合成が困難であり、また150mgKOH/g未満の場合には、本発明の反応性分散体の貯蔵安定性が不十分となるる。また、重量平均分子量が8,000未満の場合には活性エネルギー線照射後の硬化被膜の耐擦傷性が不十分となる傾向にあり、また50,000を超えるものは合成が困難である。 When the (meth) acrylic equivalent exceeds 360 g / eq, the scratch resistance of the cured film after irradiation with active energy rays becomes insufficient, and synthesis of those less than 200 g / eq is difficult. Moreover, when the hydroxyl value exceeds 270 mgKOH / g, synthesis is difficult, and when it is less than 150 mgKOH / g, the storage stability of the reactive dispersion of the present invention becomes insufficient. In addition, when the weight average molecular weight is less than 8,000, the scratch resistance of the cured film after irradiation with active energy rays tends to be insufficient, and when it exceeds 50,000, it is difficult to synthesize.

該(A)成分における前記反応生成物は、分子中にエポキシ基を有するビニル化合物の重合体(以下、単に重合体という)にカルボキシル基含有(メタ)アクリル化合物を付加反応させることにより得られる。 The reaction product in the component (A) can be obtained by addition reaction of a carboxyl group-containing (meth) acrylic compound with a vinyl compound polymer having an epoxy group in the molecule (hereinafter simply referred to as a polymer).

当該重合体は、分子中にエポキシ基を有するビニル化合物(以下、エポキシ基含有ビニル化合物という)のみを重合させるか、当該エポキシ基含有ビニル化合物とこれ以外のビニル化合物(以下、共重合用ビニル化合物という)とを共重合させるかして得ることができる。 The polymer may be obtained by polymerizing only a vinyl compound having an epoxy group in the molecule (hereinafter referred to as an epoxy group-containing vinyl compound) or the epoxy group-containing vinyl compound and other vinyl compounds (hereinafter referred to as a vinyl compound for copolymerization). Can be obtained by copolymerization.

該エポキシ基含有ビニル化合物としては、分子中にエポキシ基を有するビニル化合物であれば特に限定されず、例えば、グリシジル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテルなどが挙げられ、これらは組合わせて用いることもできる。 The epoxy group-containing vinyl compound is not particularly limited as long as it is a vinyl compound having an epoxy group in the molecule, and examples thereof include glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether. Can also be used in combination.

また、該共重合用ビニル化合物としては、分子中にエポキシ基との反応性を有する官能基を持たないものであって、前記エポキシ基含有ビニル化合物と共重合できるビニル化合物であれば特に限定されず、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチルヘキシル等の(メタ)アクリル酸エステル類、スチレン、α−メチルスチレン等の芳香族系ビニル化合物、酢酸ビニル、(メタ)アクリロニトリルなどが挙げられ、これらは組合わせて用いることもできる。なお、分子中にエポキシ基との反応性を有する官能基を持つビニル化合物を共重合させると、当該重合体の製造時に、反応系が高粘度化やゲル化を引き起こすことがある。 The vinyl compound for copolymerization is not particularly limited as long as it does not have a functional group having reactivity with an epoxy group in the molecule and can be copolymerized with the epoxy group-containing vinyl compound. For example, (meth) acrylate esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, ethyl hexyl (meth) acrylate, fragrances such as styrene and α-methylstyrene Group vinyl compounds, vinyl acetate, (meth) acrylonitrile, and the like, and these may be used in combination. If a vinyl compound having a functional group having reactivity with an epoxy group in the molecule is copolymerized, the reaction system may cause high viscosity or gelation during the production of the polymer.

なお、該共重合用ビニル化合物は、通常、前記重合体をなす全ビニル化合物100重量%中、50重量%以下の範囲で使用することが好ましく、30重量%以下の範囲で使用することが特に好ましい。50重量%を超えて使用すると、前記重合体と後述するカルボキシル基含有ビニル化合物との付加反応の部位が減少するため、活性エネルギー線照射後の硬化被膜の耐擦傷性が低下する傾向にある。 The vinyl compound for copolymerization is usually preferably used in the range of 50% by weight or less, particularly in the range of 30% by weight or less, in 100% by weight of the total vinyl compounds forming the polymer. preferable. When the amount exceeds 50% by weight, the site of addition reaction between the polymer and a carboxyl group-containing vinyl compound described later decreases, so that the scratch resistance of the cured coating after irradiation with active energy rays tends to decrease.

前記重合体は、各種公知の方法で製造できる。なお、重合反応は特に限定されず、例えば、塊状重合、溶液重合、乳化重合等が挙げられる。具体的には、前記エポキシ基含有ビニル化合物(と必要に応じて前記共重合用ビニル化合物と)を、ラジカル重合開始剤の存在下で、通常40〜150℃程度、2〜12時間程度、重合反応させればよい。 The polymer can be produced by various known methods. The polymerization reaction is not particularly limited, and examples thereof include bulk polymerization, solution polymerization, and emulsion polymerization. Specifically, the epoxy group-containing vinyl compound (and the vinyl compound for copolymerization as necessary) is usually polymerized in the presence of a radical polymerization initiator at about 40 to 150 ° C. for about 2 to 12 hours. What is necessary is just to make it react.

ラジカル重合開始剤としては、各種公知のものを特に制限無く用いることができる。具体的には、例えば、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等の無機過酸化物、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ラウリルパーオキサイド等の有機過酸化物、2,2´−アゾビスイソブチロニトリル、ジメチル−2,2´−アゾビスイソブチレート等のアゾ系化合物等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて用いることができる。なお、ラジカル重合開始剤の使用量は、前記重合体の固形分重量100重量部に対して、通常0.01〜8重量部程度である。 As the radical polymerization initiator, various known ones can be used without particular limitation. Specifically, for example, inorganic peroxides such as hydrogen peroxide, ammonium persulfate, and potassium persulfate, organic peroxides such as benzoyl peroxide, dicumyl peroxide, and lauryl peroxide, 2,2′-azobis Examples thereof include azo compounds such as isobutyronitrile and dimethyl-2,2′-azobisisobutyrate, and these can be used alone or in combination of two or more. In addition, the usage-amount of a radical polymerization initiator is about 0.01-8 weight part normally with respect to 100 weight part of solid content weight of the said polymer.

また、重合反応時には必要に応じて公知の連鎖移動剤を用いて、重合体の分子量を調整することもできる。具体的には、例えば、ラウリルメルカプタン、ドデシルメルカプタン、2−メルカプトベンゾチアゾール、ブロムトリクロルメタン等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて用いることができる。連鎖移動剤の使用量は、前記重合体の固形分重量100重量部に対して、通常0.01〜5重量部程度である。   Moreover, the molecular weight of a polymer can also be adjusted using a well-known chain transfer agent as needed at the time of a polymerization reaction. Specific examples include lauryl mercaptan, dodecyl mercaptan, 2-mercaptobenzothiazole, bromotrichloromethane, and the like. These may be used alone or in combination of two or more. The amount of the chain transfer agent used is usually about 0.01 to 5 parts by weight with respect to 100 parts by weight of the solid content of the polymer.

また、溶液重合の場合には、各種公知の溶剤を用いることができる。具体的には、例えば、エチルアルコール、プロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等の低級ケトン類;トルエン、ベンゼン等の芳香族炭化水素類;酢酸ブチル、酢酸エチル、クロロホルム、ジメチルホルムアミド等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて用いることができる。   In the case of solution polymerization, various known solvents can be used. Specific examples include alcohols such as ethyl alcohol and propyl alcohol; lower ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as toluene and benzene; butyl acetate, ethyl acetate, chloroform, dimethylformamide and the like. These can be used singly or in combination of two or more.

また、乳化重合の場合には、各種公知のアニオン性、ノニオン性、カチオン性の界面活性剤を用いることができる。 In the case of emulsion polymerization, various known anionic, nonionic, and cationic surfactants can be used.

このようにして得られる重合体は、通常、重量平均分子量が5,000〜30,000程度、エポキシ当量(JIS K 7236)が140〜290g/eq程度であるのが好ましい。 In general, the polymer thus obtained preferably has a weight average molecular weight of about 5,000 to 30,000 and an epoxy equivalent (JIS K 7236) of about 140 to 290 g / eq.

得られた重合体に付加反応させる、カルボキシル基含有(メタ)アクリル化合物は特に限定されず、各種公知のものを使用することができる。具体的には、例えば、(メタ)アクリル酸、(メタ)アクリル酸ダイマーなどが挙げられ、これらは組合わせて用いることができる。 The carboxyl group-containing (meth) acryl compound to be subjected to addition reaction with the obtained polymer is not particularly limited, and various known compounds can be used. Specifically, (meth) acrylic acid, (meth) acrylic acid dimer, etc. are mentioned, for example, These can be used in combination.

付加反応は、公知の方法によればよく、通常は、当該重合体と該カルボキシル基含有(メタ)アクリル化合物とを混合し、必要に応じて各成分と反応しない溶媒の存在下、80〜120℃程度で加熱反応させることにより、(A)成分が得られる。なお、カルボキシル基含有(メタ)アクリル化合物の使用量は、通常、前記重合体に含まれるエポキシ基に対して等モル以上であり、また前記反応生成物の(メタ)アクリル当量が200〜360/eq程度、水酸基価が150〜270mgKOH/g程度になるような範囲とする必要がある。当該使用量が、前記重合体が有するエポキシ基に対して等モル未満となる場合には、反応系がゲル化する場合があり、また反応後の溶液の貯蔵安定性が悪くなる傾向がある。 The addition reaction may be performed by a known method. Usually, the polymer and the carboxyl group-containing (meth) acrylic compound are mixed, and if necessary, in the presence of a solvent that does not react with each component, 80 to 120. (A) component is obtained by making it heat-react at about degreeC. In addition, the usage-amount of a carboxyl group-containing (meth) acrylic compound is normally equimolar or more with respect to the epoxy group contained in the said polymer, and the (meth) acryl equivalent of the said reaction product is 200-360 / It is necessary to set the range so that the hydroxyl value is about 150 to 270 mgKOH / g. When the amount used is less than equimolar with respect to the epoxy group of the polymer, the reaction system may gel, and the storage stability of the solution after the reaction tends to deteriorate.

本発明の反応性分散体は、前記(A)成分および平均一次粒子径が200nm以下の金属酸化物微粒子(B)(以下、(B)成分という)を含有するものである。なお、ここでいう「反応性」とは、前記(A)成分が活性エネルギー線で重合反応することを意味する。また、該反応性分散体において、前記(A)成分はそれ自体がビヒクルとして作用する。 The reactive dispersion of the present invention contains the component (A) and metal oxide fine particles (B) having an average primary particle size of 200 nm or less (hereinafter referred to as component (B)). Here, “reactivity” means that the component (A) undergoes a polymerization reaction with active energy rays. Further, in the reactive dispersion, the component (A) itself acts as a vehicle.

当該(B)成分をなす金属酸化物微粒子としては、金属の酸化物の微粒子であれば特に限定されず公知のものを使用することができる。具体的には、例えば、酸化アンチモン、酸化スズ、酸化ジルコニウム、酸化亜鉛、酸化アルミニウム、酸化チタン、酸化セリウム、酸化インジウム等の金属酸化物の微粒子や、これらにアンチモン、スズ、フッ素、リン、アルミ等の異種元素をドープしてなる導電性金属の微粒子等が挙げられ、これらは1種を単独で、または2種以上組合わせて使用できる。なお、該(B)成分の形状は特に限定されず、球状、中空状、多孔質状、棒状、板状、繊維状、または不定形状等のいずれであってもよい。また、金属酸化物自体の結晶構造は特に限定されず、単斜晶系等であってよい。(B)成分の中でも硬度、透明性、高屈折率の観点から、アルミナ微粒子やジルコニア粒子が好ましい。 The metal oxide fine particles constituting the component (B) are not particularly limited as long as they are metal oxide fine particles, and known ones can be used. Specifically, for example, fine particles of metal oxides such as antimony oxide, tin oxide, zirconium oxide, zinc oxide, aluminum oxide, titanium oxide, cerium oxide, and indium oxide, antimony, tin, fluorine, phosphorus, aluminum Examples thereof include fine particles of conductive metal formed by doping different elements such as these, and these can be used alone or in combination of two or more. In addition, the shape of this (B) component is not specifically limited, Any of spherical shape, hollow shape, porous shape, rod shape, plate shape, fiber shape, indefinite shape, etc. may be sufficient. The crystal structure of the metal oxide itself is not particularly limited, and may be monoclinic or the like. Among the components (B), alumina fine particles and zirconia particles are preferable from the viewpoints of hardness, transparency, and high refractive index.

また、該金属酸化物微粒子の平均一次粒子径は、前記のとうり通常200nm以下であるが、具体的には1〜200nm程度であり、好ましくは1〜100nmである。ここに、「平均一次粒子径」とは、該(B)成分をなす金属酸化物微粒子が有する個数基準平均径をいい、例えば電子顕微鏡等により直接観察される値である。なお、該平均一次粒子径が1nm未満のものは入手困難である。また、これが200nmを超えると反応性分散体の貯蔵安定性が低下する傾向にあり、しかも硬化被膜の透明性が悪化する傾向にある。また、該(B)成分において、該金属酸化物微粒子は、分散前は通常、二次もしくはそれ以上高次に凝集している。   The average primary particle size of the metal oxide fine particles is usually 200 nm or less as described above, but specifically about 1 to 200 nm, preferably 1 to 100 nm. Here, the “average primary particle diameter” refers to the number-based average diameter of the metal oxide fine particles forming the component (B), and is a value that is directly observed by, for example, an electron microscope. In addition, it is difficult to obtain those having an average primary particle size of less than 1 nm. Moreover, when this exceeds 200 nm, it exists in the tendency for the storage stability of a reactive dispersion to fall, and it exists in the tendency for the transparency of a cured film to deteriorate. Further, in the component (B), the metal oxide fine particles are usually agglomerated secondary or higher order before dispersion.

また、当該反応性分散体には、必要に応じて溶剤等の分散媒を用いることもできる。該分散媒としては、特に限定されず公知のものを使用することができる。具体的には、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、γ―ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート等のエステル類;トルエン、キシレン等の芳香族炭化水素類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類を用いることができる。これらの中でも、分散体の安定性の点より、アルコール類および/またはケトン類が好ましい。なお、これらは1種を単独で、または2種以上を混合して使用できる。 In addition, a dispersion medium such as a solvent can be used for the reactive dispersion as necessary. The dispersion medium is not particularly limited, and a known medium can be used. Specifically, for example, alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol monoethyl ether, propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; methyl acetate, ethyl acetate, Esters such as butyl acetate, γ-butyrolactone and propylene glycol monomethyl ether acetate; Aromatic hydrocarbons such as toluene and xylene; Amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone Can be used. Among these, alcohols and / or ketones are preferable from the viewpoint of the stability of the dispersion. In addition, these can be used individually by 1 type or in mixture of 2 or more types.

当該反応性分散体における各成分の含有量は特に制限されないが、通常は、当該反応性分散体において、前記(A)成分10〜99重量%(好ましくは30〜99重量%)および前記(B)成分90〜1重量%(好ましくは70〜1重量%)からなる固形分〔(A)+(B)〕が1〜50重量%(好ましくは1〜30重量%)含まれるような範囲とすればよい。当該固形分〔(A)+(B)〕における各成分の含有量が前記範囲であること、ならびに、反応性分散体における当該固形分〔(A)+(B)〕の含有量が前記範囲であることで、貯蔵安定性に優れる反応性分散体となるため好ましい。 The content of each component in the reactive dispersion is not particularly limited. Usually, in the reactive dispersion, the component (A) is 10 to 99% by weight (preferably 30 to 99% by weight) and the component (B A range in which the solid content [(A) + (B)] comprising 90 to 1% by weight (preferably 70 to 1% by weight) of components is contained in an amount of 1 to 50% by weight (preferably 1 to 30% by weight) do it. The content of each component in the solid content [(A) + (B)] is in the above range, and the content of the solid content [(A) + (B)] in the reactive dispersion is in the above range. Since it becomes a reactive dispersion excellent in storage stability, it is preferable.

該反応性分散体の製造方法は特に限定されないが、例えば前記(A)成分10〜99重量%と、および前記(B)成分90〜1重量%とを、それらの固形分〔(A)+(B)〕の濃度が1〜50重量%となるように分散媒で希釈して、当該(B)成分の平均粒子径(d50)が200nm以下(具体的には、1〜200nm程度、好ましくは1〜100nmの範囲)となるように分散させる方法が挙げられる。なお、ここでいう「平均粒子径(d50)」とは当該反応性分散体中で実際に分散している(B)成分の光散乱相当径を意味する。 The method for producing the reactive dispersion is not particularly limited. For example, the component (A) 10 to 99% by weight and the component (B) 90 to 1% by weight are mixed with their solid content [(A) + (B)] is diluted with a dispersion medium so that the concentration is 1 to 50% by weight, and the average particle diameter (d50) of the component (B) is 200 nm or less (specifically, about 1 to 200 nm, preferably Can be dispersed in a range of 1 to 100 nm. Here, the “average particle diameter (d50)” means the light scattering equivalent diameter of the component (B) that is actually dispersed in the reactive dispersion.

分散方法としては、特に限定されず、従来公知の方法を採用できる。例えば、ペイントシェイカー、ロールミル、ボールミル、アトライター、サンドミル、ビーズミル等を使用した分散や、超音波分散等が挙げられる。なお、得られる分散体をコーティング剤等に用いる場合には、塗工性、塗料安定性および硬化被膜の透明性等の点から、ガラスビーズ、ジルコニアビーズ等の分散メディアを使用するビーズミルによる分散が好ましい。ビーズ径は特に限定されないが、通常0.05〜2mm程度、好ましくは0.05〜0.5mmである。 The dispersion method is not particularly limited, and a conventionally known method can be employed. For example, dispersion using a paint shaker, a roll mill, a ball mill, an attritor, a sand mill, a bead mill or the like, or ultrasonic dispersion may be used. When the obtained dispersion is used as a coating agent or the like, dispersion by a bead mill using a dispersion medium such as glass beads or zirconia beads is possible from the viewpoint of coating properties, paint stability, and transparency of a cured film. preferable. The bead diameter is not particularly limited, but is usually about 0.05 to 2 mm, preferably 0.05 to 0.5 mm.

このようにして得られる反応性分散体には、前記(B)成分が、平均粒子径(d50)が200nm以下、具体的には、1〜200nm程度、好ましくは1〜100nmの範囲で分散している。当該平均粒子径(d50)が200nmを超える場合には、反応性分散体の貯蔵安定性や、硬化被膜の透明性が悪化する傾向にある。 In the reactive dispersion thus obtained, the component (B) has an average particle diameter (d50) of 200 nm or less, specifically, about 1 to 200 nm, preferably 1 to 100 nm. ing. When the average particle diameter (d50) exceeds 200 nm, the storage stability of the reactive dispersion and the transparency of the cured film tend to deteriorate.

本発明の活性エネルギー線硬化型コーティング剤組成物(以下、単にコーティング剤という)は、前記反応性分散体を含有するものであり、必要に応じて、さらに多官能(メタ)アクリレートおよび/または光重合開始剤や、表面調整剤、消泡剤、光増感剤等の各種添加剤を含有するものである。 The active energy ray-curable coating composition of the present invention (hereinafter simply referred to as a coating agent) contains the reactive dispersion, and if necessary, further contains a polyfunctional (meth) acrylate and / or light. It contains various additives such as a polymerization initiator, a surface conditioner, an antifoaming agent, and a photosensitizer.

該多官能(メタ)アクリレートとは、1分子中に2個以上の(メタ)アクリロイル基を有する化合物である。具体的には、例えば、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート等、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールトリアクリレート等水酸基を有する多官能(メタ)アクリレートオリゴマーと1分子中に2個以上のイソシアネート基を有する化合物とを反応させることにより得られる多官能ウレタン(メタ)アクリレート等も挙げられる。これら多官能(メタ)アクリレートは、1種または2種以上を混合して使用できる。これらの中では、硬化被膜硬度、耐擦傷性の観点から、3官能以上の(メタ)アクリロイル基を有する化合物が好ましい。   The polyfunctional (meth) acrylate is a compound having two or more (meth) acryloyl groups in one molecule. Specifically, for example, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, etc., dipentaerythritol pentaacrylate, pentaerythritol Examples thereof also include polyfunctional urethane (meth) acrylates obtained by reacting a polyfunctional (meth) acrylate oligomer having a hydroxyl group such as triacrylate with a compound having two or more isocyanate groups in one molecule. These polyfunctional (meth) acrylates can be used alone or in combination of two or more. In these, the compound which has a (meth) acryloyl group more than trifunctional from a viewpoint of hardened film hardness and abrasion resistance is preferable.

該光重合開始剤は、前記分散体を紫外線で硬化させる場合に用いる。光重合開始剤としては、紫外線により分解してラジカルを発生して重合を開始せしめるものであれば、特に限定されず公知のものを用いることができる。具体的には、例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−シクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、4−メチルベンゾフェノン等が挙げられ、これらは1種を単独で、あるいは2種以上を組合わせて用いることができる。 The photopolymerization initiator is used when the dispersion is cured with ultraviolet rays. The photopolymerization initiator is not particularly limited as long as it can be decomposed by ultraviolet rays to generate radicals to initiate polymerization, and known photopolymerization initiators can be used. Specifically, for example, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6- Examples include trimethylbenzoyl-diphenyl-phosphine oxide, 4-methylbenzophenone, and the like. These may be used alone or in combinations of two or more. It can be used Te.

該コーティング剤における各成分の配合量は、用途に応じて適宜設定できるが、通常、前記(A)成分が固形分換算で1〜60重量%程度(好ましくは1〜50重量%)、前記(B)成分が1〜60重量%程度(好ましくは1〜50重量%)、前記多官能(メタ)アクリレートが0〜90重量%(好ましくは5〜50重量%)程度、前記光重合開始剤が0〜10重量%(好ましくは0.5〜5重量%)程度、他の添加剤が通常3%未満である。 Although the compounding quantity of each component in this coating agent can be suitably set according to a use, normally, the said (A) component is about 1-60 weight% (preferably 1-50 weight%) in conversion of solid content, and the said ( B) component is about 1 to 60% by weight (preferably 1 to 50% by weight), the polyfunctional (meth) acrylate is about 0 to 90% by weight (preferably 5 to 50% by weight), and the photopolymerization initiator is About 0 to 10% by weight (preferably 0.5 to 5% by weight), and other additives are usually less than 3%.

本発明に係る硬化被膜は、前記コーティング剤を、公知の方法で各種基材に塗布して乾燥させた後に、活性エネルギー線を照射することにより硬化させて得られるものである。なお、塗布量は特に限定されないが、通常は、乾燥後の重量が0.1〜20g/m、好ましくは0.5〜10g/mになる範囲である。 The cured coating film according to the present invention is obtained by applying the coating agent to various substrates by a known method and drying it, followed by curing by irradiating with active energy rays. The coating amount is not particularly limited, but is usually within a range where the weight after drying is 0.1 to 20 g / m 2 , preferably 0.5 to 10 g / m 2 .

基材としては、特に制限はなく、例えば、プラスチック(ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ABS樹脂、AS樹脂、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、スレート等が挙げられる。 The substrate is not particularly limited, and examples thereof include plastic (polycarbonate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, ABS resin, AS resin, norbornene resin, etc.), metal Wood, paper, glass, slate and the like.

塗布方法としては、例えばバーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法等が挙げられる。 Examples of the coating method include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.

活性エネルギー線としては、例えば紫外線や電子線が挙げられる。紫外線により硬化させる場合には、光源としてキセノンランプや高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整される。なお、高圧水銀灯を使用する場合には、通常80〜160W/cm程度の光量のランプ1灯に対して搬送速度5〜50m/分で硬化させるのが好ましい。一方、電子線により硬化させる場合には、通常10〜300kVの加速電圧を有する電子線加速装置にて、搬送速度5〜50m/分で硬化させるのが好ましい。 Examples of the active energy rays include ultraviolet rays and electron beams. In the case of curing with ultraviolet rays, an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, or a metal halide lamp is used as a light source, and the amount of light, the arrangement of the light source, etc. are adjusted as necessary. When a high-pressure mercury lamp is used, it is preferably cured at a conveyance speed of 5 to 50 m / min for a single lamp having a light amount of about 80 to 160 W / cm. On the other hand, in the case of curing with an electron beam, it is preferably cured with an electron beam accelerator having an accelerating voltage of usually 10 to 300 kV at a conveyance speed of 5 to 50 m / min.

以下に、実施例をあげて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお以下「部」および「%」は、特記しない限りいずれも質量基準である。また、アクリル当量は以下の方法で算出した値である。また、水酸基価と重量平均分子量は下記の方法で測定した値である。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Hereinafter, “parts” and “%” are based on mass unless otherwise specified. The acrylic equivalent is a value calculated by the following method. Moreover, a hydroxyl value and a weight average molecular weight are the values measured by the following method.

アクリル当量:実施例・比較例における各アクリル共重合体の固形分重量を、それぞれに用いたアクリル酸のモル数で除することによる算出値
水酸基価:JIS K 1557に準拠して測定した値
重量平均分子量:ゲルパーメーションクロマトグラフィー(東ソー(株)製、商品名「HLC−8020」、カラム:東ソー(株)製、商品名「G5000HXL」、「G4000HXL」、「G3000HXL」、「G2000HXL」)による測定値
Acrylic equivalent: Calculated value obtained by dividing the solid content weight of each acrylic copolymer in Examples and Comparative Examples by the number of moles of acrylic acid used in each case Hydroxyl value: Value weight measured in accordance with JIS K 1557 Average molecular weight: Gel permeation chromatography (manufactured by Tosoh Corporation, trade name “HLC-8020”, column: Tosoh Corporation, trade names “G5000HXL”, “G4000HXL”, “G3000HXL”, “G2000HXL”) measured value

実施例1
(反応性分散剤(A)の合成)
撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、グリシジルメタクリレート(以下、GMAという)250部、酢酸ブチル1000部および2,2´−アゾビスイソブチロニトリル(以下、AIBNという)7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA750部、AIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、アクリル酸(以下、AAという)507部、メトキノン2.3部およびトリフェニルフォスフィン6.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応性分散剤(A−1)の溶液を得た。該反応性分散剤(A−1)は、アクリル当量が約214g/eq、水酸基価が約262mgKOH/g、重量平均分子量が約40,000であった。
Example 1
(Synthesis of reactive dispersant (A))
In a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introduction tube, 250 parts of glycidyl methacrylate (hereinafter referred to as GMA), 1000 parts of butyl acetate and 2,2′-azobisisobutyronitrile (hereinafter referred to as AIBN) After charging 7.5 parts, the temperature in the system was increased to about 90 ° C. over about 1 hour under a nitrogen stream, and the temperature was kept for 1 hour. Next, from a dropping funnel charged beforehand with a mixed liquid consisting of 750 parts of GMA and 22.5 parts of AIBN, the mixed liquid was dropped into the system in about 2 hours under a nitrogen stream and kept at the same temperature for 3 hours. Parts were charged and kept warm for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. After cooling to 60 ° C., the nitrogen inlet tube was replaced with an air inlet tube, 507 parts of acrylic acid (hereinafter referred to as AA), 2.3 parts of methoquinone and 6.0 parts of triphenylphosphine were charged and mixed, and then under air bubbling The temperature was raised to 110 ° C. After incubating at the same temperature for 8 hours, 1.6 parts of methoquinone was charged, cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reactive dispersant (A-1). The reactive dispersant (A-1) had an acrylic equivalent of about 214 g / eq, a hydroxyl value of about 262 mg KOH / g, and a weight average molecular weight of about 40,000.

実施例2
実施例1と同様の反応装置に、GMA250部、酢酸ブチル1000部およびAIBN7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約120℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA750部、AIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間で系内に滴下し、3時間同温度に保温後、AIBN10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、AA507部、メトキノン2.3部およびトリフェニルフォスフィン6.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応性分散剤(A−2)の溶液を得た。該反応性分散剤(A−2)は、アクリル当量が214g/eq、水酸基価が262mgKOH/g、重量平均分子量が9,000であった。
Example 2
In a reactor similar to that in Example 1, 250 parts of GMA, 1000 parts of butyl acetate and 7.5 parts of AIBN were charged, and then the system was heated to a system temperature of about 120 ° C. over about 1 hour under a nitrogen stream. Incubated for 1 hour. Next, from a dropping funnel charged beforehand with a mixed liquid consisting of 750 parts of GMA and 22.5 parts of AIBN, the mixed liquid was dropped into the system in about 2 hours under a nitrogen stream and kept at the same temperature for 3 hours. After that, 10 parts of AIBN were added. Charged and kept warm for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. After cooling to 60 ° C, the nitrogen inlet tube was replaced with an air inlet tube, 507 parts of AA, 2.3 parts of methoquinone and 6.0 parts of triphenylphosphine were charged and mixed, and then heated to 110 ° C under air bubbling. did. After incubating at the same temperature for 8 hours, 1.6 parts of methoquinone was charged, cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reactive dispersant (A-2). The reactive dispersant (A-2) had an acrylic equivalent of 214 g / eq, a hydroxyl value of 262 mgKOH / g, and a weight average molecular weight of 9,000.

実施例3
実施例1と同様の反応装置に、GMA125部、メチルメタクリレート(以下、MMAという)125部、酢酸ブチル1000部およびAIBN7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA375部、MMA375部、AIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、AA254部、メトキノン1.9部およびトリフェニルフォスフィン5.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.3部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応性分散剤(A−3)の溶液を得た。該反応性分散剤(A−3)は、アクリル当量が355g/eq、水酸基価が157mgKOH/g、重量平均分子量が29,800であった。
Example 3
In a reactor similar to Example 1, 125 parts of GMA, 125 parts of methyl methacrylate (hereinafter referred to as MMA), 1000 parts of butyl acetate and 7.5 parts of AIBN were charged, and the system temperature was then taken for about 1 hour under a nitrogen stream. The temperature was raised to about 90 ° C. and kept for 1 hour. Next, the mixture is dropped into the system in about 2 hours under a nitrogen stream from a dropping funnel previously prepared with a mixture of 375 parts of GMA, 375 parts of MMA, and 22.5 parts of AIBN, and kept at the same temperature for 3 hours. Thereafter, 10 parts of AIBN were charged and kept warm for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. After cooling to 60 ° C, the nitrogen inlet tube is replaced with an air inlet tube, 254 parts of AA, 1.9 parts of methoquinone and 5.0 parts of triphenylphosphine are charged and mixed, and then heated to 110 ° C under air bubbling. did. After incubating at the same temperature for 8 hours, 1.3 parts of methoquinone was charged, cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reactive dispersant (A-3). The reactive dispersant (A-3) had an acrylic equivalent of 355 g / eq, a hydroxyl value of 157 mgKOH / g, and a weight average molecular weight of 29,800.

比較例1
(比較用の反応性分散剤の合成)
実施例1と同様の反応装置に、GMA250部、ラウリルメルカプタン1.3部、酢酸ブチル1000部およびAIBN7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約120℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA750部、ラウリルメルカプタン3.7部およびAIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間で系内に滴下し、3時間同温度に保温後、AIBN10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、AA507部、メトキノン2.3部およびトリフェニルフォスフィン6.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応性分散剤(ア)の溶液を得た。該反応性分散剤(ア)は、アクリル当量が214g/eq、水酸基価が262mgKOH/g、重量平均分子量が7,000であった。
Comparative Example 1
(Synthesis of reactive dispersant for comparison)
In a reactor similar to Example 1, 250 parts of GMA, 1.3 parts of lauryl mercaptan, 1000 parts of butyl acetate and 7.5 parts of AIBN were charged, and the system temperature was about 120 ° C. over about 1 hour under a nitrogen stream. The temperature was raised to 0, and the temperature was kept for 1 hour. Next, the mixture was dropped into the system in about 2 hours from a dropping funnel previously charged with a mixture consisting of 750 parts of GMA, 3.7 parts of lauryl mercaptan and 22.5 parts of AIBN. After keeping warm, 10 parts of AIBN were charged and kept warm for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. After cooling to 60 ° C, the nitrogen inlet tube was replaced with an air inlet tube, 507 parts of AA, 2.3 parts of methoquinone and 6.0 parts of triphenylphosphine were charged and mixed, and then heated to 110 ° C under air bubbling. did. After incubating at the same temperature for 8 hours, 1.6 parts of methoquinone was charged and cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reactive dispersant (A). The reactive dispersant (A) had an acrylic equivalent of 214 g / eq, a hydroxyl value of 262 mgKOH / g, and a weight average molecular weight of 7,000.

比較例2
(比較用の反応性分散剤の合成)
実施例1と同様の反応装置に、GMA100部、MMA150部、酢酸ブチル1000部およびAIBN7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA300部、MMA450部、AIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、AA203部、メトキノン1.9部およびトリフェニルフォスフィン5.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.3部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応性分散剤(イ)の溶液を得た。該反応性分散剤(イ)は、アクリル当量が427g/eq、水酸基価が131mgKOH/g、重量平均分子量が25,000であった。
Comparative Example 2
(Synthesis of reactive dispersant for comparison)
In a reactor similar to Example 1, 100 parts of GMA, 150 parts of MMA, 1000 parts of butyl acetate and 7.5 parts of AIBN were charged, and the system temperature was increased to about 90 ° C. over about 1 hour under a nitrogen stream. Warmed and kept warm for 1 hour. Next, the mixture is dropped into the system in about 2 hours under a nitrogen stream from a dropping funnel previously prepared with 300 parts of GMA, 450 parts of MMA and 22.5 parts of AIBN, and kept at the same temperature for 3 hours. Thereafter, 10 parts of AIBN were charged and kept warm for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. After cooling to 60 ° C, the nitrogen inlet tube was replaced with an air inlet tube, 203 parts of AA, 1.9 parts of methoquinone and 5.0 parts of triphenylphosphine were charged and mixed, and then heated to 110 ° C under air bubbling. did. After incubating at the same temperature for 8 hours, 1.3 parts of methoquinone was charged and cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reactive dispersant (I). The reactive dispersant (i) had an acrylic equivalent of 427 g / eq, a hydroxyl value of 131 mgKOH / g, and a weight average molecular weight of 25,000.

実施例4
(反応性分散体の調製)
アルミナ微粒子(昭和電工(株)製、UFA−150、平均一次粒子径約15nm)12.5部と、実施例1の反応性分散剤(A−1)(固形分濃度50%)25部と、メチルエチルケトン62.5部とを、ジルコニアビーズ600部(ビーズ径0.3mm)と共にガラス瓶にいれ、ペイントシェイカーにて2時間混合することにより、反応性分散体を得た。
Example 4
(Preparation of reactive dispersion)
12.5 parts of alumina fine particles (manufactured by Showa Denko KK, UFA-150, average primary particle size of about 15 nm) and 25 parts of the reactive dispersant (A-1) (solid content concentration 50%) of Example 1 Then, 62.5 parts of methyl ethyl ketone was placed in a glass bottle together with 600 parts of zirconia beads (bead diameter 0.3 mm) and mixed for 2 hours with a paint shaker to obtain a reactive dispersion.

実施例5および6
実施例4において使用した反応性分散剤(A−1)を表1に示すように変更した他は同様にして、各反応性分散体を得た。
Examples 5 and 6
Each reactive dispersion was obtained in the same manner except that the reactive dispersant (A-1) used in Example 4 was changed as shown in Table 1.

比較例3および4
実施例4において使用した反応性分散剤(A−1)を表1に示すように変更した他は同様にして各反応性分散体を得た。
Comparative Examples 3 and 4
Reactive dispersions were obtained in the same manner except that the reactive dispersant (A-1) used in Example 4 was changed as shown in Table 1.

比較例5
実施例4において使用した反応性分散剤(A−1)を、ビスフェノールAエポキシアクリレート(ダイセル・サイテック社製、エベクリル600、固形分濃度100%)に変更した他は同様にして反応性分散体を得た。
Comparative Example 5
The reactive dispersion was similarly used except that the reactive dispersant (A-1) used in Example 4 was changed to bisphenol A epoxy acrylate (Daicel Cytec, Evecryl 600, solid content concentration 100%). Obtained.

比較例6
実施例4において使用した反応性分散剤(A−1)を、多官能ウレタンアクリレート(共栄社化学(株)製、UA−306H、固形分濃度100%)に変更した他は同様にして反応性分散体を得た。
Comparative Example 6
Reactive dispersion was similarly performed except that the reactive dispersant (A-1) used in Example 4 was changed to a polyfunctional urethane acrylate (manufactured by Kyoeisha Chemical Co., Ltd., UA-306H, solid concentration 100%). Got the body.

比較例7
実施例4において使用した反応性分散剤(A−1)を、多官能ウレタンアクリレート多官能ポリエステルアクリレート(東亞合成(株)製、アロニックスM−400、固形分濃度100%)に変更した他は同様にして反応性分散体を得た。
Comparative Example 7
The same except that the reactive dispersant (A-1) used in Example 4 was changed to a polyfunctional urethane acrylate polyfunctional polyester acrylate (manufactured by Toagosei Co., Ltd., Aronix M-400, solid content concentration 100%). A reactive dispersion was obtained.

実施例7〜9および比較例8〜12
アルミナ粒子の代わりにジルコニア微粒子(第一稀元素化学工業(株)製、UEP酸化ジルコニウム、平均一次粒子径約20nm)を使用し、各成分の使用量を表1に示すように変更した
Examples 7-9 and Comparative Examples 8-12
Zirconia fine particles (manufactured by Daiichi Rare Element Chemical Co., Ltd., UEP zirconium oxide, average primary particle diameter of about 20 nm) were used in place of the alumina particles, and the amount of each component used was changed as shown in Table 1.

実施例4〜9および比較例3〜12で得られた反応性分散体の貯蔵安定性および、金属酸化物微粒子の平均粒子径(d50)を表1に示す。 Table 1 shows the storage stability of the reactive dispersions obtained in Examples 4 to 9 and Comparative Examples 3 to 12, and the average particle diameter (d50) of the metal oxide fine particles.

なお、得られた反応性分散体を室温下で1ヶ月間放置した後に、粒子凝集や沈降を目視で確認し、外観に変化のないものを良好とした。 The obtained reactive dispersion was allowed to stand at room temperature for 1 month, and then particle agglomeration and sedimentation were visually confirmed, and those having no change in appearance were considered good.

また、平均粒子径(d50)は、以下の条件で測定した。
機器:大塚電子株式会社製、レーザー散乱式粒度分布測定装置「FPAR−1000」
測定条件:温度25℃
希釈溶剤:メチルエチルケトン(屈折率 1.379)
単位:nm(ナノメートル)
Moreover, the average particle diameter (d50) was measured on condition of the following.
Equipment: Laser scattering type particle size distribution measuring instrument “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd.
Measurement conditions: Temperature 25 ° C
Diluent: Methyl ethyl ketone (refractive index 1.379)
Unit: nm (nanometer)

Figure 0005407114
Figure 0005407114

[コーティング剤の調製]
実施例4〜9、ならびに比較例3、8で得られたの反応性分散体、多官能アクリレートおよび光重合開始剤を表2に示した割合で配合して、各コーティング剤を調製した。(なお、表2中、“―”は、その成分を配合しないことを意味する。)
[Preparation of coating agent]
The reactive dispersions obtained in Examples 4 to 9 and Comparative Examples 3 and 8, the polyfunctional acrylate, and the photopolymerization initiator were blended in the proportions shown in Table 2 to prepare each coating agent. (In Table 2, “-” means that the component is not blended.)

[硬化被膜の作製]
各コーティング剤を、ポリエチレンテレフタレート(PET)フィルム上に#16バーコーターで塗布し(計算値:膜厚5μm)、80℃で1分乾燥させ、空気下で高圧水銀灯を用いて200mJ/cmの照射量で通過させて硬化させることにより、各硬化被膜を有する試験片を得た。次いで、各硬化被膜について、以下の項目につき被膜性能を評価した。結果を表2に示す。
[Preparation of cured film]
Each coating agent was applied onto a polyethylene terephthalate (PET) film with a # 16 bar coater (calculated value: film thickness 5 μm), dried at 80 ° C. for 1 minute, and 200 mJ / cm 2 using a high-pressure mercury lamp under air. The test piece which has each cured film was obtained by making it pass and harden | cure by irradiation amount. Subsequently, about each cured film, the film performance was evaluated about the following items. The results are shown in Table 2.

(1)耐擦傷性
上記試験片の硬化被膜を、底部に10mm×10mmの範囲でスチールウールを貼り付けた600gのおもりで30回擦り、外観を観察し、以下の基準で評価した。
○:変化無し。
△:細かいキズ有り。
×:大きなキズ有。
(1) Scratch resistance The cured film of the above test piece was rubbed 30 times with a 600 g weight with steel wool pasted to the bottom in a range of 10 mm × 10 mm, the appearance was observed, and the following criteria were evaluated.
○: No change.
Δ: There are fine scratches.
×: Large scratches present.

(2)鉛筆硬度
上記試験片の硬化被膜をJIS K 5400に従い荷重500gの鉛筆引っかき試験によって評価した。
(2) Pencil hardness The cured film of the above test piece was evaluated by a pencil scratch test with a load of 500 g according to JIS K 5400.

(3)透明性
上記試験片の硬化被膜のヘイズ値を、村上色彩技術研究所製のカラーへイズメーターを用い、PETフィルムを基準として測定した。
(3) Transparency The haze value of the cured film of the above test piece was measured using a color haze meter manufactured by Murakami Color Research Laboratory with a PET film as a reference.

(4)屈折率
上記試験片の硬化被膜の屈折率を、株式会社アタゴ製のアッベ式屈折計「1−T」を用いて測定した。
(4) Refractive Index The refractive index of the cured film of the above test piece was measured using an Abbe refractometer “1-T” manufactured by Atago Co., Ltd.

Figure 0005407114
Figure 0005407114

なお、表2中、DPHAは多官能ポリエステルアクリレート(商品名:アロニックスM−400、東亞合成(株)製)、HCPKは光重合開始剤1−ヒドロキシ−シクロヘキシル−フェニルケトン(商品名:イルガキュアー184、チバ・スペシャルティ・ケミカルズ社製)、MEKは、メチルエチルケトンである。
In Table 2, DPHA is a polyfunctional polyester acrylate (trade name: Aronix M-400, manufactured by Toagosei Co., Ltd.), and HCPK is a photopolymerization initiator 1-hydroxy-cyclohexyl-phenyl ketone (trade name: Irgacure 184). , Manufactured by Ciba Specialty Chemicals), MEK is methyl ethyl ketone.

Claims (4)

分子中にエポキシ基を有するビニル化合物の重合体にカルボキシル基含有(メタ)アクリル化合物を付加反応させてなる反応生成物であって、(メタ)アクリル当量が200〜360g/eq、水酸基価が150〜270mgKOH/g、および重量平均分子量が8,000〜50,000である、金属酸化物微粒子用反応性分散剤(A)平均一次粒子径が200nm以下の金属酸化物微粒子(B)及び分散媒(C)のみを含有する反応性分散体、を含有する活性エネルギー線硬化型コーティング剤組成物。 A reaction product obtained by adding a carboxyl group-containing (meth) acrylic compound to a polymer of a vinyl compound having an epoxy group in the molecule, wherein the (meth) acrylic equivalent is 200 to 360 g / eq, and the hydroxyl value is 150. Reactive dispersant (A) for metal oxide fine particles having a weight average molecular weight of 8,000 to 50,000, metal oxide fine particles (B) having an average primary particle size of 200 nm or less, and dispersion An active energy ray-curable coating agent composition comprising a reactive dispersion containing only the medium (C) . 前記反応性分散体が、前記反応性分散剤(A)10〜99重量%および前記金属酸化物微粒子(B)90〜1重量%からなる固形分〔(A)+(B)〕を1〜50重量%含有し、かつ、当該金属酸化物微粒子(B)の平均粒子径(d50)が200nm以下であることを特徴とする、請求項1に記載の活性エネルギー線硬化型コーティング剤組成物。 The reactive dispersion has a solid content [(A) + (B)] of 10 to 99% by weight of the reactive dispersant (A) and 90 to 1% by weight of the metal oxide fine particles (B) 1 to 1%. The active energy ray-curable coating agent composition according to claim 1, wherein the active energy ray-curable coating agent composition is contained in an amount of 50% by weight and the metal oxide fine particles (B) have an average particle size (d50) of 200 nm or less. さらに多官能(メタ)アクリレートおよび/または光重合開始剤を含有する請求項1又は2に記載の活性エネルギー線硬化型コーティング剤組成物。 The active energy ray-curable coating composition according to claim 1 or 2, further comprising a polyfunctional (meth) acrylate and / or a photopolymerization initiator. 請求項1〜3のいずれかに記載の活性エネルギー線硬化型コーティング剤組成物を、活性エネルギー線を照射することにより硬化させて得られる、硬化被膜。
A cured film obtained by curing the active energy ray-curable coating composition according to any one of claims 1 to 3 by irradiating with active energy rays.
JP2007084661A 2006-03-30 2007-03-28 Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film Active JP5407114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084661A JP5407114B2 (en) 2006-03-30 2007-03-28 Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006093647 2006-03-30
JP2006093647 2006-03-30
JP2007084661A JP5407114B2 (en) 2006-03-30 2007-03-28 Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film

Publications (2)

Publication Number Publication Date
JP2007289943A JP2007289943A (en) 2007-11-08
JP5407114B2 true JP5407114B2 (en) 2014-02-05

Family

ID=38761076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084661A Active JP5407114B2 (en) 2006-03-30 2007-03-28 Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film

Country Status (1)

Country Link
JP (1) JP5407114B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142075B2 (en) * 2008-01-30 2013-02-13 荒川化学工業株式会社 Active energy ray curable resin, active energy ray curable resin composition, and article having a hard coat layer obtained using the same
JP5273400B2 (en) * 2009-03-27 2013-08-28 荒川化学工業株式会社 Antistatic optical film, conductive layer, and composition for forming conductive layer
JP2011026561A (en) * 2009-06-23 2011-02-10 Dic Corp Method for producing silica dispersing element, energy-ray curable resin composition, and film
JP5625281B2 (en) * 2009-08-07 2014-11-19 Dic株式会社 Curable resin composition, cured product thereof, and plastic lens
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion
JP5610191B2 (en) * 2010-03-24 2014-10-22 Dic株式会社 Inorganic particle dispersion, energy beam curable resin composition, and film
TWI481624B (en) * 2010-12-10 2015-04-21 Dainippon Ink & Chemicals A method for producing a silica dispersion, an energy ray-hardening resin composition, and a film
US20140004367A1 (en) * 2010-12-22 2014-01-02 Dic Corporation Method for producing dispersion, dispersion, coating material, coating film, and film
JPWO2012176570A1 (en) * 2011-06-24 2015-02-23 Dic株式会社 Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
CN103842396B (en) * 2011-09-30 2016-03-16 Dic株式会社 Active energy ray-curable resin composition, its manufacture method, coating, film and film
CN105026027B (en) * 2013-02-28 2018-03-20 播磨化成株式会社 Metal particle dispersant, metal particle dispersion liquid and cured film
KR101751372B1 (en) * 2013-09-25 2017-07-03 하리마 카세이 가부시키가이샤 Photocurable resin composition and cured film thereof
WO2016103957A1 (en) 2014-12-24 2016-06-30 Dic株式会社 Active energy ray-curable resin composition, coating material, coating film, and film
WO2017064970A1 (en) 2015-10-13 2017-04-20 Dic株式会社 Active energy ray-curable resin composition, coating material, coating film, and film
JP2020019141A (en) * 2018-07-30 2020-02-06 凸版印刷株式会社 Barrier film, wavelength conversion sheet, and manufacturing method of wavelength conversion sheet
CN113354968A (en) * 2020-03-05 2021-09-07 荒川化学工业株式会社 Active energy ray-curable resin composition, cured product, laminate, and curing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699651B2 (en) * 1986-04-28 1994-12-07 大日本インキ化学工業株式会社 Paint finish method
JPH01123877A (en) * 1987-11-10 1989-05-16 Dainippon Ink & Chem Inc Finish coating
JPH01185375A (en) * 1988-01-21 1989-07-24 Dainippon Ink & Chem Inc Finish coating process
JPH01185374A (en) * 1988-01-21 1989-07-24 Dainippon Ink & Chem Inc Finish coating process
JPH01270969A (en) * 1988-04-20 1989-10-30 Dainippon Ink & Chem Inc Coating finish method
JP2591058B2 (en) * 1988-04-21 1997-03-19 大日本インキ化学工業株式会社 Paint finishing method
JPH08283606A (en) * 1995-04-19 1996-10-29 Mitsubishi Rayon Co Ltd Ultraviolet-curing coating composition and film having its curing coating film
JP4273942B2 (en) * 2003-11-28 2009-06-03 Jsr株式会社 Zirconia particle dispersion, method for producing the same, and photocurable composition
JP4003800B2 (en) * 2005-04-25 2007-11-07 大日本インキ化学工業株式会社 Active energy ray-curable resin composition for film protective layer and film using the same

Also Published As

Publication number Publication date
JP2007289943A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5407114B2 (en) Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film
JP6300838B2 (en) Plastic film
WO2013180512A1 (en) Hard coating composition
WO2014030845A1 (en) Hard coating composition
US10358572B2 (en) Curable composition, cured product thereof, and optical member
WO1999041066A1 (en) Transparent sheet or film
JP5237745B2 (en) Weather-resistant anti-glare coating composition, weather-resistant anti-glare film and method for producing the same
JP2018159067A (en) Active energy ray-curable hard coating agent, cured coat, and laminate film
JP2021169613A (en) Curable composition, cured article and laminate
JP6031195B2 (en) Photocurable resin composition and cured film thereof
JP2017177480A (en) Anti-glare anti-reflection film for insert molding and resin molded product produced using the same
JP5468765B2 (en) Anti-glare hard coat film
JP4899545B2 (en) Curable resin composition and cured film comprising the same
KR101532545B1 (en) Anti-blocking hard coating composition having excellent transmistance available muti-layer coating and manufacturing method of the same
JP2008115207A (en) Resin composition
JP5011663B2 (en) Curable resin composition, cured film and laminate comprising the same
JP2006206832A (en) Method for producing laminate
JP2015124254A (en) Photo-curable polymer, photo-curable resin composition, cured product thereof, and cured coating-film
JP5415742B2 (en) Anti-glare hard coat film
JP2011202104A (en) Hard coat film
WO2015019758A1 (en) Coating material composition for adjusting refractive index and laminate thereof
JP6260514B2 (en) Anti-blocking hard coat material
JP2018053005A (en) Optically active energy ray-curable resin composition, cured film and optical film
WO2013021650A1 (en) Adamantane-containing polymer
JP6703828B2 (en) Photocurable antiglare resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250