WO2016129472A1 - 有機エレクトロルミネッセンス表示素子用封止剤 - Google Patents

有機エレクトロルミネッセンス表示素子用封止剤 Download PDF

Info

Publication number
WO2016129472A1
WO2016129472A1 PCT/JP2016/053198 JP2016053198W WO2016129472A1 WO 2016129472 A1 WO2016129472 A1 WO 2016129472A1 JP 2016053198 W JP2016053198 W JP 2016053198W WO 2016129472 A1 WO2016129472 A1 WO 2016129472A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
epoxy resin
display elements
sealing agent
sealant
Prior art date
Application number
PCT/JP2016/053198
Other languages
English (en)
French (fr)
Inventor
康雄 渡邊
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020167034320A priority Critical patent/KR101717035B1/ko
Priority to CN201680001611.5A priority patent/CN106459374B/zh
Priority to JP2016507316A priority patent/JP5966113B1/ja
Publication of WO2016129472A1 publication Critical patent/WO2016129472A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to a sealing agent for organic electroluminescence display elements that has excellent barrier properties and can suppress panel peeling.
  • organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer.
  • organic EL organic electroluminescence
  • the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
  • the organic light-emitting material layer and electrodes constituting the organic EL display element have a problem that the characteristics are easily deteriorated by moisture, oxygen, and the like. Therefore, in order to obtain a practical organic EL display element, it is necessary to extend the life by blocking the organic light emitting material layer and the electrode from the atmosphere.
  • a sealant for example, Patent Document 1.
  • an inorganic film called a passivation film is usually provided on a laminate having an organic light emitting material layer in order to sufficiently suppress the transmission of moisture, oxygen, and the like. A method of sealing the top with a sealant is used.
  • a top emission type organic element that extracts light from the upper surface side of the organic light emitting layer is used.
  • EL display elements have attracted attention. This method has an advantage that it has a high aperture ratio and is driven at a low voltage, which is advantageous for extending the life.
  • a transparent moisture-proof substrate such as glass is interposed on the upper surface side of the light emitting element via a transparent sealing resin.
  • An object of this invention is to provide the sealing agent for organic electroluminescent display elements which is excellent in barrier property and can suppress panel peeling.
  • the present invention contains a cationically polymerizable compound, a photocationic polymerization initiator, and a water-absorbing filler.
  • the cationically polymerizable compound contains a bisphenol F-type epoxy resin and an epoxy resin having a flexible skeleton, and
  • the water-absorbing filler is a sealing agent for organic electroluminescence display elements that is calcium oxide and / or magnesium oxide and has a total surface area of 10 to 100 m 2 per 100 g of the cationic polymerizable compound.
  • the present inventors have studied to add calcium oxide and / or magnesium oxide as a water-absorbing filler in order to improve the barrier property (moisture permeability prevention property) of the encapsulant for organic EL display elements.
  • a water-absorbing filler when such a water-absorbing filler is added to the sealant for organic EL display elements, it exhibits excellent water absorption, but it has a high expansion rate and absorbs moisture, thereby causing defects such as panel peeling. There was a problem of causing.
  • the present inventors used a combination of a bisphenol F type epoxy resin and an epoxy resin having a flexible skeleton as a cationic polymerizable compound used for an organic EL display element sealing agent, By making the total surface area of the filler within a specific range, it was found that an encapsulant for organic EL display elements having excellent barrier properties and capable of suppressing panel peeling can be obtained, and the present invention has been completed.
  • the sealing agent for organic EL display elements of this invention contains a cationically polymerizable compound.
  • the cationically polymerizable compound contains a bisphenol F type epoxy resin and an epoxy resin having a flexible skeleton.
  • the sealing agent for organic EL display elements of the present invention uses calcium oxide and / or magnesium oxide as a water absorbing filler. Can also prevent panel peeling.
  • the bisphenol F-type epoxy resin has a role of adjusting the coating property of the obtained sealing agent for organic EL display elements and suppressing a decrease in barrier property due to the resin component.
  • a bisphenol F type epoxy resin having a flexible skeleton such as a caprolactone-modified bisphenol F type epoxy resin is treated as an “epoxy resin having a flexible skeleton”.
  • the bisphenol F-type epoxy resin is preferably used in combination of a solid and a liquid at 25 ° C.
  • the content ratio of the solid and the liquid at 25 ° C. is solid at 25 ° C.
  • the preferable lower limit of the content of the bisphenol F type epoxy resin in 100 parts by weight of the cationic polymerizable compound is 5.0 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the content of the bisphenol F-type epoxy resin is in this range, the cured product of the obtained sealing agent for organic EL display elements is excellent in barrier properties while suppressing panel peeling.
  • the minimum with more preferable content of the said bisphenol F-type epoxy resin is 10 weight part, and a more preferable upper limit is 60 weight part.
  • the epoxy resin having the flexible skeleton is represented by the structure represented by the following formula (1-1), the structure represented by the following formula (1-2), and the following formula (1-3) as the flexible skeleton.
  • n is an integer of 1 to 5.
  • R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms, and may be the same or different.
  • the epoxy resin having the flexible skeleton preferably has a glass transition temperature (Tg) of less than 100 ° C.
  • Tg glass transition temperature
  • the Tg of the epoxy resin having the flexible skeleton is more preferably less than 50 ° C.
  • the “glass transition temperature” means a temperature at which a maximum due to micro-Brownian motion appears, among the maximum of loss tangent (tan ⁇ ) obtained by dynamic viscoelasticity measurement. It can be measured by a conventionally known method using an elasticity measuring device.
  • epoxy resin having a flexible skeleton examples include, for example, an alkylene oxide modified product or a caprolactone modified product, (poly) ethylene glycol diglycidyl ether, (poly) 1,3-propanediol diglycidyl ether, ( (Poly) 1,4-butanediol diglycidyl ether, (poly) alkanediol diglycidyl ether such as (poly) 1,6-hexanediol diglycidyl ether, bis (2- (3,4-epoxycyclohexyl) ethyl) poly Examples thereof include dimethylsiloxane, polydimethylsiloxane diglycidyl ether, and polyisobutylene diglycidyl ether.
  • Examples of commercially available epoxy resins having the flexible skeleton include jER YL7410, jER YED216, jER YL7175-500 (all manufactured by Mitsubishi Chemical Corporation), EPICLON 705, EPICLON 707, EPICLON 726, EPICLON EXA-4816, EPICLON. EXA-4822, EPICLON EXA-4850 (all made by DIC), Denacol EX-212, Denacol EX-830, Denacol EX-931 (all made by Nagase ChemteX), KF-105, X-22-169 ( All of them are manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the preferable lower limit of the content of the epoxy resin having the flexible skeleton in 100 parts by weight of the cationic polymerizable compound is 1.0 part by weight, and the preferable upper limit is 20 parts by weight.
  • the content of the epoxy resin having the flexible skeleton is in this range, the barrier property is improved while suppressing panel peeling of the obtained organic EL display element.
  • the minimum with more preferable content of the epoxy resin which has the said flexible skeleton is 2.0 weight part, and a more preferable upper limit is 15 weight part.
  • the sealing agent for organic EL display elements of this invention contains a photocationic polymerization initiator.
  • the photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
  • Examples of the ionic photoacid-generating photocationic polymerization initiator include those having a cation moiety of aromatic sulfonium, aromatic iodonium, aromatic diazonium, aromatic ammonium, or (2,4-cyclopentadien-1-yl). ) ((1-methylethyl) benzene) -Fe cation, and the anion portion is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is at least two or more fluorine atoms) Or an onium salt composed of a phenyl group substituted with a trifluoromethyl group).
  • aromatic sulfonium salt examples include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetraflu
  • aromatic iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethy
  • aromatic diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
  • aromatic ammonium salt examples include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl)
  • Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
  • Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene.
  • nonionic photoacid-generating photocationic polymerization initiator examples include nitrobenzyl ester, sulfonic acid derivative, phosphoric ester, phenolsulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate and the like.
  • photocationic polymerization initiators examples include, for example, DTS-200 (manufactured by Midori Chemical Co., Ltd.), UVI6990, UVI6974 (all manufactured by Union Carbide), SP-150, SP-170 (all ADEKA), FC-508, FC-512 (all from 3M), IRGACURE 261 (BASF), PI 2074 (Rhodia) and the like.
  • the content of the cationic photopolymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the content of the cationic photopolymerization initiator is 0.1 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in photocurability.
  • the content of the cationic photopolymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, and the workability becomes excellent, and the cured product becomes more uniform. Can be.
  • the minimum with more preferable content of the said photocationic polymerization initiator is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for organic EL display elements of this invention contains a water absorbing filler.
  • the water-absorbing filler is calcium oxide and / or magnesium oxide.
  • the obtained sealing agent for organic EL display elements has excellent barrier properties.
  • the total surface area of the water-absorptive filler is 10 m 2 per cationically polymerizable compound 100 g, the upper limit is 100 m 2.
  • the total surface area of the water-absorbing filler is 10 m 2 or more per 100 g of the cationic polymerizable compound, the cured product of the obtained sealing agent for organic EL display elements is excellent in barrier properties.
  • the total surface area of the water-absorbing filler is 100 m 2 or less, the effect of suppressing panel peeling and crack generation is excellent.
  • a preferred lower limit of the total surface area of the water-absorptive filler is 20 m 2, a preferred upper limit is 80 m 2.
  • the total surface area of the water-absorbing filler is calculated from the content of the water-absorbing filler and the BET specific surface area. Specifically, for example, it is calculated from the BET specific surface area measured using nitrogen gas with a specific surface area measuring device (manufactured by Shimadzu Corporation, ASAP-2000).
  • the content of the water-absorbing filler is such that a preferable lower limit is 1.0 part by weight and a preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • a preferable lower limit is 1.0 part by weight
  • a preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the cured product of the obtained sealing agent for organic EL display elements is excellent in barrier properties while suppressing panel peeling and crack generation.
  • the minimum with more preferable content of the said water absorbing filler is 2.0 weight part, and a more preferable upper limit is 20 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain other fillers in addition to the above water-absorbing filler within a range not impairing the object of the present invention for the purpose of improving adhesiveness.
  • the other fillers include inorganic fillers such as silica, talc, and alumina, and organic fillers such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles. Of these, talc is preferred because of its excellent effect of improving moisture resistance.
  • the content of the other filler is such that a preferred lower limit is 5 parts by weight and a preferred upper limit is 100 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • a preferred lower limit is 5 parts by weight and a preferred upper limit is 100 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the content of the other filler is 5 parts by weight or more, the effect of improving the adhesiveness is excellent.
  • the content of the other filler is 100 parts by weight or less, the obtained sealing agent for organic EL display elements is more excellent in applicability.
  • the minimum with more preferable content of the said other filler is 10 weight part, and a more preferable upper limit is 80 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a thermosetting agent.
  • the thermosetting agent include hydrazide compounds, imidazole derivatives, acid anhydrides, dicyandiamides, guanidine derivatives, modified aliphatic polyamines, addition products of various amines and epoxy resins, and the like.
  • the hydrazide compound include 1,3-bis (hydrazinocarbonoethyl-5-isopropylhydantoin), sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • imidazole derivatives examples include 1-cyanoethyl-2-phenylimidazole, N- (2- (2-methyl-1-imidazolyl) ethyl) urea, 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine, N, N′-bis (2-methyl-1-imidazolylethyl) urea, N, N ′-(2-methyl-1-imidazolylethyl) -adipamide, 2- Examples include phenyl-4-methyl-5-hydroxymethylimidazole and 2-phenyl-4,5-dihydroxymethylimidazole.
  • acid anhydride examples include tetrahydrophthalic anhydride, ethylene glycol bis (anhydro trimellitate), and the like. These thermosetting agents may be used alone or in combination of two or more.
  • thermosetting agents examples include SDH (manufactured by Nippon Finechem Co., Ltd.), ADH (manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.). ) And the like.
  • the content of the thermosetting agent is preferably 0.5 parts by weight and preferably 30 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the content of the thermosetting agent is 0.5 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in thermosetting.
  • the content of the thermosetting agent is 30 parts by weight or less, the obtained sealing agent for organic EL display elements is excellent in storage stability, and the cured product is excellent in moisture resistance.
  • the minimum with more preferable content of the said thermosetting agent is 1 weight part, and a more preferable upper limit is 15 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a sensitizer.
  • the sensitizer has a role of further improving the polymerization initiation efficiency of the photocationic polymerization initiator and further promoting the curing reaction of the encapsulant for organic EL display elements of the present invention.
  • the sensitizer examples include anthracene compounds such as 9,10-dibutoxyanthracene, thioxanthone compounds such as 2,4-diethylthioxanthone, 2,2-dimethoxy-1,2-diphenylethane-1, and the like.
  • anthracene compounds such as 9,10-dibutoxyanthracene
  • thioxanthone compounds such as 2,4-diethylthioxanthone, 2,2-dimethoxy-1,2-diphenylethane-1, and the like.
  • -One benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4'-bis (dimethylamino) benzophenone, 4-benzoyl-4'methyldiphenyl sulfide, and the like.
  • the content of the sensitizer is preferably 0.05 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the sensitizing effect is more exhibited.
  • the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep part without excessive absorption.
  • the minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
  • the sealing agent for organic EL display elements of the present invention preferably contains a stabilizer for the purpose of improving storage stability.
  • the stabilizer include amine compounds and aminophenol type epoxy resins.
  • the content of the stabilizer is preferably 0.001 part by weight and preferably 2 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the minimum with more preferable content of the said stabilizer is 0.05 weight part, and a more preferable upper limit is 1 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a silane coupling agent.
  • the said silane coupling agent has a role which improves the adhesiveness of the sealing agent for organic EL display elements of this invention, a board
  • silane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
  • the content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a surface modifier as long as the object of the present invention is not impaired.
  • a surface modifier By containing the surface modifier, the flatness of the coating film can be imparted to the organic EL display element sealant of the present invention.
  • the surface modifier include surfactants and leveling agents.
  • surfactant and the leveling agent examples include silicon-based, acrylic-based, and fluorine-based ones.
  • examples of commercially available surfactants and leveling agents include BYK-345, BYK-340 (both manufactured by Big Chemie Japan), Surflon S-611 (manufactured by AGC Seimi Chemical), and the like. Can be mentioned.
  • the encapsulant for organic EL display elements of the present invention may contain an ion exchange resin in order to improve the durability of the element electrode as long as the object of the present invention is not impaired.
  • any of a cation exchange type, an anion exchange type, and a both ion exchange type can be used, and in particular, a cation exchange type or a both ion exchange type capable of adsorbing chloride ions. Is preferred.
  • the sealing agent for organic EL display elements of this invention is a range which does not inhibit the objective of this invention, and is a hardening retarder, a reinforcing agent, a softener, a plasticizer, a viscosity modifier, and an ultraviolet absorber as needed. Further, various known additives such as antioxidants may be contained.
  • Examples of the method for producing the sealing agent for organic EL display elements of the present invention include a cationically polymerizable compound using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll. And a method of mixing a cationic photopolymerization initiator, a water-absorbing filler, and an additive added as necessary.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
  • the sealing agent for organic EL display elements of this invention the preferable minimum of the viscosity in 25 degreeC measured using the E-type viscosity meter is 100 Pa.s, and a preferable upper limit is 500 Pa.s.
  • the viscosity is within this range, the obtained sealing agent for organic EL display elements of the present invention is superior in coating properties and shape stability after coating.
  • the more preferable lower limit of the viscosity is 150 Pa ⁇ s
  • the more preferable upper limit is 450 Pa ⁇ s
  • the still more preferable lower limit is 200 mPa ⁇ s
  • the still more preferable upper limit is 400 Pa ⁇ s.
  • the viscosity is, for example, a VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) as an E-type viscometer, and a rotational speed of 1 to 100 rpm as appropriate from the optimum torque number in each viscosity region using a CP7 cone plate. Can be measured by selecting.
  • cured material is 85 degreeC, and a preferable upper limit is 180 degreeC.
  • the glass transition temperature of the cured product is 85 ° C. or higher, the barrier property is improved.
  • cured material being 180 degrees C or less, it will become excellent by the effect which suppresses a crack and panel peeling.
  • cured material is 100 degreeC, and a more preferable upper limit is 150 degreeC.
  • cured material which measures said Tg can be obtained by irradiating 3000m ultraviolet rays with 3000mJ / cm ⁇ 2 > using a high pressure mercury lamp etc., and also heat-processing at 80 degreeC for 30 minutes.
  • the shape of the sealing portion formed in the organic EL display element sealant of the present invention is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air.
  • the shape may be completely covered, a closed pattern may be formed in the periphery of the laminate, or a pattern having a shape in which a part of the opening is provided in the periphery of the laminate is formed.
  • it can be suitably used for sealing the peripheral portion of the laminate.
  • the sealing agent for organic electroluminescent display elements which is excellent in barrier property and can suppress panel peeling can be provided.
  • Example 1 As a cationically polymerizable compound, 20 parts by weight of a solid bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “jER 4005P”), 70 parts by weight of a liquid bisphenol F type epoxy resin (manufactured by DIC, “EPICLON EXA-830LVP”) And 10 parts by weight of an epoxy resin having a structure in which m in the formula (1-1) is 4 as a flexible skeleton (manufactured by Mitsubishi Chemical Corporation, “jER YL7410”, also referred to as epoxy resin A having a flexible skeleton)
  • 0.1 part by weight of 9,10-dibutoxyanthracene as a sensitizer was dissolved at 110 ° C.
  • Examples 2 to 12, Comparative Examples 1 to 5 Each material described in Tables 1 and 2 was stirred and mixed in the same manner as in Example 1 according to the blending ratios described in Tables 1 and 2 to prepare an organic EL display element sealant.
  • epoxy resin B having a flexible skeleton is an epoxy resin having a structure in which m in the above formula (1-1) is 6
  • epoxy resin C having a flexible skeleton is An epoxy resin having a structure in which m in the above formula (1-1) is 2.
  • Viscosity About each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, the viscosity at 25 ° C. was measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., “VISCOMETER TV-22”). (Initial viscosity) was measured.
  • a glass substrate on which a glass substrate on which Ca is deposited is moved into a glow box controlled at a dew point ( ⁇ 60 ° C. or higher), and a sealing agent for each organic EL display element obtained in the examples and comparative examples is applied to the surface. Were pasted together. At this time, bonding was performed so that the deposited Ca exists at positions of 2 mm, 4 mm, and 6 mm from the end face of the glass substrate.
  • the sealing agent was cured by irradiating an ultraviolet ray of 365 nm at 3000 mJ / cm 2 and further heating at 80 ° C. for 30 minutes, thereby producing a Ca-TEST substrate.
  • the obtained Ca-TEST substrate was exposed to high-temperature and high-humidity conditions of 85 ° C. and 85% RH, and the moisture penetration distance per hour was observed from the disappearance of Ca.
  • indicates that the time required for the moisture penetration distance to reach 6 mm is 1000 hours or more
  • indicates that the time is 500 hours or more and less than 1000 hours
  • indicates 100 hours or more and 500 hours.
  • x the barrier property of the cured product was evaluated.
  • a glass substrate (length 25 mm, width 25 mm, thickness 0.7 mm) on which an ITO electrode was formed to a thickness of 1000 mm was used as the substrate.
  • the substrate was ultrasonically washed with acetone, an aqueous alkali solution, ion-exchanged water, and isopropyl alcohol for 15 minutes, respectively, then washed with boiled isopropyl alcohol for 10 minutes, and a UV-ozone cleaner (manufactured by Nippon Laser Electronics Co., Ltd.). The last treatment was performed with “NL-UV253”).
  • this substrate is fixed to the substrate folder of the vacuum deposition apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -NPD) is put into an unglazed crucible and other different types.
  • 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put in an unglazed crucible, and the inside of the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa. Thereafter, the crucible containing ⁇ -NPD was heated, and ⁇ -NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 ⁇ ⁇ hole transport layer.
  • the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 ⁇ at a deposition rate of 15 ⁇ / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus, and 200 mg of lithium fluoride is added to a tungsten resistance heating boat in the vacuum vapor deposition apparatus, and aluminum is added to another tungsten boat. 1.0 g of wire was added.
  • the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 ⁇ 10 ⁇ 4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s did.
  • the inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm ⁇ 10 mm was arranged was taken out.
  • a mask having an opening of 13 mm ⁇ 13 mm was placed so as to cover the entire laminated body of the substrate on which the obtained laminated body was arranged, and an inorganic material film A was formed by a plasma CVD method.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates are 10 sccm and 200 sccm, RF power is 10 W (frequency: 2.45 GHz), chamber temperature is 100 ° C., and chamber pressure is 0.
  • the test was performed at 9 Torr.
  • the formed inorganic material film A had a thickness of about 1 ⁇ m.
  • Vacuum deposition was performed so that Thereafter, ultraviolet rays having a wavelength of 365 nm were irradiated using a high pressure mercury lamp in a vacuum environment so that the irradiation amount was 3000 mJ / cm 2 to cure the organic EL display element sealant to form a resin protective film.
  • a mask having an opening of 12 mm ⁇ 12 mm is installed so as to cover the entire resin protective film, and the inorganic material film B is formed by plasma CVD to form an organic EL display element. Obtained.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
  • the formed inorganic material film B had a thickness of about 1 ⁇ m.
  • the sealing agent for organic electroluminescent display elements which is excellent in barrier property and can suppress panel peeling can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、バリア性に優れ、かつ、パネル剥がれを抑制できる有機エレクトロルミネッセンス表示素子用封止剤を提供することを目的とする。 本発明は、カチオン重合性化合物と、光カチオン重合開始剤と、吸水性フィラーとを含有し、前記カチオン重合性化合物は、ビスフェノールF型エポキシ樹脂及び柔軟性骨格を有するエポキシ樹脂を含有し、前記吸水性フィラーは、酸化カルシウム及び/又は酸化マグネシウムであり、かつ、総表面積が前記カチオン重合性化合物100g当たり10~100mである有機エレクトロルミネッセンス表示素子用封止剤である。

Description

有機エレクトロルミネッセンス表示素子用封止剤
本発明は、バリア性に優れ、かつ、パネル剥がれを抑制できる有機エレクトロルミネッセンス表示素子用封止剤に関する。
有機エレクトロルミネッセンス(以下、「有機EL」ともいう)表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された積層体構造を有し、この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して発光する。このように有機EL表示素子は自己発光を行うことから、バックライトを必要とする液晶表示素子等と比較して視認性がよく、薄型化が可能であり、しかも直流低電圧駆動が可能であるという利点を有している。
有機EL表示素子を構成する有機発光材料層や電極は、水分や酸素等により特性が劣化しやすいという問題がある。従って、実用的な有機EL表示素子を得るためには、有機発光材料層や電極を大気と遮断して長寿命化を図る必要がある。有機発光材料層や電極を大気と遮断する方法としては、封止剤を用いて有機EL表示素子を封止することが行われている(例えば、特許文献1)。有機EL表示素子を封止剤で封止する場合、通常、水分や酸素等の透過を充分に抑えるため、有機発光材料層を有する積層体上にパッシベーション膜と呼ばれる無機膜を設け、該無機膜上を封止剤で封止する方法が用いられている。
近年、有機発光材料層から発せられた光を、発光素子を形成した基板面側から取り出すボトムエミッション方式の有機EL表示素子に代わって、有機発光層の上面側から光を取り出すトップエミッション方式の有機EL表示素子が注目されている。この方式は、開口率が高く、低電圧駆動となることから、長寿命化に有利であるという利点がある。このようなトップエミッション方式の有機EL表示素子では、発光層の上面側が透明であることが必要であることから、発光素子の上面側に透明な封止樹脂を介してガラス等の透明防湿性基材を積層することにより封止している(例えば、特許文献2参照)。
しかしながら、このようなトップエミッション方式の有機EL表示素子では、光の取り出し方向を遮蔽してしまわないようにするために乾燥剤を配置するスペースがなく、充分な防湿効果が得られにくく寿命が短くなるという問題があった。
特開2007-115692号公報 特開2009-051980号公報
本発明は、バリア性に優れ、かつ、パネル剥がれを抑制できる有機エレクトロルミネッセンス表示素子用封止剤を提供することを目的とする。
本発明は、カチオン重合性化合物と、光カチオン重合開始剤と、吸水性フィラーとを含有し、上記カチオン重合性化合物は、ビスフェノールF型エポキシ樹脂及び柔軟性骨格を有するエポキシ樹脂を含有し、上記吸水性フィラーは、酸化カルシウム及び/又は酸化マグネシウムであり、かつ、総表面積が上記カチオン重合性化合物100g当たり10~100mである有機エレクトロルミネッセンス表示素子用封止剤である。
以下に本発明を詳述する。
本発明者らは、有機EL表示素子用封止剤のバリア性(透湿防止性)を向上させるため、吸水性フィラーとして酸化カルシウム及び/又は酸化マグネシウムを添加することを検討した。しかしながら、このような吸水性フィラーは、有機EL表示素子用封止剤に多く添加した場合、優れた吸水性を発揮するものの、膨張率が高く、水分を吸収することでパネル剥がれ等の不良を引き起こすという問題があった。
そこで、本発明者らは鋭意検討した結果、有機EL表示素子用封止剤に用いるカチオン重合性化合物としてビスフェノールF型エポキシ樹脂と柔軟性骨格を有するエポキシ樹脂とを組み合わせて用い、更に、吸水性フィラーの総表面積を特定の範囲とすることにより、バリア性に優れ、かつ、パネル剥がれを抑制できる有機EL表示素子用封止剤を得ることができることを見出し、本発明を完成させるに至った。
本発明の有機EL表示素子用封止剤は、カチオン重合性化合物を含有する。
上記カチオン重合性化合物は、ビスフェノールF型エポキシ樹脂及び柔軟性骨格を有するエポキシ樹脂を含有する。上記ビスフェノールF型エポキシ樹脂と上記柔軟性骨格を有するエポキシ樹脂とを組み合わせて用いることにより、本発明の有機EL表示素子用封止剤は、吸水性フィラーとして酸化カルシウム及び/又は酸化マグネシウムを用いてもパネル剥がれを防止することができる。
上記ビスフェノールF型エポキシ樹脂は、得られる有機EL表示素子用封止剤の塗布性を調整し、かつ、樹脂成分によるバリア性の低下を抑制する役割を有する。
なお、カプロラクトン変性ビスフェノールF型エポキシ樹脂等の柔軟性骨格を有するビスフェノールF型エポキシ樹脂は、「柔軟性骨格を有するエポキシ樹脂」として扱う。
上記ビスフェノールF型エポキシ樹脂は、塗布性の観点から、25℃で固形のものと液状のものとを組み合わせて用いることが好ましい。
上記ビスフェノールF型エポキシ樹脂として、25℃で固形のものと液状のものとを組み合わせて用いる場合、25℃で固形のものと液状のものとの含有割合は、重量比で、25℃で固形のビスフェノールF型エポキシ樹脂:25℃で液状のビスフェノールF型エポキシ樹脂=1:5~1:50であることが好ましい。25℃で固形のものと液状のものとの含有割合がこの範囲であることにより、得られる有機EL表示素子用封止剤が塗布性により優れるものとなる。25℃で固形のものと液状のものとの含有割合は、重量比で、25℃で固形のビスフェノールF型エポキシ樹脂:25℃で液状のビスフェノールF型エポキシ樹脂=1:10~1:30であることがより好ましい。
上記カチオン重合性化合物100重量部中における上記ビスフェノールF型エポキシ樹脂の含有量の好ましい下限は5.0重量部、好ましい上限は70重量部である。上記ビスフェノールF型エポキシ樹脂の含有量がこの範囲であることにより、得られる有機EL表示素子用封止剤の硬化物が、パネル剥がれを抑制しつつ、バリア性により優れるものとなる。上記ビスフェノールF型エポキシ樹脂の含有量のより好ましい下限は10重量部、より好ましい上限は60重量部である。
上記柔軟性骨格を有するエポキシ樹脂は、柔軟性骨格として下記式(1-1)で表される構造、下記式(1-2)で表される構造、下記式(1-3)で表される構造、又は、下記式(1-4)で表される構造を有することが好ましく、下記式(1-1)で表される構造を有することがより好ましく、下記式(1-1)におけるmが4又は6である構造を有することが更に好ましい。
Figure JPOXMLDOC01-appb-C000002
式(1-1)中、mは、1~15の整数である。式(1-2)中、nは、1~5の整数である。式(1-3)中、R及びRは、炭素数1~3の炭化水素基であり、それぞれ同一であってもよいし、異なっていてもよい。
上記柔軟性骨格を有するエポキシ樹脂は、ガラス転移温度(Tg)が100℃未満であることが好ましい。上記柔軟性骨格を有するエポキシ樹脂としてTgが100℃未満であるものを用いることにより、パネル剥がれを抑制する効果により優れるものとなる。上記柔軟性骨格を有するエポキシ樹脂のTgは、50℃未満であることがより好ましい。
なお、本明細書において上記「ガラス転移温度」とは、動的粘弾性測定により得られる損失正接(tanδ)の極大のうち、ミクロブラウン運動に起因する極大が現れる温度を意味し、動的粘弾性測定装置を用いた従来公知の方法により測定することができる。
上記柔軟性骨格を有するエポキシ樹脂としては、具体的には例えば、アルキレンオキサイド変性体又はカプロラクトン変性体や、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)1,3-プロパンジオールジグリシジルエーテル、(ポリ)1,4-ブタンジオールジグリシジルエーテル、(ポリ)1,6-ヘキサンジオールジグリシジルエーテル等の(ポリ)アルカンジオールジグリシジルエーテル、ビス(2-(3,4―エポキシシクロヘキシル)エチル)ポリジメチルシロキサン、ポリジメチルシロキサンジグリシジルエーテル、ポリイソブチレンジグリシジルエーテル等が挙げられる。
上記柔軟性骨格を有するエポキシ樹脂として市販されているものとしては、例えば、jER YL7410、jER YED216、jER YL7175-500(いずれも三菱化学社製)、EPICLON705、EPICLON707、EPICLON726、EPICLON EXA-4816、EPICLON EXA-4822、EPICLON EXA-4850(いずれもDIC社製)、デナコールEX-212、デナコールEX-830、デナコールEX-931(いずれもナガセケムテックス社製)、KF-105、X-22-169(いずれも信越化学工業社製)、等が挙げられる。
上記カチオン重合性化合物100重量部中における上記柔軟性骨格を有するエポキシ樹脂の含有量の好ましい下限は1.0重量部、好ましい上限は20重量部である。上記柔軟性骨格を有するエポキシ樹脂の含有量がこの範囲であることにより、得られる有機EL表示素子のパネル剥がれを抑制しつつ、バリア性により優れるものとなる。上記柔軟性骨格を有するエポキシ樹脂の含有量のより好ましい下限は2.0重量部、より好ましい上限は15重量部である。
本発明の有機EL表示素子用封止剤は、光カチオン重合開始剤を含有する。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生型であってもよいし、非イオン性光酸発生型であってもよい。
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、カチオン部分が芳香族スルホニウム、芳香族ヨードニウム、芳香族ジアゾニウム、芳香族アンモニウム、又は、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Feカチオンであり、アニオン部分がBF 、PF 、SbF 、又は、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)で構成されるオニウム塩等が挙げられる。
上記芳香族スルホニウム塩としては、例えば、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ジアゾニウム塩としては、例えば、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族アンモニウム塩としては、例えば、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩としては、例えば、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記非イオン性光酸発生型の光カチオン重合開始剤としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスホナート等が挙げられる。
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、DTS-200(みどり化学社製)、UVI6990、UVI6974(いずれもユニオンカーバイド社製)、SP-150、SP-170(いずれもADEKA社製)、FC-508、FC-512(いずれも3M社製)、IRGACURE261(BASF社製)、PI2074(ローディア社製)等が挙げられる。
上記光カチオン重合開始剤の含有量は、上記カチオン重合性化合物100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記光カチオン重合開始剤の含有量が0.1重量部以上であることにより、得られる有機EL表示素子用封止剤が光硬化性により優れるものとなる。上記光カチオン重合開始剤の含有量が10重量部以下であることにより、得られる有機EL表示素子用封止剤の硬化反応が速くなりすぎず、作業性により優れるものとなり、硬化物をより均一なものとすることができる。上記光カチオン重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。
本発明の有機EL表示素子用封止剤は、吸水性フィラーを含有する。
上記吸水性フィラーは、酸化カルシウム及び/又は酸化マグネシウムである。上記吸水性フィラーとして、酸化カルシウム及び/又は酸化マグネシウムを含有することにより、得られる有機EL表示素子用封止剤が、バリア性に優れるものとなる。
なかでも、比表面積が10.0m/g未満の酸化カルシウムを含有することが好ましい。
上記吸水性フィラーの総表面積は、カチオン重合性化合物100g当たりの下限が10m、上限が100mである。上記吸水性フィラーの総表面積がカチオン重合性化合物100g当たり10m以上であることにより、得られる有機EL表示素子用封止剤の硬化物がバリア性により優れるものとなる。上記吸水性フィラーの総表面積が100m以下であることにより、パネル剥がれやクラック発生を抑制する効果により優れるものとなる。上記吸水性フィラーの総表面積の好ましい下限は20m、好ましい上限は80mである。
なお、上記吸水性フィラーの総表面積は、上記吸水性フィラーの含有量とBET比表面積とから算出される。具体的には、例えば、比表面積測定装置(島津製作所社製、ASAP-2000)で窒素ガスを用い測定したBET比表面積から算出する。
上記吸水性フィラーの含有量は、上記カチオン重合性化合物100重量部に対して、好ましい下限が1.0重量部、好ましい上限が50重量部である。上記吸水性フィラーの含有量がこの範囲であることにより、得られる有機EL表示素子用封止剤の硬化物がパネル剥がれやクラック発生を抑制しつつ、バリア性により優れるものとなる。上記吸水性フィラーの含有量のより好ましい下限は2.0重量部、より好ましい上限は20重量部である。
本発明の有機EL表示素子用封止剤は、接着性を向上させること等を目的として、本発明の目的を阻害しない範囲において、上記吸水性フィラーに加えて、その他のフィラーを含有してもよい。
上記その他のフィラーとしては、例えば、シリカ、タルク、アルミナ等の無機フィラーや、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機フィラー等が挙げられる。なかでも、耐湿性を向上させる効果に優れることから、タルクが好ましい。
上記その他のフィラーの含有量は、上記カチオン重合性化合物100重量部に対して、好ましい下限が5重量部、好ましい上限が100重量部である。上記その他のフィラーの含有量が5重量部以上であることにより、接着性を向上させる等の効果により優れるものとなる。上記その他のフィラーの含有量が100重量部以下であることにより、得られる有機EL表示素子用封止剤が塗布性により優れるものとなる。上記その他のフィラーの含有量のより好ましい下限は10重量部、より好ましい上限は80重量部である。
本発明の有機EL表示素子用封止剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、ヒドラジド化合物、イミダゾール誘導体、酸無水物、ジシアンジアミド、グアニジン誘導体、変性脂肪族ポリアミン、各種アミンとエポキシ樹脂との付加生成物等が挙げられる。
上記ヒドラジド化合物としては、例えば、1,3-ビス(ヒドラジノカルボノエチル-5-イソプロピルヒダントイン)、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記イミダゾール誘導体としては、例えば、1-シアノエチル-2-フェニルイミダゾール、N-(2-(2-メチル-1-イミダゾリル)エチル)尿素、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-(2-メチル-1-イミダゾリルエチル)-アジポアミド、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール等が挙げられる。
上記酸無水物としては、例えば、テトラヒドロ無水フタル酸、エチレングリコールービス(アンヒドロトリメリテート)等が挙げられる。
これらの熱硬化剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。
上記熱硬化剤のうち市販されているものとしては、例えば、SDH(日本ファインケム社製)、ADH(大塚化学社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH(いずれも味の素ファインテクノ社製)等が挙げられる。
上記熱硬化剤の含有量は、上記カチオン重合性化合物100重量部に対して、好ましい下限が0.5重量部、好ましい上限が30重量部である。上記熱硬化剤の含有量が0.5重量部以上であることにより、得られる有機EL表示素子用封止剤が熱硬化性により優れるものとなる。上記熱硬化剤の含有量が30重量部以下であることにより、得られる有機EL表示素子用封止剤が保存安定性により優れるものとなり、かつ、硬化物が耐湿性により優れるものとなる。上記熱硬化剤の含有量のより好ましい下限は1重量部、より好ましい上限は15重量部である。
本発明の有機EL表示素子用封止剤は、増感剤を含有してもよい。上記増感剤は、上記光カチオン重合開始剤の重合開始効率をより向上させて、本発明の有機EL表示素子用封止剤の硬化反応をより促進させる役割を有する。
上記増感剤としては、例えば、9,10-ジブトキシアントラセン等のアントラセン系化合物や、2,4-ジエチルチオキサントン等のチオキサントン系化合物や、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’メチルジフェニルサルファイド等が挙げられる。
上記増感剤の含有量は、上記カチオン重合性化合物100重量部に対して、好ましい下限は0.05重量部、好ましい上限は3重量部である。上記増感剤の含有量が0.05重量部以上であることにより、増感効果がより発揮される。上記増感剤の含有量が3重量部以下であることにより、吸収が大きくなりすぎずに深部まで光を伝えることができる。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。
本発明の有機EL表示素子用封止剤は、保存安定性を向上させる等を目的として、安定剤を含有することが好ましい。
上記安定剤としては、例えば、アミン系化合物やアミノフェノール型エポキシ樹脂等が挙げられる。
上記安定剤の含有量は、上記カチオン重合性化合物100重量部に対して、好ましい下限が0.001重量部、好ましい上限が2重量部である。上記安定剤の含有量がこの範囲であることにより、硬化阻害を抑制しつつ、得られる有機EL表示素子用封止剤の保存安定性を向上させる等の効果により優れるものとなる。上記安定剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は1重量部である。
本発明の有機EL表示素子用封止剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、本発明の有機EL表示素子用封止剤と基板等との接着性を向上させる役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は、単独で用いられてもよいし、2種以上が併用されてもよい。
上記シランカップリング剤の含有量は、上記カチオン重合性化合物100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、余剰のシランカップリング剤によるブリードアウトを抑制しつつ、得られる有機EL表示素子用封止剤の接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。
本発明の有機EL表示素子用封止剤は、本発明の目的を阻害しない範囲において、表面改質剤を含有してもよい。上記表面改質剤を含有することにより、本発明の有機EL表示素子用封止剤に塗膜の平坦性を付与することができる。
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。
上記界面活性剤や上記レベリング剤としては、例えば、シリコン系、アクリル系、フッ素系等のものが挙げられる。
上記界面活性剤や上記レベリング剤のうち市販されているものとしては、例えば、BYK-345、BYK-340(いずれもビックケミー・ジャパン社製)、サーフロンS-611(AGCセイミケミカル社製)等が挙げられる。
本発明の有機EL表示素子用封止剤は、本発明の目的を阻害しない範囲で、素子電極の耐久性を向上させるために、イオン交換樹脂を含有してもよい。
上記イオン交換樹脂としては、陽イオン交換型、陰イオン交換型、両イオン交換型のいずれも使用することができるが、特に塩化物イオンを吸着することのできる陽イオン交換型又は両イオン交換型が好適である。
また、本発明の有機EL表示素子用封止剤は、本発明の目的を阻害しない範囲で、必要に応じて、硬化遅延剤、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の公知の各種添加剤を含有してもよい。
本発明の有機EL表示素子用封止剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、カチオン重合性化合物と、光カチオン重合開始剤と、吸水性フィラーと、必要に応じて添加する添加剤とを混合する方法等が挙げられる。
本発明の有機EL表示素子用封止剤は、E型粘度計を用いて測定した、25℃における粘度の好ましい下限が100Pa・s、好ましい上限が500Pa・sである。上記粘度がこの範囲であることにより、得られる本発明の有機EL表示素子用封止剤が塗布性や塗布後の形状安定性により優れるものとなる。上記粘度のより好ましい下限は150Pa・s、より好ましい上限は450Pa・s、更に好ましい下限は200mPa・s、更に好ましい上限は400Pa・sである。
なお、上記粘度は、例えば、E型粘度計としてVISCOMETER TV-22(東機産業社製)を用い、CP7のコーンプレートにて、各粘度領域における最適なトルク数から適宜1~100rpmの回転数を選択することにより測定することができる。
本発明の有機EL表示素子用封止剤は、硬化物のガラス転移温度(Tg)の好ましい下限が85℃、好ましい上限が180℃である。上記硬化物のガラス転移温度が85℃以上であることにより、バリア性により優れるものとなる。上記硬化物のガラス転移温度が180℃以下であることにより、クラックやパネル剥がれを抑制する効果により優れるものとなる。上記硬化物のガラス転移温度のより好ましい下限は100℃、より好ましい上限は150℃である。
なお、上記Tgを測定する硬化物は、高圧水銀灯等を用いて365nmの紫外線を3000mJ/cm照射し、更に80℃で30分加熱処理することにより得ることができる。
本発明の有機EL表示素子用封止剤に形成される封止部の形状としては、有機発光材料層を有する積層体を外気から保護しうる形状であれば特に限定されず、該積層体を完全に被覆する形状であってもよいし、該積層体の周辺部に閉じたパターンを形成してもよいし、該積層体の周辺部に一部開口部を設けた形状のパターンを形成してもよいが、該積層体の周辺部の封止に好適に用いることができる。
本発明によれば、バリア性に優れ、かつ、パネル剥がれを抑制できる有機エレクトロルミネッセンス表示素子用封止剤を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
カチオン重合性化合物として、固形のビスフェノールF型エポキシ樹脂(三菱化学社製、「jER 4005P」)20重量部、液状のビスフェノールF型エポキシ樹脂(DIC社製、「EPICLON EXA-830LVP」)70重量部、及び、柔軟性骨格として上記式(1-1)におけるmが4である構造を有するエポキシ樹脂(三菱化学社製、「jER YL7410」、柔軟性骨格を有するエポキシ樹脂Aともいう)10重量部に、増感剤として9,10-ジブトキシアントラセン0.1重量部を110℃で1時間かけて溶解させ、次いで、光カチオン重合開始剤として芳香族ヨードニウム塩(ローディア社製、「PI2074」)3.0重量部を添加し、60℃で1時間加熱溶解した。その後、シランカップリング剤として3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、「KBM-403」)2.0重量部、吸水性フィラーとして酸化カルシウム(吉沢石灰工業社製、「生石灰J1P」、比表面積2.5m/g)20重量部、その他のフィラーとしてタルク(日本タルク社製、「FG-15」)30重量部を添加し、撹拌混合機(シンキー社製、「AR-250」)を用い、撹拌速度2000rpmで均一に撹拌混合して、有機EL表示素子用封止剤を作製した。
(実施例2~12、比較例1~5)
表1、2に記載された各材料を、表1、2に記載された配合比に従い、実施例1と同様にして撹拌混合して、有機EL表示素子用封止剤を作製した。
なお、表1中、「柔軟性骨格を有するエポキシ樹脂B」は、上記式(1-1)におけるmが6である構造を有するエポキシ樹脂であり、「柔軟性骨格を有するエポキシ樹脂C」は、上記式(1-1)におけるmが2である構造を有するエポキシ樹脂である。
<評価>
実施例及び比較例で得られた各有機EL表示素子用封止剤について、以下の評価を行った。結果を表1、2に示した。
(1)粘度
実施例及び比較例で得られた各有機EL表示素子用封止剤について、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用いて、25℃における粘度(初期粘度)を測定した。
(2)硬化物のガラス転移温度
実施例及び比較例で得られた各有機EL表示素子用封止剤について、365nmの紫外線を3000mJ/cm照射し、更に、80℃で30分加熱することで封止剤を硬化させフィルムを作製した。得られたフィルムについて、動的粘弾性測定装置(IT計測制御社製、「DVA-200」)を用いて、30℃~200℃、10Hzにおいて動的粘弾性を測定し、損失正接(tanδ)の極大値の温度をガラス転移温度として求めた。
(3)硬化物のバリア性
実施例及び比較例で得られた各有機EL表示素子用封止剤について、以下のCa-TESTを行った。
まず、30mm×30mmのガラス基板に2mm×2mmの開口部を複数有するマスクを被せ、Caを真空蒸着機により蒸着させた。蒸着の条件は、真空蒸着装置の蒸着器内を2×10-3Paまで減圧してCaを5.0Å/sの蒸着速度で2000Å成膜するものとした。Caを蒸着したガラス基板を露点(-60℃以上)に管理されたグローボックス内に移動させ、表面に実施例及び比較例で得られた各有機EL表示素子用封止剤を塗布したガラス基板を貼り合わせた。この時、ガラス基板端面から2mm、4mm、6mmの位置に蒸着したCaが存在するように貼り合わせた。次いで、365nmの紫外線を3000mJ/cm照射し、更に、80℃で30分加熱することで封止剤を硬化させ、Ca-TEST基板を作製した。得られたCa-TEST基板を、85℃、85%RHの高温高湿条件に暴露し、時間毎の水分の浸入距離をCaの消失から観測した。
Ca-TESTの結果、水分の浸入距離が6mmに達するまでの時間が1000時間以上であったものを「◎」、500時間以上1000時間未満であった場合を「○」、100時間以上500時間未満であった場合を「△」、100時間未満であった場合を「×」として硬化物のバリア性を評価した。
(4)パネルの接着状態
(有機発光材料層を有する積層体が配置された基板の作製)
ガラス基板(長さ25mm、幅25mm、厚さ0.7mm)にITO電極を1000Åの厚さで成膜したものを基板とした。上記基板をアセトン、アルカリ水溶液、イオン交換水、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナ(日本レーザー電子社製、「NL-UV253」)にて直前処理を行った。
次に、この基板を真空蒸着装置の基板フォルダに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg、他の異なる素焼き坩堝にトリス(8-キノリノラト)アルミニウム(Alq)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alqの入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を別の真空蒸着装置に移し、この真空蒸着装置内のタングステン製抵抗加熱ボートにフッ化リチウム200mgを、別のタングステン製ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。
(無機材料膜Aによる被覆)
得られた積層体が配置された基板の、該積層体全体を覆うように、13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Aを形成した。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量を10sccm及び200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Aの厚さは、約1μmであった。
(樹脂保護膜の形成)
真空装置内に、無機材料膜Aで被覆された積層体が配置された基板を設置し、真空装置の中に設置された加熱ボートに実施例及び比較例で得られた各有機EL表示素子用封止剤を0.5g入れ、10Paに減圧して、積層体を含む11mm×11mmの四角形の部分に、有機EL表示素子用封止剤を200℃にて加熱し、厚さが0.5μmになるように真空蒸着を行った。その後、真空環境下で高圧水銀灯を用いて波長365nmの紫外線を照射量が3000mJ/cmとなるように照射して、有機EL表示素子用封止剤を硬化させて樹脂保護膜を形成した。
(無機材料膜Bによる被覆)
樹脂保護膜を形成した後、該樹脂保護膜の全体を覆うように、12mm×12mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Bを形成して有機EL表示素子を得た。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量をSiHガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Bの厚さは、約1μmであった。
(パネルの接着状態の観察)
得られた有機EL表示素子を、85℃、85%RHの環境下に500時間暴露した後のパネルの接着状態を目視にて観察した。その結果、パネル剥がれが全く無く、封止剤への差し込みも見られなかった場合を「◎」、封止剤への差し込みは若干確認されるものの、パネル剥がれがなかった場合を「○」、パネル剥がれが一部確認された場合を「△」、パネル剥がれが大部分から確認された場合を「×」としてパネルの接着状態を評価した。
(5)有機EL表示素子の信頼性
上記「(3)パネルの接着状態」と同様にして得られた有機EL表示素子を、85℃、85%RHの環境下に500時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。ダークスポットや周辺消光が無く均一に発光した場合を「○」、僅かでもダークスポットや周辺消光が認められた場合を「×」として有機EL表示素子の信頼性を評価した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
本発明によれば、バリア性に優れ、かつ、パネル剥がれを抑制できる有機エレクトロルミネッセンス表示素子用封止剤を提供することができる。

Claims (3)

  1. カチオン重合性化合物と、光カチオン重合開始剤と、吸水性フィラーとを含有し、
    前記カチオン重合性化合物は、ビスフェノールF型エポキシ樹脂及び柔軟性骨格を有するエポキシ樹脂を含有し、
    前記吸水性フィラーは、酸化カルシウム及び/又は酸化マグネシウムであり、かつ、総表面積が前記カチオン重合性化合物100g当たり10~100mである
    ことを特徴とする有機エレクトロルミネッセンス表示素子用封止剤。
  2. 柔軟性骨格を有するエポキシ樹脂は、柔軟性骨格として下記式(1-1)で表される構造、下記式(1-2)で表される構造、下記式(1-3)で表される構造、又は、下記式(1-4)で表される構造を有することを特徴とする請求項1記載の有機エレクトロルミネッセンス表示素子用封止剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)中、mは、1~15の整数である。式(1-2)中、nは、1~5の整数である。式(1-3)中、R及びRは、炭素数1~3の炭化水素基であり、それぞれ同一であってもよいし、異なっていてもよい。
  3. 吸水性フィラーとして、比表面積が10.0m/g未満の酸化カルシウムを含有することを特徴とする請求項1又は2記載の有機エレクトロルミネッセンス表示素子用封止剤。
     
PCT/JP2016/053198 2015-02-13 2016-02-03 有機エレクトロルミネッセンス表示素子用封止剤 WO2016129472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167034320A KR101717035B1 (ko) 2015-02-13 2016-02-03 유기 일렉트로루미네선스 표시 소자용 봉지제
CN201680001611.5A CN106459374B (zh) 2015-02-13 2016-02-03 有机电致发光显示元件用密封剂
JP2016507316A JP5966113B1 (ja) 2015-02-13 2016-02-03 有機エレクトロルミネッセンス表示素子用封止剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026739 2015-02-13
JP2015-026739 2015-11-30

Publications (1)

Publication Number Publication Date
WO2016129472A1 true WO2016129472A1 (ja) 2016-08-18

Family

ID=56614642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053198 WO2016129472A1 (ja) 2015-02-13 2016-02-03 有機エレクトロルミネッセンス表示素子用封止剤

Country Status (5)

Country Link
JP (1) JP5966113B1 (ja)
KR (1) KR101717035B1 (ja)
CN (1) CN106459374B (ja)
TW (1) TWI677530B (ja)
WO (1) WO2016129472A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095679A (ja) * 2016-12-08 2018-06-21 三井化学株式会社 シート状シール材、表示素子シール材、有機el素子用面封止材、有機elデバイス、および有機elデバイスの製造方法
CN108781491A (zh) * 2016-09-16 2018-11-09 积水化学工业株式会社 有机电致发光显示元件用密封剂
CN108886849A (zh) * 2016-10-19 2018-11-23 积水化学工业株式会社 有机el显示元件用密封剂以及有机el显示元件用密封剂的制造方法
CN110268802A (zh) * 2017-06-28 2019-09-20 积水化学工业株式会社 有机el显示元件用面内密封剂和有机el显示元件用密封剂套件
WO2022024839A1 (ja) * 2020-07-27 2022-02-03 積水化学工業株式会社 有機el表示素子用封止剤

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106953A1 (ja) * 2017-11-30 2019-06-06 京セラ株式会社 樹脂シート、半導体装置及び半導体装置の製造方法
US11479664B2 (en) * 2017-12-18 2022-10-25 Lg Chem, Ltd. Encapsulating composition
CN111837457A (zh) * 2018-04-20 2020-10-27 积水化学工业株式会社 有机el显示元件用密封剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278129A (ja) * 1994-04-08 1995-10-24 Takeda Chem Ind Ltd 新規な低粘度線状グリシジルエーテル類、その製造法及びそれを含むエポキシ樹脂組成物
JPH09143445A (ja) * 1995-11-21 1997-06-03 Hitachi Chem Co Ltd 回路用接続部材
JP2009259656A (ja) * 2008-04-18 2009-11-05 Toyo Ink Mfg Co Ltd 封止剤
WO2010084938A1 (ja) * 2009-01-23 2010-07-29 味の素株式会社 樹脂組成物
JP2012077175A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd 硬化性樹脂組成物及びその硬化物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685845B1 (ko) 2005-10-21 2007-02-22 삼성에스디아이 주식회사 유기전계 발광표시장치 및 그 제조방법
JP5044326B2 (ja) 2007-08-28 2012-10-10 パナソニック株式会社 エポキシ樹脂組成物及び樹脂封止装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278129A (ja) * 1994-04-08 1995-10-24 Takeda Chem Ind Ltd 新規な低粘度線状グリシジルエーテル類、その製造法及びそれを含むエポキシ樹脂組成物
JPH09143445A (ja) * 1995-11-21 1997-06-03 Hitachi Chem Co Ltd 回路用接続部材
JP2009259656A (ja) * 2008-04-18 2009-11-05 Toyo Ink Mfg Co Ltd 封止剤
WO2010084938A1 (ja) * 2009-01-23 2010-07-29 味の素株式会社 樹脂組成物
JP2012077175A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd 硬化性樹脂組成物及びその硬化物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781491A (zh) * 2016-09-16 2018-11-09 积水化学工业株式会社 有机电致发光显示元件用密封剂
CN108886849A (zh) * 2016-10-19 2018-11-23 积水化学工业株式会社 有机el显示元件用密封剂以及有机el显示元件用密封剂的制造方法
JP2018095679A (ja) * 2016-12-08 2018-06-21 三井化学株式会社 シート状シール材、表示素子シール材、有機el素子用面封止材、有機elデバイス、および有機elデバイスの製造方法
CN110268802A (zh) * 2017-06-28 2019-09-20 积水化学工业株式会社 有机el显示元件用面内密封剂和有机el显示元件用密封剂套件
WO2022024839A1 (ja) * 2020-07-27 2022-02-03 積水化学工業株式会社 有機el表示素子用封止剤

Also Published As

Publication number Publication date
CN106459374B (zh) 2020-10-13
KR101717035B1 (ko) 2017-03-15
CN106459374A (zh) 2017-02-22
JPWO2016129472A1 (ja) 2017-04-27
TWI677530B (zh) 2019-11-21
TW201639919A (zh) 2016-11-16
JP5966113B1 (ja) 2016-08-10
KR20160147285A (ko) 2016-12-22

Similar Documents

Publication Publication Date Title
JP5966113B1 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP7377295B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP2020024938A (ja) 硬化性組成物及び有機エレクトロルミネッセンス表示素子用封止剤
WO2015068454A1 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP5799177B2 (ja) 光後硬化性樹脂組成物
JP6527390B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP2019147963A (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP6062107B1 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
KR102340967B1 (ko) 유기 일렉트로 루미네선스 표시 소자용 봉지제
JP6966454B2 (ja) 有機el表示素子用面内封止剤及び有機el表示素子用封止剤セット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507316

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034320

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749116

Country of ref document: EP

Kind code of ref document: A1