WO2016129214A1 - 高強度溶融亜鉛めっき鋼板及びその製造方法 - Google Patents

高強度溶融亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2016129214A1
WO2016129214A1 PCT/JP2016/000304 JP2016000304W WO2016129214A1 WO 2016129214 A1 WO2016129214 A1 WO 2016129214A1 JP 2016000304 W JP2016000304 W JP 2016000304W WO 2016129214 A1 WO2016129214 A1 WO 2016129214A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
phase
dip galvanized
tempered martensite
Prior art date
Application number
PCT/JP2016/000304
Other languages
English (en)
French (fr)
Inventor
長谷川 寛
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201680009479.2A priority Critical patent/CN107208236B/zh
Priority to MX2017010340A priority patent/MX2017010340A/es
Priority to KR1020177021893A priority patent/KR101990717B1/ko
Priority to EP16748862.6A priority patent/EP3257962B1/en
Priority to US15/550,172 priority patent/US10494689B2/en
Priority to JP2016529477A priority patent/JP6057027B1/ja
Publication of WO2016129214A1 publication Critical patent/WO2016129214A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet and a method for producing the same.
  • Patent Document 3 discloses a technique related to a high-strength hot-dip galvanized steel sheet having excellent stretch flangeability.
  • Patent Document 1 and Patent Document 2 simply improve the bending workability in terms of cracking, and do not consider the shape after molding, the appearance of wrinkles, and the like.
  • bending a high-strength hot-dip galvanized steel sheet there is a problem that streaks appear on the bending ridge line due to segregation of alloy elements and the like, and paintability and appearance are impaired.
  • Such a problem is particularly observed in a high-strength hot-dip galvanized steel sheet having a high alloying element content.
  • the technique described in Patent Document 3 does not achieve both bending workability and stretch flangeability, and there is room for improvement.
  • the present invention has been completed in view of the above circumstances. It is an object of the present invention to provide a high-strength hot-dip galvanized steel sheet excellent in stretch flangeability and bending workability and a method for producing the same.
  • the present inventors have conducted extensive research from many viewpoints such as the composition of steel sheets, the structure and the manufacturing method, and as a result, have found the following.
  • the average grain size of the tempered martensite phase is 20 ⁇ m or less, the tempering Variation of Vickers hardness of the martensitic phase is 20 or less in standard deviation, the tempered high number density of the short axis length of not less than 0.05 ⁇ m among carbides martensite phase is 3 ⁇ 10 6 cells / mm 2 or less Strength hot dip galvanized steel sheet.
  • the slab having the component composition according to any one of [1] to [4] is cooled so that the total residence time at 600 to 700 ° C. is 10 seconds or less after finishing rolling.
  • High strength hot dip galvanizing performed in the order described Method of manufacturing the plate.
  • the “high-strength hot-dip galvanized steel sheet” has a tensile strength (TS) of 980 MPa or more and includes not only hot-dip galvanized steel sheets but also galvannealed steel sheets. Moreover, when it is necessary to distinguish between a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet, these steel sheets are described separately.
  • TS tensile strength
  • a high-strength hot-dip galvanized steel sheet excellent in stretch flangeability and bending workability can be obtained.
  • the high-strength hot-dip galvanized steel sheet of the present invention can achieve a good appearance after bending.
  • the high-strength hot-dip galvanized steel sheet of the present invention is suitable as a material for automobile parts.
  • Component composition C 0.07 to 0.25% C is an element necessary for generating a martensite phase and increasing TS.
  • the C content is less than 0.07%, the strength of the martensite phase is low, and TS: 980 MPa or more cannot be obtained.
  • the amount of C exceeds 0.25%, bending workability deteriorates. Therefore, the C content is 0.07 to 0.25%.
  • the C amount is preferably 0.08 or more, and more preferably 0.10% or more.
  • the upper limit side of the C amount is preferably 0.23% or less.
  • Si 0.01 to 3.00%
  • Si is an element effective for increasing TS by solid solution strengthening of steel. In order to obtain such effects, the Si amount needs to be 0.01% or more. On the other hand, when the Si content increases, the steel becomes brittle and bending workability deteriorates. In the present invention, an Si amount of up to 3.00% is acceptable. Therefore, the Si content is 0.01 to 3.00%.
  • the amount of Si is preferably 0.01 to 1.80%, more preferably 0.01 to 1.00%, and still more preferably 0.01 to 0.70%.
  • Mn 1.5 to 4.0%
  • Mn is an element that raises TS by solid-solution strengthening steel, suppresses ferrite transformation and bainite transformation, generates a martensite phase, and raises TS. In order to sufficiently obtain such an effect, it is necessary to make the amount of Mn 1.5% or more. On the other hand, if the amount of Mn exceeds 4.0%, the steel becomes brittle and bending workability deteriorates. Therefore, the amount of Mn is 1.5 to 4.0%.
  • the lower limit side is preferably 1.8% or more.
  • the upper limit side is preferably 3.8% or less, more preferably 3.5% or less.
  • P 0.100% or less P is desirably reduced as much as possible because steel becomes brittle due to grain boundary segregation and bending workability deteriorates.
  • the amount of P is made 0.100% or less from the viewpoint of manufacturing cost.
  • it is 0.050% or less, More preferably, it is 0.025% or less, More preferably, it is 0.015% or less.
  • the lower limit is not particularly specified.
  • S 0.02% or less S is present as inclusions such as MnS and degrades the bending workability. Therefore, the amount is preferably reduced as much as possible. In the present invention, the amount of S is allowed up to 0.02%. it can. Therefore, the amount of S is 0.02% or less. Although there is no problem in principle even if S is not contained at all, the lower limit is not particularly defined. However, if it is less than 0.0005%, the production efficiency is lowered, so the amount of S is preferably 0.0005% or more.
  • Al acts as a deoxidizing agent and is preferably contained in the deoxidizing step. In order to obtain such effects, the Al amount needs to be 0.01% or more. On the other hand, if the Al content exceeds 1.50%, excessive formation of a ferrite phase is caused during annealing, and TS decreases. Therefore, the Al content is 0.01 to 1.50%.
  • the amount of Al is preferably 0.01 to 0.70%, more preferably 0.01 to 0.10%.
  • N 0.001 to 0.008%
  • N exceeds 0.008%
  • TiN becomes coarse, and the ferrite phase generation with this as a nucleus is promoted, and the steel sheet structure of the present invention cannot be obtained.
  • nitrides such as AlN and TiN become finer, the effect of suppressing the growth of crystal grains in the ferrite phase and martensite phase is reduced, and the crystal grains become coarse to obtain the steel sheet structure of the present invention. I can't. Therefore, the N content is 0.001 to 0.008%.
  • Ti 0.003 to 0.200%
  • Ti is an element effective in suppressing recrystallization of the ferrite phase during annealing and refining the crystal grains of the tempered martensite phase in the final structure. Moreover, it is an element effective in fixing N and suppressing the generation of BN and extracting the effect of B. In order to obtain such an effect, the Ti amount needs to be 0.003% or more. On the other hand, if the Ti content exceeds 0.200%, coarse carbonitrides (including TiCN and TiC) are generated, the solid solution C content in the steel decreases, and TS decreases. Therefore, the Ti amount is set to 0.003 to 0.200%.
  • the lower limit side is preferably 0.010% or more.
  • the upper limit side is preferably 0.080% or less, more preferably 0.060% or less, and still more preferably 0.030% or less.
  • B 0.0003 to 0.0050%
  • B is an element effective for uniformly suppressing nucleation of a ferrite phase and a bainite phase from a grain boundary and obtaining a tempered martensite phase with small hardness variation.
  • the B content needs to be 0.0003% or more.
  • the B amount is set to 0.0003 to 0.0050%.
  • the lower limit side is preferably 0.0005% or more.
  • the upper limit side is preferably 0.0035% or less, more preferably 0.0020% or less.
  • Ti> 4N Ti is an element effective for fixing N and suppressing the generation of BN to bring out the effect of B. In order to obtain such an effect sufficiently, the contents of Ti and N need to satisfy Ti> 4N.
  • impurity elements such as Zr, Mg, La, Ce, Sn, and Sb may be included up to a total of 0.002%.
  • At least one element selected from 2.00%, such as Cr, Mo, V, Ni, and Cu, is an element that generates a low-temperature transformation phase such as a martensite phase and is effective in increasing the strength.
  • the content of at least one element selected from Cr, Mo, V, Ni, and Cu is preferably 0.01% or more.
  • the content of each of Cr, Mo, V, Ni, and Cu exceeds 2.00%, the effect is saturated and the cost is increased.
  • the contents of Cr, Mo, V, Ni, and Cu are each preferably 0.01 to 2.00%. More preferably, Cr is 0.01 to 1.50%, Mo is 0.01 to 0.80%, V is 0.01 to 0.80%, Ni is 0.01 to 1.50%, and Cu is 0. 0.01 to 0.50%.
  • Nb 0.003 to 0.200%
  • Nb is an element effective in suppressing recrystallization of the ferrite phase during annealing and refining the crystal grains of the tempered martensite phase in the final structure.
  • the Nb content is preferably set to 0.003% or more.
  • coarse carbonitrides including NbCN and NbC
  • the Nb content is preferably 0.003 to 0.200%.
  • the Nb amount is more preferably 0.005 to 0.080%, and still more preferably 0.005 to 0.060%.
  • At least one element Ca or REM selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% is effective in improving bending workability by controlling the form of sulfide.
  • the content of at least one element selected from Ca and REM is preferably 0.001% or more.
  • the Ca and REM contents are preferably 0.001% to 0.005%.
  • the area ratio of steel sheet structure ferrite phase 70% or less (including 0%) If the area ratio of the ferrite phase exceeds 70%, TS: 980 MPa or more and bending workability and stretch flangeability are difficult to be arranged. Therefore, the area ratio of the ferrite phase is 70% or less.
  • TS In order to obtain 1180 MPa or more, the area ratio of the ferrite phase is preferably 60% or less, more preferably 20% or less, and further preferably 8% or less.
  • Total area ratio of bainite phase and tempered bainite phase 20% or less (including 0%) If the area ratio of the bainite phase and the tempered bainite phase exceeds 20% in total, the bending workability and stretch flangeability deteriorate. Therefore, the total area ratio of the bainite phase and the tempered bainite phase is 20% or less.
  • the bainite phase in this invention consists of an upper bainite phase and a lower bainite phase, and a tempered bainite phase is a tempered lower bainite phase.
  • the area ratio of the tempered martensite phase is 25% or more.
  • the area ratio of the tempered martensite phase is preferably 40% or more, more preferably 80% or more, and further preferably 90% or more.
  • the tempered martensite phase is a martensite phase having carbides.
  • the tempered martensite phase includes an autotempered martensite phase.
  • the area ratio of residual austenite phase is set to less than 3%.
  • the area ratio of the residual austenite phase is preferably less than 2%, more preferably less than 1%.
  • the volume ratio of the retained austenite phase is determined by the method described later.
  • the volume ratio value is treated as an area ratio value.
  • Average crystal grain size of tempered martensite phase 20 ⁇ m or less
  • the average crystal grain size of the tempered martensite phase exceeds 20 ⁇ m, bending workability deteriorates. Therefore, the average crystal grain size of the tempered martensite phase is 20 ⁇ m or less.
  • the average crystal grain size of the tempered martensite phase is preferably 15 ⁇ m or less.
  • Standard deviation of Vickers hardness variation of tempered martensite phase 20 or less
  • the standard deviation of the Vickers hardness variation of the tempered martensite phase is set to 20 or less.
  • the standard deviation is preferably 15 or less.
  • the Vickers hardness of the tempered martensite phase in the present invention is preferably 300 to 600.
  • the steel sheet structure of the present invention may be a tempered martensite phase single phase.
  • the steel sheet structure of the present invention may contain a martensite phase or a pearlite phase as a phase other than the ferrite phase, the tempered martensite phase, the bainite phase, the tempered bainite phase, and the retained austenite phase.
  • the total area ratio is preferably less than 2%, more preferably less than 1%.
  • the area ratio of the ferrite phase, tempered martensite phase, bainite phase, tempered bainite phase, etc. in the steel sheet structure is the ratio of the area of each phase to the observation area in the structure observation.
  • These area ratios are obtained by cutting a sample from a steel sheet excluding the galvanized layer (alloyed galvanized layer if alloyed), corroding the plate thickness section parallel to the rolling direction, and corroding with 3% nital.
  • the 1/4 position from the surface of the steel plate is photographed by 3 fields of view with a scanning electron microscope (SEM) at a magnification of 1500 times, and analysis software (for example, Image manufactured by Media Cybernetics, Inc.) is obtained from the obtained image data.
  • SEM scanning electron microscope
  • the ferrite phase is black
  • the martensite phase is white without carbides
  • the tempered martensite phase is light gray including carbides with no orientation
  • the tempered lower bainite phase is dark gray with carbides with orientation.
  • the upper bainite phase can be distinguished as black with carbides or island-like white structures
  • the lower bainite phase as light gray with carbides with uniform orientation
  • the pearlite phase as black and white layers.
  • the tempered martensite phase may contain carbides of various sizes. In the present invention, the number density of specific carbides in the tempered martensite phase is regulated by the method described later.
  • the average crystal grain size of the tempered martensite phase is obtained by dividing the total area of the tempered martensite phases in the three fields by the number of tempered martensite phases to obtain the average area of the image data obtained by calculating the area ratio. The square is taken as the average crystal grain size.
  • the volume ratio of the retained austenite phase in the 1 ⁇ 4 position cross section from the surface of the steel sheet in the thickness direction is determined as follows. That is, after grinding from the surface to 1/4 position in the plate thickness direction of the steel plate and further polishing by 0.1 mm by chemical polishing, using the K ⁇ ray of Mo with an X-ray diffractometer, the fcc iron (austenite) The integrated reflection intensity of the (200) plane, the (220) plane, the (311) plane, and the (200 plane), (211) plane, and (220) plane of bcc iron (ferrite) is measured. The volume ratio obtained from the intensity ratio of the integrated reflection intensity from each surface of fcc iron (austenite) to the integrated reflection intensity from each surface of bcc iron (ferrite) is defined as the volume ratio of the residual austenite phase.
  • the Vickers hardness of the tempered martensite phase is measured as follows. A test piece having a cross section parallel to the rolling direction and having a width of 10 mm and a length (rolling direction) of 15 mm was sampled, and the thickness of the cross section from the surface in the plate thickness direction of the steel sheet was 1 ⁇ 4. A tempered martensite phase (including an autotempered martensite phase) is randomly selected at the position and Vickers hardness measurement is performed. The load is 20 points and 20 points are measured.
  • Equation 1 the standard deviation ⁇ is obtained from the equation shown in Equation 1 below for 18 points excluding the maximum and minimum values of the measured Vickers hardness.
  • Carbides in the tempered martensite phase were photographed at 10 magnifications with a magnification of 10,000 times by SEM in the same manner as the area ratio measurement method for the tempered martensite phase and the like, and the short axis length in the obtained image data was 0.05 ⁇ m or more.
  • the number of carbides is measured, and the number density is obtained by dividing the average value by the visual field area.
  • the short axis length of the carbide is obtained by obtaining the area of each island-like carbide, then obtaining the maximum length of the island-like carbide, and calculating the area of the island-like carbide by the maximum length of the island-like carbide. Find by dividing by.
  • the high-strength hot-dip galvanized steel sheet of the present invention is cooled, for example, on a slab having the above component composition so that the total residence time at 600 to 700 ° C. is 10 seconds or less after finish rolling. And a hot rolling step of winding at a winding temperature of less than 600 ° C., a cold rolling step of cold rolling at a rolling reduction of over 20%, and heating to an annealing temperature of 750 to 950 ° C. at an average heating rate of 15 ° C./s or less.
  • the residence time at 600 to 700 ° C. is set to 10 seconds or less, and further the winding is performed at a temperature lower than 600 ° C. to maintain the solid solution state of B.
  • the austenite phase that is, the tempered martensite phase in the final structure is refined by heating at 15 ° C. or less and holding at 750 to 950 ° C.
  • the solid phase is suppressed by solid solution B and cooling at 3 ° C./s or higher to maintain the fine grains, and the Ms point or lower is set to 100 ° C./s or higher, thereby reducing the martensite phase, that is, in the final structure.
  • the hardness of the tempered martensite phase can be made uniform.
  • tempering at 350 ° C. or lower eases the strain of the martensite phase to improve stretch flangeability, and is excellent in making a tempered martensite phase in which fine carbides are generated in the martensite phase. Both bendability can be achieved. This will be described in detail below.
  • Hot rolling process Total residence time at 600 to 700 ° C: 10 seconds or less After finish rolling, if the residence time of the steel sheet in the temperature range of 600 to 700 ° C exceeds 10 seconds, B such as B carbide is added. The compound containing is generated, the amount of dissolved B in the steel is decreased, the effect of B during annealing, that is, the effect of suppressing the bainite phase area ratio in the microstructure is reduced, and the steel sheet structure of the present invention cannot be obtained. . Therefore, the total residence time at 600 to 700 ° C. is 10 seconds or less. The total residence time at 600 to 700 ° C. is preferably 8 seconds or less. In addition, temperature is the temperature of the steel plate surface.
  • Winding temperature less than 600 ° C.
  • the winding temperature is 600 ° C. or higher, a compound containing B such as B carbide is generated, the amount of dissolved B in the steel decreases, and the effect of B during annealing decreases.
  • the steel sheet structure of the invention cannot be obtained. Therefore, the coiling temperature is less than 600 ° C.
  • the lower limit is not particularly defined, but the winding temperature is preferably about 400 ° C. or more from the viewpoint of temperature controllability.
  • the slab is preferably produced by a continuous casting method in order to prevent macro segregation, but can also be produced by an ingot-making method or a thin slab casting method.
  • To hot-roll the slab the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done. Alternatively, an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied.
  • heating a slab it is preferable to heat to 1100 degreeC or more in order to dissolve a carbide
  • the heating temperature of the slab is preferably 1300 ° C. or lower.
  • the slab temperature is the temperature of the slab surface.
  • the rough bar after rough rolling can be heated from the viewpoint of preventing troubles during rolling even if the heating temperature of the slab is lowered. Moreover, what is called a continuous rolling process which joins rough bars and performs finish rolling continuously can be applied.
  • finish rolling is completed at less than the Ar 3 transformation point, anisotropy is increased and workability after cold rolling / annealing may be lowered. Therefore, the finish rolling is preferably performed at a finishing temperature equal to or higher than the Ar 3 transformation point. Further, in order to reduce the rolling load and make the shape and material uniform, it is preferable to perform lubrication rolling with a friction coefficient of 0.10 to 0.25 in all passes or a part of the finishing rolling.
  • the steel sheet after winding is usually subjected to cold rolling, annealing, hot dip galvanizing, etc. after removing the scale by pickling.
  • Cold rolling reduction When the super rolling reduction is 20% or less, recrystallization does not occur during annealing and the stretched structure remains, and the steel sheet structure of the present invention cannot be obtained. Therefore, the rolling reduction of cold rolling is over 20%.
  • the rolling reduction of cold rolling is preferably 30% or more.
  • the upper limit is not particularly defined, but a rolling reduction of about 90% or less is preferable from the viewpoint of shape stability and the like.
  • Annealing process Average heating rate up to annealing temperature: from 750 to 950 ° C. at 15 ° C./s or less, when the heating average heating rate exceeds 15 ° C./s, suddenly starts from the unrecrystallized structure in which large rolling strain has accumulated The reverse transformation progresses and the grains grow to easily form a coarse austenite phase, that is, a coarse tempered martensite phase in the final structure, and the steel sheet structure of the present invention cannot be obtained. Therefore, an average heating rate shall be 15 degrees C / s or less. The average heating rate is preferably 8 ° C./s or less.
  • the lower limit is not particularly specified, but if it is less than 1 ° C./s, coarse particles may be produced, and therefore, the lower limit is preferably 1 ° C./s or more.
  • the average heating rate is a value obtained by dividing the temperature difference of the steel sheet from the start of heating to the annealing temperature by the time required.
  • “s” in the unit of heating rate and cooling rate means “second”.
  • the annealing temperature is 750 to 950 ° C.
  • Holding time at annealing temperature When the holding time at 750 to 950 ° C., which is an annealing temperature of 30 seconds or more, is less than 30 seconds, the austenite phase is not sufficiently generated, and the steel sheet structure of the present invention cannot be obtained. Accordingly, the holding time at the annealing temperature is 30 seconds or more. Although the upper limit is not particularly defined, a holding time of about 1000 seconds or less is preferable from the viewpoint of production efficiency.
  • the average cooling rate is 3 ° C./s or more.
  • the average cooling rate is preferably 5 ° C./s or more.
  • the upper limit side of the average cooling rate is preferably 50 ° C./s or less, more preferably 40 ° C./s or less.
  • the average cooling rate is a value obtained by dividing the temperature difference between the annealing temperature of the steel sheet and the galvanizing bath temperature by the time required from the end of the annealing to the immersion of the galvanizing bath. As long as the above cooling rate is satisfied, cooling and heating may be performed in the range of Ms to 550 ° C. during the cooling step.
  • Hot dip galvanizing is performed on the steel sheet cooled from the annealing temperature in the primary cooling step.
  • the conditions for the hot dip galvanizing treatment are not particularly limited.
  • the steel sheet subjected to the above treatment is dipped in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower, and thereafter the hot dip galvanizing treatment is performed by adjusting the amount of plating applied by gas wiping or the like.
  • the hot dip galvanizing treatment it is preferable to use a galvanizing bath having an Al content of 0.08 to 0.25% by mass.
  • Average cooling rate 1 ° C./s or more and cooling to Ms point or more
  • slow cooling at an average cooling rate of 1 ° C./s or more is performed. If the average cooling rate of the slow cooling is less than 1 ° C./s, an upper bainite phase or a lower bainite phase is generated during cooling, and the steel sheet structure of the present invention cannot be obtained. Therefore, the average cooling rate of slow cooling is 1 ° C./s or more.
  • the average cooling rate is a value obtained by dividing the difference between the steel plate temperature after galvanization and the steel plate temperature at the end of cooling by the time required for cooling. If the slow cooling rate is too high, temperature variations are likely to occur, and hardness variations may be caused. Therefore, it is preferably 50 ° C./s or less.
  • Cooling end temperature When the slow cooling end temperature is equal to or higher than the Ms point and lower than the Ms point, an auto-tempered martensite phase, a lower bainite phase, and coarse carbides having large hardness variations are generated, and the steel sheet structure of the present invention is obtained. Absent. Therefore, the slow cooling end temperature is set to the Ms point or higher.
  • the slow cooling end temperature is preferably Ms point to 500 ° C. In the present invention, the Ms point is obtained from a change in linear expansion.
  • Average cooling rate After cooling slowly to 100 ° C. or less at 100 ° C./s or more, rapid cooling to 100 ° C. or less at an average cooling rate of 100 ° C./s or more.
  • the average cooling rate to 100 ° C. or less is less than 100 ° C./s, an auto-tempered martensite phase or a lower bainite phase having a large hardness variation is generated, and the steel sheet structure of the present invention cannot be obtained. Therefore, the average cooling rate to 100 ° C. or lower is set to 100 ° C./s or higher.
  • the average cooling rate is a value obtained by dividing the difference between the steel plate temperature at the end of the slow cooling and the steel plate temperature at the end of the secondary cooling by the time required.
  • Secondary cooling end temperature 100 ° C. or less
  • the rapid cooling end temperature is set to 100 ° C. or less. Preferably, it shall be 60 degrees C or less.
  • Tempering step Reheating temperature 350 ° C. or less
  • the reheating temperature exceeds 350 ° C., carbides in the tempered martensite phase become coarse and the steel sheet structure of the present invention cannot be obtained. Therefore, the reheating temperature is 350 ° C. or less.
  • the minimum of reheating temperature is not specifically limited, 80 degreeC or more is preferable.
  • Holding time at reheating temperature 1 second or more If the holding time at reheating temperature is less than 1 second, tempering is insufficient and stretch flangeability is deteriorated. Therefore, the holding time at the reheating temperature is 1 second or longer.
  • the upper limit of the holding time is not particularly limited, but is preferably 10 days or less.
  • the high-strength hot-dip galvanized steel sheet of the present invention can be subjected to various coating treatments such as resin and oil coating.
  • the steel sheet after the alloying treatment of the galvanized layer can be subjected to temper rolling for the purpose of shape correction, adjustment of surface roughness, and the like.
  • the thickness of the high-strength hot-dip galvanized steel sheet of the present invention is not particularly limited, but is preferably 0.4 to 3.0 mm. Moreover, although TS of the hot dip galvanized steel sheet of the present invention is 980 MPa or more, it is preferable that TS of the steel sheet is 1180 MPa or more.
  • the use of the high-strength hot-dip galvanized steel sheet of the present invention is not particularly limited. Since it can contribute to the weight reduction of a motor vehicle and the performance enhancement of a motor vehicle body, the use for a motor vehicle part is preferable.
  • Steel having the component composition shown in Table 1 (the balance is Fe and inevitable impurities) was used, and hot dip galvanized steel sheets were produced under the conditions shown in Table 2. Specifically, steel having the composition shown in Table 1 was melted in a vacuum melting furnace and rolled into a steel slab. These steel slabs were heated to 1200 ° C. and then subjected to rough rolling, finish rolling, cooling and winding to obtain hot rolled steel sheets. Subsequently, it cold-rolled to plate
  • Annealing is performed in an infrared image furnace simulating a continuous hot dip galvanizing line under the conditions shown in Table 2 to produce hot dip galvanized steel sheet (GI) and galvannealed steel sheet (GA) (steel sheets No. 1-31). did.
  • the hot dip galvanized steel sheet was produced by immersing the steel sheet in a plating bath at 460 ° C. to form a plating layer having an adhesion amount of 35 to 45 g / m 2 .
  • the alloyed hot-dip galvanized steel sheet was prepared by performing an alloying treatment within the range of 460 to 600 ° C. after the formation of the plating layer by the above procedure.
  • GI and GA are referred to as hot dip galvanized steel sheets.
  • ⁇ Tensile property test> A JIS No. 5 tensile test piece (JIS Z2201) was taken from the produced hot-dip galvanized steel sheet in a direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z2241 with a strain rate of 10 ⁇ 3 / s. TS was determined. A sample having a TS of 980 MPa or more was regarded as acceptable, and a sample having a TS of 1180 MPa or more was evaluated as better.
  • ⁇ Bending workability test> A strip-shaped test piece having a width of 35 mm and a length of 100 mm with the direction parallel to the rolling direction as the bending test axis direction was taken from the produced hot-dip galvanized steel sheet and subjected to a bending test.
  • a 90 ° V bending test was conducted at a stroke speed of 10 mm / s, an indentation load of 10 ton, a pressing holding time of 5 seconds, a bending radius R of 2.0 mm, and the ridgeline of the bending apex was observed with a 10 ⁇ magnifier.
  • the streaky undulations were evaluated in five stages as follows, and 3 or more were evaluated as acceptable. In the case of a score of 3 or more, it was evaluated as better as the score increased.
  • Evaluation of cracks is “1” for cracks of 5 mm or more, “2” for cracks of 1 mm or more and less than 5 mm, and “0” for cracks of 0.5 mm or more and less than 1 mm. “3”, “4” indicates that a crack of 0.2 mm or more and less than 0.5 mm was observed, and “5” indicates that a crack of less than 0.2 mm was observed or no crack.
  • a TS of 980 MPa or more, particularly 1180 MPa or more can be obtained while being excellent in stretch flangeability and bending workability. Therefore, according to the invention example, a high-strength hot-dip galvanized steel sheet excellent in stretch flangeability and bending workability can be obtained, which contributes to reducing the weight of an automobile and greatly contributing to improving the performance of an automobile body. Play.
  • a hot-dip galvanized steel sheet having a strength of TS of 980 MPa or more, particularly 1180 MPa or more can be obtained while being excellent in stretch flangeability and bending workability.
  • the high-strength hot-dip galvanized steel sheet of the present invention when used for automobile parts, it contributes to weight reduction of automobiles and can greatly contribute to performance enhancement of automobile bodies.

Abstract

質量%で、C:0.07~0.25%、Si:0.01~3.00%、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:0.01~1.50%、N:0.001~0.008%、Ti:0.003~0.200%、B:0.0003~0.0050%を含み、かつTi>4Nを満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、板厚方向において地鉄鋼板表面から1/4位置断面における面積率で、フェライト相が70%以下(0%を含む)、ベイナイト相と焼戻しベイナイト相の合計が20%以下(0%を含む)、焼戻しマルテンサイト相が25%以上、残留オーステナイト相が3%未満(0%を含む)であり、前記焼戻しマルテンサイト相の平均結晶粒径が20μm以下、前記焼戻しマルテンサイト相のビッカース硬度のバラツキが標準偏差で20以下、前記焼戻しマルテンサイト相中の炭化物のうち短軸長が0.05μm以上のものの個数密度が3×10個/mm以下である高強度溶融亜鉛めっき鋼板およびその製造方法。

Description

高強度溶融亜鉛めっき鋼板及びその製造方法
 本発明は、高強度溶融亜鉛めっき鋼板及びその製造方法に関する。
 地球環境保全の観点から、CO排出量を削減すべく、自動車車体の強度を維持しつつ、その軽量化を図り、自動車の燃費を改善することが自動車業界においては常に重要な課題となっている。自動車車体の強度を維持しつつその軽量化を図る上では、自動車部品用素材となる鋼板の高強度化により鋼板を薄肉化することが有効である。一方、鋼板を素材とする自動車部品の多くはプレス加工やバーリング加工等によって成形される。このため、自動車部品用素材として用いられる高強度溶融亜鉛めっき鋼板には所望の強度を有することに加えて、優れた成形性が要求される。
 近年、自動車車体の骨格用素材として高強度溶融亜鉛めっき鋼板の適用が拡大しつつある。高強度溶融亜鉛めっき鋼板の成形にあたっては曲げ主体の加工が施されることが多く、優れた曲げ加工性が必要とされている。また、曲げ主体の加工と伸びフランジ成形との組み合わせにより自動車部品への適用性が多大に向上するため、曲げ加工性と伸びフランジ性を両立した材料が求められている。このような背景の中、曲げ加工性や伸びフランジ性に優れた様々な高強度溶融亜鉛めっき鋼板が開発されている。特許文献1および特許文献2ではワレという観点から曲げ加工性に優れた高強度溶融亜鉛めっき鋼板に関する技術が開示されている。特許文献3では伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板に関する技術が開示されている。
特開2012-12703号公報 特開2010-70843号公報 特開2007-119842号公報
 しかしながら、特許文献1及び特許文献2に記載の技術はいずれもワレという観点における曲げ加工性を単純に向上させただけであり、成形後の形状やシワ等の外観等が考慮されていない。高強度溶融亜鉛めっき鋼板の曲げ加工においては合金元素の偏析等に起因して曲げ稜線にスジ状の起伏が現れ、塗装性や外観等が損なわれるという問題がある。このような問題は特に合金元素含有量の多い高強度溶融亜鉛めっき鋼板に多く認められる。特許文献3に記載の技術は曲げ加工性と伸びフランジ性の両立は図られておらず、改善の余地がある。
 本発明は以上の事情に鑑みて完成したものである。伸びフランジ性及び曲げ加工性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法を提供することを本発明が解決すべき課題とする。
 本発明者らは、上記した課題を達成するため、鋼板の成分組成、組織および製造方法等多くの観点から鋭意研究を重ねた結果、以下のことを見出した。
 C量を0.07~0.25質量%とし、その他の合金元素を適正に調整した上で、焼戻しマルテンサイト相とベイナイト相の面積率、焼戻しマルテンサイト相の硬度等を適切に組み合わせることで、高強度でかつ優れた伸びフランジ性および曲げ加工性を達成できる。本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
 [1]質量%で、C:0.07~0.25%、Si:0.01~3.00%、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:0.01~1.50%、N:0.001~0.008%、Ti:0.003~0.200%、B:0.0003~0.0050%を含み、かつTi>4Nを満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、板厚方向において地鉄鋼板表面から1/4位置断面における面積率で、フェライト相が70%以下(0%を含む)、ベイナイト相と焼戻しベイナイト相の合計が20%以下(0%を含む)、焼戻しマルテンサイト相が25%以上、残留オーステナイト相が3%未満(0%を含む)であり、前記焼戻しマルテンサイト相の平均結晶粒径が20μm以下、前記焼戻しマルテンサイト相のビッカース硬度のバラツキが標準偏差で20以下、前記焼戻しマルテンサイト相中の炭化物のうち短軸長が0.05μm以上のものの個数密度が3×10個/mm以下である高強度溶融亜鉛めっき鋼板。
 [2]さらに、質量%で、Cr:0.01~2.00%、Mo:0.01~2.00%、V:0.01~2.00%、Ni:0.01~2.00%、Cu:0.01~2.00%から選ばれる少なくとも一種の元素を含有する[1]に記載の高強度溶融亜鉛めっき鋼板。
 [3]さらに、質量%で、Nb:0.003~0.200%を含有する[1]または[2]に記載の高強度溶融亜鉛めっき鋼板。
 [4]さらに、質量%で、Ca:0.001~0.005%、REM:0.001~0.005%から選ばれる少なくとも一種の元素を含有する[1]から[3]のいずれかに記載の高強度溶融亜鉛めっき鋼板。
 [5][1]から[4]のいずれかに記載の成分組成を有するスラブに、仕上げ圧延終了後、600~700℃での滞留時間の総計が10秒以下となるように冷却し、巻取り温度600℃未満で巻取る熱間圧延工程と、圧下率20%超で冷間圧延する冷間圧延工程と、平均加熱速度15℃/s以下で焼鈍温度750~950℃まで加熱し、該焼鈍温度で30秒以上保持する焼鈍工程と、平均冷却速度3℃/s以上で冷却する一次冷却工程と、亜鉛めっきを施す亜鉛めっき工程と、平均冷却速度1℃/s以上でMs点以上まで冷却した後、平均冷却速度100℃/s以上で100℃以下まで冷却を施す二次冷却工程と、350℃以下に再加熱し、1秒以上保持する焼戻し工程と、を有し、上記各工程を記載の順序で行う高強度溶融亜鉛めっき鋼板の製造方法。
 [6]前記亜鉛めっき工程において、亜鉛めっきを施した後、更に、460~600℃に加熱して亜鉛めっきの合金化処理を施す[5]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
 なお、本発明において、「高強度溶融亜鉛めっき鋼板」は、引張強さ(TS)980MPa以上であり、溶融亜鉛めっき鋼板のみならず、合金化溶融亜鉛めっき鋼板をも含む。また、溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板とで区別して説明することが必要となる場合は、これらの鋼板を区別して記載する。
 本発明によれば、伸びフランジ性及び曲げ加工性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。本発明の高強度溶融亜鉛めっき鋼板は曲げ加工後において良好な外観を実現できる。本発明の高強度溶融亜鉛めっき鋼板は自動車部品用素材として好適である。
 以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
 1)成分組成
C:0.07~0.25%
Cは、マルテンサイト相を生成させてTSを上昇させるために必要な元素である。C量が0.07%未満では、マルテンサイト相の強度が低くTS:980MPa以上を得ることができない。一方、C量が0.25%を超えると曲げ加工性が劣化する。したがって、C量は0.07~0.25%とする。TSについて1180MPa以上を得る観点から、C量は好ましくは0.08以上であり、より好ましくは0.10%以上である。一方、C量の上限側は0.23%以下が好ましい。
 Si:0.01~3.00%
Siは、鋼を固溶強化してTSを上昇させるのに有効な元素である。こうした効果を得るにはSi量を0.01%以上とする必要がある。一方、Siの含有量が増えると、鋼が脆化して曲げ加工性が劣化する。本発明ではSi量3.00%まで許容できる。したがって、Si量は0.01~3.00%とする。Si量は好ましくは0.01~1.80%、より好ましくは0.01~1.00%、さらに好ましくは0.01~0.70%である。
 Mn:1.5~4.0%
Mnは、鋼を固溶強化してTSを上昇させたり、フェライト変態やベイナイト変態を抑制してマルテンサイト相を生成させ、TSを上昇させる元素である。こうした効果を十分に得るには、Mn量を1.5%以上にする必要がある。一方、Mn量が4.0%を超えると、鋼が脆化して曲げ加工性が劣化する。したがって、Mn量は1.5~4.0%とする。Mn量について、下限側は好ましくは1.8%以上である。上限側は好ましくは3.8%以下であり、より好ましくは3.5%以下である。
 P:0.100%以下
Pは、粒界偏析により鋼が脆化して曲げ加工性が劣化するため、その量は極力低減することが望ましい。しかし、製造コストの面などからP量は0.100%以下とする。好ましくは、0.050%以下、より好ましくは0.025%以下、さらに好ましくは0.015%以下である。Pを全く含有しなくても原理上問題ないため下限は特に規定しないが、0.001%未満では生産能率の低下を招くため、P量は0.001%以上が好ましい。
 S:0.02%以下
Sは、MnSなどの介在物として存在して、曲げ加工性を劣化させるため、その量は極力低減することが好ましく、本発明ではS量は0.02%まで許容できる。よって、S量は0.02%以下である。Sを全く含有しなくても原理上問題ないため下限は特に規定しないが、0.0005%未満では生産能率の低下を招くため、S量は0.0005%以上が好ましい。
 Al:0.01~1.50%
Alは、脱酸剤として作用し、脱酸工程で含有させることが好ましい。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が1.50%を超えると、焼鈍時にフェライト相の過剰生成を招き、TSが低下する。したがって、Al量は0.01~1.50%とする。Al量は好ましくは0.01~0.70%、より好ましくは0.01~0.10%である。
 N:0.001~0.008%
Nが0.008%を超えるとTiNが粗大化し、これを核としたフェライト相生成が助長されて、本発明の鋼板組織が得られない。一方、0.001%未満ではAlNやTiN等の窒化物が微細化してフェライト相やマルテンサイト相の結晶粒成長の抑制効果が低下し、該結晶粒が粗大化して本発明の鋼板組織が得られない。したがって、N量は0.001~0.008%とする。
 Ti:0.003~0.200%
Tiは、焼鈍時にフェライト相の再結晶を抑制し、最終組織における焼戻しマルテンサイト相の結晶粒を微細化するのに有効な元素である。また、Nを固定してBNの生成を抑制し、Bの効果を引き出すのに有効な元素である。こうした効果を得るには、Ti量を0.003%以上にする必要がある。一方、Ti量が0.200%を超えると、粗大な炭窒化物(TiCN、TiCを含む。)を生成して、鋼中の固溶C量が低下し、TSが低下する。したがって、Ti量は0.003~0.200%とする。Ti量について、下限側は好ましくは0.010%以上である。上限側は好ましくは0.080%以下であり、より好ましくは0.060%以下、さらに好ましくは0.030%以下である。
 B:0.0003~0.0050%
Bは、粒界からのフェライト相およびベイナイト相の核生成を均一に抑制し、硬度バラツキの小さい焼戻しマルテンサイト相を得るのに有効な元素である。こうした効果を十分に得るには、B量を0.0003%以上にする必要がある。一方、B量が0.0050%を超えると、介在物が増大して曲げ性を劣化させる。したがって、B量は0.0003~0.0050%とする。B量について、下限側は好ましくは0.0005%以上である。上限側は好ましくは0.0035%以下、より好ましくは0.0020%以下である。
 Ti>4N
TiはNを固定し、BNの生成を抑制してBの効果を引き出すのに有効な元素である。このような効果を十分得るにはTiとNの含有量がTi>4Nを満たす必要がある。
 残部はFeおよび不可避的不純物であるが、必要に応じて以下の元素の一種以上を適宜含有させることができる。また、本発明では、Zr、Mg、La、Ce、Sn、Sb等の不純物元素を合計で0.002%まで含んでも構わない。
 Cr:0.01~2.00%、Mo:0.01~2.00%、V:0.01~2.00%、Ni:0.01~2.00%、Cu:0.01~2.00%から選ばれる少なくとも一種の元素
Cr、Mo、V、Ni、Cuはマルテンサイト相などの低温変態相を生成させ、高強度化に有効な元素である。こうした効果を得る観点から、Cr、Mo、V、Ni、Cuから選ばれる少なくとも一種の元素の含有量はそれぞれ0.01%以上とすることが好ましい。一方、Cr、Mo、V、Ni、Cuのそれぞれの含有量が2.00%を超えると、その効果が飽和し、コストアップを招く。したがって、これらの元素を含有する場合、Cr、Mo、V、Ni、Cuの含有量はそれぞれ0.01~2.00%とすることが好ましい。より好ましくはCrは0.01~1.50%、Moは0.01~0.80%、Vは0.01~0.80%、Niは0.01~1.50%、Cuは0.01~0.50%である。
 Nb:0.003~0.200%
Nbは焼鈍時にフェライト相の再結晶を抑制し、最終組織における焼戻しマルテンサイト相の結晶粒を微細化するのに有効な元素である。こうした効果を得る観点からNb含有量を0.003%以上とすることが好ましい。一方、0.200%を超えると粗大な炭窒化物(NbCN、NbCを含む)を生成して、鋼中の固溶C量が低下し、TSが低下するおそれがある。したがって、Nbを含有する場合は、Nb量は0.003~0.200%とすることが好ましい。Nb量はより好ましくは0.005~0.080%、さらに好ましくは0.005~0.060%である。
 Ca:0.001~0.005%、REM:0.001~0.005%から選ばれる少なくとも一種の元素
Ca、REMは、いずれも硫化物の形態制御により曲げ加工性を改善させるのに有効な元素である。こうした効果を得る観点から、Ca、REMから選ばれる少なくとも一種の元素の含有量を0.001%以上とすることが好ましい。一方、Ca、REMのそれぞれの含有量が0.005%を超えると、介在物が増大して曲げ加工性が劣化するおそれがある。したがって、これらの元素を含有する場合は、Ca、REMの含有量は0.001%~0.005%とすることが好ましい。
 2)鋼板組織
フェライト相の面積率:70%以下(0%を含む)
フェライト相の面積率が70%を超えるとTS:980MPa以上と曲げ加工性および伸びフランジ性の並立が困難となる。したがって、フェライト相の面積率は70%以下とする。TS:1180MPa以上を得るためにフェライト相の面積率は好ましくは60%以下であり、より好ましくは20%以下、さらに好ましくは8%以下である。
 ベイナイト相と焼戻しベイナイト相の面積率の合計:20%以下(0%を含む)
ベイナイト相と焼戻しベイナイト相の面積率が合計で20%を超えると、曲げ加工性および伸びフランジ性が劣化する。したがって、ベイナイト相と焼戻しベイナイト相の面積率は合計で20%以下とする。なお、本発明におけるベイナイト相は上部ベイナイト相と下部ベイナイト相からなり、焼戻しベイナイト相は焼戻し下部ベイナイト相である。
 焼戻しマルテンサイト相の面積率:25%以上
焼戻しマルテンサイト相の面積率が25%未満ではTS:980MPa以上と曲げ加工性および伸びフランジ性の並立が困難となる。したがって、焼戻しマルテンサイト相の面積率は25%以上とする。1180MPa以上のTSを得る観点から、焼戻しマルテンサイト相の面積率は好ましくは40%以上であり、より好ましくは80%以上、さらに好ましくは90%以上である。なお、本発明において、焼戻しマルテンサイト相とは炭化物を有するマルテンサイト相である。本発明において焼戻しマルテンサイト相はオートテンパードマルテンサイト相を含む。
 残留オーステナイト相の面積率:3%未満(0%を含む)
残留オーステナイト相は曲げ加工時に硬質なマルテンサイト相になることで曲げ加工性および伸びフランジ性を劣化させる。したがって、残留オーステナイト相の面積率は3%未満とする。残留オーステナイト相の面積率は好ましくは2%未満、より好ましくは1%未満である。
 なお、残留オーステナイト相は後述の方法により体積率を求める。そして、該体積率の値は面積率の値として扱う。
 焼戻しマルテンサイト相の平均結晶粒径:20μm以下
焼戻しマルテンサイト相の平均結晶粒径が20μmを超えると曲げ加工性が劣化する。したがって、焼戻しマルテンサイト相の平均結晶粒径は20μm以下とする。焼戻しマルテンサイト相の平均結晶粒径は好ましくは15μm以下である。
 焼戻しマルテンサイト相のビッカース硬度のバラツキの標準偏差:20以下
焼戻しマルテンサイト相のビッカース硬度のバラツキの標準偏差が20を超えると曲げ加工性が劣化する。したがって、焼戻しマルテンサイト相のビッカース硬度のバラツキの標準偏差は20以下とする。該標準偏差は好ましくは15以下である。なお、本発明における焼戻しマルテンサイト相のビッカース硬度は300~600であることが好ましい。
 焼戻しマルテンサイト相中の炭化物のうち短軸長が0.05μm以上のものの個数密度:3×10個/mm以下
焼戻しマルテンサイト相中の炭化物のうち短軸長が0.05μm以上のものの個数密度が3×10個/mm超では曲げ加工性が劣化する。したがって、焼戻しマルテンサイト相中の炭化物のうち短軸長が0.05μm以上のものの個数密度は3×10個/mm以下とする。
 本発明の鋼板組織は焼戻しマルテンサイト相単相であってもよい。一方、本発明の鋼板組織はフェライト相、焼戻しマルテンサイト相、ベイナイト相、焼戻しベイナイト相、残留オーステナイト相以外の他の相としてマルテンサイト相やパーライト相を含む場合もある。しかし、他の相について本発明では面積率の合計で2%未満が好ましく、1%未満がより好ましい。
 ここで、鋼板組織におけるフェライト相、焼戻しマルテンサイト相、ベイナイト相、焼戻しベイナイト相等の面積率とは組織観察における観察面積に占める各相の面積の割合のことである。これらの面積率は、亜鉛めっき層(合金化した場合は合金化亜鉛めっき層)を除いた地鉄鋼板よりサンプルを切出し、圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、板厚方向において地鉄鋼板表面から1/4位置をSEM(走査型電子顕微鏡)で1500倍の倍率でそれぞれ3視野撮影し、得られた画像データから解析ソフト(例えばMedia Cybernetics社製のImage-Pro)を用いて各相の面積率を求め、前記3視野の平均面積率を各相の面積率とすることで求めることができる。前記画像データにおいて、フェライト相は黒色、マルテンサイト相は炭化物を含まない白色、焼戻しマルテンサイト相は方位の揃っていない炭化物を含む明灰色、焼戻し下部ベイナイト相は方位の揃った炭化物を含む暗灰色、上部ベイナイト相は炭化物または島状白色組織を含む黒色、下部ベイナイト相は方位の揃った炭化物を含む明灰色、パーライト相は黒色と白色の層状として区別できる。ここで、焼戻しマルテンサイト相は様々な大きさの炭化物を含有し得る。本発明では後述の方法にのっとり焼戻しマルテンサイト相における特定の炭化物の個数密度を規定している。また、画像データからマルテンサイト相と残留オーステナイト相を区別することは困難なため、後述するX線回折法により求めた残留オーステナイト相の体積率の値を白色組織の面積率の値から差し引いた値をマルテンサイト相の面積率とする。
 焼戻しマルテンサイト相の平均結晶粒径は面積率を求めた上記画像データについて、前記3視野の焼戻しマルテンサイト相の面積の合計を焼戻しマルテンサイト相の個数で割って平均面積を求め、その1/2乗を平均結晶粒径とする。
 板厚方向において地鉄鋼板表面から1/4位置断面における残留オーステナイト相の体積率は以下のように求める。即ち、地鉄鋼板の板厚方向において表面から1/4位置まで研削後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でMoのKα線を用い、fcc鉄(オーステナイト)の(200)面、(220)面、(311)面と、bcc鉄(フェライト)の(200面)、(211)面、(220)面の積分反射強度を測定する。そして、bcc鉄(フェライト)の各面からの積分反射強度に対するfcc鉄(オーステナイト)各面からの積分反射強度の強度比から求めた体積率を、残留オーステナイト相の体積率とする。
 焼戻しマルテンサイト相のビッカース硬度は以下のように測定する。圧延方向に対して平行方向の断面を有し幅が10mm、長さ(圧延方向)が15mmの試験片を採取し、該断面について地鉄鋼板の板厚方向においての表面から板厚1/4位置において焼戻しマルテンサイト相(オートテンパードマルテンサイト相を含む)をランダムに選出しビッカース硬度測定を行う。荷重は20gで20点測定する。
 次に、測定したビッカース硬度の最大値と最小値を除いた18点について、下記の数1に示す式より標準偏差σを求める。
Figure JPOXMLDOC01-appb-M000001
 焼戻しマルテンサイト相中の炭化物は上記焼戻しマルテンサイト相等の面積率測定方法と同様の方法でSEMにより10000倍の倍率で10視野撮影し、得られた画像データにおいて短軸長が0.05μm以上の炭化物数を測定し、その平均値を視野面積で除して個数密度を求める。なお、炭化物の短軸長は、個々の島状の炭化物の面積を求め、次に該島状の炭化物の最大長さを求め、前記島状の炭化物の面積を前記島状の炭化物の最大長さで割ることで求める。
 3)製造条件
本発明の高強度溶融亜鉛めっき鋼板は、例えば、上記の成分組成を有するスラブに、仕上げ圧延終了後、600~700℃での滞留時間の総計が10秒以下となるように冷却し、巻取り温度600℃未満で巻取る熱間圧延工程と、圧下率20%超で冷間圧延する冷間圧延工程と、平均加熱速度15℃/s以下で焼鈍温度750~950℃まで加熱し、該焼鈍温度で30秒以上保持する焼鈍工程と、平均冷却速度3℃/s以上で冷却する一次冷却工程と、亜鉛めっきを施す亜鉛めっき工程と、平均冷却速度1℃/s以上でMs点以上まで冷却した後、平均冷却速度100℃/s以上で100℃以下まで冷却を施す二次冷却工程と、350℃以下に再加熱し、1秒以上保持する焼戻し工程と、を有し、上記各工程を記載の順序で行う高強度溶融亜鉛めっき鋼板の製造方法により製造できる。なお、必要に応じて、亜鉛めっきの合金化処理を施してもよい。熱間圧延では600~700℃における滞留時間を10秒以下とし、さらに600℃未満で巻取ることでBの固溶状態を維持する。焼鈍では15℃以下で加熱して750~950℃で保持することでオーステナイト相すなわち最終組織における焼戻しマルテンサイト相を微細化する。続く冷却では、固溶Bと3℃/s以上の冷却によりフェライト相生成を抑えて微細粒を維持し、Ms点以下を100℃/s以上の冷却とすることでマルテンサイト相すなわち最終組織における焼戻しマルテンサイト相の硬さを均一化することができる。焼鈍後、350℃以下で焼戻しを施すことでマルテンサイト相のひずみを緩和して伸びフランジ性を向上させつつ、マルテンサイト相中に微細炭化物を生成させた焼戻しマルテンサイト相とすることで優れた曲げ性を両立させることができる。以下、詳しく説明する。
 3-1)熱間圧延工程
 600~700℃での滞留時間の総計:10秒以下
仕上げ圧延後、600~700℃の温度域における鋼板の滞留時間が10秒を超えるとB炭化物等のBを含む化合物が生成して、鋼中の固溶B量が低下し、焼鈍時のBの効果、すなわち微細組織におけるベイナイト相面積率を抑制する効果が減退して本発明の鋼板組織が得られなくなる。したがって、600~700℃での滞留時間の総計は10秒以下とする。600~700℃での滞留時間の総計は好ましくは8秒以下である。なお、温度は鋼板表面の温度である。
 巻取り温度:600℃未満
巻取り温度が600℃以上ではB炭化物等のBを含む化合物が生成して、鋼中の固溶B量が低下し、焼鈍時のBの効果が減退して本発明の鋼板組織が得られなくなる。したがって、巻取り温度は600℃未満とする。下限は特に規定しないが、温度制御性の観点からは巻取り温度は400℃以上程度が好ましい。
 スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延するには、スラブをいったん室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止するため、1100℃以上に加熱することが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。なお、スラブ温度はスラブ表面の温度である。
 スラブを熱間圧延する際は、スラブの加熱温度を低くしても圧延時のトラブルを防止する観点から、粗圧延後の粗バーを加熱することもできる。また、粗バー同士を接合し、仕上げ圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。仕上げ圧延がAr変態点未満で終了すると異方性を増大させ、冷間圧延・焼鈍後の加工性を低下させる場合があるので、Ar変態点以上の仕上げ温度で行うことが好ましい。また、圧延荷重の低減や形状・材質の均一化のために、仕上げ圧延の全パスあるいは一部のパスで摩擦係数が0.10~0.25となる潤滑圧延を行うことが好ましい。
 また、巻取り後の鋼板は、通常、スケールを酸洗などにより除去した後、冷間圧延、焼鈍、溶融亜鉛めっき等が施される。
 3-2)冷間圧延工程
 冷間圧延の圧下率:20%超
圧下率が20%以下では焼鈍時に再結晶が起こらず伸展組織が残存し、本発明の鋼板組織が得られない。したがって、冷間圧延の圧下率は20%超とする。冷間圧延の圧下率は好ましくは30%以上である。なお、上限は特に規定しないが、形状の安定性等の観点から圧下率90%以下程度が好ましい。
 3-3)焼鈍工程
 焼鈍温度までの平均加熱速度:15℃/s以下で750~950℃まで加熱
平均加熱速度が15℃/sを超えると大きな圧延ひずみが蓄積した未再結晶組織から急激に逆変態が進行し、粒成長して粗大なオーステナイト相、すなわち最終組織における粗大な焼戻しマルテンサイト相が生成しやすくなり、本発明の鋼板組織が得られなくなる。したがって、平均加熱速度は15℃/s以下とする。平均加熱速度は好ましくは8℃/s以下である。下限は特に規定しないが1℃/s未満になると粗粒を生じる場合があるため、1℃/s以上が好ましい。なお、平均加熱速度は加熱開始から焼鈍温度までの鋼板の温度差を要した時間で除した値である。本発明において、加熱速度及び冷却速度の単位における「s」は「秒」を意味する。
 750℃未満までの加熱ではオーステナイト相、すなわち最終組織における焼戻しマルテンサイト相が十分生成せず、本発明の鋼板組織が得られない。一方、950℃を超えるとオーステナイト粒が粗大化して本発明の鋼板組織が得られない。したがって、焼鈍温度は750~950℃とする。
 焼鈍温度での保持時間:30秒以上
焼鈍温度である750~950℃での保持時間が30秒未満ではオーステナイト相の生成が不十分なり、本発明の鋼板組織が得られない。したがって、焼鈍温度での保持時間は30秒以上とする。上限は特に規定しないが、生産能率等の観点からは保持時間1000秒以下程度が好ましい。
 3-4)一次冷却工程(焼鈍終了時から溶融亜鉛めっき浴浸漬までの冷却工程)
 平均冷却速度:3℃/s以上
焼鈍工程後の平均冷却速度が3℃/s未満では冷却中や保持中にフェライト相や上部ベイナイト相が過剰に生成して本発明の鋼板組織が得られない。したがって、平均冷却速度は3℃/s以上とする。平均冷却速度は好ましくは5℃/s以上である。一方、平均冷却速度の上限側は50℃/s以下とすることが好ましく、より好ましくは40℃/s以下である。該平均冷却速度は鋼板の焼鈍温度と亜鉛めっき浴温度との温度差を焼鈍終了時から亜鉛めっき浴浸漬時までに要した時間で除した値である。なお、上記冷却速度を満たしている限り、該冷却工程中において、Ms~550℃の範囲においては冷却加熱保持等を行ってもかまわない。
 3-5)亜鉛めっき工程
 一次冷却工程により焼鈍温度から冷却された鋼板に溶融亜鉛めっきを施す。溶融亜鉛めっき処理の条件は特に限定されない。例えば、上記処理を受けた鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、その後、ガスワイピングなどによってめっき付着量を調整して溶融亜鉛めっき処理を行うことが好ましい。溶融亜鉛めっき処理ではAl量が0.08~0.25質量%である亜鉛めっき浴を用いることが好ましい。さらに亜鉛めっき層を合金化する際は460℃以上600℃以下の温度域に1秒以上40秒以下保持して合金化することが好ましい。
 3-6)二次冷却工程(亜鉛めっき後冷却工程)
 平均冷却速度:1℃/s以上でMs点以上まで冷却
Ms点以上の温度域において、平均冷却速度1℃/s以上の緩冷却を行う。該緩冷却の平均冷却速度が1℃/s未満では冷却中に上部ベイナイト相や下部ベイナイト相が生成して本発明の鋼板組織が得られない。したがって、緩冷却の平均冷却速度は1℃/s以上とする。該平均冷却速度は亜鉛めっき後の鋼板温度と冷却終了時の鋼板温度との差を冷却に要した時間で除した値である。緩冷却速度が速過ぎると温度バラツキを生じやすくなり、硬度バラツキを招く場合があるため、好ましくは50℃/s以下である。
 冷却終了温度:Ms点以上
緩冷却終了温度がMs点未満になると硬度ばらつきの大きいオートテンパードマルテンサイト相や下部ベイナイト相、さらには粗大な炭化物が生成して、本発明の鋼板組織が得られない。したがって、緩冷却終了温度はMs点以上とする。緩冷却終了温度は好ましくはMs点~500℃とする。本発明において、Ms点は線膨張変化により求める。
 平均冷却速度:100℃/s以上で100℃以下まで冷却
緩冷却後、平均冷却速度100℃/s以上で100℃以下まで急冷却する。100℃以下までの平均冷却速度が100℃/s未満では硬度ばらつきの大きいオートテンパードマルテンサイト相や下部ベイナイト相が生成して、本発明の鋼板組織が得られない。したがって、100℃以下までの平均冷却速度は100℃/s以上とする。該平均冷却速度は上記緩冷却の冷却終了時の鋼板温度と二次冷却終了時の鋼板温度との差を要した時間で除した値である。
 二次冷却終了温度:100℃以下
二次冷却終了温度が100℃を超えると硬度ばらつきの大きいオートテンパードマルテンサイト相や下部ベイナイト相が生成して、本発明の鋼板組織が得られない。したがって、急冷却終了温度は100℃以下とする。好ましくは、60℃以下とする。
 3-7)焼戻し工程
 再加熱温度:350℃以下
再加熱温度が350℃を超えると焼戻しマルテンサイト相中の炭化物が粗大化して本発明の鋼板組織が得られなくなる。したがって、再加熱温度は350℃以下とする。再加熱温度の下限は特に限定しないが、80℃以上が好ましい。
 再加熱温度での保持時間:1秒以上
再加熱温度での保持時間が1秒未満では焼戻しが不十分となって伸びフランジ性が低下する。したがって、再加熱温度での保持時間は1秒以上とする。該保持時間の上限は特に限定しないが、10日以下が好ましい。
 3-8)他の工程について
 本発明の高強度溶融亜鉛めっき鋼板には樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。亜鉛めっき層の合金化処理を施した後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うことができる。
 4)他の条件等
 本発明の高強度溶融亜鉛めっき鋼板の板厚は特に限定されないが0.4~3.0mmが好ましい。また、本発明の溶融亜鉛めっき鋼板のTSは980MPa以上であるが、鋼板のTSを1180MPa以上とすることが好ましい。
 本発明の高強度溶融亜鉛めっき鋼板の用途は特に限定されない。自動車の軽量化及び自動車車体の高性能化に寄与できるため、自動車部品用途が好ましい。
 以下に本発明の実施例を説明する。本発明の技術的範囲は以下の実施例に限定されない。
 表1に示す成分組成を有する鋼(残部はFeおよび不可避的不純物)を使用し、表2に示す条件により溶融亜鉛めっき鋼板を作製した。詳しくは、表1に示す成分組成の鋼を真空溶解炉により溶製し、圧延して鋼スラブとした。これらの鋼スラブを1200℃に加熱後粗圧延、仕上げ圧延、冷却、巻取りをして、熱延鋼板とした。次いで、板厚1.4mmまで冷間圧延して冷延鋼板を製造し、焼鈍、焼戻しに供した。焼鈍は連続溶融亜鉛めっきラインを模擬した赤外線イメージ炉にて表2に示す条件で行い、溶融亜鉛めっき鋼板(GI)および合金化溶融亜鉛めっき鋼板(GA)(鋼板No.1~31)を作製した。溶融亜鉛めっき鋼板は、460℃のめっき浴中に鋼板を浸漬し、付着量35~45g/mのめっき層を形成させて作製した。合金化溶融亜鉛めっき鋼板は前記手順によりめっき層形成後460~600℃の範囲内で合金化処理を行うことで作製した。以後、GI及びGAを溶融亜鉛めっき鋼板と呼ぶものとする。
 得られた溶融亜鉛めっき鋼板に伸長率0.2%のスキンパス圧延を施した後、以下の試験方法にしたがい、引張特性、曲げ加工性、伸びフランジ性を求めた。また、前述の方法により鋼板組織、焼戻しマルテンサイト相のビッカース硬度のバラツキの標準偏差、焼戻しマルテンサイト相中の炭化物のうち短軸長が0.05μm以上のものの個数密度を調べた。結果は表3に示した。なお、発明例において測定された焼戻しマルテンサイト相のビッカース硬度は300~600の範囲内であった。
 <引張特性試験>
作製した溶融亜鉛めっき鋼板より圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度が10-3/sとするJIS Z2241の規定に準拠した引張試験を行い、TSを求めた。TSが980MPa以上のものを合格とし、TSが1180MPa以上のものをより良好と評価した。
 <曲げ加工性試験>
圧延方向に対して平行方向を曲げ試験軸方向とする、幅が35mm、長さが100mmの短冊形の試験片を、作製した溶融亜鉛めっき鋼板より採取し、曲げ試験を行った。ストローク速度が10mm/s、押込み荷重が10ton、押付け保持時間5秒、曲げ半径Rが2.0mmで90°V曲げ試験を行い、曲げ頂点の稜線部を10倍の拡大鏡で観察し、ワレおよびスジ状起伏について次のように5段階で評価し、それぞれ3以上を合格とした。また、3以上の評点の場合は、評点が上がるごとにより良好と評価した。
 ワレの評価は、5mm以上の亀裂が認められたものを「1」、1mm以上5mm未満の亀裂が認められたものを「2」、0.5mm以上1mm未満の亀裂が認められたものを「3」、0.2mm以上0.5mm未満の亀裂が認められたものを「4」、0.2mm未満の亀裂が認められたもの又は亀裂なしのものを「5」とした。
 スジ状の起伏の評価は、顕著に認められたものを「1」、普通に認められたものを「2」、認められるが軽微なものを「3」、わずかに認められるものを「4」、全く認められないものを「5」とした。
 <穴拡げ試験>
幅が150mm、長さが150mmの試験片を、作製した溶融亜鉛めっき鋼板より採取し、JFST 1001(鉄連規格)に準拠して60゜円錐ポンチを用いた穴拡げ試験を3回行って平均の穴拡げ率λ(%)を求め、伸びフランジ性を評価した。穴拡げ率が30%以上を伸びフランジ性良好とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 発明例では伸びフランジ性および曲げ加工性に優れながら、980MPa以上、特に1180MPa以上のTSが得られることが確認できる。したがって、発明例によれば、伸びフランジ性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板が得られ、自動車の軽量化に寄与し、自動車車体の高性能化に大きく寄与するという優れた効果を奏する。
 本発明によれば、伸びフランジ性および曲げ加工性に優れながらTSが980MPa以上、特に1180MPa以上の強度の溶融亜鉛めっき鋼板を得ることができる。本発明の高強度溶融亜鉛めっき鋼板を自動車部品用途に使用すると、自動車の軽量化に寄与し、自動車車体の高性能化に大きく寄与することができる。

Claims (6)

  1.  質量%で、C:0.07~0.25%、Si:0.01~3.00%、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:0.01~1.50%、N:0.001~0.008%、Ti:0.003~0.200%、B:0.0003~0.0050%を含み、かつTi>4Nを満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、
     板厚方向において地鉄鋼板表面から1/4位置断面における面積率で、フェライト相が70%以下(0%を含む)、ベイナイト相と焼戻しベイナイト相の合計が20%以下(0%を含む)、焼戻しマルテンサイト相が25%以上、残留オーステナイト相が3%未満(0%を含む)であり、
     前記焼戻しマルテンサイト相の平均結晶粒径が20μm以下、前記焼戻しマルテンサイト相のビッカース硬度のバラツキが標準偏差で20以下、前記焼戻しマルテンサイト相中の炭化物のうち短軸長が0.05μm以上のものの個数密度が3×10個/mm以下である高強度溶融亜鉛めっき鋼板。
  2.  さらに、質量%で、Cr:0.01~2.00%、Mo:0.01~2.00%、V:0.01~2.00%、Ni:0.01~2.00%、Cu:0.01~2.00%から選ばれる少なくとも一種の元素を含有する請求項1に記載の高強度溶融亜鉛めっき鋼板。
  3.  さらに、質量%で、Nb:0.003~0.200%を含有する請求項1または2に記載の高強度溶融亜鉛めっき鋼板。
  4.  さらに、質量%で、Ca:0.001~0.005%、REM:0.001~0.005%から選ばれる少なくとも一種の元素を含有する請求項1から3のいずれかに記載の高強度溶融亜鉛めっき鋼板。
  5.  請求項1から4のいずれかに記載の成分組成を有するスラブに、仕上げ圧延終了後、600~700℃での滞留時間の総計が10秒以下となるように冷却し、巻取り温度600℃未満で巻取る熱間圧延工程と、
     圧下率20%超で冷間圧延する冷間圧延工程と、
     平均加熱速度15℃/s以下で焼鈍温度750~950℃まで加熱し、該焼鈍温度で30秒以上保持する焼鈍工程と、
     平均冷却速度3℃/s以上で冷却する一次冷却工程と、
     亜鉛めっきを施す亜鉛めっき工程と、
     平均冷却速度1℃/s以上でMs点以上まで冷却した後、平均冷却速度100℃/s以上で100℃以下まで冷却を施す二次冷却工程と、
     350℃以下に再加熱し、1秒以上保持する焼戻し工程と、を有し、上記各工程を記載の順序で行う高強度溶融亜鉛めっき鋼板の製造方法。
  6.  前記亜鉛めっき工程において、亜鉛めっきを施した後、更に、460~600℃に加熱して亜鉛めっきの合金化処理を施す請求項5に記載の高強度溶融亜鉛めっき鋼板の製造方法。
     
PCT/JP2016/000304 2015-02-13 2016-01-21 高強度溶融亜鉛めっき鋼板及びその製造方法 WO2016129214A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680009479.2A CN107208236B (zh) 2015-02-13 2016-01-21 高强度熔融镀锌钢板及其制造方法
MX2017010340A MX2017010340A (es) 2015-02-13 2016-01-21 Lamina de acero galvanizada de alta resistencia y metodo para la fabricacion de la misma.
KR1020177021893A KR101990717B1 (ko) 2015-02-13 2016-01-21 고강도 용융 아연 도금 강판 및 그 제조 방법
EP16748862.6A EP3257962B1 (en) 2015-02-13 2016-01-21 High-strength hot-dip galvanized steel sheet and manufacturing method therefor
US15/550,172 US10494689B2 (en) 2015-02-13 2016-01-21 High-strength galvanized steel sheet and method for manufacturing the same
JP2016529477A JP6057027B1 (ja) 2015-02-13 2016-01-21 高強度溶融亜鉛めっき鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026124 2015-02-13
JP2015-026124 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129214A1 true WO2016129214A1 (ja) 2016-08-18

Family

ID=56615593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000304 WO2016129214A1 (ja) 2015-02-13 2016-01-21 高強度溶融亜鉛めっき鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US10494689B2 (ja)
EP (1) EP3257962B1 (ja)
JP (1) JP6057027B1 (ja)
KR (1) KR101990717B1 (ja)
CN (1) CN107208236B (ja)
MX (1) MX2017010340A (ja)
WO (1) WO2016129214A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018011978A1 (ja) * 2016-07-15 2019-02-14 新日鐵住金株式会社 溶融亜鉛めっき鋼板
CN110527630A (zh) * 2019-05-24 2019-12-03 浙江工业大学 一株利用artp诱变技术选育的藤仓赤霉菌突变株及应用
RU2723872C1 (ru) * 2019-05-23 2020-06-17 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного листового проката из низколегированной стали
JP2020122213A (ja) * 2019-01-29 2020-08-13 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2021503040A (ja) * 2017-09-28 2021-02-04 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 平鋼製品およびその製造方法
CN113614256A (zh) * 2019-04-11 2021-11-05 日本制铁株式会社 钢板及其制造方法
CN114040988A (zh) * 2019-07-29 2022-02-11 Posco公司 高强度钢板及其制造方法
US11427900B2 (en) * 2017-01-31 2022-08-30 Nippon Steel Corporation Steel sheet
WO2022209520A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208237B (zh) * 2015-02-13 2019-03-05 杰富意钢铁株式会社 高强度熔融镀锌钢板及其制造方法
KR102031445B1 (ko) * 2017-12-22 2019-10-11 주식회사 포스코 내충격특성이 우수한 고강도 강판 및 그 제조방법
CN112823217B (zh) * 2018-10-10 2022-05-17 杰富意钢铁株式会社 高强度钢板及其制造方法
CN113366126B (zh) * 2019-01-29 2023-09-22 杰富意钢铁株式会社 高强度钢板及其制造方法
KR20220038466A (ko) * 2019-09-03 2022-03-28 닛폰세이테츠 가부시키가이샤 강판
KR20210147255A (ko) * 2020-05-28 2021-12-07 현대제철 주식회사 냉연 도금 강판 및 그 제조방법
KR20230013273A (ko) * 2020-06-30 2023-01-26 제이에프이 스틸 가부시키가이샤 아연 도금 강판, 부재 및 그들의 제조 방법
KR20230069426A (ko) * 2021-11-12 2023-05-19 주식회사 포스코 굽힘성 및 신장 플랜지성이 우수한 초고강도 강판 및 이의 제조 방법
WO2023223078A1 (en) * 2022-05-19 2023-11-23 Arcelormittal A martensitic steel sheet and a method of manunfacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209384A (ja) * 2008-02-29 2009-09-17 Jfe Steel Corp 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010215958A (ja) * 2009-03-16 2010-09-30 Jfe Steel Corp 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
JP2011111670A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 延性及び曲げ性の良好な引張最大応力900MPa以上を有する高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2011153361A (ja) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
WO2011129452A1 (ja) * 2010-04-16 2011-10-20 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2015162849A1 (ja) * 2014-04-22 2015-10-29 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788291B2 (ja) 2005-10-27 2011-10-05 Jfeスチール株式会社 伸びフランジ成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP5194841B2 (ja) * 2008-01-31 2013-05-08 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4894863B2 (ja) 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5504643B2 (ja) 2008-08-19 2014-05-28 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5315956B2 (ja) * 2008-11-28 2013-10-16 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5709151B2 (ja) * 2009-03-10 2015-04-30 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5434960B2 (ja) 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5136609B2 (ja) * 2010-07-29 2013-02-06 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5454745B2 (ja) * 2011-10-04 2014-03-26 Jfeスチール株式会社 高強度鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209384A (ja) * 2008-02-29 2009-09-17 Jfe Steel Corp 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010215958A (ja) * 2009-03-16 2010-09-30 Jfe Steel Corp 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
JP2011111670A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 延性及び曲げ性の良好な引張最大応力900MPa以上を有する高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2011153361A (ja) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
WO2011129452A1 (ja) * 2010-04-16 2011-10-20 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2015162849A1 (ja) * 2014-04-22 2015-10-29 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018011978A1 (ja) * 2016-07-15 2019-02-14 新日鐵住金株式会社 溶融亜鉛めっき鋼板
US11427900B2 (en) * 2017-01-31 2022-08-30 Nippon Steel Corporation Steel sheet
JP2021503040A (ja) * 2017-09-28 2021-02-04 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 平鋼製品およびその製造方法
JP7105302B2 (ja) 2017-09-28 2022-07-22 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 平鋼製品およびその製造方法
JP2020122213A (ja) * 2019-01-29 2020-08-13 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP7056631B2 (ja) 2019-01-29 2022-04-19 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
CN113614256A (zh) * 2019-04-11 2021-11-05 日本制铁株式会社 钢板及其制造方法
RU2723872C1 (ru) * 2019-05-23 2020-06-17 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного листового проката из низколегированной стали
CN110527630B (zh) * 2019-05-24 2021-04-20 浙江工业大学 一株利用artp诱变技术选育的藤仓赤霉菌突变株及应用
CN110527630A (zh) * 2019-05-24 2019-12-03 浙江工业大学 一株利用artp诱变技术选育的藤仓赤霉菌突变株及应用
CN114040988A (zh) * 2019-07-29 2022-02-11 Posco公司 高强度钢板及其制造方法
WO2022209520A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
JPWO2022209520A1 (ja) * 2021-03-31 2022-10-06
JP7239067B2 (ja) 2021-03-31 2023-03-14 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Also Published As

Publication number Publication date
CN107208236B (zh) 2019-01-25
US20180023154A1 (en) 2018-01-25
US10494689B2 (en) 2019-12-03
JPWO2016129214A1 (ja) 2017-04-27
KR20170103881A (ko) 2017-09-13
EP3257962A4 (en) 2017-12-20
EP3257962A1 (en) 2017-12-20
MX2017010340A (es) 2018-01-23
EP3257962B1 (en) 2019-08-28
JP6057027B1 (ja) 2017-01-11
KR101990717B1 (ko) 2019-06-18
CN107208236A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6057027B1 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
JP6439900B2 (ja) 高強度亜鉛めっき鋼板及びその製造方法
JP6052472B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6052471B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101218448B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
JP6354919B1 (ja) 薄鋼板およびその製造方法
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP5447741B1 (ja) 鋼板、めっき鋼板、及びそれらの製造方法
JP6057028B1 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
WO2010061972A1 (ja) 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法
JP5765116B2 (ja) 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
CN111527223B (zh) 高强度冷轧钢板及其制造方法
WO2017131054A1 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
WO2013031151A1 (ja) 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6384623B2 (ja) 高強度鋼板およびその製造方法
WO2017131052A1 (ja) 温間加工用高強度鋼板およびその製造方法
US20230349020A1 (en) Steel sheet, member, and methods for manufacturing the same
US20230349019A1 (en) Steel sheet, member, and methods for manufacturing the same
US20230072557A1 (en) Steel sheet, member, and methods for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016529477

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748862

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016748862

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177021893

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/010340

Country of ref document: MX

Ref document number: 15550172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE